1 | /*
|
---|
2 | * Simple C functions to supplement the C library
|
---|
3 | *
|
---|
4 | * Copyright (c) 2006 Fabrice Bellard
|
---|
5 | *
|
---|
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
7 | * of this software and associated documentation files (the "Software"), to deal
|
---|
8 | * in the Software without restriction, including without limitation the rights
|
---|
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
---|
10 | * copies of the Software, and to permit persons to whom the Software is
|
---|
11 | * furnished to do so, subject to the following conditions:
|
---|
12 | *
|
---|
13 | * The above copyright notice and this permission notice shall be included in
|
---|
14 | * all copies or substantial portions of the Software.
|
---|
15 | *
|
---|
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
---|
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
---|
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
---|
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
---|
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
---|
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
---|
22 | * THE SOFTWARE.
|
---|
23 | */
|
---|
24 | #include "qemu-common.h"
|
---|
25 |
|
---|
26 | #ifdef VBOX
|
---|
27 | #include "osdep.h"
|
---|
28 |
|
---|
29 | static inline int toupper(int ch) {
|
---|
30 | if ( (unsigned int)(ch - 'a') < 26u )
|
---|
31 | ch += 'A' - 'a';
|
---|
32 | return ch;
|
---|
33 | }
|
---|
34 |
|
---|
35 | /* Quick sort from OpenSolaris:
|
---|
36 | http://src.opensolaris.org/source/raw/onnv/onnv-gate/usr/src/common/util/qsort.c */
|
---|
37 | /*
|
---|
38 | * choose a median of 3 values
|
---|
39 | *
|
---|
40 | * note: cstyle specifically prohibits nested conditional operators
|
---|
41 | * but this is the only way to do the median of 3 function in-line
|
---|
42 | */
|
---|
43 | #define med3(a, b, c) (cmp((a), (b)) < 0) \
|
---|
44 | ? ((cmp((b), (c)) < 0) ? (b) : (cmp((a), (c)) < 0) ? (c) : (a)) \
|
---|
45 | : ((cmp((b), (c)) > 0) ? (b) : (cmp((a), (c)) > 0) ? (c) : (a))
|
---|
46 |
|
---|
47 | #define THRESH_L 5 /* threshold for insertion sort */
|
---|
48 | #define THRESH_M3 20 /* threshold for median of 3 */
|
---|
49 | #define THRESH_M9 50 /* threshold for median of 9 */
|
---|
50 |
|
---|
51 | typedef struct {
|
---|
52 | char *b_lim;
|
---|
53 | size_t nrec;
|
---|
54 | } stk_t;
|
---|
55 |
|
---|
56 | /*
|
---|
57 | * The following swap functions should not create a stack frame
|
---|
58 | * the SPARC call / return instruction will be executed
|
---|
59 | * but the a save / restore will not be executed
|
---|
60 | * which means we won't do a window turn with the spill / fill overhead
|
---|
61 | * verify this by examining the assembly code
|
---|
62 | */
|
---|
63 |
|
---|
64 | /* ARGSUSED */
|
---|
65 | static void
|
---|
66 | swapp32(uint32_t *r1, uint32_t *r2, size_t cnt)
|
---|
67 | {
|
---|
68 | uint32_t temp;
|
---|
69 |
|
---|
70 | temp = *r1;
|
---|
71 | *r1++ = *r2;
|
---|
72 | *r2++ = temp;
|
---|
73 | }
|
---|
74 |
|
---|
75 | /* ARGSUSED */
|
---|
76 | static void
|
---|
77 | swapp64(uint64_t *r1, uint64_t *r2, size_t cnt)
|
---|
78 | {
|
---|
79 | uint64_t temp;
|
---|
80 |
|
---|
81 | temp = *r1;
|
---|
82 | *r1++ = *r2;
|
---|
83 | *r2++ = temp;
|
---|
84 | }
|
---|
85 |
|
---|
86 | static void
|
---|
87 | swapi(uint32_t *r1, uint32_t *r2, size_t cnt)
|
---|
88 | {
|
---|
89 | uint32_t temp;
|
---|
90 |
|
---|
91 | /* character by character */
|
---|
92 | while (cnt--) {
|
---|
93 | temp = *r1;
|
---|
94 | *r1++ = *r2;
|
---|
95 | *r2++ = temp;
|
---|
96 | }
|
---|
97 | }
|
---|
98 |
|
---|
99 | static void
|
---|
100 | swapb(char *r1, char *r2, size_t cnt)
|
---|
101 | {
|
---|
102 | char temp;
