Chapter 4. Guest Additions

Table of Contents

4.1. Introduction
4.2. Installing and Maintaining Guest Additions
4.2.1. Guest Additions for Windows
4.2.2. Guest Additions for Linux
4.2.3. Guest Additions for Solaris
4.2.4. Guest Additions for OS/2
4.3. Shared folders
4.3.1. Manual mounting
4.3.2. Automatic mounting
4.4. Drag and Drop
4.4.1. Supported formats
4.4.2. Known limitations
4.5. Hardware-accelerated graphics
4.5.1. Hardware 3D acceleration (OpenGL and Direct3D 8/9)
4.5.2. Hardware 2D video acceleration for Windows guests
4.6. Seamless windows
4.7. Guest properties
4.8. Guest control
4.9. Memory overcommitment
4.9.1. Memory ballooning
4.9.2. Page Fusion

The previous chapter covered getting started with VirtualBox and installing operating systems in a virtual machine. For any serious and interactive use, the VirtualBox Guest Additions will make your life much easier by providing closer integration between host and guest and improving the interactive performance of guest systems. This chapter describes the Guest Additions in detail.

4.1. Introduction

As mentioned in Section 1.2, “Some terminology”, the Guest Additions are designed to be installed inside a virtual machine after the guest operating system has been installed. They consist of device drivers and system applications that optimize the guest operating system for better performance and usability. Please see Section 3.1, “Supported guest operating systems” for details on what guest operating systems are fully supported with Guest Additions by VirtualBox.

The VirtualBox Guest Additions for all supported guest operating systems are provided as a single CD-ROM image file which is called VBoxGuestAdditions.iso. This image file is located in the installation directory of VirtualBox. To install the Guest Additions for a particular VM, you mount this ISO file in your VM as a virtual CD-ROM and install from there.

The Guest Additions offer the following features:

Mouse pointer integration

To overcome the limitations for mouse support that were described in Section 1.8.2, “Capturing and releasing keyboard and mouse”, this provides you with seamless mouse support. You will only have one mouse pointer and pressing the Host key is no longer required to "free" the mouse from being captured by the guest OS. To make this work, a special mouse driver is installed in the guest that communicates with the "real" mouse driver on your host and moves the guest mouse pointer accordingly.

Shared folders

These provide an easy way to exchange files between the host and the guest. Much like ordinary Windows network shares, you can tell VirtualBox to treat a certain host directory as a shared folder, and VirtualBox will make it available to the guest operating system as a network share, irrespective of whether guest actually has a network. For details, please refer to Section 4.3, “Shared folders”.

Better video support

While the virtual graphics card which VirtualBox emulates for any guest operating system provides all the basic features, the custom video drivers that are installed with the Guest Additions provide you with extra high and non-standard video modes as well as accelerated video performance.

In addition, with Windows, Linux and Solaris guests, you can resize the virtual machine's window if the Guest Additions are installed. The video resolution in the guest will be automatically adjusted (as if you had manually entered an arbitrary resolution in the guest's display settings). Please see Section 1.8.5, “Resizing the machine's window” also.

Finally, if the Guest Additions are installed, 3D graphics and 2D video for guest applications can be accelerated; see Section 4.5, “Hardware-accelerated graphics”.

Seamless windows

With this feature, the individual windows that are displayed on the desktop of the virtual machine can be mapped on the host's desktop, as if the underlying application was actually running on the host. See Section 4.6, “Seamless windows” for details.

Generic host/guest communication channels

The Guest Additions enable you to control and monitor guest execution in ways other than those mentioned above. The so-called "guest properties" provide a generic string-based mechanism to exchange data bits between a guest and a host, some of which have special meanings for controlling and monitoring the guest; see Section 4.7, “Guest properties” for details.

Additionally, applications can be started in a guest from the host; see Section 4.8, “Guest control”.

Time synchronization

With the Guest Additions installed, VirtualBox can ensure that the guest's system time is better synchronized with that of the host.

For various reasons, the time in the guest might run at a slightly different rate than the time on the host. The host could be receiving updates via NTP and its own time might not run linearly. A VM could also be paused, which stops the flow of time in the guest for a shorter or longer period of time. When the wall clock time between the guest and host only differs slightly, the time synchronization service attempts to gradually and smoothly adjust the guest time in small increments to either "catch up" or "lose" time. When the difference is too great (e.g., a VM paused for hours or restored from saved state), the guest time is changed immediately, without a gradual adjustment.

The Guest Additions will re-synchronize the time regularly. See Section 9.14.3, “Tuning the Guest Additions time synchronization parameters” for how to configure the parameters of the time synchronization mechanism.

Shared clipboard

With the Guest Additions installed, the clipboard of the guest operating system can optionally be shared with your host operating system; see Section 3.4, “General settings”.

Automated logons (credentials passing)

For details, please see Section 9.2, “Automated guest logons”.

Each version of VirtualBox, even minor releases, ship with their own version of the Guest Additions. While the interfaces through which the VirtualBox core communicates with the Guest Additions are kept stable so that Guest Additions already installed in a VM should continue to work when VirtualBox is upgraded on the host, for best results, it is recommended to keep the Guest Additions at the same version.

Starting with VirtualBox 3.1, the Windows and Linux Guest Additions therefore check automatically whether they have to be updated. If the host is running a newer VirtualBox version than the Guest Additions, a notification with further instructions is displayed in the guest.

To disable this update check for the Guest Additions of a given virtual machine, set the value of its /VirtualBox/GuestAdd/CheckHostVersion guest property to 0; see Section 4.7, “Guest properties” for details.

4.2. Installing and Maintaining Guest Additions

Guest Additions are available for virtual machines running Windows, Linux, Solaris or OS/2. The following sections describe the specifics of each variant in detail.

