VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 17537

Last change on this file since 17537 was 17537, checked in by vboxsync, 16 years ago

REM: Added REMR3InitFinalize and moved the dirty page bit map allocation over there. REMR3NotifyPhysRamRegister now just tracks the highest ram address. Removed some old obsolete bits in REMInternal.h.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 156.8 KB
Line 
1/* $Id: VBoxRecompiler.c 17537 2009-03-08 05:22:28Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "exec-all.h"
29
30#include <VBox/rem.h>
31#include <VBox/vmapi.h>
32#include <VBox/tm.h>
33#include <VBox/ssm.h>
34#include <VBox/em.h>
35#include <VBox/trpm.h>
36#include <VBox/iom.h>
37#include <VBox/mm.h>
38#include <VBox/pgm.h>
39#include <VBox/pdm.h>
40#include <VBox/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/hwaccm.h>
43#include <VBox/patm.h>
44#include <VBox/csam.h>
45#include "REMInternal.h"
46#include <VBox/vm.h>
47#include <VBox/param.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57/* Don't wanna include everything. */
58extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
59extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
60extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
61extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
62extern void tlb_flush(CPUState *env, int flush_global);
63extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
64extern void sync_ldtr(CPUX86State *env1, int selector);
65
66#ifdef VBOX_STRICT
67unsigned long get_phys_page_offset(target_ulong addr);
68#endif
69
70
71/*******************************************************************************
72* Defined Constants And Macros *
73*******************************************************************************/
74
75/** Copy 80-bit fpu register at pSrc to pDst.
76 * This is probably faster than *calling* memcpy.
77 */
78#define REM_COPY_FPU_REG(pDst, pSrc) \
79 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
80
81
82/*******************************************************************************
83* Internal Functions *
84*******************************************************************************/
85static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
86static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
87static void remR3StateUpdate(PVM pVM);
88static int remR3InitPhysRamSizeAndDirtyMap(PVM pVM, bool fGuarded);
89
90static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
91static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
93static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
94static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96
97static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
98static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
100static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103
104
105/*******************************************************************************
106* Global Variables *
107*******************************************************************************/
108
109/** @todo Move stats to REM::s some rainy day we have nothing do to. */
110#ifdef VBOX_WITH_STATISTICS
111static STAMPROFILEADV gStatExecuteSingleInstr;
112static STAMPROFILEADV gStatCompilationQEmu;
113static STAMPROFILEADV gStatRunCodeQEmu;
114static STAMPROFILEADV gStatTotalTimeQEmu;
115static STAMPROFILEADV gStatTimers;
116static STAMPROFILEADV gStatTBLookup;
117static STAMPROFILEADV gStatIRQ;
118static STAMPROFILEADV gStatRawCheck;
119static STAMPROFILEADV gStatMemRead;
120static STAMPROFILEADV gStatMemWrite;
121static STAMPROFILE gStatGCPhys2HCVirt;
122static STAMPROFILE gStatHCVirt2GCPhys;
123static STAMCOUNTER gStatCpuGetTSC;
124static STAMCOUNTER gStatRefuseTFInhibit;
125static STAMCOUNTER gStatRefuseVM86;
126static STAMCOUNTER gStatRefusePaging;
127static STAMCOUNTER gStatRefusePAE;
128static STAMCOUNTER gStatRefuseIOPLNot0;
129static STAMCOUNTER gStatRefuseIF0;
130static STAMCOUNTER gStatRefuseCode16;
131static STAMCOUNTER gStatRefuseWP0;
132static STAMCOUNTER gStatRefuseRing1or2;
133static STAMCOUNTER gStatRefuseCanExecute;
134static STAMCOUNTER gStatREMGDTChange;
135static STAMCOUNTER gStatREMIDTChange;
136static STAMCOUNTER gStatREMLDTRChange;
137static STAMCOUNTER gStatREMTRChange;
138static STAMCOUNTER gStatSelOutOfSync[6];
139static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
140static STAMCOUNTER gStatFlushTBs;
141/* in exec.c */
142extern uint32_t tlb_flush_count;
143extern uint32_t tb_flush_count;
144extern uint32_t tb_phys_invalidate_count;
145#endif
146
147/*
148 * Global stuff.
149 */
150
151/** MMIO read callbacks. */
152CPUReadMemoryFunc *g_apfnMMIORead[3] =
153{
154 remR3MMIOReadU8,
155 remR3MMIOReadU16,
156 remR3MMIOReadU32
157};
158
159/** MMIO write callbacks. */
160CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
161{
162 remR3MMIOWriteU8,
163 remR3MMIOWriteU16,
164 remR3MMIOWriteU32
165};
166
167/** Handler read callbacks. */
168CPUReadMemoryFunc *g_apfnHandlerRead[3] =
169{
170 remR3HandlerReadU8,
171 remR3HandlerReadU16,
172 remR3HandlerReadU32
173};
174
175/** Handler write callbacks. */
176CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
177{
178 remR3HandlerWriteU8,
179 remR3HandlerWriteU16,
180 remR3HandlerWriteU32
181};
182
183
184#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
185/*
186 * Debugger commands.
187 */
188static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
189
190/** '.remstep' arguments. */
191static const DBGCVARDESC g_aArgRemStep[] =
192{
193 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
194 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
195};
196
197/** Command descriptors. */
198static const DBGCCMD g_aCmds[] =
199{
200 {
201 .pszCmd ="remstep",
202 .cArgsMin = 0,
203 .cArgsMax = 1,
204 .paArgDescs = &g_aArgRemStep[0],
205 .cArgDescs = RT_ELEMENTS(g_aArgRemStep),
206 .pResultDesc = NULL,
207 .fFlags = 0,
208 .pfnHandler = remR3CmdDisasEnableStepping,
209 .pszSyntax = "[on/off]",
210 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
211 "If no arguments show the current state."
212 }
213};
214#endif
215
216
217/* Instantiate the structure signatures. */
218#define REM_STRUCT_OP 0
219#include "Sun/structs.h"
220
221
222
223/*******************************************************************************
224* Internal Functions *
225*******************************************************************************/
226static void remAbort(int rc, const char *pszTip);
227extern int testmath(void);
228
229/* Put them here to avoid unused variable warning. */
230AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
231#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
232//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
233/* Why did this have to be identical?? */
234AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
235#else
236AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
237#endif
238
239
240/**
241 * Initializes the REM.
242 *
243 * @returns VBox status code.
244 * @param pVM The VM to operate on.
245 */
246REMR3DECL(int) REMR3Init(PVM pVM)
247{
248 uint32_t u32Dummy;
249 unsigned i;
250
251 /*
252 * Assert sanity.
253 */
254 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
255 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
256 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
257#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
258 Assert(!testmath());
259#endif
260 ASSERT_STRUCT_TABLE(Misc);
261 ASSERT_STRUCT_TABLE(TLB);
262 ASSERT_STRUCT_TABLE(SegmentCache);
263 ASSERT_STRUCT_TABLE(XMMReg);
264 ASSERT_STRUCT_TABLE(MMXReg);
265 ASSERT_STRUCT_TABLE(float_status);
266 ASSERT_STRUCT_TABLE(float32u);
267 ASSERT_STRUCT_TABLE(float64u);
268 ASSERT_STRUCT_TABLE(floatx80u);
269 ASSERT_STRUCT_TABLE(CPUState);
270
271 /*
272 * Init some internal data members.
273 */
274 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
275 pVM->rem.s.Env.pVM = pVM;
276#ifdef CPU_RAW_MODE_INIT
277 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
278#endif
279
280 /* ctx. */
281 pVM->rem.s.pCtx = CPUMQueryGuestCtxPtr(pVM);
282 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
283
284 /* ignore all notifications */
285 pVM->rem.s.fIgnoreAll = true;
286
287 /*
288 * Init the recompiler.
289 */
290 if (!cpu_x86_init(&pVM->rem.s.Env))
291 {
292 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
293 return VERR_GENERAL_FAILURE;
294 }
295 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
296 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
297
298 /* allocate code buffer for single instruction emulation. */
299 pVM->rem.s.Env.cbCodeBuffer = 4096;
300 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
301 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
302
303 /* finally, set the cpu_single_env global. */
304 cpu_single_env = &pVM->rem.s.Env;
305
306 /* Nothing is pending by default */
307 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
308
309 /*
310 * Register ram types.
311 */
312 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
313 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
314 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
315 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
316 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
317
318 /* stop ignoring. */
319 pVM->rem.s.fIgnoreAll = false;
320
321 /*
322 * Register the saved state data unit.
323 */
324 int rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
325 NULL, remR3Save, NULL,
326 NULL, remR3Load, NULL);
327 if (RT_FAILURE(rc))
328 return rc;
329
330#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
331 /*
332 * Debugger commands.
333 */
334 static bool fRegisteredCmds = false;
335 if (!fRegisteredCmds)
336 {
337 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
338 if (RT_SUCCESS(rc))
339 fRegisteredCmds = true;
340 }
341#endif
342
343#ifdef VBOX_WITH_STATISTICS
344 /*
345 * Statistics.
346 */
347 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
348 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
349 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
350 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
351 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
352 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
353 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
354 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
355 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
356 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
357 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
358 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
359
360 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
361
362 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
363 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
364 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
365 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
366 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
367 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
368 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
369 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
370 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
371 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
372 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
373
374 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
375 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
376 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
377 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
378
379 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
380 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
383 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
384 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
385
386 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
387 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
388 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
389 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
390 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
391 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
392
393 STAM_REG(pVM, &tb_flush_count, STAMTYPE_U32_RESET, "/REM/TbFlushCount", STAMUNIT_OCCURENCES, "tb_flush() calls");
394 STAM_REG(pVM, &tb_phys_invalidate_count,STAMTYPE_U32_RESET, "/REM/TbPhysInvldCount", STAMUNIT_OCCURENCES, "tb_phys_invalidate() calls");
395 STAM_REG(pVM, &tlb_flush_count, STAMTYPE_U32_RESET, "/REM/TlbFlushCount", STAMUNIT_OCCURENCES, "tlb_flush() calls");
396
397
398#endif
399
400#ifdef DEBUG_ALL_LOGGING
401 loglevel = ~0;
402#endif
403
404 return rc;
405}
406
407
408/**
409 * Finalizes the REM initialization.
410 *
411 * This is called after all components, devices and drivers has
412 * been initialized. Its main purpose it to finish the RAM related
413 * initialization.
414 *
415 * @returns VBox status code.
416 *
417 * @param pVM The VM handle.
418 */
419REMR3DECL(int) REMR3InitFinalize(PVM pVM)
420{
421 int rc;
422
423 /*
424 * Ram size & dirty bit map.
425 */
426 Assert(!pVM->rem.s.fGCPhysLastRamFixed);
427 pVM->rem.s.fGCPhysLastRamFixed = true;
428#ifdef RT_STRICT
429 rc = remR3InitPhysRamSizeAndDirtyMap(pVM, true /* fGuarded */);
430#else
431 rc = remR3InitPhysRamSizeAndDirtyMap(pVM, false /* fGuarded */);
432#endif
433 return rc;
434}
435
436
437/**
438 * Initializes phys_ram_size, phys_ram_dirty and phys_ram_dirty_size.
439 *
440 * @returns VBox status code.
441 * @param pVM The VM handle.
442 * @param fGuarded Whether to guard the map.
443 */
444static int remR3InitPhysRamSizeAndDirtyMap(PVM pVM, bool fGuarded)
445{
446 int rc = VINF_SUCCESS;
447 RTGCPHYS cb;
448
449 cb = pVM->rem.s.GCPhysLastRam + 1;
450 AssertLogRelMsgReturn(cb > pVM->rem.s.GCPhysLastRam,
451 ("GCPhysLastRam=%RGp - out of range\n", pVM->rem.s.GCPhysLastRam),
452 VERR_OUT_OF_RANGE);
453 phys_ram_size = cb;
454 phys_ram_dirty_size = cb >> PAGE_SHIFT;
455 AssertMsg(((RTGCPHYS)phys_ram_dirty_size << PAGE_SHIFT) == cb, ("%RGp\n", cb));
456
457 if (!fGuarded)
458 {
459 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
460 AssertLogRelMsgReturn(phys_ram_dirty, ("Failed to allocate %u bytes of dirty page map bytes\n", phys_ram_dirty_size), VERR_NO_MEMORY);
461 }
462 else
463 {
464 /*
465 * Fill it up the nearest 4GB RAM and leave at least _64KB of guard after it.
466 */
467 uint32_t cbBitmapAligned = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
468 uint32_t cbBitmapFull = RT_ALIGN_32(phys_ram_dirty_size, (_4G >> PAGE_SHIFT));
469 if (cbBitmapFull == cbBitmapAligned)
470 cbBitmapFull += _4G >> PAGE_SHIFT;
471 else if (cbBitmapFull - cbBitmapAligned < _64K)
472 cbBitmapFull += _64K;
473
474 phys_ram_dirty = RTMemPageAlloc(cbBitmapFull);
475 AssertLogRelMsgReturn(phys_ram_dirty, ("Failed to allocate %u bytes of dirty page map bytes\n", cbBitmapFull), VERR_NO_MEMORY);
476
477 rc = RTMemProtect(phys_ram_dirty + cbBitmapAligned, cbBitmapFull - cbBitmapAligned, RTMEM_PROT_NONE);
478 if (RT_FAILURE(rc))
479 {
480 RTMemPageFree(phys_ram_dirty);
481 AssertLogRelRCReturn(rc, rc);
482 }
483
484 phys_ram_dirty += cbBitmapAligned - phys_ram_dirty_size;
485 }
486
487 /* initialize it. */
488 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
489 return rc;
490}
491
492
493/**
494 * Terminates the REM.
495 *
496 * Termination means cleaning up and freeing all resources,
497 * the VM it self is at this point powered off or suspended.
498 *
499 * @returns VBox status code.
500 * @param pVM The VM to operate on.
501 */
502REMR3DECL(int) REMR3Term(PVM pVM)
503{
504 return VINF_SUCCESS;
505}
506
507
508/**
509 * The VM is being reset.
510 *
511 * For the REM component this means to call the cpu_reset() and
512 * reinitialize some state variables.
513 *
514 * @param pVM VM handle.
515 */
516REMR3DECL(void) REMR3Reset(PVM pVM)
517{
518 /*
519 * Reset the REM cpu.
520 */
521 pVM->rem.s.fIgnoreAll = true;
522 cpu_reset(&pVM->rem.s.Env);
523 pVM->rem.s.cInvalidatedPages = 0;
524 pVM->rem.s.fIgnoreAll = false;
525
526 /* Clear raw ring 0 init state */
527 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
528
529 /* Flush the TBs the next time we execute code here. */
530 pVM->rem.s.fFlushTBs = true;
531}
532
533
534/**
535 * Execute state save operation.
536 *
537 * @returns VBox status code.
538 * @param pVM VM Handle.
539 * @param pSSM SSM operation handle.
540 */
541static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
542{
543 LogFlow(("remR3Save:\n"));
544
545 /*
546 * Save the required CPU Env bits.
547 * (Not much because we're never in REM when doing the save.)
548 */
549 PREM pRem = &pVM->rem.s;
550 Assert(!pRem->fInREM);
551 SSMR3PutU32(pSSM, pRem->Env.hflags);
552 SSMR3PutU32(pSSM, ~0); /* separator */
553
554 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
555 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
556 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
557
558 return SSMR3PutU32(pSSM, ~0); /* terminator */
559}
560
561
562/**
563 * Execute state load operation.
564 *
565 * @returns VBox status code.
566 * @param pVM VM Handle.
567 * @param pSSM SSM operation handle.
568 * @param u32Version Data layout version.
569 */
570static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
571{
572 uint32_t u32Dummy;
573 uint32_t fRawRing0 = false;
574 LogFlow(("remR3Load:\n"));
575
576 /*
577 * Validate version.
578 */
579 if ( u32Version != REM_SAVED_STATE_VERSION
580 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
581 {
582 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
583 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
584 }
585
586 /*
587 * Do a reset to be on the safe side...
588 */
589 REMR3Reset(pVM);
590
591 /*
592 * Ignore all ignorable notifications.
593 * (Not doing this will cause serious trouble.)
594 */
595 pVM->rem.s.fIgnoreAll = true;
596
597 /*
598 * Load the required CPU Env bits.
599 * (Not much because we're never in REM when doing the save.)
600 */
601 PREM pRem = &pVM->rem.s;
602 Assert(!pRem->fInREM);
603 SSMR3GetU32(pSSM, &pRem->Env.hflags);
604 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
605 {
606 /* Redundant REM CPU state has to be loaded, but can be ignored. */
607 CPUX86State_Ver16 temp;
608 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
609 }
610
611 uint32_t u32Sep;
612 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
613 if (RT_FAILURE(rc))
614 return rc;
615 if (u32Sep != ~0U)
616 {
617 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
618 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
619 }
620
621 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
622 SSMR3GetUInt(pSSM, &fRawRing0);
623 if (fRawRing0)
624 pRem->Env.state |= CPU_RAW_RING0;
625
626 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
627 {
628 /*
629 * Load the REM stuff.
