VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMPool.cpp@ 45103

Last change on this file since 45103 was 45103, checked in by vboxsync, 11 years ago

PGMPool: Eliminated fictive page (except NIL). #6367

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 52.3 KB
Line 
1/* $Id: PGMPool.cpp 45103 2013-03-20 11:13:27Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_pgm_pool PGM Shadow Page Pool
19 *
20 * Motivations:
21 * -# Relationship between shadow page tables and physical guest pages. This
22 * should allow us to skip most of the global flushes now following access
23 * handler changes. The main expense is flushing shadow pages.
24 * -# Limit the pool size if necessary (default is kind of limitless).
25 * -# Allocate shadow pages from RC. We use to only do this in SyncCR3.
26 * -# Required for 64-bit guests.
27 * -# Combining the PD cache and page pool in order to simplify caching.
28 *
29 *
30 * @section sec_pgm_pool_outline Design Outline
31 *
32 * The shadow page pool tracks pages used for shadowing paging structures (i.e.
33 * page tables, page directory, page directory pointer table and page map
34 * level-4). Each page in the pool has an unique identifier. This identifier is
35 * used to link a guest physical page to a shadow PT. The identifier is a
36 * non-zero value and has a relativly low max value - say 14 bits. This makes it
37 * possible to fit it into the upper bits of the of the aHCPhys entries in the
38 * ram range.
39 *
40 * By restricting host physical memory to the first 48 bits (which is the
41 * announced physical memory range of the K8L chip (scheduled for 2008)), we
42 * can safely use the upper 16 bits for shadow page ID and reference counting.
43 *
44 * Update: The 48 bit assumption will be lifted with the new physical memory
45 * management (PGMPAGE), so we won't have any trouble when someone stuffs 2TB
46 * into a box in some years.
47 *
48 * Now, it's possible for a page to be aliased, i.e. mapped by more than one PT
49 * or PD. This is solved by creating a list of physical cross reference extents
50 * when ever this happens. Each node in the list (extent) is can contain 3 page
51 * pool indexes. The list it self is chained using indexes into the paPhysExt
52 * array.
53 *
54 *
55 * @section sec_pgm_pool_life Life Cycle of a Shadow Page
56 *
57 * -# The SyncPT function requests a page from the pool.
58 * The request includes the kind of page it is (PT/PD, PAE/legacy), the
59 * address of the page it's shadowing, and more.
60 * -# The pool responds to the request by allocating a new page.
61 * When the cache is enabled, it will first check if it's in the cache.
62 * Should the pool be exhausted, one of two things can be done:
63 * -# Flush the whole pool and current CR3.
64 * -# Use the cache to find a page which can be flushed (~age).
65 * -# The SyncPT function will sync one or more pages and insert it into the
66 * shadow PD.
67 * -# The SyncPage function may sync more pages on a later \#PFs.
68 * -# The page is freed / flushed in SyncCR3 (perhaps) and some other cases.
69 * When caching is enabled, the page isn't flush but remains in the cache.
70 *
71 *
72 * @section sec_pgm_pool_impl Monitoring
73 *
74 * We always monitor PAGE_SIZE chunks of memory. When we've got multiple shadow
75 * pages for the same PAGE_SIZE of guest memory (PAE and mixed PD/PT) the pages
76 * sharing the monitor get linked using the iMonitoredNext/Prev. The head page
77 * is the pvUser to the access handlers.
78 *
79 *
80 * @section sec_pgm_pool_impl Implementation
81 *
82 * The pool will take pages from the MM page pool. The tracking data
83 * (attributes, bitmaps and so on) are allocated from the hypervisor heap. The
84 * pool content can be accessed both by using the page id and the physical
85 * address (HC). The former is managed by means of an array, the latter by an
86 * offset based AVL tree.
87 *
88 * Flushing of a pool page means that we iterate the content (we know what kind
89 * it is) and updates the link information in the ram range.
90 *
91 * ...
92 */
93
94
95/*******************************************************************************
96* Header Files *
97*******************************************************************************/
98#define LOG_GROUP LOG_GROUP_PGM_POOL
99#include <VBox/vmm/pgm.h>
100#include <VBox/vmm/mm.h>
101#include "PGMInternal.h"
102#include <VBox/vmm/vm.h>
103#include <VBox/vmm/uvm.h>
104#include "PGMInline.h"
105
106#include <VBox/log.h>
107#include <VBox/err.h>
108#include <iprt/asm.h>
109#include <iprt/string.h>
110#include <VBox/dbg.h>
111
112
113/*******************************************************************************
114* Internal Functions *
115*******************************************************************************/
116static DECLCALLBACK(int) pgmR3PoolAccessHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
117#ifdef VBOX_WITH_DEBUGGER
118static FNDBGCCMD pgmR3PoolCmdCheck;
119#endif
120
121#ifdef VBOX_WITH_DEBUGGER
122/** Command descriptors. */
123static const DBGCCMD g_aCmds[] =
124{
125 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
126 { "pgmpoolcheck", 0, 0, NULL, 0, 0, pgmR3PoolCmdCheck, "", "Check the pgm pool pages." },
127};
128#endif
129
130/**
131 * Initializes the pool
132 *
133 * @returns VBox status code.
134 * @param pVM Pointer to the VM.
135 */
136int pgmR3PoolInit(PVM pVM)
137{
138 int rc;
139
140 AssertCompile(NIL_PGMPOOL_IDX == 0);
141 /* pPage->cLocked is an unsigned byte. */
142 AssertCompile(VMM_MAX_CPU_COUNT <= 255);
143
144 /*
145 * Query Pool config.
146 */
147 PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM/Pool");
148
149 /* Default pgm pool size is 1024 pages (4MB). */
150 uint16_t cMaxPages = 1024;
151
152 /* Adjust it up relative to the RAM size, using the nested paging formula. */
153 uint64_t cbRam;
154 rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0); AssertRCReturn(rc, rc);
155 uint64_t u64MaxPages = (cbRam >> 9)
156 + (cbRam >> 18)
157 + (cbRam >> 27)
158 + 32 * PAGE_SIZE;
159 u64MaxPages >>= PAGE_SHIFT;
160 if (u64MaxPages > PGMPOOL_IDX_LAST)
161 cMaxPages = PGMPOOL_IDX_LAST;
162 else
163 cMaxPages = (uint16_t)u64MaxPages;
164
165 /** @cfgm{/PGM/Pool/MaxPages, uint16_t, #pages, 16, 0x3fff, F(ram-size)}
166 * The max size of the shadow page pool in pages. The pool will grow dynamically
167 * up to this limit.