4.2.1. Guest Additions for Windows

The VirtualBox Windows Guest Additions are designed to be installed in a virtual machine running a Windows operating system. The following versions of Windows guests are supported:

  • Microsoft Windows NT 4.0 (any service pack)

  • Microsoft Windows 2000 (any service pack)

  • Microsoft Windows XP (any service pack)

  • Microsoft Windows Server 2003 (any service pack)

  • Microsoft Windows Server 2008

  • Microsoft Windows Vista (all editions)

  • Microsoft Windows 7 (all editions)

  • Microsoft Windows 8 (all editions)

  • Microsoft Windows 10 RTM build 10240

  • Microsoft Windows Server 2012 Installation

In the "Devices" menu in the virtual machine's menu bar, VirtualBox has a handy menu item named "Insert Guest Additions CD image", which mounts the Guest Additions ISO file inside your virtual machine. A Windows guest should then automatically start the Guest Additions installer, which installs the Guest Additions into your Windows guest. Other guest operating systems (or if automatic start of software on CD is disabled) need manual start of the installer.


For the basic Direct3D acceleration to work in a Windows guest, you have to install the WDDM video driver available for Windows Vista or higher.[18] For Windows 8 and higher only the WDDM Direct3D video driver is available. For basic Direct3D acceleration to work in Windows XP guests, you have to install the Guest Additions in "Safe Mode", see Chapter 14, Known limitations for details.

If you prefer to mount the additions manually, you can perform the following steps:

  1. Start the virtual machine in which you have installed Windows.

  2. Select "Mount CD/DVD-ROM" from the "Devices" menu in the virtual machine's menu bar and then "CD/DVD-ROM image". This brings up the Virtual Media Manager described in Section 5.3, “The Virtual Media Manager”.

  3. In the Virtual Media Manager, press the "Add" button and browse your host file system for the VBoxGuestAdditions.iso file:

    • On a Windows host, you can find this file in the VirtualBox installation directory (usually under C:\Program files\Oracle\VirtualBox ).

    • On Mac OS X hosts, you can find this file in the application bundle of VirtualBox. (Right click on the VirtualBox icon in Finder and choose Show Package Contents. There it is located in the Contents/MacOS folder.)

    • On a Linux host, you can find this file in the additions folder under where you installed VirtualBox (normally /opt/VirtualBox/).

    • On Solaris hosts, you can find this file in the additions folder under where you installed VirtualBox (normally /opt/VirtualBox).

  4. Back in the Virtual Media Manager, select that ISO file and press the "Select" button. This will mount the ISO file and present it to your Windows guest as a CD-ROM.

Unless you have the Autostart feature disabled in your Windows guest, Windows will now autostart the VirtualBox Guest Additions installation program from the Additions ISO. If the Autostart feature has been turned off, choose VBoxWindowsAdditions.exe from the CD/DVD drive inside the guest to start the installer.

The installer will add several device drivers to the Windows driver database and then invoke the hardware detection wizard.

Depending on your configuration, it might display warnings that the drivers are not digitally signed. You must confirm these in order to continue the installation and properly install the Additions.

After installation, reboot your guest operating system to activate the Additions. Updating the Windows Guest Additions

Windows Guest Additions can be updated by running the installation program again, as previously described. This will then replace the previous Additions drivers with updated versions.

Alternatively, you may also open the Windows Device Manager and select "Update driver..." for two devices:

  1. the VirtualBox Graphics Adapter and

  2. the VirtualBox System Device.

For each, choose to provide your own driver and use "Have Disk" to point the wizard to the CD-ROM drive with the Guest Additions. Unattended Installation

As a prerequisite for avoid popups while performing an unattended installation of the VirtualBox Guest Additions, the code signing certificates used to sign the drivers needs to be installed in the right certificates stores in the guest system. Failing to do this will cause a typical windows installation to pop up a dialog asking whether its allowable to install each driver.


On some Windows versions like Windows 2000 and Windows XP the user intervention popups mentioned above always will be displayed, even after importing the Oracle certificates.

Since VirtualBox 4.2 installing those code signing certificates on a Windows guest can be done in an automated fashion using the VBoxCertUtil.exe utility found on the Guest Additions installation CD in the cert folder:

  • Log in as Administrator on the guest.

  • Mount the VirtualBox Guest Additions .ISO.

  • Open a command line window on the guest and change to the cert folder on the VirtualBox Guest Additions CD.

  • Do

    VBoxCertUtil.exe add-trusted-publisher vbox*.cer --root vbox*.cer

    This will install the certificates to the certificate store. When installing the same certificate more than once, an appropriate error will be displayed.

Prior to VirtualBox 4.2 the code signing certificates need to be imported in more manual style using the certutil.exe utility, which is shipped since Windows Vista. For Windows versions before Vista you need to download and install certutil.exe manually. Since the certificates are not accompanied on the VirtualBox Guest Additions CD-ROM prior to 4.2, these need to get extracted from a signed VirtualBox executable first.

In the following example the needed certificates will be extracted from the VirtualBox Windows Guest Additions installer on the CD-ROM:

VeriSign Code Signing CA

Open the Windows Explorer.

  • Right click on VBoxWindowsAdditions-<Architecture>.exe, click on "Properties"

  • Go to tab "Digital Signatures", choose "Oracle Corporation" and click on "Details"

  • In tab "General" click on "View Certificate"

  • In tab "Certification Path" select "VeriSign Class 3 Public Primary CA"

  • Click on "View Certificate"

  • In tab "Details" click on "Copy to File ..."

  • In the upcoming wizard choose "DER encoded binary X.509 (.CER)" and save the certificate file to a local path, finish the wizard

  • Close certificate dialog for "Verisign Class 3 Code Signing 2010 CA"

Oracle Corporation

Open the Windows Explorer.

  • Right click on VBoxWindowsAdditions-<Architecture>.exe, click on "Properties"

  • Go to tab "Digital Signatures", choose "Oracle Corporation" and click on "Details"

  • In tab "General" click on "View Certificate"

  • In tab "Details" click on "Copy to File ..."