630 */
631 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
632 if (RT_FAILURE(rc))
633 return rc;
634 if (pRem->cInvalidatedPages > RT_ELEMENTS(pRem->aGCPtrInvalidatedPages))
635 {
636 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
637 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
638 }
639 unsigned i;
640 for (i = 0; i < pRem->cInvalidatedPages; i++)
641 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
642 }
643
644 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
645 if (RT_FAILURE(rc))
646 return rc;
647
648 /* check the terminator. */
649 rc = SSMR3GetU32(pSSM, &u32Sep);
650 if (RT_FAILURE(rc))
651 return rc;
652 if (u32Sep != ~0U)
653 {
654 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
655 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
656 }
657
658 /*
659 * Get the CPUID features.
660 */
661 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
662 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
663
664 /*
665 * Sync the Load Flush the TLB
666 */
667 tlb_flush(&pRem->Env, 1);
668
669 /*
670 * Stop ignoring ignornable notifications.
671 */
672 pVM->rem.s.fIgnoreAll = false;
673
674 /*
675 * Sync the whole CPU state when executing code in the recompiler.
676 */
677 CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
678 return VINF_SUCCESS;
679}
680
681
682
683#undef LOG_GROUP
684#define LOG_GROUP LOG_GROUP_REM_RUN
685
686/**
687 * Single steps an instruction in recompiled mode.
688 *
689 * Before calling this function the REM state needs to be in sync with
690 * the VM. Call REMR3State() to perform the sync. It's only necessary
691 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
692 * and after calling REMR3StateBack().
693 *
694 * @returns VBox status code.
695 *
696 * @param pVM VM Handle.
697 */
698REMR3DECL(int) REMR3Step(PVM pVM)
699{
700 /*
701 * Lock the REM - we don't wanna have anyone interrupting us
702 * while stepping - and enabled single stepping. We also ignore
703 * pending interrupts and suchlike.
704 */
705 int interrupt_request = pVM->rem.s.Env.interrupt_request;
706 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
707 pVM->rem.s.Env.interrupt_request = 0;
708 cpu_single_step(&pVM->rem.s.Env, 1);
709
710 /*
711 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
712 */
713 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
714 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
715
716 /*
717 * Execute and handle the return code.
718 * We execute without enabling the cpu tick, so on success we'll
719 * just flip it on and off to make sure it moves
720 */
721 int rc = cpu_exec(&pVM->rem.s.Env);
722 if (rc == EXCP_DEBUG)
723 {
724 TMCpuTickResume(pVM);
725 TMCpuTickPause(pVM);
726 TMVirtualResume(pVM);
727 TMVirtualPause(pVM);
728 rc = VINF_EM_DBG_STEPPED;
729 }
730 else
731 {
732 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
733 switch (rc)
734 {
735 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
736 case EXCP_HLT:
737 case EXCP_HALTED: rc = VINF_EM_HALT; break;
738 case EXCP_RC:
739 rc = pVM->rem.s.rc;
740 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
741 break;
742 default:
743 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
744 rc = VERR_INTERNAL_ERROR;
745 break;
746 }
747 }
748
749 /*
750 * Restore the stuff we changed to prevent interruption.
751 * Unlock the REM.
752 */
753 if (fBp)
754 {
755 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
756 Assert(rc2 == 0); NOREF(rc2);
757 }
758 cpu_single_step(&pVM->rem.s.Env, 0);
759 pVM->rem.s.Env.interrupt_request = interrupt_request;
760
761 return rc;
762}
763
764
765/**
766 * Set a breakpoint using the REM facilities.
767 *
768 * @returns VBox status code.
769 * @param pVM The VM handle.
770 * @param Address The breakpoint address.
771 * @thread The emulation thread.
772 */
773REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
774{
775 VM_ASSERT_EMT(pVM);
776 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
777 {
778 LogFlow(("REMR3BreakpointSet: Address=%RGv\n", Address));
779 return VINF_SUCCESS;
780 }
781 LogFlow(("REMR3BreakpointSet: Address=%RGv - failed!\n", Address));
782 return VERR_REM_NO_MORE_BP_SLOTS;
783}
784
785
786/**
787 * Clears a breakpoint set by REMR3BreakpointSet().
788 *
789 * @returns VBox status code.
790 * @param pVM The VM handle.
791 * @param Address The breakpoint address.
792 * @thread The emulation thread.
793 */
794REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
795{
796 VM_ASSERT_EMT(pVM);
797 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
798 {
799 LogFlow(("REMR3BreakpointClear: Address=%RGv\n", Address));
800 return VINF_SUCCESS;
801 }
802 LogFlow(("REMR3BreakpointClear: Address=%RGv - not found!\n", Address));
803 return VERR_REM_BP_NOT_FOUND;
804}
805
806
807/**
808 * Emulate an instruction.
809 *
810 * This function executes one instruction without letting anyone
811 * interrupt it. This is intended for being called while being in
812 * raw mode and thus will take care of all the state syncing between
813 * REM and the rest.
814 *
815 * @returns VBox status code.
816 * @param pVM VM handle.
817 */
818REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
819{
820 bool fFlushTBs;
821
822 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
823
824 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
825 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
826 */
827 if (HWACCMIsEnabled(pVM))
828 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
829
830 /* Skip the TB flush as that's rather expensive and not necessary for single instruction emulation. */
831 fFlushTBs = pVM->rem.s.fFlushTBs;
832 pVM->rem.s.fFlushTBs = false;
833
834 /*
835 * Sync the state and enable single instruction / single stepping.
836 */
837 int rc = REMR3State(pVM);
838 pVM->rem.s.fFlushTBs = fFlushTBs;
839 if (RT_SUCCESS(rc))
840 {
841 int interrupt_request = pVM->rem.s.Env.interrupt_request;
842 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
843 Assert(!pVM->rem.s.Env.singlestep_enabled);
844#if 1
845
846 /*
847 * Now we set the execute single instruction flag and enter the cpu_exec loop.
848 */
849 TMNotifyStartOfExecution(pVM);
850 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
851 rc = cpu_exec(&pVM->rem.s.Env);
852 TMNotifyEndOfExecution(pVM);
853 switch (rc)
854 {
855 /*
856 * Executed without anything out of the way happening.
857 */
858 case EXCP_SINGLE_INSTR:
859 rc = VINF_EM_RESCHEDULE;
860 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
861 break;
862
863 /*
864 * If we take a trap or start servicing a pending interrupt, we might end up here.
865 * (Timer thread or some other thread wishing EMT's attention.)
866 */
867 case EXCP_INTERRUPT:
868 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
869 rc = VINF_EM_RESCHEDULE;
870 break;
871
872 /*
873 * Single step, we assume!
874 * If there was a breakpoint there we're fucked now.
875 */
876 case EXCP_DEBUG:
877 {
878 /* breakpoint or single step? */
879 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
880 int iBP;
881 rc = VINF_EM_DBG_STEPPED;
882 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
883 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
884 {
885 rc = VINF_EM_DBG_BREAKPOINT;
886 break;
887 }
888 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
889 break;
890 }
891
892 /*
893 * hlt instruction.
894 */
895 case EXCP_HLT:
896 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
897 rc = VINF_EM_HALT;
898 break;
899
900 /*
901 * The VM has halted.
902 */
903 case EXCP_HALTED:
904 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
905 rc = VINF_EM_HALT;
906 break;
907
908 /*
909 * Switch to RAW-mode.
910 */
911 case EXCP_EXECUTE_RAW:
912 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
913 rc = VINF_EM_RESCHEDULE_RAW;
914 break;
915
916 /*
917 * Switch to hardware accelerated RAW-mode.
918 */
919 case EXCP_EXECUTE_HWACC:
920 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
921 rc = VINF_EM_RESCHEDULE_HWACC;
922 break;
923
924 /*
925 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
926 */
927 case EXCP_RC:
928 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
929 rc = pVM->rem.s.rc;
930 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
931 break;
932
933 /*
934 * Figure out the rest when they arrive....
935 */
936 default:
937 AssertMsgFailed(("rc=%d\n", rc));
938 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
939 rc = VINF_EM_RESCHEDULE;
940 break;
941 }
942
943 /*
944 * Switch back the state.
945 */
946#else
947 pVM->rem.s.Env.interrupt_request = 0;
948 cpu_single_step(&pVM->rem.s.Env, 1);
949
950 /*
951 * Execute and handle the return code.
952 * We execute without enabling the cpu tick, so on success we'll
953 * just flip it on and off to make sure it moves.
954 *
955 * (We do not use emulate_single_instr() because that doesn't enter the
956 * right way in will cause serious trouble if a longjmp was attempted.)
957 */
958# ifdef DEBUG_bird
959 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
960# endif
961 TMNotifyStartOfExecution(pVM);
962 int cTimesMax = 16384;
963 uint32_t eip = pVM->rem.s.Env.eip;
964 do
965 {
966 rc = cpu_exec(&pVM->rem.s.Env);
967
968 } while ( eip == pVM->rem.s.Env.eip
969 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
970 && --cTimesMax > 0);
971 TMNotifyEndOfExecution(pVM);
972 switch (rc)
973 {
974 /*
975 * Single step, we assume!
976 * If there was a breakpoint there we're fucked now.
977 */
978 case EXCP_DEBUG:
979 {
980 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
981 rc = VINF_EM_RESCHEDULE;
982 break;
983 }
984
985 /*
986 * We cannot be interrupted!
987 */
988 case EXCP_INTERRUPT:
989 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
990 rc = VERR_INTERNAL_ERROR;
991 break;
992
993 /*
994 * hlt instruction.
995 */
996 case EXCP_HLT:
997 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
998 rc = VINF_EM_HALT;
999 break;
1000
1001 /*
1002 * The VM has halted.
1003 */
1004 case EXCP_HALTED:
1005 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
1006 rc = VINF_EM_HALT;
1007 break;
1008
1009 /*
1010 * Switch to RAW-mode.
1011 */
1012 case EXCP_EXECUTE_RAW:
1013 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1014 rc = VINF_EM_RESCHEDULE_RAW;
1015 break;
1016
1017 /*
1018 * Switch to hardware accelerated RAW-mode.
1019 */
1020 case EXCP_EXECUTE_HWACC:
1021 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1022 rc = VINF_EM_RESCHEDULE_HWACC;
1023 break;
1024
1025 /*
1026 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1027 */
1028 case EXCP_RC:
1029 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
1030 rc = pVM->rem.s.rc;
1031 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1032 break;
1033
1034 /*
1035 * Figure out the rest when they arrive....
1036 */
1037 default:
1038 AssertMsgFailed(("rc=%d\n", rc));
1039 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
1040 rc = VINF_SUCCESS;
1041 break;
1042 }
1043
1044 /*
1045 * Switch back the state.
1046 */
1047 cpu_single_step(&pVM->rem.s.Env, 0);
1048#endif
1049 pVM->rem.s.Env.interrupt_request = interrupt_request;
1050 int rc2 = REMR3StateBack(pVM);
1051 AssertRC(rc2);
1052 }
1053
1054 Log2(("REMR3EmulateInstruction: returns %Rrc (cs:eip=%04x:%RGv)\n",
1055 rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1056 return rc;
1057}
1058
1059
1060/**
1061 * Runs code in recompiled mode.
1062 *
1063 * Before calling this function the REM state needs to be in sync with
1064 * the VM. Call REMR3State() to perform the sync. It's only necessary
1065 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
1066 * and after calling REMR3StateBack().
1067 *
1068 * @returns VBox status code.
1069 *
1070 * @param pVM VM Handle.
1071 */
1072REMR3DECL(int) REMR3Run(PVM pVM)
1073{
1074 Log2(("REMR3Run: (cs:eip=%04x:%RGv)\n", pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1075 Assert(pVM->rem.s.fInREM);
1076
1077 TMNotifyStartOfExecution(pVM);
1078 int rc = cpu_exec(&pVM->rem.s.Env);
1079 TMNotifyEndOfExecution(pVM);
1080 switch (rc)
1081 {
1082 /*
1083 * This happens when the execution was interrupted
1084 * by an external event, like pending timers.
1085 */
1086 case EXCP_INTERRUPT:
1087 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
1088 rc = VINF_SUCCESS;
1089 break;
1090
1091 /*
1092 * hlt instruction.
1093 */
1094 case EXCP_HLT:
1095 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1096 rc = VINF_EM_HALT;
1097 break;
1098
1099 /*
1100 * The VM has halted.
1101 */
1102 case EXCP_HALTED:
1103 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1104 rc = VINF_EM_HALT;
1105 break;
1106
1107 /*
1108 * Breakpoint/single step.
1109 */
1110 case EXCP_DEBUG:
1111 {
1112#if 0//def DEBUG_bird
1113 static int iBP = 0;
1114 printf("howdy, breakpoint! iBP=%d\n", iBP);
1115 switch (iBP)
1116 {
1117 case 0:
1118 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1119 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1120 //pVM->rem.s.Env.interrupt_request = 0;
1121 //pVM->rem.s.Env.exception_index = -1;
1122 //g_fInterruptDisabled = 1;
1123 rc = VINF_SUCCESS;
1124 asm("int3");
1125 break;
1126 default:
1127 asm("int3");
1128 break;
1129 }
1130 iBP++;
1131#else
1132 /* breakpoint or single step? */
1133 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1134 int iBP;
1135 rc = VINF_EM_DBG_STEPPED;
1136 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1137 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1138 {
1139 rc = VINF_EM_DBG_BREAKPOINT;
1140 break;
1141 }
1142 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
1143#endif
1144 break;
1145 }
1146
1147 /*
1148 * Switch to RAW-mode.
1149 */
1150 case EXCP_EXECUTE_RAW:
1151 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1152 rc = VINF_EM_RESCHEDULE_RAW;
1153 break;
1154
1155 /*
1156 * Switch to hardware accelerated RAW-mode.
1157 */
1158 case EXCP_EXECUTE_HWACC:
1159 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1160 rc = VINF_EM_RESCHEDULE_HWACC;
1161 break;
1162
1163#ifdef VBOX_WITH_VMI
1164 /*
1165 *
1166 */
1167 case EXCP_PARAV_CALL:
1168 Log2(("REMR3Run: cpu_exec -> EXCP_PARAV_CALL\n"));
1169 rc = VINF_EM_RESCHEDULE_PARAV;
1170 break;
1171#endif
1172
1173 /*
1174 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1175 */
1176 case EXCP_RC:
1177 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
1178 rc = pVM->rem.s.rc;
1179 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1180 break;
1181
1182 /*
1183 * Figure out the rest when they arrive....
1184 */
1185 default:
1186 AssertMsgFailed(("rc=%d\n", rc));
1187 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1188 rc = VINF_SUCCESS;
1189 break;
1190 }
1191
1192 Log2(("REMR3Run: returns %Rrc (cs:eip=%04x:%RGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1193 return rc;
1194}
1195
1196
1197/**
1198 * Check if the cpu state is suitable for Raw execution.
1199 *
1200 * @returns boolean
1201 * @param env The CPU env struct.
1202 * @param eip The EIP to check this for (might differ from env->eip).
1203 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1204 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1205 *
1206 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1207 */
1208bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1209{
1210 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1211 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1212 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1213
1214 /* Update counter. */
1215 env->pVM->rem.s.cCanExecuteRaw++;
1216
1217 if (HWACCMIsEnabled(env->pVM))
1218 {
1219 env->state |= CPU_RAW_HWACC;
1220
1221 /*
1222 * Create partial context for HWACCMR3CanExecuteGuest
1223 */
1224 CPUMCTX Ctx;
1225 Ctx.cr0 = env->cr[0];
1226 Ctx.cr3 = env->cr[3];
1227 Ctx.cr4 = env->cr[4];
1228
1229 Ctx.tr = env->tr.selector;
1230 Ctx.trHid.u64Base = env->tr.base;
1231 Ctx.trHid.u32Limit = env->tr.limit;
1232 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1233
1234 Ctx.idtr.cbIdt = env->idt.limit;
1235 Ctx.idtr.pIdt = env->idt.base;
1236
1237 Ctx.eflags.u32 = env->eflags;
1238
1239 Ctx.cs = env->segs[R_CS].selector;
1240 Ctx.csHid.u64Base = env->segs[R_CS].base;
1241 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1242 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1243
1244 Ctx.ds = env->segs[R_DS].selector;
1245 Ctx.dsHid.u64Base = env->segs[R_DS].base;
1246 Ctx.dsHid.u32Limit = env->segs[R_DS].limit;
1247 Ctx.dsHid.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1248
1249 Ctx.es = env->segs[R_ES].selector;
1250 Ctx.esHid.u64Base = env->segs[R_ES].base;
1251 Ctx.esHid.u32Limit = env->segs[R_ES].limit;
1252 Ctx.esHid.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1253
1254 Ctx.fs = env->segs[R_FS].selector;
1255 Ctx.fsHid.u64Base = env->segs[R_FS].base;
1256 Ctx.fsHid.u32Limit = env->segs[R_FS].limit;
1257 Ctx.fsHid.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1258
1259 Ctx.gs = env->segs[R_GS].selector;
1260 Ctx.gsHid.u64Base = env->segs[R_GS].base;
1261 Ctx.gsHid.u32Limit = env->segs[R_GS].limit;
1262 Ctx.gsHid.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1263
1264 Ctx.ss = env->segs[R_SS].selector;
1265 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1266 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1267 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1268
1269 Ctx.msrEFER = env->efer;
1270
1271 /* Hardware accelerated raw-mode:
1272 *
1273 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1274 */
1275 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1276 {
1277 *piException = EXCP_EXECUTE_HWACC;
1278 return true;
1279 }
1280 return false;
1281 }
1282
1283 /*
1284 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1285 * or 32 bits protected mode ring 0 code
1286 *
1287 * The tests are ordered by the likelyhood of being true during normal execution.