168 */
169 rc = CFGMR3QueryU16Def(pCfg, "MaxPages", &cMaxPages, cMaxPages);
170 AssertLogRelRCReturn(rc, rc);
171 AssertLogRelMsgReturn(cMaxPages <= PGMPOOL_IDX_LAST && cMaxPages >= RT_ALIGN(PGMPOOL_IDX_FIRST, 16),
172 ("cMaxPages=%u (%#x)\n", cMaxPages, cMaxPages), VERR_INVALID_PARAMETER);
173 cMaxPages = RT_ALIGN(cMaxPages, 16);
174 if (cMaxPages > PGMPOOL_IDX_LAST)
175 cMaxPages = PGMPOOL_IDX_LAST;
176 LogRel(("PGMPool: cMaxPages=%u (u64MaxPages=%llu)\n", cMaxPages, u64MaxPages));
177
178 /** todo:
179 * We need to be much more careful with our allocation strategy here.
180 * For nested paging we don't need pool user info nor extents at all, but
181 * we can't check for nested paging here (too early during init to get a
182 * confirmation it can be used). The default for large memory configs is a
183 * bit large for shadow paging, so I've restricted the extent maximum to 8k
184 * (8k * 16 = 128k of hyper heap).
185 *
186 * Also when large page support is enabled, we typically don't need so much,
187 * although that depends on the availability of 2 MB chunks on the host.
188 */
189
190 /** @cfgm{/PGM/Pool/MaxUsers, uint16_t, #users, MaxUsers, 32K, MaxPages*2}
191 * The max number of shadow page user tracking records. Each shadow page has
192 * zero of other shadow pages (or CR3s) that references it, or uses it if you
193 * like. The structures describing these relationships are allocated from a
194 * fixed sized pool. This configuration variable defines the pool size.
195 */
196 uint16_t cMaxUsers;
197 rc = CFGMR3QueryU16Def(pCfg, "MaxUsers", &cMaxUsers, cMaxPages * 2);
198 AssertLogRelRCReturn(rc, rc);
199 AssertLogRelMsgReturn(cMaxUsers >= cMaxPages && cMaxPages <= _32K,
200 ("cMaxUsers=%u (%#x)\n", cMaxUsers, cMaxUsers), VERR_INVALID_PARAMETER);
201
202 /** @cfgm{/PGM/Pool/MaxPhysExts, uint16_t, #extents, 16, MaxPages * 2, MIN(MaxPages*2,8192)}
203 * The max number of extents for tracking aliased guest pages.
204 */
205 uint16_t cMaxPhysExts;
206 rc = CFGMR3QueryU16Def(pCfg, "MaxPhysExts", &cMaxPhysExts,
207 RT_MIN(cMaxPages * 2, 8192 /* 8Ki max as this eat too much hyper heap */));
208 AssertLogRelRCReturn(rc, rc);
209 AssertLogRelMsgReturn(cMaxPhysExts >= 16 && cMaxPhysExts <= PGMPOOL_IDX_LAST,
210 ("cMaxPhysExts=%u (%#x)\n", cMaxPhysExts, cMaxPhysExts), VERR_INVALID_PARAMETER);
211
212 /** @cfgm{/PGM/Pool/ChacheEnabled, bool, true}
213 * Enables or disabling caching of shadow pages. Caching means that we will try
214 * reuse shadow pages instead of recreating them everything SyncCR3, SyncPT or
215 * SyncPage requests one. When reusing a shadow page, we can save time
216 * reconstructing it and it's children.
217 */
218 bool fCacheEnabled;
219 rc = CFGMR3QueryBoolDef(pCfg, "CacheEnabled", &fCacheEnabled, true);
220 AssertLogRelRCReturn(rc, rc);
221
222 LogRel(("pgmR3PoolInit: cMaxPages=%#RX16 cMaxUsers=%#RX16 cMaxPhysExts=%#RX16 fCacheEnable=%RTbool\n",
223 cMaxPages, cMaxUsers, cMaxPhysExts, fCacheEnabled));
224
225 /*
226 * Allocate the data structures.
227 */
228 uint32_t cb = RT_OFFSETOF(PGMPOOL, aPages[cMaxPages]);
229 cb += cMaxUsers * sizeof(PGMPOOLUSER);
230 cb += cMaxPhysExts * sizeof(PGMPOOLPHYSEXT);
231 PPGMPOOL pPool;
232 rc = MMR3HyperAllocOnceNoRel(pVM, cb, 0, MM_TAG_PGM_POOL, (void **)&pPool);
233 if (RT_FAILURE(rc))
234 return rc;
235 pVM->pgm.s.pPoolR3 = pPool;
236 pVM->pgm.s.pPoolR0 = MMHyperR3ToR0(pVM, pPool);
237 pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pPool);
238
239 /*
240 * Initialize it.
