VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/DBGFDisas.cpp@ 50653

Last change on this file since 50653 was 49379, checked in by vboxsync, 11 years ago

VMM: allow to compile with VBOX_WITH_RAW_MODE disabled

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 29.5 KB
RevLine 
[23]1/* $Id: DBGFDisas.cpp 49379 2013-11-04 10:18:47Z vboxsync $ */
[1]2/** @file
[12677]3 * DBGF - Debugger Facility, Disassembler.
[1]4 */
5
6/*
[44528]7 * Copyright (C) 2006-2013 Oracle Corporation
[1]8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
[5999]12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
[1]16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_DBGF
[35346]22#include <VBox/vmm/dbgf.h>
23#include <VBox/vmm/selm.h>
24#include <VBox/vmm/mm.h>
[45753]25#include <VBox/vmm/hm.h>
[35346]26#include <VBox/vmm/pgm.h>
27#include <VBox/vmm/cpum.h>
[46159]28#ifdef VBOX_WITH_RAW_MODE
29# include <VBox/vmm/patm.h>
30#endif
[1]31#include "DBGFInternal.h"
32#include <VBox/dis.h>
33#include <VBox/err.h>
34#include <VBox/param.h>
[35346]35#include <VBox/vmm/vm.h>
[44399]36#include <VBox/vmm/uvm.h>
[35333]37#include "internal/pgm.h"
[1]38
39#include <VBox/log.h>
40#include <iprt/assert.h>
41#include <iprt/string.h>
42#include <iprt/alloca.h>
43#include <iprt/ctype.h>
44
45
46/*******************************************************************************
[12663]47* Structures and Typedefs *
[1]48*******************************************************************************/
49/**
50 * Structure used when disassembling and instructions in DBGF.
51 * This is used so the reader function can get the stuff it needs.
52 */
53typedef struct
54{
55 /** The core structure. */
56 DISCPUSTATE Cpu;
[41783]57 /** Pointer to the VM. */
[1]58 PVM pVM;
[41802]59 /** Pointer to the VMCPU. */
[18927]60 PVMCPU pVCpu;
[22112]61 /** The address space for resolving symbol. */
[46159]62 RTDBGAS hDbgAs;
[33540]63 /** Pointer to the first byte in the segment. */
[1]64 RTGCUINTPTR GCPtrSegBase;
65 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
66 RTGCUINTPTR GCPtrSegEnd;
67 /** The size of the segment minus 1. */
68 RTGCUINTPTR cbSegLimit;
69 /** The guest paging mode. */
70 PGMMODE enmMode;
[13827]71 /** Pointer to the current page - R3 Ptr. */
72 void const *pvPageR3;
[1]73 /** Pointer to the current page - GC Ptr. */
[41760]74 RTGCPTR GCPtrPage;
[1]75 /** Pointer to the next instruction (relative to GCPtrSegBase). */
76 RTGCUINTPTR GCPtrNext;
[5040]77 /** The lock information that PGMPhysReleasePageMappingLock needs. */
[5055]78 PGMPAGEMAPLOCK PageMapLock;
79 /** Whether the PageMapLock is valid or not. */
80 bool fLocked;
[9704]81 /** 64 bits mode or not. */
82 bool f64Bits;
[46159]83 /** Read original unpatched bytes from the patch manager. */
84 bool fUnpatchedBytes;
85 /** Set when fUnpatchedBytes is active and we encounter patched bytes. */
86 bool fPatchedInstr;
[1]87} DBGFDISASSTATE, *PDBGFDISASSTATE;
88
89
[12663]90/*******************************************************************************
91* Internal Functions *
92*******************************************************************************/
[41658]93static FNDISREADBYTES dbgfR3DisasInstrRead;
[1]94
[12663]95
96
[1]97/**
[33540]98 * Calls the disassembler with the proper reader functions and such for disa
[1]99 *
100 * @returns VBox status code.
[41803]101 * @param pVM Pointer to the VM.
102 * @param pVCpu Pointer to the VMCPU.
[1]103 * @param pSelInfo The selector info.
104 * @param enmMode The guest paging mode.
[30453]105 * @param fFlags DBGF_DISAS_FLAGS_XXX.
[1]106 * @param GCPtr The GC pointer (selector offset).
107 * @param pState The disas CPU state.