1288 */
1289 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1290 {
1291 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1292 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1293 return false;
1294 }
1295
1296#ifndef VBOX_RAW_V86
1297 if (fFlags & VM_MASK) {
1298 STAM_COUNTER_INC(&gStatRefuseVM86);
1299 Log2(("raw mode refused: VM_MASK\n"));
1300 return false;
1301 }
1302#endif
1303
1304 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1305 {
1306#ifndef DEBUG_bird
1307 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1308#endif
1309 return false;
1310 }
1311
1312 if (env->singlestep_enabled)
1313 {
1314 //Log2(("raw mode refused: Single step\n"));
1315 return false;
1316 }
1317
1318 if (env->nb_breakpoints > 0)
1319 {
1320 //Log2(("raw mode refused: Breakpoints\n"));
1321 return false;
1322 }
1323
1324 uint32_t u32CR0 = env->cr[0];
1325 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1326 {
1327 STAM_COUNTER_INC(&gStatRefusePaging);
1328 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1329 return false;
1330 }
1331
1332 if (env->cr[4] & CR4_PAE_MASK)
1333 {
1334 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1335 {
1336 STAM_COUNTER_INC(&gStatRefusePAE);
1337 return false;
1338 }
1339 }
1340
1341 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1342 {
1343 if (!EMIsRawRing3Enabled(env->pVM))
1344 return false;
1345
1346 if (!(env->eflags & IF_MASK))
1347 {
1348 STAM_COUNTER_INC(&gStatRefuseIF0);
1349 Log2(("raw mode refused: IF (RawR3)\n"));
1350 return false;
1351 }
1352
1353 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1354 {
1355 STAM_COUNTER_INC(&gStatRefuseWP0);
1356 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1357 return false;
1358 }
1359 }
1360 else
1361 {
1362 if (!EMIsRawRing0Enabled(env->pVM))
1363 return false;
1364
1365 // Let's start with pure 32 bits ring 0 code first
1366 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1367 {
1368 STAM_COUNTER_INC(&gStatRefuseCode16);
1369 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1370 return false;
1371 }
1372
1373 // Only R0
1374 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1375 {
1376 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1377 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1378 return false;
1379 }
1380
1381 if (!(u32CR0 & CR0_WP_MASK))
1382 {
1383 STAM_COUNTER_INC(&gStatRefuseWP0);
1384 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1385 return false;
1386 }
1387
1388 if (PATMIsPatchGCAddr(env->pVM, eip))
1389 {
1390 Log2(("raw r0 mode forced: patch code\n"));
1391 *piException = EXCP_EXECUTE_RAW;
1392 return true;
1393 }
1394
1395#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1396 if (!(env->eflags & IF_MASK))
1397 {
1398 STAM_COUNTER_INC(&gStatRefuseIF0);
1399 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1400 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1401 return false;
1402 }
1403#endif
1404
1405 env->state |= CPU_RAW_RING0;
1406 }
1407
1408 /*
1409 * Don't reschedule the first time we're called, because there might be
1410 * special reasons why we're here that is not covered by the above checks.
1411 */
1412 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1413 {
1414 Log2(("raw mode refused: first scheduling\n"));
1415 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1416 return false;
1417 }
1418
1419 Assert(PGMPhysIsA20Enabled(env->pVM));
1420 *piException = EXCP_EXECUTE_RAW;
1421 return true;
1422}
1423
1424
1425/**
1426 * Fetches a code byte.
1427 *
1428 * @returns Success indicator (bool) for ease of use.
1429 * @param env The CPU environment structure.
1430 * @param GCPtrInstr Where to fetch code.
1431 * @param pu8Byte Where to store the byte on success
1432 */
1433bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1434{
1435 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1436 if (RT_SUCCESS(rc))
1437 return true;
1438 return false;
1439}
1440
1441
1442/**
1443 * Flush (or invalidate if you like) page table/dir entry.
1444 *
1445 * (invlpg instruction; tlb_flush_page)
1446 *
1447 * @param env Pointer to cpu environment.
1448 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1449 */
1450void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1451{
1452 PVM pVM = env->pVM;
1453
1454 /*
1455 * When we're replaying invlpg instructions or restoring a saved
1456 * state we disable this path.
1457 */
1458 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1459 return;
1460 Log(("remR3FlushPage: GCPtr=%RGv\n", GCPtr));
1461 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1462
1463 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1464
1465 /*
1466 * Update the control registers before calling PGMFlushPage.
1467 */
1468 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1469 pCtx->cr0 = env->cr[0];
1470 pCtx->cr3 = env->cr[3];
1471 if ((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME)
1472 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
1473 pCtx->cr4 = env->cr[4];
1474
1475 /*
1476 * Let PGM do the rest.
1477 */
1478 int rc = PGMInvalidatePage(pVM, GCPtr);
1479 if (RT_FAILURE(rc))
1480 {
1481 AssertMsgFailed(("remR3FlushPage %RGv failed with %d!!\n", GCPtr, rc));
1482 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1483 }
1484 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1485}
1486
1487
1488/**
1489 * Called from tlb_protect_code in order to write monitor a code page.
1490 *
1491 * @param env Pointer to the CPU environment.
1492 * @param GCPtr Code page to monitor
1493 */
1494void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1495{
1496#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1497 Assert(env->pVM->rem.s.fInREM);
1498 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1499 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1500 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1501 && !(env->eflags & VM_MASK) /* no V86 mode */
1502 && !HWACCMIsEnabled(env->pVM))
1503 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1504#endif
1505}
1506
1507
1508/**
1509 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1510 *
1511 * @param env Pointer to the CPU environment.
1512 * @param GCPtr Code page to monitor
1513 */
1514void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1515{
1516 Assert(env->pVM->rem.s.fInREM);
1517#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1518 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1519 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1520 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1521 && !(env->eflags & VM_MASK) /* no V86 mode */
1522 && !HWACCMIsEnabled(env->pVM))
1523 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1524#endif
1525}
1526
1527
1528/**
1529 * Called when the CPU is initialized, any of the CRx registers are changed or
1530 * when the A20 line is modified.
1531 *
1532 * @param env Pointer to the CPU environment.
1533 * @param fGlobal Set if the flush is global.
1534 */
1535void remR3FlushTLB(CPUState *env, bool fGlobal)
1536{
1537 PVM pVM = env->pVM;
1538
1539 /*
1540 * When we're replaying invlpg instructions or restoring a saved
1541 * state we disable this path.
1542 */
1543 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1544 return;
1545 Assert(pVM->rem.s.fInREM);
1546
1547 /*
1548 * The caller doesn't check cr4, so we have to do that for ourselves.
1549 */
1550 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1551 fGlobal = true;
1552 Log(("remR3FlushTLB: CR0=%RGr CR3=%RGr CR4=%RGr %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1553
1554 /*
1555 * Update the control registers before calling PGMR3FlushTLB.
1556 */
1557 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1558 pCtx->cr0 = env->cr[0];
1559 pCtx->cr3 = env->cr[3];
1560 if ((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME)
1561 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
1562 pCtx->cr4 = env->cr[4];
1563
1564 /*
1565 * Let PGM do the rest.
1566 */
1567 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1568}
1569
1570
1571/**
1572 * Called when any of the cr0, cr4 or efer registers is updated.
1573 *
1574 * @param env Pointer to the CPU environment.
1575 */
1576void remR3ChangeCpuMode(CPUState *env)
1577{
1578 int rc;
1579 PVM pVM = env->pVM;
1580
1581 /*
1582 * When we're replaying loads or restoring a saved
1583 * state this path is disabled.
1584 */
1585 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1586 return;
1587 Assert(pVM->rem.s.fInREM);
1588
1589 /*
1590 * Update the control registers before calling PGMChangeMode()
1591 * as it may need to map whatever cr3 is pointing to.
1592 */
1593 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1594 pCtx->cr0 = env->cr[0];
1595 pCtx->cr3 = env->cr[3];
1596 if ((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME)
1597 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
1598 pCtx->cr4 = env->cr[4];
1599
1600#ifdef TARGET_X86_64
1601 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1602 if (rc != VINF_SUCCESS)
1603 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], env->efer, rc);
1604#else
1605 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1606 if (rc != VINF_SUCCESS)
1607 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], 0LL, rc);
1608#endif
1609}
1610
1611
1612/**
1613 * Called from compiled code to run dma.
1614 *
1615 * @param env Pointer to the CPU environment.
1616 */
1617void remR3DmaRun(CPUState *env)
1618{
1619 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1620 PDMR3DmaRun(env->pVM);
1621 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1622}
1623
1624
1625/**
1626 * Called from compiled code to schedule pending timers in VMM
1627 *
1628 * @param env Pointer to the CPU environment.
1629 */
1630void remR3TimersRun(CPUState *env)
1631{
1632 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1633 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1634 TMR3TimerQueuesDo(env->pVM);
1635 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1636 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1637}
1638
1639
1640/**
1641 * Record trap occurance
1642 *
1643 * @returns VBox status code
1644 * @param env Pointer to the CPU environment.
1645 * @param uTrap Trap nr
1646 * @param uErrorCode Error code
1647 * @param pvNextEIP Next EIP
1648 */
1649int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1650{
1651 PVM pVM = env->pVM;
1652#ifdef VBOX_WITH_STATISTICS
1653 static STAMCOUNTER s_aStatTrap[255];
1654 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1655#endif
1656
1657#ifdef VBOX_WITH_STATISTICS
1658 if (uTrap < 255)
1659 {
1660 if (!s_aRegisters[uTrap])
1661 {
1662 s_aRegisters[uTrap] = true;
1663 char szStatName[64];
1664 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1665 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1666 }
1667 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1668 }
1669#endif
1670 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, (RTGCPTR)pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1671 if( uTrap < 0x20
1672 && (env->cr[0] & X86_CR0_PE)
1673 && !(env->eflags & X86_EFL_VM))
1674 {
1675#ifdef DEBUG
1676 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1677#endif
1678 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1679 {
1680 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, (RTGCPTR)pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1681 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1682 return VERR_REM_TOO_MANY_TRAPS;
1683 }
1684 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1685 pVM->rem.s.cPendingExceptions = 1;
1686 pVM->rem.s.uPendingException = uTrap;
1687 pVM->rem.s.uPendingExcptEIP = env->eip;
1688 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1689 }
1690 else
1691 {
1692 pVM->rem.s.cPendingExceptions = 0;
1693 pVM->rem.s.uPendingException = uTrap;
1694 pVM->rem.s.uPendingExcptEIP = env->eip;
1695 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1696 }
1697 return VINF_SUCCESS;
1698}
1699
1700
1701/*
1702 * Clear current active trap
1703 *
1704 * @param pVM VM Handle.
1705 */
1706void remR3TrapClear(PVM pVM)
1707{
1708 pVM->rem.s.cPendingExceptions = 0;
1709 pVM->rem.s.uPendingException = 0;
1710 pVM->rem.s.uPendingExcptEIP = 0;
1711 pVM->rem.s.uPendingExcptCR2 = 0;
1712}
1713
1714
1715/*
1716 * Record previous call instruction addresses
1717 *
1718 * @param env Pointer to the CPU environment.
1719 */
1720void remR3RecordCall(CPUState *env)
1721{
1722 CSAMR3RecordCallAddress(env->pVM, env->eip);
1723}
1724
1725
1726/**
1727 * Syncs the internal REM state with the VM.
1728 *
1729 * This must be called before REMR3Run() is invoked whenever when the REM
1730 * state is not up to date. Calling it several times in a row is not
1731 * permitted.
1732 *
1733 * @returns VBox status code.
1734 *
1735 * @param pVM VM Handle.
1736 *
1737 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1738 * no do this since the majority of the callers don't want any unnecessary of events
1739 * pending that would immediatly interrupt execution.
1740 */
1741REMR3DECL(int) REMR3State(PVM pVM)
1742{
1743 Log2(("REMR3State:\n"));
1744 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1745 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1746 register unsigned fFlags;
1747 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1748 unsigned i;
1749
1750 Assert(!pVM->rem.s.fInREM);
1751 pVM->rem.s.fInStateSync = true;
1752
1753 /*
1754 * If we have to flush TBs, do that immediately.
1755 */
1756 if (pVM->rem.s.fFlushTBs)
1757 {
1758 STAM_COUNTER_INC(&gStatFlushTBs);
1759 tb_flush(&pVM->rem.s.Env);
1760 pVM->rem.s.fFlushTBs = false;
1761 }
1762
1763 /*
1764 * Copy the registers which require no special handling.
1765 */
1766#ifdef TARGET_X86_64
1767 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1768 Assert(R_EAX == 0);
1769 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1770 Assert(R_ECX == 1);
1771 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1772 Assert(R_EDX == 2);
1773 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1774 Assert(R_EBX == 3);
1775 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1776 Assert(R_ESP == 4);
1777 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1778 Assert(R_EBP == 5);
1779 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1780 Assert(R_ESI == 6);
1781 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1782 Assert(R_EDI == 7);
1783 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1784 pVM->rem.s.Env.regs[8] = pCtx->r8;
1785 pVM->rem.s.Env.regs[9] = pCtx->r9;
1786 pVM->rem.s.Env.regs[10] = pCtx->r10;
1787 pVM->rem.s.Env.regs[11] = pCtx->r11;
1788 pVM->rem.s.Env.regs[12] = pCtx->r12;
1789 pVM->rem.s.Env.regs[13] = pCtx->r13;
1790 pVM->rem.s.Env.regs[14] = pCtx->r14;
1791 pVM->rem.s.Env.regs[15] = pCtx->r15;
1792
1793 pVM->rem.s.Env.eip = pCtx->rip;
1794
1795 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1796#else
1797 Assert(R_EAX == 0);
1798 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1799 Assert(R_ECX == 1);
1800 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1801 Assert(R_EDX == 2);
1802 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1803 Assert(R_EBX == 3);
1804 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1805 Assert(R_ESP == 4);
1806 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1807 Assert(R_EBP == 5);
1808 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1809 Assert(R_ESI == 6);
1810 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1811 Assert(R_EDI == 7);
1812 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1813 pVM->rem.s.Env.eip = pCtx->eip;
1814
1815 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1816#endif
1817
1818 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1819
1820 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1821 for (i=0;i<8;i++)
1822 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
1823
1824 /*
1825 * Clear the halted hidden flag (the interrupt waking up the CPU can
1826 * have been dispatched in raw mode).
1827 */
1828 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1829
1830 /*
1831 * Replay invlpg?
1832 */
1833 if (pVM->rem.s.cInvalidatedPages)
1834 {
1835 pVM->rem.s.fIgnoreInvlPg = true;
1836 RTUINT i;
1837 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1838 {
1839 Log2(("REMR3State: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1840 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1841 }
1842 pVM->rem.s.fIgnoreInvlPg = false;
1843 pVM->rem.s.cInvalidatedPages = 0;
1844 }
1845
1846 /* Replay notification changes? */
1847 if (pVM->rem.s.cHandlerNotifications)
1848 REMR3ReplayHandlerNotifications(pVM);
1849
1850 /* Update MSRs; before CRx registers! */
1851 pVM->rem.s.Env.efer = pCtx->msrEFER;
1852 pVM->rem.s.Env.star = pCtx->msrSTAR;
1853 pVM->rem.s.Env.pat = pCtx->msrPAT;
1854#ifdef TARGET_X86_64
1855 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1856 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1857 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1858 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1859
1860 /* Update the internal long mode activate flag according to the new EFER value. */
1861 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1862 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1863 else
1864 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1865#endif
1866
1867 /*
1868 * Registers which are rarely changed and require special handling / order when changed.