241 */
242 pPool->pVMR3 = pVM;
243 pPool->pVMR0 = pVM->pVMR0;
244 pPool->pVMRC = pVM->pVMRC;
245 pPool->cMaxPages = cMaxPages;
246 pPool->cCurPages = PGMPOOL_IDX_FIRST;
247 pPool->iUserFreeHead = 0;
248 pPool->cMaxUsers = cMaxUsers;
249 PPGMPOOLUSER paUsers = (PPGMPOOLUSER)&pPool->aPages[pPool->cMaxPages];
250 pPool->paUsersR3 = paUsers;
251 pPool->paUsersR0 = MMHyperR3ToR0(pVM, paUsers);
252 pPool->paUsersRC = MMHyperR3ToRC(pVM, paUsers);
253 for (unsigned i = 0; i < cMaxUsers; i++)
254 {
255 paUsers[i].iNext = i + 1;
256 paUsers[i].iUser = NIL_PGMPOOL_IDX;
257 paUsers[i].iUserTable = 0xfffffffe;
258 }
259 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
260 pPool->iPhysExtFreeHead = 0;
261 pPool->cMaxPhysExts = cMaxPhysExts;
262 PPGMPOOLPHYSEXT paPhysExts = (PPGMPOOLPHYSEXT)&paUsers[cMaxUsers];
263 pPool->paPhysExtsR3 = paPhysExts;
264 pPool->paPhysExtsR0 = MMHyperR3ToR0(pVM, paPhysExts);
265 pPool->paPhysExtsRC = MMHyperR3ToRC(pVM, paPhysExts);
266 for (unsigned i = 0; i < cMaxPhysExts; i++)
267 {
268 paPhysExts[i].iNext = i + 1;
269 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
270 paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
271 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
272 paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
273 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
274 paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
275 }
276 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
277 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
278 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
279 pPool->iAgeHead = NIL_PGMPOOL_IDX;
280 pPool->iAgeTail = NIL_PGMPOOL_IDX;
281 pPool->fCacheEnabled = fCacheEnabled;
282 pPool->pfnAccessHandlerR3 = pgmR3PoolAccessHandler;
283 pPool->pszAccessHandler = "Guest Paging Access Handler";
284 pPool->HCPhysTree = 0;
285
286 /*
287 * The NIL entry.
288 */
289 Assert(NIL_PGMPOOL_IDX == 0);
290 pPool->aPages[NIL_PGMPOOL_IDX].enmKind = PGMPOOLKIND_INVALID;
291 pPool->aPages[NIL_PGMPOOL_IDX].idx = NIL_PGMPOOL_IDX;
292 pPool->aPages[NIL_PGMPOOL_IDX].Core.Key = NIL_RTHCPHYS;
293 pPool->aPages[NIL_PGMPOOL_IDX].GCPhys = NIL_RTGCPHYS;
294 pPool->aPages[NIL_PGMPOOL_IDX].iNext = NIL_PGMPOOL_IDX;
295 /* pPool->aPages[NIL_PGMPOOL_IDX].cLocked = INT32_MAX; - test this out... */
296 pPool->aPages[NIL_PGMPOOL_IDX].pvPageR3 = 0;
297 pPool->aPages[NIL_PGMPOOL_IDX].iUserHead = NIL_PGMPOOL_USER_INDEX;
298 pPool->aPages[NIL_PGMPOOL_IDX].iModifiedNext = NIL_PGMPOOL_IDX;
299 pPool->aPages[NIL_PGMPOOL_IDX].iModifiedPrev = NIL_PGMPOOL_IDX;
300 pPool->aPages[NIL_PGMPOOL_IDX].iMonitoredNext = NIL_PGMPOOL_IDX;
301 pPool->aPages[NIL_PGMPOOL_IDX].iMonitoredNext = NIL_PGMPOOL_IDX;
302 pPool->aPages[NIL_PGMPOOL_IDX].iAgeNext = NIL_PGMPOOL_IDX;
303 pPool->aPages[NIL_PGMPOOL_IDX].iAgePrev = NIL_PGMPOOL_IDX;
304
305 Assert(pPool->aPages[NIL_PGMPOOL_IDX].idx == NIL_PGMPOOL_IDX);
306 Assert(pPool->aPages[NIL_PGMPOOL_IDX].GCPhys == NIL_RTGCPHYS);
307 Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fSeenNonGlobal);
308 Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fMonitored);
309 Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fCached);
310 Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fZeroed);
311 Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fReusedFlushPending);
312
313#ifdef VBOX_WITH_STATISTICS
314 /*
315 * Register statistics.
316 */
317 STAM_REG(pVM, &pPool->cCurPages, STAMTYPE_U16, "/PGM/Pool/cCurPages", STAMUNIT_PAGES, "Current pool size.");
318 STAM_REG(pVM, &pPool->cMaxPages, STAMTYPE_U16, "/PGM/Pool/cMaxPages", STAMUNIT_PAGES, "Max pool size.");
319 STAM_REG(pVM, &pPool->cUsedPages, STAMTYPE_U16, "/PGM/Pool/cUsedPages", STAMUNIT_PAGES, "The number of pages currently in use.");
320 STAM_REG(pVM, &pPool->cUsedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/cUsedPagesHigh", STAMUNIT_PAGES, "The high watermark for cUsedPages.");
321 STAM_REG(pVM, &pPool->StatAlloc, STAMTYPE_PROFILE_ADV, "/PGM/Pool/Alloc", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolAlloc.");
322 STAM_REG(pVM, &pPool->StatClearAll, STAMTYPE_PROFILE, "/PGM/Pool/ClearAll", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolClearAll.");
323 STAM_REG(pVM, &pPool->StatR3Reset, STAMTYPE_PROFILE, "/PGM/Pool/R3Reset", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolReset.");
324 STAM_REG(pVM, &pPool->StatFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFlushPage.");
325 STAM_REG(pVM, &pPool->StatFree, STAMTYPE_PROFILE, "/PGM/Pool/Free", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFree.");
326 STAM_REG(pVM, &pPool->StatForceFlushPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForce", STAMUNIT_OCCURENCES, "Counting explicit flushes by PGMPoolFlushPage().");
327 STAM_REG(pVM, &pPool->StatForceFlushDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForceDirty", STAMUNIT_OCCURENCES, "Counting explicit flushes of dirty pages by PGMPoolFlushPage().");
328 STAM_REG(pVM, &pPool->StatForceFlushReused, STAMTYPE_COUNTER, "/PGM/Pool/FlushReused", STAMUNIT_OCCURENCES, "Counting flushes for reused pages.");
329 STAM_REG(pVM, &pPool->StatZeroPage, STAMTYPE_PROFILE, "/PGM/Pool/ZeroPage", STAMUNIT_TICKS_PER_CALL, "Profiling time spent zeroing pages. Overlaps with Alloc.");
330 STAM_REG(pVM, &pPool->cMaxUsers, STAMTYPE_U16, "/PGM/Pool/Track/cMaxUsers", STAMUNIT_COUNT, "Max user tracking records.");
331 STAM_REG(pVM, &pPool->cPresent, STAMTYPE_U32, "/PGM/Pool/Track/cPresent", STAMUNIT_COUNT, "Number of present page table entries.");
332 STAM_REG(pVM, &pPool->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Pool/Track/Deref", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackDeref.");
333 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPT, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPT", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPT.");
334 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTs, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTs", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTs.");
335 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTsSlow, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTsSlow", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTsSlow.");
336 STAM_REG(pVM, &pPool->StatTrackFlushEntry, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Flush", STAMUNIT_COUNT, "Nr of flushed entries.");