|
---|
103 |
|
---|
104 | /* character by character */
|
---|
105 | while (cnt--) {
|
---|
106 | temp = *r1;
|
---|
107 | *r1++ = *r2;
|
---|
108 | *r2++ = temp;
|
---|
109 | }
|
---|
110 | }
|
---|
111 |
|
---|
112 | /*
|
---|
113 | * qsort() is a general purpose, in-place sorting routine using a
|
---|
114 | * user provided call back function for comparisons. This implementation
|
---|
115 | * utilizes a ternary quicksort algorithm, and cuts over to an
|
---|
116 | * insertion sort for partitions involving fewer than THRESH_L records.
|
---|
117 | *
|
---|
118 | * Potential User Errors
|
---|
119 | * There is no return value from qsort, this function has no method
|
---|
120 | * of alerting the user that a sort did not work or could not work.
|
---|
121 | * We do not print an error message or exit the process or thread,
|
---|
122 | * Even if we can detect an error, We CANNOT silently return without
|
---|
123 | * sorting the data, if we did so the user could never be sure the
|
---|
124 | * sort completed successfully.
|
---|
125 | * It is possible we could change the return value of sort from void
|
---|
126 | * to int and return success or some error codes, but this gets into
|
---|
127 | * standards and compatibility issues.
|
---|
128 | *
|
---|
129 | * Examples of qsort parameter errors might be
|
---|
130 | * 1) record size (rsiz) equal to 0
|
---|
131 | * qsort will loop and never return.
|
---|
132 | * 2) record size (rsiz) less than 0
|
---|
133 | * rsiz is unsigned, so a negative value is insanely large
|
---|
134 | * 3) number of records (nrec) is 0
|
---|
135 | * This is legal - qsort will return without examining any records
|
---|
136 | * 4) number of records (nrec) is less than 0
|
---|
137 | * nrec is unsigned, so a negative value is insanely large.
|
---|
138 | * 5) nrec * rsiz > memory allocation for sort array
|
---|
139 | * a segment violation may occur
|
---|
140 | * corruption of other memory may occur
|
---|
141 | * 6) The base address of the sort array is invalid
|
---|
142 | * a segment violation may occur
|
---|
143 | * corruption of other memory may occur
|
---|
144 | * 7) The user call back function is invalid
|
---|
145 | * we may get alignment errors or segment violations
|
---|
146 | * we may jump into never-never land
|
---|
147 | *
|
---|
148 | * Some less obvious errors might be
|
---|
149 | * 8) The user compare function is not comparing correctly
|
---|
150 | * 9) The user compare function modifies the data records
|
---|
151 | */
|
---|
152 |
|
---|
153 | void
|
---|
154 | qemu_qsort(
|
---|
155 | void *basep,
|
---|
156 | size_t nrec,
|
---|
157 | size_t rsiz,
|
---|
158 | int (*cmp)(const void *, const void *))
|
---|
159 | {
|
---|
160 | size_t i; /* temporary variable */
|
---|
161 |
|
---|
162 | /* variables used by swap */
|
---|
163 | void (*swapf)(char *, char *, size_t);
|
---|
164 | size_t loops;
|
---|
165 |
|
---|
166 | /* variables used by sort */
|
---|
167 | stk_t stack[8 * sizeof (nrec) + 1];
|
---|
168 | stk_t *sp;
|
---|
169 | char *b_lim; /* bottom limit */
|
---|
170 | char *b_dup; /* bottom duplicate */
|
---|
171 | char *b_par; /* bottom partition */
|
---|
172 | char *t_lim; /* top limit */
|
---|
173 | char *t_dup; /* top duplicate */
|
---|
174 | char *t_par; /* top partition */
|
---|
175 | char *m1, *m2, *m3; /* median pointers */
|
---|
176 | uintptr_t d_bytelength; /* byte length of duplicate records */
|
---|
177 | int b_nrec;
|
---|
178 | int t_nrec;
|
---|
179 | int cv; /* results of compare (bottom / top) */
|
---|
180 |
|
---|
181 | /*
|
---|
182 | * choose a swap function based on alignment and size
|
---|
183 | *
|
---|
184 | * The qsort function sorts an array of fixed length records.
