VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 74795

Last change on this file since 74795 was 74753, checked in by vboxsync, 6 years ago

VMM/IEM: Nested VMX: bugref:9180 VM-exit bits; Implemented pause and pause-loop exiting.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 182.1 KB
Line 
1/* $Id: CPUM.cpp 74753 2018-10-11 09:01:28Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 *
33 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
34 *
35 * TODO: proper write up, currently just some notes.
36 *
37 * The ring-0 FPU handling per OS:
38 *
39 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
40 * convention (Visual C++ doesn't seem to have a way to disable
41 * generating such code either), so CR0.TS/EM are always zero from what I
42 * can tell. We are also forced to always load/save the guest XMM0-XMM15
43 * registers when entering/leaving guest context. Interrupt handlers
44 * using FPU/SSE will offically have call save and restore functions
45 * exported by the kernel, if the really really have to use the state.
46 *
47 * - 32-bit windows does lazy FPU handling, I think, probably including
48 * lazying saving. The Windows Internals book states that it's a bad
49 * idea to use the FPU in kernel space. However, it looks like it will
50 * restore the FPU state of the current thread in case of a kernel \#NM.
51 * Interrupt handlers should be same as for 64-bit.
52 *
53 * - Darwin allows taking \#NM in kernel space, restoring current thread's
54 * state if I read the code correctly. It saves the FPU state of the
55 * outgoing thread, and uses CR0.TS to lazily load the state of the
56 * incoming one. No idea yet how the FPU is treated by interrupt
57 * handlers, i.e. whether they are allowed to disable the state or
58 * something.
59 *
60 * - Linux also allows \#NM in kernel space (don't know since when), and
61 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
62 * loads the incoming unless configured to agressivly load it. Interrupt
63 * handlers can ask whether they're allowed to use the FPU, and may
64 * freely trash the state if Linux thinks it has saved the thread's state
65 * already. This is a problem.
66 *
67 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
68 * context. When switching threads, the kernel will save the state of
69 * the outgoing thread and lazy load the incoming one using CR0.TS.
70 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
71 * to do stuff, HAT are among the users. The routines there will
72 * manually clear CR0.TS and save the XMM registers they use only if
73 * CR0.TS was zero upon entry. They will skip it when not, because as
74 * mentioned above, the FPU state is saved when switching away from a
75 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
76 * preserve. This is a problem if we restore CR0.TS to 1 after loading
77 * the guest state.
78 *
79 * - FreeBSD - no idea yet.
80 *
81 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
82 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
83 * FPU states.
84 *
85 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
86 * saving and restoring the host and guest states. The motivation for this
87 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
88 *
89 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
90 * state and only restore it once we've restore the host FPU state. This has the
91 * accidental side effect of triggering Solaris to preserve XMM registers in
92 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
93 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
94 *
95 *
96 * @section sec_cpum_logging Logging Level Assignments.
97 *
98 * Following log level assignments:
99 * - Log6 is used for FPU state management.
100 * - Log7 is used for FPU state actualization.
101 *
102 */
103
104
105/*********************************************************************************************************************************
106* Header Files *
107*********************************************************************************************************************************/
108#define LOG_GROUP LOG_GROUP_CPUM
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/cpumdis.h>
111#include <VBox/vmm/cpumctx-v1_6.h>
112#include <VBox/vmm/pgm.h>
113#include <VBox/vmm/apic.h>
114#include <VBox/vmm/mm.h>
115#include <VBox/vmm/em.h>
116#include <VBox/vmm/iem.h>
117#include <VBox/vmm/selm.h>
118#include <VBox/vmm/dbgf.h>
119#include <VBox/vmm/patm.h>
120#include <VBox/vmm/hm.h>
121#include <VBox/vmm/ssm.h>
122#include "CPUMInternal.h"
123#include <VBox/vmm/vm.h>
124
125#include <VBox/param.h>
126#include <VBox/dis.h>
127#include <VBox/err.h>
128#include <VBox/log.h>
129#include <iprt/asm-amd64-x86.h>
130#include <iprt/assert.h>
131#include <iprt/cpuset.h>
132#include <iprt/mem.h>
133#include <iprt/mp.h>
134#include <iprt/string.h>
135
136
137/*********************************************************************************************************************************
138* Defined Constants And Macros *
139*********************************************************************************************************************************/
140/**
141 * This was used in the saved state up to the early life of version 14.
142 *
143 * It indicates that we may have some out-of-sync hidden segement registers.
144 * It is only relevant for raw-mode.
145 */
146#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
147
148
149/*********************************************************************************************************************************
150* Structures and Typedefs *
151*********************************************************************************************************************************/
152
153/**
154 * What kind of cpu info dump to perform.
155 */
156typedef enum CPUMDUMPTYPE
157{
158 CPUMDUMPTYPE_TERSE,
159 CPUMDUMPTYPE_DEFAULT,
160 CPUMDUMPTYPE_VERBOSE
161} CPUMDUMPTYPE;
162/** Pointer to a cpu info dump type. */
163typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
164
165
166/*********************************************************************************************************************************
167* Internal Functions *
168*********************************************************************************************************************************/
169static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
170static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
171static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
172static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
173static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
174static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
175static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
176static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
177static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
179static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
180
181
182/*********************************************************************************************************************************
183* Global Variables *
184*********************************************************************************************************************************/
185/** Saved state field descriptors for CPUMCTX. */
186static const SSMFIELD g_aCpumCtxFields[] =
187{
188 SSMFIELD_ENTRY( CPUMCTX, rdi),
189 SSMFIELD_ENTRY( CPUMCTX, rsi),
190 SSMFIELD_ENTRY( CPUMCTX, rbp),
191 SSMFIELD_ENTRY( CPUMCTX, rax),
192 SSMFIELD_ENTRY( CPUMCTX, rbx),
193 SSMFIELD_ENTRY( CPUMCTX, rdx),
194 SSMFIELD_ENTRY( CPUMCTX, rcx),
195 SSMFIELD_ENTRY( CPUMCTX, rsp),
196 SSMFIELD_ENTRY( CPUMCTX, rflags),
197 SSMFIELD_ENTRY( CPUMCTX, rip),
198 SSMFIELD_ENTRY( CPUMCTX, r8),
199 SSMFIELD_ENTRY( CPUMCTX, r9),
200 SSMFIELD_ENTRY( CPUMCTX, r10),
201 SSMFIELD_ENTRY( CPUMCTX, r11),
202 SSMFIELD_ENTRY( CPUMCTX, r12),
203 SSMFIELD_ENTRY( CPUMCTX, r13),
204 SSMFIELD_ENTRY( CPUMCTX, r14),
205 SSMFIELD_ENTRY( CPUMCTX, r15),
206 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
207 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
208 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
209 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
210 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
211 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
212 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
213 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
214 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
215 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
216 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
217 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
218 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
219 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
220 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
221 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
222 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
223 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
224 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
225 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
226 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
227 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
228 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
229 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
230 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
231 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
232 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
233 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
234 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
235 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
236 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
237 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
238 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
239 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
240 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
241 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
242 SSMFIELD_ENTRY( CPUMCTX, cr0),
243 SSMFIELD_ENTRY( CPUMCTX, cr2),
244 SSMFIELD_ENTRY( CPUMCTX, cr3),
245 SSMFIELD_ENTRY( CPUMCTX, cr4),
246 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
247 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
248 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
249 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
250 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
251 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
252 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
253 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
254 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
255 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
256 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
257 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
258 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
259 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
260 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
261 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
262 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
263 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
264 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
265 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
266 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
267 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
268 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
269 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
270 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
271 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
272 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
273 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
274 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
275 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
276 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
277 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
278 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
279 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
280 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
281 SSMFIELD_ENTRY_TERM()
282};
283
284/** Saved state field descriptors for SVM nested hardware-virtualization
285 * Host State. */
286static const SSMFIELD g_aSvmHwvirtHostState[] =
287{
288 SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
289 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
290 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
291 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
292 SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
293 SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
294 SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
295 SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
296 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
297 SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
298 SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
299 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
300 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
301 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
302 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
303 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
304 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
305 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
306 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
307 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
308 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
309 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
310 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
311 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
312 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
313 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
314 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
315 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
316 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
317 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
318 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
319 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
320 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
321 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
322 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
323 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
324 SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
325 SSMFIELD_ENTRY_TERM()
326};
327
328/** Saved state field descriptors for CPUMCTX. */
329static const SSMFIELD g_aCpumX87Fields[] =
330{
331 SSMFIELD_ENTRY( X86FXSTATE, FCW),
332 SSMFIELD_ENTRY( X86FXSTATE, FSW),
333 SSMFIELD_ENTRY( X86FXSTATE, FTW),
334 SSMFIELD_ENTRY( X86FXSTATE, FOP),
335 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
336 SSMFIELD_ENTRY( X86FXSTATE, CS),
337 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
338 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
339 SSMFIELD_ENTRY( X86FXSTATE, DS),
340 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
341 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
342 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
343 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
344 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
345 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
346 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
347 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
348 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
349 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
350 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
351 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
352 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
353 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
354 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
355 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
356 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
357 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
358 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
359 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
360 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
361 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
362 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
363 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
364 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
365 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
366 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
367 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
368 SSMFIELD_ENTRY_TERM()
369};
370
371/** Saved state field descriptors for X86XSAVEHDR. */
372static const SSMFIELD g_aCpumXSaveHdrFields[] =
373{
374 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
375 SSMFIELD_ENTRY_TERM()
376};
377
378/** Saved state field descriptors for X86XSAVEYMMHI. */
379static const SSMFIELD g_aCpumYmmHiFields[] =
380{
381 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
382 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
383 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
384 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
385 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
386 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
387 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
388 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
389 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
390 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
391 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
392 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
393 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
394 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
395 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
396 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
397 SSMFIELD_ENTRY_TERM()
398};
399
400/** Saved state field descriptors for X86XSAVEBNDREGS. */
401static const SSMFIELD g_aCpumBndRegsFields[] =
402{
403 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
404 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
405 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
406 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
407 SSMFIELD_ENTRY_TERM()
408};
409
410/** Saved state field descriptors for X86XSAVEBNDCFG. */
411static const SSMFIELD g_aCpumBndCfgFields[] =
412{
413 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
414 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
415 SSMFIELD_ENTRY_TERM()
416};
417
418#if 0 /** @todo */
419/** Saved state field descriptors for X86XSAVEOPMASK. */
420static const SSMFIELD g_aCpumOpmaskFields[] =
421{
422 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
423 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
424 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
425 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
426 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
427 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
428 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
429 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
430 SSMFIELD_ENTRY_TERM()
431};
432#endif
433
434/** Saved state field descriptors for X86XSAVEZMMHI256. */
435static const SSMFIELD g_aCpumZmmHi256Fields[] =
436{
437 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
438 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
439 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
440 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
441 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
442 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
443 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
444 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
445 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
446 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
447 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
448 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
449 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
450 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
451 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
452 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
453 SSMFIELD_ENTRY_TERM()
454};
455
456/** Saved state field descriptors for X86XSAVEZMM16HI. */
457static const SSMFIELD g_aCpumZmm16HiFields[] =
458{
459 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
460 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
461 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
462 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
463 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
464 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
465 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
466 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
467 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
468 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
469 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
470 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
471 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
472 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
473 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
474 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
475 SSMFIELD_ENTRY_TERM()
476};
477
478
479
480/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
481 * registeres changed. */
482static const SSMFIELD g_aCpumX87FieldsMem[] =
483{
484 SSMFIELD_ENTRY( X86FXSTATE, FCW),
485 SSMFIELD_ENTRY( X86FXSTATE, FSW),
486 SSMFIELD_ENTRY( X86FXSTATE, FTW),
487 SSMFIELD_ENTRY( X86FXSTATE, FOP),
488 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
489 SSMFIELD_ENTRY( X86FXSTATE, CS),
490 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
491 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
492 SSMFIELD_ENTRY( X86FXSTATE, DS),
493 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
494 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
495 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
496 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
497 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
498 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
499 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
500 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
501 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
502 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
503 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
504 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
505 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
506 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
507 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
508 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
509 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
510 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
511 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
512 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
513 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
514 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
515 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
516 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
517 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
518 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
519 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
520 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
521 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
522};
523
524/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
525 * registeres changed. */
526static const SSMFIELD g_aCpumCtxFieldsMem[] =
527{
528 SSMFIELD_ENTRY( CPUMCTX, rdi),
529 SSMFIELD_ENTRY( CPUMCTX, rsi),
530 SSMFIELD_ENTRY( CPUMCTX, rbp),
531 SSMFIELD_ENTRY( CPUMCTX, rax),
532 SSMFIELD_ENTRY( CPUMCTX, rbx),
533 SSMFIELD_ENTRY( CPUMCTX, rdx),
534 SSMFIELD_ENTRY( CPUMCTX, rcx),
535 SSMFIELD_ENTRY( CPUMCTX, rsp),
536 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
537 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
538 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
539 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
540 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
541 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
542 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
543 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
544 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
545 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
546 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
547 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
548 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
549 SSMFIELD_ENTRY( CPUMCTX, rflags),
550 SSMFIELD_ENTRY( CPUMCTX, rip),
551 SSMFIELD_ENTRY( CPUMCTX, r8),
552 SSMFIELD_ENTRY( CPUMCTX, r9),
553 SSMFIELD_ENTRY( CPUMCTX, r10),
554 SSMFIELD_ENTRY( CPUMCTX, r11),
555 SSMFIELD_ENTRY( CPUMCTX, r12),
556 SSMFIELD_ENTRY( CPUMCTX, r13),
557 SSMFIELD_ENTRY( CPUMCTX, r14),
558 SSMFIELD_ENTRY( CPUMCTX, r15),
559 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
560 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
561 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
562 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
563 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
564 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
565 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
566 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
567 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
568 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
569 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
570 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
571 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
572 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
573 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
574 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
575 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
576 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
577 SSMFIELD_ENTRY( CPUMCTX, cr0),
578 SSMFIELD_ENTRY( CPUMCTX, cr2),
579 SSMFIELD_ENTRY( CPUMCTX, cr3),
580 SSMFIELD_ENTRY( CPUMCTX, cr4),
581 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
582 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
583 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
584 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
585 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
586 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
587 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
588 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
589 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
590 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
591 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
592 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
593 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
594 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
595 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
596 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
597 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
598 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
599 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
600 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
601 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
602 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
603 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
604 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
605 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
606 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
607 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
608 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
609 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
610 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
611 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
612 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
613 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
614 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
615 SSMFIELD_ENTRY_TERM()
616};
617
618/** Saved state field descriptors for CPUMCTX_VER1_6. */
619static const SSMFIELD g_aCpumX87FieldsV16[] =
620{
621 SSMFIELD_ENTRY( X86FXSTATE, FCW),
622 SSMFIELD_ENTRY( X86FXSTATE, FSW),
623 SSMFIELD_ENTRY( X86FXSTATE, FTW),
624 SSMFIELD_ENTRY( X86FXSTATE, FOP),
625 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
626 SSMFIELD_ENTRY( X86FXSTATE, CS),
627 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
628 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
629 SSMFIELD_ENTRY( X86FXSTATE, DS),
630 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
631 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
632 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
633 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
634 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
635 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
636 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
637 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
638 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
639 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
640 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
641 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
642 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
643 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
644 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
645 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
646 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
647 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
648 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
649 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
650 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
651 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
652 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
653 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
654 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
655 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
656 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
657 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
658 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
659 SSMFIELD_ENTRY_TERM()
660};
661
662/** Saved state field descriptors for CPUMCTX_VER1_6. */
663static const SSMFIELD g_aCpumCtxFieldsV16[] =
664{
665 SSMFIELD_ENTRY( CPUMCTX, rdi),
666 SSMFIELD_ENTRY( CPUMCTX, rsi),
667 SSMFIELD_ENTRY( CPUMCTX, rbp),
668 SSMFIELD_ENTRY( CPUMCTX, rax),
669 SSMFIELD_ENTRY( CPUMCTX, rbx),
670 SSMFIELD_ENTRY( CPUMCTX, rdx),
671 SSMFIELD_ENTRY( CPUMCTX, rcx),
672 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
673 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
674 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
675 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
676 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
677 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
678 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
679 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
680 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
681 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
682 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
683 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
684 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
685 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
686 SSMFIELD_ENTRY( CPUMCTX, rflags),
687 SSMFIELD_ENTRY( CPUMCTX, rip),
688 SSMFIELD_ENTRY( CPUMCTX, r8),
689 SSMFIELD_ENTRY( CPUMCTX, r9),
690 SSMFIELD_ENTRY( CPUMCTX, r10),
691 SSMFIELD_ENTRY( CPUMCTX, r11),
692 SSMFIELD_ENTRY( CPUMCTX, r12),
693 SSMFIELD_ENTRY( CPUMCTX, r13),
694 SSMFIELD_ENTRY( CPUMCTX, r14),
695 SSMFIELD_ENTRY( CPUMCTX, r15),
696 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
697 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
698 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
699 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
700 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
701 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
702 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
703 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
704 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
705 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
706 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
707 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
708 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
709 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
710 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
711 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
712 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
713 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
714 SSMFIELD_ENTRY( CPUMCTX, cr0),
715 SSMFIELD_ENTRY( CPUMCTX, cr2),
716 SSMFIELD_ENTRY( CPUMCTX, cr3),
717 SSMFIELD_ENTRY( CPUMCTX, cr4),
718 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
719 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
720 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
721 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
722 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
723 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
724 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
725 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
726 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
727 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
728 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
729 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
730 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
731 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
732 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
733 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
734 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
735 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
736 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
737 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
738 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
739 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
740 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
741 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
742 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
743 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
744 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
745 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
746 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
747 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
748 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
749 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
750 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
751 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
752 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
753 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
754 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
755 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
756 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
757 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
758 SSMFIELD_ENTRY_TERM()
759};
760
761
762/**
763 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
764 *
765 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
766 * (last instruction pointer, last data pointer, last opcode) except when the ES
767 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
768 * clear these registers there is potential, local FPU leakage from a process
769 * using the FPU to another.