1869 */
1870 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1871 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1872 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1873 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR
1874 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1875 {
1876 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1877 {
1878 pVM->rem.s.fIgnoreCR3Load = true;
1879 tlb_flush(&pVM->rem.s.Env, true);
1880 pVM->rem.s.fIgnoreCR3Load = false;
1881 }
1882
1883 /* CR4 before CR0! */
1884 if (fFlags & CPUM_CHANGED_CR4)
1885 {
1886 pVM->rem.s.fIgnoreCR3Load = true;
1887 pVM->rem.s.fIgnoreCpuMode = true;
1888 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1889 pVM->rem.s.fIgnoreCpuMode = false;
1890 pVM->rem.s.fIgnoreCR3Load = false;
1891 }
1892
1893 if (fFlags & CPUM_CHANGED_CR0)
1894 {
1895 pVM->rem.s.fIgnoreCR3Load = true;
1896 pVM->rem.s.fIgnoreCpuMode = true;
1897 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1898 pVM->rem.s.fIgnoreCpuMode = false;
1899 pVM->rem.s.fIgnoreCR3Load = false;
1900 }
1901
1902 if (fFlags & CPUM_CHANGED_CR3)
1903 {
1904 pVM->rem.s.fIgnoreCR3Load = true;
1905 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1906 pVM->rem.s.fIgnoreCR3Load = false;
1907 }
1908
1909 if (fFlags & CPUM_CHANGED_GDTR)
1910 {
1911 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1912 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1913 }
1914
1915 if (fFlags & CPUM_CHANGED_IDTR)
1916 {
1917 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1918 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1919 }
1920
1921 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1922 {
1923 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1924 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1925 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1926 }
1927
1928 if (fFlags & CPUM_CHANGED_LDTR)
1929 {
1930 if (fHiddenSelRegsValid)
1931 {
1932 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1933 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1934 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1935 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;
1936 }
1937 else
1938 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1939 }
1940
1941 if (fFlags & CPUM_CHANGED_CPUID)
1942 {
1943 uint32_t u32Dummy;
1944
1945 /*
1946 * Get the CPUID features.
1947 */
1948 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1949 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1950 }
1951
1952 /* Sync FPU state after CR4, CPUID and EFER (!). */
1953 if (fFlags & CPUM_CHANGED_FPU_REM)
1954 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1955 }
1956
1957 /*
1958 * Sync TR unconditionally to make life simpler.
1959 */
1960 pVM->rem.s.Env.tr.selector = pCtx->tr;
1961 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1962 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1963 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;
1964 /* Note! do_interrupt will fault if the busy flag is still set... */
1965 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1966
1967 /*
1968 * Update selector registers.
1969 * This must be done *after* we've synced gdt, ldt and crX registers
1970 * since we're reading the GDT/LDT om sync_seg. This will happen with
1971 * saved state which takes a quick dip into rawmode for instance.
1972 */
1973 /*
1974 * Stack; Note first check this one as the CPL might have changed. The
1975 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1976 */
1977
1978 if (fHiddenSelRegsValid)
1979 {
1980 /* The hidden selector registers are valid in the CPU context. */
1981 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1982
1983 /* Set current CPL */
1984 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1985
1986 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1987 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1988 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1989 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1990 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1991 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1992 }
1993 else
1994 {
1995 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1996 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1997 {
1998 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1999
2000 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
2001 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
2002#ifdef VBOX_WITH_STATISTICS
2003 if (pVM->rem.s.Env.segs[R_SS].newselector)
2004 {
2005 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
2006 }
2007#endif
2008 }
2009 else
2010 pVM->rem.s.Env.segs[R_SS].newselector = 0;
2011
2012 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
2013 {
2014 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
2015 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
2016#ifdef VBOX_WITH_STATISTICS
2017 if (pVM->rem.s.Env.segs[R_ES].newselector)
2018 {
2019 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
2020 }
2021#endif
2022 }
2023 else
2024 pVM->rem.s.Env.segs[R_ES].newselector = 0;
2025
2026 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
2027 {
2028 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
2029 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
2030#ifdef VBOX_WITH_STATISTICS
2031 if (pVM->rem.s.Env.segs[R_CS].newselector)
2032 {
2033 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
2034 }
2035#endif
2036 }
2037 else
2038 pVM->rem.s.Env.segs[R_CS].newselector = 0;
2039
2040 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
2041 {
2042 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
2043 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
2044#ifdef VBOX_WITH_STATISTICS
2045 if (pVM->rem.s.Env.segs[R_DS].newselector)
2046 {
2047 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
2048 }
2049#endif
2050 }
2051 else
2052 pVM->rem.s.Env.segs[R_DS].newselector = 0;
2053
2054 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
2055 * be the same but not the base/limit. */
2056 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
2057 {
2058 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
2059 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
2060#ifdef VBOX_WITH_STATISTICS
2061 if (pVM->rem.s.Env.segs[R_FS].newselector)
2062 {
2063 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
2064 }
2065#endif
2066 }
2067 else
2068 pVM->rem.s.Env.segs[R_FS].newselector = 0;
2069
2070 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
2071 {
2072 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
2073 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
2074#ifdef VBOX_WITH_STATISTICS
2075 if (pVM->rem.s.Env.segs[R_GS].newselector)
2076 {
2077 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
2078 }
2079#endif
2080 }
2081 else
2082 pVM->rem.s.Env.segs[R_GS].newselector = 0;
2083 }
2084
2085 /*
2086 * Check for traps.
2087 */
2088 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
2089 TRPMEVENT enmType;
2090 uint8_t u8TrapNo;
2091 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
2092 if (RT_SUCCESS(rc))
2093 {
2094#ifdef DEBUG
2095 if (u8TrapNo == 0x80)
2096 {
2097 remR3DumpLnxSyscall(pVM);
2098 remR3DumpOBsdSyscall(pVM);
2099 }
2100#endif
2101
2102 pVM->rem.s.Env.exception_index = u8TrapNo;
2103 if (enmType != TRPM_SOFTWARE_INT)
2104 {
2105 pVM->rem.s.Env.exception_is_int = 0;
2106 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
2107 }
2108 else
2109 {
2110 /*
2111 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
2112 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
2113 * for int03 and into.
2114 */
2115 pVM->rem.s.Env.exception_is_int = 1;
2116 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
2117 /* int 3 may be generated by one-byte 0xcc */
2118 if (u8TrapNo == 3)
2119 {
2120 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
2121 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2122 }
2123 /* int 4 may be generated by one-byte 0xce */
2124 else if (u8TrapNo == 4)
2125 {
2126 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
2127 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2128 }
2129 }
2130
2131 /* get error code and cr2 if needed. */
2132 switch (u8TrapNo)
2133 {
2134 case 0x0e:
2135 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
2136 /* fallthru */
2137 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2138 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
2139 break;
2140
2141 case 0x11: case 0x08:
2142 default:
2143 pVM->rem.s.Env.error_code = 0;
2144 break;
2145 }
2146
2147 /*
2148 * We can now reset the active trap since the recompiler is gonna have a go at it.
2149 */
2150 rc = TRPMResetTrap(pVM);
2151 AssertRC(rc);
2152 Log2(("REMR3State: trap=%02x errcd=%RGv cr2=%RGv nexteip=%RGv%s\n", pVM->rem.s.Env.exception_index, (RTGCPTR)pVM->rem.s.Env.error_code,
2153 (RTGCPTR)pVM->rem.s.Env.cr[2], (RTGCPTR)pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2154 }
2155
2156 /*
2157 * Clear old interrupt request flags; Check for pending hardware interrupts.
2158 * (See @remark for why we don't check for other FFs.)
2159 */
2160 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2161 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2162 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2163 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2164
2165 /*
2166 * We're now in REM mode.
2167 */
2168 pVM->rem.s.fInREM = true;
2169 pVM->rem.s.fInStateSync = false;
2170 pVM->rem.s.cCanExecuteRaw = 0;
2171 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2172 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2173 return VINF_SUCCESS;
2174}
2175
2176
2177/**
2178 * Syncs back changes in the REM state to the the VM state.
2179 *
2180 * This must be called after invoking REMR3Run().
2181 * Calling it several times in a row is not permitted.
2182 *
2183 * @returns VBox status code.
2184 *
2185 * @param pVM VM Handle.
2186 */
2187REMR3DECL(int) REMR3StateBack(PVM pVM)
2188{
2189 Log2(("REMR3StateBack:\n"));
2190 Assert(pVM->rem.s.fInREM);
2191 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2192 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2193 unsigned i;
2194
2195 /*
2196 * Copy back the registers.
2197 * This is done in the order they are declared in the CPUMCTX structure.
2198 */
2199
2200 /** @todo FOP */
2201 /** @todo FPUIP */
2202 /** @todo CS */
2203 /** @todo FPUDP */
2204 /** @todo DS */
2205 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2206 pCtx->fpu.MXCSR = 0;
2207 pCtx->fpu.MXCSR_MASK = 0;
2208
2209 /** @todo check if FPU/XMM was actually used in the recompiler */
2210 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2211//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2212
2213#ifdef TARGET_X86_64
2214 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2215 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2216 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2217 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2218 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2219 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2220 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2221 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2222 pCtx->r8 = pVM->rem.s.Env.regs[8];
2223 pCtx->r9 = pVM->rem.s.Env.regs[9];
2224 pCtx->r10 = pVM->rem.s.Env.regs[10];
2225 pCtx->r11 = pVM->rem.s.Env.regs[11];
2226 pCtx->r12 = pVM->rem.s.Env.regs[12];
2227 pCtx->r13 = pVM->rem.s.Env.regs[13];
2228 pCtx->r14 = pVM->rem.s.Env.regs[14];
2229 pCtx->r15 = pVM->rem.s.Env.regs[15];
2230
2231 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2232
2233#else
2234 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2235 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2236 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2237 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2238 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2239 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2240 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2241
2242 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2243#endif
2244
2245 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2246
2247#ifdef VBOX_WITH_STATISTICS
2248 if (pVM->rem.s.Env.segs[R_SS].newselector)
2249 {
2250 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2251 }
2252 if (pVM->rem.s.Env.segs[R_GS].newselector)
2253 {
2254 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2255 }
2256 if (pVM->rem.s.Env.segs[R_FS].newselector)
2257 {
2258 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2259 }
2260 if (pVM->rem.s.Env.segs[R_ES].newselector)
2261 {
2262 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2263 }
2264 if (pVM->rem.s.Env.segs[R_DS].newselector)
2265 {
2266 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2267 }
2268 if (pVM->rem.s.Env.segs[R_CS].newselector)
2269 {
2270 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2271 }
2272#endif
2273 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2274 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2275 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2276 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2277 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2278
2279#ifdef TARGET_X86_64
2280 pCtx->rip = pVM->rem.s.Env.eip;
2281 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2282#else
2283 pCtx->eip = pVM->rem.s.Env.eip;
2284 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2285#endif
2286
2287 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2288 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2289 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2290 if ((pVM->rem.s.Env.cr[4] ^ pCtx->cr4) & X86_CR4_VME)
2291 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2292 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2293
2294 for (i=0;i<8;i++)
2295 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2296
2297 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2298 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2299 {
2300 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2301 STAM_COUNTER_INC(&gStatREMGDTChange);
2302 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2303 }
2304
2305 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2306 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2307 {
2308 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2309 STAM_COUNTER_INC(&gStatREMIDTChange);
2310 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2311 }
2312
2313 if ( pCtx->ldtr != pVM->rem.s.Env.ldt.selector
2314 || pCtx->ldtrHid.u64Base != pVM->rem.s.Env.ldt.base
2315 || pCtx->ldtrHid.u32Limit != pVM->rem.s.Env.ldt.limit
2316 || pCtx->ldtrHid.Attr.u != ((pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF))
2317 {
2318 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2319 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2320 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2321 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2322 STAM_COUNTER_INC(&gStatREMLDTRChange);
2323 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2324 }
2325
2326 if ( pCtx->tr != pVM->rem.s.Env.tr.selector
2327 || pCtx->trHid.u64Base != pVM->rem.s.Env.tr.base
2328 || pCtx->trHid.u32Limit != pVM->rem.s.Env.tr.limit
2329 /* Qemu and AMD/Intel have different ideas about the busy flag ... */
2330 || pCtx->trHid.Attr.u != ( (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF
2331 ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8
2332 : 0) )
2333 {
2334 Log(("REM: TR changed! %#x{%#llx,%#x,%#x} -> %#x{%llx,%#x,%#x}\n",
2335 pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2336 pVM->rem.s.Env.tr.selector, (uint64_t)pVM->rem.s.Env.tr.base, pVM->rem.s.Env.tr.limit,
2337 (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8 : 0));
2338 pCtx->tr = pVM->rem.s.Env.tr.selector;
2339 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2340 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2341 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2342 if (pCtx->trHid.Attr.u)
2343 pCtx->trHid.Attr.u |= DESC_TSS_BUSY_MASK >> 8;
2344 STAM_COUNTER_INC(&gStatREMTRChange);
2345 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2346 }
2347
2348 /** @todo These values could still be out of sync! */
2349 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2350 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2351 /* Note! QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2352 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2353
2354 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2355 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2356 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2357
2358 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2359 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2360 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2361
2362 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2363 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2364 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2365
2366 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2367 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2368 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2369
2370 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2371 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2372 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2373
2374 /* Sysenter MSR */
2375 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2376 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2377 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2378
2379 /* System MSRs. */
2380 pCtx->msrEFER = pVM->rem.s.Env.efer;
2381 pCtx->msrSTAR = pVM->rem.s.Env.star;
2382 pCtx->msrPAT = pVM->rem.s.Env.pat;
2383#ifdef TARGET_X86_64
2384 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2385 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2386 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2387 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2388#endif
2389
2390 remR3TrapClear(pVM);
2391
2392 /*
2393 * Check for traps.
2394 */
2395 if ( pVM->rem.s.Env.exception_index >= 0
2396 && pVM->rem.s.Env.exception_index < 256)
2397 {
2398 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2399 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2400 AssertRC(rc);
2401 switch (pVM->rem.s.Env.exception_index)
2402 {
2403 case 0x0e:
2404 TRPMSetFaultAddress(pVM, pCtx->cr2);
2405 /* fallthru */
2406 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2407 case 0x11: case 0x08: /* 0 */
2408 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2409 break;
2410 }
2411
2412 }
2413
2414 /*
2415 * We're not longer in REM mode.
2416 */
2417 pVM->rem.s.fInREM = false;
2418 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2419 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2420 return VINF_SUCCESS;
2421}
2422
2423
2424/**
2425 * This is called by the disassembler when it wants to update the cpu state
2426 * before for instance doing a register dump.
2427 */
2428static void remR3StateUpdate(PVM pVM)
2429{
2430 Assert(pVM->rem.s.fInREM);
2431 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2432 unsigned i;
2433
2434 /*
2435 * Copy back the registers.
2436 * This is done in the order they are declared in the CPUMCTX structure.
2437 */
2438
2439 /** @todo FOP */
2440 /** @todo FPUIP */
2441 /** @todo CS */
2442 /** @todo FPUDP */
2443 /** @todo DS */
2444 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2445 pCtx->fpu.MXCSR = 0;
2446 pCtx->fpu.MXCSR_MASK = 0;
2447
2448 /** @todo check if FPU/XMM was actually used in the recompiler */
2449 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2450//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2451
2452#ifdef TARGET_X86_64
2453 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2454 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2455 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2456 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2457 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2458 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2459 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2460 pCtx->r8 = pVM->rem.s.Env.regs[8];
2461 pCtx->r9 = pVM->rem.s.Env.regs[9];
2462 pCtx->r10 = pVM->rem.s.Env.regs[10];
2463 pCtx->r11 = pVM->rem.s.Env.regs[11];
2464 pCtx->r12 = pVM->rem.s.Env.regs[12];
2465 pCtx->r13 = pVM->rem.s.Env.regs[13];
2466 pCtx->r14 = pVM->rem.s.Env.regs[14];
2467 pCtx->r15 = pVM->rem.s.Env.regs[15];
2468
2469 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2470#else
2471 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2472 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2473 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2474 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2475 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2476 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2477 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2478
2479 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2480#endif
2481
2482 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2483
2484 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2485 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2486 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2487 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2488 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2489
2490#ifdef TARGET_X86_64
2491 pCtx->rip = pVM->rem.s.Env.eip;
2492 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2493#else
2494 pCtx->eip = pVM->rem.s.Env.eip;
2495 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2496#endif
2497
2498 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2499 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2500 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2501 if ((pVM->rem.s.Env.cr[4] ^ pCtx->cr4) & X86_CR4_VME)
2502 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2503 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2504
2505 for (i=0;i<8;i++)
2506 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2507
2508 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2509 if (pCtx->gdtr.pGdt != (RTGCPTR)pVM->rem.s.Env.gdt.base)
2510 {
2511 pCtx->gdtr.pGdt = (RTGCPTR)pVM->rem.s.Env.gdt.base;
2512 STAM_COUNTER_INC(&gStatREMGDTChange);
2513 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2514 }
2515
2516 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2517 if (pCtx->idtr.pIdt != (RTGCPTR)pVM->rem.s.Env.idt.base)
2518 {
2519 pCtx->idtr.pIdt = (RTGCPTR)pVM->rem.s.Env.idt.base;
2520 STAM_COUNTER_INC(&gStatREMIDTChange);
2521 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2522 }
2523
2524 if ( pCtx->ldtr != pVM->rem.s.Env.ldt.selector
2525 || pCtx->ldtrHid.u64Base != pVM->rem.s.Env.ldt.base
2526 || pCtx->ldtrHid.u32Limit != pVM->rem.s.Env.ldt.limit
2527 || pCtx->ldtrHid.Attr.u != ((pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF))
2528 {
2529 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2530 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2531 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2532 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2533 STAM_COUNTER_INC(&gStatREMLDTRChange);
2534 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2535 }
2536
2537 if ( pCtx->tr != pVM->rem.s.Env.tr.selector
2538 || pCtx->trHid.u64Base != pVM->rem.s.Env.tr.base
2539 || pCtx->trHid.u32Limit != pVM->rem.s.Env.tr.limit
2540 /* Qemu and AMD/Intel have different ideas about the busy flag ... */
2541 || pCtx->trHid.Attr.u != ( (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF
2542 ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8
2543 : 0) )
2544 {
2545 Log(("REM: TR changed! %#x{%#llx,%#x,%#x} -> %#x{%llx,%#x,%#x}\n",
2546 pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2547 pVM->rem.s.Env.tr.selector, (uint64_t)pVM->rem.s.Env.tr.base, pVM->rem.s.Env.tr.limit,
2548 (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8 : 0));
2549 pCtx->tr = pVM->rem.s.Env.tr.selector;
2550 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2551 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2552 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2553 if (pCtx->trHid.Attr.u)
2554 pCtx->trHid.Attr.u |= DESC_TSS_BUSY_MASK >> 8;
2555 STAM_COUNTER_INC(&gStatREMTRChange);
2556 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2557 }
2558
2559 /** @todo These values could still be out of sync! */
2560 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2561 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2562 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2563 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2564
2565 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2566 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2567 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2568
2569 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2570 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2571 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2572
2573 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2574 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2575 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2576
2577 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2578 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2579 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2580
2581 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2582 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2583 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2584
2585 /* Sysenter MSR */
2586 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2587 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2588 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2589
2590 /* System MSRs. */
2591 pCtx->msrEFER = pVM->rem.s.Env.efer;
2592 pCtx->msrSTAR = pVM->rem.s.Env.star;
2593 pCtx->msrPAT = pVM->rem.s.Env.pat;
2594#ifdef TARGET_X86_64
2595 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2596 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2597 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2598 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2599#endif
2600
2601}
2602
2603
2604/**
2605 * Update the VMM state information if we're currently in REM.