|
---|
185 | * We have very limited knowledge about the data record itself.
|
---|
186 | * It may be that the data record is in the array we are sorting
|
---|
187 | * or it may be that the array contains pointers or indexes to
|
---|
188 | * the actual data record and all that we are sorting is the indexes.
|
---|
189 | *
|
---|
190 | * The following decision will choose an optimal swap function
|
---|
191 | * based on the size and alignment of the data records
|
---|
192 | * swapp64 will swap 64 bit pointers
|
---|
193 | * swapp32 will swap 32 bit pointers
|
---|
194 | * swapi will swap an array of 32 bit integers
|
---|
195 | * swapb will swap an array of 8 bit characters
|
---|
196 | *
|
---|
197 | * swapi and swapb will also require the variable loops to be set
|
---|
198 | * to control the length of the array being swapped
|
---|
199 | */
|
---|
200 | if ((((uintptr_t)basep & (sizeof (uint64_t) - 1)) == 0) &&
|
---|
201 | (rsiz == sizeof (uint64_t))) {
|
---|
202 | loops = 1;
|
---|
203 | swapf = (void (*)(char *, char *, size_t))swapp64;
|
---|
204 | } else if ((((uintptr_t)basep & (sizeof (uint32_t) - 1)) == 0) &&
|
---|
205 | (rsiz == sizeof (uint32_t))) {
|
---|
206 | loops = 1;
|
---|
207 | swapf = (void (*)(char *, char *, size_t))swapp32;
|
---|
208 | } else if ((((uintptr_t)basep & (sizeof (uint32_t) - 1)) == 0) &&
|
---|
209 | ((rsiz & (sizeof (uint32_t) - 1)) == 0)) {
|
---|
210 | loops = rsiz / sizeof (int);
|
---|
211 | swapf = (void (*)(char *, char *, size_t))swapi;
|
---|
212 | } else {
|
---|
213 | loops = rsiz;
|
---|
214 | swapf = swapb;
|
---|
215 | }
|
---|
216 |
|
---|
217 | /*
|
---|
218 | * qsort is a partitioning sort
|
---|
219 | *
|
---|
220 | * the stack is the bookkeeping mechanism to keep track of all
|
---|
221 | * the partitions.
|
---|
222 | *
|
---|
223 | * each sort pass takes one partition and sorts it into two partitions.
|
---|
224 | * at the top of the loop we simply take the partition on the top
|
---|
225 | * of the stack and sort it. See the comments at the bottom
|
---|
226 | * of the loop regarding which partitions to add in what order.
|
---|
227 | *
|
---|
228 | * initially put the whole partition on the stack
|
---|
229 | */
|
---|
230 | sp = stack;
|
---|
231 | sp->b_lim = (char *)basep;
|
---|
232 | sp->nrec = nrec;
|
---|
233 | sp++;
|
---|
234 | while (sp > stack) {
|
---|
235 | sp--;
|
---|
236 | b_lim = sp->b_lim;
|
---|
237 | nrec = sp->nrec;
|
---|
238 |
|
---|
239 | /*
|
---|
240 | * a linear insertion sort i faster than a qsort for
|
---|
241 | * very small number of records (THRESH_L)
|
---|
242 | *
|
---|
243 | * if number records < threshold use linear insertion sort
|
---|
244 | *
|
---|
245 | * this also handles the special case where the partition
|
---|
246 | * 0 or 1 records length.