770 *
771 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
772 *
773 * @param pVM The cross context VM structure.
774 */
775static void cpumR3CheckLeakyFpu(PVM pVM)
776{
777 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
778 uint32_t const u32Family = u32CpuVersion >> 8;
779 if ( u32Family >= 6 /* K7 and higher */
780 && ASMIsAmdCpu())
781 {
782 uint32_t cExt = ASMCpuId_EAX(0x80000000);
783 if (ASMIsValidExtRange(cExt))
784 {
785 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
786 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
787 {
788 for (VMCPUID i = 0; i < pVM->cCpus; i++)
789 pVM->aCpus[i].cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
790 Log(("CPUMR3Init: host CPU has leaky fxsave/fxrstor behaviour\n"));
791 }
792 }
793 }
794}
795
796
797/**
798 * Frees memory allocated for the SVM hardware virtualization state.
799 *
800 * @param pVM The cross context VM structure.
801 */
802static void cpumR3FreeSvmHwVirtState(PVM pVM)
803{
804 Assert(pVM->cpum.ro.GuestFeatures.fSvm);
805 for (VMCPUID i = 0; i < pVM->cCpus; i++)
806 {
807 PVMCPU pVCpu = &pVM->aCpus[i];
808 if (pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3)
809 {
810 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES);
811 pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3 = NULL;
812 }
813 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = NIL_RTHCPHYS;
814
815 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3)
816 {
817 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES);
818 pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3 = NULL;
819 }
820
821 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3)
822 {
823 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES);
824 pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3 = NULL;
825 }
826 }
827}
828
829
830/**
831 * Allocates memory for the SVM hardware virtualization state.
832 *
833 * @returns VBox status code.
834 * @param pVM The cross context VM structure.
835 */
836static int cpumR3AllocSvmHwVirtState(PVM pVM)
837{
838 Assert(pVM->cpum.ro.GuestFeatures.fSvm);
839
840 int rc = VINF_SUCCESS;
841 LogRel(("CPUM: Allocating %u pages for the nested-guest SVM MSR and IO permission bitmaps\n",
842 pVM->cCpus * (SVM_MSRPM_PAGES + SVM_IOPM_PAGES)));
843 for (VMCPUID i = 0; i < pVM->cCpus; i++)
844 {
845 PVMCPU pVCpu = &pVM->aCpus[i];
846 pVCpu->cpum.s.Guest.hwvirt.enmHwvirt = CPUMHWVIRT_SVM;
847
848 /*
849 * Allocate the nested-guest VMCB.
850 */
851 SUPPAGE SupNstGstVmcbPage;
852 RT_ZERO(SupNstGstVmcbPage);
853 SupNstGstVmcbPage.Phys = NIL_RTHCPHYS;
854 Assert(SVM_VMCB_PAGES == 1);
855 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
856 rc = SUPR3PageAllocEx(SVM_VMCB_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3,
857 &pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR0, &SupNstGstVmcbPage);
858 if (RT_FAILURE(rc))
859 {
860 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
861 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCB\n", pVCpu->idCpu, SVM_VMCB_PAGES));
862 break;
863 }
864 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = SupNstGstVmcbPage.Phys;
865
866 /*
867 * Allocate the MSRPM (MSR Permission bitmap).
868 */
869 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
870 rc = SUPR3PageAllocEx(SVM_MSRPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3,
871 &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR0, NULL /* paPages */);
872 if (RT_FAILURE(rc))
873 {
874 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
875 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR permission bitmap\n", pVCpu->idCpu,
876 SVM_MSRPM_PAGES));
877 break;
878 }
879
880 /*
881 * Allocate the IOPM (IO Permission bitmap).
882 */
883 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
884 rc = SUPR3PageAllocEx(SVM_IOPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3,
885 &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR0, NULL /* paPages */);
886 if (RT_FAILURE(rc))
887 {
888 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
889 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's IO permission bitmap\n", pVCpu->idCpu,
890 SVM_IOPM_PAGES));
891 break;
892 }
893 }
894
895 /* On any failure, cleanup. */
896 if (RT_FAILURE(rc))
897 cpumR3FreeSvmHwVirtState(pVM);
898
899 return rc;
900}
901
902
903/**
904 * Initializes (or re-initializes) per-VCPU SVM hardware virtualization state.
905 *
906 * @param pVCpu The cross context virtual CPU structure.
907 */
908DECLINLINE(void) cpumR3InitSvmHwVirtState(PVMCPU pVCpu)
909{
910 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
911 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_SVM);
912 Assert(pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
913
914 memset(pCtx->hwvirt.svm.CTX_SUFF(pVmcb), 0, SVM_VMCB_PAGES << PAGE_SHIFT);
915 pCtx->hwvirt.svm.uMsrHSavePa = 0;
916 pCtx->hwvirt.svm.uPrevPauseTick = 0;
917}
918
919
920/**
921 * Frees memory allocated for the VMX hardware virtualization state.
922 *
923 * @param pVM The cross context VM structure.
924 */
925static void cpumR3FreeVmxHwVirtState(PVM pVM)
926{
927 Assert(pVM->cpum.ro.GuestFeatures.fVmx);
928 for (VMCPUID i = 0; i < pVM->cCpus; i++)
929 {
930 PVMCPU pVCpu = &pVM->aCpus[i];
931 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3)
932 {
933 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3, VMX_V_VMCS_PAGES);
934 pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3 = NULL;
935 }
936 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3)
937 {
938 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3, VMX_V_VMCS_PAGES);
939 pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3 = NULL;
940 }
941 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3)
942 {
943 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3, VMX_V_VIRT_APIC_PAGES);
944 pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3 = NULL;
945 }
946 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3)
947 {
948 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
949 pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3 = NULL;
950 }
951 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3)
952 {
953 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
954 pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3 = NULL;
955 }
956 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3)
957 {
958 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
959 pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3 = NULL;
960 }
961 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3)
962 {
963 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_PAGES);
964 pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3 = NULL;
965 }
966 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3)
967 {
968 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES);
969 pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3 = NULL;
970 }
971 }
972}
973
974
975/**
976 * Allocates memory for the VMX hardware virtualization state.
977 *
978 * @returns VBox status code.
979 * @param pVM The cross context VM structure.
980 */
981static int cpumR3AllocVmxHwVirtState(PVM pVM)
982{
983 int rc = VINF_SUCCESS;
984 LogRel(("CPUM: Allocating %u pages for the nested-guest VMCS and related structures\n",
985 pVM->cCpus * ( VMX_V_VMCS_PAGES + VMX_V_VIRT_APIC_PAGES + VMX_V_VMREAD_VMWRITE_BITMAP_PAGES * 2
986 + VMX_V_AUTOMSR_AREA_PAGES)));
987 for (VMCPUID i = 0; i < pVM->cCpus; i++)
988 {
989 PVMCPU pVCpu = &pVM->aCpus[i];
990 pVCpu->cpum.s.Guest.hwvirt.enmHwvirt = CPUMHWVIRT_VMX;
991
992 /*
993 * Allocate the nested-guest current VMCS.
994 */
995 Assert(VMX_V_VMCS_PAGES == 1);
996 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3);
997 rc = SUPR3PageAllocEx(VMX_V_VMCS_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3,
998 &pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR0, NULL /* paPages */);
999 if (RT_FAILURE(rc))
1000 {
1001 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3);
1002 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
1003 break;
1004 }
1005
1006 /*
1007 * Allocate the nested-guest shadow VMCS.
1008 */
1009 Assert(VMX_V_VMCS_PAGES == 1);
1010 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3);
1011 rc = SUPR3PageAllocEx(VMX_V_VMCS_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3,
1012 &pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR0, NULL /* paPages */);
1013 if (RT_FAILURE(rc))
1014 {
1015 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3);
1016 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's shadow VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
1017 break;
1018 }
1019
1020 /*
1021 * Allocate the Virtual-APIC page.
1022 */
1023 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3);
1024 rc = SUPR3PageAllocEx(VMX_V_VIRT_APIC_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3,
1025 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR0, NULL /* paPages */);
1026 if (RT_FAILURE(rc))
1027 {
1028 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3);
1029 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's Virtual-APIC page\n", pVCpu->idCpu,
1030 VMX_V_VIRT_APIC_PAGES));
1031 break;
1032 }
1033
1034 /*
1035 * Allocate the VMREAD-bitmap.
1036 */
1037 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3);
1038 rc = SUPR3PageAllocEx(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3,
1039 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR0, NULL /* paPages */);
1040 if (RT_FAILURE(rc))
1041 {
1042 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3);
1043 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMREAD-bitmap\n", pVCpu->idCpu,
1044 VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
1045 break;
1046 }
1047
1048 /*
1049 * Allocatge the VMWRITE-bitmap.
1050 */
1051 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3);
1052 rc = SUPR3PageAllocEx(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES, 0 /* fFlags */,
1053 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3,
1054 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR0, NULL /* paPages */);
1055 if (RT_FAILURE(rc))
1056 {
1057 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3);
1058 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMWRITE-bitmap\n", pVCpu->idCpu,
1059 VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
1060 break;
1061 }
1062
1063 /*
1064 * Allocate the MSR auto-load/store area.
1065 */
1066 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3);
1067 rc = SUPR3PageAllocEx(VMX_V_AUTOMSR_AREA_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3,
1068 &pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR0, NULL /* paPages */);
1069 if (RT_FAILURE(rc))
1070 {
1071 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3);
1072 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's auto-load/store MSR area\n", pVCpu->idCpu,
1073 VMX_V_AUTOMSR_AREA_PAGES));
1074 break;
1075 }
1076
1077 /*
1078 * Allocate the MSR bitmap.
1079 */
1080 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3);
1081 rc = SUPR3PageAllocEx(VMX_V_MSR_BITMAP_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3,
1082 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR0, NULL /* paPages */);
1083 if (RT_FAILURE(rc))
1084 {
1085 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3);
1086 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR bitmap\n", pVCpu->idCpu,
1087 VMX_V_MSR_BITMAP_PAGES));
1088 break;
1089 }
1090
1091 /*
1092 * Allocate the I/O bitmaps (A and B).
1093 */
1094 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3);
1095 rc = SUPR3PageAllocEx(VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES, 0 /* fFlags */,
1096 (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3,
1097 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR0, NULL /* paPages */);
1098 if (RT_FAILURE(rc))
1099 {
1100 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3);
1101 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's I/O bitmaps\n", pVCpu->idCpu,
1102 VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES));
1103 break;
1104 }
1105 }
1106
1107 /* On any failure, cleanup. */
1108 if (RT_FAILURE(rc))
1109 cpumR3FreeVmxHwVirtState(pVM);
1110
1111 return rc;
1112}
1113
1114
1115/**
1116 * Initializes (or re-initializes) per-VCPU VMX hardware virtualization state.
1117 *
1118 * @param pVCpu The cross context virtual CPU structure.
1119 */
1120DECLINLINE(void) cpumR3InitVmxHwVirtState(PVMCPU pVCpu)
1121{
1122 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1123 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_VMX);
1124 Assert(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs));
1125 Assert(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs));
1126
1127 memset(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs), 0, VMX_V_VMCS_SIZE);
1128 memset(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs), 0, VMX_V_VMCS_SIZE);
1129 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1130 pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS;
1131 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1132 pCtx->hwvirt.vmx.fInVmxRootMode = false;
1133 pCtx->hwvirt.vmx.fInVmxNonRootMode = false;
1134 /* Don't reset diagnostics here. */
1135}
1136
1137
1138/**
1139 * Displays the host and guest VMX features.
1140 *
1141 * @param pVM The cross context VM structure.
1142 * @param pHlp The info helper functions.
1143 * @param pszArgs "terse", "default" or "verbose".