337 STAM_REG(pVM, &pPool->StatTrackFlushEntryKeep, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Update", STAMUNIT_COUNT, "Nr of updated entries.");
338 STAM_REG(pVM, &pPool->StatTrackFreeUpOneUser, STAMTYPE_COUNTER, "/PGM/Pool/Track/FreeUpOneUser", STAMUNIT_TICKS_PER_CALL, "The number of times we were out of user tracking records.");
339 STAM_REG(pVM, &pPool->StatTrackDerefGCPhys, STAMTYPE_PROFILE, "/PGM/Pool/Track/DrefGCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling deref activity related tracking GC physical pages.");
340 STAM_REG(pVM, &pPool->StatTrackLinearRamSearches, STAMTYPE_COUNTER, "/PGM/Pool/Track/LinearRamSearches", STAMUNIT_OCCURENCES, "The number of times we had to do linear ram searches.");
341 STAM_REG(pVM, &pPool->StamTrackPhysExtAllocFailures,STAMTYPE_COUNTER, "/PGM/Pool/Track/PhysExtAllocFailures", STAMUNIT_OCCURENCES, "The number of failing pgmPoolTrackPhysExtAlloc calls.");
342 STAM_REG(pVM, &pPool->StatMonitorRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 access handler.");
343 STAM_REG(pVM, &pPool->StatMonitorRZEmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
344 STAM_REG(pVM, &pPool->StatMonitorRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler.");
345 STAM_REG(pVM, &pPool->StatMonitorRZFlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit.");
346 STAM_REG(pVM, &pPool->StatMonitorRZFlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often.");
347 STAM_REG(pVM, &pPool->StatMonitorRZFork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
348 STAM_REG(pVM, &pPool->StatMonitorRZHandled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 access we've handled (except REP STOSD).");
349 STAM_REG(pVM, &pPool->StatMonitorRZIntrFailPatch1, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IntrFailPatch1", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction.");
350 STAM_REG(pVM, &pPool->StatMonitorRZIntrFailPatch2, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IntrFailPatch2", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction during flushing.");
351 STAM_REG(pVM, &pPool->StatMonitorRZRepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
352 STAM_REG(pVM, &pPool->StatMonitorRZRepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
353 STAM_REG(pVM, &pPool->StatMonitorRZFaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
354 STAM_REG(pVM, &pPool->StatMonitorRZFaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
355 STAM_REG(pVM, &pPool->StatMonitorRZFaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
356 STAM_REG(pVM, &pPool->StatMonitorRZFaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
357 STAM_REG(pVM, &pPool->StatMonitorR3, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access handler.");
358 STAM_REG(pVM, &pPool->StatMonitorR3EmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
359 STAM_REG(pVM, &pPool->StatMonitorR3FlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the R3 access handler.");
360 STAM_REG(pVM, &pPool->StatMonitorR3FlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit.");
361 STAM_REG(pVM, &pPool->StatMonitorR3FlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often.");
362 STAM_REG(pVM, &pPool->StatMonitorR3Fork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
363 STAM_REG(pVM, &pPool->StatMonitorR3Handled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access we've handled (except REP STOSD).");
364 STAM_REG(pVM, &pPool->StatMonitorR3RepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
365 STAM_REG(pVM, &pPool->StatMonitorR3RepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
366 STAM_REG(pVM, &pPool->StatMonitorR3FaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
367 STAM_REG(pVM, &pPool->StatMonitorR3FaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
368 STAM_REG(pVM, &pPool->StatMonitorR3FaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
369 STAM_REG(pVM, &pPool->StatMonitorR3FaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
370 STAM_REG(pVM, &pPool->StatMonitorR3Async, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Async", STAMUNIT_OCCURENCES, "Times we're called in an async thread and need to flush.");
371 STAM_REG(pVM, &pPool->cModifiedPages, STAMTYPE_U16, "/PGM/Pool/Monitor/cModifiedPages", STAMUNIT_PAGES, "The current cModifiedPages value.");
372 STAM_REG(pVM, &pPool->cModifiedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/Monitor/cModifiedPagesHigh", STAMUNIT_PAGES, "The high watermark for cModifiedPages.");
373 STAM_REG(pVM, &pPool->StatResetDirtyPages, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Resets", STAMUNIT_OCCURENCES, "Times we've called pgmPoolResetDirtyPages (and there were dirty page).");
374 STAM_REG(pVM, &pPool->StatDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Pages", STAMUNIT_OCCURENCES, "Times we've called pgmPoolAddDirtyPage.");
375 STAM_REG(pVM, &pPool->StatDirtyPageDupFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushDup", STAMUNIT_OCCURENCES, "Times we've had to flush duplicates for dirty page management.");
376 STAM_REG(pVM, &pPool->StatDirtyPageOverFlowFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushOverflow",STAMUNIT_OCCURENCES, "Times we've had to flush because of overflow.");
377 STAM_REG(pVM, &pPool->StatCacheHits, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Hits", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls satisfied by the cache.");
378 STAM_REG(pVM, &pPool->StatCacheMisses, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Misses", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls not statisfied by the cache.");
379 STAM_REG(pVM, &pPool->StatCacheKindMismatches, STAMTYPE_COUNTER, "/PGM/Pool/Cache/KindMismatches", STAMUNIT_OCCURENCES, "The number of shadow page kind mismatches. (Better be low, preferably 0!)");
380 STAM_REG(pVM, &pPool->StatCacheFreeUpOne, STAMTYPE_COUNTER, "/PGM/Pool/Cache/FreeUpOne", STAMUNIT_OCCURENCES, "The number of times the cache was asked to free up a page.");
381 STAM_REG(pVM, &pPool->StatCacheCacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Cacheable", STAMUNIT_OCCURENCES, "The number of cacheable allocations.");
382 STAM_REG(pVM, &pPool->StatCacheUncacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Uncacheable", STAMUNIT_OCCURENCES, "The number of uncacheable allocations.");
383#endif /* VBOX_WITH_STATISTICS */
384
385#ifdef VBOX_WITH_DEBUGGER
386 /*
387 * Debugger commands.