|
---|
247 | */
|
---|
248 | if (nrec < THRESH_L) {
|
---|
249 | /*
|
---|
250 | * Linear insertion sort
|
---|
251 | */
|
---|
252 | t_par = b_lim;
|
---|
253 | for (i = 1; i < nrec; i++) {
|
---|
254 | t_par += rsiz;
|
---|
255 | b_par = t_par;
|
---|
256 | while (b_par > b_lim) {
|
---|
257 | b_par -= rsiz;
|
---|
258 | if ((*cmp)(b_par, b_par + rsiz) <= 0) {
|
---|
259 | break;
|
---|
260 | }
|
---|
261 | (*swapf)(b_par, b_par + rsiz, loops);
|
---|
262 | }
|
---|
263 | }
|
---|
264 |
|
---|
265 | /*
|
---|
266 | * a linear insertion sort will put all records
|
---|
267 | * in their final position and will not create
|
---|
268 | * subpartitions.
|
---|
269 | *
|
---|
270 | * therefore when the insertion sort is complete
|
---|
271 | * just go to the top of the loop and get the
|
---|
272 | * next partition to sort.
|
---|
273 | */
|
---|
274 | continue;
|
---|
275 | }
|
---|
276 |
|
---|
277 | /* quicksort */
|
---|
278 |
|
---|
279 | /*
|
---|
280 | * choose a pivot record
|
---|
281 | *
|
---|
282 | * Ideally the pivot record will divide the partition
|
---|
283 | * into two equal parts. however we have to balance the
|
---|
284 | * work involved in selecting the pivot record with the
|
---|
285 | * expected benefit.
|
---|
286 | *
|
---|
287 | * The choice of pivot record depends on the number of
|
---|
288 | * records in the partition
|
---|
289 | *
|
---|
290 | * for small partitions (nrec < THRESH_M3)
|
---|
291 | * we just select the record in the middle of the partition
|
---|
292 | *
|
---|
293 | * if (nrec >= THRESH_M3 && nrec < THRESH_M9)
|
---|
294 | * we select three values and choose the median of 3
|
---|
295 | *
|
---|
296 | * if (nrec >= THRESH_M9)
|
---|
297 | * then we use an approximate median of 9
|
---|
298 | * 9 records are selected and grouped in 3 groups of 3
|
---|
299 | * the median of each of these 3 groups is fed into another
|
---|
300 | * median of 3 decision.
|
---|
301 | *
|
---|
302 | * Each median of 3 decision is 2 or 3 compares,
|
---|
303 | * so median of 9 costs between 8 and 12 compares.
|
---|
304 | *
|
---|
305 | * i is byte distance between two consecutive samples
|
---|
306 | * m2 will point to the pivot record
|
---|
307 | */
|
---|
308 | if (nrec < THRESH_M3) {
|
---|
309 | m2 = b_lim + (nrec / 2) * rsiz;
|
---|
310 | } else if (nrec < THRESH_M9) {
|
---|
311 | /* use median of 3 */
|
---|
312 | i = ((nrec - 1) / 2) * rsiz;
|
---|
313 | m2 = med3(b_lim, b_lim + i, b_lim + 2 * i);
|
---|
314 | } else {
|
---|
315 | /* approx median of 9 */
|
---|
316 | i = ((nrec - 1) / 8) * rsiz;
|
---|
317 | m1 = med3(b_lim, b_lim + i, b_lim + 2 * i);
|
---|
318 | m2 = med3(b_lim + 3 * i, b_lim + 4 * i, b_lim + 5 * i);
|
---|
319 | m3 = med3(b_lim + 6 * i, b_lim + 7 * i, b_lim + 8 * i);
|
---|
320 | m2 = med3(m1, m2, m3);
|
---|
321 | }
|
---|
322 |
|
---|
323 | /*
|
---|
324 | * quick sort partitioning
|
---|
325 | *
|
---|
326 | * The partition limits are defined by bottom and top pointers
|
---|
327 | * b_lim and t_lim.