1144 */
1145DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1146{
1147 RT_NOREF(pszArgs);
1148 PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures;
1149 PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
1150 if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL
1151 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA)
1152 {
1153#define VMXFEATDUMP(a_szDesc, a_Var) \
1154 pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var)
1155
1156 pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n");
1157 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
1158 VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx);
1159 if (!pGuestFeatures->fVmx)
1160 return;
1161 /* Basic. */
1162 VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo);
1163 /* Pin-based controls. */
1164 VMXFEATDUMP("ExtIntExit - External interrupt VM-exit ", fVmxExtIntExit);
1165 VMXFEATDUMP("NmiExit - NMI VM-exit ", fVmxNmiExit);
1166 VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi);
1167 VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer);
1168 VMXFEATDUMP("PostedInt - Posted interrupts ", fVmxPostedInt);
1169 /* Processor-based controls. */
1170 VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit);
1171 VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting);
1172 VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit);
1173 VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit);
1174 VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit);
1175 VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit);
1176 VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit);
1177 VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit);
1178 VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit);
1179 VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit);
1180 VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit);
1181 VMXFEATDUMP("UseTprShadow - Use TPR shadow ", fVmxUseTprShadow);
1182 VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit);
1183 VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit);
1184 VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit);
1185 VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps);
1186 VMXFEATDUMP("MonitorTrapFlag - Monitor trap flag ", fVmxMonitorTrapFlag);
1187 VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps);
1188 VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit);
1189 VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit);
1190 VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls);
1191 /* Secondary processor-based controls. */
1192 VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess);
1193 VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt);
1194 VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit);
1195 VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp);
1196 VMXFEATDUMP("VirtX2ApicMode - Virtualize-x2APIC mode ", fVmxVirtX2ApicMode);
1197 VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid);
1198 VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit);
1199 VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest);
1200 VMXFEATDUMP("ApicRegVirt - APIC-register virtualization ", fVmxApicRegVirt);
1201 VMXFEATDUMP("VirtIntDelivery - Virtual-interrupt delivery ", fVmxVirtIntDelivery);
1202 VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit);
1203 VMXFEATDUMP("RdrandExit - RDRAND exiting ", fVmxRdrandExit);
1204 VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid);
1205 VMXFEATDUMP("VmFuncs - Enable VM Functions ", fVmxVmFunc);
1206 VMXFEATDUMP("VmcsShadowing - VMCS shadowing ", fVmxVmcsShadowing);
1207 VMXFEATDUMP("RdseedExiting - RDSEED exiting ", fVmxRdseedExit);
1208 VMXFEATDUMP("PML - Supports Page-Modification Log (PML) ", fVmxPml);
1209 VMXFEATDUMP("EptVe - EPT violations can cause #VE ", fVmxEptXcptVe);
1210 VMXFEATDUMP("XsavesXRstors - Enable XSAVES/XRSTORS ", fVmxXsavesXrstors);
1211 /* VM-entry controls. */
1212 VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls);
1213 VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest);
1214 VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER on VM-entry ", fVmxEntryLoadEferMsr);
1215 VMXFEATDUMP("EntryLoadPatMsr - Load IA32_PAT on VM-entry ", fVmxEntryLoadPatMsr);
1216 /* VM-exit controls. */
1217 VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls);
1218 VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize);
1219 VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt);
1220 VMXFEATDUMP("ExitSavePatMsr - Save IA32_PAT on VM-exit ", fVmxExitSavePatMsr);
1221 VMXFEATDUMP("ExitLoadPatMsr - Load IA32_PAT on VM-exit ", fVmxExitLoadPatMsr);
1222 VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER on VM-exit ", fVmxExitSaveEferMsr);
1223 VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER on VM-exit ", fVmxExitLoadEferMsr);
1224 VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer);
1225 /* Miscellaneous data. */
1226 VMXFEATDUMP("ExitSaveEferLma - Save EFER.LMA on VM-exit ", fVmxExitSaveEferLma);
1227 VMXFEATDUMP("IntelPt - Intel PT (Processor Trace) in VMX operation ", fVmxIntelPt);
1228 VMXFEATDUMP("VmwriteAll - Inject softint. with 0-len instr. ", fVmxVmwriteAll);
1229 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
1230#undef VMXFEATDUMP
1231 }
1232 else
1233 pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n");
1234}
1235
1236
1237/**
1238 * Initializes VMX host and guest features.
1239 *
1240 * @param pVM The cross context VM structure.
1241 *
1242 * @remarks This must be called only after HM has fully initialized since it calls
1243 * into HM to retrieve VMX and related MSRs.
1244 */
1245static void cpumR3InitVmxCpuFeatures(PVM pVM)
1246{
1247 /*
1248 * Init. host features.
1249 */
1250 PCPUMFEATURES pHostFeat = &pVM->cpum.s.HostFeatures;
1251 VMXMSRS VmxMsrs;
1252 int rc = HMVmxGetHostMsrs(pVM, &VmxMsrs);
1253 if (RT_SUCCESS(rc))
1254 {
1255 /* Basic information. */
1256 pHostFeat->fVmxInsOutInfo = RT_BF_GET(VmxMsrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
1257
1258 /* Pin-based VM-execution controls. */
1259 uint32_t const fPinCtls = VmxMsrs.PinCtls.n.allowed1;
1260 pHostFeat->fVmxExtIntExit = RT_BOOL(fPinCtls & VMX_PIN_CTLS_EXT_INT_EXIT);
1261 pHostFeat->fVmxNmiExit = RT_BOOL(fPinCtls & VMX_PIN_CTLS_NMI_EXIT);
1262 pHostFeat->fVmxVirtNmi = RT_BOOL(fPinCtls & VMX_PIN_CTLS_VIRT_NMI);
1263 pHostFeat->fVmxPreemptTimer = RT_BOOL(fPinCtls & VMX_PIN_CTLS_PREEMPT_TIMER);
1264 pHostFeat->fVmxPostedInt = RT_BOOL(fPinCtls & VMX_PIN_CTLS_POSTED_INT);
1265
1266 /* Processor-based VM-execution controls. */
1267 uint32_t const fProcCtls = VmxMsrs.ProcCtls.n.allowed1;
1268 pHostFeat->fVmxIntWindowExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT);
1269 pHostFeat->fVmxTscOffsetting = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING);
1270 pHostFeat->fVmxHltExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_HLT_EXIT);
1271 pHostFeat->fVmxInvlpgExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_INVLPG_EXIT);
1272 pHostFeat->fVmxMwaitExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MWAIT_EXIT);
1273 pHostFeat->fVmxRdpmcExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_RDPMC_EXIT);
1274 pHostFeat->fVmxRdtscExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_RDTSC_EXIT);
1275 pHostFeat->fVmxCr3LoadExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR3_LOAD_EXIT);
1276 pHostFeat->fVmxCr3StoreExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR3_STORE_EXIT);
1277 pHostFeat->fVmxCr8LoadExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR8_LOAD_EXIT);
1278 pHostFeat->fVmxCr8StoreExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR8_STORE_EXIT);
1279 pHostFeat->fVmxUseTprShadow = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
1280 pHostFeat->fVmxNmiWindowExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT);
1281 pHostFeat->fVmxMovDRxExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
1282 pHostFeat->fVmxUncondIoExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_UNCOND_IO_EXIT);
1283 pHostFeat->fVmxUseIoBitmaps = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS);
1284 pHostFeat->fVmxMonitorTrapFlag = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
1285 pHostFeat->fVmxUseMsrBitmaps = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS);
1286 pHostFeat->fVmxMonitorExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MONITOR_EXIT);
1287 pHostFeat->fVmxPauseExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_PAUSE_EXIT);
1288 pHostFeat->fVmxSecondaryExecCtls = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
1289
1290 /* Secondary processor-based VM-execution controls. */
1291 if (pHostFeat->fVmxSecondaryExecCtls)
1292 {
1293 uint32_t const fProcCtls2 = VmxMsrs.ProcCtls2.n.allowed1;
1294 pHostFeat->fVmxVirtApicAccess = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
1295 pHostFeat->fVmxEpt = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_EPT);
1296 pHostFeat->fVmxDescTableExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_DESC_TABLE_EXIT);
1297 pHostFeat->fVmxRdtscp = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_RDTSCP);
1298 pHostFeat->fVmxVirtX2ApicMode = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
1299 pHostFeat->fVmxVpid = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VPID);
1300 pHostFeat->fVmxWbinvdExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_WBINVD_EXIT);
1301 pHostFeat->fVmxUnrestrictedGuest = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
1302 pHostFeat->fVmxApicRegVirt = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT);
1303 pHostFeat->fVmxVirtIntDelivery = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
1304 pHostFeat->fVmxPauseLoopExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
1305 pHostFeat->fVmxRdrandExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_RDRAND_EXIT);
1306 pHostFeat->fVmxInvpcid = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_INVPCID);
1307 pHostFeat->fVmxVmFunc = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VMFUNC);
1308 pHostFeat->fVmxVmcsShadowing = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING);
1309 pHostFeat->fVmxRdseedExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_RDSEED_EXIT);
1310 pHostFeat->fVmxPml = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_PML);
1311 pHostFeat->fVmxEptXcptVe = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_EPT_VE);
1312 pHostFeat->fVmxXsavesXrstors = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_XSAVES_XRSTORS);
1313 pHostFeat->fVmxUseTscScaling = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_TSC_SCALING);
1314 }
1315
1316 /* VM-entry controls. */
1317 uint32_t const fEntryCtls = VmxMsrs.EntryCtls.n.allowed1;
1318 pHostFeat->fVmxEntryLoadDebugCtls = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG);
1319 pHostFeat->fVmxIa32eModeGuest = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
1320 pHostFeat->fVmxEntryLoadEferMsr = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR);
1321 pHostFeat->fVmxEntryLoadPatMsr = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR);
1322
1323 /* VM-exit controls. */
1324 uint32_t const fExitCtls = VmxMsrs.ExitCtls.n.allowed1;
1325 pHostFeat->fVmxExitSaveDebugCtls = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_DEBUG);
1326 pHostFeat->fVmxHostAddrSpaceSize = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1327 pHostFeat->fVmxExitAckExtInt = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT);
1328 pHostFeat->fVmxExitSavePatMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_PAT_MSR);
1329 pHostFeat->fVmxExitLoadPatMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR);
1330 pHostFeat->fVmxExitSaveEferMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_EFER_MSR);
1331 pHostFeat->fVmxExitLoadEferMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR);
1332 pHostFeat->fVmxSavePreemptTimer = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER);
1333
1334 /* Miscellaneous data. */
1335 uint32_t const fMiscData = VmxMsrs.u64Misc;
1336 pHostFeat->fVmxExitSaveEferLma = RT_BOOL(fMiscData & VMX_MISC_EXIT_SAVE_EFER_LMA);
1337 pHostFeat->fVmxIntelPt = RT_BOOL(fMiscData & VMX_MISC_INTEL_PT);
1338 pHostFeat->fVmxVmwriteAll = RT_BOOL(fMiscData & VMX_MISC_VMWRITE_ALL);
1339 pHostFeat->fVmxEntryInjectSoftInt = RT_BOOL(fMiscData & VMX_MISC_ENTRY_INJECT_SOFT_INT);
1340 }
1341
1342 /*
1343 * Initialize the set of VMX features we emulate.
1344 * Note! Some bits might be reported as 1 always if they fall under the default1 class bits
1345 * (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}.
1346 */
1347 CPUMFEATURES EmuFeat;
1348 RT_ZERO(EmuFeat);
1349 EmuFeat.fVmx = 1;
1350 EmuFeat.fVmxInsOutInfo = 0;
1351 EmuFeat.fVmxExtIntExit = 1;
1352 EmuFeat.fVmxNmiExit = 1;
1353 EmuFeat.fVmxVirtNmi = 0;
1354 EmuFeat.fVmxPreemptTimer = 0; /** @todo NSTVMX: enable this. */
1355 EmuFeat.fVmxPostedInt = 0;
1356 EmuFeat.fVmxIntWindowExit = 1;
1357 EmuFeat.fVmxTscOffsetting = 1;
1358 EmuFeat.fVmxHltExit = 1;
1359 EmuFeat.fVmxInvlpgExit = 1;
1360 EmuFeat.fVmxMwaitExit = 1;
1361 EmuFeat.fVmxRdpmcExit = 1;
1362 EmuFeat.fVmxRdtscExit = 1;
1363 EmuFeat.fVmxCr3LoadExit = 1;
1364 EmuFeat.fVmxCr3StoreExit = 1;
1365 EmuFeat.fVmxCr8LoadExit = 1;
1366 EmuFeat.fVmxCr8StoreExit = 1;
1367 EmuFeat.fVmxUseTprShadow = 0;
1368 EmuFeat.fVmxNmiWindowExit = 0;
1369 EmuFeat.fVmxMovDRxExit = 1;
1370 EmuFeat.fVmxUncondIoExit = 1;
1371 EmuFeat.fVmxUseIoBitmaps = 1;
1372 EmuFeat.fVmxMonitorTrapFlag = 0;
1373 EmuFeat.fVmxUseMsrBitmaps = 0;
1374 EmuFeat.fVmxMonitorExit = 1;
1375 EmuFeat.fVmxPauseExit = 1;
1376 EmuFeat.fVmxSecondaryExecCtls = 1;
1377 EmuFeat.fVmxVirtApicAccess = 0;
1378 EmuFeat.fVmxEpt = 0;
1379 EmuFeat.fVmxDescTableExit = 1;
1380 EmuFeat.fVmxRdtscp = 1;
1381 EmuFeat.fVmxVirtX2ApicMode = 0;
1382 EmuFeat.fVmxVpid = 0;
1383 EmuFeat.fVmxWbinvdExit = 1;
1384 EmuFeat.fVmxUnrestrictedGuest = 0;
1385 EmuFeat.fVmxApicRegVirt = 0;
1386 EmuFeat.fVmxVirtIntDelivery = 0;
1387 EmuFeat.fVmxPauseLoopExit = 0;
1388 EmuFeat.fVmxRdrandExit = 0;
1389 EmuFeat.fVmxInvpcid = 1;
1390 EmuFeat.fVmxVmFunc = 0;
1391 EmuFeat.fVmxVmcsShadowing = 0;
1392 EmuFeat.fVmxRdseedExit = 0;
1393 EmuFeat.fVmxPml = 0;
1394 EmuFeat.fVmxEptXcptVe = 0;
1395 EmuFeat.fVmxXsavesXrstors = 0;
1396 EmuFeat.fVmxUseTscScaling = 0;
1397 EmuFeat.fVmxEntryLoadDebugCtls = 1;
1398 EmuFeat.fVmxIa32eModeGuest = 1;
1399 EmuFeat.fVmxEntryLoadEferMsr = 1;
1400 EmuFeat.fVmxEntryLoadPatMsr = 0;
1401 EmuFeat.fVmxExitSaveDebugCtls = 1;
1402 EmuFeat.fVmxHostAddrSpaceSize = 1;
1403 EmuFeat.fVmxExitAckExtInt = 0;
1404 EmuFeat.fVmxExitSavePatMsr = 0;
1405 EmuFeat.fVmxExitLoadPatMsr = 0;
1406 EmuFeat.fVmxExitSaveEferMsr = 1;
1407 EmuFeat.fVmxExitLoadEferMsr = 1;
1408 EmuFeat.fVmxSavePreemptTimer = 0;
1409 EmuFeat.fVmxExitSaveEferLma = 1;
1410 EmuFeat.fVmxIntelPt = 0;
1411 EmuFeat.fVmxVmwriteAll = 0;
1412 EmuFeat.fVmxEntryInjectSoftInt = 0;
1413
1414 /*
1415 * Explode guest features.
1416 *
1417 * When hardware-assisted VMX may be used, any feature we emulate must also be supported
1418 * by the hardware, hence we merge our emulated features with the host features below.
1419 */
1420 bool const fHostSupportsVmx = pHostFeat->fVmx;
1421 AssertLogRelReturnVoid(!fHostSupportsVmx || HMIsVmxSupported(pVM));
1422 PCCPUMFEATURES pBaseFeat = fHostSupportsVmx ? pHostFeat : &EmuFeat;
1423 PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures;
1424 pGuestFeat->fVmx = (pBaseFeat->fVmx & EmuFeat.fVmx );
1425 pGuestFeat->fVmxInsOutInfo = (pBaseFeat->fVmxInsOutInfo & EmuFeat.fVmxInsOutInfo );
1426 pGuestFeat->fVmxExtIntExit = (pBaseFeat->fVmxExtIntExit & EmuFeat.fVmxExtIntExit );
1427 pGuestFeat->fVmxNmiExit = (pBaseFeat->fVmxNmiExit & EmuFeat.fVmxNmiExit );
1428 pGuestFeat->fVmxVirtNmi = (pBaseFeat->fVmxVirtNmi & EmuFeat.fVmxVirtNmi );
1429 pGuestFeat->fVmxPreemptTimer = (pBaseFeat->fVmxPreemptTimer & EmuFeat.fVmxPreemptTimer );
1430 pGuestFeat->fVmxPostedInt = (pBaseFeat->fVmxPostedInt & EmuFeat.fVmxPostedInt );
1431 pGuestFeat->fVmxIntWindowExit = (pBaseFeat->fVmxIntWindowExit & EmuFeat.fVmxIntWindowExit );
1432 pGuestFeat->fVmxTscOffsetting = (pBaseFeat->fVmxTscOffsetting & EmuFeat.fVmxTscOffsetting );
1433 pGuestFeat->fVmxHltExit = (pBaseFeat->fVmxHltExit & EmuFeat.fVmxHltExit );
1434 pGuestFeat->fVmxInvlpgExit = (pBaseFeat->fVmxInvlpgExit & EmuFeat.fVmxInvlpgExit );
1435 pGuestFeat->fVmxMwaitExit = (pBaseFeat->fVmxMwaitExit & EmuFeat.fVmxMwaitExit );
1436 pGuestFeat->fVmxRdpmcExit = (pBaseFeat->fVmxRdpmcExit & EmuFeat.fVmxRdpmcExit );
1437 pGuestFeat->fVmxRdtscExit = (pBaseFeat->fVmxRdtscExit & EmuFeat.fVmxRdtscExit );
1438 pGuestFeat->fVmxCr3LoadExit = (pBaseFeat->fVmxCr3LoadExit & EmuFeat.fVmxCr3LoadExit );
1439 pGuestFeat->fVmxCr3StoreExit = (pBaseFeat->fVmxCr3StoreExit & EmuFeat.fVmxCr3StoreExit );
1440 pGuestFeat->fVmxCr8LoadExit = (pBaseFeat->fVmxCr8LoadExit & EmuFeat.fVmxCr8LoadExit );
1441 pGuestFeat->fVmxCr8StoreExit = (pBaseFeat->fVmxCr8StoreExit & EmuFeat.fVmxCr8StoreExit );
1442 pGuestFeat->fVmxUseTprShadow = (pBaseFeat->fVmxUseTprShadow & EmuFeat.fVmxUseTprShadow );
1443 pGuestFeat->fVmxNmiWindowExit = (pBaseFeat->fVmxNmiWindowExit & EmuFeat.fVmxNmiWindowExit );
1444 pGuestFeat->fVmxMovDRxExit = (pBaseFeat->fVmxMovDRxExit & EmuFeat.fVmxMovDRxExit );
1445 pGuestFeat->fVmxUncondIoExit = (pBaseFeat->fVmxUncondIoExit & EmuFeat.fVmxUncondIoExit );
1446 pGuestFeat->fVmxUseIoBitmaps = (pBaseFeat->fVmxUseIoBitmaps & EmuFeat.fVmxUseIoBitmaps );
1447 pGuestFeat->fVmxMonitorTrapFlag = (pBaseFeat->fVmxMonitorTrapFlag & EmuFeat.fVmxMonitorTrapFlag );
1448 pGuestFeat->fVmxUseMsrBitmaps = (pBaseFeat->fVmxUseMsrBitmaps & EmuFeat.fVmxUseMsrBitmaps );
1449 pGuestFeat->fVmxMonitorExit = (pBaseFeat->fVmxMonitorExit & EmuFeat.fVmxMonitorExit );
1450 pGuestFeat->fVmxPauseExit = (pBaseFeat->fVmxPauseExit & EmuFeat.fVmxPauseExit );
1451 pGuestFeat->fVmxSecondaryExecCtls = (pBaseFeat->fVmxSecondaryExecCtls & EmuFeat.fVmxSecondaryExecCtls );
1452 pGuestFeat->fVmxVirtApicAccess = (pBaseFeat->fVmxVirtApicAccess & EmuFeat.fVmxVirtApicAccess );
1453 pGuestFeat->fVmxEpt = (pBaseFeat->fVmxEpt & EmuFeat.fVmxEpt );
1454 pGuestFeat->fVmxDescTableExit = (pBaseFeat->fVmxDescTableExit & EmuFeat.fVmxDescTableExit );
1455 pGuestFeat->fVmxRdtscp = (pBaseFeat->fVmxRdtscp & EmuFeat.fVmxRdtscp );
1456 pGuestFeat->fVmxVirtX2ApicMode = (pBaseFeat->fVmxVirtX2ApicMode & EmuFeat.fVmxVirtX2ApicMode );
1457 pGuestFeat->fVmxVpid = (pBaseFeat->fVmxVpid & EmuFeat.fVmxVpid );
1458 pGuestFeat->fVmxWbinvdExit = (pBaseFeat->fVmxWbinvdExit & EmuFeat.fVmxWbinvdExit );
1459 pGuestFeat->fVmxUnrestrictedGuest = (pBaseFeat->fVmxUnrestrictedGuest & EmuFeat.fVmxUnrestrictedGuest );
1460 pGuestFeat->fVmxApicRegVirt = (pBaseFeat->fVmxApicRegVirt & EmuFeat.fVmxApicRegVirt );
1461 pGuestFeat->fVmxVirtIntDelivery = (pBaseFeat->fVmxVirtIntDelivery & EmuFeat.fVmxVirtIntDelivery );
1462 pGuestFeat->fVmxPauseLoopExit = (pBaseFeat->fVmxPauseLoopExit & EmuFeat.fVmxPauseLoopExit );
1463 pGuestFeat->fVmxRdrandExit = (pBaseFeat->fVmxRdrandExit & EmuFeat.fVmxRdrandExit );
1464 pGuestFeat->fVmxInvpcid = (pBaseFeat->fVmxInvpcid & EmuFeat.fVmxInvpcid );
1465 pGuestFeat->fVmxVmFunc = (pBaseFeat->fVmxVmFunc & EmuFeat.fVmxVmFunc );
1466 pGuestFeat->fVmxVmcsShadowing = (pBaseFeat->fVmxVmcsShadowing & EmuFeat.fVmxVmcsShadowing );
1467 pGuestFeat->fVmxRdseedExit = (pBaseFeat->fVmxRdseedExit & EmuFeat.fVmxRdseedExit );
1468 pGuestFeat->fVmxPml = (pBaseFeat->fVmxPml & EmuFeat.fVmxPml );
1469 pGuestFeat->fVmxEptXcptVe = (pBaseFeat->fVmxEptXcptVe & EmuFeat.fVmxEptXcptVe );
1470 pGuestFeat->fVmxXsavesXrstors = (pBaseFeat->fVmxXsavesXrstors & EmuFeat.fVmxXsavesXrstors );
1471 pGuestFeat->fVmxUseTscScaling = (pBaseFeat->fVmxUseTscScaling & EmuFeat.fVmxUseTscScaling );
1472 pGuestFeat->fVmxEntryLoadDebugCtls = (pBaseFeat->fVmxEntryLoadDebugCtls & EmuFeat.fVmxEntryLoadDebugCtls );
1473 pGuestFeat->fVmxIa32eModeGuest = (pBaseFeat->fVmxIa32eModeGuest & EmuFeat.fVmxIa32eModeGuest );
1474 pGuestFeat->fVmxEntryLoadEferMsr = (pBaseFeat->fVmxEntryLoadEferMsr & EmuFeat.fVmxEntryLoadEferMsr );
1475 pGuestFeat->fVmxEntryLoadPatMsr = (pBaseFeat->fVmxEntryLoadPatMsr & EmuFeat.fVmxEntryLoadPatMsr );
1476 pGuestFeat->fVmxExitSaveDebugCtls = (pBaseFeat->fVmxExitSaveDebugCtls & EmuFeat.fVmxExitSaveDebugCtls );
1477 pGuestFeat->fVmxHostAddrSpaceSize = (pBaseFeat->fVmxHostAddrSpaceSize & EmuFeat.fVmxHostAddrSpaceSize );
1478 pGuestFeat->fVmxExitAckExtInt = (pBaseFeat->fVmxExitAckExtInt & EmuFeat.fVmxExitAckExtInt );
1479 pGuestFeat->fVmxExitSavePatMsr = (pBaseFeat->fVmxExitSavePatMsr & EmuFeat.fVmxExitSavePatMsr );
1480 pGuestFeat->fVmxExitLoadPatMsr = (pBaseFeat->fVmxExitLoadPatMsr & EmuFeat.fVmxExitLoadPatMsr );
1481 pGuestFeat->fVmxExitSaveEferMsr = (pBaseFeat->fVmxExitSaveEferMsr & EmuFeat.fVmxExitSaveEferMsr );
1482 pGuestFeat->fVmxExitLoadEferMsr = (pBaseFeat->fVmxExitLoadEferMsr & EmuFeat.fVmxExitLoadEferMsr );
1483 pGuestFeat->fVmxSavePreemptTimer = (pBaseFeat->fVmxSavePreemptTimer & EmuFeat.fVmxSavePreemptTimer );
1484 pGuestFeat->fVmxExitSaveEferLma = (pBaseFeat->fVmxExitSaveEferLma & EmuFeat.fVmxExitSaveEferLma );
1485 pGuestFeat->fVmxIntelPt = (pBaseFeat->fVmxIntelPt & EmuFeat.fVmxIntelPt );
1486 pGuestFeat->fVmxVmwriteAll = (pBaseFeat->fVmxVmwriteAll & EmuFeat.fVmxVmwriteAll );
1487 pGuestFeat->fVmxEntryInjectSoftInt = (pBaseFeat->fVmxEntryInjectSoftInt & EmuFeat.fVmxEntryInjectSoftInt );
1488
1489 /* Paranoia. */
1490 if (!pGuestFeat->fVmxSecondaryExecCtls)
1491 {
1492 Assert(!pGuestFeat->fVmxVirtApicAccess);
1493 Assert(!pGuestFeat->fVmxEpt);
1494 Assert(!pGuestFeat->fVmxDescTableExit);
1495 Assert(!pGuestFeat->fVmxRdtscp);
1496 Assert(!pGuestFeat->fVmxVirtX2ApicMode);
1497 Assert(!pGuestFeat->fVmxVpid);
1498 Assert(!pGuestFeat->fVmxWbinvdExit);
1499 Assert(!pGuestFeat->fVmxUnrestrictedGuest);
1500 Assert(!pGuestFeat->fVmxApicRegVirt);
1501 Assert(!pGuestFeat->fVmxVirtIntDelivery);
1502 Assert(!pGuestFeat->fVmxPauseLoopExit);
1503 Assert(!pGuestFeat->fVmxRdrandExit);
1504 Assert(!pGuestFeat->fVmxInvpcid);
1505 Assert(!pGuestFeat->fVmxVmFunc);
1506 Assert(!pGuestFeat->fVmxVmcsShadowing);
1507 Assert(!pGuestFeat->fVmxRdseedExit);
1508 Assert(!pGuestFeat->fVmxPml);
1509 Assert(!pGuestFeat->fVmxEptXcptVe);
1510 Assert(!pGuestFeat->fVmxXsavesXrstors);
1511 Assert(!pGuestFeat->fVmxUseTscScaling);
1512 }
1513}
1514
1515
1516/**
1517 * Initializes the CPUM.
1518 *
1519 * @returns VBox status code.
1520 * @param pVM The cross context VM structure.
1521 */
1522VMMR3DECL(int) CPUMR3Init(PVM pVM)
1523{
1524 LogFlow(("CPUMR3Init\n"));
1525
1526 /*
1527 * Assert alignment, sizes and tables.
1528 */
1529 AssertCompileMemberAlignment(VM, cpum.s, 32);
1530 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
1531 AssertCompileSizeAlignment(CPUMCTX, 64);
1532 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
1533 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
1534 AssertCompileMemberAlignment(VM, cpum, 64);
1535 AssertCompileMemberAlignment(VM, aCpus, 64);
1536 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
1537 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
1538#ifdef VBOX_STRICT
1539 int rc2 = cpumR3MsrStrictInitChecks();
1540 AssertRCReturn(rc2, rc2);
1541#endif
1542
1543 /*
1544 * Initialize offsets.
1545 */
1546
1547 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
1548 pVM->cpum.s.offCPUMCPU0 = RT_UOFFSETOF(VM, aCpus[0].cpum) - RT_UOFFSETOF(VM, cpum);
1549 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
1550
1551
1552 /* Calculate the offset from CPUMCPU to CPUM. */
1553 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1554 {
1555 PVMCPU pVCpu = &pVM->aCpus[i];
1556
1557 pVCpu->cpum.s.offCPUM = RT_UOFFSETOF_DYN(VM, aCpus[i].cpum) - RT_UOFFSETOF(VM, cpum);
1558 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
1559 }
1560
1561 /*
1562 * Gather info about the host CPU.
1563 */
1564 if (!ASMHasCpuId())
1565 {
1566 Log(("The CPU doesn't support CPUID!\n"));
1567 return VERR_UNSUPPORTED_CPU;
1568 }
1569
1570 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
1571
1572 PCPUMCPUIDLEAF paLeaves;
1573 uint32_t cLeaves;
1574 int rc = CPUMR3CpuIdCollectLeaves(&paLeaves, &cLeaves);
1575 AssertLogRelRCReturn(rc, rc);
1576
1577 rc = cpumR3CpuIdExplodeFeatures(paLeaves, cLeaves, &pVM->cpum.s.HostFeatures);
1578 RTMemFree(paLeaves);
1579 AssertLogRelRCReturn(rc, rc);
1580 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
1581
1582 /*
1583 * Check that the CPU supports the minimum features we require.
1584 */
1585 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
1586 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
1587 if (!pVM->cpum.s.HostFeatures.fMmx)
1588 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
1589 if (!pVM->cpum.s.HostFeatures.fTsc)
1590 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
1591
1592 /*
1593 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
1594 */
1595 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
1596 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
1597
1598 /*
1599 * Figure out which XSAVE/XRSTOR features are available on the host.
1600 */
1601 uint64_t fXcr0Host = 0;
1602 uint64_t fXStateHostMask = 0;
1603 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
1604 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
1605 {
1606 fXStateHostMask = fXcr0Host = ASMGetXcr0();
1607 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
1608 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
1609 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
1610 }
1611 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
1612 if (VM_IS_RAW_MODE_ENABLED(pVM)) /* For raw-mode, we only use XSAVE/XRSTOR when the guest starts using it (CPUID/CR4 visibility). */
1613 fXStateHostMask = 0;
1614 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
1615 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
1616
1617 /*
1618 * Allocate memory for the extended CPU state and initialize the host XSAVE/XRSTOR mask.
1619 */
1620 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
1621 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
1622 AssertLogRelReturn(cbMaxXState >= sizeof(X86FXSTATE) && cbMaxXState <= _8K, VERR_CPUM_IPE_2);
1623
1624 uint8_t *pbXStates;
1625 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbMaxXState * 3 * pVM->cCpus, PAGE_SIZE, MM_TAG_CPUM_CTX,
1626 MMHYPER_AONR_FLAGS_KERNEL_MAPPING, (void **)&pbXStates);
1627 AssertLogRelRCReturn(rc, rc);
1628
1629 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1630 {
1631 PVMCPU pVCpu = &pVM->aCpus[i];
1632
1633 pVCpu->cpum.s.Guest.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1634 pVCpu->cpum.s.Guest.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1635 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1636 pbXStates += cbMaxXState;
1637
1638 pVCpu->cpum.s.Host.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1639 pVCpu->cpum.s.Host.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1640 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1641 pbXStates += cbMaxXState;
1642
1643 pVCpu->cpum.s.Hyper.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1644 pVCpu->cpum.s.Hyper.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1645 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1646 pbXStates += cbMaxXState;
1647
1648 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
1649 }
1650
1651 /*
1652 * Register saved state data item.
1653 */
1654 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
1655 NULL, cpumR3LiveExec, NULL,
1656 NULL, cpumR3SaveExec, NULL,
1657 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
1658 if (RT_FAILURE(rc))
1659 return rc;
1660
1661 /*
1662 * Register info handlers and registers with the debugger facility.
1663 */
1664 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
1665 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
1666 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
1667 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
1668 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
1669 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
1670 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
1671 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
1672 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
1673 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
1674 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
1675 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
1676 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
1677 DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.",
1678 &cpumR3InfoVmxFeatures);
1679
1680 rc = cpumR3DbgInit(pVM);
1681 if (RT_FAILURE(rc))
1682 return rc;
1683
1684 /*
1685 * Check if we need to workaround partial/leaky FPU handling.
1686 */
1687 cpumR3CheckLeakyFpu(pVM);
1688
1689 /*
1690 * Initialize the Guest CPUID and MSR states.
1691 */
1692 rc = cpumR3InitCpuIdAndMsrs(pVM);
1693 if (RT_FAILURE(rc))
1694 return rc;
1695
1696 /*
1697 * Allocate memory required by the guest hardware virtualization state.
1698 */
1699 if (pVM->cpum.ro.GuestFeatures.fVmx)
1700 rc = cpumR3AllocVmxHwVirtState(pVM);
1701 else if (pVM->cpum.ro.GuestFeatures.fSvm)
1702 rc = cpumR3AllocSvmHwVirtState(pVM);
1703 else
1704 Assert(pVM->aCpus[0].cpum.s.Guest.hwvirt.enmHwvirt == CPUMHWVIRT_NONE);
1705 if (RT_FAILURE(rc))
1706 return rc;
1707
1708 /*
1709 * Initialize guest hardware virtualization state.
1710 */
1711 CPUMHWVIRT const enmHwvirt = pVM->aCpus[0].cpum.s.Guest.hwvirt.enmHwvirt;
1712 if (enmHwvirt == CPUMHWVIRT_VMX)
1713 {
1714 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1715 cpumR3InitVmxHwVirtState(&pVM->aCpus[i]);
1716 }
1717 else if (enmHwvirt == CPUMHWVIRT_SVM)
1718 {
1719 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1720 cpumR3InitSvmHwVirtState(&pVM->aCpus[i]);
1721 }
1722
1723 /*
1724 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestInfo.DefCpuId:
1725 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
1726 * of processors from (cpuid(4).eax >> 26) + 1.
1727 *
1728 * Note: this code is obsolete, but let's keep it here for reference.
1729 * Purpose is valid when we artificially cap the max std id to less than 4.
1730 *
1731 * Note: This used to be a separate function CPUMR3SetHwVirt that was called
1732 * after VMINITCOMPLETED_HM.
1733 */
1734 if (VM_IS_RAW_MODE_ENABLED(pVM))
1735 {
1736 Assert( (pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax & UINT32_C(0xffffc000)) == 0
1737 || pVM->cpum.s.aGuestCpuIdPatmStd[0].uEax < 0x4);
1738 pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax &= UINT32_C(0x00003fff);
1739 }
1740
1741 CPUMR3Reset(pVM);
1742 return VINF_SUCCESS;
1743}
1744
1745
1746/**
1747 * Applies relocations to data and code managed by this
1748 * component. This function will be called at init and
1749 * whenever the VMM need to relocate it self inside the GC.
1750 *
1751 * The CPUM will update the addresses used by the switcher.
1752 *
1753 * @param pVM The cross context VM structure.
1754 */
1755VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
1756{
1757 LogFlow(("CPUMR3Relocate\n"));
1758
1759 pVM->cpum.s.GuestInfo.paMsrRangesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paMsrRangesR3);
1760 pVM->cpum.s.GuestInfo.paCpuIdLeavesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paCpuIdLeavesR3);
1761
1762 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1763 {
1764 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1765 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Guest.pXStateR3);
1766 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Host.pXStateR3);
1767 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Hyper.pXStateR3); /** @todo remove me */
1768
1769 /* Recheck the guest DRx values in raw-mode. */
1770 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX, false);
1771 }
1772}
1773
1774
1775/**
1776 * Terminates the CPUM.
1777 *
1778 * Termination means cleaning up and freeing all resources,
1779 * the VM it self is at this point powered off or suspended.
1780 *
1781 * @returns VBox status code.
1782 * @param pVM The cross context VM structure.
1783 */
1784VMMR3DECL(int) CPUMR3Term(PVM pVM)
1785{
1786#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1787 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1788 {
1789 PVMCPU pVCpu = &pVM->aCpus[i];
1790 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1791
1792 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
1793 pVCpu->cpum.s.uMagic = 0;
1794 pCtx->dr[5] = 0;
1795 }
1796#endif
1797
1798 if (pVM->cpum.ro.GuestFeatures.fSvm)
1799 cpumR3FreeVmxHwVirtState(pVM);
1800 else if (pVM->cpum.ro.GuestFeatures.fSvm)
1801 cpumR3FreeSvmHwVirtState(pVM);
1802 return VINF_SUCCESS;
1803}
1804
1805
1806/**
1807 * Resets a virtual CPU.
1808 *
1809 * Used by CPUMR3Reset and CPU hot plugging.
1810 *
1811 * @param pVM The cross context VM structure.
1812 * @param pVCpu The cross context virtual CPU structure of the CPU that is
1813 * being reset. This may differ from the current EMT.
1814 */
1815VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
1816{
1817 /** @todo anything different for VCPU > 0? */
1818 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1819
1820 /*
1821 * Initialize everything to ZERO first.
1822 */
1823 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
1824
1825 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateR3));
1826 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateRC));
1827 memset(pCtx, 0, RT_UOFFSETOF(CPUMCTX, pXStateR0));
1828
1829 pVCpu->cpum.s.fUseFlags = fUseFlags;
1830
1831 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
1832 pCtx->eip = 0x0000fff0;
1833 pCtx->edx = 0x00000600; /* P6 processor */
1834 pCtx->eflags.Bits.u1Reserved0 = 1;
1835
1836 pCtx->cs.Sel = 0xf000;
1837 pCtx->cs.ValidSel = 0xf000;
1838 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1839 pCtx->cs.u64Base = UINT64_C(0xffff0000);
1840 pCtx->cs.u32Limit = 0x0000ffff;
1841 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
1842 pCtx->cs.Attr.n.u1Present = 1;
1843 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
1844
1845 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
1846 pCtx->ds.u32Limit = 0x0000ffff;
1847 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
1848 pCtx->ds.Attr.n.u1Present = 1;
1849 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1850
1851 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
1852 pCtx->es.u32Limit = 0x0000ffff;
1853 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
1854 pCtx->es.Attr.n.u1Present = 1;
1855 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1856
1857 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
1858 pCtx->fs.u32Limit = 0x0000ffff;
1859 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
1860 pCtx->fs.Attr.n.u1Present = 1;
1861 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1862
1863 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
1864 pCtx->gs.u32Limit = 0x0000ffff;
1865 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
1866 pCtx->gs.Attr.n.u1Present = 1;
1867 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1868
1869 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
1870 pCtx->ss.u32Limit = 0x0000ffff;
1871 pCtx->ss.Attr.n.u1Present = 1;
1872 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
1873 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1874
1875 pCtx->idtr.cbIdt = 0xffff;
1876 pCtx->gdtr.cbGdt = 0xffff;
1877
1878 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1879 pCtx->ldtr.u32Limit = 0xffff;
1880 pCtx->ldtr.Attr.n.u1Present = 1;
1881 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
1882
1883 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
1884 pCtx->tr.u32Limit = 0xffff;
1885 pCtx->tr.Attr.n.u1Present = 1;
1886 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
1887
1888 pCtx->dr[6] = X86_DR6_INIT_VAL;
1889 pCtx->dr[7] = X86_DR7_INIT_VAL;
1890
1891 PX86FXSTATE pFpuCtx = &pCtx->pXStateR3->x87; AssertReleaseMsg(RT_VALID_PTR(pFpuCtx), ("%p\n", pFpuCtx));
1892 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
1893 pFpuCtx->FCW = 0x37f;
1894
1895 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
1896 IA-32 Processor States Following Power-up, Reset, or INIT */
1897 pFpuCtx->MXCSR = 0x1F80;
1898 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
1899
1900 pCtx->aXcr[0] = XSAVE_C_X87;
1901 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr))
1902 {
1903 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
1904 as we don't know what happened before. (Bother optimize later?) */
1905 pCtx->pXStateR3->Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
1906 }
1907
1908 /*
1909 * MSRs.
1910 */
1911 /* Init PAT MSR */
1912 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
1913
1914 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
1915 * The Intel docs don't mention it. */
1916 Assert(!pCtx->msrEFER);
1917
1918 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
1919 is supposed to be here, just trying provide useful/sensible values. */
1920 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
1921 if (pRange)
1922 {
1923 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
1924 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
1925 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
1926 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
1927 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
1928 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
1929 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
1930 }
1931
1932 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
1933
1934 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
1935 * called from each EMT while we're getting called by CPUMR3Reset()
1936 * iteratively on the same thread. Fix later. */
1937#if 0 /** @todo r=bird: This we will do in TM, not here. */
1938 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
1939 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
1940#endif
1941
1942
1943 /* C-state control. Guesses. */
1944 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
1945 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
1946 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
1947 * functionality. The default value must be different due to incompatible write mask.
1948 */
1949 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
1950 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
1951 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
1952 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
1953
1954 /*
1955 * Hardware virtualization state.
1956 */
1957 pCtx->hwvirt.fGif = true;
1958 Assert(!pVM->cpum.ro.GuestFeatures.fVmx || !pVM->cpum.ro.GuestFeatures.fSvm); /* Paranoia. */
1959 if (pVM->cpum.ro.GuestFeatures.fVmx)
1960 cpumR3InitVmxHwVirtState(pVCpu);
1961 else if (pVM->cpum.ro.GuestFeatures.fSvm)
1962 cpumR3InitSvmHwVirtState(pVCpu);
1963}
1964
1965
1966/**
1967 * Resets the CPU.
1968 *
1969 * @returns VINF_SUCCESS.
1970 * @param pVM The cross context VM structure.
1971 */
1972VMMR3DECL(void) CPUMR3Reset(PVM pVM)
1973{
1974 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1975 {
1976 CPUMR3ResetCpu(pVM, &pVM->aCpus[i]);
1977
1978#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1979 PCPUMCTX pCtx = &pVM->aCpus[i].cpum.s.Guest;
1980
1981 /* Magic marker for searching in crash dumps. */
1982 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
1983 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1984 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
1985#endif
1986 }
1987}
1988
1989
1990
1991
1992/**
1993 * Pass 0 live exec callback.
1994 *
1995 * @returns VINF_SSM_DONT_CALL_AGAIN.
1996 * @param pVM The cross context VM structure.
1997 * @param pSSM The saved state handle.
1998 * @param uPass The pass (0).
1999 */
2000static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2001{
2002 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
2003 cpumR3SaveCpuId(pVM, pSSM);
2004 return VINF_SSM_DONT_CALL_AGAIN;
2005}
2006
2007
2008/**
2009 * Execute state save operation.
2010 *
2011 * @returns VBox status code.
2012 * @param pVM The cross context VM structure.
2013 * @param pSSM SSM operation handle.
2014 */
2015static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2016{
2017 /*
2018 * Save.
2019 */
2020 SSMR3PutU32(pSSM, pVM->cCpus);
2021 SSMR3PutU32(pSSM, sizeof(pVM->aCpus[0].cpum.s.GuestMsrs.msr));
2022 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2023 {
2024 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2025
2026 SSMR3PutStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
2027
2028 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2029 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2030 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
2031 if (pGstCtx->fXStateMask != 0)
2032 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr), 0, g_aCpumXSaveHdrFields, NULL);
2033 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2034 {
2035 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2036 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2037 }
2038 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2039 {
2040 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2041 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2042 }
2043 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2044 {
2045 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2046 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2047 }
2048 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2049 {
2050 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2051 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2052 }
2053 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2054 {
2055 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2056 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2057 }
2058 if (pVM->cpum.ro.GuestFeatures.fSvm)
2059 {
2060 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
2061 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
2062 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
2063 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
2064 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
2065 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2066 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
2067 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
2068 g_aSvmHwvirtHostState, NULL /* pvUser */);
2069 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
2070 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
2071 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
2072 SSMR3PutU32(pSSM, pGstCtx->hwvirt.fLocalForcedActions);
2073 SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
2074 }
2075 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
2076 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
2077 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
2078 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
2079 }
2080
2081 cpumR3SaveCpuId(pVM, pSSM);
2082 return VINF_SUCCESS;
2083}
2084
2085
2086/**
2087 * @callback_method_impl{FNSSMINTLOADPREP}
2088 */
2089static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2090{
2091 NOREF(pSSM);
2092 pVM->cpum.s.fPendingRestore = true;
2093 return VINF_SUCCESS;
2094}
2095
2096
2097/**
2098 * @callback_method_impl{FNSSMINTLOADEXEC}
2099 */
2100static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2101{
2102 int rc; /* Only for AssertRCReturn use. */
2103
2104 /*
2105 * Validate version.
2106 */
2107 if ( uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
2108 && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
2109 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
2110 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
2111 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
2112 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
2113 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
2114 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2115 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2116 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2117 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2118 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2119 {
2120 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2121 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2122 }
2123
2124 if (uPass == SSM_PASS_FINAL)
2125 {
2126 /*
2127 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2128 * really old SSM file versions.)
2129 */
2130 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2131 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2132 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2133 SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
2134
2135 /*
2136 * Figure x86 and ctx field definitions to use for older states.
2137 */
2138 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
2139 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
2140 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
2141 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2142 {
2143 paCpumCtx1Fields = g_aCpumX87FieldsV16;
2144 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
2145 }
2146 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2147 {
2148 paCpumCtx1Fields = g_aCpumX87FieldsMem;
2149 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
2150 }
2151
2152 /*
2153 * The hyper state used to preceed the CPU count. Starting with
2154 * XSAVE it was moved down till after we've got the count.
2155 */
2156 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
2157 {
2158 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2159 {
2160 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2161 X86FXSTATE Ign;
2162 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2163 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
2164 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
2165 SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper),
2166 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2167 pVCpu->cpum.s.Hyper.cr3 = uCR3;
2168 pVCpu->cpum.s.Hyper.rsp = uRSP;
2169 }
2170 }
2171
2172 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2173 {
2174 uint32_t cCpus;
2175 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2176 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2177 VERR_SSM_UNEXPECTED_DATA);
2178 }
2179 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
2180 || pVM->cCpus == 1,
2181 ("cCpus=%u\n", pVM->cCpus),
2182 VERR_SSM_UNEXPECTED_DATA);
2183
2184 uint32_t cbMsrs = 0;
2185 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2186 {
2187 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
2188 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
2189 VERR_SSM_UNEXPECTED_DATA);
2190 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
2191 VERR_SSM_UNEXPECTED_DATA);
2192 }
2193
2194 /*
2195 * Do the per-CPU restoring.
2196 */
2197 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2198 {
2199 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2200 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2201
2202 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
2203 {
2204 /*
2205 * The XSAVE saved state layout moved the hyper state down here.
2206 */
2207 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
2208 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
2209 rc = SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
2210 pVCpu->cpum.s.Hyper.cr3 = uCR3;
2211 pVCpu->cpum.s.Hyper.rsp = uRSP;
2212 AssertRCReturn(rc, rc);
2213
2214 /*
2215 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
2216 */
2217 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2218 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
2219 AssertRCReturn(rc, rc);
2220
2221 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
2222 if (pGstCtx->fXStateMask != 0)
2223 {
2224 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
2225 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
2226 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
2227 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
2228 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
2229 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2230 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2231 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2232 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2233 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2234 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2235 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2236 }
2237
2238 /* Check that the XCR0 mask is valid (invalid results in #GP). */
2239 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
2240 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
2241 {
2242 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
2243 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
2244 VERR_CPUM_INVALID_XCR0);
2245 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
2246 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2247 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2248 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2249 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2250 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2251 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2252 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2253 }
2254
2255 /* Check that the XCR1 is zero, as we don't implement it yet. */
2256 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2257
2258 /*
2259 * Restore the individual extended state components we support.
2260 */
2261 if (pGstCtx->fXStateMask != 0)
2262 {
2263 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr),
2264 0, g_aCpumXSaveHdrFields, NULL);
2265 AssertRCReturn(rc, rc);
2266 AssertLogRelMsgReturn(!(pGstCtx->pXStateR3->Hdr.bmXState & ~pGstCtx->fXStateMask),
2267 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
2268 pGstCtx->pXStateR3->Hdr.bmXState, pGstCtx->fXStateMask),
2269 VERR_CPUM_INVALID_XSAVE_HDR);
2270 }
2271 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2272 {
2273 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
2274 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2275 }
2276 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2277 {
2278 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
2279 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2280 }
2281 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2282 {
2283 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
2284 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2285 }
2286 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2287 {
2288 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
2289 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2290 }
2291 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2292 {
2293 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
2294 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2295 }
2296 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
2297 {
2298 if (pVM->cpum.ro.GuestFeatures.fSvm)
2299 {
2300 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
2301 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
2302 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
2303 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
2304 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
2305 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2306 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
2307 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
2308 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
2309 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
2310 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
2311 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
2312 SSMR3GetU32(pSSM, &pGstCtx->hwvirt.fLocalForcedActions);
2313 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
2314 }
2315 }
2316 }
2317 else
2318 {
2319 /*
2320 * Pre XSAVE saved state.
2321 */
2322 SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87),
2323 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2324 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2325 }
2326
2327 /*
2328 * Restore a couple of flags and the MSRs.
2329 */
2330 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fUseFlags);
2331 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
2332
2333 rc = VINF_SUCCESS;
2334 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2335 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
2336 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2337 {
2338 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
2339 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
2340 }
2341 AssertRCReturn(rc, rc);
2342
2343 /* REM and other may have cleared must-be-one fields in DR6 and
2344 DR7, fix these. */
2345 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
2346 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
2347 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
2348 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
2349 }
2350
2351 /* Older states does not have the internal selector register flags
2352 and valid selector value. Supply those. */
2353 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2354 {
2355 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2356 {
2357 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2358 bool const fValid = !VM_IS_RAW_MODE_ENABLED(pVM)
2359 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2360 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
2361 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
2362 if (fValid)
2363 {
2364 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2365 {
2366 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
2367 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
2368 }
2369
2370 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2371 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2372 }
2373 else
2374 {
2375 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2376 {
2377 paSelReg[iSelReg].fFlags = 0;
2378 paSelReg[iSelReg].ValidSel = 0;
2379 }
2380
2381 /* This might not be 104% correct, but I think it's close
2382 enough for all practical purposes... (REM always loaded
2383 LDTR registers.) */
2384 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2385 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2386 }
2387 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
2388 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
2389 }
2390 }
2391
2392 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
2393 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2394 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2395 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2396 pVM->aCpus[iCpu].cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2397
2398 /*
2399 * A quick sanity check.
2400 */
2401 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2402 {
2403 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2404 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2405 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2406 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2407 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2408 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2409 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2410 }
2411 }
2412
2413 pVM->cpum.s.fPendingRestore = false;
2414
2415 /*
2416 * Guest CPUIDs.
2417 */
2418 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
2419 return cpumR3LoadCpuId(pVM, pSSM, uVersion);
2420 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
2421}
2422
2423
2424/**
2425 * @callback_method_impl{FNSSMINTLOADDONE}
2426 */
2427static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
2428{
2429 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
2430 return VINF_SUCCESS;
2431
2432 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
2433 if (pVM->cpum.s.fPendingRestore)
2434 {
2435 LogRel(("CPUM: Missing state!\n"));
2436 return VERR_INTERNAL_ERROR_2;
2437 }
2438
2439 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
2440 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2441 {
2442 PVMCPU pVCpu = &pVM->aCpus[idCpu];
2443
2444 /* Notify PGM of the NXE states in case they've changed. */
2445 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
2446
2447 /* During init. this is done in CPUMR3InitCompleted(). */
2448 if (fSupportsLongMode)
2449 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
2450 }
2451 return VINF_SUCCESS;
2452}
2453
2454
2455/**
2456 * Checks if the CPUM state restore is still pending.
2457 *
2458 * @returns true / false.
2459 * @param pVM The cross context VM structure.
2460 */
2461VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
2462{
2463 return pVM->cpum.s.fPendingRestore;
2464}
2465
2466
2467/**
2468 * Formats the EFLAGS value into mnemonics.
2469 *
2470 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
2471 * @param efl The EFLAGS value.
2472 */
2473static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
2474{
2475 /*
2476 * Format the flags.
2477 */
2478 static const struct
2479 {
2480 const char *pszSet; const char *pszClear; uint32_t fFlag;
2481 } s_aFlags[] =
2482 {
2483 { "vip",NULL, X86_EFL_VIP },
2484 { "vif",NULL, X86_EFL_VIF },
2485 { "ac", NULL, X86_EFL_AC },
2486 { "vm", NULL, X86_EFL_VM },
2487 { "rf", NULL, X86_EFL_RF },
2488 { "nt", NULL, X86_EFL_NT },
2489 { "ov", "nv", X86_EFL_OF },
2490 { "dn", "up", X86_EFL_DF },
2491 { "ei", "di", X86_EFL_IF },
2492 { "tf", NULL, X86_EFL_TF },
2493 { "nt", "pl", X86_EFL_SF },
2494 { "nz", "zr", X86_EFL_ZF },
2495 { "ac", "na", X86_EFL_AF },
2496 { "po", "pe", X86_EFL_PF },
2497 { "cy", "nc", X86_EFL_CF },
2498 };
2499 char *psz = pszEFlags;
2500 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
2501 {
2502 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
2503 if (pszAdd)
2504 {
2505 strcpy(psz, pszAdd);
2506 psz += strlen(pszAdd);
2507 *psz++ = ' ';
2508 }
2509 }
2510 psz[-1] = '\0';
2511}
2512
2513
2514/**
2515 * Formats a full register dump.
2516 *
2517 * @param pVM The cross context VM structure.
2518 * @param pCtx The context to format.
2519 * @param pCtxCore The context core to format.
2520 * @param pHlp Output functions.
2521 * @param enmType The dump type.
2522 * @param pszPrefix Register name prefix.
2523 */
2524static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
2525 const char *pszPrefix)
2526{
2527 NOREF(pVM);
2528
2529 /*
2530 * Format the EFLAGS.
2531 */
2532 uint32_t efl = pCtxCore->eflags.u32;
2533 char szEFlags[80];
2534 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2535
2536 /*
2537 * Format the registers.
2538 */
2539 switch (enmType)
2540 {
2541 case CPUMDUMPTYPE_TERSE:
2542 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2543 pHlp->pfnPrintf(pHlp,
2544 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2545 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2546 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2547 "%sr14=%016RX64 %sr15=%016RX64\n"
2548 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2549 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2550 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2551 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2552 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2553 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2554 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2555 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
2556 else
2557 pHlp->pfnPrintf(pHlp,
2558 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2559 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2560 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2561 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2562 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2563 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2564 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
2565 break;
2566
2567 case CPUMDUMPTYPE_DEFAULT:
2568 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2569 pHlp->pfnPrintf(pHlp,
2570 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2571 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2572 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2573 "%sr14=%016RX64 %sr15=%016RX64\n"
2574 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2575 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2576 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
2577 ,
2578 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2579 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2580 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2581 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2582 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2583 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
2584 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2585 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
2586 else
2587 pHlp->pfnPrintf(pHlp,
2588 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2589 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2590 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2591 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
2592 ,
2593 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2594 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2595 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2596 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
2597 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2598 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
2599 break;
2600
2601 case CPUMDUMPTYPE_VERBOSE:
2602 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2603 pHlp->pfnPrintf(pHlp,
2604 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2605 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2606 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2607 "%sr14=%016RX64 %sr15=%016RX64\n"
2608 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2609 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2610 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2611 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2612 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2613 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2614 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2615 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
2616 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
2617 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
2618 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2619 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2620 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2621 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
2622 ,
2623 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2624 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2625 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2626 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2627 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
2628 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
2629 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
2630 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
2631 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
2632 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
2633 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2634 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2635 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2636 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2637 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2638 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2639 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2640 else
2641 pHlp->pfnPrintf(pHlp,
2642 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2643 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2644 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
2645 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
2646 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
2647 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
2648 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
2649 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
2650 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2651 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2652 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2653 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2654 ,
2655 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2656 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2657 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
2658 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2659 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
2660 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2661 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
2662 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2663 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2664 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2665 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2666 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2667
2668 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
2669 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
2670 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
2671 if (pCtx->CTX_SUFF(pXState))
2672 {
2673 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
2674 pHlp->pfnPrintf(pHlp,
2675 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
2676 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
2677 ,
2678 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
2679 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
2680 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
2681 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
2682 );
2683 /*
2684 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
2685 * not (FP)R0-7 as Intel SDM suggests.
2686 */
2687 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
2688 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
2689 {
2690 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
2691 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
2692 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
2693 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
2694 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
2695 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
2696 iExponent -= 16383; /* subtract bias */
2697 /** @todo This isn't entirenly correct and needs more work! */
2698 pHlp->pfnPrintf(pHlp,
2699 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
2700 pszPrefix, iST, pszPrefix, iFPR,
2701 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
2702 uTag, chSign, iInteger, u64Fraction, iExponent);
2703 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
2704 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
2705 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
2706 else
2707 pHlp->pfnPrintf(pHlp, "\n");
2708 }
2709
2710 /* XMM/YMM/ZMM registers. */
2711 if (pCtx->fXStateMask & XSAVE_C_YMM)
2712 {
2713 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2714 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
2715 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2716 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2717 pszPrefix, i, i < 10 ? " " : "",
2718 pYmmHiCtx->aYmmHi[i].au32[3],
2719 pYmmHiCtx->aYmmHi[i].au32[2],
2720 pYmmHiCtx->aYmmHi[i].au32[1],
2721 pYmmHiCtx->aYmmHi[i].au32[0],
2722 pFpuCtx->aXMM[i].au32[3],
2723 pFpuCtx->aXMM[i].au32[2],
2724 pFpuCtx->aXMM[i].au32[1],
2725 pFpuCtx->aXMM[i].au32[0]);
2726 else
2727 {
2728 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2729 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2730 pHlp->pfnPrintf(pHlp,
2731 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2732 pszPrefix, i, i < 10 ? " " : "",
2733 pZmmHi256->aHi256Regs[i].au32[7],
2734 pZmmHi256->aHi256Regs[i].au32[6],
2735 pZmmHi256->aHi256Regs[i].au32[5],
2736 pZmmHi256->aHi256Regs[i].au32[4],
2737 pZmmHi256->aHi256Regs[i].au32[3],
2738 pZmmHi256->aHi256Regs[i].au32[2],
2739 pZmmHi256->aHi256Regs[i].au32[1],
2740 pZmmHi256->aHi256Regs[i].au32[0],
2741 pYmmHiCtx->aYmmHi[i].au32[3],
2742 pYmmHiCtx->aYmmHi[i].au32[2],
2743 pYmmHiCtx->aYmmHi[i].au32[1],
2744 pYmmHiCtx->aYmmHi[i].au32[0],
2745 pFpuCtx->aXMM[i].au32[3],
2746 pFpuCtx->aXMM[i].au32[2],
2747 pFpuCtx->aXMM[i].au32[1],
2748 pFpuCtx->aXMM[i].au32[0]);
2749
2750 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2751 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
2752 pHlp->pfnPrintf(pHlp,
2753 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2754 pszPrefix, i + 16,
2755 pZmm16Hi->aRegs[i].au32[15],
2756 pZmm16Hi->aRegs[i].au32[14],
2757 pZmm16Hi->aRegs[i].au32[13],
2758 pZmm16Hi->aRegs[i].au32[12],
2759 pZmm16Hi->aRegs[i].au32[11],
2760 pZmm16Hi->aRegs[i].au32[10],
2761 pZmm16Hi->aRegs[i].au32[9],
2762 pZmm16Hi->aRegs[i].au32[8],
2763 pZmm16Hi->aRegs[i].au32[7],
2764 pZmm16Hi->aRegs[i].au32[6],
2765 pZmm16Hi->aRegs[i].au32[5],
2766 pZmm16Hi->aRegs[i].au32[4],
2767 pZmm16Hi->aRegs[i].au32[3],
2768 pZmm16Hi->aRegs[i].au32[2],
2769 pZmm16Hi->aRegs[i].au32[1],
2770 pZmm16Hi->aRegs[i].au32[0]);
2771 }
2772 }
2773 else
2774 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2775 pHlp->pfnPrintf(pHlp,
2776 i & 1
2777 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
2778 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
2779 pszPrefix, i, i < 10 ? " " : "",
2780 pFpuCtx->aXMM[i].au32[3],
2781 pFpuCtx->aXMM[i].au32[2],
2782 pFpuCtx->aXMM[i].au32[1],
2783 pFpuCtx->aXMM[i].au32[0]);
2784
2785 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
2786 {
2787 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
2788 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
2789 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
2790 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
2791 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
2792 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
2793 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
2794 }
2795
2796 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
2797 {
2798 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2799 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
2800 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
2801 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
2802 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
2803 }
2804
2805 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
2806 {
2807 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2808 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
2809 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
2810 }
2811
2812 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
2813 if (pFpuCtx->au32RsrvdRest[i])
2814 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
2815 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) );
2816 }
2817
2818 pHlp->pfnPrintf(pHlp,
2819 "%sEFER =%016RX64\n"
2820 "%sPAT =%016RX64\n"
2821 "%sSTAR =%016RX64\n"
2822 "%sCSTAR =%016RX64\n"
2823 "%sLSTAR =%016RX64\n"
2824 "%sSFMASK =%016RX64\n"
2825 "%sKERNELGSBASE =%016RX64\n",
2826 pszPrefix, pCtx->msrEFER,
2827 pszPrefix, pCtx->msrPAT,
2828 pszPrefix, pCtx->msrSTAR,
2829 pszPrefix, pCtx->msrCSTAR,
2830 pszPrefix, pCtx->msrLSTAR,
2831 pszPrefix, pCtx->msrSFMASK,
2832 pszPrefix, pCtx->msrKERNELGSBASE);
2833 break;
2834 }
2835}
2836
2837
2838/**
2839 * Display all cpu states and any other cpum info.
2840 *
2841 * @param pVM The cross context VM structure.
2842 * @param pHlp The info helper functions.
2843 * @param pszArgs Arguments, ignored.
2844 */
2845static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2846{
2847 cpumR3InfoGuest(pVM, pHlp, pszArgs);
2848 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
2849 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
2850 cpumR3InfoHyper(pVM, pHlp, pszArgs);
2851 cpumR3InfoHost(pVM, pHlp, pszArgs);
2852}
2853
2854
2855/**
2856 * Parses the info argument.
2857 *
2858 * The argument starts with 'verbose', 'terse' or 'default' and then
2859 * continues with the comment string.
2860 *
2861 * @param pszArgs The pointer to the argument string.
2862 * @param penmType Where to store the dump type request.
2863 * @param ppszComment Where to store the pointer to the comment string.
2864 */
2865static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
2866{
2867 if (!pszArgs)
2868 {
2869 *penmType = CPUMDUMPTYPE_DEFAULT;
2870 *ppszComment = "";
2871 }
2872 else
2873 {
2874 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
2875 {
2876 pszArgs += 7;
2877 *penmType = CPUMDUMPTYPE_VERBOSE;
2878 }
2879 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
2880 {
2881 pszArgs += 5;
2882 *penmType = CPUMDUMPTYPE_TERSE;
2883 }
2884 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
2885 {
2886 pszArgs += 7;
2887 *penmType = CPUMDUMPTYPE_DEFAULT;
2888 }
2889 else
2890 *penmType = CPUMDUMPTYPE_DEFAULT;
2891 *ppszComment = RTStrStripL(pszArgs);
2892 }
2893}
2894
2895
2896/**
2897 * Display the guest cpu state.
2898 *
2899 * @param pVM The cross context VM structure.
2900 * @param pHlp The info helper functions.
2901 * @param pszArgs Arguments.
2902 */
2903static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2904{
2905 CPUMDUMPTYPE enmType;
2906 const char *pszComment;
2907 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2908
2909 PVMCPU pVCpu = VMMGetCpu(pVM);
2910 if (!pVCpu)
2911 pVCpu = &pVM->aCpus[0];
2912
2913 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
2914
2915 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2916 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
2917}
2918
2919
2920/**
2921 * Displays an SVM VMCB control area.
2922 *
2923 * @param pHlp The info helper functions.
2924 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
2925 * @param pszPrefix Caller specified string prefix.
2926 */
2927static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
2928{
2929 AssertReturnVoid(pHlp);
2930 AssertReturnVoid(pVmcbCtrl);
2931
2932 pHlp->pfnPrintf(pHlp, "%su16InterceptRdCRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
2933 pHlp->pfnPrintf(pHlp, "%su16InterceptWrCRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
2934 pHlp->pfnPrintf(pHlp, "%su16InterceptRdDRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
2935 pHlp->pfnPrintf(pHlp, "%su16InterceptWrDRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
2936 pHlp->pfnPrintf(pHlp, "%su32InterceptXcpt = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
2937 pHlp->pfnPrintf(pHlp, "%su64InterceptCtrl = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
2938 pHlp->pfnPrintf(pHlp, "%su16PauseFilterThreshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
2939 pHlp->pfnPrintf(pHlp, "%su16PauseFilterCount = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
2940 pHlp->pfnPrintf(pHlp, "%su64IOPMPhysAddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
2941 pHlp->pfnPrintf(pHlp, "%su64MSRPMPhysAddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
2942 pHlp->pfnPrintf(pHlp, "%su64TSCOffset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
2943 pHlp->pfnPrintf(pHlp, "%sTLBCtrl\n", pszPrefix);
2944 pHlp->pfnPrintf(pHlp, "%s u32ASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
2945 pHlp->pfnPrintf(pHlp, "%s u8TLBFlush = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
2946 pHlp->pfnPrintf(pHlp, "%sIntCtrl\n", pszPrefix);
2947 pHlp->pfnPrintf(pHlp, "%s u8VTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
2948 pHlp->pfnPrintf(pHlp, "%s u1VIrqPending = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
2949 pHlp->pfnPrintf(pHlp, "%s u1VGif = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
2950 pHlp->pfnPrintf(pHlp, "%s u4VIntrPrio = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
2951 pHlp->pfnPrintf(pHlp, "%s u1IgnoreTPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
2952 pHlp->pfnPrintf(pHlp, "%s u1VIntrMasking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
2953 pHlp->pfnPrintf(pHlp, "%s u1VGifEnable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
2954 pHlp->pfnPrintf(pHlp, "%s u1AvicEnable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
2955 pHlp->pfnPrintf(pHlp, "%s u8VIntrVector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
2956 pHlp->pfnPrintf(pHlp, "%sIntShadow\n", pszPrefix);
2957 pHlp->pfnPrintf(pHlp, "%s u1IntShadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
2958 pHlp->pfnPrintf(pHlp, "%s u1GuestIntMask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
2959 pHlp->pfnPrintf(pHlp, "%su64ExitCode = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
2960 pHlp->pfnPrintf(pHlp, "%su64ExitInfo1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
2961 pHlp->pfnPrintf(pHlp, "%su64ExitInfo2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
2962 pHlp->pfnPrintf(pHlp, "%sExitIntInfo\n", pszPrefix);
2963 pHlp->pfnPrintf(pHlp, "%s u8Vector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
2964 pHlp->pfnPrintf(pHlp, "%s u3Type = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
2965 pHlp->pfnPrintf(pHlp, "%s u1ErrorCodeValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
2966 pHlp->pfnPrintf(pHlp, "%s u1Valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
2967 pHlp->pfnPrintf(pHlp, "%s u32ErrorCode = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
2968 pHlp->pfnPrintf(pHlp, "%sNestedPaging and SEV\n", pszPrefix);
2969 pHlp->pfnPrintf(pHlp, "%s u1NestedPaging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
2970 pHlp->pfnPrintf(pHlp, "%s u1Sev = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
2971 pHlp->pfnPrintf(pHlp, "%s u1SevEs = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
2972 pHlp->pfnPrintf(pHlp, "%sAvicBar\n", pszPrefix);
2973 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
2974 pHlp->pfnPrintf(pHlp, "%sEventInject\n", pszPrefix);
2975 pHlp->pfnPrintf(pHlp, "%s EventInject\n", pszPrefix);
2976 pHlp->pfnPrintf(pHlp, "%s u8Vector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
2977 pHlp->pfnPrintf(pHlp, "%s u3Type = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
2978 pHlp->pfnPrintf(pHlp, "%s u1ErrorCodeValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
2979 pHlp->pfnPrintf(pHlp, "%s u1Valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
2980 pHlp->pfnPrintf(pHlp, "%s u32ErrorCode = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
2981 pHlp->pfnPrintf(pHlp, "%su64NestedPagingCR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
2982 pHlp->pfnPrintf(pHlp, "%sLBR virtualization\n", pszPrefix);
2983 pHlp->pfnPrintf(pHlp, "%s u1LbrVirt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
2984 pHlp->pfnPrintf(pHlp, "%s u1VirtVmsaveVmload = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
2985 pHlp->pfnPrintf(pHlp, "%su32VmcbCleanBits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
2986 pHlp->pfnPrintf(pHlp, "%su64NextRIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
2987 pHlp->pfnPrintf(pHlp, "%scbInstrFetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
2988 pHlp->pfnPrintf(pHlp, "%sabInstr = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
2989 pHlp->pfnPrintf(pHlp, "%sAvicBackingPagePtr\n", pszPrefix);
2990 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
2991 pHlp->pfnPrintf(pHlp, "%sAvicLogicalTablePtr\n", pszPrefix);
2992 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
2993 pHlp->pfnPrintf(pHlp, "%sAvicPhysicalTablePtr\n", pszPrefix);
2994 pHlp->pfnPrintf(pHlp, "%s u8LastGuestCoreId = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
2995 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
2996}
2997
2998
2999/**
3000 * Helper for dumping the SVM VMCB selector registers.
3001 *
3002 * @param pHlp The info helper functions.
3003 * @param pSel Pointer to the SVM selector register.
3004 * @param pszName Name of the selector.
3005 * @param pszPrefix Caller specified string prefix.
3006 */
3007DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
3008{
3009 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
3010 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
3011 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
3012}
3013
3014
3015/**
3016 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
3017 *
3018 * @param pHlp The info helper functions.
3019 * @param pXdtr Pointer to the descriptor table register.
3020 * @param pszName Name of the descriptor table register.
3021 * @param pszPrefix Caller specified string prefix.
3022 */
3023DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
3024{
3025 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
3026 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
3027}
3028
3029
3030/**
3031 * Displays an SVM VMCB state-save area.
3032 *
3033 * @param pHlp The info helper functions.
3034 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
3035 * @param pszPrefix Caller specified string prefix.
3036 */
3037static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
3038{
3039 AssertReturnVoid(pHlp);
3040 AssertReturnVoid(pVmcbStateSave);
3041
3042 char szEFlags[80];
3043 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
3044
3045 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
3046 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
3047 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
3048 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
3049 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
3050 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
3051 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
3052 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
3053 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
3054 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
3055 pHlp->pfnPrintf(pHlp, "%su8CPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
3056 pHlp->pfnPrintf(pHlp, "%su64EFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
3057 pHlp->pfnPrintf(pHlp, "%su64CR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
3058 pHlp->pfnPrintf(pHlp, "%su64CR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
3059 pHlp->pfnPrintf(pHlp, "%su64CR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
3060 pHlp->pfnPrintf(pHlp, "%su64DR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
3061 pHlp->pfnPrintf(pHlp, "%su64DR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
3062 pHlp->pfnPrintf(pHlp, "%su64RFlags = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
3063 pHlp->pfnPrintf(pHlp, "%su64RIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
3064 pHlp->pfnPrintf(pHlp, "%su64RSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
3065 pHlp->pfnPrintf(pHlp, "%su64RAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
3066 pHlp->pfnPrintf(pHlp, "%su64STAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
3067 pHlp->pfnPrintf(pHlp, "%su64LSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
3068 pHlp->pfnPrintf(pHlp, "%su64CSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
3069 pHlp->pfnPrintf(pHlp, "%su64SFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
3070 pHlp->pfnPrintf(pHlp, "%su64KernelGSBase = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
3071 pHlp->pfnPrintf(pHlp, "%su64SysEnterCS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
3072 pHlp->pfnPrintf(pHlp, "%su64SysEnterEIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
3073 pHlp->pfnPrintf(pHlp, "%su64SysEnterESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
3074 pHlp->pfnPrintf(pHlp, "%su64CR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
3075 pHlp->pfnPrintf(pHlp, "%su64PAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
3076 pHlp->pfnPrintf(pHlp, "%su64DBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
3077 pHlp->pfnPrintf(pHlp, "%su64BR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
3078 pHlp->pfnPrintf(pHlp, "%su64BR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
3079 pHlp->pfnPrintf(pHlp, "%su64LASTEXCPFROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
3080 pHlp->pfnPrintf(pHlp, "%su64LASTEXCPTO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
3081}
3082
3083
3084/**
3085 * Display the guest's hardware-virtualization cpu state.
3086 *
3087 * @param pVM The cross context VM structure.
3088 * @param pHlp The info helper functions.
3089 * @param pszArgs Arguments, ignored.
3090 */
3091static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3092{
3093 RT_NOREF(pszArgs);
3094
3095 PVMCPU pVCpu = VMMGetCpu(pVM);
3096 if (!pVCpu)
3097 pVCpu = &pVM->aCpus[0];
3098
3099 /*
3100 * Figure out what to dump.
3101 *
3102 * In the future we may need to dump everything whether or not we're actively in nested-guest mode
3103 * or not, hence the reason why we use a mask to determine what needs dumping. Currently, we only
3104 * dump hwvirt. state when the guest CPU is executing a nested-guest.
3105 */
3106 /** @todo perhaps make this configurable through pszArgs, depending on how much
3107 * noise we wish to accept when nested hwvirt. isn't used. */
3108#define CPUMHWVIRTDUMP_NONE (0)
3109#define CPUMHWVIRTDUMP_SVM RT_BIT(0)
3110#define CPUMHWVIRTDUMP_VMX RT_BIT(1)
3111#define CPUMHWVIRTDUMP_COMMON RT_BIT(2)
3112#define CPUMHWVIRTDUMP_LAST CPUMHWVIRTDUMP_VMX
3113
3114 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3115 static const char *const s_aHwvirtModes[] = { "No/inactive", "SVM", "VMX", "Common" };
3116 bool const fSvm = pVM->cpum.ro.GuestFeatures.fSvm;
3117 bool const fVmx = pVM->cpum.ro.GuestFeatures.fVmx;
3118 uint8_t const idxHwvirtState = fSvm ? CPUMHWVIRTDUMP_SVM : (fVmx ? CPUMHWVIRTDUMP_VMX : CPUMHWVIRTDUMP_NONE);
3119 AssertCompile(CPUMHWVIRTDUMP_LAST <= RT_ELEMENTS(s_aHwvirtModes));
3120 Assert(idxHwvirtState < RT_ELEMENTS(s_aHwvirtModes));
3121 const char *pcszHwvirtMode = s_aHwvirtModes[idxHwvirtState];
3122 uint32_t fDumpState = idxHwvirtState | CPUMHWVIRTDUMP_COMMON;
3123
3124 /*
3125 * Dump it.
3126 */
3127 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
3128
3129 if (fDumpState & CPUMHWVIRTDUMP_COMMON)
3130 pHlp->pfnPrintf(pHlp, "fLocalForcedActions = %#RX32\n", pCtx->hwvirt.fLocalForcedActions);
3131
3132 pHlp->pfnPrintf(pHlp, "%s hwvirt state%s\n", pcszHwvirtMode, (fDumpState & (CPUMHWVIRTDUMP_SVM | CPUMHWVIRTDUMP_VMX)) ?
3133 ":" : "");
3134 if (fDumpState & CPUMHWVIRTDUMP_SVM)
3135 {
3136 pHlp->pfnPrintf(pHlp, " fGif = %RTbool\n", pCtx->hwvirt.fGif);
3137
3138 char szEFlags[80];
3139 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
3140 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
3141 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
3142 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
3143 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.pVmcbR3->ctrl, " " /* pszPrefix */);
3144 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
3145 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.pVmcbR3->guest, " " /* pszPrefix */);
3146 pHlp->pfnPrintf(pHlp, " HostState:\n");
3147 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
3148 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
3149 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
3150 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
3151 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
3152 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
3153 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
3154 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
3155 PCPUMSELREG pSel = &pCtx->hwvirt.svm.HostState.es;
3156 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3157 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
3158 pSel = &pCtx->hwvirt.svm.HostState.cs;
3159 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3160 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
3161 pSel = &pCtx->hwvirt.svm.HostState.ss;
3162 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3163 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
3164 pSel = &pCtx->hwvirt.svm.HostState.ds;
3165 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3166 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
3167 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
3168 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
3169 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
3170 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
3171 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
3172 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
3173 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
3174 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR3 = %p\n", pCtx->hwvirt.svm.pvMsrBitmapR3);
3175 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvMsrBitmapR0);
3176 pHlp->pfnPrintf(pHlp, " pvIoBitmapR3 = %p\n", pCtx->hwvirt.svm.pvIoBitmapR3);
3177 pHlp->pfnPrintf(pHlp, " pvIoBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvIoBitmapR0);
3178 }
3179
3180 if (fDumpState & CPUMHWVIRTDUMP_VMX)
3181 {
3182 pHlp->pfnPrintf(pHlp, " GCPhysVmxon = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmxon);
3183 pHlp->pfnPrintf(pHlp, " GCPhysVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmcs);
3184 pHlp->pfnPrintf(pHlp, " GCPhysShadowVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysShadowVmcs);
3185 pHlp->pfnPrintf(pHlp, " enmDiag = %u (%s)\n", pCtx->hwvirt.vmx.enmDiag, HMVmxGetDiagDesc(pCtx->hwvirt.vmx.enmDiag));
3186 pHlp->pfnPrintf(pHlp, " enmAbort = %u (%s)\n", pCtx->hwvirt.vmx.enmAbort, HMVmxGetAbortDesc(pCtx->hwvirt.vmx.enmAbort));
3187 pHlp->pfnPrintf(pHlp, " uAbortAux = %u (%#x)\n", pCtx->hwvirt.vmx.uAbortAux, pCtx->hwvirt.vmx.uAbortAux);
3188 pHlp->pfnPrintf(pHlp, " fInVmxRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxRootMode);
3189 pHlp->pfnPrintf(pHlp, " fInVmxNonRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxNonRootMode);
3190 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %RTbool\n", pCtx->hwvirt.vmx.fInterceptEvents);
3191 pHlp->pfnPrintf(pHlp, " uFirstPauseLoopTick = %RX64\n", pCtx->hwvirt.vmx.uFirstPauseLoopTick);
3192 pHlp->pfnPrintf(pHlp, " uPrevPauseTick = %RX64\n", pCtx->hwvirt.vmx.uPrevPauseTick);
3193
3194 /** @todo NSTVMX: Dump remaining/new fields. */
3195 }
3196
3197#undef CPUMHWVIRTDUMP_NONE
3198#undef CPUMHWVIRTDUMP_COMMON
3199#undef CPUMHWVIRTDUMP_SVM
3200#undef CPUMHWVIRTDUMP_VMX
3201#undef CPUMHWVIRTDUMP_LAST
3202#undef CPUMHWVIRTDUMP_ALL
3203}
3204
3205/**
3206 * Display the current guest instruction
3207 *
3208 * @param pVM The cross context VM structure.
3209 * @param pHlp The info helper functions.
3210 * @param pszArgs Arguments, ignored.
3211 */
3212static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3213{
3214 NOREF(pszArgs);
3215
3216 PVMCPU pVCpu = VMMGetCpu(pVM);
3217 if (!pVCpu)
3218 pVCpu = &pVM->aCpus[0];
3219
3220 char szInstruction[256];
3221 szInstruction[0] = '\0';
3222 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
3223 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
3224}
3225
3226
3227/**
3228 * Display the hypervisor cpu state.
3229 *
3230 * @param pVM The cross context VM structure.
3231 * @param pHlp The info helper functions.
3232 * @param pszArgs Arguments, ignored.
3233 */
3234static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3235{
3236 PVMCPU pVCpu = VMMGetCpu(pVM);
3237 if (!pVCpu)
3238 pVCpu = &pVM->aCpus[0];
3239
3240 CPUMDUMPTYPE enmType;
3241 const char *pszComment;
3242 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3243 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
3244 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper), pHlp, enmType, ".");
3245 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
3246}
3247
3248
3249/**
3250 * Display the host cpu state.
3251 *
3252 * @param pVM The cross context VM structure.
3253 * @param pHlp The info helper functions.
3254 * @param pszArgs Arguments, ignored.
3255 */
3256static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3257{
3258 CPUMDUMPTYPE enmType;
3259 const char *pszComment;
3260 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3261 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
3262
3263 PVMCPU pVCpu = VMMGetCpu(pVM);
3264 if (!pVCpu)
3265 pVCpu = &pVM->aCpus[0];
3266 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
3267
3268 /*
3269 * Format the EFLAGS.
3270 */
3271#if HC_ARCH_BITS == 32
3272 uint32_t efl = pCtx->eflags.u32;
3273#else
3274 uint64_t efl = pCtx->rflags;
3275#endif
3276 char szEFlags[80];
3277 cpumR3InfoFormatFlags(&szEFlags[0], efl);
3278
3279 /*
3280 * Format the registers.
3281 */
3282#if HC_ARCH_BITS == 32
3283 pHlp->pfnPrintf(pHlp,
3284 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
3285 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
3286 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
3287 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
3288 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
3289 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
3290 ,
3291 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
3292 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
3293 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
3294 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
3295 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
3296 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->ldtr,
3297 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3298#else
3299 pHlp->pfnPrintf(pHlp,
3300 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
3301 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
3302 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
3303 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
3304 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
3305 "r14=%016RX64 r15=%016RX64\n"
3306 "iopl=%d %31s\n"
3307 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
3308 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
3309 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
3310 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
3311 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
3312 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
3313 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
3314 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
3315 ,
3316 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
3317 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
3318 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
3319 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
3320 pCtx->r11, pCtx->r12, pCtx->r13,
3321 pCtx->r14, pCtx->r15,
3322 X86_EFL_GET_IOPL(efl), szEFlags,
3323 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
3324 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
3325 pCtx->cr4, pCtx->ldtr, pCtx->tr,
3326 pCtx->dr0, pCtx->dr1, pCtx->dr2,
3327 pCtx->dr3, pCtx->dr6, pCtx->dr7,
3328 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
3329 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
3330 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
3331#endif
3332}
3333
3334/**
3335 * Structure used when disassembling and instructions in DBGF.
3336 * This is used so the reader function can get the stuff it needs.
3337 */
3338typedef struct CPUMDISASSTATE
3339{
3340 /** Pointer to the CPU structure. */
3341 PDISCPUSTATE pCpu;
3342 /** Pointer to the VM. */
3343 PVM pVM;
3344 /** Pointer to the VMCPU. */
3345 PVMCPU pVCpu;
3346 /** Pointer to the first byte in the segment. */
3347 RTGCUINTPTR GCPtrSegBase;
3348 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
3349 RTGCUINTPTR GCPtrSegEnd;
3350 /** The size of the segment minus 1. */
3351 RTGCUINTPTR cbSegLimit;
3352 /** Pointer to the current page - R3 Ptr. */
3353 void const *pvPageR3;
3354 /** Pointer to the current page - GC Ptr. */
3355 RTGCPTR pvPageGC;
3356 /** The lock information that PGMPhysReleasePageMappingLock needs. */
3357 PGMPAGEMAPLOCK PageMapLock;
3358 /** Whether the PageMapLock is valid or not. */
3359 bool fLocked;
3360 /** 64 bits mode or not. */
3361 bool f64Bits;
3362} CPUMDISASSTATE, *PCPUMDISASSTATE;
3363
3364
3365/**
3366 * @callback_method_impl{FNDISREADBYTES}
3367 */
3368static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
3369{
3370 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
3371 for (;;)
3372 {
3373 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
3374
3375 /*
3376 * Need to update the page translation?
3377 */
3378 if ( !pState->pvPageR3
3379 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
3380 {
3381 int rc = VINF_SUCCESS;
3382
3383 /* translate the address */
3384 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
3385 if ( VM_IS_RAW_MODE_ENABLED(pState->pVM)
3386 && MMHyperIsInsideArea(pState->pVM, pState->pvPageGC))
3387 {
3388 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
3389 if (!pState->pvPageR3)
3390 rc = VERR_INVALID_POINTER;
3391 }
3392 else
3393 {
3394 /* Release mapping lock previously acquired. */
3395 if (pState->fLocked)
3396 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
3397 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
3398 pState->fLocked = RT_SUCCESS_NP(rc);
3399 }
3400 if (RT_FAILURE(rc))
3401 {
3402 pState->pvPageR3 = NULL;
3403 return rc;
3404 }
3405 }
3406
3407 /*
3408 * Check the segment limit.
3409 */
3410 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
3411 return VERR_OUT_OF_SELECTOR_BOUNDS;
3412
3413 /*
3414 * Calc how much we can read.
3415 */
3416 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
3417 if (!pState->f64Bits)
3418 {
3419 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
3420 if (cb > cbSeg && cbSeg)
3421 cb = cbSeg;
3422 }
3423 if (cb > cbMaxRead)
3424 cb = cbMaxRead;
3425
3426 /*
3427 * Read and advance or exit.
3428 */
3429 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
3430 offInstr += (uint8_t)cb;
3431 if (cb >= cbMinRead)
3432 {
3433 pDis->cbCachedInstr = offInstr;
3434 return VINF_SUCCESS;
3435 }
3436 cbMinRead -= (uint8_t)cb;
3437 cbMaxRead -= (uint8_t)cb;
3438 }
3439}
3440
3441
3442/**
3443 * Disassemble an instruction and return the information in the provided structure.
3444 *
3445 * @returns VBox status code.
3446 * @param pVM The cross context VM structure.
3447 * @param pVCpu The cross context virtual CPU structure.
3448 * @param pCtx Pointer to the guest CPU context.
3449 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
3450 * @param pCpu Disassembly state.
3451 * @param pszPrefix String prefix for logging (debug only).
3452 *
3453 */
3454VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
3455 const char *pszPrefix)
3456{
3457 CPUMDISASSTATE State;
3458 int rc;
3459
3460 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
3461 State.pCpu = pCpu;
3462 State.pvPageGC = 0;
3463 State.pvPageR3 = NULL;
3464 State.pVM = pVM;
3465 State.pVCpu = pVCpu;
3466 State.fLocked = false;
3467 State.f64Bits = false;
3468
3469 /*
3470 * Get selector information.
3471 */
3472 DISCPUMODE enmDisCpuMode;
3473 if ( (pCtx->cr0 & X86_CR0_PE)
3474 && pCtx->eflags.Bits.u1VM == 0)
3475 {
3476 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
3477 {
3478# ifdef VBOX_WITH_RAW_MODE_NOT_R0
3479 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, &pCtx->cs);
3480# endif
3481 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
3482 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
3483 }
3484 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
3485 State.GCPtrSegBase = pCtx->cs.u64Base;
3486 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
3487 State.cbSegLimit = pCtx->cs.u32Limit;
3488 enmDisCpuMode = (State.f64Bits)
3489 ? DISCPUMODE_64BIT
3490 : pCtx->cs.Attr.n.u1DefBig
3491 ? DISCPUMODE_32BIT
3492 : DISCPUMODE_16BIT;
3493 }
3494 else
3495 {
3496 /* real or V86 mode */
3497 enmDisCpuMode = DISCPUMODE_16BIT;
3498 State.GCPtrSegBase = pCtx->cs.Sel * 16;
3499 State.GCPtrSegEnd = 0xFFFFFFFF;
3500 State.cbSegLimit = 0xFFFFFFFF;
3501 }
3502
3503 /*
3504 * Disassemble the instruction.
3505 */
3506 uint32_t cbInstr;
3507#ifndef LOG_ENABLED
3508 RT_NOREF_PV(pszPrefix);
3509 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
3510 if (RT_SUCCESS(rc))
3511 {
3512#else
3513 char szOutput[160];
3514 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
3515 pCpu, &cbInstr, szOutput, sizeof(szOutput));
3516 if (RT_SUCCESS(rc))
3517 {
3518 /* log it */
3519 if (pszPrefix)
3520 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
3521 else
3522 Log(("%s", szOutput));
3523#endif
3524 rc = VINF_SUCCESS;
3525 }
3526 else
3527 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
3528
3529 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
3530 if (State.fLocked)
3531 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
3532
3533 return rc;
3534}
3535
3536
3537
3538/**
3539 * API for controlling a few of the CPU features found in CR4.
3540 *
3541 * Currently only X86_CR4_TSD is accepted as input.
3542 *
3543 * @returns VBox status code.
3544 *
3545 * @param pVM The cross context VM structure.
3546 * @param fOr The CR4 OR mask.
3547 * @param fAnd The CR4 AND mask.
3548 */
3549VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
3550{
3551 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
3552 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
3553
3554 pVM->cpum.s.CR4.OrMask &= fAnd;
3555 pVM->cpum.s.CR4.OrMask |= fOr;
3556
3557 return VINF_SUCCESS;
3558}
3559
3560
3561/**
3562 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
3563 *
3564 * Only REM should ever call this function!
3565 *
3566 * @returns The changed flags.
3567 * @param pVCpu The cross context virtual CPU structure.
3568 * @param puCpl Where to return the current privilege level (CPL).
3569 */
3570VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
3571{
3572 Assert(!pVCpu->cpum.s.fRawEntered);
3573 Assert(!pVCpu->cpum.s.fRemEntered);
3574
3575 /*
3576 * Get the CPL first.
3577 */
3578 *puCpl = CPUMGetGuestCPL(pVCpu);
3579
3580 /*
3581 * Get and reset the flags.
3582 */
3583 uint32_t fFlags = pVCpu->cpum.s.fChanged;
3584 pVCpu->cpum.s.fChanged = 0;
3585
3586 /** @todo change the switcher to use the fChanged flags. */
3587 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
3588 {
3589 fFlags |= CPUM_CHANGED_FPU_REM;
3590 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
3591 }
3592
3593 pVCpu->cpum.s.fRemEntered = true;
3594 return fFlags;
3595}
3596
3597
3598/**
3599 * Leaves REM.
3600 *
3601 * @param pVCpu The cross context virtual CPU structure.
3602 * @param fNoOutOfSyncSels This is @c false if there are out of sync
3603 * registers.
3604 */
3605VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
3606{
3607 Assert(!pVCpu->cpum.s.fRawEntered);
3608 Assert(pVCpu->cpum.s.fRemEntered);
3609
3610 RT_NOREF_PV(fNoOutOfSyncSels);
3611
3612 pVCpu->cpum.s.fRemEntered = false;
3613}
3614
3615
3616/**
3617 * Called when the ring-3 init phase completes.
3618 *
3619 * @returns VBox status code.
3620 * @param pVM The cross context VM structure.
3621 * @param enmWhat Which init phase.
3622 */
3623VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
3624{
3625 switch (enmWhat)
3626 {
3627 case VMINITCOMPLETED_RING3:
3628 {
3629 /*
3630 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
3631 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
3632 */
3633 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
3634 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3635 {
3636 PVMCPU pVCpu = &pVM->aCpus[i];
3637 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
3638 if (fSupportsLongMode)
3639 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
3640 }
3641
3642 cpumR3MsrRegStats(pVM);
3643 break;
3644 }
3645
3646 case VMINITCOMPLETED_HM:
3647 {
3648 /*
3649 * Currently, nested VMX/SVM both derives their guest VMX/SVM CPUID bit from the host
3650 * CPUID bit. This could be later changed if we need to support nested-VMX on CPUs
3651 * that are not capable of VMX.
3652 */
3653 if (pVM->cpum.s.GuestFeatures.fVmx)
3654 {
3655 Assert( pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_INTEL
3656 || pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_VIA);
3657 cpumR3InitVmxCpuFeatures(pVM);
3658 DBGFR3Info(pVM->pUVM, "cpumvmxfeat", "default", DBGFR3InfoLogRelHlp());
3659 }
3660
3661 if (pVM->cpum.s.GuestFeatures.fVmx)
3662 LogRel(("CPUM: Enabled guest VMX support\n"));
3663 else if (pVM->cpum.s.GuestFeatures.fSvm)
3664 LogRel(("CPUM: Enabled guest SVM support\n"));
3665 break;
3666 }
3667
3668 default:
3669 break;
3670 }
3671 return VINF_SUCCESS;
3672}
3673
3674
3675/**
3676 * Called when the ring-0 init phases completed.
3677 *
3678 * @param pVM The cross context VM structure.
3679 */
3680VMMR3DECL(void) CPUMR3LogCpuIds(PVM pVM)
3681{
3682 /*
3683 * Log the cpuid.
3684 */
3685 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
3686 RTCPUSET OnlineSet;
3687 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
3688 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
3689 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
3690 RTCPUID cCores = RTMpGetCoreCount();
3691 if (cCores)
3692 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
3693 LogRel(("************************* CPUID dump ************************\n"));
3694 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
3695 LogRel(("\n"));
3696 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
3697 RTLogRelSetBuffering(fOldBuffered);
3698 LogRel(("******************** End of CPUID dump **********************\n"));
3699}
3700
Note: See TracBrowser for help on using the repository browser.

© 2023 Oracle
ContactPrivacy policyTerms of Use