388 */
389 static bool s_fRegisteredCmds = false;
390 if (!s_fRegisteredCmds)
391 {
392 rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
393 if (RT_SUCCESS(rc))
394 s_fRegisteredCmds = true;
395 }
396#endif
397
398 return VINF_SUCCESS;
399}
400
401
402/**
403 * Relocate the page pool data.
404 *
405 * @param pVM Pointer to the VM.
406 */
407void pgmR3PoolRelocate(PVM pVM)
408{
409 pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3);
410 pVM->pgm.s.pPoolR3->pVMRC = pVM->pVMRC;
411 pVM->pgm.s.pPoolR3->paUsersRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paUsersR3);
412 pVM->pgm.s.pPoolR3->paPhysExtsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paPhysExtsR3);
413 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "pgmPoolAccessHandler", &pVM->pgm.s.pPoolR3->pfnAccessHandlerRC);
414 AssertReleaseRC(rc);
415 /* init order hack. */
416 if (!pVM->pgm.s.pPoolR3->pfnAccessHandlerR0)
417 {
418 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "pgmPoolAccessHandler", &pVM->pgm.s.pPoolR3->pfnAccessHandlerR0);
419 AssertReleaseRC(rc);
420 }
421}
422
423
424/**
425 * Grows the shadow page pool.
426 *
427 * I.e. adds more pages to it, assuming that hasn't reached cMaxPages yet.
428 *
429 * @returns VBox status code.
430 * @param pVM Pointer to the VM.
431 */
432VMMR3DECL(int) PGMR3PoolGrow(PVM pVM)
433{
434 PPGMPOOL pPool = pVM->pgm.s.pPoolR3;
435 AssertReturn(pPool->cCurPages < pPool->cMaxPages, VERR_PGM_POOL_MAXED_OUT_ALREADY);
436
437 /* With 32-bit guests and no EPT, the CR3 limits the root pages to low
438 (below 4 GB) memory. */
439 /** @todo change the pool to handle ROOT page allocations specially when
440 * required. */
441 bool fCanUseHighMemory = HMIsNestedPagingActive(pVM)
442 && HMGetShwPagingMode(pVM) == PGMMODE_EPT;
443
444 pgmLock(pVM);
445
446 /*
447 * How much to grow it by?
448 */
449 uint32_t cPages = pPool->cMaxPages - pPool->cCurPages;
450 cPages = RT_MIN(PGMPOOL_CFG_MAX_GROW, cPages);
451 LogFlow(("PGMR3PoolGrow: Growing the pool by %d (%#x) pages. fCanUseHighMemory=%RTbool\n", cPages, cPages, fCanUseHighMemory));
452
453 for (unsigned i = pPool->cCurPages; cPages-- > 0; i++)
454 {
455 PPGMPOOLPAGE pPage = &pPool->aPages[i];
456
457 if (fCanUseHighMemory)
458 pPage->pvPageR3 = MMR3PageAlloc(pVM);
459 else
460 pPage->pvPageR3 = MMR3PageAllocLow(pVM);
461 if (!pPage->pvPageR3)
462 {
463 Log(("We're out of memory!! i=%d fCanUseHighMemory=%RTbool\n", i, fCanUseHighMemory));
464 pgmUnlock(pVM);
465 return i ? VINF_SUCCESS : VERR_NO_PAGE_MEMORY;
466 }
467 pPage->Core.Key = MMPage2Phys(pVM, pPage->pvPageR3);
468 AssertFatal(pPage->Core.Key < _4G || fCanUseHighMemory);
469 pPage->GCPhys = NIL_RTGCPHYS;
470 pPage->enmKind = PGMPOOLKIND_FREE;
471 pPage->idx = pPage - &pPool->aPages[0];
472 LogFlow(("PGMR3PoolGrow: insert page #%#x - %RHp\n", pPage->idx, pPage->Core.Key));
473 pPage->iNext = pPool->iFreeHead;
474 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
475 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
476 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
477 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
478 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
479 pPage->iAgeNext = NIL_PGMPOOL_IDX;
480 pPage->iAgePrev = NIL_PGMPOOL_IDX;
481 /* commit it */
482 bool fRc = RTAvloHCPhysInsert(&pPool->HCPhysTree, &pPage->Core); Assert(fRc); NOREF(fRc);
483 pPool->iFreeHead = i;
484 pPool->cCurPages = i + 1;
485 }
486
487 pgmUnlock(pVM);
488 Assert(pPool->cCurPages <= pPool->cMaxPages);
489 return VINF_SUCCESS;
490}
491
492
493
494/**
495 * Worker used by pgmR3PoolAccessHandler when it's invoked by an async thread.
496 *
497 * @param pPool The pool.
498 * @param pPage The page.
499 */
500static DECLCALLBACK(void) pgmR3PoolFlushReusedPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
501{
502 /* for the present this should be safe enough I think... */
503 pgmLock(pPool->pVMR3);
504 if ( pPage->fReusedFlushPending
505 && pPage->enmKind != PGMPOOLKIND_FREE)
506 pgmPoolFlushPage(pPool, pPage);
507 pgmUnlock(pPool->pVMR3);
508}
509
510
511/**
512 * \#PF Handler callback for PT write accesses.
513 *
514 * The handler can not raise any faults, it's mainly for monitoring write access
515 * to certain pages.
516 *
517 * @returns VINF_SUCCESS if the handler has carried out the operation.
518 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
519 * @param pVM Pointer to the VM.
520 * @param GCPhys The physical address the guest is writing to.
521 * @param pvPhys The HC mapping of that address.
522 * @param pvBuf What the guest is reading/writing.
523 * @param cbBuf How much it's reading/writing.
524 * @param enmAccessType The access type.
525 * @param pvUser User argument.
526 */
527static DECLCALLBACK(int) pgmR3PoolAccessHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf,
528 PGMACCESSTYPE enmAccessType, void *pvUser)
529{
530 STAM_PROFILE_START(&pVM->pgm.s.pPoolR3->StatMonitorR3, a);
531 PPGMPOOL pPool = pVM->pgm.s.pPoolR3;
532 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
533 PVMCPU pVCpu = VMMGetCpu(pVM);
534 LogFlow(("pgmR3PoolAccessHandler: GCPhys=%RGp %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n",
535 GCPhys, pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind));
536
537 NOREF(pvBuf); NOREF(enmAccessType);
538
539 /*
540 * We don't have to be very sophisticated about this since there are relativly few calls here.
541 * However, we must try our best to detect any non-cpu accesses (disk / networking).
542 *
543 * Just to make life more interesting, we'll have to deal with the async threads too.
544 * We cannot flush a page if we're in an async thread because of REM notifications.
545 */
546 pgmLock(pVM);
547 if (PHYS_PAGE_ADDRESS(GCPhys) != PHYS_PAGE_ADDRESS(pPage->GCPhys))
548 {
549 /* Pool page changed while we were waiting for the lock; ignore. */
550 Log(("CPU%d: pgmR3PoolAccessHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhys), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
551 pgmUnlock(pVM);
552 return VINF_PGM_HANDLER_DO_DEFAULT;
553 }
554
555 Assert(pPage->enmKind != PGMPOOLKIND_FREE);
556
557 /* @todo this code doesn't make any sense. remove the if (!pVCpu) block */
558 if (!pVCpu) /** @todo This shouldn't happen any longer, all access handlers will be called on an EMT. All ring-3 handlers, except MMIO, already own the PGM lock. @bugref{3170} */
559 {
560 Log(("pgmR3PoolAccessHandler: async thread, requesting EMT to flush the page: %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n",
561 pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind));
562 STAM_COUNTER_INC(&pPool->StatMonitorR3Async);
563 if (!pPage->fReusedFlushPending)
564 {
565 pgmUnlock(pVM);
566 int rc = VMR3ReqCallVoidNoWait(pPool->pVMR3, VMCPUID_ANY, (PFNRT)pgmR3PoolFlushReusedPage, 2, pPool, pPage);
567 AssertRCReturn(rc, rc);
568 pgmLock(pVM);
569 pPage->fReusedFlushPending = true;
570 pPage->cModifications += 0x1000;
571 }
572
573 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, 0 /* unknown write size */);
574 /** @todo r=bird: making unsafe assumption about not crossing entries here! */
575 while (cbBuf > 4)
576 {
577 cbBuf -= 4;
578 pvPhys = (uint8_t *)pvPhys + 4;
579 GCPhys += 4;
580 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, 0 /* unknown write size */);
581 }
582 STAM_PROFILE_STOP(&pPool->StatMonitorR3, a);
583 }
584 else if ( ( pPage->cModifications < 96 /* it's cheaper here. */
585 || pgmPoolIsPageLocked(pPage)
586 )
587 && cbBuf <= 4)
588 {
589 /* Clear the shadow entry. */
590 if (!pPage->cModifications++)
591 pgmPoolMonitorModifiedInsert(pPool, pPage);
592 /** @todo r=bird: making unsafe assumption about not crossing entries here! */
593 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, 0 /* unknown write size */);
594 STAM_PROFILE_STOP(&pPool->StatMonitorR3, a);
595 }
596 else
597 {
598 pgmPoolMonitorChainFlush(pPool, pPage); /* ASSUME that VERR_PGM_POOL_CLEARED can be ignored here and that FFs will deal with it in due time. */
599 STAM_PROFILE_STOP_EX(&pPool->StatMonitorR3, &pPool->StatMonitorR3FlushPage, a);
600 }
601 pgmUnlock(pVM);
602 return VINF_PGM_HANDLER_DO_DEFAULT;
603}
604
605
606/**
607 * Rendezvous callback used by pgmR3PoolClearAll that clears all shadow pages
608 * and all modification counters.
609 *
610 * This is only called on one of the EMTs while the other ones are waiting for
611 * it to complete this function.
612 *
613 * @returns VINF_SUCCESS (VBox strict status code).
614 * @param pVM Pointer to the VM.
615 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
616 * @param fpvFlushRemTlb When not NULL, we'll flush the REM TLB as well.
617 * (This is the pvUser, so it has to be void *.)
618 *
619 */
620DECLCALLBACK(VBOXSTRICTRC) pgmR3PoolClearAllRendezvous(PVM pVM, PVMCPU pVCpu, void *fpvFlushRemTbl)
621{
622 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
623 STAM_PROFILE_START(&pPool->StatClearAll, c);
624 NOREF(pVCpu);
625
626 pgmLock(pVM);
627 Log(("pgmR3PoolClearAllRendezvous: cUsedPages=%d fpvFlushRemTbl=%RTbool\n", pPool->cUsedPages, !!fpvFlushRemTbl));
628
629 /*
630 * Iterate all the pages until we've encountered all that are in use.
631 * This is a simple but not quite optimal solution.
632 */
633 unsigned cModifiedPages = 0; NOREF(cModifiedPages);
634 unsigned cLeft = pPool->cUsedPages;
635 uint32_t iPage = pPool->cCurPages;
636 while (--iPage >= PGMPOOL_IDX_FIRST)
637 {
638 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
639 if (pPage->GCPhys != NIL_RTGCPHYS)
640 {
641 switch (pPage->enmKind)
642 {
643 /*
644 * We only care about shadow page tables that reference physical memory
645 */
646#ifdef PGM_WITH_LARGE_PAGES
647 case PGMPOOLKIND_EPT_PD_FOR_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */
648 if (pPage->cPresent)
649 {
650 PX86PDPAE pShwPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
651 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
652 {
653 if ( pShwPD->a[i].n.u1Present
654 && pShwPD->a[i].b.u1Size)
655 {
656 Assert(!(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING));
657 pShwPD->a[i].u = 0;
658 Assert(pPage->cPresent);
659 pPage->cPresent--;
660 }
661 }
662 if (pPage->cPresent == 0)
663 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
664 }
665 goto default_case;
666
667 case PGMPOOLKIND_PAE_PD_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */
668 if (pPage->cPresent)
669 {
670 PEPTPD pShwPD = (PEPTPD)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
671 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
672 {
673 Assert((pShwPD->a[i].u & UINT64_C(0xfff0000000000f80)) == 0);
674 if ( pShwPD->a[i].n.u1Present
675 && pShwPD->a[i].b.u1Size)
676 {
677 Assert(!(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING));
678 pShwPD->a[i].u = 0;
679 Assert(pPage->cPresent);
680 pPage->cPresent--;
681 }
682 }
683 if (pPage->cPresent == 0)
684 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
685 }
686 goto default_case;
687#endif /* PGM_WITH_LARGE_PAGES */
688
689 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
690 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
691 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
692 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
693 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
694 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
695 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
696 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
697 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
698 {
699 if (pPage->cPresent)
700 {
701 void *pvShw = PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
702 STAM_PROFILE_START(&pPool->StatZeroPage, z);
703#if 0
704 /* Useful check for leaking references; *very* expensive though. */
705 switch (pPage->enmKind)
706 {
707 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
708 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
709 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
710 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
711 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
712 {
713 bool fFoundFirst = false;
714 PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)pvShw;
715 for (unsigned ptIndex = 0; ptIndex < RT_ELEMENTS(pPT->a); ptIndex++)
716 {
717 if (pPT->a[ptIndex].u)
718 {
719 if (!fFoundFirst)
720 {
721 AssertFatalMsg(pPage->iFirstPresent <= ptIndex, ("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
722 if (pPage->iFirstPresent != ptIndex)
723 Log(("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
724 fFoundFirst = true;
725 }
726 if (PGMSHWPTEPAE_IS_P(pPT->a[ptIndex]))
727 {
728 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pPT->a[ptIndex]), NIL_RTGCPHYS);
729 if (pPage->iFirstPresent == ptIndex)
730 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
731 }
732 }
733 }
734 AssertFatalMsg(pPage->cPresent == 0, ("cPresent = %d pPage = %RGv\n", pPage->cPresent, pPage->GCPhys));
735 break;
736 }
737 default:
738 break;
739 }
740#endif
741 ASMMemZeroPage(pvShw);
742 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
743 pPage->cPresent = 0;
744 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
745 }
746 }
747 /* fall thru */
748
749#ifdef PGM_WITH_LARGE_PAGES
750 default_case:
751#endif
752 default:
753 Assert(!pPage->cModifications || ++cModifiedPages);
754 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
755 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
756 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
757 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
758 pPage->cModifications = 0;
759 break;
760
761 }
762 if (!--cLeft)
763 break;
764 }
765 }
766
767#ifndef DEBUG_michael
768 AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
769#endif
770 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
771 pPool->cModifiedPages = 0;
772
773 /*
774 * Clear all the GCPhys links and rebuild the phys ext free list.
775 */
776 for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRangesX);
777 pRam;
778 pRam = pRam->CTX_SUFF(pNext))
779 {
780 iPage = pRam->cb >> PAGE_SHIFT;
781 while (iPage-- > 0)
782 PGM_PAGE_SET_TRACKING(pVM, &pRam->aPages[iPage], 0);
783 }
784
785 pPool->iPhysExtFreeHead = 0;
786 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
787 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
788 for (unsigned i = 0; i < cMaxPhysExts; i++)
789 {
790 paPhysExts[i].iNext = i + 1;
791 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
792 paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
793 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
794 paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
795 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
796 paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
797 }
798 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
799
800
801#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
802 /* Reset all dirty pages to reactivate the page monitoring. */
803 /* Note: we must do this *after* clearing all page references and shadow page tables as there might be stale references to
804 * recently removed MMIO ranges around that might otherwise end up asserting in pgmPoolTracDerefGCPhysHint
805 */
806 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
807 {
808 PPGMPOOLPAGE pPage;
809 unsigned idxPage;
810
811 if (pPool->aDirtyPages[i].uIdx == NIL_PGMPOOL_IDX)
812 continue;
813
814 idxPage = pPool->aDirtyPages[i].uIdx;
815 AssertRelease(idxPage != NIL_PGMPOOL_IDX);
816 pPage = &pPool->aPages[idxPage];
817 Assert(pPage->idx == idxPage);
818 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
819
820 AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, i));
821
822 Log(("Reactivate dirty page %RGp\n", pPage->GCPhys));
823
824 /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */
825 int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK);
826 AssertRCSuccess(rc);
827 pPage->fDirty = false;
828
829 pPool->aDirtyPages[i].uIdx = NIL_PGMPOOL_IDX;
830 }
831
832 /* Clear all dirty pages. */
833 pPool->idxFreeDirtyPage = 0;
834 pPool->cDirtyPages = 0;
835#endif
836
837 /* Clear the PGM_SYNC_CLEAR_PGM_POOL flag on all VCPUs to prevent redundant flushes. */
838 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
839 pVM->aCpus[idCpu].pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
840
841 /* Flush job finished. */
842 VM_FF_CLEAR(pVM, VM_FF_PGM_POOL_FLUSH_PENDING);
843 pPool->cPresent = 0;
844 pgmUnlock(pVM);
845
846 PGM_INVL_ALL_VCPU_TLBS(pVM);
847
848 if (fpvFlushRemTbl)
849 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
850 CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
851
852 STAM_PROFILE_STOP(&pPool->StatClearAll, c);
853 return VINF_SUCCESS;
854}
855
856
857/**
858 * Clears the shadow page pool.
859 *
860 * @param pVM Pointer to the VM.