|
---|
328 | *
|
---|
329 | * qsort uses a fairly standard method of moving the
|
---|
330 | * partitioning pointers, b_par and t_par, to the middle of
|
---|
331 | * the partition and exchanging records that are in the
|
---|
332 | * wrong part of the partition.
|
---|
333 | *
|
---|
334 | * Two enhancements have been made to the basic algorithm.
|
---|
335 | * One for handling duplicate records and one to minimize
|
---|
336 | * the number of swaps.
|
---|
337 | *
|
---|
338 | * Two duplicate records pointers are (b_dup and t_dup) are
|
---|
339 | * initially set to b_lim and t_lim. Each time a record
|
---|
340 | * whose sort key value is equal to the pivot record is found
|
---|
341 | * it will be swapped with the record pointed to by
|
---|
342 | * b_dup or t_dup and the duplicate pointer will be
|
---|
343 | * incremented toward the center.
|
---|
344 | * When partitioning is complete, all the duplicate records
|
---|
345 | * will have been collected at the upper and lower limits of
|
---|
346 | * the partition and can easily be moved adjacent to the
|
---|
347 | * pivot record.
|
---|
348 | *
|
---|
349 | * The second optimization is to minimize the number of swaps.
|
---|
350 | * The pointer m2 points to the pivot record.
|
---|
351 | * During partitioning, if m2 is ever equal to the partitioning
|
---|
352 | * pointers, b_par or t_par, then b_par or t_par just moves
|
---|
353 | * onto the next record without doing a compare.
|
---|
354 | * If as a result of duplicate record detection,
|
---|
355 | * b_dup or t_dup is ever equal to m2,
|
---|
356 | * then m2 is changed to point to the duplicate record and
|
---|
357 | * b_dup or t_dup is incremented with out swapping records.
|
---|
358 | *
|
---|
359 | * When partitioning is done, we may not have the same pivot
|
---|
360 | * record that we started with, but we will have one with
|
---|
361 | * an equal sort key.
|
---|
362 | */
|
---|
363 | b_dup = b_par = b_lim;
|
---|
364 | t_dup = t_par = t_lim = b_lim + rsiz * (nrec - 1);
|
---|
365 | for (;;) {
|
---|
366 |
|
---|
367 | /* move bottom pointer up */
|
---|
368 | for (; b_par <= t_par; b_par += rsiz) {
|
---|
369 | if (b_par == m2) {
|
---|
370 | continue;
|
---|
371 | }
|
---|
372 | cv = cmp(b_par, m2);
|
---|
373 | if (cv > 0) {
|
---|
374 | break;
|
---|
375 | }
|
---|
376 | if (cv == 0) {
|
---|
377 | if (b_dup == m2) {
|
---|
378 | m2 = b_par;
|
---|
379 | } else if (b_dup != b_par) {
|
---|
380 | (*swapf)(b_dup, b_par, loops);
|
---|
381 | }
|
---|
382 | b_dup += rsiz;
|
---|
383 | }
|
---|
384 | }
|
---|
385 |
|
---|
386 | /* move top pointer down */
|
---|
387 | for (; b_par < t_par; t_par -= rsiz) {
|
---|
388 | if (t_par == m2) {
|
---|
389 | continue;
|
---|
390 | }
|
---|
391 | cv = cmp(t_par, m2);
|
---|
392 | if (cv < 0) {
|
---|
393 | break;
|
---|
394 | }
|
---|
395 | if (cv == 0) {
|
---|
396 | if (t_dup == m2) {
|
---|
397 | m2 = t_par;
|
---|
398 | } else if (t_dup != t_par) {
|
---|
399 | (*swapf)(t_dup, t_par, loops);
|
---|
400 | }
|
---|
401 | t_dup -= rsiz;
|
---|
402 | }
|
---|
403 | }
|
---|
404 |
|
---|
405 | /* break if we are done partitioning */
|
---|
406 | if (b_par >= t_par) {
|
---|
407 | break;
|
---|
408 | }
|
---|
409 |
|
---|
410 | /* exchange records at upper and lower break points */
|
---|
411 | (*swapf)(b_par, t_par, loops);
|
---|
412 | b_par += rsiz;
|
---|
413 | t_par -= rsiz;
|
---|
414 | }
|
---|
415 |
|
---|
416 | /*
|
---|
417 | * partitioning is now complete
|
---|
418 | *
|
---|
419 | * there are two termination conditions from the partitioning
|
---|
420 | * loop above. Either b_par or t_par have crossed or
|
---|
421 | * they are equal.
|
---|
422 | *
|
---|
423 | * we need to swap the pivot record to its final position
|
---|
424 | * m2 could be in either the upper or lower partitions
|
---|
425 | * or it could already be in its final position
|
---|
426 | */
|
---|
427 | /*
|
---|
428 | * R[b_par] > R[m2]
|
---|
429 | * R[t_par] < R[m2]
|
---|
430 | */
|
---|
431 | if (t_par < b_par) {
|
---|
432 | if (m2 < t_par) {
|
---|
433 | (*swapf)(m2, t_par, loops);
|
---|
434 | m2 = b_par = t_par;
|
---|
435 | } else if (m2 > b_par) {
|
---|
436 | (*swapf)(m2, b_par, loops);
|
---|
437 | m2 = t_par = b_par;
|
---|
438 | } else {
|
---|
439 | b_par = t_par = m2;
|
---|
440 | }
|
---|
441 | } else {
|
---|
442 | if (m2 < t_par) {
|
---|
443 | t_par = b_par = t_par - rsiz;
|
---|
444 | }
|
---|
445 | if (m2 != b_par) {
|
---|
446 | (*swapf)(m2, b_par, loops);
|
---|
447 | }
|
---|
448 | m2 = t_par;
|
---|
449 | }
|
---|
450 |
|
---|
451 | /*
|
---|
452 | * move bottom duplicates next to pivot
|
---|
453 | * optimized to eliminate overlap
|
---|
454 | */
|
---|
455 | d_bytelength = b_dup - b_lim;
|
---|
456 | if (b_par - b_dup < d_bytelength) {
|
---|
457 | b_dup = b_lim + (b_par - b_dup);
|
---|
458 | }
|
---|
459 | while (b_dup > b_lim) {
|
---|
460 | b_dup -= rsiz;
|
---|
461 | b_par -= rsiz;
|
---|
462 | (*swapf)(b_dup, b_par, loops);
|
---|
463 | }
|
---|
464 | b_par = m2 - d_bytelength;
|
---|
465 |
|
---|
466 | /*
|
---|
467 | * move top duplicates next to pivot
|
---|
468 | */
|
---|
469 | d_bytelength = t_lim - t_dup;
|
---|
470 | if (t_dup - t_par < d_bytelength) {
|
---|
471 | t_dup = t_lim - (t_dup - t_par);
|
---|
472 | }
|
---|
473 | while (t_dup < t_lim) {
|
---|
474 | t_dup += rsiz;
|
---|
475 | t_par += rsiz;
|
---|
476 | (*swapf)(t_dup, t_par, loops);
|
---|
477 | }
|
---|
478 | t_par = m2 + d_bytelength;
|
---|
479 |
|
---|
480 | /*
|
---|
481 | * when a qsort pass completes there are three partitions
|
---|
482 | * 1) the lower contains all records less than pivot
|
---|
483 | * 2) the upper contains all records greater than pivot
|
---|
484 | * 3) the pivot partition contains all record equal to pivot
|
---|
485 | *
|
---|
486 | * all records in the pivot partition are in their final
|
---|
487 | * position and do not need to be accounted for by the stack
|
---|
488 | *
|
---|
489 | * when adding partitions to the stack
|
---|
490 | * it is important to add the largest partition first
|
---|
491 | * to prevent stack overflow.