  • In the upcoming wizard choose "DER encoded binary X.509 (.CER)" and save the certificate file to a local path, finish the wizard

  • Close certificate dialog for "Oracle Corporation"

After exporting the two certificates above they can be imported into the certificate store using the certutil.exe utility:

certutil -addstore -f Root "<Path to exported certificate file>"

In order to allow for completely unattended guest installations, you can specify a command line parameter to the install launcher:

VBoxWindowsAdditions.exe /S

This automatically installs the right files and drivers for the corresponding platform (32- or 64-bit).


By default on an unattended installation on a Vista or Windows 7 guest, there will be the XPDM graphics driver installed. This graphics driver does not support Windows Aero / Direct3D on the guest – instead the WDDM graphics driver needs to be installed. To select this driver by default, add the command line parameter /with_wddm when invoking the Windows Guest Additions installer (only required for Vista and Windows 7).


For Windows Aero to run correctly on a guest, the guest's VRAM size needs to be configured to at least 128 MB.

For more options regarding unattended guest installations, consult the command line help by using the command:

VBoxWindowsAdditions.exe /? Manual file extraction

If you would like to install the files and drivers manually, you can extract the files from the Windows Guest Additions setup by typing:

VBoxWindowsAdditions.exe /extract

To explicitly extract the Windows Guest Additions for another platform than the current running one (e.g. 64-bit files on a 32-bit system), you have to execute the appropriate platform installer (VBoxWindowsAdditions-x86.exe or VBoxWindowsAdditions-amd64.exe) with the /extract parameter.

4.2.2. Guest Additions for Linux

Like the Windows Guest Additions, the VirtualBox Guest Additions for Linux are a set of device drivers and system applications which may be installed in the guest operating system.

The following Linux distributions are officially supported:

  • Oracle Linux as of version 5 including UEK kernels;

  • Fedora as of Fedora Core 4;

  • Redhat Enterprise Linux as of version 3;

  • SUSE and openSUSE Linux as of version 9;

  • Ubuntu as of version 5.10.

Many other distributions are known to work with the Guest Additions.

The version of the Linux kernel supplied by default in SUSE and openSUSE 10.2, Ubuntu 6.10 (all versions) and Ubuntu 6.06 (server edition) contains a bug which can cause it to crash during startup when it is run in a virtual machine. The Guest Additions work in those distributions.

Note that some Linux distributions already come with all or part of the VirtualBox Guest Additions. You may choose to keep the distribution's version of the Guest Additions but these are often not up to date and limited in functionality, so we recommend replacing them with the Guest Additions that come with VirtualBox. The VirtualBox Linux Guest Additions installer tries to detect existing installation and replace them but depending on how the distribution integrates the Guest Additions, this may require some manual interaction. It is highly recommended to take a snapshot of the virtual machine before replacing pre-installed Guest Additions. Installing the Linux Guest Additions

The VirtualBox Guest Additions for Linux are provided on the same virtual CD-ROM file as the Guest Additions for Windows described above. They also come with an installation program guiding you through the setup process, although, due to the significant differences between Linux distributions, installation may be slightly more complex.

Installation generally involves the following steps:

  1. Before installing the Guest Additions, you will have to prepare your guest system for building external kernel modules. This works similarly as described in Section 2.3.2, “The VirtualBox driver modules”, except that this step must now be performed in your Linux guest instead of on a Linux host system, as described there.

    If you suspect that something has gone wrong, check that your guest is set up correctly and try executing the command

    rcvboxadd setup

    as root.

  2. Insert the VBoxGuestAdditions.iso CD file into your Linux guest's virtual CD-ROM drive, exactly the same way as described for a Windows guest in Section, “Installation”.

  3. Change to the directory where your CD-ROM drive is mounted and execute as root:

    sh ./ Graphics and mouse integration

In Linux and Solaris guests, VirtualBox graphics and mouse integration goes through the X Window System. VirtualBox can use the X.Org variant of the system (or XFree86 version 4.3 which is identical to the first X.Org release). During the installation process, the X.Org display server will be set up to use the graphics and mouse drivers which come with the Guest Additions.

After installing the Guest Additions into a fresh installation of a supported Linux distribution or Solaris system (many unsupported systems will work correctly too), the guest's graphics mode will change to fit the size of the VirtualBox window on the host when it is resized. You can also ask the guest system to switch to a particular resolution by sending a "video mode hint" using the VBoxManage tool.

Multiple guest monitors are supported in guests using the X.Org server version 1.3 (which is part of release 7.3 of the X Window System version 11) or a later version. The layout of the guest screens can be adjusted as needed using the tools which come with the guest operating system.

If you want to understand more about the details of how the X.Org drivers are set up (in particular if you wish to use them in a setting which our installer doesn't handle correctly), you should read Section 9.4.2, “Guest graphics and mouse driver setup in depth”. Updating the Linux Guest Additions

The Guest Additions can simply be updated by going through the installation procedure again with an updated CD-ROM image. This will replace the drivers with updated versions. You should reboot after updating the Guest Additions. Uninstalling the Linux Guest Additions

If you have a version of the Guest Additions installed on your virtual machine and wish to remove it without installing new ones, you can do so by inserting the Guest Additions CD image into the virtual CD-ROM drive as described above and running the installer for the current Guest Additions with the "uninstall" parameter from the path that the CD image is mounted on in the guest:

sh ./ uninstall

While this will normally work without issues, you may need to do some manual cleanup of the guest (particularly of the XFree86Config or xorg.conf file) in some cases, particularly if the Additions version installed or the guest operating system were very old, or if you made your own changes to the Guest Additions setup after you installed them.

Starting with version 3.1.0, you can uninstall the Additions by invoking


Please replace /opt/VBoxGuestAdditions-5.2.8 with the correct Guest Additions installation directory.