108 */
[30453]109static int dbgfR3DisasInstrFirst(PVM pVM, PVMCPU pVCpu, PDBGFSELINFO pSelInfo, PGMMODE enmMode,
110 RTGCPTR GCPtr, uint32_t fFlags, PDBGFDISASSTATE pState)
[1]111{
112 pState->GCPtrSegBase = pSelInfo->GCPtrBase;
113 pState->GCPtrSegEnd = pSelInfo->cbLimit + 1 + (RTGCUINTPTR)pSelInfo->GCPtrBase;
114 pState->cbSegLimit = pSelInfo->cbLimit;
115 pState->enmMode = enmMode;
[41760]116 pState->GCPtrPage = 0;
[13827]117 pState->pvPageR3 = NULL;
[46159]118 pState->hDbgAs = !HMIsEnabled(pVM)
[22112]119 ? DBGF_AS_RC_AND_GC_GLOBAL
120 : DBGF_AS_GLOBAL;
[1]121 pState->pVM = pVM;
[18927]122 pState->pVCpu = pVCpu;
[5055]123 pState->fLocked = false;
[19463]124 pState->f64Bits = enmMode >= PGMMODE_AMD64 && pSelInfo->u.Raw.Gen.u1Long;
[46159]125#ifdef VBOX_WITH_RAW_MODE
126 pState->fUnpatchedBytes = RT_BOOL(fFlags & DBGF_DISAS_FLAGS_UNPATCHED_BYTES);
127 pState->fPatchedInstr = false;
128#endif
[30453]129
130 DISCPUMODE enmCpuMode;
131 switch (fFlags & DBGF_DISAS_FLAGS_MODE_MASK)
132 {
[30454]133 default:
134 AssertFailed();
[30453]135 case DBGF_DISAS_FLAGS_DEFAULT_MODE:
136 enmCpuMode = pState->f64Bits
[41675]137 ? DISCPUMODE_64BIT
[30453]138 : pSelInfo->u.Raw.Gen.u1DefBig
[41675]139 ? DISCPUMODE_32BIT
140 : DISCPUMODE_16BIT;
[30453]141 break;
142 case DBGF_DISAS_FLAGS_16BIT_MODE:
143 case DBGF_DISAS_FLAGS_16BIT_REAL_MODE:
[41675]144 enmCpuMode = DISCPUMODE_16BIT;
[30453]145 break;
146 case DBGF_DISAS_FLAGS_32BIT_MODE:
[41675]147 enmCpuMode = DISCPUMODE_32BIT;
[30453]148 break;
149 case DBGF_DISAS_FLAGS_64BIT_MODE:
[41675]150 enmCpuMode = DISCPUMODE_64BIT;
[30453]151 break;
152 }
153
[1]154 uint32_t cbInstr;
[41674]155 int rc = DISInstrWithReader(GCPtr,
156 enmCpuMode,
157 dbgfR3DisasInstrRead,
158 &pState->Cpu,
159 &pState->Cpu,
160 &cbInstr);
[13816]161 if (RT_SUCCESS(rc))
[1]162 {
163 pState->GCPtrNext = GCPtr + cbInstr;
164 return VINF_SUCCESS;
165 }
[5055]166
167 /* cleanup */
168 if (pState->fLocked)
169 {
170 PGMPhysReleasePageMappingLock(pVM, &pState->PageMapLock);
171 pState->fLocked = false;
172 }
[4953]173 return rc;
[1]174}
175
176
177#if 0
178/**
[33540]179 * Calls the disassembler for disassembling the next instruction.
[1]180 *
181 * @returns VBox status code.
182 * @param pState The disas CPU state.
183 */
184static int dbgfR3DisasInstrNext(PDBGFDISASSTATE pState)
185{
186 uint32_t cbInstr;
[4953]187 int rc = DISInstr(&pState->Cpu, (void *)pState->GCPtrNext, 0, &cbInstr, NULL);
[13816]188 if (RT_SUCCESS(rc))
[1]189 {
190 pState->GCPtrNext = GCPtr + cbInstr;
191 return VINF_SUCCESS;
192 }
[4953]193 return rc;
[1]194}
195#endif
196
197
198/**
[33540]199 * Done with the disassembler state, free associated resources.
[5055]200 *
201 * @param pState The disas CPU state ++.
202 */
203static void dbgfR3DisasInstrDone(PDBGFDISASSTATE pState)
204{
205 if (pState->fLocked)
206 {
207 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
208 pState->fLocked = false;
209 }
210}
211
212
213/**
[41658]214 * @callback_method_impl{FNDISREADBYTES}
[1]215 *
[41760]216 * @remarks The source is relative to the base address indicated by
[41658]217 * DBGFDISASSTATE::GCPtrSegBase.
[1]218 */
[41760]219static DECLCALLBACK(int) dbgfR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
[1]220{
[41760]221 PDBGFDISASSTATE pState = (PDBGFDISASSTATE)pDis;
[1]222 for (;;)
223 {
[41760]224 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
[1]225
[41760]226 /*
227 * Need to update the page translation?