2606 *
2607 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2608 * we're currently executing in REM and the VMM state is invalid. This method will of
2609 * course check that we're executing in REM before syncing any data over to the VMM.
2610 *
2611 * @param pVM The VM handle.
2612 */
2613REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2614{
2615 if (pVM->rem.s.fInREM)
2616 remR3StateUpdate(pVM);
2617}
2618
2619
2620#undef LOG_GROUP
2621#define LOG_GROUP LOG_GROUP_REM
2622
2623
2624/**
2625 * Notify the recompiler about Address Gate 20 state change.
2626 *
2627 * This notification is required since A20 gate changes are
2628 * initialized from a device driver and the VM might just as
2629 * well be in REM mode as in RAW mode.
2630 *
2631 * @param pVM VM handle.
2632 * @param fEnable True if the gate should be enabled.
2633 * False if the gate should be disabled.
2634 */
2635REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2636{
2637 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2638 VM_ASSERT_EMT(pVM);
2639
2640 bool fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2641 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2642
2643 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2644
2645 pVM->rem.s.fIgnoreAll = fSaved;
2646}
2647
2648
2649/**
2650 * Replays the invalidated recorded pages.
2651 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2652 *
2653 * @param pVM VM handle.
2654 */
2655REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2656{
2657 VM_ASSERT_EMT(pVM);
2658
2659 /*
2660 * Sync the required registers.
2661 */
2662 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2663 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2664 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2665 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2666
2667 /*
2668 * Replay the flushes.
2669 */
2670 pVM->rem.s.fIgnoreInvlPg = true;
2671 RTUINT i;
2672 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2673 {
2674 Log2(("REMR3ReplayInvalidatedPages: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2675 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2676 }
2677 pVM->rem.s.fIgnoreInvlPg = false;
2678 pVM->rem.s.cInvalidatedPages = 0;
2679}
2680
2681
2682/**
2683 * Replays the handler notification changes
2684 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2685 *
2686 * @param pVM VM handle.
2687 */
2688REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2689{
2690 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2691 VM_ASSERT_EMT(pVM);
2692
2693 /*
2694 * Replay the flushes.
2695 */
2696 RTUINT i;
2697 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2698 pVM->rem.s.cHandlerNotifications = 0;
2699 for (i = 0; i < c; i++)
2700 {
2701 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2702 switch (pRec->enmKind)
2703 {
2704 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2705 REMR3NotifyHandlerPhysicalRegister(pVM,
2706 pRec->u.PhysicalRegister.enmType,
2707 pRec->u.PhysicalRegister.GCPhys,
2708 pRec->u.PhysicalRegister.cb,
2709 pRec->u.PhysicalRegister.fHasHCHandler);
2710 break;
2711
2712 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2713 REMR3NotifyHandlerPhysicalDeregister(pVM,
2714 pRec->u.PhysicalDeregister.enmType,
2715 pRec->u.PhysicalDeregister.GCPhys,
2716 pRec->u.PhysicalDeregister.cb,
2717 pRec->u.PhysicalDeregister.fHasHCHandler,
2718 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2719 break;
2720
2721 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2722 REMR3NotifyHandlerPhysicalModify(pVM,
2723 pRec->u.PhysicalModify.enmType,
2724 pRec->u.PhysicalModify.GCPhysOld,
2725 pRec->u.PhysicalModify.GCPhysNew,
2726 pRec->u.PhysicalModify.cb,
2727 pRec->u.PhysicalModify.fHasHCHandler,
2728 pRec->u.PhysicalModify.fRestoreAsRAM);
2729 break;
2730
2731 default:
2732 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2733 break;
2734 }
2735 }
2736 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2737}
2738
2739
2740/**
2741 * Notify REM about changed code page.
2742 *
2743 * @returns VBox status code.
2744 * @param pVM VM handle.
2745 * @param pvCodePage Code page address
2746 */
2747REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2748{
2749#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
2750 int rc;
2751 RTGCPHYS PhysGC;
2752 uint64_t flags;
2753
2754 VM_ASSERT_EMT(pVM);
2755
2756 /*
2757 * Get the physical page address.
2758 */
2759 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2760 if (rc == VINF_SUCCESS)
2761 {
2762 /*
2763 * Sync the required registers and flush the whole page.
2764 * (Easier to do the whole page than notifying it about each physical
2765 * byte that was changed.
2766 */
2767 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2768 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2769 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2770 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2771
2772 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2773 }
2774#endif
2775 return VINF_SUCCESS;
2776}
2777
2778
2779/**
2780 * Notification about a successful MMR3PhysRegister() call.
2781 *
2782 * @param pVM VM handle.
2783 * @param GCPhys The physical address the RAM.
2784 * @param cb Size of the memory.
2785 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2786 */
2787REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, unsigned fFlags)
2788{
2789 Log(("REMR3NotifyPhysRamRegister: GCPhys=%RGp cb=%RGp fFlags=%d\n", GCPhys, cb, fFlags));
2790 VM_ASSERT_EMT(pVM);
2791
2792 /*
2793 * Validate input - we trust the caller.
2794 */
2795 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2796 Assert(cb);
2797 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2798
2799 /*
2800 * Base ram?
2801 */
2802 if (!GCPhys) /** @todo add a flag for identifying MMIO2 memory here (new phys code)*/
2803 {
2804 if (GCPhys + (cb - 1) > pVM->rem.s.GCPhysLastRam)
2805 {
2806 AssertReleaseMsg(!pVM->rem.s.fGCPhysLastRamFixed, ("GCPhys=%RGp cb=%RGp\n", GCPhys, cb));
2807 pVM->rem.s.GCPhysLastRam = GCPhys + (cb - 1);
2808 }
2809 }
2810
2811 /*
2812 * Register the ram.
2813 */
2814 Assert(!pVM->rem.s.fIgnoreAll);
2815 pVM->rem.s.fIgnoreAll = true;
2816
2817#ifdef VBOX_WITH_NEW_PHYS_CODE
2818 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2819#else
2820 if (!GCPhys)
2821 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2822 else
2823 {
2824 if (fFlags & MM_RAM_FLAGS_RESERVED)
2825 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2826 else
2827 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2828 }
2829#endif
2830 Assert(pVM->rem.s.fIgnoreAll);
2831 pVM->rem.s.fIgnoreAll = false;
2832}
2833
2834#ifndef VBOX_WITH_NEW_PHYS_CODE
2835
2836/**
2837 * Notification about a successful PGMR3PhysRegisterChunk() call.
2838 *
2839 * @param pVM VM handle.
2840 * @param GCPhys The physical address the RAM.
2841 * @param cb Size of the memory.
2842 * @param pvRam The HC address of the RAM.
2843 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2844 */
2845REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2846{
2847 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%RGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2848 VM_ASSERT_EMT(pVM);
2849
2850 /*
2851 * Validate input - we trust the caller.
2852 */
2853 Assert(pvRam);
2854 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2855 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2856 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2857 Assert(fFlags == 0 /* normal RAM */);
2858 Assert(!pVM->rem.s.fIgnoreAll);
2859 pVM->rem.s.fIgnoreAll = true;
2860
2861 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2862
2863 Assert(pVM->rem.s.fIgnoreAll);
2864 pVM->rem.s.fIgnoreAll = false;
2865}
2866
2867
2868/**
2869 * Grows dynamically allocated guest RAM.
2870 * Will raise a fatal error if the operation fails.
2871 *
2872 * @param physaddr The physical address.
2873 */
2874void remR3GrowDynRange(unsigned long physaddr)
2875{
2876 int rc;
2877 PVM pVM = cpu_single_env->pVM;
2878
2879 LogFlow(("remR3GrowDynRange %RGp\n", (RTGCPHYS)physaddr));
2880 const RTGCPHYS GCPhys = physaddr;
2881 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2882 if (RT_SUCCESS(rc))
2883 return;
2884
2885 LogRel(("\nUnable to allocate guest RAM chunk at %RGp\n", (RTGCPHYS)physaddr));
2886 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %RGp\n", (RTGCPHYS)physaddr);
2887 AssertFatalFailed();
2888}
2889
2890#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2891
2892/**
2893 * Notification about a successful MMR3PhysRomRegister() call.
2894 *
2895 * @param pVM VM handle.
2896 * @param GCPhys The physical address of the ROM.
2897 * @param cb The size of the ROM.
2898 * @param pvCopy Pointer to the ROM copy.
2899 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2900 * This function will be called when ever the protection of the
2901 * shadow ROM changes (at reset and end of POST).
2902 */
2903REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2904{
2905 Log(("REMR3NotifyPhysRomRegister: GCPhys=%RGp cb=%d fShadow=%RTbool\n", GCPhys, cb, fShadow));
2906 VM_ASSERT_EMT(pVM);
2907
2908 /*
2909 * Validate input - we trust the caller.
2910 */
2911 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2912 Assert(cb);
2913 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2914
2915 /*
2916 * Register the rom.
2917 */
2918 Assert(!pVM->rem.s.fIgnoreAll);
2919 pVM->rem.s.fIgnoreAll = true;
2920
2921 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2922
2923 Assert(pVM->rem.s.fIgnoreAll);
2924 pVM->rem.s.fIgnoreAll = false;
2925}
2926
2927
2928/**
2929 * Notification about a successful memory deregistration or reservation.
2930 *
2931 * @param pVM VM Handle.
2932 * @param GCPhys Start physical address.
2933 * @param cb The size of the range.
2934 */
2935REMR3DECL(void) REMR3NotifyPhysRamDeregister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2936{
2937 Log(("REMR3NotifyPhysRamDeregister: GCPhys=%RGp cb=%d\n", GCPhys, cb));
2938 VM_ASSERT_EMT(pVM);
2939
2940 /*
2941 * Validate input - we trust the caller.
2942 */
2943 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2944 Assert(cb);
2945 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2946
2947 /*
2948 * Unassigning the memory.
2949 */
2950 Assert(!pVM->rem.s.fIgnoreAll);
2951 pVM->rem.s.fIgnoreAll = true;
2952
2953 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2954
2955 Assert(pVM->rem.s.fIgnoreAll);
2956 pVM->rem.s.fIgnoreAll = false;
2957}
2958
2959
2960/**
2961 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2962 *
2963 * @param pVM VM Handle.
2964 * @param enmType Handler type.
2965 * @param GCPhys Handler range address.
2966 * @param cb Size of the handler range.
2967 * @param fHasHCHandler Set if the handler has a HC callback function.
2968 *
2969 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2970 * Handler memory type to memory which has no HC handler.
2971 */
2972REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2973{
2974 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%d\n",
2975 enmType, GCPhys, cb, fHasHCHandler));
2976 VM_ASSERT_EMT(pVM);
2977 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2978 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2979
2980 if (pVM->rem.s.cHandlerNotifications)
2981 REMR3ReplayHandlerNotifications(pVM);
2982
2983 Assert(!pVM->rem.s.fIgnoreAll);
2984 pVM->rem.s.fIgnoreAll = true;
2985
2986 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2987 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2988 else if (fHasHCHandler)
2989 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2990
2991 Assert(pVM->rem.s.fIgnoreAll);
2992 pVM->rem.s.fIgnoreAll = false;
2993}
2994
2995
2996/**
2997 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2998 *
2999 * @param pVM VM Handle.
3000 * @param enmType Handler type.
3001 * @param GCPhys Handler range address.
3002 * @param cb Size of the handler range.
3003 * @param fHasHCHandler Set if the handler has a HC callback function.
3004 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
3005 */
3006REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
3007{
3008 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
3009 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
3010 VM_ASSERT_EMT(pVM);
3011
3012 if (pVM->rem.s.cHandlerNotifications)
3013 REMR3ReplayHandlerNotifications(pVM);
3014
3015 Assert(!pVM->rem.s.fIgnoreAll);
3016 pVM->rem.s.fIgnoreAll = true;
3017
3018/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
3019 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
3020 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
3021 else if (fHasHCHandler)
3022 {
3023 if (!fRestoreAsRAM)
3024 {
3025 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
3026 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
3027 }
3028 else
3029 {
3030 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3031 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3032 cpu_register_physical_memory(GCPhys, cb, GCPhys);
3033 }
3034 }
3035
3036 Assert(pVM->rem.s.fIgnoreAll);
3037 pVM->rem.s.fIgnoreAll = false;
3038}
3039
3040
3041/**
3042 * Notification about a successful PGMR3HandlerPhysicalModify() call.
3043 *
3044 * @param pVM VM Handle.
3045 * @param enmType Handler type.
3046 * @param GCPhysOld Old handler range address.
3047 * @param GCPhysNew New handler range address.
3048 * @param cb Size of the handler range.
3049 * @param fHasHCHandler Set if the handler has a HC callback function.
3050 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
3051 */
3052REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
3053{
3054 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%RGp GCPhysNew=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
3055 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
3056 VM_ASSERT_EMT(pVM);
3057 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
3058
3059 if (pVM->rem.s.cHandlerNotifications)
3060 REMR3ReplayHandlerNotifications(pVM);
3061
3062 if (fHasHCHandler)
3063 {
3064 Assert(!pVM->rem.s.fIgnoreAll);
3065 pVM->rem.s.fIgnoreAll = true;
3066
3067 /*
3068 * Reset the old page.
3069 */
3070 if (!fRestoreAsRAM)
3071 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
3072 else
3073 {
3074 /* This is not perfect, but it'll do for PD monitoring... */
3075 Assert(cb == PAGE_SIZE);
3076 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
3077 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
3078 }
3079
3080 /*
3081 * Update the new page.
3082 */
3083 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
3084 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3085 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
3086
3087 Assert(pVM->rem.s.fIgnoreAll);
3088 pVM->rem.s.fIgnoreAll = false;
3089 }
3090}
3091
3092
3093/**
3094 * Checks if we're handling access to this page or not.
3095 *
3096 * @returns true if we're trapping access.
3097 * @returns false if we aren't.
3098 * @param pVM The VM handle.
3099 * @param GCPhys The physical address.
3100 *
3101 * @remark This function will only work correctly in VBOX_STRICT builds!
3102 */
3103REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3104{
3105#ifdef VBOX_STRICT
3106 if (pVM->rem.s.cHandlerNotifications)
3107 REMR3ReplayHandlerNotifications(pVM);
3108
3109 unsigned long off = get_phys_page_offset(GCPhys);
3110 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3111 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3112 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3113#else
3114 return false;
3115#endif
3116}
3117
3118
3119/**
3120 * Deals with a rare case in get_phys_addr_code where the code
3121 * is being monitored.
3122 *
3123 * It could also be an MMIO page, in which case we will raise a fatal error.
3124 *
3125 * @returns The physical address corresponding to addr.
3126 * @param env The cpu environment.
3127 * @param addr The virtual address.
3128 * @param pTLBEntry The TLB entry.