|
---|
492 | *
|
---|
493 | * calculate number of unsorted records in top and bottom
|
---|
494 | * push resulting partitions on stack
|
---|
495 | */
|
---|
496 | b_nrec = (b_par - b_lim) / rsiz;
|
---|
497 | t_nrec = (t_lim - t_par) / rsiz;
|
---|
498 | if (b_nrec < t_nrec) {
|
---|
499 | sp->b_lim = t_par + rsiz;
|
---|
500 | sp->nrec = t_nrec;
|
---|
501 | sp++;
|
---|
502 | sp->b_lim = b_lim;
|
---|
503 | sp->nrec = b_nrec;
|
---|
504 | sp++;
|
---|
505 | } else {
|
---|
506 | sp->b_lim = b_lim;
|
---|
507 | sp->nrec = b_nrec;
|
---|
508 | sp++;
|
---|
509 | sp->b_lim = t_par + rsiz;
|
---|
510 | sp->nrec = t_nrec;
|
---|
511 | sp++;
|
---|
512 | }
|
---|
513 | }
|
---|
514 | }
|
---|
515 |
|
---|
516 | #endif
|
---|
517 | void pstrcpy(char *buf, int buf_size, const char *str)
|
---|
518 | {
|
---|
519 | int c;
|
---|
520 | char *q = buf;
|
---|
521 |
|
---|
522 | if (buf_size <= 0)
|
---|
523 | return;
|
---|
524 |
|
---|
525 | for(;;) {
|
---|
526 | c = *str++;
|
---|
527 | if (c == 0 || q >= buf + buf_size - 1)
|
---|
528 | break;
|
---|
529 | *q++ = c;
|
---|
530 | }
|
---|
531 | *q = '\0';
|
---|
532 | }
|
---|
533 |
|
---|
534 | /* strcat and truncate. */
|
---|
535 | char *pstrcat(char *buf, int buf_size, const char *s)
|
---|
536 | {
|
---|
537 | int len;
|
---|
538 | len = strlen(buf);
|
---|
539 | if (len < buf_size)
|
---|
540 | pstrcpy(buf + len, buf_size - len, s);
|
---|
541 | return buf;
|
---|
542 | }
|
---|
543 |
|
---|
544 | int strstart(const char *str, const char *val, const char **ptr)
|
---|
545 | {
|
---|
546 | const char *p, *q;
|
---|
547 | p = str;
|
---|
548 | q = val;
|
---|
549 | while (*q != '\0') {
|
---|
550 | if (*p != *q)
|
---|
551 | return 0;
|
---|
552 | p++;
|
---|
553 | q++;
|
---|
554 | }
|
---|
555 | if (ptr)
|
---|
556 | *ptr = p;
|
---|
557 | return 1;
|
---|
558 | }
|
---|
559 |
|
---|
560 | int stristart(const char *str, const char *val, const char **ptr)
|
---|
561 | {
|
---|
562 | const char *p, *q;
|
---|
563 | p = str;
|
---|
564 | q = val;
|
---|
565 | while (*q != '\0') {
|
---|
566 | if (toupper(*p) != toupper(*q))
|
---|
567 | return 0;
|
---|
568 | p++;
|
---|
569 | q++;
|
---|
570 | }
|
---|
571 | if (ptr)
|
---|
572 | *ptr = p;
|
---|
573 | return 1;
|
---|
574 | }
|
---|
575 |
|
---|
576 | #ifndef VBOX
|
---|
577 | time_t mktimegm(struct tm *tm)
|
---|
578 | {
|
---|
579 | time_t t;
|
---|
580 | int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday;
|
---|
581 | if (m < 3) {
|
---|
582 | m += 12;
|
---|
583 | y--;
|
---|
584 | }
|
---|
585 | t = 86400 * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
|
---|
586 | y / 400 - 719469);
|
---|
587 | t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
|
---|
588 | return t;
|
---|
589 | }
|
---|
590 | #endif
|
---|