4.2.3. Guest Additions for Solaris

Like the Windows Guest Additions, the VirtualBox Guest Additions for Solaris take the form of a set of device drivers and system applications which may be installed in the guest operating system.

The following Solaris distributions are officially supported:

  • Solaris 11 including Solaris 11 Express;

  • Solaris 10 (u5 and higher);

Other distributions may work if they are based on comparable software releases. Installing the Solaris Guest Additions

The VirtualBox Guest Additions for Solaris are provided on the same ISO CD-ROM as the Additions for Windows and Linux described above. They also come with an installation program guiding you through the setup process.

Installation involves the following steps:

  1. Mount the VBoxGuestAdditions.iso file as your Solaris guest's virtual CD-ROM drive, exactly the same way as described for a Windows guest in Section, “Installation”.

    If in case the CD-ROM drive on the guest doesn't get mounted (observed on some versions of Solaris 10), execute as root:

    svcadm restart volfs
  2. Change to the directory where your CD-ROM drive is mounted and execute as root:

    pkgadd -G -d ./VBoxSolarisAdditions.pkg
  3. Choose "1" and confirm installation of the Guest Additions package. After the installation is complete, re-login to X server on your guest to activate the X11 Guest Additions. Uninstalling the Solaris Guest Additions

The Solaris Guest Additions can be safely removed by removing the package from the guest. Open a root terminal session and execute:

pkgrm SUNWvboxguest Updating the Solaris Guest Additions

The Guest Additions should be updated by first uninstalling the existing Guest Additions and then installing the new ones. Attempting to install new Guest Additions without removing the existing ones is not possible.

4.2.4. Guest Additions for OS/2

VirtualBox also ships with a set of drivers that improve running OS/2 in a virtual machine. Due to restrictions of OS/2 itself, this variant of the Guest Additions has a limited feature set; see Chapter 14, Known limitations for details.

The OS/2 Guest Additions are provided on the same ISO CD-ROM as those for the other platforms. As a result, mount the ISO in OS/2 as described previously. The OS/2 Guest Additions are located in the directory \32bit\OS2.

As we do not provide an automatic installer at this time, please refer to the readme.txt file in that directory, which describes how to install the OS/2 Guest Additions manually.

4.3. Shared folders

With the "shared folders" feature of VirtualBox, you can access files of your host system from within the guest system. This is similar how you would use network shares in Windows networks -- except that shared folders do not need require networking, only the Guest Additions. Shared Folders are supported with Windows (2000 or newer), Linux and Solaris guests.

Shared folders must physically reside on the host and are then shared with the guest, which uses a special file system driver in the Guest Addition to talk to the host. For Windows guests, shared folders are implemented as a pseudo-network redirector; for Linux and Solaris guests, the Guest Additions provide a virtual file system.

To share a host folder with a virtual machine in VirtualBox, you must specify the path of that folder and choose for it a "share name" that the guest can use to access it. Hence, first create the shared folder on the host; then, within the guest, connect to it.

There are several ways in which shared folders can be set up for a particular virtual machine:

  • In the window of a running VM, you can select "Shared folders" from the "Devices" menu, or click on the folder icon on the status bar in the bottom right corner.

  • If a VM is not currently running, you can configure shared folders in each virtual machine's "Settings" dialog.

  • From the command line, you can create shared folders using VBoxManage, as follows:

    VBoxManage sharedfolder add "VM name" --name "sharename" --hostpath "C:\test"

    See Section 8.32, “VBoxManage sharedfolder add/remove” for details.

There are two types of shares:

  1. VM shares which are only available to the VM for which they have been defined;

  2. transient VM shares, which can be added and removed at runtime and do not persist after a VM has stopped; for these, add the --transient option to the above command line.

Shared folders have read/write access to the files at the host path by default. To restrict the guest to have read-only access, create a read-only shared folder. This can either be achieved using the GUI or by appending the parameter --readonly when creating the shared folder with VBoxManage.

Starting with version 4.0, VirtualBox shared folders also support symbolic links (symlinks), under the following conditions:

  1. The host operating system must support symlinks (i.e. a Mac, Linux or Solaris host is required).

  2. Currently only Linux and Solaris Guest Additions support symlinks.

  3. For security reasons the guest OS is not allowed to create symlinks by default. If you trust the guest OS to not abuse the functionality, you can enable creation of symlinks for "sharename" with:

    VBoxManage setextradata "VM name" VBoxInternal2/SharedFoldersEnableSymlinksCreate/sharename 1

4.3.1. Manual mounting

You can mount the shared folder from inside a VM the same way as you would mount an ordinary network share:

  • In a Windows guest, shared folders are browseable and therefore visible in Windows Explorer. So, to attach the host's shared folder to your Windows guest, open Windows Explorer and look for it under "My Networking Places" → "Entire Network" → "VirtualBox Shared Folders". By right-clicking on a shared folder and selecting "Map network drive" from the menu that pops up, you can assign a drive letter to that shared folder.

    Alternatively, on the Windows command line, use the following:

    net use x: \\vboxsvr\sharename

    While vboxsvr is a fixed name (note that vboxsrv would also work), replace "x:" with the drive letter that you want to use for the share, and sharename with the share name specified with VBoxManage.

  • In a Linux guest, use the following command:

    mount -t vboxsf [-o OPTIONS] sharename mountpoint

    To mount a shared folder during boot, add the following entry to /etc/fstab:

    sharename   mountpoint   vboxsf   defaults  0   0
  • In a Solaris guest, use the following command:

    mount -F vboxfs [-o OPTIONS] sharename mountpoint

    Replace sharename (use lowercase) with the share name specified with VBoxManage or the GUI, and mountpoint with the path where you want the share to be mounted on the guest (e.g. /mnt/share). The usual mount rules apply, that is, create this directory first if it does not exist yet.