3129 */
3130target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
3131{
3132 PVM pVM = env->pVM;
3133 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3134 {
3135 target_ulong ret = pTLBEntry->addend + addr;
3136 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%RGv addr_code=%RGv addend=%RGp ret=%RGp\n",
3137 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPHYS)ret);
3138 return ret;
3139 }
3140 LogRel(("\nTrying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
3141 "*** handlers\n",
3142 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3143 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3144 LogRel(("*** mmio\n"));
3145 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3146 LogRel(("*** phys\n"));
3147 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3148 cpu_abort(env, "Trying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3149 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3150 AssertFatalFailed();
3151}
3152
3153
3154/** Validate the physical address passed to the read functions.
3155 * Useful for finding non-guest-ram reads/writes. */
3156#if 0 //1 /* disable if it becomes bothersome... */
3157# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%RGp\n", (GCPhys)))
3158#else
3159# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
3160#endif
3161
3162/**
3163 * Read guest RAM and ROM.
3164 *
3165 * @param SrcGCPhys The source address (guest physical).
3166 * @param pvDst The destination address.
3167 * @param cb Number of bytes
3168 */
3169void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3170{
3171 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3172 VBOX_CHECK_ADDR(SrcGCPhys);
3173 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3174 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3175}
3176
3177
3178/**
3179 * Read guest RAM and ROM, unsigned 8-bit.
3180 *
3181 * @param SrcGCPhys The source address (guest physical).
3182 */
3183uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3184{
3185 uint8_t val;
3186 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3187 VBOX_CHECK_ADDR(SrcGCPhys);
3188 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3189 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3190 return val;
3191}
3192
3193
3194/**
3195 * Read guest RAM and ROM, signed 8-bit.
3196 *
3197 * @param SrcGCPhys The source address (guest physical).
3198 */
3199int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3200{
3201 int8_t val;
3202 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3203 VBOX_CHECK_ADDR(SrcGCPhys);
3204 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3205 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3206 return val;
3207}
3208
3209
3210/**
3211 * Read guest RAM and ROM, unsigned 16-bit.
3212 *
3213 * @param SrcGCPhys The source address (guest physical).
3214 */
3215uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3216{
3217 uint16_t val;
3218 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3219 VBOX_CHECK_ADDR(SrcGCPhys);
3220 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3221 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3222 return val;
3223}
3224
3225
3226/**
3227 * Read guest RAM and ROM, signed 16-bit.
3228 *
3229 * @param SrcGCPhys The source address (guest physical).
3230 */
3231int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3232{
3233 uint16_t val;
3234 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3235 VBOX_CHECK_ADDR(SrcGCPhys);
3236 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3237 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3238 return val;
3239}
3240
3241
3242/**
3243 * Read guest RAM and ROM, unsigned 32-bit.
3244 *
3245 * @param SrcGCPhys The source address (guest physical).
3246 */
3247uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3248{
3249 uint32_t val;
3250 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3251 VBOX_CHECK_ADDR(SrcGCPhys);
3252 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3253 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3254 return val;
3255}
3256
3257
3258/**
3259 * Read guest RAM and ROM, signed 32-bit.
3260 *
3261 * @param SrcGCPhys The source address (guest physical).
3262 */
3263int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3264{
3265 int32_t val;
3266 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3267 VBOX_CHECK_ADDR(SrcGCPhys);
3268 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3269 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3270 return val;
3271}
3272
3273
3274/**
3275 * Read guest RAM and ROM, unsigned 64-bit.
3276 *
3277 * @param SrcGCPhys The source address (guest physical).
3278 */
3279uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3280{
3281 uint64_t val;
3282 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3283 VBOX_CHECK_ADDR(SrcGCPhys);
3284 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3285 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3286 return val;
3287}
3288
3289
3290/**
3291 * Write guest RAM.
3292 *
3293 * @param DstGCPhys The destination address (guest physical).
3294 * @param pvSrc The source address.
3295 * @param cb Number of bytes to write
3296 */
3297void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3298{
3299 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3300 VBOX_CHECK_ADDR(DstGCPhys);
3301 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3302 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3303}
3304
3305
3306/**
3307 * Write guest RAM, unsigned 8-bit.
3308 *
3309 * @param DstGCPhys The destination address (guest physical).
3310 * @param val Value
3311 */
3312void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3313{
3314 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3315 VBOX_CHECK_ADDR(DstGCPhys);
3316 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3317 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3318}
3319
3320
3321/**
3322 * Write guest RAM, unsigned 8-bit.
3323 *
3324 * @param DstGCPhys The destination address (guest physical).
3325 * @param val Value
3326 */
3327void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3328{
3329 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3330 VBOX_CHECK_ADDR(DstGCPhys);
3331 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3332 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3333}
3334
3335
3336/**
3337 * Write guest RAM, unsigned 32-bit.
3338 *
3339 * @param DstGCPhys The destination address (guest physical).
3340 * @param val Value
3341 */
3342void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3343{
3344 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3345 VBOX_CHECK_ADDR(DstGCPhys);
3346 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3347 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3348}
3349
3350
3351/**
3352 * Write guest RAM, unsigned 64-bit.
3353 *
3354 * @param DstGCPhys The destination address (guest physical).
3355 * @param val Value
3356 */
3357void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3358{
3359 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3360 VBOX_CHECK_ADDR(DstGCPhys);
3361 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3362 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3363}
3364
3365#undef LOG_GROUP
3366#define LOG_GROUP LOG_GROUP_REM_MMIO
3367
3368/** Read MMIO memory. */
3369static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3370{
3371 uint32_t u32 = 0;
3372 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3373 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3374 Log2(("remR3MMIOReadU8: GCPhys=%RGp -> %02x\n", GCPhys, u32));
3375 return u32;
3376}
3377
3378/** Read MMIO memory. */
3379static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3380{
3381 uint32_t u32 = 0;
3382 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3383 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3384 Log2(("remR3MMIOReadU16: GCPhys=%RGp -> %04x\n", GCPhys, u32));
3385 return u32;
3386}
3387
3388/** Read MMIO memory. */
3389static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3390{
3391 uint32_t u32 = 0;
3392 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3393 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3394 Log2(("remR3MMIOReadU32: GCPhys=%RGp -> %08x\n", GCPhys, u32));
3395 return u32;
3396}
3397
3398/** Write to MMIO memory. */
3399static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3400{
3401 Log2(("remR3MMIOWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3402 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3403 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3404}
3405
3406/** Write to MMIO memory. */
3407static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3408{
3409 Log2(("remR3MMIOWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3410 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3411 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3412}
3413
3414/** Write to MMIO memory. */
3415static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3416{
3417 Log2(("remR3MMIOWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3418 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3419 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3420}
3421
3422
3423#undef LOG_GROUP
3424#define LOG_GROUP LOG_GROUP_REM_HANDLER
3425
3426/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3427
3428static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3429{
3430 Log2(("remR3HandlerReadU8: GCPhys=%RGp\n", GCPhys));
3431 uint8_t u8;
3432 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3433 return u8;
3434}
3435
3436static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3437{
3438 Log2(("remR3HandlerReadU16: GCPhys=%RGp\n", GCPhys));
3439 uint16_t u16;
3440 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3441 return u16;
3442}
3443
3444static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3445{
3446 Log2(("remR3HandlerReadU32: GCPhys=%RGp\n", GCPhys));
3447 uint32_t u32;
3448 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3449 return u32;
3450}
3451
3452static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3453{
3454 Log2(("remR3HandlerWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3455 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3456}
3457
3458static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3459{
3460 Log2(("remR3HandlerWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3461 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3462}
3463
3464static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3465{
3466 Log2(("remR3HandlerWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3467 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3468}
3469
3470/* -+- disassembly -+- */
3471
3472#undef LOG_GROUP
3473#define LOG_GROUP LOG_GROUP_REM_DISAS
3474
3475
3476/**
3477 * Enables or disables singled stepped disassembly.
3478 *
3479 * @returns VBox status code.
3480 * @param pVM VM handle.
3481 * @param fEnable To enable set this flag, to disable clear it.
3482 */
3483static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3484{
3485 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3486 VM_ASSERT_EMT(pVM);
3487
3488 if (fEnable)
3489 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3490 else
3491 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3492 return VINF_SUCCESS;
3493}
3494
3495
3496/**
3497 * Enables or disables singled stepped disassembly.
3498 *
3499 * @returns VBox status code.
3500 * @param pVM VM handle.
3501 * @param fEnable To enable set this flag, to disable clear it.
3502 */
3503REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3504{
3505 PVMREQ pReq;
3506 int rc;
3507
3508 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3509 if (VM_IS_EMT(pVM))
3510 return remR3DisasEnableStepping(pVM, fEnable);
3511
3512 rc = VMR3ReqCall(pVM, VMREQDEST_ANY, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3513 AssertRC(rc);
3514 if (RT_SUCCESS(rc))
3515 rc = pReq->iStatus;
3516 VMR3ReqFree(pReq);
3517 return rc;
3518}
3519
3520
3521#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3522/**
3523 * External Debugger Command: .remstep [on|off|1|0]
3524 */
3525static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3526{
3527 bool fEnable;
3528 int rc;
3529
3530 /* print status */
3531 if (cArgs == 0)
3532 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3533 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3534
3535 /* convert the argument and change the mode. */
3536 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3537 if (RT_FAILURE(rc))
3538 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3539 rc = REMR3DisasEnableStepping(pVM, fEnable);
3540 if (RT_FAILURE(rc))
3541 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3542 return rc;
3543}
3544#endif
3545
3546
3547/**
3548 * Disassembles one instruction and prints it to the log.
3549 *
3550 * @returns Success indicator.
3551 * @param env Pointer to the recompiler CPU structure.
3552 * @param f32BitCode Indicates that whether or not the code should
3553 * be disassembled as 16 or 32 bit. If -1 the CS
3554 * selector will be inspected.
3555 * @param pszPrefix
3556 */
3557bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3558{
3559 PVM pVM = env->pVM;
3560 const bool fLog = LogIsEnabled();
3561 const bool fLog2 = LogIs2Enabled();
3562 int rc = VINF_SUCCESS;
3563
3564 /*
3565 * Don't bother if there ain't any log output to do.
3566 */
3567 if (!fLog && !fLog2)
3568 return true;
3569
3570 /*
3571 * Update the state so DBGF reads the correct register values.
3572 */
3573 remR3StateUpdate(pVM);
3574
3575 /*
3576 * Log registers if requested.
3577 */
3578 if (!fLog2)
3579 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3580
3581 /*
3582 * Disassemble to log.
3583 */
3584 if (fLog)
3585 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3586
3587 return RT_SUCCESS(rc);
3588}
3589
3590
3591/**
3592 * Disassemble recompiled code.
3593 *
3594 * @param phFileIgnored Ignored, logfile usually.
3595 * @param pvCode Pointer to the code block.
3596 * @param cb Size of the code block.
3597 */
3598void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3599{
3600 if (LogIs2Enabled())
3601 {
3602 unsigned off = 0;
3603 char szOutput[256];
3604 DISCPUSTATE Cpu;
3605
3606 memset(&Cpu, 0, sizeof(Cpu));
3607#ifdef RT_ARCH_X86
3608 Cpu.mode = CPUMODE_32BIT;
3609#else
3610 Cpu.mode = CPUMODE_64BIT;
3611#endif
3612
3613 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3614 while (off < cb)
3615 {
3616 uint32_t cbInstr;
3617 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3618 RTLogPrintf("%s", szOutput);
3619 else
3620 {
3621 RTLogPrintf("disas error\n");
3622 cbInstr = 1;
3623#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3624 break;
3625#endif
3626 }
3627 off += cbInstr;
3628 }
3629 }
3630 NOREF(phFileIgnored);
3631}
3632
3633
3634/**
3635 * Disassemble guest code.
3636 *
3637 * @param phFileIgnored Ignored, logfile usually.
3638 * @param uCode The guest address of the code to disassemble. (flat?)
3639 * @param cb Number of bytes to disassemble.
3640 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3641 */
3642void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3643{
3644 if (LogIs2Enabled())
3645 {
3646 PVM pVM = cpu_single_env->pVM;
3647
3648 /*
3649 * Update the state so DBGF reads the correct register values (flags).
3650 */
3651 remR3StateUpdate(pVM);
3652
3653 /*
3654 * Do the disassembling.
3655 */
3656 RTLogPrintf("Guest Code: PC=%RGp %#RGp (%RGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3657 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3658 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3659 for (;;)
3660 {
3661 char szBuf[256];
3662 uint32_t cbInstr;
3663 int rc = DBGFR3DisasInstrEx(pVM,
3664 cs,
3665 eip,
3666 0,
3667 szBuf, sizeof(szBuf),
3668 &cbInstr);
3669 if (RT_SUCCESS(rc))
3670 RTLogPrintf("%RGp %s\n", uCode, szBuf);
3671 else
3672 {
3673 RTLogPrintf("%RGp %04x:%RGv: %s\n", uCode, cs, eip, szBuf);
3674 cbInstr = 1;
3675 }
3676
3677 /* next */
3678 if (cb <= cbInstr)
3679 break;
3680 cb -= cbInstr;
3681 uCode += cbInstr;
3682 eip += cbInstr;
3683 }
3684 }
3685 NOREF(phFileIgnored);
3686}
3687
3688
3689/**
3690 * Looks up a guest symbol.
3691 *
3692 * @returns Pointer to symbol name. This is a static buffer.
3693 * @param orig_addr The address in question.
3694 */
3695const char *lookup_symbol(target_ulong orig_addr)
3696{
3697 RTGCINTPTR off = 0;
3698 DBGFSYMBOL Sym;
3699 PVM pVM = cpu_single_env->pVM;
3700 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3701 if (RT_SUCCESS(rc))
3702 {
3703 static char szSym[sizeof(Sym.szName) + 48];
3704 if (!off)
3705 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3706 else if (off > 0)
3707 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3708 else
3709 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3710 return szSym;
3711 }
3712 return "<N/A>";
3713}
3714
3715
3716#undef LOG_GROUP
3717#define LOG_GROUP LOG_GROUP_REM
3718
3719
3720/* -+- FF notifications -+- */
3721
3722
3723/**
3724 * Notification about a pending interrupt.
3725 *
3726 * @param pVM VM Handle.
3727 * @param u8Interrupt Interrupt
3728 * @thread The emulation thread.
3729 */
3730REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3731{
3732 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3733 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3734}
3735
3736/**
3737 * Notification about a pending interrupt.
3738 *
3739 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3740 * @param pVM VM Handle.
3741 * @thread The emulation thread.
3742 */
3743REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3744{
3745 return pVM->rem.s.u32PendingInterrupt;
3746}
3747
3748/**
3749 * Notification about the interrupt FF being set.
3750 *
3751 * @param pVM VM Handle.
3752 * @thread The emulation thread.
3753 */
3754REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3755{
3756 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3757 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3758 if (pVM->rem.s.fInREM)
3759 {
3760 if (VM_IS_EMT(pVM))
3761 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3762 else
3763 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3764 }
3765}
3766
3767
3768/**
3769 * Notification about the interrupt FF being set.
3770 *
3771 * @param pVM VM Handle.
3772 * @thread Any.
3773 */
3774REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3775{
3776 LogFlow(("REMR3NotifyInterruptClear:\n"));
3777 if (pVM->rem.s.fInREM)
3778 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3779}
3780
3781
3782/**
3783 * Notification about pending timer(s).
3784 *
3785 * @param pVM VM Handle.
3786 * @thread Any.
3787 */
3788REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3789{
3790#ifndef DEBUG_bird
3791 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3792#endif
3793 if (pVM->rem.s.fInREM)
3794 {
3795 if (VM_IS_EMT(pVM))
3796 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3797 else
3798 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3799 }
3800}
3801
3802
3803/**
3804 * Notification about pending DMA transfers.
3805 *
3806 * @param pVM VM Handle.
3807 * @thread Any.
3808 */
3809REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3810{
3811 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3812 if (pVM->rem.s.fInREM)
3813 {
3814 if (VM_IS_EMT(pVM))
3815 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3816 else
3817 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3818 }
3819}
3820
3821
3822/**
3823 * Notification about pending timer(s).
3824 *
3825 * @param pVM VM Handle.
3826 * @thread Any.
3827 */
3828REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3829{
3830 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3831 if (pVM->rem.s.fInREM)
3832 {
3833 if (VM_IS_EMT(pVM))
3834 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3835 else
3836 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3837 }
3838}
3839
3840
3841/**
3842 * Notification about pending FF set by an external thread.
3843 *
3844 * @param pVM VM handle.
3845 * @thread Any.