861 * @param fFlushRemTlb When set, the REM TLB is scheduled for flushing as
862 * well.
863 */
864void pgmR3PoolClearAll(PVM pVM, bool fFlushRemTlb)
865{
866 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PoolClearAllRendezvous, &fFlushRemTlb);
867 AssertRC(rc);
868}
869
870
871/**
872 * Protect all pgm pool page table entries to monitor writes
873 *
874 * @param pVM Pointer to the VM.
875 *
876 * @remarks ASSUMES the caller will flush all TLBs!!
877 */
878void pgmR3PoolWriteProtectPages(PVM pVM)
879{
880 PGM_LOCK_ASSERT_OWNER(pVM);
881 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
882 unsigned cLeft = pPool->cUsedPages;
883 unsigned iPage = pPool->cCurPages;
884 while (--iPage >= PGMPOOL_IDX_FIRST)
885 {
886 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
887 if ( pPage->GCPhys != NIL_RTGCPHYS
888 && pPage->cPresent)
889 {
890 union
891 {
892 void *pv;
893 PX86PT pPT;
894 PPGMSHWPTPAE pPTPae;
895 PEPTPT pPTEpt;
896 } uShw;
897 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
898
899 switch (pPage->enmKind)
900 {
901 /*
902 * We only care about shadow page tables.
903 */
904 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
905 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
906 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
907 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPT->a); iShw++)
908 {
909 if (uShw.pPT->a[iShw].n.u1Present)
910 uShw.pPT->a[iShw].n.u1Write = 0;
911 }
912 break;
913
914 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
915 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
916 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
917 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
918 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
919 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTPae->a); iShw++)
920 {
921 if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw]))
922 PGMSHWPTEPAE_SET_RO(uShw.pPTPae->a[iShw]);
923 }
924 break;
925
926 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
927 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTEpt->a); iShw++)
928 {
929 if (uShw.pPTEpt->a[iShw].n.u1Present)
930 uShw.pPTEpt->a[iShw].n.u1Write = 0;
931 }
932 break;
933
934 default:
935 break;
936 }
937 if (!--cLeft)
938 break;
939 }
940 }
941}
942
943#ifdef VBOX_WITH_DEBUGGER
944/**
945 * @callback_method_impl{FNDBGCCMD, The '.pgmpoolcheck' command.}
946 */
947static DECLCALLBACK(int) pgmR3PoolCmdCheck(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
948{
949 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
950 PVM pVM = pUVM->pVM;
951 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
952 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0);
953 uint32_t cErrors = 0;
954 NOREF(paArgs);
955
956 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
957 for (unsigned i = 0; i < pPool->cCurPages; i++)
958 {
959 PPGMPOOLPAGE pPage = &pPool->aPages[i];
960 bool fFirstMsg = true;
961
962 /* Todo: cover other paging modes too. */
963 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
964 {
965 PPGMSHWPTPAE pShwPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
966 {
967 PX86PTPAE pGstPT;
968 PGMPAGEMAPLOCK LockPage;
969 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, pPage->GCPhys, (const void **)&pGstPT, &LockPage); AssertReleaseRC(rc);
970
971 /* Check if any PTEs are out of sync. */
972 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
973 {
974 if (PGMSHWPTEPAE_IS_P(pShwPT->a[j]))
975 {
976 RTHCPHYS HCPhys = NIL_RTHCPHYS;
977 rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[j].u & X86_PTE_PAE_PG_MASK, &HCPhys);
978 if ( rc != VINF_SUCCESS
979 || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[j]) != HCPhys)
980 {
981 if (fFirstMsg)
982 {
983 DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys);
984 fFirstMsg = false;
985 }
986 DBGCCmdHlpPrintf(pCmdHlp, "Mismatch HCPhys: rc=%Rrc idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
987 cErrors++;
988 }
989 else if ( PGMSHWPTEPAE_IS_RW(pShwPT->a[j])
990 && !pGstPT->a[j].n.u1Write)
991 {
992 if (fFirstMsg)
993 {
994 DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys);
995 fFirstMsg = false;
996 }
997 DBGCCmdHlpPrintf(pCmdHlp, "Mismatch r/w gst/shw: idx=%d guest %RX64 shw=%RX64 vs %RHp\n", j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
998 cErrors++;
999 }
1000 }
1001 }
1002 PGMPhysReleasePageMappingLock(pVM, &LockPage);
1003 }
1004
1005 /* Make sure this page table can't be written to from any shadow mapping. */
1006 RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
1007 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pPage->GCPhys, &HCPhysPT);
1008 AssertMsgRC(rc, ("PGMPhysGCPhys2HCPhys failed with rc=%d for %RGp\n", rc, pPage->GCPhys));
1009 if (rc == VINF_SUCCESS)
1010 {
1011 for (unsigned j = 0; j < pPool->cCurPages; j++)
1012 {
1013 PPGMPOOLPAGE pTempPage = &pPool->aPages[j];
1014
1015 if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1016 {
1017 PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pTempPage);
1018
1019 for (unsigned k = 0; k < RT_ELEMENTS(pShwPT->a); k++)
1020 {
1021 if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[k])
1022# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1023 && !pPage->fDirty
1024# endif
1025 && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[k]) == HCPhysPT)
1026 {
1027 if (fFirstMsg)
1028 {
1029 DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys);
1030 fFirstMsg = false;
1031 }
1032 DBGCCmdHlpPrintf(pCmdHlp, "Mismatch: r/w: GCPhys=%RGp idx=%d shw %RX64 %RX64\n", pTempPage->GCPhys, k, PGMSHWPTEPAE_GET_LOG(pShwPT->a[k]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[k]));
1033 cErrors++;
1034 }
1035 }
1036 }
1037 }
1038 }
1039 }
1040 }
1041 if (cErrors > 0)
1042 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Found %#x errors", cErrors);
1043 return VINF_SUCCESS;
1044}
1045#endif /* VBOX_WITH_DEBUGGER */
Note: See TracBrowser for help on using the repository browser.

© 2023 Oracle
ContactPrivacy policyTerms of Use