    Here is an example of mounting the shared folder for the user "jack" on Solaris:

    $ id
    uid=5000(jack) gid=1(other)
    $ mkdir /export/home/jack/mount
    $ pfexec mount -F vboxfs -o uid=5000,gid=1 jackshare /export/home/jack/mount
    $ cd ~/mount
    $ ls
    sharedfile1.mp3 sharedfile2.txt

    Beyond the standard options supplied by the mount command, the following are available:

    iocharset CHARSET

    to set the character set used for I/O operations. Note that on Linux guests, if the "iocharset" option is not specified then the Guest Additions driver will attempt to use the character set specified by the CONFIG_NLS_DEFAULT kernel option. If this option is not set either then UTF-8 will be used. Also,

    convertcp CHARSET

    is available in order to specify the character set used for the shared folder name (utf8 by default).

    The generic mount options (documented in the mount manual page) apply also. Especially useful are the options uid, gid and mode, as they allow access by normal users (in read/write mode, depending on the settings) even if root has mounted the filesystem.

4.3.2. Automatic mounting

Starting with version 4.0, VirtualBox can mount shared folders automatically, at your option. If automatic mounting is enabled for a specific shared folder, the Guest Additions will automatically mount that folder as soon as a user logs into the guest OS. The details depend on the guest OS type:

  • With Windows guests, any auto-mounted shared folder will receive its own drive letter (e.g. E:) depending on the free drive letters remaining in the guest.

    If there no free drive letters left, auto-mounting will fail; as a result, the number of auto-mounted shared folders is typically limited to 22 or less with Windows guests.

  • With Linux guests, auto-mounted shared folders are mounted into the /media directory, along with the prefix sf_. For example, the shared folder myfiles would be mounted to /media/sf_myfiles on Linux and /mnt/sf_myfiles on Solaris.

    The guest property /VirtualBox/GuestAdd/SharedFolders/MountPrefix determines the prefix that is used. Change that guest property to a value other than "sf" to change that prefix; see Section 4.7, “Guest properties” for details.


    Access to auto-mounted shared folders is only granted to the user group vboxsf, which is created by the VirtualBox Guest Additions installer. Hence guest users have to be member of that group to have read/write access or to have read-only access in case the folder is not mapped writable.

    To change the mount directory to something other than /media, you can set the guest property /VirtualBox/GuestAdd/SharedFolders/MountDir.

  • Solaris guests behave like Linux guests except that /mnt is used as the default mount directory instead of /media.

To have any changes to auto-mounted shared folders applied while a VM is running, the guest OS needs to be rebooted. (This applies only to auto-mounted shared folders, not the ones which are mounted manually.)

4.4. Drag and Drop

Starting with version 5.0, VirtualBox supports to drag and drop content from the host to the guest and vice versa. For this to work the latest Guest Additions must be installed on the guest.

Drag and drop transparently allows copying or opening files, directories and even certain clipboard formats from one end to the other, e.g. from the host to the guest or from the guest to the host. One then can perform drag and drop operations between the host and a VM as it would be a native drag and drop operation on the host OS.

At the moment drag and drop is implemented for Windows- and X-Windows-based systems, both, on host and guest side. As X-Windows sports different drag and drop protocols only the most used one, XDND, is supported for now. Applications using other protocols (such as Motif or OffiX) will not be recognized by VirtualBox.

In context of using drag and drop the origin of the data is called source, that is, where the actual data comes from and is specified. On the other hand there is the target, which specifies where the data from the source should go to. Transferring data from the source to the target can be done in various ways, e.g. copying, moving or linking.[19]

When transferring data from the host to the guest OS, the host in this case is the source, whereas the guest OS is the target. However, when doing it the other way around, that is, transferring data from the guest OS to the host, the guest OS this time became the source and the host is the target.

For security reasons drag and drop can be configured at runtime on a per-VM basis either using the "Drag and Drop" menu item in the "Devices" menu of the virtual machine or VBoxManage. The following four modes are available:

  • Disabled disables the drag and drop entirely. This is the default when creating new VMs.

  • Host To Guest enables performing drag and drop operations from the host to the guest only.

  • Guest To Host enables performing drag and drop operations from the guest to the host only.

  • Bidirectional enables performing drag and drop operations to both directions, e.g. from the host to the guest and vice versa.


Drag and drop support depends on the frontend being used; at the moment only the VirtualBox Manager frontend provides this functionality.

To use VBoxManage for controlling the current drag and drop mode, see Chapter 8, VBoxManage. The commands modifyvm and controlvm allow setting the VM's current drag and drop mode via command line.

4.4.1. Supported formats

As VirtualBox can run on a variety of host OSes and also supports a wide range of guests, certain data formats must be translated after those got transferred over so that the target OS (that is, the side which receiving the data) is able to handle them in an appropriate manner.


When dragging files however, no data conversion is done in any way, e.g. when transferring a file from a Linux guest to a Windows host the Linux-specific line endings won't be converted to Windows ones.

The following formats are handled by the VirtualBox drag and drop service:

  • Plain text, from applications such as text editors, internet browsers and terminal windows

  • Files, from file managers such as Windows explorer, Nautilus and Finder

  • Directories, where the same applies as for files

4.4.2. Known limitations

The following limitations are known:

  • On Windows hosts, dragging and dropping content from UAC-elevated (User Account Control) programs to non-UAC-elevated programs and vice versa is now allowed. So when starting VirtualBox with Administrator privileges then drag and drop will not work with the Windows Explorer which runs with regular user privileges by default.

4.5. Hardware-accelerated graphics

4.5.1. Hardware 3D acceleration (OpenGL and Direct3D 8/9)

The VirtualBox Guest Additions contain experimental hardware 3D support for Windows, Linux and Solaris guests.[20]

With this feature, if an application inside your virtual machine uses 3D features through the OpenGL or Direct3D 8/9 programming interfaces, instead of emulating them in software (which would be slow), VirtualBox will attempt to use your host's 3D hardware. This works for all supported host platforms (Windows, Mac, Linux, Solaris), provided that your host operating system can make use of your accelerated 3D hardware in the first place.

The 3D acceleration currently has the following preconditions:

  1. It is only available for certain Windows, Linux and Solaris guests. In particular:

    • 3D acceleration with Windows guests requires Windows 2000, Windows XP, Vista or Windows 7. Both OpenGL and Direct3D 8/9 (not with Windows 2000) are supported (experimental).

    • OpenGL on Linux requires kernel 2.6.27 and higher as well as server version 1.5 and higher. Ubuntu 10.10 and Fedora 14 have been tested and confirmed as working.

    • OpenGL on Solaris guests requires server version 1.5 and higher.

  2. The Guest Additions must be installed.


    For the basic Direct3D acceleration to work in a Windows Guest, VirtualBox needs to replace Windows system files in the virtual machine. As a result, the Guest Additions installation program offers Direct3D acceleration as an option that must be explicitly enabled. Also, you must install the Guest Additions in "Safe Mode". This does not apply to the WDDM Direct3D video driver available for Vista and higher, see Chapter 14, Known limitations for details.

  3. Because 3D support is still experimental at this time, it is disabled by default and must be manually enabled in the VM settings (see Section 3.4, “General settings”).


    Untrusted guest systems should not be allowed to use VirtualBox's 3D acceleration features, just as untrusted host software should not be allowed to use 3D acceleration. Drivers for 3D hardware are generally too complex to be made properly secure and any software which is allowed to access them may be able to compromise the operating system running them. In addition, enabling 3D acceleration gives the guest direct access to a large body of additional program code in the VirtualBox host process which it might conceivably be able to use to crash the virtual machine.

To enable Aero theme support, the VirtualBox WDDM video driver must be installed, which is available with the Guest Additions installation. The WDDM driver is not installed by default for Vista and Windows 7 guest and must be manually selected in the Guest Additions installer by answering "No" in the "Would you like to install basic Direct3D support" dialog displayed when the Direct3D feature is selected.

The Aero theme is not enabled by default. To enable it

  • In Windows Vista guest: right-click on the desktop, in the context menu select "Personalize", then select "Windows Color and Appearance" in the "Personalization" window, in the "Appearance Settings" dialog select "Windows Aero" and press "OK"

  • In Windows 7 guest: right-click on the desktop, in the context menu select "Personalize" and select any Aero theme in the "Personalization" window

Technically, VirtualBox implements this by installing an additional hardware 3D driver inside your guest when the Guest Additions are installed. This driver acts as a hardware 3D driver and reports to the guest operating system that the (virtual) hardware is capable of 3D hardware acceleration. When an application in the guest then requests hardware acceleration through the OpenGL or Direct3D programming interfaces, these are sent to the host through a special communication tunnel implemented by VirtualBox, and then the host performs the requested 3D operation via the host's programming interfaces.

4.5.2. Hardware 2D video acceleration for Windows guests

Starting with version 3.1, the VirtualBox Guest Additions contain experimental hardware 2D video acceleration support for Windows guests.

With this feature, if an application (e.g. a video player) inside your Windows VM uses 2D video overlays to play a movie clip, then VirtualBox will attempt to use your host's video acceleration hardware instead of performing overlay stretching and color conversion in software (which would be slow). This currently works for Windows, Linux and Mac host platforms, provided that your host operating system can make use of 2D video acceleration in the first place.

The 2D video acceleration currently has the following preconditions:

  1. It is only available for Windows guests (XP or later).

  2. The Guest Additions must be installed.

  3. Because 2D support is still experimental at this time, it is disabled by default and must be manually enabled in the VM settings (see Section 3.4, “General settings”).

Technically, VirtualBox implements this by exposing video overlay DirectDraw capabilities in the Guest Additions video driver. The driver sends all overlay commands to the host through a special communication tunnel implemented by VirtualBox. On the host side, OpenGL is then used to implement color space transformation and scaling

4.6. Seamless windows

With the "seamless windows" feature of VirtualBox, you can have the windows that are displayed within a virtual machine appear side by side next to the windows of your host. This feature is supported for the following guest operating systems (provided that the Guest Additions are installed):

  • Windows guests (support added with VirtualBox 1.5);

  • Supported Linux or Solaris guests running the X Window System (added with VirtualBox 1.6).

After seamless windows are enabled (see below), VirtualBox suppresses the display of the Desktop background of your guest, allowing you to run the windows of your guest operating system seamlessly next to the windows of your host:

To enable seamless mode, after starting the virtual machine, press the Host key (normally the right control key) together with "L". This will enlarge the size of the VM's display to the size of your host screen and mask out the guest operating system's background. To go back to the "normal" VM display (i.e. to disable seamless windows), press the Host key and "L" again.

4.7. Guest properties

Starting with version 2.1, VirtualBox allows for requesting certain properties from a running guest, provided that the VirtualBox Guest Additions are installed and the VM is running. This is good for two things:

  1. A number of predefined VM characteristics are automatically maintained by VirtualBox and can be retrieved on the host, e.g. to monitor VM performance and statistics.

  2. In addition, arbitrary string data can be exchanged between guest and host. This works in both directions.

To accomplish this, VirtualBox establishes a private communication channel between the VirtualBox Guest Additions and the host, and software on both sides can use this channel to exchange string data for arbitrary purposes. Guest properties are simply string keys to which a value is attached. They can be set (written to) by either the host and the guest, and they can also be read from both sides.

In addition to establishing the general mechanism of reading and writing values, a set of predefined guest properties is automatically maintained by the VirtualBox Guest Additions to allow for retrieving interesting guest data such as the guest's exact operating system and service pack level, the installed version of the Guest Additions, users that are currently logged into the guest OS, network statistics and more. These predefined properties are all prefixed with /VirtualBox/ and organized into a hierarchical tree of keys.

Some of this runtime information is shown when you select "Session Information Dialog" from a virtual machine's "Machine" menu.

A more flexible way to use this channel is via the VBoxManage guestproperty command set; see Section 8.33, “VBoxManage guestproperty” for details. For example, to have all the available guest properties for a given running VM listed with their respective values, use this:

$ VBoxManage guestproperty enumerate "Windows Vista III"
VirtualBox Command Line Management Interface Version 5.2.8
(C) 2005-2018 Oracle Corporation
All rights reserved.

Name: /VirtualBox/GuestInfo/OS/Product, value: Windows Vista Business Edition,
    timestamp: 1229098278843087000, flags:
Name: /VirtualBox/GuestInfo/OS/Release, value: 6.0.6001,
    timestamp: 1229098278950553000, flags:
Name: /VirtualBox/GuestInfo/OS/ServicePack, value: 1,
    timestamp: 1229098279122627000, flags:
Name: /VirtualBox/GuestAdd/InstallDir,
    value: C:/Program Files/Oracle/VirtualBox
    Guest Additions, timestamp: 1229098279269739000, flags:
Name: /VirtualBox/GuestAdd/Revision, value: 40720,
    timestamp: 1229098279345664000, flags:
Name: /VirtualBox/GuestAdd/Version, value: 5.2.8,
    timestamp: 1229098279479515000, flags:
Name: /VirtualBox/GuestAdd/Components/VBoxControl.exe, value: 5.2.8r40720,
    timestamp: 1229098279651731000, flags:
Name: /VirtualBox/GuestAdd/Components/VBoxHook.dll, value: 5.2.8r40720,
    timestamp: 1229098279804835000, flags:
Name: /VirtualBox/GuestAdd/Components/VBoxDisp.dll, value: 5.2.8r40720,
    timestamp: 1229098279880611000, flags:
Name: /VirtualBox/GuestAdd/Components/VBoxMRXNP.dll, value: 5.2.8r40720,
    timestamp: 1229098279882618000, flags:
Name: /VirtualBox/GuestAdd/Components/VBoxService.exe, value: 5.2.8r40720,
    timestamp: 1229098279883195000, flags:
Name: /VirtualBox/GuestAdd/Components/VBoxTray.exe, value: 5.2.8r40720,
    timestamp: 1229098279885027000, flags:
Name: /VirtualBox/GuestAdd/Components/VBoxGuest.sys, value: 5.2.8r40720,
    timestamp: 1229098279886838000, flags:
Name: /VirtualBox/GuestAdd/Components/VBoxMouse.sys, value: 5.2.8r40720,
    timestamp: 1229098279890600000, flags:
Name: /VirtualBox/GuestAdd/Components/VBoxSF.sys, value: 5.2.8r40720,
    timestamp: 1229098279893056000, flags:
Name: /VirtualBox/GuestAdd/Components/VBoxVideo.sys, value: 5.2.8r40720,
    timestamp: 1229098279895767000, flags:
Name: /VirtualBox/GuestInfo/OS/LoggedInUsers, value: 1,
    timestamp: 1229099826317660000, flags:
Name: /VirtualBox/GuestInfo/OS/NoLoggedInUsers, value: false,
    timestamp: 1229098455580553000, flags:
Name: /VirtualBox/GuestInfo/Net/Count, value: 1,
    timestamp: 1229099826299785000, flags:
Name: /VirtualBox/HostInfo/GUI/LanguageID, value: C,
    timestamp: 1229098151272771000, flags:
Name: /VirtualBox/GuestInfo/Net/0/V4/IP, value:,
    timestamp: 1229099826300088000, flags:
Name: /VirtualBox/GuestInfo/Net/0/V4/Broadcast, value:,
    timestamp: 1229099826300220000, flags:
Name: /VirtualBox/GuestInfo/Net/0/V4/Netmask, value:,
    timestamp: 1229099826300350000, flags:
Name: /VirtualBox/GuestInfo/Net/0/Status, value: Up,
    timestamp: 1229099826300524000, flags:
Name: /VirtualBox/GuestInfo/OS/LoggedInUsersList, value: username,
    timestamp: 1229099826317386000, flags:

To query the value of a single property, use the "get" subcommand like this:

$ VBoxManage guestproperty get "Windows Vista III" "/VirtualBox/GuestInfo/OS/Product"
VirtualBox Command Line Management Interface Version 5.2.8
(C) 2005-2018 Oracle Corporation
All rights reserved.

Value: Windows Vista Business Edition

To add or change guest properties from the guest, use the tool VBoxControl. This tool is included in the Guest Additions of VirtualBox 2.2 or later. When started from a Linux guest, this tool requires root privileges for security reasons:

$ sudo VBoxControl guestproperty enumerate
VirtualBox Guest Additions Command Line Management Interface Version 5.2.8
(C) 2009-2018 Oracle Corporation
All rights reserved.

Name: /VirtualBox/GuestInfo/OS/Release, value: 2.6.28-18-generic,
    timestamp: 1265813265835667000, flags: <NULL>
Name: /VirtualBox/GuestInfo/OS/Version, value: #59-Ubuntu SMP Thu Jan 28 01:23:03 UTC 2010,
    timestamp: 1265813265836305000, flags: <NULL>

For more complex needs, you can use the VirtualBox programming interfaces; see Chapter 11, VirtualBox programming interfaces.

4.8. Guest control

Starting with version 3.2, the Guest Additions of VirtualBox allow starting applications inside a VM from the host system.

For this to work, the application needs to be installed inside the guest; no additional software needs to be installed on the host. Additionally, text mode output (to stdout and stderr) can be shown on the host for further processing along with options to specify user credentials and a timeout value (in milliseconds) to limit time the application is able to run.

This feature can be used to automate deployment of software within the guest.

Starting with version 4.0, the Guest Additions for Windows allow for automatic updating (only already installed Guest Additions 4.0 or later). Also, copying files from host to the guest as well as remotely creating guest directories is available.

To use these features, use the VirtualBox command line, see Section 8.34, “VBoxManage guestcontrol”.

4.9. Memory overcommitment

In server environments with many VMs; the Guest Additions can be used to share physical host memory between several VMs, reducing the total amount of memory in use by the VMs. If memory usage is the limiting factor and CPU resources are still available, this can help with packing more VMs on each host.

4.9.1. Memory ballooning

Starting with version 3.2, the Guest Additions of VirtualBox can change the amount of host memory that a VM uses while the machine is running. Because of how this is implemented, this feature is called "memory ballooning".


VirtualBox supports memory ballooning only on 64-bit hosts, and it is not supported on Mac OS X hosts.


Memory ballooning does not work with large pages enabled. To turn off large pages support for a VM, run VBoxManage modifyvm <VM name> --largepages off

Normally, to change the amount of memory allocated to a virtual machine, one has to shut down the virtual machine entirely and modify its settings. With memory ballooning, memory that was allocated for a virtual machine can be given to another virtual machine without having to shut the machine down.

When memory ballooning is requested, the VirtualBox Guest Additions (which run inside the guest) allocate physical memory from the guest operating system on the kernel level and lock this memory down in the guest. This ensures that the guest will not use that memory any longer: no guest applications can allocate it, and the guest kernel will not use it either. VirtualBox can then re-use this memory and give it to another virtual machine.

The memory made available through the ballooning mechanism is only available for re-use by VirtualBox. It is not returned as free memory to the host. Requesting balloon memory from a running guest will therefore not increase the amount of free, unallocated memory on the host. Effectively, memory ballooning is therefore a memory overcommitment mechanism for multiple virtual machines while they are running. This can be useful to temporarily start another machine, or in more complicated environments, for sophisticated memory management of many virtual machines that may be running in parallel depending on how memory is used by the guests.

At this time, memory ballooning is only supported through VBoxManage. Use the following command to increase or decrease the size of the memory balloon within a running virtual machine that has Guest Additions installed:

VBoxManage controlvm "VM name" guestmemoryballoon <n>

where "VM name" is the name or UUID of the virtual machine in question and <n> is the amount of memory to allocate from the guest in megabytes. See Section 8.13, “VBoxManage controlvm” for more information.

You can also set a default balloon that will automatically be requested from the VM every time after it has started up with the following command:

VBoxManage modifyvm "VM name" --guestmemoryballoon <n>

By default, no balloon memory is allocated. This is a VM setting, like other modifyvm settings, and therefore can only be set while the machine is shut down; see Section 8.8, “VBoxManage modifyvm”.

4.9.2. Page Fusion

Whereas memory ballooning simply reduces the amount of RAM that is available to a VM, Page Fusion works differently: it avoids memory duplication between several similar running VMs.

In a server environment running several similar VMs (e.g. with identical operating systems) on the same host, lots of memory pages are identical. VirtualBox's Page Fusion technology, introduced with VirtualBox 3.2, is a novel technique to efficiently identify these identical memory pages and share them between multiple VMs.


VirtualBox supports Page Fusion only on 64-bit hosts, and it is not supported on Mac OS X hosts. Page Fusion currently works only with Windows guests (2000 and later).

The more similar the VMs on a given host are, the more efficiently Page Fusion can reduce the amount of host memory that is in use. It therefore works best if all VMs on a host run identical operating systems (e.g. Windows XP Service Pack 2). Instead of having a complete copy of each operating system in each VM, Page Fusion identifies the identical memory pages in use by these operating systems and eliminates the duplicates, sharing host memory between several machines ("deduplication"). If a VM tries to modify a page that has been shared with other VMs, a new page is allocated again for that VM with a copy of the shared page ("copy on write"). All this is fully transparent to the virtual machine.

You may be familiar with this kind of memory overcommitment from other hypervisor products, which call this feature "page sharing" or "same page merging". However, Page Fusion differs significantly from those other solutions, whose approaches have several drawbacks:

  1. Traditional hypervisors scan all guest memory and compute checksums (hashes) for every single memory page. Then, they look for pages with identical hashes and compare the entire content of those pages; if two pages produce the same hash, it is very likely that the pages are identical in content. This, of course, can take rather long, especially if the system is not idling. As a result, the additional memory only becomes available after a significant amount of time (this can be hours or even days!). Even worse, this kind of page sharing algorithm generally consumes significant CPU resources and increases the virtualization overhead by 10-20%.

    Page Fusion in VirtualBox uses logic in the VirtualBox Guest Additions to quickly identify memory cells that are most likely identical across VMs. It can therefore achieve most of the possible savings of page sharing almost immediately and with almost no overhead.

  2. Page Fusion is also much less likely to be confused by identical memory that it will eliminate just to learn seconds later that the memory will now change and having to perform a highly expensive and often service-disrupting reallocation.

At this time, Page Fusion can only be controlled with VBoxManage, and only while a VM is shut down. To enable Page Fusion for a VM, use the following command:

VBoxManage modifyvm "VM name" --pagefusion on

You can observe Page Fusion operation using some metrics. RAM/VMM/Shared shows the total amount of fused pages, whereas the per-VM metric Guest/RAM/Usage/Shared will return the amount of fused memory for a given VM. Please refer to Section 8.35, “VBoxManage metrics” for information on how to query metrics.


Enabling Page Fusion might indirectly increase the chances for malicious guests to successfully attack other VMs running on the same host, see Section 13.3.4, “Potentially insecure operations”.

[18] An experimental WDDM driver was added with VirtualBox 4.1.

[19] At the moment only copying of data is supported. Moving or linking is not yet implemented.

[20] OpenGL support for Windows guests was added with VirtualBox 2.1; support for Linux and Solaris followed with VirtualBox 2.2. With VirtualBox 3.0, Direct3D 8/9 support was added for Windows guests. OpenGL 2.0 is now supported as well. With VirtualBox 4.1 Windows Aero theme support is added for Windows Vista and Windows 7 guests (experimental)