3846 */
3847REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3848{
3849 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3850 if (pVM->rem.s.fInREM)
3851 {
3852 if (VM_IS_EMT(pVM))
3853 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3854 else
3855 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3856 }
3857}
3858
3859
3860#ifdef VBOX_WITH_STATISTICS
3861void remR3ProfileStart(int statcode)
3862{
3863 STAMPROFILEADV *pStat;
3864 switch(statcode)
3865 {
3866 case STATS_EMULATE_SINGLE_INSTR:
3867 pStat = &gStatExecuteSingleInstr;
3868 break;
3869 case STATS_QEMU_COMPILATION:
3870 pStat = &gStatCompilationQEmu;
3871 break;
3872 case STATS_QEMU_RUN_EMULATED_CODE:
3873 pStat = &gStatRunCodeQEmu;
3874 break;
3875 case STATS_QEMU_TOTAL:
3876 pStat = &gStatTotalTimeQEmu;
3877 break;
3878 case STATS_QEMU_RUN_TIMERS:
3879 pStat = &gStatTimers;
3880 break;
3881 case STATS_TLB_LOOKUP:
3882 pStat= &gStatTBLookup;
3883 break;
3884 case STATS_IRQ_HANDLING:
3885 pStat= &gStatIRQ;
3886 break;
3887 case STATS_RAW_CHECK:
3888 pStat = &gStatRawCheck;
3889 break;
3890
3891 default:
3892 AssertMsgFailed(("unknown stat %d\n", statcode));
3893 return;
3894 }
3895 STAM_PROFILE_ADV_START(pStat, a);
3896}
3897
3898
3899void remR3ProfileStop(int statcode)
3900{
3901 STAMPROFILEADV *pStat;
3902 switch(statcode)
3903 {
3904 case STATS_EMULATE_SINGLE_INSTR:
3905 pStat = &gStatExecuteSingleInstr;
3906 break;
3907 case STATS_QEMU_COMPILATION:
3908 pStat = &gStatCompilationQEmu;
3909 break;
3910 case STATS_QEMU_RUN_EMULATED_CODE:
3911 pStat = &gStatRunCodeQEmu;
3912 break;
3913 case STATS_QEMU_TOTAL:
3914 pStat = &gStatTotalTimeQEmu;
3915 break;
3916 case STATS_QEMU_RUN_TIMERS:
3917 pStat = &gStatTimers;
3918 break;
3919 case STATS_TLB_LOOKUP:
3920 pStat= &gStatTBLookup;
3921 break;
3922 case STATS_IRQ_HANDLING:
3923 pStat= &gStatIRQ;
3924 break;
3925 case STATS_RAW_CHECK:
3926 pStat = &gStatRawCheck;
3927 break;
3928 default:
3929 AssertMsgFailed(("unknown stat %d\n", statcode));
3930 return;
3931 }
3932 STAM_PROFILE_ADV_STOP(pStat, a);
3933}
3934#endif
3935
3936/**
3937 * Raise an RC, force rem exit.
3938 *
3939 * @param pVM VM handle.
3940 * @param rc The rc.
3941 */
3942void remR3RaiseRC(PVM pVM, int rc)
3943{
3944 Log(("remR3RaiseRC: rc=%Rrc\n", rc));
3945 Assert(pVM->rem.s.fInREM);
3946 VM_ASSERT_EMT(pVM);
3947 pVM->rem.s.rc = rc;
3948 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3949}
3950
3951
3952/* -+- timers -+- */
3953
3954uint64_t cpu_get_tsc(CPUX86State *env)
3955{
3956 STAM_COUNTER_INC(&gStatCpuGetTSC);
3957 return TMCpuTickGet(env->pVM);
3958}
3959
3960
3961/* -+- interrupts -+- */
3962
3963void cpu_set_ferr(CPUX86State *env)
3964{
3965 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
3966 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
3967}
3968
3969int cpu_get_pic_interrupt(CPUState *env)
3970{
3971 uint8_t u8Interrupt;
3972 int rc;
3973
3974 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
3975 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
3976 * with the (a)pic.
3977 */
3978 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
3979 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
3980 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
3981 * remove this kludge. */
3982 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
3983 {
3984 rc = VINF_SUCCESS;
3985 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
3986 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
3987 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
3988 }
3989 else
3990 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
3991
3992 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Rrc\n", u8Interrupt, rc));
3993 if (RT_SUCCESS(rc))
3994 {
3995 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
3996 env->interrupt_request |= CPU_INTERRUPT_HARD;
3997 return u8Interrupt;
3998 }
3999 return -1;
4000}
4001
4002
4003/* -+- local apic -+- */
4004
4005void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4006{
4007 int rc = PDMApicSetBase(env->pVM, val);
4008 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Rrc\n", val, rc)); NOREF(rc);
4009}
4010
4011uint64_t cpu_get_apic_base(CPUX86State *env)
4012{
4013 uint64_t u64;
4014 int rc = PDMApicGetBase(env->pVM, &u64);
4015 if (RT_SUCCESS(rc))
4016 {
4017 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4018 return u64;
4019 }
4020 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Rrc)\n", rc));
4021 return 0;
4022}
4023
4024void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4025{
4026 int rc = PDMApicSetTPR(env->pVM, val);
4027 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Rrc\n", val, rc)); NOREF(rc);
4028}
4029
4030uint8_t cpu_get_apic_tpr(CPUX86State *env)
4031{
4032 uint8_t u8;
4033 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4034 if (RT_SUCCESS(rc))
4035 {
4036 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4037 return u8;
4038 }
4039 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Rrc)\n", rc));
4040 return 0;
4041}
4042
4043
4044uint64_t cpu_apic_rdmsr(CPUX86State *env, uint32_t reg)
4045{
4046 uint64_t value;
4047 int rc = PDMApicReadMSR(env->pVM, 0/* cpu */, reg, &value);
4048 if (RT_SUCCESS(rc))
4049 {
4050 LogFlow(("cpu_apic_rdms returns %#x\n", value));
4051 return value;
4052 }
4053 /** @todo: exception ? */
4054 LogFlow(("cpu_apic_rdms returns 0 (rc=%Rrc)\n", rc));
4055 return value;
4056}
4057
4058void cpu_apic_wrmsr(CPUX86State *env, uint32_t reg, uint64_t value)
4059{
4060 int rc = PDMApicWriteMSR(env->pVM, 0 /* cpu */, reg, value);
4061 /** @todo: exception if error ? */
4062 LogFlow(("cpu_apic_wrmsr: rc=%Rrc\n", rc)); NOREF(rc);
4063}
4064
4065uint64_t cpu_rdmsr(CPUX86State *env, uint32_t msr)
4066{
4067 return CPUMGetGuestMsr(env->pVM, msr);
4068}
4069
4070void cpu_wrmsr(CPUX86State *env, uint32_t msr, uint64_t val)
4071{
4072 CPUMSetGuestMsr(env->pVM, msr, val);
4073}
4074
4075/* -+- I/O Ports -+- */
4076
4077#undef LOG_GROUP
4078#define LOG_GROUP LOG_GROUP_REM_IOPORT
4079
4080void cpu_outb(CPUState *env, int addr, int val)
4081{
4082 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4083 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4084
4085 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4086 if (RT_LIKELY(rc == VINF_SUCCESS))
4087 return;
4088 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4089 {
4090 Log(("cpu_outb: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4091 remR3RaiseRC(env->pVM, rc);
4092 return;
4093 }
4094 remAbort(rc, __FUNCTION__);
4095}
4096
4097void cpu_outw(CPUState *env, int addr, int val)
4098{
4099 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4100 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4101 if (RT_LIKELY(rc == VINF_SUCCESS))
4102 return;
4103 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4104 {
4105 Log(("cpu_outw: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4106 remR3RaiseRC(env->pVM, rc);
4107 return;
4108 }
4109 remAbort(rc, __FUNCTION__);
4110}
4111
4112void cpu_outl(CPUState *env, int addr, int val)
4113{
4114 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4115 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4116 if (RT_LIKELY(rc == VINF_SUCCESS))
4117 return;
4118 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4119 {
4120 Log(("cpu_outl: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4121 remR3RaiseRC(env->pVM, rc);
4122 return;
4123 }
4124 remAbort(rc, __FUNCTION__);
4125}
4126
4127int cpu_inb(CPUState *env, int addr)
4128{
4129 uint32_t u32 = 0;
4130 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4131 if (RT_LIKELY(rc == VINF_SUCCESS))
4132 {
4133 if (/*addr != 0x61 && */addr != 0x71)
4134 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4135 return (int)u32;
4136 }
4137 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4138 {
4139 Log(("cpu_inb: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4140 remR3RaiseRC(env->pVM, rc);
4141 return (int)u32;
4142 }
4143 remAbort(rc, __FUNCTION__);
4144 return 0xff;
4145}
4146
4147int cpu_inw(CPUState *env, int addr)
4148{
4149 uint32_t u32 = 0;
4150 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4151 if (RT_LIKELY(rc == VINF_SUCCESS))
4152 {
4153 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4154 return (int)u32;
4155 }
4156 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4157 {
4158 Log(("cpu_inw: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4159 remR3RaiseRC(env->pVM, rc);
4160 return (int)u32;
4161 }
4162 remAbort(rc, __FUNCTION__);
4163 return 0xffff;
4164}
4165
4166int cpu_inl(CPUState *env, int addr)
4167{
4168 uint32_t u32 = 0;
4169 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4170 if (RT_LIKELY(rc == VINF_SUCCESS))
4171 {
4172//if (addr==0x01f0 && u32 == 0x6b6d)
4173// loglevel = ~0;
4174 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4175 return (int)u32;
4176 }
4177 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4178 {
4179 Log(("cpu_inl: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4180 remR3RaiseRC(env->pVM, rc);
4181 return (int)u32;
4182 }
4183 remAbort(rc, __FUNCTION__);
4184 return 0xffffffff;
4185}
4186
4187#undef LOG_GROUP
4188#define LOG_GROUP LOG_GROUP_REM
4189
4190
4191/* -+- helpers and misc other interfaces -+- */
4192
4193/**
4194 * Perform the CPUID instruction.
4195 *
4196 * ASMCpuId cannot be invoked from some source files where this is used because of global
4197 * register allocations.
4198 *
4199 * @param env Pointer to the recompiler CPU structure.
4200 * @param uOperator CPUID operation (eax).
4201 * @param pvEAX Where to store eax.
4202 * @param pvEBX Where to store ebx.
4203 * @param pvECX Where to store ecx.
4204 * @param pvEDX Where to store edx.
4205 */
4206void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4207{
4208 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4209}
4210
4211
4212#if 0 /* not used */
4213/**
4214 * Interface for qemu hardware to report back fatal errors.
4215 */
4216void hw_error(const char *pszFormat, ...)
4217{
4218 /*
4219 * Bitch about it.
4220 */
4221 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4222 * this in my Odin32 tree at home! */
4223 va_list args;
4224 va_start(args, pszFormat);
4225 RTLogPrintf("fatal error in virtual hardware:");
4226 RTLogPrintfV(pszFormat, args);
4227 va_end(args);
4228 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4229
4230 /*
4231 * If we're in REM context we'll sync back the state before 'jumping' to
4232 * the EMs failure handling.
4233 */
4234 PVM pVM = cpu_single_env->pVM;
4235 if (pVM->rem.s.fInREM)
4236 REMR3StateBack(pVM);
4237 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4238 AssertMsgFailed(("EMR3FatalError returned!\n"));
4239}
4240#endif
4241
4242/**
4243 * Interface for the qemu cpu to report unhandled situation
4244 * raising a fatal VM error.
4245 */
4246void cpu_abort(CPUState *env, const char *pszFormat, ...)
4247{
4248 /*
4249 * Bitch about it.
4250 */
4251 RTLogFlags(NULL, "nodisabled nobuffered");
4252 va_list args;
4253 va_start(args, pszFormat);
4254 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4255 va_end(args);
4256 va_start(args, pszFormat);
4257 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4258 va_end(args);
4259
4260 /*
4261 * If we're in REM context we'll sync back the state before 'jumping' to
4262 * the EMs failure handling.
4263 */
4264 PVM pVM = cpu_single_env->pVM;
4265 if (pVM->rem.s.fInREM)
4266 REMR3StateBack(pVM);
4267 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4268 AssertMsgFailed(("EMR3FatalError returned!\n"));
4269}
4270
4271
4272/**
4273 * Aborts the VM.
4274 *
4275 * @param rc VBox error code.
4276 * @param pszTip Hint about why/when this happend.
4277 */
4278static void remAbort(int rc, const char *pszTip)
4279{
4280 /*
4281 * Bitch about it.
4282 */
4283 RTLogPrintf("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip);
4284 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip));
4285
4286 /*
4287 * Jump back to where we entered the recompiler.
4288 */
4289 PVM pVM = cpu_single_env->pVM;
4290 if (pVM->rem.s.fInREM)
4291 REMR3StateBack(pVM);
4292 EMR3FatalError(pVM, rc);
4293 AssertMsgFailed(("EMR3FatalError returned!\n"));
4294}
4295
4296
4297/**
4298 * Dumps a linux system call.
4299 * @param pVM VM handle.