228 */
[13827]229 if ( !pState->pvPageR3
[41760]230 || (GCPtr >> PAGE_SHIFT) != (pState->GCPtrPage >> PAGE_SHIFT))
[1]231 {
[4953]232 int rc = VINF_SUCCESS;
233
[1]234 /* translate the address */
[41760]235 pState->GCPtrPage = GCPtr & PAGE_BASE_GC_MASK;
[45752]236 if ( !HMIsEnabled(pState->pVM)
237 && MMHyperIsInsideArea(pState->pVM, pState->GCPtrPage))
[1]238 {
[41760]239 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->GCPtrPage);
[13827]240 if (!pState->pvPageR3)
[4953]241 rc = VERR_INVALID_POINTER;
[1]242 }
[5055]243 else
[5040]244 {
[5055]245 if (pState->fLocked)
246 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
[5040]247
248 if (pState->enmMode <= PGMMODE_PROTECTED)
[41760]249 rc = PGMPhysGCPhys2CCPtrReadOnly(pState->pVM, pState->GCPtrPage, &pState->pvPageR3, &pState->PageMapLock);
[5040]250 else
[41760]251 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->GCPtrPage, &pState->pvPageR3, &pState->PageMapLock);
[5055]252 pState->fLocked = RT_SUCCESS_NP(rc);
[5040]253 }
[13816]254 if (RT_FAILURE(rc))
[1]255 {
[13827]256 pState->pvPageR3 = NULL;
[4953]257 return rc;
[1]258 }
259 }
260
[41760]261 /*
262 * Check the segment limit.
263 */
264 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
[4953]265 return VERR_OUT_OF_SELECTOR_BOUNDS;
[1]266
[41760]267 /*
268 * Calc how much we can read, maxing out the read.
269 */
[1]270 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
[9704]271 if (!pState->f64Bits)
272 {
273 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
274 if (cb > cbSeg && cbSeg)
275 cb = cbSeg;
276 }
[41760]277 if (cb > cbMaxRead)
278 cb = cbMaxRead;
[1]279
[46159]280#ifdef VBOX_WITH_RAW_MODE
[41760]281 /*
[46159]282 * Read original bytes from PATM if asked to do so.
283 */
284 if (pState->fUnpatchedBytes)
285 {
286 size_t cbRead = cb;
287 int rc = PATMR3ReadOrgInstr(pState->pVM, GCPtr, &pDis->abInstr[offInstr], cbRead, &cbRead);
288 if (RT_SUCCESS(rc))
289 {
290 pState->fPatchedInstr = true;
291 if (cbRead >= cbMinRead)
292 {
293 pDis->cbCachedInstr = offInstr + (uint8_t)cbRead;
294 return rc;
295 }
296
297 cbMinRead -= (uint8_t)cbRead;
298 cbMaxRead -= (uint8_t)cbRead;
299 cb -= (uint8_t)cbRead;
300 offInstr += (uint8_t)cbRead;
301 GCPtr += cbRead;
302 if (!cb)
303 continue;
304 }
305 }
306#endif /* VBOX_WITH_RAW_MODE */
307
308 /*
[41760]309 * Read and advance,
310 */
311 memcpy(&pDis->abInstr[offInstr], (char *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
312 offInstr += (uint8_t)cb;
313 if (cb >= cbMinRead)
314 {
315 pDis->cbCachedInstr = offInstr;
[1]316 return VINF_SUCCESS;
[41760]317 }
318 cbMaxRead -= (uint8_t)cb;
319 cbMinRead -= (uint8_t)cb;
[1]320 }
321}
322
323
324/**
[9273]325 * @copydoc FNDISGETSYMBOL
326 */
[46177]327static DECLCALLBACK(int) dbgfR3DisasGetSymbol(PCDISCPUSTATE pCpu, uint32_t u32Sel, RTUINTPTR uAddress,
328 char *pszBuf, size_t cchBuf, RTINTPTR *poff, void *pvUser)
[9273]329{
[19334]330 PDBGFDISASSTATE pState = (PDBGFDISASSTATE)pCpu;
331 PCDBGFSELINFO pSelInfo = (PCDBGFSELINFO)pvUser;
[46177]332
333 /*
334 * Address conversion
335 */
[22112]336 DBGFADDRESS Addr;
[9273]337 int rc;
[46177]338 /* Start with CS. */
[22112]339 if ( DIS_FMT_SEL_IS_REG(u32Sel)
[41727]340 ? DIS_FMT_SEL_GET_REG(u32Sel) == DISSELREG_CS
[22112]341 : pSelInfo->Sel == DIS_FMT_SEL_GET_VALUE(u32Sel))
[46177]342 rc = DBGFR3AddrFromSelInfoOff(pState->pVM->pUVM, &Addr, pSelInfo, uAddress);
343 /* In long mode everything but FS and GS is easy. */
344 else if ( pState->Cpu.uCpuMode == DISCPUMODE_64BIT
345 && DIS_FMT_SEL_IS_REG(u32Sel)
346 && DIS_FMT_SEL_GET_REG(u32Sel) != DISSELREG_GS
347 && DIS_FMT_SEL_GET_REG(u32Sel) != DISSELREG_FS)
[9273]348 {
[46177]349 DBGFR3AddrFromFlat(pState->pVM->pUVM, &Addr, uAddress);
350 rc = VINF_SUCCESS;
[9273]351 }
[46177]352 /* Here's a quick hack to catch patch manager SS relative access. */
353 else if ( DIS_FMT_SEL_IS_REG(u32Sel)
354 && DIS_FMT_SEL_GET_REG(u32Sel) == DISSELREG_SS
355 && pSelInfo->GCPtrBase == 0
356 && pSelInfo->cbLimit >= UINT32_MAX
[49379]357#ifdef VBOX_WITH_RAW_MODE
358 && PATMIsPatchGCAddr(pState->pVM, pState->Cpu.uInstrAddr)
359#endif
360 )
[46177]361 {
362 DBGFR3AddrFromFlat(pState->pVM->pUVM, &Addr, uAddress);
363 rc = VINF_SUCCESS;
364 }
[9273]365 else
[46177]366 {
367 /** @todo implement a generic solution here. */
368 rc = VERR_SYMBOL_NOT_FOUND;
369 }
370
371 /*
372 * If we got an address, try resolve it into a symbol.
373 */
[9273]374 if (RT_SUCCESS(rc))
375 {
[46177]376 RTDBGSYMBOL Sym;
377 RTGCINTPTR off;
378 rc = DBGFR3AsSymbolByAddr(pState->pVM->pUVM, pState->hDbgAs, &Addr, RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL,
379 &off, &Sym, NULL /*phMod*/);
380 if (RT_SUCCESS(rc))
381 {
382 /*
383 * Return the symbol and offset.
384 */
385 size_t cchName = strlen(Sym.szName);
386 if (cchName >= cchBuf)
387 cchName = cchBuf - 1;
388 memcpy(pszBuf, Sym.szName, cchName);
389 pszBuf[cchName] = '\0';
[9273]390
[46177]391 *poff = off;
392 }
[9273]393 }
394 return rc;
395}
[1]396
397
398/**
[19181]399 * Disassembles the one instruction according to the specified flags and
400 * address, internal worker executing on the EMT of the specified virtual CPU.
[1]401 *
402 * @returns VBox status code.
[41783]403 * @param pVM Pointer to the VM.
[41803]404 * @param pVCpu Pointer to the VMCPU.
[33540]405 * @param Sel The code selector. This used to determine the 32/16 bit ness and
[1]406 * calculation of the actual instruction address.
[19181]407 * @param pGCPtr Pointer to the variable holding the code address
408 * relative to the base of Sel.
[1]409 * @param fFlags Flags controlling where to start and how to format.
410 * A combination of the DBGF_DISAS_FLAGS_* \#defines.
411 * @param pszOutput Output buffer.
[30453]412 * @param cbOutput Size of the output buffer.
[1]413 * @param pcbInstr Where to return the size of the instruction.
414 */
[19181]415static DECLCALLBACK(int)
[30453]416dbgfR3DisasInstrExOnVCpu(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PRTGCPTR pGCPtr, uint32_t fFlags,
417 char *pszOutput, uint32_t cbOutput, uint32_t *pcbInstr)
[1]418{
[19293]419 VMCPU_ASSERT_EMT(pVCpu);
[19181]420 RTGCPTR GCPtr = *pGCPtr;
[42420]421 int rc;
[18927]422
[1]423 /*
424 * Get the Sel and GCPtr if fFlags requests that.
425 */
[30453]426 PCCPUMCTXCORE pCtxCore = NULL;
[42420]427 PCCPUMSELREG pSRegCS = NULL;
428 if (fFlags & DBGF_DISAS_FLAGS_CURRENT_GUEST)
[1]429 {
[42420]430 pCtxCore = CPUMGetGuestCtxCore(pVCpu);
[41906]431 Sel = pCtxCore->cs.Sel;
[42420]432 pSRegCS = &pCtxCore->cs;
[9700]433 GCPtr = pCtxCore->rip;
[1]434 }
[42420]435 else if (fFlags & DBGF_DISAS_FLAGS_CURRENT_HYPER)
436 {
[46155]437 fFlags |= DBGF_DISAS_FLAGS_HYPER;
[42420]438 pCtxCore = CPUMGetHyperCtxCore(pVCpu);
439 Sel = pCtxCore->cs.Sel;
440 GCPtr = pCtxCore->rip;
441 }
442 /*
443 * Check if the selector matches the guest CS, use the hidden
444 * registers from that if they are valid. Saves time and effort.
445 */
446 else
447 {
448 pCtxCore = CPUMGetGuestCtxCore(pVCpu);
449 if (pCtxCore->cs.Sel == Sel && Sel != DBGF_SEL_FLAT)
450 pSRegCS = &pCtxCore->cs;
451 else
452 pCtxCore = NULL;
453 }
[1]454
455 /*
456 * Read the selector info - assume no stale selectors and nasty stuff like that.
[42420]457 *
458 * Note! We CANNOT load invalid hidden selector registers since that would
459 * mean that log/debug statements or the debug will influence the
460 * guest state and make things behave differently.
[1]461 */
[30453]462 DBGFSELINFO SelInfo;
463 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
464 bool fRealModeAddress = false;
[2138]465
[42420]466 if ( pSRegCS
467 && CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSRegCS))
[2138]468 {
[19463]469 SelInfo.Sel = Sel;
470 SelInfo.SelGate = 0;
[42420]471 SelInfo.GCPtrBase = pSRegCS->u64Base;
472 SelInfo.cbLimit = pSRegCS->u32Limit;
[19463]473 SelInfo.fFlags = PGMMODE_IS_LONG_MODE(enmMode)
474 ? DBGFSELINFO_FLAGS_LONG_MODE
[42420]475 : enmMode != PGMMODE_REAL && !pCtxCore->eflags.Bits.u1VM
[19463]476 ? DBGFSELINFO_FLAGS_PROT_MODE
477 : DBGFSELINFO_FLAGS_REAL_MODE;
[19334]478
[19463]479 SelInfo.u.Raw.au32[0] = 0;
[30453]480 SelInfo.u.Raw.au32[1] = 0;
[19463]481 SelInfo.u.Raw.Gen.u16LimitLow = 0xffff;
482 SelInfo.u.Raw.Gen.u4LimitHigh = 0xf;
[42420]483 SelInfo.u.Raw.Gen.u1Present = pSRegCS->Attr.n.u1Present;
484 SelInfo.u.Raw.Gen.u1Granularity = pSRegCS->Attr.n.u1Granularity;;
485 SelInfo.u.Raw.Gen.u1DefBig = pSRegCS->Attr.n.u1DefBig;
486 SelInfo.u.Raw.Gen.u1Long = pSRegCS->Attr.n.u1Long;
487 SelInfo.u.Raw.Gen.u1DescType = pSRegCS->Attr.n.u1DescType;
488 SelInfo.u.Raw.Gen.u4Type = pSRegCS->Attr.n.u4Type;
[19463]489 fRealModeAddress = !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_REAL_MODE);
[2138]490 }
[5874]491 else if (Sel == DBGF_SEL_FLAT)
492 {
[19463]493 SelInfo.Sel = Sel;
494 SelInfo.SelGate = 0;
495 SelInfo.GCPtrBase = 0;
496 SelInfo.cbLimit = ~0;
497 SelInfo.fFlags = PGMMODE_IS_LONG_MODE(enmMode)
498 ? DBGFSELINFO_FLAGS_LONG_MODE
499 : enmMode != PGMMODE_REAL
500 ? DBGFSELINFO_FLAGS_PROT_MODE
501 : DBGFSELINFO_FLAGS_REAL_MODE;
502 SelInfo.u.Raw.au32[0] = 0;
503 SelInfo.u.Raw.au32[1] = 0;
504 SelInfo.u.Raw.Gen.u16LimitLow = 0xffff;
505 SelInfo.u.Raw.Gen.u4LimitHigh = 0xf;
[9846]506
[42420]507 pSRegCS = &CPUMGetGuestCtxCore(pVCpu)->cs;
508 if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSRegCS))
509 {
510 /* Assume the current CS defines the execution mode. */
511 SelInfo.u.Raw.Gen.u1Present = pSRegCS->Attr.n.u1Present;
512 SelInfo.u.Raw.Gen.u1Granularity = pSRegCS->Attr.n.u1Granularity;;
513 SelInfo.u.Raw.Gen.u1DefBig = pSRegCS->Attr.n.u1DefBig;
514 SelInfo.u.Raw.Gen.u1Long = pSRegCS->Attr.n.u1Long;
515 SelInfo.u.Raw.Gen.u1DescType = pSRegCS->Attr.n.u1DescType;
516 SelInfo.u.Raw.Gen.u4Type = pSRegCS->Attr.n.u4Type;
[9846]517 }
518 else
519 {
[42420]520 pSRegCS = NULL;
[19463]521 SelInfo.u.Raw.Gen.u1Present = 1;
522 SelInfo.u.Raw.Gen.u1Granularity = 1;
523 SelInfo.u.Raw.Gen.u1DefBig = 1;
524 SelInfo.u.Raw.Gen.u1DescType = 1;
525 SelInfo.u.Raw.Gen.u4Type = X86_SEL_TYPE_EO;
[9846]526 }
[1]527 }
[46155]528 else if ( !(fFlags & DBGF_DISAS_FLAGS_HYPER)
[5874]529 && ( (pCtxCore && pCtxCore->eflags.Bits.u1VM)
[30453]530 || enmMode == PGMMODE_REAL
531 || (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
532 )
533 )
[5874]534 { /* V86 mode or real mode - real mode addressing */
[19463]535 SelInfo.Sel = Sel;
536 SelInfo.SelGate = 0;
537 SelInfo.GCPtrBase = Sel * 16;
538 SelInfo.cbLimit = ~0;
539 SelInfo.fFlags = DBGFSELINFO_FLAGS_REAL_MODE;
540 SelInfo.u.Raw.au32[0] = 0;
541 SelInfo.u.Raw.au32[1] = 0;
542 SelInfo.u.Raw.Gen.u16LimitLow = 0xffff;
543 SelInfo.u.Raw.Gen.u4LimitHigh = 0xf;
544 SelInfo.u.Raw.Gen.u1Present = 1;
545 SelInfo.u.Raw.Gen.u1Granularity = 1;
546 SelInfo.u.Raw.Gen.u1DefBig = 0; /* 16 bits */
547 SelInfo.u.Raw.Gen.u1DescType = 1;
548 SelInfo.u.Raw.Gen.u4Type = X86_SEL_TYPE_EO;
549 fRealModeAddress = true;
[1]550 }
551 else
552 {
[46155]553 if (!(fFlags & DBGF_DISAS_FLAGS_HYPER))
554 rc = SELMR3GetSelectorInfo(pVM, pVCpu, Sel, &SelInfo);
555 else
556 rc = SELMR3GetShadowSelectorInfo(pVM, Sel, &SelInfo);
[13816]557 if (RT_FAILURE(rc))
[1]558 {
[30453]559 RTStrPrintf(pszOutput, cbOutput, "Sel=%04x -> %Rrc\n", Sel, rc);
[1]560 return rc;
561 }
562 }
563
564 /*
565 * Disassemble it.
566 */
567 DBGFDISASSTATE State;
[30453]568 rc = dbgfR3DisasInstrFirst(pVM, pVCpu, &SelInfo, enmMode, GCPtr, fFlags, &State);
[13816]569 if (RT_FAILURE(rc))
[1]570 {
[47889]571 if (State.Cpu.cbCachedInstr)
572 RTStrPrintf(pszOutput, cbOutput, "Disas -> %Rrc; %.*Rhxs\n", rc, (size_t)State.Cpu.cbCachedInstr, State.Cpu.abInstr);
573 else
574 RTStrPrintf(pszOutput, cbOutput, "Disas -> %Rrc\n", rc);
[1]575 return rc;
576 }
577
578 /*
579 * Format it.
580 */
581 char szBuf[512];
[9273]582 DISFormatYasmEx(&State.Cpu, szBuf, sizeof(szBuf),
583 DIS_FMT_FLAGS_RELATIVE_BRANCH,
584 fFlags & DBGF_DISAS_FLAGS_NO_SYMBOLS ? NULL : dbgfR3DisasGetSymbol,
585 &SelInfo);
[1]586
[46159]587#ifdef VBOX_WITH_RAW_MODE
[1]588 /*
[46159]589 * Patched instruction annotations.
590 */
591 char szPatchAnnotations[256];
592 szPatchAnnotations[0] = '\0';
593 if (fFlags & DBGF_DISAS_FLAGS_ANNOTATE_PATCHED)
594 PATMR3DbgAnnotatePatchedInstruction(pVM, GCPtr, State.Cpu.cbInstr, szPatchAnnotations, sizeof(szPatchAnnotations));
595#endif
596
597 /*
[1]598 * Print it to the user specified buffer.
599 */
[46159]600 size_t cch;
[1]601 if (fFlags & DBGF_DISAS_FLAGS_NO_BYTES)
602 {
603 if (fFlags & DBGF_DISAS_FLAGS_NO_ADDRESS)
[46159]604 cch = RTStrPrintf(pszOutput, cbOutput, "%s", szBuf);
[1]605 else if (fRealModeAddress)
[46159]606 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%04x %s", Sel, (unsigned)GCPtr, szBuf);
[1]607 else if (Sel == DBGF_SEL_FLAT)
[9292]608 {
609 if (enmMode >= PGMMODE_AMD64)
[46159]610 cch = RTStrPrintf(pszOutput, cbOutput, "%RGv %s", GCPtr, szBuf);
[9292]611 else
[46159]612 cch = RTStrPrintf(pszOutput, cbOutput, "%08RX32 %s", (uint32_t)GCPtr, szBuf);
[9292]613 }
[1]614 else
[9292]615 {
616 if (enmMode >= PGMMODE_AMD64)
[46159]617 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%RGv %s", Sel, GCPtr, szBuf);
[9292]618 else
[46159]619 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%08RX32 %s", Sel, (uint32_t)GCPtr, szBuf);
[9292]620 }
[1]621 }
622 else
623 {
[41760]624 uint32_t cbInstr = State.Cpu.cbInstr;
625 uint8_t const *pabInstr = State.Cpu.abInstr;
[1]626 if (fFlags & DBGF_DISAS_FLAGS_NO_ADDRESS)
[46159]627 cch = RTStrPrintf(pszOutput, cbOutput, "%.*Rhxs%*s %s",
628 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
629 szBuf);
[1]630 else if (fRealModeAddress)
[46159]631 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%04x %.*Rhxs%*s %s",
632 Sel, (unsigned)GCPtr,
633 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
634 szBuf);
[1]635 else if (Sel == DBGF_SEL_FLAT)
[9292]636 {
637 if (enmMode >= PGMMODE_AMD64)
[46159]638 cch = RTStrPrintf(pszOutput, cbOutput, "%RGv %.*Rhxs%*s %s",
639 GCPtr,
640 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
641 szBuf);
[9292]642 else
[46159]643 cch = RTStrPrintf(pszOutput, cbOutput, "%08RX32 %.*Rhxs%*s %s",
644 (uint32_t)GCPtr,
645 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
646 szBuf);
[9292]647 }
[1]648 else
[9292]649 {
650 if (enmMode >= PGMMODE_AMD64)
[46159]651 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%RGv %.*Rhxs%*s %s",
652 Sel, GCPtr,
653 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
654 szBuf);
[9292]655 else
[46159]656 cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%08RX32 %.*Rhxs%*s %s",
657 Sel, (uint32_t)GCPtr,
658 cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
659 szBuf);
[9292]660 }
[1]661 }
662
[46159]663#ifdef VBOX_WITH_RAW_MODE
664 if (szPatchAnnotations[0] && cch + 1 < cbOutput)
665 RTStrPrintf(pszOutput + cch, cbOutput - cch, " ; %s", szPatchAnnotations);
666#endif
667
[1]668 if (pcbInstr)
[41732]669 *pcbInstr = State.Cpu.cbInstr;
[5055]670
671 dbgfR3DisasInstrDone(&State);
[1]672 return VINF_SUCCESS;
673}
674
675
676/**
[19181]677 * Disassembles the one instruction according to the specified flags and address.
678 *
679 * @returns VBox status code.
[44399]680 * @param pUVM The user mode VM handle.
[19293]681 * @param idCpu The ID of virtual CPU.
[33540]682 * @param Sel The code selector. This used to determine the 32/16 bit ness and
[19181]683 * calculation of the actual instruction address.
684 * @param GCPtr The code address relative to the base of Sel.
685 * @param fFlags Flags controlling where to start and how to format.
686 * A combination of the DBGF_DISAS_FLAGS_* \#defines.
[30453]687 * @param pszOutput Output buffer. This will always be properly
688 * terminated if @a cbOutput is greater than zero.
689 * @param cbOutput Size of the output buffer.
[19181]690 * @param pcbInstr Where to return the size of the instruction.
691 *
692 * @remarks May have to switch to the EMT of the virtual CPU in order to do
693 * address conversion.
694 */
[44399]695VMMR3DECL(int) DBGFR3DisasInstrEx(PUVM pUVM, VMCPUID idCpu, RTSEL Sel, RTGCPTR GCPtr, uint32_t fFlags,
[30453]696 char *pszOutput, uint32_t cbOutput, uint32_t *pcbInstr)
[19181]697{
[30453]698 AssertReturn(cbOutput > 0, VERR_INVALID_PARAMETER);
699 *pszOutput = '\0';
[44399]700 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
701 PVM pVM = pUVM->pVM;
[19293]702 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
[44399]703 AssertReturn(idCpu < pUVM->cCpus, VERR_INVALID_CPU_ID);
[30453]704 AssertReturn(!(fFlags & ~DBGF_DISAS_FLAGS_VALID_MASK), VERR_INVALID_PARAMETER);
705 AssertReturn((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) <= DBGF_DISAS_FLAGS_64BIT_MODE, VERR_INVALID_PARAMETER);
[19181]706
[19294]707 /*
708 * Optimize the common case where we're called on the EMT of idCpu since
709 * we're using this all the time when logging.
710 */
[19293]711 int rc;
712 PVMCPU pVCpu = VMMGetCpu(pVM);
713 if ( pVCpu
[19294]714 && pVCpu->idCpu == idCpu)
[30453]715 rc = dbgfR3DisasInstrExOnVCpu(pVM, pVCpu, Sel, &GCPtr, fFlags, pszOutput, cbOutput, pcbInstr);
[19181]716 else
[38838]717 rc = VMR3ReqPriorityCallWait(pVM, idCpu, (PFNRT)dbgfR3DisasInstrExOnVCpu, 8,
718 pVM, VMMGetCpuById(pVM, idCpu), Sel, &GCPtr, fFlags, pszOutput, cbOutput, pcbInstr);
[19181]719 return rc;
720}
721
722
723/**
[1]724 * Disassembles the current guest context instruction.
725 * All registers and data will be displayed. Addresses will be attempted resolved to symbols.
726 *
727 * @returns VBox status code.
[41802]728 * @param pVCpu Pointer to the VMCPU.
[30453]729 * @param pszOutput Output buffer. This will always be properly
730 * terminated if @a cbOutput is greater than zero.
731 * @param cbOutput Size of the output buffer.
[44399]732 * @thread EMT(pVCpu)
[1]733 */
[44399]734VMMR3_INT_DECL(int) DBGFR3DisasInstrCurrent(PVMCPU pVCpu, char *pszOutput, uint32_t cbOutput)
[1]735{
[30453]736 AssertReturn(cbOutput > 0, VERR_INVALID_PARAMETER);
[19293]737 *pszOutput = '\0';
[44399]738 Assert(VMCPU_IS_EMT(pVCpu));
739
740 RTGCPTR GCPtr = 0;
741 return dbgfR3DisasInstrExOnVCpu(pVCpu->pVMR3, pVCpu, 0, &GCPtr,
[47818]742 DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE
743 | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED,
[44399]744 pszOutput, cbOutput, NULL);
[1]745}
746
747
748/**
749 * Disassembles the current guest context instruction and writes it to the log.
750 * All registers and data will be displayed. Addresses will be attempted resolved to symbols.
751 *
752 * @returns VBox status code.
[41802]753 * @param pVCpu Pointer to the VMCPU.
[33540]754 * @param pszPrefix Short prefix string to the disassembly string. (optional)
[44399]755 * @thread EMT(pVCpu)
[1]756 */
[19639]757VMMR3DECL(int) DBGFR3DisasInstrCurrentLogInternal(PVMCPU pVCpu, const char *pszPrefix)
[1]758{
759 char szBuf[256];
760 szBuf[0] = '\0';
[19639]761 int rc = DBGFR3DisasInstrCurrent(pVCpu, &szBuf[0], sizeof(szBuf));
[13816]762 if (RT_FAILURE(rc))
[13818]763 RTStrPrintf(szBuf, sizeof(szBuf), "DBGFR3DisasInstrCurrentLog failed with rc=%Rrc\n", rc);
[1]764 if (pszPrefix && *pszPrefix)
[45276]765 {
766 if (pVCpu->CTX_SUFF(pVM)->cCpus > 1)
767 RTLogPrintf("%s-CPU%u: %s\n", pszPrefix, pVCpu->idCpu, szBuf);
768 else
769 RTLogPrintf("%s: %s\n", pszPrefix, szBuf);
770 }
[1]771 else
772 RTLogPrintf("%s\n", szBuf);
773 return rc;
774}
775
776
777
778/**
779 * Disassembles the specified guest context instruction and writes it to the log.
780 * Addresses will be attempted resolved to symbols.
781 *
782 * @returns VBox status code.
[41803]783 * @param pVCpu Pointer to the VMCPU, defaults to CPU 0 if NULL.
[33540]784 * @param Sel The code selector. This used to determine the 32/16 bit-ness and
[19181]785 * calculation of the actual instruction address.
786 * @param GCPtr The code address relative to the base of Sel.
[41764]787 * @param pszPrefix Short prefix string to the disassembly string. (optional)
[44399]788 * @thread EMT(pVCpu)
[1]789 */
[41764]790VMMR3DECL(int) DBGFR3DisasInstrLogInternal(PVMCPU pVCpu, RTSEL Sel, RTGCPTR GCPtr, const char *pszPrefix)
[1]791{
[44399]792 Assert(VMCPU_IS_EMT(pVCpu));
793
[1]794 char szBuf[256];
[44399]795 RTGCPTR GCPtrTmp = GCPtr;
796 int rc = dbgfR3DisasInstrExOnVCpu(pVCpu->pVMR3, pVCpu, Sel, &GCPtrTmp, DBGF_DISAS_FLAGS_DEFAULT_MODE,
797 &szBuf[0], sizeof(szBuf), NULL);
[13816]798 if (RT_FAILURE(rc))
[13818]799 RTStrPrintf(szBuf, sizeof(szBuf), "DBGFR3DisasInstrLog(, %RTsel, %RGv) failed with rc=%Rrc\n", Sel, GCPtr, rc);
[41764]800 if (pszPrefix && *pszPrefix)
[45276]801 {
802 if (pVCpu->CTX_SUFF(pVM)->cCpus > 1)
803 RTLogPrintf("%s-CPU%u: %s\n", pszPrefix, pVCpu->idCpu, szBuf);
804 else
805 RTLogPrintf("%s: %s\n", pszPrefix, szBuf);
806 }
[41764]807 else
808 RTLogPrintf("%s\n", szBuf);
[1]809 return rc;
810}
811
Note: See TracBrowser for help on using the repository browser.

© 2023 Oracle
ContactPrivacy policyTerms of Use