4300 */
4301void remR3DumpLnxSyscall(PVM pVM)
4302{
4303 static const char *apsz[] =
4304 {
4305 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4306 "sys_exit",
4307 "sys_fork",
4308 "sys_read",
4309 "sys_write",
4310 "sys_open", /* 5 */
4311 "sys_close",
4312 "sys_waitpid",
4313 "sys_creat",
4314 "sys_link",
4315 "sys_unlink", /* 10 */
4316 "sys_execve",
4317 "sys_chdir",
4318 "sys_time",
4319 "sys_mknod",
4320 "sys_chmod", /* 15 */
4321 "sys_lchown16",
4322 "sys_ni_syscall", /* old break syscall holder */
4323 "sys_stat",
4324 "sys_lseek",
4325 "sys_getpid", /* 20 */
4326 "sys_mount",
4327 "sys_oldumount",
4328 "sys_setuid16",
4329 "sys_getuid16",
4330 "sys_stime", /* 25 */
4331 "sys_ptrace",
4332 "sys_alarm",
4333 "sys_fstat",
4334 "sys_pause",
4335 "sys_utime", /* 30 */
4336 "sys_ni_syscall", /* old stty syscall holder */
4337 "sys_ni_syscall", /* old gtty syscall holder */
4338 "sys_access",
4339 "sys_nice",
4340 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4341 "sys_sync",
4342 "sys_kill",
4343 "sys_rename",
4344 "sys_mkdir",
4345 "sys_rmdir", /* 40 */
4346 "sys_dup",
4347 "sys_pipe",
4348 "sys_times",
4349 "sys_ni_syscall", /* old prof syscall holder */
4350 "sys_brk", /* 45 */
4351 "sys_setgid16",
4352 "sys_getgid16",
4353 "sys_signal",
4354 "sys_geteuid16",
4355 "sys_getegid16", /* 50 */
4356 "sys_acct",
4357 "sys_umount", /* recycled never used phys() */
4358 "sys_ni_syscall", /* old lock syscall holder */
4359 "sys_ioctl",
4360 "sys_fcntl", /* 55 */
4361 "sys_ni_syscall", /* old mpx syscall holder */
4362 "sys_setpgid",
4363 "sys_ni_syscall", /* old ulimit syscall holder */
4364 "sys_olduname",
4365 "sys_umask", /* 60 */
4366 "sys_chroot",
4367 "sys_ustat",
4368 "sys_dup2",
4369 "sys_getppid",
4370 "sys_getpgrp", /* 65 */
4371 "sys_setsid",
4372 "sys_sigaction",
4373 "sys_sgetmask",
4374 "sys_ssetmask",
4375 "sys_setreuid16", /* 70 */
4376 "sys_setregid16",
4377 "sys_sigsuspend",
4378 "sys_sigpending",
4379 "sys_sethostname",
4380 "sys_setrlimit", /* 75 */
4381 "sys_old_getrlimit",
4382 "sys_getrusage",
4383 "sys_gettimeofday",
4384 "sys_settimeofday",
4385 "sys_getgroups16", /* 80 */
4386 "sys_setgroups16",
4387 "old_select",
4388 "sys_symlink",
4389 "sys_lstat",
4390 "sys_readlink", /* 85 */
4391 "sys_uselib",
4392 "sys_swapon",
4393 "sys_reboot",
4394 "old_readdir",
4395 "old_mmap", /* 90 */
4396 "sys_munmap",
4397 "sys_truncate",
4398 "sys_ftruncate",
4399 "sys_fchmod",
4400 "sys_fchown16", /* 95 */
4401 "sys_getpriority",
4402 "sys_setpriority",
4403 "sys_ni_syscall", /* old profil syscall holder */
4404 "sys_statfs",
4405 "sys_fstatfs", /* 100 */
4406 "sys_ioperm",
4407 "sys_socketcall",
4408 "sys_syslog",
4409 "sys_setitimer",
4410 "sys_getitimer", /* 105 */
4411 "sys_newstat",
4412 "sys_newlstat",
4413 "sys_newfstat",
4414 "sys_uname",
4415 "sys_iopl", /* 110 */
4416 "sys_vhangup",
4417 "sys_ni_syscall", /* old "idle" system call */
4418 "sys_vm86old",
4419 "sys_wait4",
4420 "sys_swapoff", /* 115 */
4421 "sys_sysinfo",
4422 "sys_ipc",
4423 "sys_fsync",
4424 "sys_sigreturn",
4425 "sys_clone", /* 120 */
4426 "sys_setdomainname",
4427 "sys_newuname",
4428 "sys_modify_ldt",
4429 "sys_adjtimex",
4430 "sys_mprotect", /* 125 */
4431 "sys_sigprocmask",
4432 "sys_ni_syscall", /* old "create_module" */
4433 "sys_init_module",
4434 "sys_delete_module",
4435 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4436 "sys_quotactl",
4437 "sys_getpgid",
4438 "sys_fchdir",
4439 "sys_bdflush",
4440 "sys_sysfs", /* 135 */
4441 "sys_personality",
4442 "sys_ni_syscall", /* reserved for afs_syscall */
4443 "sys_setfsuid16",
4444 "sys_setfsgid16",
4445 "sys_llseek", /* 140 */
4446 "sys_getdents",
4447 "sys_select",
4448 "sys_flock",
4449 "sys_msync",
4450 "sys_readv", /* 145 */
4451 "sys_writev",
4452 "sys_getsid",
4453 "sys_fdatasync",
4454 "sys_sysctl",
4455 "sys_mlock", /* 150 */
4456 "sys_munlock",
4457 "sys_mlockall",
4458 "sys_munlockall",
4459 "sys_sched_setparam",
4460 "sys_sched_getparam", /* 155 */
4461 "sys_sched_setscheduler",
4462 "sys_sched_getscheduler",
4463 "sys_sched_yield",
4464 "sys_sched_get_priority_max",
4465 "sys_sched_get_priority_min", /* 160 */
4466 "sys_sched_rr_get_interval",
4467 "sys_nanosleep",
4468 "sys_mremap",
4469 "sys_setresuid16",
4470 "sys_getresuid16", /* 165 */
4471 "sys_vm86",
4472 "sys_ni_syscall", /* Old sys_query_module */
4473 "sys_poll",
4474 "sys_nfsservctl",
4475 "sys_setresgid16", /* 170 */
4476 "sys_getresgid16",
4477 "sys_prctl",
4478 "sys_rt_sigreturn",
4479 "sys_rt_sigaction",
4480 "sys_rt_sigprocmask", /* 175 */
4481 "sys_rt_sigpending",
4482 "sys_rt_sigtimedwait",
4483 "sys_rt_sigqueueinfo",
4484 "sys_rt_sigsuspend",
4485 "sys_pread64", /* 180 */
4486 "sys_pwrite64",
4487 "sys_chown16",
4488 "sys_getcwd",
4489 "sys_capget",
4490 "sys_capset", /* 185 */
4491 "sys_sigaltstack",
4492 "sys_sendfile",
4493 "sys_ni_syscall", /* reserved for streams1 */
4494 "sys_ni_syscall", /* reserved for streams2 */
4495 "sys_vfork", /* 190 */
4496 "sys_getrlimit",
4497 "sys_mmap2",
4498 "sys_truncate64",
4499 "sys_ftruncate64",
4500 "sys_stat64", /* 195 */
4501 "sys_lstat64",
4502 "sys_fstat64",
4503 "sys_lchown",
4504 "sys_getuid",
4505 "sys_getgid", /* 200 */
4506 "sys_geteuid",
4507 "sys_getegid",
4508 "sys_setreuid",
4509 "sys_setregid",
4510 "sys_getgroups", /* 205 */
4511 "sys_setgroups",
4512 "sys_fchown",
4513 "sys_setresuid",
4514 "sys_getresuid",
4515 "sys_setresgid", /* 210 */
4516 "sys_getresgid",
4517 "sys_chown",
4518 "sys_setuid",
4519 "sys_setgid",
4520 "sys_setfsuid", /* 215 */
4521 "sys_setfsgid",
4522 "sys_pivot_root",
4523 "sys_mincore",
4524 "sys_madvise",
4525 "sys_getdents64", /* 220 */
4526 "sys_fcntl64",
4527 "sys_ni_syscall", /* reserved for TUX */
4528 "sys_ni_syscall",
4529 "sys_gettid",
4530 "sys_readahead", /* 225 */
4531 "sys_setxattr",
4532 "sys_lsetxattr",
4533 "sys_fsetxattr",
4534 "sys_getxattr",
4535 "sys_lgetxattr", /* 230 */
4536 "sys_fgetxattr",
4537 "sys_listxattr",
4538 "sys_llistxattr",
4539 "sys_flistxattr",
4540 "sys_removexattr", /* 235 */
4541 "sys_lremovexattr",
4542 "sys_fremovexattr",
4543 "sys_tkill",
4544 "sys_sendfile64",
4545 "sys_futex", /* 240 */
4546 "sys_sched_setaffinity",
4547 "sys_sched_getaffinity",
4548 "sys_set_thread_area",
4549 "sys_get_thread_area",
4550 "sys_io_setup", /* 245 */
4551 "sys_io_destroy",
4552 "sys_io_getevents",
4553 "sys_io_submit",
4554 "sys_io_cancel",
4555 "sys_fadvise64", /* 250 */
4556 "sys_ni_syscall",
4557 "sys_exit_group",
4558 "sys_lookup_dcookie",
4559 "sys_epoll_create",
4560 "sys_epoll_ctl", /* 255 */
4561 "sys_epoll_wait",
4562 "sys_remap_file_pages",
4563 "sys_set_tid_address",
4564 "sys_timer_create",
4565 "sys_timer_settime", /* 260 */
4566 "sys_timer_gettime",
4567 "sys_timer_getoverrun",
4568 "sys_timer_delete",
4569 "sys_clock_settime",
4570 "sys_clock_gettime", /* 265 */
4571 "sys_clock_getres",
4572 "sys_clock_nanosleep",
4573 "sys_statfs64",
4574 "sys_fstatfs64",
4575 "sys_tgkill", /* 270 */
4576 "sys_utimes",
4577 "sys_fadvise64_64",
4578 "sys_ni_syscall" /* sys_vserver */
4579 };
4580
4581 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4582 switch (uEAX)
4583 {
4584 default:
4585 if (uEAX < RT_ELEMENTS(apsz))
4586 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4587 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4588 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4589 else
4590 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4591 break;
4592
4593 }
4594}
4595
4596
4597/**
4598 * Dumps an OpenBSD system call.
4599 * @param pVM VM handle.
4600 */
4601void remR3DumpOBsdSyscall(PVM pVM)
4602{
4603 static const char *apsz[] =
4604 {
4605 "SYS_syscall", //0
4606 "SYS_exit", //1
4607 "SYS_fork", //2
4608 "SYS_read", //3
4609 "SYS_write", //4
4610 "SYS_open", //5
4611 "SYS_close", //6
4612 "SYS_wait4", //7
4613 "SYS_8",
4614 "SYS_link", //9
4615 "SYS_unlink", //10
4616 "SYS_11",
4617 "SYS_chdir", //12
4618 "SYS_fchdir", //13
4619 "SYS_mknod", //14
4620 "SYS_chmod", //15
4621 "SYS_chown", //16
4622 "SYS_break", //17
4623 "SYS_18",
4624 "SYS_19",
4625 "SYS_getpid", //20
4626 "SYS_mount", //21
4627 "SYS_unmount", //22
4628 "SYS_setuid", //23
4629 "SYS_getuid", //24
4630 "SYS_geteuid", //25
4631 "SYS_ptrace", //26
4632 "SYS_recvmsg", //27
4633 "SYS_sendmsg", //28
4634 "SYS_recvfrom", //29
4635 "SYS_accept", //30
4636 "SYS_getpeername", //31
4637 "SYS_getsockname", //32
4638 "SYS_access", //33
4639 "SYS_chflags", //34
4640 "SYS_fchflags", //35
4641 "SYS_sync", //36
4642 "SYS_kill", //37
4643 "SYS_38",
4644 "SYS_getppid", //39
4645 "SYS_40",
4646 "SYS_dup", //41
4647 "SYS_opipe", //42
4648 "SYS_getegid", //43
4649 "SYS_profil", //44
4650 "SYS_ktrace", //45
4651 "SYS_sigaction", //46
4652 "SYS_getgid", //47
4653 "SYS_sigprocmask", //48
4654 "SYS_getlogin", //49
4655 "SYS_setlogin", //50
4656 "SYS_acct", //51
4657 "SYS_sigpending", //52
4658 "SYS_osigaltstack", //53
4659 "SYS_ioctl", //54
4660 "SYS_reboot", //55
4661 "SYS_revoke", //56
4662 "SYS_symlink", //57
4663 "SYS_readlink", //58
4664 "SYS_execve", //59
4665 "SYS_umask", //60
4666 "SYS_chroot", //61
4667 "SYS_62",
4668 "SYS_63",
4669 "SYS_64",
4670 "SYS_65",
4671 "SYS_vfork", //66
4672 "SYS_67",
4673 "SYS_68",
4674 "SYS_sbrk", //69
4675 "SYS_sstk", //70
4676 "SYS_61",
4677 "SYS_vadvise", //72
4678 "SYS_munmap", //73
4679 "SYS_mprotect", //74
4680 "SYS_madvise", //75
4681 "SYS_76",
4682 "SYS_77",
4683 "SYS_mincore", //78
4684 "SYS_getgroups", //79
4685 "SYS_setgroups", //80
4686 "SYS_getpgrp", //81
4687 "SYS_setpgid", //82
4688 "SYS_setitimer", //83
4689 "SYS_84",
4690 "SYS_85",
4691 "SYS_getitimer", //86
4692 "SYS_87",
4693 "SYS_88",
4694 "SYS_89",
4695 "SYS_dup2", //90
4696 "SYS_91",
4697 "SYS_fcntl", //92
4698 "SYS_select", //93
4699 "SYS_94",
4700 "SYS_fsync", //95
4701 "SYS_setpriority", //96
4702 "SYS_socket", //97
4703 "SYS_connect", //98
4704 "SYS_99",
4705 "SYS_getpriority", //100
4706 "SYS_101",
4707 "SYS_102",
4708 "SYS_sigreturn", //103
4709 "SYS_bind", //104
4710 "SYS_setsockopt", //105
4711 "SYS_listen", //106
4712 "SYS_107",
4713 "SYS_108",
4714 "SYS_109",
4715 "SYS_110",
4716 "SYS_sigsuspend", //111
4717 "SYS_112",
4718 "SYS_113",
4719 "SYS_114",
4720 "SYS_115",
4721 "SYS_gettimeofday", //116
4722 "SYS_getrusage", //117
4723 "SYS_getsockopt", //118
4724 "SYS_119",
4725 "SYS_readv", //120
4726 "SYS_writev", //121
4727 "SYS_settimeofday", //122
4728 "SYS_fchown", //123
4729 "SYS_fchmod", //124
4730 "SYS_125",
4731 "SYS_setreuid", //126
4732 "SYS_setregid", //127
4733 "SYS_rename", //128
4734 "SYS_129",
4735 "SYS_130",
4736 "SYS_flock", //131
4737 "SYS_mkfifo", //132
4738 "SYS_sendto", //133
4739 "SYS_shutdown", //134
4740 "SYS_socketpair", //135
4741 "SYS_mkdir", //136
4742 "SYS_rmdir", //137
4743 "SYS_utimes", //138
4744 "SYS_139",
4745 "SYS_adjtime", //140
4746 "SYS_141",
4747 "SYS_142",
4748 "SYS_143",
4749 "SYS_144",
4750 "SYS_145",
4751 "SYS_146",
4752 "SYS_setsid", //147
4753 "SYS_quotactl", //148
4754 "SYS_149",
4755 "SYS_150",
4756 "SYS_151",
4757 "SYS_152",
4758 "SYS_153",
4759 "SYS_154",
4760 "SYS_nfssvc", //155
4761 "SYS_156",
4762 "SYS_157",
4763 "SYS_158",
4764 "SYS_159",
4765 "SYS_160",
4766 "SYS_getfh", //161
4767 "SYS_162",
4768 "SYS_163",
4769 "SYS_164",
4770 "SYS_sysarch", //165
4771 "SYS_166",
4772 "SYS_167",
4773 "SYS_168",
4774 "SYS_169",
4775 "SYS_170",
4776 "SYS_171",
4777 "SYS_172",
4778 "SYS_pread", //173
4779 "SYS_pwrite", //174
4780 "SYS_175",
4781 "SYS_176",
4782 "SYS_177",
4783 "SYS_178",
4784 "SYS_179",
4785 "SYS_180",
4786 "SYS_setgid", //181
4787 "SYS_setegid", //182
4788 "SYS_seteuid", //183
4789 "SYS_lfs_bmapv", //184
4790 "SYS_lfs_markv", //185
4791 "SYS_lfs_segclean", //186
4792 "SYS_lfs_segwait", //187
4793 "SYS_188",
4794 "SYS_189",
4795 "SYS_190",
4796 "SYS_pathconf", //191
4797 "SYS_fpathconf", //192
4798 "SYS_swapctl", //193
4799 "SYS_getrlimit", //194
4800 "SYS_setrlimit", //195
4801 "SYS_getdirentries", //196
4802 "SYS_mmap", //197
4803 "SYS___syscall", //198
4804 "SYS_lseek", //199
4805 "SYS_truncate", //200
4806 "SYS_ftruncate", //201
4807 "SYS___sysctl", //202
4808 "SYS_mlock", //203
4809 "SYS_munlock", //204
4810 "SYS_205",
4811 "SYS_futimes", //206
4812 "SYS_getpgid", //207
4813 "SYS_xfspioctl", //208
4814 "SYS_209",
4815 "SYS_210",
4816 "SYS_211",
4817 "SYS_212",
4818 "SYS_213",
4819 "SYS_214",
4820 "SYS_215",
4821 "SYS_216",
4822 "SYS_217",
4823 "SYS_218",
4824 "SYS_219",
4825 "SYS_220",
4826 "SYS_semget", //221
4827 "SYS_222",
4828 "SYS_223",
4829 "SYS_224",
4830 "SYS_msgget", //225
4831 "SYS_msgsnd", //226
4832 "SYS_msgrcv", //227
4833 "SYS_shmat", //228
4834 "SYS_229",
4835 "SYS_shmdt", //230
4836 "SYS_231",
4837 "SYS_clock_gettime", //232
4838 "SYS_clock_settime", //233
4839 "SYS_clock_getres", //234
4840 "SYS_235",
4841 "SYS_236",
4842 "SYS_237",
4843 "SYS_238",
4844 "SYS_239",
4845 "SYS_nanosleep", //240
4846 "SYS_241",
4847 "SYS_242",
4848 "SYS_243",
4849 "SYS_244",
4850 "SYS_245",
4851 "SYS_246",
4852 "SYS_247",
4853 "SYS_248",
4854 "SYS_249",
4855 "SYS_minherit", //250
4856 "SYS_rfork", //251
4857 "SYS_poll", //252
4858 "SYS_issetugid", //253
4859 "SYS_lchown", //254
4860 "SYS_getsid", //255
4861 "SYS_msync", //256
4862 "SYS_257",
4863 "SYS_258",
4864 "SYS_259",
4865 "SYS_getfsstat", //260
4866 "SYS_statfs", //261
4867 "SYS_fstatfs", //262
4868 "SYS_pipe", //263
4869 "SYS_fhopen", //264
4870 "SYS_265",
4871 "SYS_fhstatfs", //266
4872 "SYS_preadv", //267
4873 "SYS_pwritev", //268
4874 "SYS_kqueue", //269
4875 "SYS_kevent", //270
4876 "SYS_mlockall", //271
4877 "SYS_munlockall", //272
4878 "SYS_getpeereid", //273
4879 "SYS_274",
4880 "SYS_275",
4881 "SYS_276",
4882 "SYS_277",
4883 "SYS_278",
4884 "SYS_279",
4885 "SYS_280",
4886 "SYS_getresuid", //281
4887 "SYS_setresuid", //282
4888 "SYS_getresgid", //283
4889 "SYS_setresgid", //284
4890 "SYS_285",
4891 "SYS_mquery", //286
4892 "SYS_closefrom", //287
4893 "SYS_sigaltstack", //288
4894 "SYS_shmget", //289
4895 "SYS_semop", //290
4896 "SYS_stat", //291
4897 "SYS_fstat", //292
4898 "SYS_lstat", //293
4899 "SYS_fhstat", //294
4900 "SYS___semctl", //295
4901 "SYS_shmctl", //296
4902 "SYS_msgctl", //297
4903 "SYS_MAXSYSCALL", //298
4904 //299
4905 //300
4906 };
4907 uint32_t uEAX;
4908 if (!LogIsEnabled())
4909 return;
4910 uEAX = CPUMGetGuestEAX(pVM);
4911 switch (uEAX)
4912 {
4913 default:
4914 if (uEAX < RT_ELEMENTS(apsz))
4915 {
4916 uint32_t au32Args[8] = {0};
4917 PGMPhysSimpleReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4918 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4919 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4920 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4921 }
4922 else
4923 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4924 break;
4925 }
4926}
4927
4928
4929#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
4930/**
4931 * The Dll main entry point (stub).
4932 */
4933bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
4934{
4935 return true;
4936}
4937
4938void *memcpy(void *dst, const void *src, size_t size)
4939{
4940 uint8_t*pbDst = dst, *pbSrc = src;
4941 while (size-- > 0)
4942 *pbDst++ = *pbSrc++;
4943 return dst;
4944}
4945
4946#endif
4947
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette