VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInternal.h@ 104932

Last change on this file since 104932 was 104932, checked in by vboxsync, 11 months ago

VMM/PGM,IEM: Refactored+copied PGMGstGetPage into PGMGstQueryPage that takes care of table walking, setting A & D bits and validating the access. Use new function in IEM. bugref:10687

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 325.0 KB
Line 
1/* $Id: IEMInternal.h 104932 2024-06-15 00:29:39Z vboxsync $ */
2/** @file
3 * IEM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2011-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
29#define VMM_INCLUDED_SRC_include_IEMInternal_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34#ifndef RT_IN_ASSEMBLER
35# include <VBox/vmm/cpum.h>
36# include <VBox/vmm/iem.h>
37# include <VBox/vmm/pgm.h>
38# include <VBox/vmm/stam.h>
39# include <VBox/param.h>
40
41# include <iprt/setjmp-without-sigmask.h>
42# include <iprt/list.h>
43#endif /* !RT_IN_ASSEMBLER */
44
45
46RT_C_DECLS_BEGIN
47
48
49/** @defgroup grp_iem_int Internals
50 * @ingroup grp_iem
51 * @internal
52 * @{
53 */
54
55/* Make doxygen happy w/o overcomplicating the #if checks. */
56#ifdef DOXYGEN_RUNNING
57# define IEM_WITH_THROW_CATCH
58# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
59#endif
60
61/** For expanding symbol in slickedit and other products tagging and
62 * crossreferencing IEM symbols. */
63#ifndef IEM_STATIC
64# define IEM_STATIC static
65#endif
66
67/** @def IEM_WITH_SETJMP
68 * Enables alternative status code handling using setjmps.
69 *
70 * This adds a bit of expense via the setjmp() call since it saves all the
71 * non-volatile registers. However, it eliminates return code checks and allows
72 * for more optimal return value passing (return regs instead of stack buffer).
73 */
74#if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
75# define IEM_WITH_SETJMP
76#endif
77
78/** @def IEM_WITH_THROW_CATCH
79 * Enables using C++ throw/catch as an alternative to setjmp/longjmp in user
80 * mode code when IEM_WITH_SETJMP is in effect.
81 *
82 * With GCC 11.3.1 and code TLB on linux, using throw/catch instead of
83 * setjmp/long resulted in bs2-test-1 running 3.00% faster and all but on test
84 * result value improving by more than 1%. (Best out of three.)
85 *
86 * With Visual C++ 2019 and code TLB on windows, using throw/catch instead of
87 * setjmp/long resulted in bs2-test-1 running 3.68% faster and all but some of
88 * the MMIO and CPUID tests ran noticeably faster. Variation is greater than on
89 * Linux, but it should be quite a bit faster for normal code.
90 */
91#if defined(__cplusplus) && defined(IEM_WITH_SETJMP) && defined(IN_RING3) && (defined(__GNUC__) || defined(_MSC_VER)) /* ASM-NOINC-START */
92# define IEM_WITH_THROW_CATCH
93#endif /*ASM-NOINC-END*/
94
95/** @def IEMNATIVE_WITH_DELAYED_PC_UPDATING
96 * Enables the delayed PC updating optimization (see @bugref{10373}).
97 */
98#if defined(DOXYGEN_RUNNING) || 1
99# define IEMNATIVE_WITH_DELAYED_PC_UPDATING
100#endif
101
102/** Enables the SIMD register allocator @bugref{10614}. */
103#if defined(DOXYGEN_RUNNING) || 1
104# define IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
105#endif
106/** Enables access to even callee saved registers. */
107//# define IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
108
109#if defined(DOXYGEN_RUNNING) || 1
110/** @def IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
111 * Delay the writeback or dirty registers as long as possible. */
112# define IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
113#endif
114
115/** @def VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
116 * Enables a quicker alternative to throw/longjmp for IEM_DO_LONGJMP when
117 * executing native translation blocks.
118 *
119 * This exploits the fact that we save all non-volatile registers in the TB
120 * prologue and thus just need to do the same as the TB epilogue to get the
121 * effect of a longjmp/throw. Since MSC marks XMM6 thru XMM15 as
122 * non-volatile (and does something even more crazy for ARM), this probably
123 * won't work reliably on Windows. */
124#ifdef RT_ARCH_ARM64
125# ifndef RT_OS_WINDOWS
126# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
127# endif
128#endif
129/* ASM-NOINC-START */
130#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
131# if !defined(IN_RING3) \
132 || !defined(VBOX_WITH_IEM_RECOMPILER) \
133 || !defined(VBOX_WITH_IEM_NATIVE_RECOMPILER)
134# undef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
135# elif defined(RT_OS_WINDOWS)
136# pragma message("VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP is not safe to use on windows")
137# endif
138#endif
139
140
141/** @def IEM_DO_LONGJMP
142 *
143 * Wrapper around longjmp / throw.
144 *
145 * @param a_pVCpu The CPU handle.
146 * @param a_rc The status code jump back with / throw.
147 */
148#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
149# ifdef IEM_WITH_THROW_CATCH
150# ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
151# define IEM_DO_LONGJMP(a_pVCpu, a_rc) do { \
152 if ((a_pVCpu)->iem.s.pvTbFramePointerR3) \
153 iemNativeTbLongJmp((a_pVCpu)->iem.s.pvTbFramePointerR3, (a_rc)); \
154 throw int(a_rc); \
155 } while (0)
156# else
157# define IEM_DO_LONGJMP(a_pVCpu, a_rc) throw int(a_rc)
158# endif
159# else
160# define IEM_DO_LONGJMP(a_pVCpu, a_rc) longjmp(*(a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf), (a_rc))
161# endif
162#endif
163
164/** For use with IEM function that may do a longjmp (when enabled).
165 *
166 * Visual C++ has trouble longjmp'ing from/over functions with the noexcept
167 * attribute. So, we indicate that function that may be part of a longjmp may
168 * throw "exceptions" and that the compiler should definitely not generate and
169 * std::terminate calling unwind code.
170 *
171 * Here is one example of this ending in std::terminate:
172 * @code{.txt}
17300 00000041`cadfda10 00007ffc`5d5a1f9f ucrtbase!abort+0x4e
17401 00000041`cadfda40 00007ffc`57af229a ucrtbase!terminate+0x1f
17502 00000041`cadfda70 00007ffb`eec91030 VCRUNTIME140!__std_terminate+0xa [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\ehhelpers.cpp @ 192]
17603 00000041`cadfdaa0 00007ffb`eec92c6d VCRUNTIME140_1!_CallSettingFrame+0x20 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\handlers.asm @ 50]
17704 00000041`cadfdad0 00007ffb`eec93ae5 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToState+0x241 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 1085]
17805 00000041`cadfdc00 00007ffb`eec92258 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToEmptyState+0x2d [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 218]
17906 00000041`cadfdc30 00007ffb`eec940e9 VCRUNTIME140_1!__InternalCxxFrameHandler<__FrameHandler4>+0x194 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 304]
18007 00000041`cadfdcd0 00007ffc`5f9f249f VCRUNTIME140_1!__CxxFrameHandler4+0xa9 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 290]
18108 00000041`cadfdd40 00007ffc`5f980939 ntdll!RtlpExecuteHandlerForUnwind+0xf
18209 00000041`cadfdd70 00007ffc`5f9a0edd ntdll!RtlUnwindEx+0x339
1830a 00000041`cadfe490 00007ffc`57aff976 ntdll!RtlUnwind+0xcd
1840b 00000041`cadfea00 00007ffb`e1b5de01 VCRUNTIME140!__longjmp_internal+0xe6 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\longjmp.asm @ 140]
1850c (Inline Function) --------`-------- VBoxVMM!iemOpcodeGetNextU8SlowJmp+0x95 [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 1155]
1860d 00000041`cadfea50 00007ffb`e1b60f6b VBoxVMM!iemOpcodeGetNextU8Jmp+0xc1 [L:\vbox-intern\src\VBox\VMM\include\IEMInline.h @ 402]
1870e 00000041`cadfea90 00007ffb`e1cc6201 VBoxVMM!IEMExecForExits+0xdb [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 10185]
1880f 00000041`cadfec70 00007ffb`e1d0df8d VBoxVMM!EMHistoryExec+0x4f1 [L:\vbox-intern\src\VBox\VMM\VMMAll\EMAll.cpp @ 452]
18910 00000041`cadfed60 00007ffb`e1d0d4c0 VBoxVMM!nemR3WinHandleExitCpuId+0x79d [L:\vbox-intern\src\VBox\VMM\VMMAll\NEMAllNativeTemplate-win.cpp.h @ 1829] @encode
190 @endcode
191 *
192 * @see https://developercommunity.visualstudio.com/t/fragile-behavior-of-longjmp-called-from-noexcept-f/1532859
193 */
194#if defined(IEM_WITH_SETJMP) && (defined(_MSC_VER) || defined(IEM_WITH_THROW_CATCH))
195# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT_EX(false)
196#else
197# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT
198#endif
199/* ASM-NOINC-END */
200
201#define IEM_IMPLEMENTS_TASKSWITCH
202
203/** @def IEM_WITH_3DNOW
204 * Includes the 3DNow decoding. */
205#if !defined(IEM_WITH_3DNOW) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
206# ifndef IEM_WITHOUT_3DNOW
207# define IEM_WITH_3DNOW
208# endif
209#endif
210
211/** @def IEM_WITH_THREE_0F_38
212 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
213#if !defined(IEM_WITH_THREE_0F_38) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
214# ifndef IEM_WITHOUT_THREE_0F_38
215# define IEM_WITH_THREE_0F_38
216# endif
217#endif
218
219/** @def IEM_WITH_THREE_0F_3A
220 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
221#if !defined(IEM_WITH_THREE_0F_3A) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
222# ifndef IEM_WITHOUT_THREE_0F_3A
223# define IEM_WITH_THREE_0F_3A
224# endif
225#endif
226
227/** @def IEM_WITH_VEX
228 * Includes the VEX decoding. */
229#if !defined(IEM_WITH_VEX) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
230# ifndef IEM_WITHOUT_VEX
231# define IEM_WITH_VEX
232# endif
233#endif
234
235/** @def IEM_CFG_TARGET_CPU
236 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
237 *
238 * By default we allow this to be configured by the user via the
239 * CPUM/GuestCpuName config string, but this comes at a slight cost during
240 * decoding. So, for applications of this code where there is no need to
241 * be dynamic wrt target CPU, just modify this define.
242 */
243#if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
244# define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
245#endif
246
247//#define IEM_WITH_CODE_TLB // - work in progress
248//#define IEM_WITH_DATA_TLB // - work in progress
249
250
251/** @def IEM_USE_UNALIGNED_DATA_ACCESS
252 * Use unaligned accesses instead of elaborate byte assembly. */
253#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING) /*ASM-NOINC*/
254# define IEM_USE_UNALIGNED_DATA_ACCESS
255#endif /*ASM-NOINC*/
256
257//#define IEM_LOG_MEMORY_WRITES
258
259
260
261#ifndef RT_IN_ASSEMBLER /* ASM-NOINC-START - the rest of the file */
262
263# if !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
264/** Instruction statistics. */
265typedef struct IEMINSTRSTATS
266{
267# define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
268# include "IEMInstructionStatisticsTmpl.h"
269# undef IEM_DO_INSTR_STAT
270} IEMINSTRSTATS;
271#else
272struct IEMINSTRSTATS;
273typedef struct IEMINSTRSTATS IEMINSTRSTATS;
274#endif
275/** Pointer to IEM instruction statistics. */
276typedef IEMINSTRSTATS *PIEMINSTRSTATS;
277
278
279/** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
280 * @{ */
281#define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
282#define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
283#define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
284#define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
285#define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
286/** Selects the right variant from a_aArray.
287 * pVCpu is implicit in the caller context. */
288#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
289 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
290/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
291 * be used because the host CPU does not support the operation. */
292#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
293 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
294/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
295 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
296 * into the two.
297 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
298#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
299# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
300 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
301#else
302# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
303 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
304#endif
305/** @} */
306
307/**
308 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
309 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
310 *
311 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
312 * indicator.
313 *
314 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
315 */
316#if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
317# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
318 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
319#else
320# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
321#endif
322
323
324/**
325 * Branch types.
326 */
327typedef enum IEMBRANCH
328{
329 IEMBRANCH_JUMP = 1,
330 IEMBRANCH_CALL,
331 IEMBRANCH_TRAP,
332 IEMBRANCH_SOFTWARE_INT,
333 IEMBRANCH_HARDWARE_INT
334} IEMBRANCH;
335AssertCompileSize(IEMBRANCH, 4);
336
337
338/**
339 * INT instruction types.
340 */
341typedef enum IEMINT
342{
343 /** INT n instruction (opcode 0xcd imm). */
344 IEMINT_INTN = 0,
345 /** Single byte INT3 instruction (opcode 0xcc). */
346 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
347 /** Single byte INTO instruction (opcode 0xce). */
348 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
349 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
350 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
351} IEMINT;
352AssertCompileSize(IEMINT, 4);
353
354
355/**
356 * A FPU result.
357 */
358typedef struct IEMFPURESULT
359{
360 /** The output value. */
361 RTFLOAT80U r80Result;
362 /** The output status. */
363 uint16_t FSW;
364} IEMFPURESULT;
365AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
366/** Pointer to a FPU result. */
367typedef IEMFPURESULT *PIEMFPURESULT;
368/** Pointer to a const FPU result. */
369typedef IEMFPURESULT const *PCIEMFPURESULT;
370
371
372/**
373 * A FPU result consisting of two output values and FSW.
374 */
375typedef struct IEMFPURESULTTWO
376{
377 /** The first output value. */
378 RTFLOAT80U r80Result1;
379 /** The output status. */
380 uint16_t FSW;
381 /** The second output value. */
382 RTFLOAT80U r80Result2;
383} IEMFPURESULTTWO;
384AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
385AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
386/** Pointer to a FPU result consisting of two output values and FSW. */
387typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
388/** Pointer to a const FPU result consisting of two output values and FSW. */
389typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
390
391
392/**
393 * IEM TLB entry.
394 *
395 * Lookup assembly:
396 * @code{.asm}
397 ; Calculate tag.
398 mov rax, [VA]
399 shl rax, 16
400 shr rax, 16 + X86_PAGE_SHIFT
401 or rax, [uTlbRevision]
402
403 ; Do indexing.
404 movzx ecx, al
405 lea rcx, [pTlbEntries + rcx]
406
407 ; Check tag.
408 cmp [rcx + IEMTLBENTRY.uTag], rax
409 jne .TlbMiss
410
411 ; Check access.
412 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
413 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
414 cmp rax, [uTlbPhysRev]
415 jne .TlbMiss
416
417 ; Calc address and we're done.
418 mov eax, X86_PAGE_OFFSET_MASK
419 and eax, [VA]
420 or rax, [rcx + IEMTLBENTRY.pMappingR3]
421 %ifdef VBOX_WITH_STATISTICS
422 inc qword [cTlbHits]
423 %endif
424 jmp .Done
425
426 .TlbMiss:
427 mov r8d, ACCESS_FLAGS
428 mov rdx, [VA]
429 mov rcx, [pVCpu]
430 call iemTlbTypeMiss
431 .Done:
432
433 @endcode
434 *
435 */
436typedef struct IEMTLBENTRY
437{
438 /** The TLB entry tag.
439 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
440 * is ASSUMING a virtual address width of 48 bits.
441 *
442 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
443 *
444 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
445 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
446 * revision wraps around though, the tags needs to be zeroed.
447 *
448 * @note Try use SHRD instruction? After seeing
449 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
450 *
451 * @todo This will need to be reorganized for 57-bit wide virtual address and
452 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
453 * have to move the TLB entry versioning entirely to the
454 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
455 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
456 * consumed by PCID and ASID (12 + 6 = 18).
457 */
458 uint64_t uTag;
459 /** Access flags and physical TLB revision.
460 *
461 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
462 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
463 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
464 * - Bit 3 - pgm phys/virt - not directly writable.
465 * - Bit 4 - pgm phys page - not directly readable.
466 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
467 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
468 * - Bit 7 - tlb entry - pMappingR3 member not valid.
469 * - Bits 63 thru 8 are used for the physical TLB revision number.
470 *
471 * We're using complemented bit meanings here because it makes it easy to check
472 * whether special action is required. For instance a user mode write access
473 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
474 * non-zero result would mean special handling needed because either it wasn't
475 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
476 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
477 * need to check any PTE flag.
478 */
479 uint64_t fFlagsAndPhysRev;
480 /** The guest physical page address. */
481 uint64_t GCPhys;
482 /** Pointer to the ring-3 mapping. */
483 R3PTRTYPE(uint8_t *) pbMappingR3;
484#if HC_ARCH_BITS == 32
485 uint32_t u32Padding1;
486#endif
487} IEMTLBENTRY;
488AssertCompileSize(IEMTLBENTRY, 32);
489/** Pointer to an IEM TLB entry. */
490typedef IEMTLBENTRY *PIEMTLBENTRY;
491
492/** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
493 * @{ */
494#define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
495#define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
496#define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
497#define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
498#define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
499#define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
500#define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
501#define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(7) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
502#define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(8) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
503#define IEMTLBE_F_PG_CODE_PAGE RT_BIT_64(9) /**< Phys page: Code page. */
504#define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffffc00) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
505/** @} */
506AssertCompile(PGMIEMGCPHYS2PTR_F_NO_WRITE == IEMTLBE_F_PG_NO_WRITE);
507AssertCompile(PGMIEMGCPHYS2PTR_F_NO_READ == IEMTLBE_F_PG_NO_READ);
508AssertCompile(PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3 == IEMTLBE_F_NO_MAPPINGR3);
509AssertCompile(PGMIEMGCPHYS2PTR_F_UNASSIGNED == IEMTLBE_F_PG_UNASSIGNED);
510AssertCompile(PGMIEMGCPHYS2PTR_F_CODE_PAGE == IEMTLBE_F_PG_CODE_PAGE);
511/** The bits set by PGMPhysIemGCPhys2PtrNoLock. */
512#define IEMTLBE_GCPHYS2PTR_MASK ( PGMIEMGCPHYS2PTR_F_NO_WRITE \
513 | PGMIEMGCPHYS2PTR_F_NO_READ \
514 | PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3 \
515 | PGMIEMGCPHYS2PTR_F_UNASSIGNED \
516 | PGMIEMGCPHYS2PTR_F_CODE_PAGE \
517 | IEMTLBE_F_PHYS_REV )
518
519
520/**
521 * An IEM TLB.
522 *
523 * We've got two of these, one for data and one for instructions.
524 */
525typedef struct IEMTLB
526{
527 /** The TLB revision.
528 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
529 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
530 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
531 * (The revision zero indicates an invalid TLB entry.)
532 *
533 * The initial value is choosen to cause an early wraparound. */
534 uint64_t uTlbRevision;
535 /** The TLB physical address revision - shadow of PGM variable.
536 *
537 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
538 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
539 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
540 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
541 *
542 * The initial value is choosen to cause an early wraparound. */
543 uint64_t volatile uTlbPhysRev;
544
545 /* Statistics: */
546
547 /** TLB hits (VBOX_WITH_STATISTICS only). */
548 uint64_t cTlbHits;
549 /** TLB misses. */
550 uint32_t cTlbMisses;
551 /** Slow read path. */
552 uint32_t cTlbSlowReadPath;
553 /** Safe read path. */
554 uint32_t cTlbSafeReadPath;
555 /** Safe write path. */
556 uint32_t cTlbSafeWritePath;
557#if 0
558 /** TLB misses because of tag mismatch. */
559 uint32_t cTlbMissesTag;
560 /** TLB misses because of virtual access violation. */
561 uint32_t cTlbMissesVirtAccess;
562 /** TLB misses because of dirty bit. */
563 uint32_t cTlbMissesDirty;
564 /** TLB misses because of MMIO */
565 uint32_t cTlbMissesMmio;
566 /** TLB misses because of write access handlers. */
567 uint32_t cTlbMissesWriteHandler;
568 /** TLB misses because no r3(/r0) mapping. */
569 uint32_t cTlbMissesMapping;
570#endif
571 /** Alignment padding. */
572 uint32_t au32Padding[6];
573
574 /** The TLB entries.
575 * We've choosen 256 because that way we can obtain the result directly from a
576 * 8-bit register without an additional AND instruction. */
577 IEMTLBENTRY aEntries[256];
578} IEMTLB;
579AssertCompileSizeAlignment(IEMTLB, 64);
580/** IEMTLB::uTlbRevision increment. */
581#define IEMTLB_REVISION_INCR RT_BIT_64(36)
582/** IEMTLB::uTlbRevision mask. */
583#define IEMTLB_REVISION_MASK (~(RT_BIT_64(36) - 1))
584/** IEMTLB::uTlbPhysRev increment.
585 * @sa IEMTLBE_F_PHYS_REV */
586#define IEMTLB_PHYS_REV_INCR RT_BIT_64(10)
587/**
588 * Calculates the TLB tag for a virtual address.
589 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
590 * @param a_pTlb The TLB.
591 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
592 * the clearing of the top 16 bits won't work (if 32-bit
593 * we'll end up with mostly zeros).
594 */
595#define IEMTLB_CALC_TAG(a_pTlb, a_GCPtr) ( IEMTLB_CALC_TAG_NO_REV(a_GCPtr) | (a_pTlb)->uTlbRevision )
596/**
597 * Calculates the TLB tag for a virtual address but without TLB revision.
598 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
599 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
600 * the clearing of the top 16 bits won't work (if 32-bit
601 * we'll end up with mostly zeros).
602 */
603#define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
604/**
605 * Converts a TLB tag value into a TLB index.
606 * @returns Index into IEMTLB::aEntries.
607 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
608 */
609#define IEMTLB_TAG_TO_INDEX(a_uTag) ( (uint8_t)(a_uTag) )
610/**
611 * Converts a TLB tag value into a TLB index.
612 * @returns Index into IEMTLB::aEntries.
613 * @param a_pTlb The TLB.
614 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
615 */
616#define IEMTLB_TAG_TO_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_INDEX(a_uTag)] )
617
618
619/** @name IEM_MC_F_XXX - MC block flags/clues.
620 * @todo Merge with IEM_CIMPL_F_XXX
621 * @{ */
622#define IEM_MC_F_ONLY_8086 RT_BIT_32(0)
623#define IEM_MC_F_MIN_186 RT_BIT_32(1)
624#define IEM_MC_F_MIN_286 RT_BIT_32(2)
625#define IEM_MC_F_NOT_286_OR_OLDER IEM_MC_F_MIN_386
626#define IEM_MC_F_MIN_386 RT_BIT_32(3)
627#define IEM_MC_F_MIN_486 RT_BIT_32(4)
628#define IEM_MC_F_MIN_PENTIUM RT_BIT_32(5)
629#define IEM_MC_F_MIN_PENTIUM_II IEM_MC_F_MIN_PENTIUM
630#define IEM_MC_F_MIN_CORE IEM_MC_F_MIN_PENTIUM
631#define IEM_MC_F_64BIT RT_BIT_32(6)
632#define IEM_MC_F_NOT_64BIT RT_BIT_32(7)
633/** This is set by IEMAllN8vePython.py to indicate a variation without the
634 * flags-clearing-and-checking, when there is also a variation with that.
635 * @note Do not use this manully, it's only for python and for testing in
636 * the native recompiler! */
637#define IEM_MC_F_WITHOUT_FLAGS RT_BIT_32(8)
638/** @} */
639
640/** @name IEM_CIMPL_F_XXX - State change clues for CIMPL calls.
641 *
642 * These clues are mainly for the recompiler, so that it can emit correct code.
643 *
644 * They are processed by the python script and which also automatically
645 * calculates flags for MC blocks based on the statements, extending the use of
646 * these flags to describe MC block behavior to the recompiler core. The python
647 * script pass the flags to the IEM_MC2_END_EMIT_CALLS macro, but mainly for
648 * error checking purposes. The script emits the necessary fEndTb = true and
649 * similar statements as this reduces compile time a tiny bit.
650 *
651 * @{ */
652/** Flag set if direct branch, clear if absolute or indirect. */
653#define IEM_CIMPL_F_BRANCH_DIRECT RT_BIT_32(0)
654/** Flag set if indirect branch, clear if direct or relative.
655 * This is also used for all system control transfers (SYSCALL, SYSRET, INT, ++)
656 * as well as for return instructions (RET, IRET, RETF). */
657#define IEM_CIMPL_F_BRANCH_INDIRECT RT_BIT_32(1)
658/** Flag set if relative branch, clear if absolute or indirect. */
659#define IEM_CIMPL_F_BRANCH_RELATIVE RT_BIT_32(2)
660/** Flag set if conditional branch, clear if unconditional. */
661#define IEM_CIMPL_F_BRANCH_CONDITIONAL RT_BIT_32(3)
662/** Flag set if it's a far branch (changes CS). */
663#define IEM_CIMPL_F_BRANCH_FAR RT_BIT_32(4)
664/** Convenience: Testing any kind of branch. */
665#define IEM_CIMPL_F_BRANCH_ANY (IEM_CIMPL_F_BRANCH_DIRECT | IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_RELATIVE)
666
667/** Execution flags may change (IEMCPU::fExec). */
668#define IEM_CIMPL_F_MODE RT_BIT_32(5)
669/** May change significant portions of RFLAGS. */
670#define IEM_CIMPL_F_RFLAGS RT_BIT_32(6)
671/** May change the status bits (X86_EFL_STATUS_BITS) in RFLAGS. */
672#define IEM_CIMPL_F_STATUS_FLAGS RT_BIT_32(7)
673/** May trigger interrupt shadowing. */
674#define IEM_CIMPL_F_INHIBIT_SHADOW RT_BIT_32(8)
675/** May enable interrupts, so recheck IRQ immediately afterwards executing
676 * the instruction. */
677#define IEM_CIMPL_F_CHECK_IRQ_AFTER RT_BIT_32(9)
678/** May disable interrupts, so recheck IRQ immediately before executing the
679 * instruction. */
680#define IEM_CIMPL_F_CHECK_IRQ_BEFORE RT_BIT_32(10)
681/** Convenience: Check for IRQ both before and after an instruction. */
682#define IEM_CIMPL_F_CHECK_IRQ_BEFORE_AND_AFTER (IEM_CIMPL_F_CHECK_IRQ_BEFORE | IEM_CIMPL_F_CHECK_IRQ_AFTER)
683/** May trigger a VM exit (treated like IEM_CIMPL_F_MODE atm). */
684#define IEM_CIMPL_F_VMEXIT RT_BIT_32(11)
685/** May modify FPU state.
686 * @todo Not sure if this is useful yet. */
687#define IEM_CIMPL_F_FPU RT_BIT_32(12)
688/** REP prefixed instruction which may yield before updating PC.
689 * @todo Not sure if this is useful, REP functions now return non-zero
690 * status if they don't update the PC. */
691#define IEM_CIMPL_F_REP RT_BIT_32(13)
692/** I/O instruction.
693 * @todo Not sure if this is useful yet. */
694#define IEM_CIMPL_F_IO RT_BIT_32(14)
695/** Force end of TB after the instruction. */
696#define IEM_CIMPL_F_END_TB RT_BIT_32(15)
697/** Flag set if a branch may also modify the stack (push/pop return address). */
698#define IEM_CIMPL_F_BRANCH_STACK RT_BIT_32(16)
699/** Flag set if a branch may also modify the stack (push/pop return address)
700 * and switch it (load/restore SS:RSP). */
701#define IEM_CIMPL_F_BRANCH_STACK_FAR RT_BIT_32(17)
702/** Convenience: Raise exception (technically unnecessary, since it shouldn't return VINF_SUCCESS). */
703#define IEM_CIMPL_F_XCPT \
704 (IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_FAR | IEM_CIMPL_F_BRANCH_STACK_FAR \
705 | IEM_CIMPL_F_MODE | IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_VMEXIT)
706
707/** The block calls a C-implementation instruction function with two implicit arguments.
708 * Mutually exclusive with IEM_CIMPL_F_CALLS_AIMPL and
709 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
710 * @note The python scripts will add this if missing. */
711#define IEM_CIMPL_F_CALLS_CIMPL RT_BIT_32(18)
712/** The block calls an ASM-implementation instruction function.
713 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL and
714 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
715 * @note The python scripts will add this if missing. */
716#define IEM_CIMPL_F_CALLS_AIMPL RT_BIT_32(19)
717/** The block calls an ASM-implementation instruction function with an implicit
718 * X86FXSTATE pointer argument.
719 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
720 * IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE.
721 * @note The python scripts will add this if missing. */
722#define IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE RT_BIT_32(20)
723/** The block calls an ASM-implementation instruction function with an implicit
724 * X86XSAVEAREA pointer argument.
725 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
726 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
727 * @note No different from IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE, so same value.
728 * @note The python scripts will add this if missing. */
729#define IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE
730/** @} */
731
732
733/** @name IEM_F_XXX - Execution mode flags (IEMCPU::fExec, IEMTB::fFlags).
734 *
735 * These flags are set when entering IEM and adjusted as code is executed, such
736 * that they will always contain the current values as instructions are
737 * finished.
738 *
739 * In recompiled execution mode, (most of) these flags are included in the
740 * translation block selection key and stored in IEMTB::fFlags alongside the
741 * IEMTB_F_XXX flags. The latter flags uses bits 31 thru 24, which are all zero
742 * in IEMCPU::fExec.
743 *
744 * @{ */
745/** Mode: The block target mode mask. */
746#define IEM_F_MODE_MASK UINT32_C(0x0000001f)
747/** Mode: The IEMMODE part of the IEMTB_F_MODE_MASK value. */
748#define IEM_F_MODE_CPUMODE_MASK UINT32_C(0x00000003)
749/** X86 Mode: Bit used to indicating pre-386 CPU in 16-bit mode (for eliminating
750 * conditional in EIP/IP updating), and flat wide open CS, SS, DS, and ES in
751 * 32-bit mode (for simplifying most memory accesses). */
752#define IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK UINT32_C(0x00000004)
753/** X86 Mode: Bit indicating protected mode, real mode (or SMM) when not set. */
754#define IEM_F_MODE_X86_PROT_MASK UINT32_C(0x00000008)
755/** X86 Mode: Bit used to indicate virtual 8086 mode (only 16-bit). */
756#define IEM_F_MODE_X86_V86_MASK UINT32_C(0x00000010)
757
758/** X86 Mode: 16-bit on 386 or later. */
759#define IEM_F_MODE_X86_16BIT UINT32_C(0x00000000)
760/** X86 Mode: 80286, 80186 and 8086/88 targetting blocks (EIP update opt). */
761#define IEM_F_MODE_X86_16BIT_PRE_386 UINT32_C(0x00000004)
762/** X86 Mode: 16-bit protected mode on 386 or later. */
763#define IEM_F_MODE_X86_16BIT_PROT UINT32_C(0x00000008)
764/** X86 Mode: 16-bit protected mode on 386 or later. */
765#define IEM_F_MODE_X86_16BIT_PROT_PRE_386 UINT32_C(0x0000000c)
766/** X86 Mode: 16-bit virtual 8086 protected mode (on 386 or later). */
767#define IEM_F_MODE_X86_16BIT_PROT_V86 UINT32_C(0x00000018)
768
769/** X86 Mode: 32-bit on 386 or later. */
770#define IEM_F_MODE_X86_32BIT UINT32_C(0x00000001)
771/** X86 Mode: 32-bit mode with wide open flat CS, SS, DS and ES. */
772#define IEM_F_MODE_X86_32BIT_FLAT UINT32_C(0x00000005)
773/** X86 Mode: 32-bit protected mode. */
774#define IEM_F_MODE_X86_32BIT_PROT UINT32_C(0x00000009)
775/** X86 Mode: 32-bit protected mode with wide open flat CS, SS, DS and ES. */
776#define IEM_F_MODE_X86_32BIT_PROT_FLAT UINT32_C(0x0000000d)
777
778/** X86 Mode: 64-bit (includes protected, but not the flat bit). */
779#define IEM_F_MODE_X86_64BIT UINT32_C(0x0000000a)
780
781/** X86 Mode: Checks if @a a_fExec represent a FLAT mode. */
782#define IEM_F_MODE_X86_IS_FLAT(a_fExec) ( ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT \
783 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_PROT_FLAT \
784 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_FLAT)
785
786/** Bypass access handlers when set. */
787#define IEM_F_BYPASS_HANDLERS UINT32_C(0x00010000)
788/** Have pending hardware instruction breakpoints. */
789#define IEM_F_PENDING_BRK_INSTR UINT32_C(0x00020000)
790/** Have pending hardware data breakpoints. */
791#define IEM_F_PENDING_BRK_DATA UINT32_C(0x00040000)
792
793/** X86: Have pending hardware I/O breakpoints. */
794#define IEM_F_PENDING_BRK_X86_IO UINT32_C(0x00000400)
795/** X86: Disregard the lock prefix (implied or not) when set. */
796#define IEM_F_X86_DISREGARD_LOCK UINT32_C(0x00000800)
797
798/** Pending breakpoint mask (what iemCalcExecDbgFlags works out). */
799#define IEM_F_PENDING_BRK_MASK (IEM_F_PENDING_BRK_INSTR | IEM_F_PENDING_BRK_DATA | IEM_F_PENDING_BRK_X86_IO)
800
801/** Caller configurable options. */
802#define IEM_F_USER_OPTS (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK)
803
804/** X86: The current protection level (CPL) shift factor. */
805#define IEM_F_X86_CPL_SHIFT 8
806/** X86: The current protection level (CPL) mask. */
807#define IEM_F_X86_CPL_MASK UINT32_C(0x00000300)
808/** X86: The current protection level (CPL) shifted mask. */
809#define IEM_F_X86_CPL_SMASK UINT32_C(0x00000003)
810
811/** X86 execution context.
812 * The IEM_F_X86_CTX_XXX values are individual flags that can be combined (with
813 * the exception of IEM_F_X86_CTX_NORMAL). This allows running VMs from SMM
814 * mode. */
815#define IEM_F_X86_CTX_MASK UINT32_C(0x0000f000)
816/** X86 context: Plain regular execution context. */
817#define IEM_F_X86_CTX_NORMAL UINT32_C(0x00000000)
818/** X86 context: VT-x enabled. */
819#define IEM_F_X86_CTX_VMX UINT32_C(0x00001000)
820/** X86 context: AMD-V enabled. */
821#define IEM_F_X86_CTX_SVM UINT32_C(0x00002000)
822/** X86 context: In AMD-V or VT-x guest mode. */
823#define IEM_F_X86_CTX_IN_GUEST UINT32_C(0x00004000)
824/** X86 context: System management mode (SMM). */
825#define IEM_F_X86_CTX_SMM UINT32_C(0x00008000)
826
827/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
828 * iemRegFinishClearingRF() most for most situations (CPUMCTX_DBG_HIT_DRX_MASK
829 * and CPUMCTX_DBG_DBGF_MASK are covered by the IEM_F_PENDING_BRK_XXX bits
830 * alread). */
831
832/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
833 * iemRegFinishClearingRF() most for most situations
834 * (CPUMCTX_DBG_HIT_DRX_MASK and CPUMCTX_DBG_DBGF_MASK are covered by
835 * the IEM_F_PENDING_BRK_XXX bits alread). */
836
837/** @} */
838
839
840/** @name IEMTB_F_XXX - Translation block flags (IEMTB::fFlags).
841 *
842 * Extends the IEM_F_XXX flags (subject to IEMTB_F_IEM_F_MASK) to make up the
843 * translation block flags. The combined flag mask (subject to
844 * IEMTB_F_KEY_MASK) is used as part of the lookup key for translation blocks.
845 *
846 * @{ */
847/** Mask of IEM_F_XXX flags included in IEMTB_F_XXX. */
848#define IEMTB_F_IEM_F_MASK UINT32_C(0x00ffffff)
849
850/** Type: The block type mask. */
851#define IEMTB_F_TYPE_MASK UINT32_C(0x03000000)
852/** Type: Purly threaded recompiler (via tables). */
853#define IEMTB_F_TYPE_THREADED UINT32_C(0x01000000)
854/** Type: Native recompilation. */
855#define IEMTB_F_TYPE_NATIVE UINT32_C(0x02000000)
856
857/** Set when we're starting the block in an "interrupt shadow".
858 * We don't need to distingish between the two types of this mask, thus the one.
859 * @see CPUMCTX_INHIBIT_SHADOW, CPUMIsInInterruptShadow() */
860#define IEMTB_F_INHIBIT_SHADOW UINT32_C(0x04000000)
861/** Set when we're currently inhibiting NMIs
862 * @see CPUMCTX_INHIBIT_NMI, CPUMAreInterruptsInhibitedByNmi() */
863#define IEMTB_F_INHIBIT_NMI UINT32_C(0x08000000)
864
865/** Checks that EIP/IP is wihin CS.LIM before each instruction. Used when
866 * we're close the limit before starting a TB, as determined by
867 * iemGetTbFlagsForCurrentPc(). */
868#define IEMTB_F_CS_LIM_CHECKS UINT32_C(0x10000000)
869
870/** Mask of the IEMTB_F_XXX flags that are part of the TB lookup key.
871 *
872 * @note We skip all of IEM_F_X86_CTX_MASK, with the exception of SMM (which we
873 * don't implement), because we don't currently generate any context
874 * specific code - that's all handled in CIMPL functions.
875 *
876 * For the threaded recompiler we don't generate any CPL specific code
877 * either, but the native recompiler does for memory access (saves getting
878 * the CPL from fExec and turning it into IEMTLBE_F_PT_NO_USER).
879 * Since most OSes will not share code between rings, this shouldn't
880 * have any real effect on TB/memory/recompiling load.
881 */
882#define IEMTB_F_KEY_MASK ((UINT32_MAX & ~(IEM_F_X86_CTX_MASK | IEMTB_F_TYPE_MASK)) | IEM_F_X86_CTX_SMM)
883/** @} */
884
885AssertCompile( (IEM_F_MODE_X86_16BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
886AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
887AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_PROT_MASK));
888AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_V86_MASK));
889AssertCompile( (IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
890AssertCompile( IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
891AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_PROT_MASK));
892AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
893AssertCompile( (IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
894AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
895AssertCompile( IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
896AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_V86_MASK));
897AssertCompile( (IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
898AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
899AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_PROT_MASK);
900AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
901AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_PROT_MASK);
902AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
903AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_V86_MASK);
904
905AssertCompile( (IEM_F_MODE_X86_32BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
906AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
907AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_PROT_MASK));
908AssertCompile( (IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
909AssertCompile( IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
910AssertCompile(!(IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_PROT_MASK));
911AssertCompile( (IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
912AssertCompile(!(IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
913AssertCompile( IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
914AssertCompile( (IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
915AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
916AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_PROT_MASK);
917
918AssertCompile( (IEM_F_MODE_X86_64BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT);
919AssertCompile( IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_PROT_MASK);
920AssertCompile(!(IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
921
922/** Native instruction type for use with the native code generator.
923 * This is a byte (uint8_t) for x86 and amd64 and uint32_t for the other(s). */
924#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
925typedef uint8_t IEMNATIVEINSTR;
926#else
927typedef uint32_t IEMNATIVEINSTR;
928#endif
929/** Pointer to a native instruction unit. */
930typedef IEMNATIVEINSTR *PIEMNATIVEINSTR;
931/** Pointer to a const native instruction unit. */
932typedef IEMNATIVEINSTR const *PCIEMNATIVEINSTR;
933
934/**
935 * A call for the threaded call table.
936 */
937typedef struct IEMTHRDEDCALLENTRY
938{
939 /** The function to call (IEMTHREADEDFUNCS). */
940 uint16_t enmFunction;
941
942 /** Instruction number in the TB (for statistics). */
943 uint8_t idxInstr;
944 /** The opcode length. */
945 uint8_t cbOpcode;
946 /** Offset into IEMTB::pabOpcodes. */
947 uint16_t offOpcode;
948
949 /** TB lookup table index (7 bits) and large size (1 bits).
950 *
951 * The default size is 1 entry, but for indirect calls and returns we set the
952 * top bit and allocate 4 (IEM_TB_LOOKUP_TAB_LARGE_SIZE) entries. The large
953 * tables uses RIP for selecting the entry to use, as it is assumed a hash table
954 * lookup isn't that slow compared to sequentially trying out 4 TBs.
955 *
956 * By default lookup table entry 0 for a TB is reserved as a fallback for
957 * calltable entries w/o explicit entreis, so this member will be non-zero if
958 * there is a lookup entry associated with this call.
959 *
960 * @sa IEM_TB_LOOKUP_TAB_GET_SIZE, IEM_TB_LOOKUP_TAB_GET_IDX
961 */
962 uint8_t uTbLookup;
963
964 /** Unused atm. */
965 uint8_t uUnused0;
966
967 /** Generic parameters. */
968 uint64_t auParams[3];
969} IEMTHRDEDCALLENTRY;
970AssertCompileSize(IEMTHRDEDCALLENTRY, sizeof(uint64_t) * 4);
971/** Pointer to a threaded call entry. */
972typedef struct IEMTHRDEDCALLENTRY *PIEMTHRDEDCALLENTRY;
973/** Pointer to a const threaded call entry. */
974typedef IEMTHRDEDCALLENTRY const *PCIEMTHRDEDCALLENTRY;
975
976/** The number of TB lookup table entries for a large allocation
977 * (IEMTHRDEDCALLENTRY::uTbLookup bit 7 set). */
978#define IEM_TB_LOOKUP_TAB_LARGE_SIZE 4
979/** Get the lookup table size from IEMTHRDEDCALLENTRY::uTbLookup. */
980#define IEM_TB_LOOKUP_TAB_GET_SIZE(a_uTbLookup) (!((a_uTbLookup) & 0x80) ? 1 : IEM_TB_LOOKUP_TAB_LARGE_SIZE)
981/** Get the first lookup table index from IEMTHRDEDCALLENTRY::uTbLookup. */
982#define IEM_TB_LOOKUP_TAB_GET_IDX(a_uTbLookup) ((a_uTbLookup) & 0x7f)
983/** Get the lookup table index from IEMTHRDEDCALLENTRY::uTbLookup and RIP. */
984#define IEM_TB_LOOKUP_TAB_GET_IDX_WITH_RIP(a_uTbLookup, a_Rip) \
985 (!((a_uTbLookup) & 0x80) ? (a_uTbLookup) & 0x7f : ((a_uTbLookup) & 0x7f) + ((a_Rip) & (IEM_TB_LOOKUP_TAB_LARGE_SIZE - 1)) )
986
987/** Make a IEMTHRDEDCALLENTRY::uTbLookup value. */
988#define IEM_TB_LOOKUP_TAB_MAKE(a_idxTable, a_fLarge) ((a_idxTable) | ((a_fLarge) ? 0x80 : 0))
989
990/**
991 * Native IEM TB 'function' typedef.
992 *
993 * This will throw/longjmp on occation.
994 *
995 * @note AMD64 doesn't have that many non-volatile registers and does sport
996 * 32-bit address displacments, so we don't need pCtx.
997 *
998 * On ARM64 pCtx allows us to directly address the whole register
999 * context without requiring a separate indexing register holding the
1000 * offset. This saves an instruction loading the offset for each guest
1001 * CPU context access, at the cost of a non-volatile register.
1002 * Fortunately, ARM64 has quite a lot more registers.
1003 */
1004typedef
1005#ifdef RT_ARCH_AMD64
1006int FNIEMTBNATIVE(PVMCPUCC pVCpu)
1007#else
1008int FNIEMTBNATIVE(PVMCPUCC pVCpu, PCPUMCTX pCtx)
1009#endif
1010#if RT_CPLUSPLUS_PREREQ(201700)
1011 IEM_NOEXCEPT_MAY_LONGJMP
1012#endif
1013 ;
1014/** Pointer to a native IEM TB entry point function.
1015 * This will throw/longjmp on occation. */
1016typedef FNIEMTBNATIVE *PFNIEMTBNATIVE;
1017
1018
1019/**
1020 * Translation block debug info entry type.
1021 */
1022typedef enum IEMTBDBGENTRYTYPE
1023{
1024 kIemTbDbgEntryType_Invalid = 0,
1025 /** The entry is for marking a native code position.
1026 * Entries following this all apply to this position. */
1027 kIemTbDbgEntryType_NativeOffset,
1028 /** The entry is for a new guest instruction. */
1029 kIemTbDbgEntryType_GuestInstruction,
1030 /** Marks the start of a threaded call. */
1031 kIemTbDbgEntryType_ThreadedCall,
1032 /** Marks the location of a label. */
1033 kIemTbDbgEntryType_Label,
1034 /** Info about a host register shadowing a guest register. */
1035 kIemTbDbgEntryType_GuestRegShadowing,
1036#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1037 /** Info about a host SIMD register shadowing a guest SIMD register. */
1038 kIemTbDbgEntryType_GuestSimdRegShadowing,
1039#endif
1040#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1041 /** Info about a delayed RIP update. */
1042 kIemTbDbgEntryType_DelayedPcUpdate,
1043#endif
1044#if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
1045 /** Info about a shadowed guest register becoming dirty. */
1046 kIemTbDbgEntryType_GuestRegDirty,
1047 /** Info about register writeback/flush oepration. */
1048 kIemTbDbgEntryType_GuestRegWriteback,
1049#endif
1050 kIemTbDbgEntryType_End
1051} IEMTBDBGENTRYTYPE;
1052
1053/**
1054 * Translation block debug info entry.
1055 */
1056typedef union IEMTBDBGENTRY
1057{
1058 /** Plain 32-bit view. */
1059 uint32_t u;
1060
1061 /** Generic view for getting at the type field. */
1062 struct
1063 {
1064 /** IEMTBDBGENTRYTYPE */
1065 uint32_t uType : 4;
1066 uint32_t uTypeSpecific : 28;
1067 } Gen;
1068
1069 struct
1070 {
1071 /** kIemTbDbgEntryType_ThreadedCall1. */
1072 uint32_t uType : 4;
1073 /** Native code offset. */
1074 uint32_t offNative : 28;
1075 } NativeOffset;
1076
1077 struct
1078 {
1079 /** kIemTbDbgEntryType_GuestInstruction. */
1080 uint32_t uType : 4;
1081 uint32_t uUnused : 4;
1082 /** The IEM_F_XXX flags. */
1083 uint32_t fExec : 24;
1084 } GuestInstruction;
1085
1086 struct
1087 {
1088 /* kIemTbDbgEntryType_ThreadedCall. */
1089 uint32_t uType : 4;
1090 /** Set if the call was recompiled to native code, clear if just calling
1091 * threaded function. */
1092 uint32_t fRecompiled : 1;
1093 uint32_t uUnused : 11;
1094 /** The threaded call number (IEMTHREADEDFUNCS). */
1095 uint32_t enmCall : 16;
1096 } ThreadedCall;
1097
1098 struct
1099 {
1100 /* kIemTbDbgEntryType_Label. */
1101 uint32_t uType : 4;
1102 uint32_t uUnused : 4;
1103 /** The label type (IEMNATIVELABELTYPE). */
1104 uint32_t enmLabel : 8;
1105 /** The label data. */
1106 uint32_t uData : 16;
1107 } Label;
1108
1109 struct
1110 {
1111 /* kIemTbDbgEntryType_GuestRegShadowing. */
1112 uint32_t uType : 4;
1113 uint32_t uUnused : 4;
1114 /** The guest register being shadowed (IEMNATIVEGSTREG). */
1115 uint32_t idxGstReg : 8;
1116 /** The host new register number, UINT8_MAX if dropped. */
1117 uint32_t idxHstReg : 8;
1118 /** The previous host register number, UINT8_MAX if new. */
1119 uint32_t idxHstRegPrev : 8;
1120 } GuestRegShadowing;
1121
1122#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1123 struct
1124 {
1125 /* kIemTbDbgEntryType_GuestSimdRegShadowing. */
1126 uint32_t uType : 4;
1127 uint32_t uUnused : 4;
1128 /** The guest register being shadowed (IEMNATIVEGSTSIMDREG). */
1129 uint32_t idxGstSimdReg : 8;
1130 /** The host new register number, UINT8_MAX if dropped. */
1131 uint32_t idxHstSimdReg : 8;
1132 /** The previous host register number, UINT8_MAX if new. */
1133 uint32_t idxHstSimdRegPrev : 8;
1134 } GuestSimdRegShadowing;
1135#endif
1136
1137#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1138 struct
1139 {
1140 /* kIemTbDbgEntryType_DelayedPcUpdate. */
1141 uint32_t uType : 4;
1142 /* The instruction offset added to the program counter. */
1143 uint32_t offPc : 14;
1144 /** Number of instructions skipped. */
1145 uint32_t cInstrSkipped : 14;
1146 } DelayedPcUpdate;
1147#endif
1148
1149#if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
1150 struct
1151 {
1152 /* kIemTbDbgEntryType_GuestRegDirty. */
1153 uint32_t uType : 4;
1154 uint32_t uUnused : 11;
1155 /** Flag whether this is about a SIMD (true) or general (false) register. */
1156 uint32_t fSimdReg : 1;
1157 /** The guest register index being marked as dirty. */
1158 uint32_t idxGstReg : 8;
1159 /** The host register number this register is shadowed in .*/
1160 uint32_t idxHstReg : 8;
1161 } GuestRegDirty;
1162
1163 struct
1164 {
1165 /* kIemTbDbgEntryType_GuestRegWriteback. */
1166 uint32_t uType : 4;
1167 /** Flag whether this is about a SIMD (true) or general (false) register flush. */
1168 uint32_t fSimdReg : 1;
1169 /** The mask shift. */
1170 uint32_t cShift : 2;
1171 /** The guest register mask being written back. */
1172 uint32_t fGstReg : 25;
1173 } GuestRegWriteback;
1174#endif
1175
1176} IEMTBDBGENTRY;
1177AssertCompileSize(IEMTBDBGENTRY, sizeof(uint32_t));
1178/** Pointer to a debug info entry. */
1179typedef IEMTBDBGENTRY *PIEMTBDBGENTRY;
1180/** Pointer to a const debug info entry. */
1181typedef IEMTBDBGENTRY const *PCIEMTBDBGENTRY;
1182
1183/**
1184 * Translation block debug info.
1185 */
1186typedef struct IEMTBDBG
1187{
1188 /** Number of entries in aEntries. */
1189 uint32_t cEntries;
1190 /** The offset of the last kIemTbDbgEntryType_NativeOffset record. */
1191 uint32_t offNativeLast;
1192 /** Debug info entries. */
1193 RT_FLEXIBLE_ARRAY_EXTENSION
1194 IEMTBDBGENTRY aEntries[RT_FLEXIBLE_ARRAY];
1195} IEMTBDBG;
1196/** Pointer to TB debug info. */
1197typedef IEMTBDBG *PIEMTBDBG;
1198/** Pointer to const TB debug info. */
1199typedef IEMTBDBG const *PCIEMTBDBG;
1200
1201
1202/**
1203 * Translation block.
1204 *
1205 * The current plan is to just keep TBs and associated lookup hash table private
1206 * to each VCpu as that simplifies TB removal greatly (no races) and generally
1207 * avoids using expensive atomic primitives for updating lists and stuff.
1208 */
1209#pragma pack(2) /* to prevent the Thrd structure from being padded unnecessarily */
1210typedef struct IEMTB
1211{
1212 /** Next block with the same hash table entry. */
1213 struct IEMTB *pNext;
1214 /** Usage counter. */
1215 uint32_t cUsed;
1216 /** The IEMCPU::msRecompilerPollNow last time it was used. */
1217 uint32_t msLastUsed;
1218
1219 /** @name What uniquely identifies the block.
1220 * @{ */
1221 RTGCPHYS GCPhysPc;
1222 /** IEMTB_F_XXX (i.e. IEM_F_XXX ++). */
1223 uint32_t fFlags;
1224 union
1225 {
1226 struct
1227 {
1228 /**< Relevant CS X86DESCATTR_XXX bits. */
1229 uint16_t fAttr;
1230 } x86;
1231 };
1232 /** @} */
1233
1234 /** Number of opcode ranges. */
1235 uint8_t cRanges;
1236 /** Statistics: Number of instructions in the block. */
1237 uint8_t cInstructions;
1238
1239 /** Type specific info. */
1240 union
1241 {
1242 struct
1243 {
1244 /** The call sequence table. */
1245 PIEMTHRDEDCALLENTRY paCalls;
1246 /** Number of calls in paCalls. */
1247 uint16_t cCalls;
1248 /** Number of calls allocated. */
1249 uint16_t cAllocated;
1250 } Thrd;
1251 struct
1252 {
1253 /** The native instructions (PFNIEMTBNATIVE). */
1254 PIEMNATIVEINSTR paInstructions;
1255 /** Number of instructions pointed to by paInstructions. */
1256 uint32_t cInstructions;
1257 } Native;
1258 /** Generic view for zeroing when freeing. */
1259 struct
1260 {
1261 uintptr_t uPtr;
1262 uint32_t uData;
1263 } Gen;
1264 };
1265
1266 /** The allocation chunk this TB belongs to. */
1267 uint8_t idxAllocChunk;
1268 /** The number of entries in the lookup table.
1269 * Because we're out of space, the TB lookup table is located before the
1270 * opcodes pointed to by pabOpcodes. */
1271 uint8_t cTbLookupEntries;
1272
1273 /** Number of bytes of opcodes stored in pabOpcodes.
1274 * @todo this field isn't really needed, aRanges keeps the actual info. */
1275 uint16_t cbOpcodes;
1276 /** Pointer to the opcode bytes this block was recompiled from.
1277 * This also points to the TB lookup table, which starts cTbLookupEntries
1278 * entries before the opcodes (we don't have room atm for another point). */
1279 uint8_t *pabOpcodes;
1280
1281 /** Debug info if enabled.
1282 * This is only generated by the native recompiler. */
1283 PIEMTBDBG pDbgInfo;
1284
1285 /* --- 64 byte cache line end --- */
1286
1287 /** Opcode ranges.
1288 *
1289 * The opcode checkers and maybe TLB loading functions will use this to figure
1290 * out what to do. The parameter will specify an entry and the opcode offset to
1291 * start at and the minimum number of bytes to verify (instruction length).
1292 *
1293 * When VT-x and AMD-V looks up the opcode bytes for an exitting instruction,
1294 * they'll first translate RIP (+ cbInstr - 1) to a physical address using the
1295 * code TLB (must have a valid entry for that address) and scan the ranges to
1296 * locate the corresponding opcodes. Probably.
1297 */
1298 struct IEMTBOPCODERANGE
1299 {
1300 /** Offset within pabOpcodes. */
1301 uint16_t offOpcodes;
1302 /** Number of bytes. */
1303 uint16_t cbOpcodes;
1304 /** The page offset. */
1305 RT_GCC_EXTENSION
1306 uint16_t offPhysPage : 12;
1307 /** Unused bits. */
1308 RT_GCC_EXTENSION
1309 uint16_t u2Unused : 2;
1310 /** Index into GCPhysPc + aGCPhysPages for the physical page address. */
1311 RT_GCC_EXTENSION
1312 uint16_t idxPhysPage : 2;
1313 } aRanges[8];
1314
1315 /** Physical pages that this TB covers.
1316 * The GCPhysPc w/o page offset is element zero, so starting here with 1. */
1317 RTGCPHYS aGCPhysPages[2];
1318} IEMTB;
1319#pragma pack()
1320AssertCompileMemberAlignment(IEMTB, GCPhysPc, sizeof(RTGCPHYS));
1321AssertCompileMemberAlignment(IEMTB, Thrd, sizeof(void *));
1322AssertCompileMemberAlignment(IEMTB, pabOpcodes, sizeof(void *));
1323AssertCompileMemberAlignment(IEMTB, pDbgInfo, sizeof(void *));
1324AssertCompileMemberAlignment(IEMTB, aGCPhysPages, sizeof(RTGCPHYS));
1325AssertCompileMemberOffset(IEMTB, aRanges, 64);
1326AssertCompileMemberSize(IEMTB, aRanges[0], 6);
1327#if 1
1328AssertCompileSize(IEMTB, 128);
1329# define IEMTB_SIZE_IS_POWER_OF_TWO /**< The IEMTB size is a power of two. */
1330#else
1331AssertCompileSize(IEMTB, 168);
1332# undef IEMTB_SIZE_IS_POWER_OF_TWO
1333#endif
1334
1335/** Pointer to a translation block. */
1336typedef IEMTB *PIEMTB;
1337/** Pointer to a const translation block. */
1338typedef IEMTB const *PCIEMTB;
1339
1340/** Gets address of the given TB lookup table entry. */
1341#define IEMTB_GET_TB_LOOKUP_TAB_ENTRY(a_pTb, a_idx) \
1342 ((PIEMTB *)&(a_pTb)->pabOpcodes[-(int)((a_pTb)->cTbLookupEntries - (a_idx)) * sizeof(PIEMTB)])
1343
1344/**
1345 * Gets the physical address for a TB opcode range.
1346 */
1347DECL_FORCE_INLINE(RTGCPHYS) iemTbGetRangePhysPageAddr(PCIEMTB pTb, uint8_t idxRange)
1348{
1349 Assert(idxRange < RT_MIN(pTb->cRanges, RT_ELEMENTS(pTb->aRanges)));
1350 uint8_t const idxPage = pTb->aRanges[idxRange].idxPhysPage;
1351 Assert(idxPage <= RT_ELEMENTS(pTb->aGCPhysPages));
1352 if (idxPage == 0)
1353 return pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
1354 Assert(!(pTb->aGCPhysPages[idxPage - 1] & GUEST_PAGE_OFFSET_MASK));
1355 return pTb->aGCPhysPages[idxPage - 1];
1356}
1357
1358
1359/**
1360 * A chunk of memory in the TB allocator.
1361 */
1362typedef struct IEMTBCHUNK
1363{
1364 /** Pointer to the translation blocks in this chunk. */
1365 PIEMTB paTbs;
1366#ifdef IN_RING0
1367 /** Allocation handle. */
1368 RTR0MEMOBJ hMemObj;
1369#endif
1370} IEMTBCHUNK;
1371
1372/**
1373 * A per-CPU translation block allocator.
1374 *
1375 * Because of how the IEMTBCACHE uses the lower 6 bits of the TB address to keep
1376 * the length of the collision list, and of course also for cache line alignment
1377 * reasons, the TBs must be allocated with at least 64-byte alignment.
1378 * Memory is there therefore allocated using one of the page aligned allocators.
1379 *
1380 *
1381 * To avoid wasting too much memory, it is allocated piecemeal as needed,
1382 * in chunks (IEMTBCHUNK) of 2 MiB or more. The TB has an 8-bit chunk index
1383 * that enables us to quickly calculate the allocation bitmap position when
1384 * freeing the translation block.
1385 */
1386typedef struct IEMTBALLOCATOR
1387{
1388 /** Magic value (IEMTBALLOCATOR_MAGIC). */
1389 uint32_t uMagic;
1390
1391#ifdef IEMTB_SIZE_IS_POWER_OF_TWO
1392 /** Mask corresponding to cTbsPerChunk - 1. */
1393 uint32_t fChunkMask;
1394 /** Shift count corresponding to cTbsPerChunk. */
1395 uint8_t cChunkShift;
1396#else
1397 uint32_t uUnused;
1398 uint8_t bUnused;
1399#endif
1400 /** Number of chunks we're allowed to allocate. */
1401 uint8_t cMaxChunks;
1402 /** Number of chunks currently populated. */
1403 uint16_t cAllocatedChunks;
1404 /** Number of translation blocks per chunk. */
1405 uint32_t cTbsPerChunk;
1406 /** Chunk size. */
1407 uint32_t cbPerChunk;
1408
1409 /** The maximum number of TBs. */
1410 uint32_t cMaxTbs;
1411 /** Total number of TBs in the populated chunks.
1412 * (cAllocatedChunks * cTbsPerChunk) */
1413 uint32_t cTotalTbs;
1414 /** The current number of TBs in use.
1415 * The number of free TBs: cAllocatedTbs - cInUseTbs; */
1416 uint32_t cInUseTbs;
1417 /** Statistics: Number of the cInUseTbs that are native ones. */
1418 uint32_t cNativeTbs;
1419 /** Statistics: Number of the cInUseTbs that are threaded ones. */
1420 uint32_t cThreadedTbs;
1421
1422 /** Where to start pruning TBs from when we're out.
1423 * See iemTbAllocatorAllocSlow for details. */
1424 uint32_t iPruneFrom;
1425 /** Hint about which bit to start scanning the bitmap from. */
1426 uint32_t iStartHint;
1427 /** Where to start pruning native TBs from when we're out of executable memory.
1428 * See iemTbAllocatorFreeupNativeSpace for details. */
1429 uint32_t iPruneNativeFrom;
1430 uint32_t uPadding;
1431
1432 /** Statistics: Number of TB allocation calls. */
1433 STAMCOUNTER StatAllocs;
1434 /** Statistics: Number of TB free calls. */
1435 STAMCOUNTER StatFrees;
1436 /** Statistics: Time spend pruning. */
1437 STAMPROFILE StatPrune;
1438 /** Statistics: Time spend pruning native TBs. */
1439 STAMPROFILE StatPruneNative;
1440
1441 /** The delayed free list (see iemTbAlloctorScheduleForFree). */
1442 PIEMTB pDelayedFreeHead;
1443
1444 /** Allocation chunks. */
1445 IEMTBCHUNK aChunks[256];
1446
1447 /** Allocation bitmap for all possible chunk chunks. */
1448 RT_FLEXIBLE_ARRAY_EXTENSION
1449 uint64_t bmAllocated[RT_FLEXIBLE_ARRAY];
1450} IEMTBALLOCATOR;
1451/** Pointer to a TB allocator. */
1452typedef struct IEMTBALLOCATOR *PIEMTBALLOCATOR;
1453
1454/** Magic value for the TB allocator (Emmet Harley Cohen). */
1455#define IEMTBALLOCATOR_MAGIC UINT32_C(0x19900525)
1456
1457
1458/**
1459 * A per-CPU translation block cache (hash table).
1460 *
1461 * The hash table is allocated once during IEM initialization and size double
1462 * the max TB count, rounded up to the nearest power of two (so we can use and
1463 * AND mask rather than a rest division when hashing).
1464 */
1465typedef struct IEMTBCACHE
1466{
1467 /** Magic value (IEMTBCACHE_MAGIC). */
1468 uint32_t uMagic;
1469 /** Size of the hash table. This is a power of two. */
1470 uint32_t cHash;
1471 /** The mask corresponding to cHash. */
1472 uint32_t uHashMask;
1473 uint32_t uPadding;
1474
1475 /** @name Statistics
1476 * @{ */
1477 /** Number of collisions ever. */
1478 STAMCOUNTER cCollisions;
1479
1480 /** Statistics: Number of TB lookup misses. */
1481 STAMCOUNTER cLookupMisses;
1482 /** Statistics: Number of TB lookup hits via hash table (debug only). */
1483 STAMCOUNTER cLookupHits;
1484 /** Statistics: Number of TB lookup hits via TB associated lookup table (debug only). */
1485 STAMCOUNTER cLookupHitsViaTbLookupTable;
1486 STAMCOUNTER auPadding2[2];
1487 /** Statistics: Collision list length pruning. */
1488 STAMPROFILE StatPrune;
1489 /** @} */
1490
1491 /** The hash table itself.
1492 * @note The lower 6 bits of the pointer is used for keeping the collision
1493 * list length, so we can take action when it grows too long.
1494 * This works because TBs are allocated using a 64 byte (or
1495 * higher) alignment from page aligned chunks of memory, so the lower
1496 * 6 bits of the address will always be zero.
1497 * See IEMTBCACHE_PTR_COUNT_MASK, IEMTBCACHE_PTR_MAKE and friends.
1498 */
1499 RT_FLEXIBLE_ARRAY_EXTENSION
1500 PIEMTB apHash[RT_FLEXIBLE_ARRAY];
1501} IEMTBCACHE;
1502/** Pointer to a per-CPU translation block cahce. */
1503typedef IEMTBCACHE *PIEMTBCACHE;
1504
1505/** Magic value for IEMTBCACHE (Johnny O'Neal). */
1506#define IEMTBCACHE_MAGIC UINT32_C(0x19561010)
1507
1508/** The collision count mask for IEMTBCACHE::apHash entries. */
1509#define IEMTBCACHE_PTR_COUNT_MASK ((uintptr_t)0x3f)
1510/** The max collision count for IEMTBCACHE::apHash entries before pruning. */
1511#define IEMTBCACHE_PTR_MAX_COUNT ((uintptr_t)0x30)
1512/** Combine a TB pointer and a collision list length into a value for an
1513 * IEMTBCACHE::apHash entry. */
1514#define IEMTBCACHE_PTR_MAKE(a_pTb, a_cCount) (PIEMTB)((uintptr_t)(a_pTb) | (a_cCount))
1515/** Combine a TB pointer and a collision list length into a value for an
1516 * IEMTBCACHE::apHash entry. */
1517#define IEMTBCACHE_PTR_GET_TB(a_pHashEntry) (PIEMTB)((uintptr_t)(a_pHashEntry) & ~IEMTBCACHE_PTR_COUNT_MASK)
1518/** Combine a TB pointer and a collision list length into a value for an
1519 * IEMTBCACHE::apHash entry. */
1520#define IEMTBCACHE_PTR_GET_COUNT(a_pHashEntry) ((uintptr_t)(a_pHashEntry) & IEMTBCACHE_PTR_COUNT_MASK)
1521
1522/**
1523 * Calculates the hash table slot for a TB from physical PC address and TB flags.
1524 */
1525#define IEMTBCACHE_HASH(a_paCache, a_fTbFlags, a_GCPhysPc) \
1526 IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, (a_fTbFlags) & IEMTB_F_KEY_MASK, a_GCPhysPc)
1527
1528/**
1529 * Calculates the hash table slot for a TB from physical PC address and TB
1530 * flags, ASSUMING the caller has applied IEMTB_F_KEY_MASK to @a a_fTbFlags.
1531 */
1532#define IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, a_fTbFlags, a_GCPhysPc) \
1533 (((uint32_t)(a_GCPhysPc) ^ (a_fTbFlags)) & (a_paCache)->uHashMask)
1534
1535
1536/** @name IEMBRANCHED_F_XXX - Branched indicator (IEMCPU::fTbBranched).
1537 *
1538 * These flags parallels the main IEM_CIMPL_F_BRANCH_XXX flags.
1539 *
1540 * @{ */
1541/** Value if no branching happened recently. */
1542#define IEMBRANCHED_F_NO UINT8_C(0x00)
1543/** Flag set if direct branch, clear if absolute or indirect. */
1544#define IEMBRANCHED_F_DIRECT UINT8_C(0x01)
1545/** Flag set if indirect branch, clear if direct or relative. */
1546#define IEMBRANCHED_F_INDIRECT UINT8_C(0x02)
1547/** Flag set if relative branch, clear if absolute or indirect. */
1548#define IEMBRANCHED_F_RELATIVE UINT8_C(0x04)
1549/** Flag set if conditional branch, clear if unconditional. */
1550#define IEMBRANCHED_F_CONDITIONAL UINT8_C(0x08)
1551/** Flag set if it's a far branch. */
1552#define IEMBRANCHED_F_FAR UINT8_C(0x10)
1553/** Flag set if the stack pointer is modified. */
1554#define IEMBRANCHED_F_STACK UINT8_C(0x20)
1555/** Flag set if the stack pointer and (maybe) the stack segment are modified. */
1556#define IEMBRANCHED_F_STACK_FAR UINT8_C(0x40)
1557/** Flag set (by IEM_MC_REL_JMP_XXX) if it's a zero bytes relative jump. */
1558#define IEMBRANCHED_F_ZERO UINT8_C(0x80)
1559/** @} */
1560
1561
1562/**
1563 * The per-CPU IEM state.
1564 */
1565typedef struct IEMCPU
1566{
1567 /** Info status code that needs to be propagated to the IEM caller.
1568 * This cannot be passed internally, as it would complicate all success
1569 * checks within the interpreter making the code larger and almost impossible
1570 * to get right. Instead, we'll store status codes to pass on here. Each
1571 * source of these codes will perform appropriate sanity checks. */
1572 int32_t rcPassUp; /* 0x00 */
1573 /** Execution flag, IEM_F_XXX. */
1574 uint32_t fExec; /* 0x04 */
1575
1576 /** @name Decoder state.
1577 * @{ */
1578#ifdef IEM_WITH_CODE_TLB
1579 /** The offset of the next instruction byte. */
1580 uint32_t offInstrNextByte; /* 0x08 */
1581 /** The number of bytes available at pbInstrBuf for the current instruction.
1582 * This takes the max opcode length into account so that doesn't need to be
1583 * checked separately. */
1584 uint32_t cbInstrBuf; /* 0x0c */
1585 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
1586 * This can be NULL if the page isn't mappable for some reason, in which
1587 * case we'll do fallback stuff.
1588 *
1589 * If we're executing an instruction from a user specified buffer,
1590 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
1591 * aligned pointer but pointer to the user data.
1592 *
1593 * For instructions crossing pages, this will start on the first page and be
1594 * advanced to the next page by the time we've decoded the instruction. This
1595 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
1596 */
1597 uint8_t const *pbInstrBuf; /* 0x10 */
1598# if ARCH_BITS == 32
1599 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
1600# endif
1601 /** The program counter corresponding to pbInstrBuf.
1602 * This is set to a non-canonical address when we need to invalidate it. */
1603 uint64_t uInstrBufPc; /* 0x18 */
1604 /** The guest physical address corresponding to pbInstrBuf. */
1605 RTGCPHYS GCPhysInstrBuf; /* 0x20 */
1606 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
1607 * This takes the CS segment limit into account.
1608 * @note Set to zero when the code TLB is flushed to trigger TLB reload. */
1609 uint16_t cbInstrBufTotal; /* 0x28 */
1610 /** Offset into pbInstrBuf of the first byte of the current instruction.
1611 * Can be negative to efficiently handle cross page instructions. */
1612 int16_t offCurInstrStart; /* 0x2a */
1613
1614# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1615 /** The prefix mask (IEM_OP_PRF_XXX). */
1616 uint32_t fPrefixes; /* 0x2c */
1617 /** The extra REX ModR/M register field bit (REX.R << 3). */
1618 uint8_t uRexReg; /* 0x30 */
1619 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1620 * (REX.B << 3). */
1621 uint8_t uRexB; /* 0x31 */
1622 /** The extra REX SIB index field bit (REX.X << 3). */
1623 uint8_t uRexIndex; /* 0x32 */
1624
1625 /** The effective segment register (X86_SREG_XXX). */
1626 uint8_t iEffSeg; /* 0x33 */
1627
1628 /** The offset of the ModR/M byte relative to the start of the instruction. */
1629 uint8_t offModRm; /* 0x34 */
1630
1631# ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
1632 /** The current offset into abOpcode. */
1633 uint8_t offOpcode; /* 0x35 */
1634# else
1635 uint8_t bUnused; /* 0x35 */
1636# endif
1637# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1638 uint8_t abOpaqueDecoderPart1[0x36 - 0x2c];
1639# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1640
1641#else /* !IEM_WITH_CODE_TLB */
1642# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1643 /** The size of what has currently been fetched into abOpcode. */
1644 uint8_t cbOpcode; /* 0x08 */
1645 /** The current offset into abOpcode. */
1646 uint8_t offOpcode; /* 0x09 */
1647 /** The offset of the ModR/M byte relative to the start of the instruction. */
1648 uint8_t offModRm; /* 0x0a */
1649
1650 /** The effective segment register (X86_SREG_XXX). */
1651 uint8_t iEffSeg; /* 0x0b */
1652
1653 /** The prefix mask (IEM_OP_PRF_XXX). */
1654 uint32_t fPrefixes; /* 0x0c */
1655 /** The extra REX ModR/M register field bit (REX.R << 3). */
1656 uint8_t uRexReg; /* 0x10 */
1657 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1658 * (REX.B << 3). */
1659 uint8_t uRexB; /* 0x11 */
1660 /** The extra REX SIB index field bit (REX.X << 3). */
1661 uint8_t uRexIndex; /* 0x12 */
1662
1663# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1664 uint8_t abOpaqueDecoderPart1[0x13 - 0x08];
1665# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1666#endif /* !IEM_WITH_CODE_TLB */
1667
1668#ifndef IEM_WITH_OPAQUE_DECODER_STATE
1669 /** The effective operand mode. */
1670 IEMMODE enmEffOpSize; /* 0x36, 0x13 */
1671 /** The default addressing mode. */
1672 IEMMODE enmDefAddrMode; /* 0x37, 0x14 */
1673 /** The effective addressing mode. */
1674 IEMMODE enmEffAddrMode; /* 0x38, 0x15 */
1675 /** The default operand mode. */
1676 IEMMODE enmDefOpSize; /* 0x39, 0x16 */
1677
1678 /** Prefix index (VEX.pp) for two byte and three byte tables. */
1679 uint8_t idxPrefix; /* 0x3a, 0x17 */
1680 /** 3rd VEX/EVEX/XOP register.
1681 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
1682 uint8_t uVex3rdReg; /* 0x3b, 0x18 */
1683 /** The VEX/EVEX/XOP length field. */
1684 uint8_t uVexLength; /* 0x3c, 0x19 */
1685 /** Additional EVEX stuff. */
1686 uint8_t fEvexStuff; /* 0x3d, 0x1a */
1687
1688# ifndef IEM_WITH_CODE_TLB
1689 /** Explicit alignment padding. */
1690 uint8_t abAlignment2a[1]; /* 0x1b */
1691# endif
1692 /** The FPU opcode (FOP). */
1693 uint16_t uFpuOpcode; /* 0x3e, 0x1c */
1694# ifndef IEM_WITH_CODE_TLB
1695 /** Explicit alignment padding. */
1696 uint8_t abAlignment2b[2]; /* 0x1e */
1697# endif
1698
1699 /** The opcode bytes. */
1700 uint8_t abOpcode[15]; /* 0x40, 0x20 */
1701 /** Explicit alignment padding. */
1702# ifdef IEM_WITH_CODE_TLB
1703 //uint8_t abAlignment2c[0x4f - 0x4f]; /* 0x4f */
1704# else
1705 uint8_t abAlignment2c[0x4f - 0x2f]; /* 0x2f */
1706# endif
1707
1708#else /* IEM_WITH_OPAQUE_DECODER_STATE */
1709# ifdef IEM_WITH_CODE_TLB
1710 uint8_t abOpaqueDecoderPart2[0x4f - 0x36];
1711# else
1712 uint8_t abOpaqueDecoderPart2[0x4f - 0x13];
1713# endif
1714#endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1715 /** @} */
1716
1717
1718 /** The number of active guest memory mappings. */
1719 uint8_t cActiveMappings; /* 0x4f, 0x4f */
1720
1721 /** Records for tracking guest memory mappings. */
1722 struct
1723 {
1724 /** The address of the mapped bytes. */
1725 R3R0PTRTYPE(void *) pv;
1726 /** The access flags (IEM_ACCESS_XXX).
1727 * IEM_ACCESS_INVALID if the entry is unused. */
1728 uint32_t fAccess;
1729#if HC_ARCH_BITS == 64
1730 uint32_t u32Alignment4; /**< Alignment padding. */
1731#endif
1732 } aMemMappings[3]; /* 0x50 LB 0x30 */
1733
1734 /** Locking records for the mapped memory. */
1735 union
1736 {
1737 PGMPAGEMAPLOCK Lock;
1738 uint64_t au64Padding[2];
1739 } aMemMappingLocks[3]; /* 0x80 LB 0x30 */
1740
1741 /** Bounce buffer info.
1742 * This runs in parallel to aMemMappings. */
1743 struct
1744 {
1745 /** The physical address of the first byte. */
1746 RTGCPHYS GCPhysFirst;
1747 /** The physical address of the second page. */
1748 RTGCPHYS GCPhysSecond;
1749 /** The number of bytes in the first page. */
1750 uint16_t cbFirst;
1751 /** The number of bytes in the second page. */
1752 uint16_t cbSecond;
1753 /** Whether it's unassigned memory. */
1754 bool fUnassigned;
1755 /** Explicit alignment padding. */
1756 bool afAlignment5[3];
1757 } aMemBbMappings[3]; /* 0xb0 LB 0x48 */
1758
1759 /** The flags of the current exception / interrupt. */
1760 uint32_t fCurXcpt; /* 0xf8 */
1761 /** The current exception / interrupt. */
1762 uint8_t uCurXcpt; /* 0xfc */
1763 /** Exception / interrupt recursion depth. */
1764 int8_t cXcptRecursions; /* 0xfb */
1765
1766 /** The next unused mapping index.
1767 * @todo try find room for this up with cActiveMappings. */
1768 uint8_t iNextMapping; /* 0xfd */
1769 uint8_t abAlignment7[1];
1770
1771 /** Bounce buffer storage.
1772 * This runs in parallel to aMemMappings and aMemBbMappings. */
1773 struct
1774 {
1775 uint8_t ab[512];
1776 } aBounceBuffers[3]; /* 0x100 LB 0x600 */
1777
1778
1779 /** Pointer set jump buffer - ring-3 context. */
1780 R3PTRTYPE(jmp_buf *) pJmpBufR3;
1781 /** Pointer set jump buffer - ring-0 context. */
1782 R0PTRTYPE(jmp_buf *) pJmpBufR0;
1783
1784 /** @todo Should move this near @a fCurXcpt later. */
1785 /** The CR2 for the current exception / interrupt. */
1786 uint64_t uCurXcptCr2;
1787 /** The error code for the current exception / interrupt. */
1788 uint32_t uCurXcptErr;
1789
1790 /** @name Statistics
1791 * @{ */
1792 /** The number of instructions we've executed. */
1793 uint32_t cInstructions;
1794 /** The number of potential exits. */
1795 uint32_t cPotentialExits;
1796 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
1797 * This may contain uncommitted writes. */
1798 uint32_t cbWritten;
1799 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
1800 uint32_t cRetInstrNotImplemented;
1801 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
1802 uint32_t cRetAspectNotImplemented;
1803 /** Counts informational statuses returned (other than VINF_SUCCESS). */
1804 uint32_t cRetInfStatuses;
1805 /** Counts other error statuses returned. */
1806 uint32_t cRetErrStatuses;
1807 /** Number of times rcPassUp has been used. */
1808 uint32_t cRetPassUpStatus;
1809 /** Number of times RZ left with instruction commit pending for ring-3. */
1810 uint32_t cPendingCommit;
1811 /** Number of misaligned (host sense) atomic instruction accesses. */
1812 uint32_t cMisalignedAtomics;
1813 /** Number of long jumps. */
1814 uint32_t cLongJumps;
1815 /** @} */
1816
1817 /** @name Target CPU information.
1818 * @{ */
1819#if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
1820 /** The target CPU. */
1821 uint8_t uTargetCpu;
1822#else
1823 uint8_t bTargetCpuPadding;
1824#endif
1825 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
1826 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
1827 * native host support and the 2nd for when there is.
1828 *
1829 * The two values are typically indexed by a g_CpumHostFeatures bit.
1830 *
1831 * This is for instance used for the BSF & BSR instructions where AMD and
1832 * Intel CPUs produce different EFLAGS. */
1833 uint8_t aidxTargetCpuEflFlavour[2];
1834
1835 /** The CPU vendor. */
1836 CPUMCPUVENDOR enmCpuVendor;
1837 /** @} */
1838
1839 /** @name Host CPU information.
1840 * @{ */
1841 /** The CPU vendor. */
1842 CPUMCPUVENDOR enmHostCpuVendor;
1843 /** @} */
1844
1845 /** Counts RDMSR \#GP(0) LogRel(). */
1846 uint8_t cLogRelRdMsr;
1847 /** Counts WRMSR \#GP(0) LogRel(). */
1848 uint8_t cLogRelWrMsr;
1849 /** Alignment padding. */
1850 uint8_t abAlignment9[42];
1851
1852 /** @name Recompilation
1853 * @{ */
1854 /** Pointer to the current translation block.
1855 * This can either be one being executed or one being compiled. */
1856 R3PTRTYPE(PIEMTB) pCurTbR3;
1857#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
1858 /** Frame pointer for the last native TB to execute. */
1859 R3PTRTYPE(void *) pvTbFramePointerR3;
1860#else
1861 R3PTRTYPE(void *) pvUnusedR3;
1862#endif
1863 /** Fixed TB used for threaded recompilation.
1864 * This is allocated once with maxed-out sizes and re-used afterwards. */
1865 R3PTRTYPE(PIEMTB) pThrdCompileTbR3;
1866 /** Pointer to the ring-3 TB cache for this EMT. */
1867 R3PTRTYPE(PIEMTBCACHE) pTbCacheR3;
1868 /** Pointer to the ring-3 TB lookup entry.
1869 * This either points to pTbLookupEntryDummyR3 or an actually lookuptable
1870 * entry, thus it can always safely be used w/o NULL checking. */
1871 R3PTRTYPE(PIEMTB *) ppTbLookupEntryR3;
1872 /** The PC (RIP) at the start of pCurTbR3/pCurTbR0.
1873 * The TBs are based on physical addresses, so this is needed to correleated
1874 * RIP to opcode bytes stored in the TB (AMD-V / VT-x). */
1875 uint64_t uCurTbStartPc;
1876 /** Number of threaded TBs executed. */
1877 uint64_t cTbExecThreaded;
1878 /** Number of native TBs executed. */
1879 uint64_t cTbExecNative;
1880 /** Whether we need to check the opcode bytes for the current instruction.
1881 * This is set by a previous instruction if it modified memory or similar. */
1882 bool fTbCheckOpcodes;
1883 /** Indicates whether and how we just branched - IEMBRANCHED_F_XXX. */
1884 uint8_t fTbBranched;
1885 /** Set when GCPhysInstrBuf is updated because of a page crossing. */
1886 bool fTbCrossedPage;
1887 /** Whether to end the current TB. */
1888 bool fEndTb;
1889 /** Number of instructions before we need emit an IRQ check call again.
1890 * This helps making sure we don't execute too long w/o checking for
1891 * interrupts and immediately following instructions that may enable
1892 * interrupts (e.g. POPF, IRET, STI). With STI an additional hack is
1893 * required to make sure we check following the next instruction as well, see
1894 * fTbCurInstrIsSti. */
1895 uint8_t cInstrTillIrqCheck;
1896 /** Indicates that the current instruction is an STI. This is set by the
1897 * iemCImpl_sti code and subsequently cleared by the recompiler. */
1898 bool fTbCurInstrIsSti;
1899 /** The size of the IEMTB::pabOpcodes allocation in pThrdCompileTbR3. */
1900 uint16_t cbOpcodesAllocated;
1901 /** The current instruction number in a native TB.
1902 * This is set by code that may trigger an unexpected TB exit (throw/longjmp)
1903 * and will be picked up by the TB execution loop. Only used when
1904 * IEMNATIVE_WITH_INSTRUCTION_COUNTING is defined. */
1905 uint8_t idxTbCurInstr;
1906 /** Spaced reserved for recompiler data / alignment. */
1907 bool afRecompilerStuff1[3];
1908 /** The virtual sync time at the last timer poll call. */
1909 uint32_t msRecompilerPollNow;
1910 /** The IEMTB::cUsed value when to attempt native recompilation of a TB. */
1911 uint32_t uTbNativeRecompileAtUsedCount;
1912 /** The IEM_CIMPL_F_XXX mask for the current instruction. */
1913 uint32_t fTbCurInstr;
1914 /** The IEM_CIMPL_F_XXX mask for the previous instruction. */
1915 uint32_t fTbPrevInstr;
1916 /** Strict: Tracking skipped EFLAGS calculations. Any bits set here are
1917 * currently not up to date in EFLAGS. */
1918 uint32_t fSkippingEFlags;
1919 /** Previous GCPhysInstrBuf value - only valid if fTbCrossedPage is set. */
1920 RTGCPHYS GCPhysInstrBufPrev;
1921 /** Pointer to the ring-3 TB allocator for this EMT. */
1922 R3PTRTYPE(PIEMTBALLOCATOR) pTbAllocatorR3;
1923 /** Pointer to the ring-3 executable memory allocator for this EMT. */
1924 R3PTRTYPE(struct IEMEXECMEMALLOCATOR *) pExecMemAllocatorR3;
1925 /** Pointer to the native recompiler state for ring-3. */
1926 R3PTRTYPE(struct IEMRECOMPILERSTATE *) pNativeRecompilerStateR3;
1927 /** Dummy entry for ppTbLookupEntryR3. */
1928 R3PTRTYPE(PIEMTB) pTbLookupEntryDummyR3;
1929
1930 /** Threaded TB statistics: Times TB execution was broken off before reaching the end. */
1931 STAMCOUNTER StatTbThreadedExecBreaks;
1932 /** Statistics: Times BltIn_CheckIrq breaks out of the TB. */
1933 STAMCOUNTER StatCheckIrqBreaks;
1934 /** Statistics: Times BltIn_CheckMode breaks out of the TB. */
1935 STAMCOUNTER StatCheckModeBreaks;
1936 /** Threaded TB statistics: Times execution break on call with lookup entries. */
1937 STAMCOUNTER StatTbThreadedExecBreaksWithLookup;
1938 /** Threaded TB statistics: Times execution break on call without lookup entries. */
1939 STAMCOUNTER StatTbThreadedExecBreaksWithoutLookup;
1940 /** Statistics: Times a post jump target check missed and had to find new TB. */
1941 STAMCOUNTER StatCheckBranchMisses;
1942 /** Statistics: Times a jump or page crossing required a TB with CS.LIM checking. */
1943 STAMCOUNTER StatCheckNeedCsLimChecking;
1944 /** Statistics: Times a loop was detected within a TB.. */
1945 STAMCOUNTER StatTbLoopInTbDetected;
1946 /** Exec memory allocator statistics: Number of times allocaintg executable memory failed. */
1947 STAMCOUNTER StatNativeExecMemInstrBufAllocFailed;
1948 /** Native TB statistics: Number of fully recompiled TBs. */
1949 STAMCOUNTER StatNativeFullyRecompiledTbs;
1950 /** TB statistics: Number of instructions per TB. */
1951 STAMPROFILE StatTbInstr;
1952 /** TB statistics: Number of TB lookup table entries per TB. */
1953 STAMPROFILE StatTbLookupEntries;
1954 /** Threaded TB statistics: Number of calls per TB. */
1955 STAMPROFILE StatTbThreadedCalls;
1956 /** Native TB statistics: Native code size per TB. */
1957 STAMPROFILE StatTbNativeCode;
1958 /** Native TB statistics: Profiling native recompilation. */
1959 STAMPROFILE StatNativeRecompilation;
1960 /** Native TB statistics: Number of calls per TB that were recompiled properly. */
1961 STAMPROFILE StatNativeCallsRecompiled;
1962 /** Native TB statistics: Number of threaded calls per TB that weren't recompiled. */
1963 STAMPROFILE StatNativeCallsThreaded;
1964 /** Native recompiled execution: TLB hits for data fetches. */
1965 STAMCOUNTER StatNativeTlbHitsForFetch;
1966 /** Native recompiled execution: TLB hits for data stores. */
1967 STAMCOUNTER StatNativeTlbHitsForStore;
1968 /** Native recompiled execution: TLB hits for stack accesses. */
1969 STAMCOUNTER StatNativeTlbHitsForStack;
1970 /** Native recompiled execution: TLB hits for mapped accesses. */
1971 STAMCOUNTER StatNativeTlbHitsForMapped;
1972 /** Native recompiled execution: Code TLB misses for new page. */
1973 STAMCOUNTER StatNativeCodeTlbMissesNewPage;
1974 /** Native recompiled execution: Code TLB hits for new page. */
1975 STAMCOUNTER StatNativeCodeTlbHitsForNewPage;
1976 /** Native recompiled execution: Code TLB misses for new page with offset. */
1977 STAMCOUNTER StatNativeCodeTlbMissesNewPageWithOffset;
1978 /** Native recompiled execution: Code TLB hits for new page with offset. */
1979 STAMCOUNTER StatNativeCodeTlbHitsForNewPageWithOffset;
1980
1981 /** Native recompiler: Number of calls to iemNativeRegAllocFindFree. */
1982 STAMCOUNTER StatNativeRegFindFree;
1983 /** Native recompiler: Number of times iemNativeRegAllocFindFree needed
1984 * to free a variable. */
1985 STAMCOUNTER StatNativeRegFindFreeVar;
1986 /** Native recompiler: Number of times iemNativeRegAllocFindFree did
1987 * not need to free any variables. */
1988 STAMCOUNTER StatNativeRegFindFreeNoVar;
1989 /** Native recompiler: Liveness info freed shadowed guest registers in
1990 * iemNativeRegAllocFindFree. */
1991 STAMCOUNTER StatNativeRegFindFreeLivenessUnshadowed;
1992 /** Native recompiler: Liveness info helped with the allocation in
1993 * iemNativeRegAllocFindFree. */
1994 STAMCOUNTER StatNativeRegFindFreeLivenessHelped;
1995
1996 /** Native recompiler: Number of times status flags calc has been skipped. */
1997 STAMCOUNTER StatNativeEflSkippedArithmetic;
1998 /** Native recompiler: Number of times status flags calc has been skipped. */
1999 STAMCOUNTER StatNativeEflSkippedLogical;
2000
2001 /** Native recompiler: Number of opportunities to skip EFLAGS.CF updating. */
2002 STAMCOUNTER StatNativeLivenessEflCfSkippable;
2003 /** Native recompiler: Number of opportunities to skip EFLAGS.PF updating. */
2004 STAMCOUNTER StatNativeLivenessEflPfSkippable;
2005 /** Native recompiler: Number of opportunities to skip EFLAGS.AF updating. */
2006 STAMCOUNTER StatNativeLivenessEflAfSkippable;
2007 /** Native recompiler: Number of opportunities to skip EFLAGS.ZF updating. */
2008 STAMCOUNTER StatNativeLivenessEflZfSkippable;
2009 /** Native recompiler: Number of opportunities to skip EFLAGS.SF updating. */
2010 STAMCOUNTER StatNativeLivenessEflSfSkippable;
2011 /** Native recompiler: Number of opportunities to skip EFLAGS.OF updating. */
2012 STAMCOUNTER StatNativeLivenessEflOfSkippable;
2013 /** Native recompiler: Number of required EFLAGS.CF updates. */
2014 STAMCOUNTER StatNativeLivenessEflCfRequired;
2015 /** Native recompiler: Number of required EFLAGS.PF updates. */
2016 STAMCOUNTER StatNativeLivenessEflPfRequired;
2017 /** Native recompiler: Number of required EFLAGS.AF updates. */
2018 STAMCOUNTER StatNativeLivenessEflAfRequired;
2019 /** Native recompiler: Number of required EFLAGS.ZF updates. */
2020 STAMCOUNTER StatNativeLivenessEflZfRequired;
2021 /** Native recompiler: Number of required EFLAGS.SF updates. */
2022 STAMCOUNTER StatNativeLivenessEflSfRequired;
2023 /** Native recompiler: Number of required EFLAGS.OF updates. */
2024 STAMCOUNTER StatNativeLivenessEflOfRequired;
2025 /** Native recompiler: Number of potentially delayable EFLAGS.CF updates. */
2026 STAMCOUNTER StatNativeLivenessEflCfDelayable;
2027 /** Native recompiler: Number of potentially delayable EFLAGS.PF updates. */
2028 STAMCOUNTER StatNativeLivenessEflPfDelayable;
2029 /** Native recompiler: Number of potentially delayable EFLAGS.AF updates. */
2030 STAMCOUNTER StatNativeLivenessEflAfDelayable;
2031 /** Native recompiler: Number of potentially delayable EFLAGS.ZF updates. */
2032 STAMCOUNTER StatNativeLivenessEflZfDelayable;
2033 /** Native recompiler: Number of potentially delayable EFLAGS.SF updates. */
2034 STAMCOUNTER StatNativeLivenessEflSfDelayable;
2035 /** Native recompiler: Number of potentially delayable EFLAGS.OF updates. */
2036 STAMCOUNTER StatNativeLivenessEflOfDelayable;
2037
2038 /** Native recompiler: Number of potential PC updates in total. */
2039 STAMCOUNTER StatNativePcUpdateTotal;
2040 /** Native recompiler: Number of PC updates which could be delayed. */
2041 STAMCOUNTER StatNativePcUpdateDelayed;
2042
2043//#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2044 /** Native recompiler: Number of calls to iemNativeSimdRegAllocFindFree. */
2045 STAMCOUNTER StatNativeSimdRegFindFree;
2046 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree needed
2047 * to free a variable. */
2048 STAMCOUNTER StatNativeSimdRegFindFreeVar;
2049 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree did
2050 * not need to free any variables. */
2051 STAMCOUNTER StatNativeSimdRegFindFreeNoVar;
2052 /** Native recompiler: Liveness info freed shadowed guest registers in
2053 * iemNativeSimdRegAllocFindFree. */
2054 STAMCOUNTER StatNativeSimdRegFindFreeLivenessUnshadowed;
2055 /** Native recompiler: Liveness info helped with the allocation in
2056 * iemNativeSimdRegAllocFindFree. */
2057 STAMCOUNTER StatNativeSimdRegFindFreeLivenessHelped;
2058
2059 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks. */
2060 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckPotential;
2061 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks. */
2062 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckPotential;
2063 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks. */
2064 STAMCOUNTER StatNativeMaybeSseXcptCheckPotential;
2065 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks. */
2066 STAMCOUNTER StatNativeMaybeAvxXcptCheckPotential;
2067
2068 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks omitted. */
2069 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckOmitted;
2070 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks omitted. */
2071 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckOmitted;
2072 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks omitted. */
2073 STAMCOUNTER StatNativeMaybeSseXcptCheckOmitted;
2074 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks omitted. */
2075 STAMCOUNTER StatNativeMaybeAvxXcptCheckOmitted;
2076//#endif
2077
2078 /** Native recompiler: The TB finished executing completely without jumping to a an exit label.
2079 * Not availabe in release builds. */
2080 STAMCOUNTER StatNativeTbFinished;
2081 /** Native recompiler: The TB finished executing jumping to the ReturnBreak label. */
2082 STAMCOUNTER StatNativeTbExitReturnBreak;
2083 /** Native recompiler: The TB finished executing jumping to the ReturnBreakFF label. */
2084 STAMCOUNTER StatNativeTbExitReturnBreakFF;
2085 /** Native recompiler: The TB finished executing jumping to the ReturnWithFlags label. */
2086 STAMCOUNTER StatNativeTbExitReturnWithFlags;
2087 /** Native recompiler: The TB finished executing with other non-zero status. */
2088 STAMCOUNTER StatNativeTbExitReturnOtherStatus;
2089 /** Native recompiler: The TB finished executing via throw / long jump. */
2090 STAMCOUNTER StatNativeTbExitLongJump;
2091 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2092 * label, but directly jumped to the next TB, scenario \#1 w/o IRQ checks. */
2093 STAMCOUNTER StatNativeTbExitDirectLinking1NoIrq;
2094 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2095 * label, but directly jumped to the next TB, scenario \#1 with IRQ checks. */
2096 STAMCOUNTER StatNativeTbExitDirectLinking1Irq;
2097 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2098 * label, but directly jumped to the next TB, scenario \#1 w/o IRQ checks. */
2099 STAMCOUNTER StatNativeTbExitDirectLinking2NoIrq;
2100 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2101 * label, but directly jumped to the next TB, scenario \#2 with IRQ checks. */
2102 STAMCOUNTER StatNativeTbExitDirectLinking2Irq;
2103
2104 /** Native recompiler: The TB finished executing jumping to the RaiseDe label. */
2105 STAMCOUNTER StatNativeTbExitRaiseDe;
2106 /** Native recompiler: The TB finished executing jumping to the RaiseUd label. */
2107 STAMCOUNTER StatNativeTbExitRaiseUd;
2108 /** Native recompiler: The TB finished executing jumping to the RaiseSseRelated label. */
2109 STAMCOUNTER StatNativeTbExitRaiseSseRelated;
2110 /** Native recompiler: The TB finished executing jumping to the RaiseAvxRelated label. */
2111 STAMCOUNTER StatNativeTbExitRaiseAvxRelated;
2112 /** Native recompiler: The TB finished executing jumping to the RaiseSseAvxFpRelated label. */
2113 STAMCOUNTER StatNativeTbExitRaiseSseAvxFpRelated;
2114 /** Native recompiler: The TB finished executing jumping to the RaiseNm label. */
2115 STAMCOUNTER StatNativeTbExitRaiseNm;
2116 /** Native recompiler: The TB finished executing jumping to the RaiseGp0 label. */
2117 STAMCOUNTER StatNativeTbExitRaiseGp0;
2118 /** Native recompiler: The TB finished executing jumping to the RaiseMf label. */
2119 STAMCOUNTER StatNativeTbExitRaiseMf;
2120 /** Native recompiler: The TB finished executing jumping to the RaiseXf label. */
2121 STAMCOUNTER StatNativeTbExitRaiseXf;
2122 /** Native recompiler: The TB finished executing jumping to the ObsoleteTb label. */
2123 STAMCOUNTER StatNativeTbExitObsoleteTb;
2124
2125 /** Native recompiler: Failure situations with direct linking scenario \#1.
2126 * Counter with StatNativeTbExitReturnBreak. Not in release builds.
2127 * @{ */
2128 STAMCOUNTER StatNativeTbExitDirectLinking1NoTb;
2129 STAMCOUNTER StatNativeTbExitDirectLinking1MismatchGCPhysPc;
2130 STAMCOUNTER StatNativeTbExitDirectLinking1MismatchFlags;
2131 STAMCOUNTER StatNativeTbExitDirectLinking1PendingIrq;
2132 /** @} */
2133
2134 /** Native recompiler: Failure situations with direct linking scenario \#2.
2135 * Counter with StatNativeTbExitReturnBreak. Not in release builds.
2136 * @{ */
2137 STAMCOUNTER StatNativeTbExitDirectLinking2NoTb;
2138 STAMCOUNTER StatNativeTbExitDirectLinking2MismatchGCPhysPc;
2139 STAMCOUNTER StatNativeTbExitDirectLinking2MismatchFlags;
2140 STAMCOUNTER StatNativeTbExitDirectLinking2PendingIrq;
2141 /** @} */
2142
2143 uint64_t au64Padding[5];
2144 /** @} */
2145
2146 /** Data TLB.
2147 * @remarks Must be 64-byte aligned. */
2148 IEMTLB DataTlb;
2149 /** Instruction TLB.
2150 * @remarks Must be 64-byte aligned. */
2151 IEMTLB CodeTlb;
2152
2153 /** Exception statistics. */
2154 STAMCOUNTER aStatXcpts[32];
2155 /** Interrupt statistics. */
2156 uint32_t aStatInts[256];
2157
2158#if defined(VBOX_WITH_STATISTICS) && !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
2159 /** Instruction statistics for ring-0/raw-mode. */
2160 IEMINSTRSTATS StatsRZ;
2161 /** Instruction statistics for ring-3. */
2162 IEMINSTRSTATS StatsR3;
2163# ifdef VBOX_WITH_IEM_RECOMPILER
2164 /** Statistics per threaded function call.
2165 * Updated by both the threaded and native recompilers. */
2166 uint32_t acThreadedFuncStats[0x6000 /*24576*/];
2167# endif
2168#endif
2169} IEMCPU;
2170AssertCompileMemberOffset(IEMCPU, cActiveMappings, 0x4f);
2171AssertCompileMemberAlignment(IEMCPU, aMemMappings, 16);
2172AssertCompileMemberAlignment(IEMCPU, aMemMappingLocks, 16);
2173AssertCompileMemberAlignment(IEMCPU, aBounceBuffers, 64);
2174AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
2175AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
2176
2177/** Pointer to the per-CPU IEM state. */
2178typedef IEMCPU *PIEMCPU;
2179/** Pointer to the const per-CPU IEM state. */
2180typedef IEMCPU const *PCIEMCPU;
2181
2182
2183/** @def IEM_GET_CTX
2184 * Gets the guest CPU context for the calling EMT.
2185 * @returns PCPUMCTX
2186 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2187 */
2188#define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
2189
2190/** @def IEM_CTX_ASSERT
2191 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
2192 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2193 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
2194 */
2195#define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) \
2196 AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
2197 ("fExtrn=%#RX64 & fExtrnMbz=%#RX64 -> %#RX64\n", \
2198 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz), (a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz) ))
2199
2200/** @def IEM_CTX_IMPORT_RET
2201 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2202 *
2203 * Will call the keep to import the bits as needed.
2204 *
2205 * Returns on import failure.
2206 *
2207 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2208 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2209 */
2210#define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
2211 do { \
2212 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2213 { /* likely */ } \
2214 else \
2215 { \
2216 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2217 AssertRCReturn(rcCtxImport, rcCtxImport); \
2218 } \
2219 } while (0)
2220
2221/** @def IEM_CTX_IMPORT_NORET
2222 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2223 *
2224 * Will call the keep to import the bits as needed.
2225 *
2226 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2227 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2228 */
2229#define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
2230 do { \
2231 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2232 { /* likely */ } \
2233 else \
2234 { \
2235 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2236 AssertLogRelRC(rcCtxImport); \
2237 } \
2238 } while (0)
2239
2240/** @def IEM_CTX_IMPORT_JMP
2241 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2242 *
2243 * Will call the keep to import the bits as needed.
2244 *
2245 * Jumps on import failure.
2246 *
2247 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2248 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2249 */
2250#define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
2251 do { \
2252 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2253 { /* likely */ } \
2254 else \
2255 { \
2256 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2257 AssertRCStmt(rcCtxImport, IEM_DO_LONGJMP(pVCpu, rcCtxImport)); \
2258 } \
2259 } while (0)
2260
2261
2262
2263/** @def IEM_GET_TARGET_CPU
2264 * Gets the current IEMTARGETCPU value.
2265 * @returns IEMTARGETCPU value.
2266 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2267 */
2268#if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
2269# define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
2270#else
2271# define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
2272#endif
2273
2274/** @def IEM_GET_INSTR_LEN
2275 * Gets the instruction length. */
2276#ifdef IEM_WITH_CODE_TLB
2277# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
2278#else
2279# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
2280#endif
2281
2282/** @def IEM_TRY_SETJMP
2283 * Wrapper around setjmp / try, hiding all the ugly differences.
2284 *
2285 * @note Use with extreme care as this is a fragile macro.
2286 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2287 * @param a_rcTarget The variable that should receive the status code in case
2288 * of a longjmp/throw.
2289 */
2290/** @def IEM_TRY_SETJMP_AGAIN
2291 * For when setjmp / try is used again in the same variable scope as a previous
2292 * IEM_TRY_SETJMP invocation.
2293 */
2294/** @def IEM_CATCH_LONGJMP_BEGIN
2295 * Start wrapper for catch / setjmp-else.
2296 *
2297 * This will set up a scope.
2298 *
2299 * @note Use with extreme care as this is a fragile macro.
2300 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2301 * @param a_rcTarget The variable that should receive the status code in case
2302 * of a longjmp/throw.
2303 */
2304/** @def IEM_CATCH_LONGJMP_END
2305 * End wrapper for catch / setjmp-else.
2306 *
2307 * This will close the scope set up by IEM_CATCH_LONGJMP_BEGIN and clean up the
2308 * state.
2309 *
2310 * @note Use with extreme care as this is a fragile macro.
2311 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2312 */
2313#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
2314# ifdef IEM_WITH_THROW_CATCH
2315# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2316 a_rcTarget = VINF_SUCCESS; \
2317 try
2318# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2319 IEM_TRY_SETJMP(a_pVCpu, a_rcTarget)
2320# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2321 catch (int rcThrown) \
2322 { \
2323 a_rcTarget = rcThrown
2324# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2325 } \
2326 ((void)0)
2327# else /* !IEM_WITH_THROW_CATCH */
2328# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2329 jmp_buf JmpBuf; \
2330 jmp_buf * volatile pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2331 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2332 if ((rcStrict = setjmp(JmpBuf)) == 0)
2333# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2334 pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2335 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2336 if ((rcStrict = setjmp(JmpBuf)) == 0)
2337# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2338 else \
2339 { \
2340 ((void)0)
2341# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2342 } \
2343 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf
2344# endif /* !IEM_WITH_THROW_CATCH */
2345#endif /* IEM_WITH_SETJMP */
2346
2347
2348/**
2349 * Shared per-VM IEM data.
2350 */
2351typedef struct IEM
2352{
2353 /** The VMX APIC-access page handler type. */
2354 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
2355#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
2356 /** Set if the CPUID host call functionality is enabled. */
2357 bool fCpuIdHostCall;
2358#endif
2359} IEM;
2360
2361
2362
2363/** @name IEM_ACCESS_XXX - Access details.
2364 * @{ */
2365#define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
2366#define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
2367#define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
2368#define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
2369#define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
2370#define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
2371#define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
2372#define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
2373#define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
2374#define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
2375/** The writes are partial, so if initialize the bounce buffer with the
2376 * orignal RAM content. */
2377#define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
2378/** Used in aMemMappings to indicate that the entry is bounce buffered. */
2379#define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
2380/** Bounce buffer with ring-3 write pending, first page. */
2381#define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
2382/** Bounce buffer with ring-3 write pending, second page. */
2383#define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
2384/** Not locked, accessed via the TLB. */
2385#define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
2386/** Atomic access.
2387 * This enables special alignment checks and the VINF_EM_EMULATE_SPLIT_LOCK
2388 * fallback for misaligned stuff. See @bugref{10547}. */
2389#define IEM_ACCESS_ATOMIC UINT32_C(0x00002000)
2390/** Valid bit mask. */
2391#define IEM_ACCESS_VALID_MASK UINT32_C(0x00003fff)
2392/** Shift count for the TLB flags (upper word). */
2393#define IEM_ACCESS_SHIFT_TLB_FLAGS 16
2394
2395/** Atomic read+write data alias. */
2396#define IEM_ACCESS_DATA_ATOMIC (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA | IEM_ACCESS_ATOMIC)
2397/** Read+write data alias. */
2398#define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2399/** Write data alias. */
2400#define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2401/** Read data alias. */
2402#define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
2403/** Instruction fetch alias. */
2404#define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
2405/** Stack write alias. */
2406#define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2407/** Stack read alias. */
2408#define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
2409/** Stack read+write alias. */
2410#define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2411/** Read system table alias. */
2412#define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
2413/** Read+write system table alias. */
2414#define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
2415/** @} */
2416
2417/** @name Prefix constants (IEMCPU::fPrefixes)
2418 * @{ */
2419#define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
2420#define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
2421#define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
2422#define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
2423#define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
2424#define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
2425#define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
2426
2427#define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
2428#define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
2429#define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
2430
2431#define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
2432#define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
2433#define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
2434
2435#define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
2436#define IEM_OP_PRF_REX_B RT_BIT_32(25) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
2437#define IEM_OP_PRF_REX_X RT_BIT_32(26) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
2438#define IEM_OP_PRF_REX_R RT_BIT_32(27) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
2439/** Mask with all the REX prefix flags.
2440 * This is generally for use when needing to undo the REX prefixes when they
2441 * are followed legacy prefixes and therefore does not immediately preceed
2442 * the first opcode byte.
2443 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
2444#define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
2445
2446#define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
2447#define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
2448#define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
2449/** @} */
2450
2451/** @name IEMOPFORM_XXX - Opcode forms
2452 * @note These are ORed together with IEMOPHINT_XXX.
2453 * @{ */
2454/** ModR/M: reg, r/m */
2455#define IEMOPFORM_RM 0
2456/** ModR/M: reg, r/m (register) */
2457#define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
2458/** ModR/M: reg, r/m (memory) */
2459#define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
2460/** ModR/M: reg, r/m, imm */
2461#define IEMOPFORM_RMI 1
2462/** ModR/M: reg, r/m (register), imm */
2463#define IEMOPFORM_RMI_REG (IEMOPFORM_RMI | IEMOPFORM_MOD3)
2464/** ModR/M: reg, r/m (memory), imm */
2465#define IEMOPFORM_RMI_MEM (IEMOPFORM_RMI | IEMOPFORM_NOT_MOD3)
2466/** ModR/M: reg, r/m, xmm0 */
2467#define IEMOPFORM_RM0 2
2468/** ModR/M: reg, r/m (register), xmm0 */
2469#define IEMOPFORM_RM0_REG (IEMOPFORM_RM0 | IEMOPFORM_MOD3)
2470/** ModR/M: reg, r/m (memory), xmm0 */
2471#define IEMOPFORM_RM0_MEM (IEMOPFORM_RM0 | IEMOPFORM_NOT_MOD3)
2472/** ModR/M: r/m, reg */
2473#define IEMOPFORM_MR 3
2474/** ModR/M: r/m (register), reg */
2475#define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
2476/** ModR/M: r/m (memory), reg */
2477#define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
2478/** ModR/M: r/m, reg, imm */
2479#define IEMOPFORM_MRI 4
2480/** ModR/M: r/m (register), reg, imm */
2481#define IEMOPFORM_MRI_REG (IEMOPFORM_MRI | IEMOPFORM_MOD3)
2482/** ModR/M: r/m (memory), reg, imm */
2483#define IEMOPFORM_MRI_MEM (IEMOPFORM_MRI | IEMOPFORM_NOT_MOD3)
2484/** ModR/M: r/m only */
2485#define IEMOPFORM_M 5
2486/** ModR/M: r/m only (register). */
2487#define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
2488/** ModR/M: r/m only (memory). */
2489#define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
2490/** ModR/M: r/m, imm */
2491#define IEMOPFORM_MI 6
2492/** ModR/M: r/m (register), imm */
2493#define IEMOPFORM_MI_REG (IEMOPFORM_MI | IEMOPFORM_MOD3)
2494/** ModR/M: r/m (memory), imm */
2495#define IEMOPFORM_MI_MEM (IEMOPFORM_MI | IEMOPFORM_NOT_MOD3)
2496/** ModR/M: r/m, 1 (shift and rotate instructions) */
2497#define IEMOPFORM_M1 7
2498/** ModR/M: r/m (register), 1. */
2499#define IEMOPFORM_M1_REG (IEMOPFORM_M1 | IEMOPFORM_MOD3)
2500/** ModR/M: r/m (memory), 1. */
2501#define IEMOPFORM_M1_MEM (IEMOPFORM_M1 | IEMOPFORM_NOT_MOD3)
2502/** ModR/M: r/m, CL (shift and rotate instructions)
2503 * @todo This should just've been a generic fixed register. But the python
2504 * code doesn't needs more convincing. */
2505#define IEMOPFORM_M_CL 8
2506/** ModR/M: r/m (register), CL. */
2507#define IEMOPFORM_M_CL_REG (IEMOPFORM_M_CL | IEMOPFORM_MOD3)
2508/** ModR/M: r/m (memory), CL. */
2509#define IEMOPFORM_M_CL_MEM (IEMOPFORM_M_CL | IEMOPFORM_NOT_MOD3)
2510/** ModR/M: reg only */
2511#define IEMOPFORM_R 9
2512
2513/** VEX+ModR/M: reg, r/m */
2514#define IEMOPFORM_VEX_RM 16
2515/** VEX+ModR/M: reg, r/m (register) */
2516#define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
2517/** VEX+ModR/M: reg, r/m (memory) */
2518#define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
2519/** VEX+ModR/M: r/m, reg */
2520#define IEMOPFORM_VEX_MR 17
2521/** VEX+ModR/M: r/m (register), reg */
2522#define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
2523/** VEX+ModR/M: r/m (memory), reg */
2524#define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
2525/** VEX+ModR/M: r/m, reg, imm8 */
2526#define IEMOPFORM_VEX_MRI 18
2527/** VEX+ModR/M: r/m (register), reg, imm8 */
2528#define IEMOPFORM_VEX_MRI_REG (IEMOPFORM_VEX_MRI | IEMOPFORM_MOD3)
2529/** VEX+ModR/M: r/m (memory), reg, imm8 */
2530#define IEMOPFORM_VEX_MRI_MEM (IEMOPFORM_VEX_MRI | IEMOPFORM_NOT_MOD3)
2531/** VEX+ModR/M: r/m only */
2532#define IEMOPFORM_VEX_M 19
2533/** VEX+ModR/M: r/m only (register). */
2534#define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
2535/** VEX+ModR/M: r/m only (memory). */
2536#define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
2537/** VEX+ModR/M: reg only */
2538#define IEMOPFORM_VEX_R 20
2539/** VEX+ModR/M: reg, vvvv, r/m */
2540#define IEMOPFORM_VEX_RVM 21
2541/** VEX+ModR/M: reg, vvvv, r/m (register). */
2542#define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
2543/** VEX+ModR/M: reg, vvvv, r/m (memory). */
2544#define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
2545/** VEX+ModR/M: reg, vvvv, r/m, imm */
2546#define IEMOPFORM_VEX_RVMI 22
2547/** VEX+ModR/M: reg, vvvv, r/m (register), imm. */
2548#define IEMOPFORM_VEX_RVMI_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2549/** VEX+ModR/M: reg, vvvv, r/m (memory), imm. */
2550#define IEMOPFORM_VEX_RVMI_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2551/** VEX+ModR/M: reg, vvvv, r/m, imm(reg) */
2552#define IEMOPFORM_VEX_RVMR 23
2553/** VEX+ModR/M: reg, vvvv, r/m (register), imm(reg). */
2554#define IEMOPFORM_VEX_RVMR_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2555/** VEX+ModR/M: reg, vvvv, r/m (memory), imm(reg). */
2556#define IEMOPFORM_VEX_RVMR_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2557/** VEX+ModR/M: reg, r/m, vvvv */
2558#define IEMOPFORM_VEX_RMV 24
2559/** VEX+ModR/M: reg, r/m, vvvv (register). */
2560#define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
2561/** VEX+ModR/M: reg, r/m, vvvv (memory). */
2562#define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
2563/** VEX+ModR/M: reg, r/m, imm8 */
2564#define IEMOPFORM_VEX_RMI 25
2565/** VEX+ModR/M: reg, r/m, imm8 (register). */
2566#define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
2567/** VEX+ModR/M: reg, r/m, imm8 (memory). */
2568#define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
2569/** VEX+ModR/M: r/m, vvvv, reg */
2570#define IEMOPFORM_VEX_MVR 26
2571/** VEX+ModR/M: r/m, vvvv, reg (register) */
2572#define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
2573/** VEX+ModR/M: r/m, vvvv, reg (memory) */
2574#define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
2575/** VEX+ModR/M+/n: vvvv, r/m */
2576#define IEMOPFORM_VEX_VM 27
2577/** VEX+ModR/M+/n: vvvv, r/m (register) */
2578#define IEMOPFORM_VEX_VM_REG (IEMOPFORM_VEX_VM | IEMOPFORM_MOD3)
2579/** VEX+ModR/M+/n: vvvv, r/m (memory) */
2580#define IEMOPFORM_VEX_VM_MEM (IEMOPFORM_VEX_VM | IEMOPFORM_NOT_MOD3)
2581/** VEX+ModR/M+/n: vvvv, r/m, imm8 */
2582#define IEMOPFORM_VEX_VMI 28
2583/** VEX+ModR/M+/n: vvvv, r/m, imm8 (register) */
2584#define IEMOPFORM_VEX_VMI_REG (IEMOPFORM_VEX_VMI | IEMOPFORM_MOD3)
2585/** VEX+ModR/M+/n: vvvv, r/m, imm8 (memory) */
2586#define IEMOPFORM_VEX_VMI_MEM (IEMOPFORM_VEX_VMI | IEMOPFORM_NOT_MOD3)
2587
2588/** Fixed register instruction, no R/M. */
2589#define IEMOPFORM_FIXED 32
2590
2591/** The r/m is a register. */
2592#define IEMOPFORM_MOD3 RT_BIT_32(8)
2593/** The r/m is a memory access. */
2594#define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
2595/** @} */
2596
2597/** @name IEMOPHINT_XXX - Additional Opcode Hints
2598 * @note These are ORed together with IEMOPFORM_XXX.
2599 * @{ */
2600/** Ignores the operand size prefix (66h). */
2601#define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
2602/** Ignores REX.W (aka WIG). */
2603#define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
2604/** Both the operand size prefixes (66h + REX.W) are ignored. */
2605#define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
2606/** Allowed with the lock prefix. */
2607#define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
2608/** The VEX.L value is ignored (aka LIG). */
2609#define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
2610/** The VEX.L value must be zero (i.e. 128-bit width only). */
2611#define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
2612/** The VEX.L value must be one (i.e. 256-bit width only). */
2613#define IEMOPHINT_VEX_L_ONE RT_BIT_32(14)
2614/** The VEX.V value must be zero. */
2615#define IEMOPHINT_VEX_V_ZERO RT_BIT_32(15)
2616/** The REX.W/VEX.V value must be zero. */
2617#define IEMOPHINT_REX_W_ZERO RT_BIT_32(16)
2618#define IEMOPHINT_VEX_W_ZERO IEMOPHINT_REX_W_ZERO
2619/** The REX.W/VEX.V value must be one. */
2620#define IEMOPHINT_REX_W_ONE RT_BIT_32(17)
2621#define IEMOPHINT_VEX_W_ONE IEMOPHINT_REX_W_ONE
2622
2623/** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
2624#define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
2625/** @} */
2626
2627/**
2628 * Possible hardware task switch sources.
2629 */
2630typedef enum IEMTASKSWITCH
2631{
2632 /** Task switch caused by an interrupt/exception. */
2633 IEMTASKSWITCH_INT_XCPT = 1,
2634 /** Task switch caused by a far CALL. */
2635 IEMTASKSWITCH_CALL,
2636 /** Task switch caused by a far JMP. */
2637 IEMTASKSWITCH_JUMP,
2638 /** Task switch caused by an IRET. */
2639 IEMTASKSWITCH_IRET
2640} IEMTASKSWITCH;
2641AssertCompileSize(IEMTASKSWITCH, 4);
2642
2643/**
2644 * Possible CrX load (write) sources.
2645 */
2646typedef enum IEMACCESSCRX
2647{
2648 /** CrX access caused by 'mov crX' instruction. */
2649 IEMACCESSCRX_MOV_CRX,
2650 /** CrX (CR0) write caused by 'lmsw' instruction. */
2651 IEMACCESSCRX_LMSW,
2652 /** CrX (CR0) write caused by 'clts' instruction. */
2653 IEMACCESSCRX_CLTS,
2654 /** CrX (CR0) read caused by 'smsw' instruction. */
2655 IEMACCESSCRX_SMSW
2656} IEMACCESSCRX;
2657
2658#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2659/** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
2660 *
2661 * These flags provide further context to SLAT page-walk failures that could not be
2662 * determined by PGM (e.g, PGM is not privy to memory access permissions).
2663 *
2664 * @{
2665 */
2666/** Translating a nested-guest linear address failed accessing a nested-guest
2667 * physical address. */
2668# define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
2669/** Translating a nested-guest linear address failed accessing a
2670 * paging-structure entry or updating accessed/dirty bits. */
2671# define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
2672/** @} */
2673
2674DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
2675# ifndef IN_RING3
2676DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
2677# endif
2678#endif
2679
2680/**
2681 * Indicates to the verifier that the given flag set is undefined.
2682 *
2683 * Can be invoked again to add more flags.
2684 *
2685 * This is a NOOP if the verifier isn't compiled in.
2686 *
2687 * @note We're temporarily keeping this until code is converted to new
2688 * disassembler style opcode handling.
2689 */
2690#define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
2691
2692
2693/** @def IEM_DECL_IMPL_TYPE
2694 * For typedef'ing an instruction implementation function.
2695 *
2696 * @param a_RetType The return type.
2697 * @param a_Name The name of the type.
2698 * @param a_ArgList The argument list enclosed in parentheses.
2699 */
2700
2701/** @def IEM_DECL_IMPL_DEF
2702 * For defining an instruction implementation function.
2703 *
2704 * @param a_RetType The return type.
2705 * @param a_Name The name of the type.
2706 * @param a_ArgList The argument list enclosed in parentheses.
2707 */
2708
2709#if defined(__GNUC__) && defined(RT_ARCH_X86)
2710# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2711 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
2712# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2713 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2714# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2715 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2716
2717#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
2718# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2719 a_RetType (__fastcall a_Name) a_ArgList
2720# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2721 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2722# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2723 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2724
2725#elif __cplusplus >= 201700 /* P0012R1 support */
2726# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2727 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
2728# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2729 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2730# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2731 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2732
2733#else
2734# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2735 a_RetType (VBOXCALL a_Name) a_ArgList
2736# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2737 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2738# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2739 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2740
2741#endif
2742
2743/** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
2744RT_C_DECLS_BEGIN
2745extern uint8_t const g_afParity[256];
2746RT_C_DECLS_END
2747
2748
2749/** @name Arithmetic assignment operations on bytes (binary).
2750 * @{ */
2751typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU8, (uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t u8Src));
2752typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
2753FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
2754FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
2755FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
2756FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
2757FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
2758FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
2759FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
2760/** @} */
2761
2762/** @name Arithmetic assignment operations on words (binary).
2763 * @{ */
2764typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU16, (uint32_t fEFlagsIn, uint16_t *pu16Dst, uint16_t u16Src));
2765typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
2766FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
2767FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
2768FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
2769FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
2770FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
2771FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
2772FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
2773/** @} */
2774
2775
2776/** @name Arithmetic assignment operations on double words (binary).
2777 * @{ */
2778typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU32, (uint32_t fEFlagsIn, uint32_t *pu32Dst, uint32_t u32Src));
2779typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
2780FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
2781FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
2782FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
2783FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
2784FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
2785FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
2786FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
2787FNIEMAIMPLBINU32 iemAImpl_blsi_u32, iemAImpl_blsi_u32_fallback;
2788FNIEMAIMPLBINU32 iemAImpl_blsr_u32, iemAImpl_blsr_u32_fallback;
2789FNIEMAIMPLBINU32 iemAImpl_blsmsk_u32, iemAImpl_blsmsk_u32_fallback;
2790/** @} */
2791
2792/** @name Arithmetic assignment operations on quad words (binary).
2793 * @{ */
2794typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU64, (uint32_t fEFlagsIn, uint64_t *pu64Dst, uint64_t u64Src));
2795typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
2796FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
2797FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
2798FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
2799FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
2800FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
2801FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
2802FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
2803FNIEMAIMPLBINU64 iemAImpl_blsi_u64, iemAImpl_blsi_u64_fallback;
2804FNIEMAIMPLBINU64 iemAImpl_blsr_u64, iemAImpl_blsr_u64_fallback;
2805FNIEMAIMPLBINU64 iemAImpl_blsmsk_u64, iemAImpl_blsmsk_u64_fallback;
2806/** @} */
2807
2808typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU8, (uint32_t fEFlagsIn, uint8_t const *pu8Dst, uint8_t u8Src));
2809typedef FNIEMAIMPLBINROU8 *PFNIEMAIMPLBINROU8;
2810typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU16,(uint32_t fEFlagsIn, uint16_t const *pu16Dst, uint16_t u16Src));
2811typedef FNIEMAIMPLBINROU16 *PFNIEMAIMPLBINROU16;
2812typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU32,(uint32_t fEFlagsIn, uint32_t const *pu32Dst, uint32_t u32Src));
2813typedef FNIEMAIMPLBINROU32 *PFNIEMAIMPLBINROU32;
2814typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU64,(uint32_t fEFlagsIn, uint64_t const *pu64Dst, uint64_t u64Src));
2815typedef FNIEMAIMPLBINROU64 *PFNIEMAIMPLBINROU64;
2816
2817/** @name Compare operations (thrown in with the binary ops).
2818 * @{ */
2819FNIEMAIMPLBINROU8 iemAImpl_cmp_u8;
2820FNIEMAIMPLBINROU16 iemAImpl_cmp_u16;
2821FNIEMAIMPLBINROU32 iemAImpl_cmp_u32;
2822FNIEMAIMPLBINROU64 iemAImpl_cmp_u64;
2823/** @} */
2824
2825/** @name Test operations (thrown in with the binary ops).
2826 * @{ */
2827FNIEMAIMPLBINROU8 iemAImpl_test_u8;
2828FNIEMAIMPLBINROU16 iemAImpl_test_u16;
2829FNIEMAIMPLBINROU32 iemAImpl_test_u32;
2830FNIEMAIMPLBINROU64 iemAImpl_test_u64;
2831/** @} */
2832
2833/** @name Bit operations operations (thrown in with the binary ops).
2834 * @{ */
2835FNIEMAIMPLBINROU16 iemAImpl_bt_u16;
2836FNIEMAIMPLBINROU32 iemAImpl_bt_u32;
2837FNIEMAIMPLBINROU64 iemAImpl_bt_u64;
2838FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
2839FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
2840FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
2841FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
2842FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
2843FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
2844FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
2845FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
2846FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
2847/** @} */
2848
2849/** @name Arithmetic three operand operations on double words (binary).
2850 * @{ */
2851typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
2852typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
2853FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
2854FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
2855FNIEMAIMPLBINVEXU32 iemAImpl_bzhi_u32, iemAImpl_bzhi_u32_fallback;
2856/** @} */
2857
2858/** @name Arithmetic three operand operations on quad words (binary).
2859 * @{ */
2860typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
2861typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
2862FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
2863FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
2864FNIEMAIMPLBINVEXU64 iemAImpl_bzhi_u64, iemAImpl_bzhi_u64_fallback;
2865/** @} */
2866
2867/** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
2868 * @{ */
2869typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
2870typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
2871FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pdep_u32, iemAImpl_pdep_u32_fallback;
2872FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pext_u32, iemAImpl_pext_u32_fallback;
2873FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
2874FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
2875FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
2876FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
2877/** @} */
2878
2879/** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
2880 * @{ */
2881typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
2882typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
2883FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pdep_u64, iemAImpl_pdep_u64_fallback;
2884FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pext_u64, iemAImpl_pext_u64_fallback;
2885FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
2886FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
2887FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
2888FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
2889/** @} */
2890
2891/** @name MULX 32-bit and 64-bit.
2892 * @{ */
2893typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU32, (uint32_t *puDst1, uint32_t *puDst2, uint32_t uSrc1, uint32_t uSrc2));
2894typedef FNIEMAIMPLMULXVEXU32 *PFNIEMAIMPLMULXVEXU32;
2895FNIEMAIMPLMULXVEXU32 iemAImpl_mulx_u32, iemAImpl_mulx_u32_fallback;
2896
2897typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU64, (uint64_t *puDst1, uint64_t *puDst2, uint64_t uSrc1, uint64_t uSrc2));
2898typedef FNIEMAIMPLMULXVEXU64 *PFNIEMAIMPLMULXVEXU64;
2899FNIEMAIMPLMULXVEXU64 iemAImpl_mulx_u64, iemAImpl_mulx_u64_fallback;
2900/** @} */
2901
2902
2903/** @name Exchange memory with register operations.
2904 * @{ */
2905IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2906IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2907IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2908IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2909IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2910IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2911IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2912IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2913/** @} */
2914
2915/** @name Exchange and add operations.
2916 * @{ */
2917IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2918IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2919IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2920IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2921IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2922IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2923IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2924IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2925/** @} */
2926
2927/** @name Compare and exchange.
2928 * @{ */
2929IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2930IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2931IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2932IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2933IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2934IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2935#if ARCH_BITS == 32
2936IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2937IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2938#else
2939IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2940IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2941#endif
2942IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2943 uint32_t *pEFlags));
2944IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2945 uint32_t *pEFlags));
2946IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2947 uint32_t *pEFlags));
2948IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2949 uint32_t *pEFlags));
2950#ifndef RT_ARCH_ARM64
2951IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
2952 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
2953#endif
2954/** @} */
2955
2956/** @name Memory ordering
2957 * @{ */
2958typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
2959typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
2960IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
2961IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
2962IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
2963#ifndef RT_ARCH_ARM64
2964IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
2965#endif
2966/** @} */
2967
2968/** @name Double precision shifts
2969 * @{ */
2970typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
2971typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
2972typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
2973typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
2974typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
2975typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
2976FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
2977FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
2978FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
2979FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
2980FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
2981FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
2982/** @} */
2983
2984
2985/** @name Bit search operations (thrown in with the binary ops).
2986 * @{ */
2987FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
2988FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
2989FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
2990FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
2991FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
2992FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
2993FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
2994FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
2995FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
2996FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
2997FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
2998FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
2999FNIEMAIMPLBINU16 iemAImpl_popcnt_u16, iemAImpl_popcnt_u16_fallback;
3000FNIEMAIMPLBINU32 iemAImpl_popcnt_u32, iemAImpl_popcnt_u32_fallback;
3001FNIEMAIMPLBINU64 iemAImpl_popcnt_u64, iemAImpl_popcnt_u64_fallback;
3002/** @} */
3003
3004/** @name Signed multiplication operations (thrown in with the binary ops).
3005 * @{ */
3006FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
3007FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
3008FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
3009/** @} */
3010
3011/** @name Arithmetic assignment operations on bytes (unary).
3012 * @{ */
3013typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
3014typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
3015FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
3016FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
3017FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
3018FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
3019/** @} */
3020
3021/** @name Arithmetic assignment operations on words (unary).
3022 * @{ */
3023typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
3024typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
3025FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
3026FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
3027FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
3028FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
3029/** @} */
3030
3031/** @name Arithmetic assignment operations on double words (unary).
3032 * @{ */
3033typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
3034typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
3035FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
3036FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
3037FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
3038FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
3039/** @} */
3040
3041/** @name Arithmetic assignment operations on quad words (unary).
3042 * @{ */
3043typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
3044typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
3045FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
3046FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
3047FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
3048FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
3049/** @} */
3050
3051
3052/** @name Shift operations on bytes (Group 2).
3053 * @{ */
3054typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU8,(uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t cShift));
3055typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
3056FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
3057FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
3058FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
3059FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
3060FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
3061FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
3062FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
3063/** @} */
3064
3065/** @name Shift operations on words (Group 2).
3066 * @{ */
3067typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU16,(uint32_t fEFlagsIn, uint16_t *pu16Dst, uint8_t cShift));
3068typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
3069FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
3070FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
3071FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
3072FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
3073FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
3074FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
3075FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
3076/** @} */
3077
3078/** @name Shift operations on double words (Group 2).
3079 * @{ */
3080typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU32,(uint32_t fEFlagsIn, uint32_t *pu32Dst, uint8_t cShift));
3081typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
3082FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
3083FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
3084FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
3085FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
3086FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
3087FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
3088FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
3089/** @} */
3090
3091/** @name Shift operations on words (Group 2).
3092 * @{ */
3093typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU64,(uint32_t fEFlagsIn, uint64_t *pu64Dst, uint8_t cShift));
3094typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
3095FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
3096FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
3097FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
3098FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
3099FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
3100FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
3101FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
3102/** @} */
3103
3104/** @name Multiplication and division operations.
3105 * @{ */
3106typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t *pEFlags));
3107typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
3108FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
3109FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
3110FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
3111FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
3112
3113typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t *pEFlags));
3114typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
3115FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
3116FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
3117FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
3118FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
3119
3120typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t *pEFlags));
3121typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
3122FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
3123FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
3124FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
3125FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
3126
3127typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t *pEFlags));
3128typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
3129FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
3130FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
3131FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
3132FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
3133/** @} */
3134
3135/** @name Byte Swap.
3136 * @{ */
3137IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
3138IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
3139IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
3140/** @} */
3141
3142/** @name Misc.
3143 * @{ */
3144FNIEMAIMPLBINU16 iemAImpl_arpl;
3145/** @} */
3146
3147/** @name RDRAND and RDSEED
3148 * @{ */
3149typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU16,(uint16_t *puDst, uint32_t *pEFlags));
3150typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU32,(uint32_t *puDst, uint32_t *pEFlags));
3151typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU64,(uint64_t *puDst, uint32_t *pEFlags));
3152typedef FNIEMAIMPLRDRANDSEEDU16 *PFNIEMAIMPLRDRANDSEEDU16;
3153typedef FNIEMAIMPLRDRANDSEEDU32 *PFNIEMAIMPLRDRANDSEEDU32;
3154typedef FNIEMAIMPLRDRANDSEEDU64 *PFNIEMAIMPLRDRANDSEEDU64;
3155
3156FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdrand_u16, iemAImpl_rdrand_u16_fallback;
3157FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdrand_u32, iemAImpl_rdrand_u32_fallback;
3158FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdrand_u64, iemAImpl_rdrand_u64_fallback;
3159FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdseed_u16, iemAImpl_rdseed_u16_fallback;
3160FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdseed_u32, iemAImpl_rdseed_u32_fallback;
3161FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdseed_u64, iemAImpl_rdseed_u64_fallback;
3162/** @} */
3163
3164/** @name ADOX and ADCX
3165 * @{ */
3166FNIEMAIMPLBINU32 iemAImpl_adcx_u32, iemAImpl_adcx_u32_fallback;
3167FNIEMAIMPLBINU64 iemAImpl_adcx_u64, iemAImpl_adcx_u64_fallback;
3168FNIEMAIMPLBINU32 iemAImpl_adox_u32, iemAImpl_adox_u32_fallback;
3169FNIEMAIMPLBINU64 iemAImpl_adox_u64, iemAImpl_adox_u64_fallback;
3170/** @} */
3171
3172/** @name FPU operations taking a 32-bit float argument
3173 * @{ */
3174typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3175 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3176typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
3177
3178typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3179 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3180typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
3181
3182FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
3183FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
3184FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
3185FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
3186FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
3187FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
3188FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
3189
3190IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
3191IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3192 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
3193/** @} */
3194
3195/** @name FPU operations taking a 64-bit float argument
3196 * @{ */
3197typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3198 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3199typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
3200
3201typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3202 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3203typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
3204
3205FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
3206FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
3207FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
3208FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
3209FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
3210FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
3211FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
3212
3213IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
3214IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3215 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
3216/** @} */
3217
3218/** @name FPU operations taking a 80-bit float argument
3219 * @{ */
3220typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3221 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3222typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
3223FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
3224FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
3225FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
3226FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
3227FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
3228FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
3229FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
3230FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
3231FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
3232
3233FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
3234FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
3235FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
3236
3237typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3238 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3239typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
3240FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
3241FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
3242
3243typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
3244 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3245typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
3246FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
3247FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
3248
3249typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3250typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
3251FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
3252FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
3253FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
3254FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
3255FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
3256FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
3257FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
3258
3259typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
3260typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
3261FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
3262FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
3263
3264typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
3265typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
3266FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
3267FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
3268FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
3269FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
3270FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
3271FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
3272FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
3273
3274typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
3275 PCRTFLOAT80U pr80Val));
3276typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
3277FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
3278FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
3279FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
3280
3281IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3282IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3283 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
3284
3285IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
3286IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3287 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
3288
3289/** @} */
3290
3291/** @name FPU operations taking a 16-bit signed integer argument
3292 * @{ */
3293typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3294 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3295typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
3296typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3297 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
3298typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
3299
3300FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
3301FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
3302FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
3303FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
3304FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
3305FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
3306
3307typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3308 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3309typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
3310FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
3311
3312IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
3313FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
3314FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
3315/** @} */
3316
3317/** @name FPU operations taking a 32-bit signed integer argument
3318 * @{ */
3319typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3320 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3321typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
3322typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3323 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
3324typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
3325
3326FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
3327FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
3328FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
3329FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
3330FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
3331FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
3332
3333typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3334 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3335typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
3336FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
3337
3338IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
3339FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
3340FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
3341/** @} */
3342
3343/** @name FPU operations taking a 64-bit signed integer argument
3344 * @{ */
3345typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3346 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
3347typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
3348
3349IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
3350FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
3351FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
3352/** @} */
3353
3354
3355/** Temporary type representing a 256-bit vector register. */
3356typedef struct { uint64_t au64[4]; } IEMVMM256;
3357/** Temporary type pointing to a 256-bit vector register. */
3358typedef IEMVMM256 *PIEMVMM256;
3359/** Temporary type pointing to a const 256-bit vector register. */
3360typedef IEMVMM256 *PCIEMVMM256;
3361
3362
3363/** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
3364 * @{ */
3365typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc));
3366typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
3367typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc));
3368typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
3369typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U128,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3370typedef FNIEMAIMPLMEDIAF3U128 *PFNIEMAIMPLMEDIAF3U128;
3371typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U256,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3372typedef FNIEMAIMPLMEDIAF3U256 *PFNIEMAIMPLMEDIAF3U256;
3373typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U64,(uint64_t *puDst, uint64_t const *puSrc));
3374typedef FNIEMAIMPLMEDIAOPTF2U64 *PFNIEMAIMPLMEDIAOPTF2U64;
3375typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128,(PRTUINT128U puDst, PCRTUINT128U puSrc));
3376typedef FNIEMAIMPLMEDIAOPTF2U128 *PFNIEMAIMPLMEDIAOPTF2U128;
3377typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3378typedef FNIEMAIMPLMEDIAOPTF3U128 *PFNIEMAIMPLMEDIAOPTF3U128;
3379typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3380typedef FNIEMAIMPLMEDIAOPTF3U256 *PFNIEMAIMPLMEDIAOPTF3U256;
3381typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256,(PRTUINT256U puDst, PCRTUINT256U puSrc));
3382typedef FNIEMAIMPLMEDIAOPTF2U256 *PFNIEMAIMPLMEDIAOPTF2U256;
3383FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pshufb_u64, iemAImpl_pshufb_u64_fallback;
3384FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pand_u64, iemAImpl_pandn_u64, iemAImpl_por_u64, iemAImpl_pxor_u64;
3385FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
3386FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpgtb_u64, iemAImpl_pcmpgtw_u64, iemAImpl_pcmpgtd_u64;
3387FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddb_u64, iemAImpl_paddsb_u64, iemAImpl_paddusb_u64;
3388FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddw_u64, iemAImpl_paddsw_u64, iemAImpl_paddusw_u64;
3389FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddd_u64;
3390FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddq_u64;
3391FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubb_u64, iemAImpl_psubsb_u64, iemAImpl_psubusb_u64;
3392FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubw_u64, iemAImpl_psubsw_u64, iemAImpl_psubusw_u64;
3393FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubd_u64;
3394FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubq_u64;
3395FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddwd_u64, iemAImpl_pmaddwd_u64_fallback;
3396FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmullw_u64, iemAImpl_pmulhw_u64;
3397FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminub_u64, iemAImpl_pmaxub_u64;
3398FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminsw_u64, iemAImpl_pmaxsw_u64;
3399FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsb_u64, iemAImpl_pabsb_u64_fallback;
3400FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsw_u64, iemAImpl_pabsw_u64_fallback;
3401FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsd_u64, iemAImpl_pabsd_u64_fallback;
3402FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignb_u64, iemAImpl_psignb_u64_fallback;
3403FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignw_u64, iemAImpl_psignw_u64_fallback;
3404FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignd_u64, iemAImpl_psignd_u64_fallback;
3405FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddw_u64, iemAImpl_phaddw_u64_fallback;
3406FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddd_u64, iemAImpl_phaddd_u64_fallback;
3407FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubw_u64, iemAImpl_phsubw_u64_fallback;
3408FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubd_u64, iemAImpl_phsubd_u64_fallback;
3409FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddsw_u64, iemAImpl_phaddsw_u64_fallback;
3410FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubsw_u64, iemAImpl_phsubsw_u64_fallback;
3411FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddubsw_u64, iemAImpl_pmaddubsw_u64_fallback;
3412FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhrsw_u64, iemAImpl_pmulhrsw_u64_fallback;
3413FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmuludq_u64;
3414FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllw_u64, iemAImpl_psrlw_u64, iemAImpl_psraw_u64;
3415FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pslld_u64, iemAImpl_psrld_u64, iemAImpl_psrad_u64;
3416FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllq_u64, iemAImpl_psrlq_u64;
3417FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packsswb_u64, iemAImpl_packuswb_u64;
3418FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packssdw_u64;
3419FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhuw_u64;
3420FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pavgb_u64, iemAImpl_pavgw_u64;
3421FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psadbw_u64;
3422
3423FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pshufb_u128, iemAImpl_pshufb_u128_fallback;
3424FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pand_u128, iemAImpl_pandn_u128, iemAImpl_por_u128, iemAImpl_pxor_u128;
3425FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
3426FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqq_u128, iemAImpl_pcmpeqq_u128_fallback;
3427FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtb_u128, iemAImpl_pcmpgtw_u128, iemAImpl_pcmpgtd_u128;
3428FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtq_u128, iemAImpl_pcmpgtq_u128_fallback;
3429FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddb_u128, iemAImpl_paddsb_u128, iemAImpl_paddusb_u128;
3430FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddw_u128, iemAImpl_paddsw_u128, iemAImpl_paddusw_u128;
3431FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddd_u128;
3432FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddq_u128;
3433FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubb_u128, iemAImpl_psubsb_u128, iemAImpl_psubusb_u128;
3434FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubw_u128, iemAImpl_psubsw_u128, iemAImpl_psubusw_u128;
3435FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubd_u128;
3436FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubq_u128;
3437FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmullw_u128, iemAImpl_pmullw_u128_fallback;
3438FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhw_u128;
3439FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulld_u128, iemAImpl_pmulld_u128_fallback;
3440FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3441FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminub_u128;
3442FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminud_u128, iemAImpl_pminud_u128_fallback;
3443FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminuw_u128, iemAImpl_pminuw_u128_fallback;
3444FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsb_u128, iemAImpl_pminsb_u128_fallback;
3445FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsd_u128, iemAImpl_pminsd_u128_fallback;
3446FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsw_u128, iemAImpl_pminsw_u128_fallback;
3447FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxub_u128;
3448FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxud_u128, iemAImpl_pmaxud_u128_fallback;
3449FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxuw_u128, iemAImpl_pmaxuw_u128_fallback;
3450FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsb_u128, iemAImpl_pmaxsb_u128_fallback;
3451FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsw_u128;
3452FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsd_u128, iemAImpl_pmaxsd_u128_fallback;
3453FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsb_u128, iemAImpl_pabsb_u128_fallback;
3454FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsw_u128, iemAImpl_pabsw_u128_fallback;
3455FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsd_u128, iemAImpl_pabsd_u128_fallback;
3456FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignb_u128, iemAImpl_psignb_u128_fallback;
3457FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignw_u128, iemAImpl_psignw_u128_fallback;
3458FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignd_u128, iemAImpl_psignd_u128_fallback;
3459FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddw_u128, iemAImpl_phaddw_u128_fallback;
3460FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddd_u128, iemAImpl_phaddd_u128_fallback;
3461FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubw_u128, iemAImpl_phsubw_u128_fallback;
3462FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubd_u128, iemAImpl_phsubd_u128_fallback;
3463FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddsw_u128, iemAImpl_phaddsw_u128_fallback;
3464FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubsw_u128, iemAImpl_phsubsw_u128_fallback;
3465FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddubsw_u128, iemAImpl_pmaddubsw_u128_fallback;
3466FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhrsw_u128, iemAImpl_pmulhrsw_u128_fallback;
3467FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuludq_u128;
3468FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3469FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packsswb_u128, iemAImpl_packuswb_u128;
3470FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packssdw_u128, iemAImpl_packusdw_u128;
3471FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllw_u128, iemAImpl_psrlw_u128, iemAImpl_psraw_u128;
3472FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pslld_u128, iemAImpl_psrld_u128, iemAImpl_psrad_u128;
3473FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllq_u128, iemAImpl_psrlq_u128;
3474FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhuw_u128;
3475FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pavgb_u128, iemAImpl_pavgw_u128;
3476FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psadbw_u128;
3477FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuldq_u128, iemAImpl_pmuldq_u128_fallback;
3478FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpcklps_u128, iemAImpl_unpcklpd_u128;
3479FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpckhps_u128, iemAImpl_unpckhpd_u128;
3480FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phminposuw_u128, iemAImpl_phminposuw_u128_fallback;
3481
3482FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpshufb_u128, iemAImpl_vpshufb_u128_fallback;
3483FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpand_u128, iemAImpl_vpand_u128_fallback;
3484FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpandn_u128, iemAImpl_vpandn_u128_fallback;
3485FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpor_u128, iemAImpl_vpor_u128_fallback;
3486FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpxor_u128, iemAImpl_vpxor_u128_fallback;
3487FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqb_u128, iemAImpl_vpcmpeqb_u128_fallback;
3488FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqw_u128, iemAImpl_vpcmpeqw_u128_fallback;
3489FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqd_u128, iemAImpl_vpcmpeqd_u128_fallback;
3490FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqq_u128, iemAImpl_vpcmpeqq_u128_fallback;
3491FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtb_u128, iemAImpl_vpcmpgtb_u128_fallback;
3492FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtw_u128, iemAImpl_vpcmpgtw_u128_fallback;
3493FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtd_u128, iemAImpl_vpcmpgtd_u128_fallback;
3494FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtq_u128, iemAImpl_vpcmpgtq_u128_fallback;
3495FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddb_u128, iemAImpl_vpaddb_u128_fallback;
3496FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddw_u128, iemAImpl_vpaddw_u128_fallback;
3497FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddd_u128, iemAImpl_vpaddd_u128_fallback;
3498FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddq_u128, iemAImpl_vpaddq_u128_fallback;
3499FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubb_u128, iemAImpl_vpsubb_u128_fallback;
3500FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubw_u128, iemAImpl_vpsubw_u128_fallback;
3501FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubd_u128, iemAImpl_vpsubd_u128_fallback;
3502FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubq_u128, iemAImpl_vpsubq_u128_fallback;
3503FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminub_u128, iemAImpl_vpminub_u128_fallback;
3504FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminuw_u128, iemAImpl_vpminuw_u128_fallback;
3505FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminud_u128, iemAImpl_vpminud_u128_fallback;
3506FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsb_u128, iemAImpl_vpminsb_u128_fallback;
3507FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsw_u128, iemAImpl_vpminsw_u128_fallback;
3508FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsd_u128, iemAImpl_vpminsd_u128_fallback;
3509FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxub_u128, iemAImpl_vpmaxub_u128_fallback;
3510FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxuw_u128, iemAImpl_vpmaxuw_u128_fallback;
3511FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxud_u128, iemAImpl_vpmaxud_u128_fallback;
3512FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsb_u128, iemAImpl_vpmaxsb_u128_fallback;
3513FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsw_u128, iemAImpl_vpmaxsw_u128_fallback;
3514FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsd_u128, iemAImpl_vpmaxsd_u128_fallback;
3515FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpacksswb_u128, iemAImpl_vpacksswb_u128_fallback;
3516FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackssdw_u128, iemAImpl_vpackssdw_u128_fallback;
3517FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackuswb_u128, iemAImpl_vpackuswb_u128_fallback;
3518FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackusdw_u128, iemAImpl_vpackusdw_u128_fallback;
3519FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmullw_u128, iemAImpl_vpmullw_u128_fallback;
3520FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulld_u128, iemAImpl_vpmulld_u128_fallback;
3521FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhw_u128, iemAImpl_vpmulhw_u128_fallback;
3522FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhuw_u128, iemAImpl_vpmulhuw_u128_fallback;
3523FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgb_u128, iemAImpl_vpavgb_u128_fallback;
3524FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgw_u128, iemAImpl_vpavgw_u128_fallback;
3525FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignb_u128, iemAImpl_vpsignb_u128_fallback;
3526FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignw_u128, iemAImpl_vpsignw_u128_fallback;
3527FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignd_u128, iemAImpl_vpsignd_u128_fallback;
3528FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddw_u128, iemAImpl_vphaddw_u128_fallback;
3529FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddd_u128, iemAImpl_vphaddd_u128_fallback;
3530FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubw_u128, iemAImpl_vphsubw_u128_fallback;
3531FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubd_u128, iemAImpl_vphsubd_u128_fallback;
3532FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddsw_u128, iemAImpl_vphaddsw_u128_fallback;
3533FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubsw_u128, iemAImpl_vphsubsw_u128_fallback;
3534FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddubsw_u128, iemAImpl_vpmaddubsw_u128_fallback;
3535FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhrsw_u128, iemAImpl_vpmulhrsw_u128_fallback;
3536FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsadbw_u128, iemAImpl_vpsadbw_u128_fallback;
3537FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuldq_u128, iemAImpl_vpmuldq_u128_fallback;
3538FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuludq_u128, iemAImpl_vpmuludq_u128_fallback;
3539FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsb_u128, iemAImpl_vpsubsb_u128_fallback;
3540FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsw_u128, iemAImpl_vpsubsw_u128_fallback;
3541FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusb_u128, iemAImpl_vpsubusb_u128_fallback;
3542FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusw_u128, iemAImpl_vpsubusw_u128_fallback;
3543FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusb_u128, iemAImpl_vpaddusb_u128_fallback;
3544FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusw_u128, iemAImpl_vpaddusw_u128_fallback;
3545FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsb_u128, iemAImpl_vpaddsb_u128_fallback;
3546FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsw_u128, iemAImpl_vpaddsw_u128_fallback;
3547FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllw_u128, iemAImpl_vpsllw_u128_fallback;
3548FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpslld_u128, iemAImpl_vpslld_u128_fallback;
3549FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllq_u128, iemAImpl_vpsllq_u128_fallback;
3550FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsraw_u128, iemAImpl_vpsraw_u128_fallback;
3551FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrad_u128, iemAImpl_vpsrad_u128_fallback;
3552FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlw_u128, iemAImpl_vpsrlw_u128_fallback;
3553FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrld_u128, iemAImpl_vpsrld_u128_fallback;
3554FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlq_u128, iemAImpl_vpsrlq_u128_fallback;
3555FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddwd_u128, iemAImpl_vpmaddwd_u128_fallback;
3556
3557FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsb_u128, iemAImpl_vpabsb_u128_fallback;
3558FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsw_u128, iemAImpl_vpabsd_u128_fallback;
3559FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsd_u128, iemAImpl_vpabsw_u128_fallback;
3560FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vphminposuw_u128, iemAImpl_vphminposuw_u128_fallback;
3561
3562FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpshufb_u256, iemAImpl_vpshufb_u256_fallback;
3563FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpand_u256, iemAImpl_vpand_u256_fallback;
3564FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpandn_u256, iemAImpl_vpandn_u256_fallback;
3565FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpor_u256, iemAImpl_vpor_u256_fallback;
3566FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpxor_u256, iemAImpl_vpxor_u256_fallback;
3567FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqb_u256, iemAImpl_vpcmpeqb_u256_fallback;
3568FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqw_u256, iemAImpl_vpcmpeqw_u256_fallback;
3569FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqd_u256, iemAImpl_vpcmpeqd_u256_fallback;
3570FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqq_u256, iemAImpl_vpcmpeqq_u256_fallback;
3571FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtb_u256, iemAImpl_vpcmpgtb_u256_fallback;
3572FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtw_u256, iemAImpl_vpcmpgtw_u256_fallback;
3573FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtd_u256, iemAImpl_vpcmpgtd_u256_fallback;
3574FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtq_u256, iemAImpl_vpcmpgtq_u256_fallback;
3575FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddb_u256, iemAImpl_vpaddb_u256_fallback;
3576FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddw_u256, iemAImpl_vpaddw_u256_fallback;
3577FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddd_u256, iemAImpl_vpaddd_u256_fallback;
3578FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddq_u256, iemAImpl_vpaddq_u256_fallback;
3579FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubb_u256, iemAImpl_vpsubb_u256_fallback;
3580FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubw_u256, iemAImpl_vpsubw_u256_fallback;
3581FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubd_u256, iemAImpl_vpsubd_u256_fallback;
3582FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubq_u256, iemAImpl_vpsubq_u256_fallback;
3583FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminub_u256, iemAImpl_vpminub_u256_fallback;
3584FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminuw_u256, iemAImpl_vpminuw_u256_fallback;
3585FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminud_u256, iemAImpl_vpminud_u256_fallback;
3586FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsb_u256, iemAImpl_vpminsb_u256_fallback;
3587FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsw_u256, iemAImpl_vpminsw_u256_fallback;
3588FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsd_u256, iemAImpl_vpminsd_u256_fallback;
3589FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxub_u256, iemAImpl_vpmaxub_u256_fallback;
3590FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxuw_u256, iemAImpl_vpmaxuw_u256_fallback;
3591FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxud_u256, iemAImpl_vpmaxud_u256_fallback;
3592FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsb_u256, iemAImpl_vpmaxsb_u256_fallback;
3593FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsw_u256, iemAImpl_vpmaxsw_u256_fallback;
3594FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsd_u256, iemAImpl_vpmaxsd_u256_fallback;
3595FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpacksswb_u256, iemAImpl_vpacksswb_u256_fallback;
3596FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackssdw_u256, iemAImpl_vpackssdw_u256_fallback;
3597FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackuswb_u256, iemAImpl_vpackuswb_u256_fallback;
3598FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackusdw_u256, iemAImpl_vpackusdw_u256_fallback;
3599FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmullw_u256, iemAImpl_vpmullw_u256_fallback;
3600FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulld_u256, iemAImpl_vpmulld_u256_fallback;
3601FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhw_u256, iemAImpl_vpmulhw_u256_fallback;
3602FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhuw_u256, iemAImpl_vpmulhuw_u256_fallback;
3603FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgb_u256, iemAImpl_vpavgb_u256_fallback;
3604FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgw_u256, iemAImpl_vpavgw_u256_fallback;
3605FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignb_u256, iemAImpl_vpsignb_u256_fallback;
3606FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignw_u256, iemAImpl_vpsignw_u256_fallback;
3607FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignd_u256, iemAImpl_vpsignd_u256_fallback;
3608FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddw_u256, iemAImpl_vphaddw_u256_fallback;
3609FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddd_u256, iemAImpl_vphaddd_u256_fallback;
3610FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubw_u256, iemAImpl_vphsubw_u256_fallback;
3611FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubd_u256, iemAImpl_vphsubd_u256_fallback;
3612FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddsw_u256, iemAImpl_vphaddsw_u256_fallback;
3613FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubsw_u256, iemAImpl_vphsubsw_u256_fallback;
3614FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddubsw_u256, iemAImpl_vpmaddubsw_u256_fallback;
3615FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhrsw_u256, iemAImpl_vpmulhrsw_u256_fallback;
3616FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsadbw_u256, iemAImpl_vpsadbw_u256_fallback;
3617FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuldq_u256, iemAImpl_vpmuldq_u256_fallback;
3618FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuludq_u256, iemAImpl_vpmuludq_u256_fallback;
3619FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsb_u256, iemAImpl_vpsubsb_u256_fallback;
3620FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsw_u256, iemAImpl_vpsubsw_u256_fallback;
3621FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusb_u256, iemAImpl_vpsubusb_u256_fallback;
3622FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusw_u256, iemAImpl_vpsubusw_u256_fallback;
3623FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusb_u256, iemAImpl_vpaddusb_u256_fallback;
3624FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusw_u256, iemAImpl_vpaddusw_u256_fallback;
3625FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsb_u256, iemAImpl_vpaddsb_u256_fallback;
3626FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsw_u256, iemAImpl_vpaddsw_u256_fallback;
3627FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllw_u256, iemAImpl_vpsllw_u256_fallback;
3628FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpslld_u256, iemAImpl_vpslld_u256_fallback;
3629FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllq_u256, iemAImpl_vpsllq_u256_fallback;
3630FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsraw_u256, iemAImpl_vpsraw_u256_fallback;
3631FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrad_u256, iemAImpl_vpsrad_u256_fallback;
3632FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlw_u256, iemAImpl_vpsrlw_u256_fallback;
3633FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrld_u256, iemAImpl_vpsrld_u256_fallback;
3634FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlq_u256, iemAImpl_vpsrlq_u256_fallback;
3635FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddwd_u256, iemAImpl_vpmaddwd_u256_fallback;
3636
3637FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsb_u256, iemAImpl_vpabsb_u256_fallback;
3638FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsw_u256, iemAImpl_vpabsw_u256_fallback;
3639FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsd_u256, iemAImpl_vpabsd_u256_fallback;
3640/** @} */
3641
3642/** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
3643 * @{ */
3644FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
3645FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
3646FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpcklbw_u128, iemAImpl_vpunpcklbw_u128_fallback,
3647 iemAImpl_vpunpcklwd_u128, iemAImpl_vpunpcklwd_u128_fallback,
3648 iemAImpl_vpunpckldq_u128, iemAImpl_vpunpckldq_u128_fallback,
3649 iemAImpl_vpunpcklqdq_u128, iemAImpl_vpunpcklqdq_u128_fallback,
3650 iemAImpl_vunpcklps_u128, iemAImpl_vunpcklps_u128_fallback,
3651 iemAImpl_vunpcklpd_u128, iemAImpl_vunpcklpd_u128_fallback,
3652 iemAImpl_vunpckhps_u128, iemAImpl_vunpckhps_u128_fallback,
3653 iemAImpl_vunpckhpd_u128, iemAImpl_vunpckhpd_u128_fallback;
3654
3655FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpcklbw_u256, iemAImpl_vpunpcklbw_u256_fallback,
3656 iemAImpl_vpunpcklwd_u256, iemAImpl_vpunpcklwd_u256_fallback,
3657 iemAImpl_vpunpckldq_u256, iemAImpl_vpunpckldq_u256_fallback,
3658 iemAImpl_vpunpcklqdq_u256, iemAImpl_vpunpcklqdq_u256_fallback,
3659 iemAImpl_vunpcklps_u256, iemAImpl_vunpcklps_u256_fallback,
3660 iemAImpl_vunpcklpd_u256, iemAImpl_vunpcklpd_u256_fallback,
3661 iemAImpl_vunpckhps_u256, iemAImpl_vunpckhps_u256_fallback,
3662 iemAImpl_vunpckhpd_u256, iemAImpl_vunpckhpd_u256_fallback;
3663/** @} */
3664
3665/** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
3666 * @{ */
3667FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
3668FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
3669FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpckhbw_u128, iemAImpl_vpunpckhbw_u128_fallback,
3670 iemAImpl_vpunpckhwd_u128, iemAImpl_vpunpckhwd_u128_fallback,
3671 iemAImpl_vpunpckhdq_u128, iemAImpl_vpunpckhdq_u128_fallback,
3672 iemAImpl_vpunpckhqdq_u128, iemAImpl_vpunpckhqdq_u128_fallback;
3673FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpckhbw_u256, iemAImpl_vpunpckhbw_u256_fallback,
3674 iemAImpl_vpunpckhwd_u256, iemAImpl_vpunpckhwd_u256_fallback,
3675 iemAImpl_vpunpckhdq_u256, iemAImpl_vpunpckhdq_u256_fallback,
3676 iemAImpl_vpunpckhqdq_u256, iemAImpl_vpunpckhqdq_u256_fallback;
3677/** @} */
3678
3679/** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
3680 * @{ */
3681typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3682typedef FNIEMAIMPLMEDIAPSHUFU128 *PFNIEMAIMPLMEDIAPSHUFU128;
3683typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3684typedef FNIEMAIMPLMEDIAPSHUFU256 *PFNIEMAIMPLMEDIAPSHUFU256;
3685IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil));
3686FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_pshufhw_u128, iemAImpl_pshuflw_u128, iemAImpl_pshufd_u128;
3687#ifndef IEM_WITHOUT_ASSEMBLY
3688FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256, iemAImpl_vpshuflw_u256, iemAImpl_vpshufd_u256;
3689#endif
3690FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256_fallback, iemAImpl_vpshuflw_u256_fallback, iemAImpl_vpshufd_u256_fallback;
3691/** @} */
3692
3693/** @name Media (SSE/MMX/AVX) operation: Shift Immediate Stuff (evil)
3694 * @{ */
3695typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU64,(uint64_t *puDst, uint8_t bShift));
3696typedef FNIEMAIMPLMEDIAPSHIFTU64 *PFNIEMAIMPLMEDIAPSHIFTU64;
3697typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU128,(PRTUINT128U puDst, uint8_t bShift));
3698typedef FNIEMAIMPLMEDIAPSHIFTU128 *PFNIEMAIMPLMEDIAPSHIFTU128;
3699typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU256,(PRTUINT256U puDst, uint8_t bShift));
3700typedef FNIEMAIMPLMEDIAPSHIFTU256 *PFNIEMAIMPLMEDIAPSHIFTU256;
3701FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psllw_imm_u64, iemAImpl_pslld_imm_u64, iemAImpl_psllq_imm_u64;
3702FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psrlw_imm_u64, iemAImpl_psrld_imm_u64, iemAImpl_psrlq_imm_u64;
3703FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psraw_imm_u64, iemAImpl_psrad_imm_u64;
3704FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psllw_imm_u128, iemAImpl_pslld_imm_u128, iemAImpl_psllq_imm_u128;
3705FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psrlw_imm_u128, iemAImpl_psrld_imm_u128, iemAImpl_psrlq_imm_u128;
3706FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psraw_imm_u128, iemAImpl_psrad_imm_u128;
3707FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_pslldq_imm_u128, iemAImpl_psrldq_imm_u128;
3708/** @} */
3709
3710/** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
3711 * @{ */
3712IEM_DECL_IMPL_DEF(void, iemAImpl_maskmovq_u64,(uint64_t *puMem, uint64_t const *puSrc, uint64_t const *puMsk));
3713IEM_DECL_IMPL_DEF(void, iemAImpl_maskmovdqu_u128,(PRTUINT128U puMem, PCRTUINT128U puSrc, PCRTUINT128U puMsk));
3714IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *puSrc));
3715IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U puSrc));
3716#ifndef IEM_WITHOUT_ASSEMBLY
3717IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3718#endif
3719IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3720/** @} */
3721
3722/** @name Media (SSE/MMX/AVX) operations: Variable Blend Packed Bytes/R32/R64.
3723 * @{ */
3724typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask));
3725typedef FNIEMAIMPLBLENDU128 *PFNIEMAIMPLBLENDU128;
3726typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask));
3727typedef FNIEMAIMPLAVXBLENDU128 *PFNIEMAIMPLAVXBLENDU128;
3728typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask));
3729typedef FNIEMAIMPLAVXBLENDU256 *PFNIEMAIMPLAVXBLENDU256;
3730
3731FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128;
3732FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128_fallback;
3733FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128;
3734FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128_fallback;
3735FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256;
3736FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256_fallback;
3737
3738FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128;
3739FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128_fallback;
3740FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128;
3741FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128_fallback;
3742FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256;
3743FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256_fallback;
3744
3745FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128;
3746FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128_fallback;
3747FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128;
3748FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128_fallback;
3749FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256;
3750FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256_fallback;
3751/** @} */
3752
3753
3754/** @name Media (SSE/MMX/AVX) operation: Sort this later
3755 * @{ */
3756IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3757IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3758IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3759IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3760IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3761
3762IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3763IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3764IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3765IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3766IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3767
3768IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3769IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3770IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3771IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3772IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3773
3774IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3775IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3776IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3777IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3778IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3779
3780IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3781IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3782IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3783IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3784IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3785
3786IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3787IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3788IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3789IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3790IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3791
3792IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3793IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3794IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3795IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3796IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3797
3798IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3799IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3800IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3801IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3802IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3803
3804IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3805IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3806IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3807IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3808IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3809
3810IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3811IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3812IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3813IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3814IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3815
3816IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3817IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3818IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3819IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3820IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3821
3822IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3823IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3824IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3825IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3826IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3827
3828IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3829IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3830IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3831IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3832IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3833
3834IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3835IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3836IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3837IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3838IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3839
3840IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3841IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3842
3843IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3844IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3845IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3846IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3847IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3848
3849IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3850IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3851IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3852IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3853IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3854
3855
3856typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3857typedef FNIEMAIMPLMEDIAOPTF2U128IMM8 *PFNIEMAIMPLMEDIAOPTF2U128IMM8;
3858typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3859typedef FNIEMAIMPLMEDIAOPTF2U256IMM8 *PFNIEMAIMPLMEDIAOPTF2U256IMM8;
3860typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3861typedef FNIEMAIMPLMEDIAOPTF3U128IMM8 *PFNIEMAIMPLMEDIAOPTF3U128IMM8;
3862typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3863typedef FNIEMAIMPLMEDIAOPTF3U256IMM8 *PFNIEMAIMPLMEDIAOPTF3U256IMM8;
3864
3865FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_palignr_u128, iemAImpl_palignr_u128_fallback;
3866FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pblendw_u128, iemAImpl_pblendw_u128_fallback;
3867FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendps_u128, iemAImpl_blendps_u128_fallback;
3868FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendpd_u128, iemAImpl_blendpd_u128_fallback;
3869
3870FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpalignr_u128, iemAImpl_vpalignr_u128_fallback;
3871FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendw_u128, iemAImpl_vpblendw_u128_fallback;
3872FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendd_u128, iemAImpl_vpblendd_u128_fallback;
3873FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendps_u128, iemAImpl_vblendps_u128_fallback;
3874FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendpd_u128, iemAImpl_vblendpd_u128_fallback;
3875
3876FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpalignr_u256, iemAImpl_vpalignr_u256_fallback;
3877FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendw_u256, iemAImpl_vpblendw_u256_fallback;
3878FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendd_u256, iemAImpl_vpblendd_u256_fallback;
3879FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendps_u256, iemAImpl_vblendps_u256_fallback;
3880FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendpd_u256, iemAImpl_vblendpd_u256_fallback;
3881FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2i128_u256, iemAImpl_vperm2i128_u256_fallback;
3882FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2f128_u256, iemAImpl_vperm2f128_u256_fallback;
3883
3884FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesimc_u128, iemAImpl_aesimc_u128_fallback;
3885FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenc_u128, iemAImpl_aesenc_u128_fallback;
3886FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenclast_u128, iemAImpl_aesenclast_u128_fallback;
3887FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdec_u128, iemAImpl_aesdec_u128_fallback;
3888FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdeclast_u128, iemAImpl_aesdeclast_u128_fallback;
3889
3890FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesimc_u128, iemAImpl_vaesimc_u128_fallback;
3891FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenc_u128, iemAImpl_vaesenc_u128_fallback;
3892FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenclast_u128, iemAImpl_vaesenclast_u128_fallback;
3893FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdec_u128, iemAImpl_vaesdec_u128_fallback;
3894FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdeclast_u128, iemAImpl_vaesdeclast_u128_fallback;
3895
3896FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_aeskeygenassist_u128, iemAImpl_aeskeygenassist_u128_fallback;
3897
3898FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vaeskeygenassist_u128, iemAImpl_vaeskeygenassist_u128_fallback;
3899
3900FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1nexte_u128, iemAImpl_sha1nexte_u128_fallback;
3901FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg1_u128, iemAImpl_sha1msg1_u128_fallback;
3902FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg2_u128, iemAImpl_sha1msg2_u128_fallback;
3903FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg1_u128, iemAImpl_sha256msg1_u128_fallback;
3904FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg2_u128, iemAImpl_sha256msg2_u128_fallback;
3905FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_sha1rnds4_u128, iemAImpl_sha1rnds4_u128_fallback;
3906IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3907IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3908
3909typedef struct IEMPCMPISTRXSRC
3910{
3911 RTUINT128U uSrc1;
3912 RTUINT128U uSrc2;
3913} IEMPCMPISTRXSRC;
3914typedef IEMPCMPISTRXSRC *PIEMPCMPISTRXSRC;
3915typedef const IEMPCMPISTRXSRC *PCIEMPCMPISTRXSRC;
3916
3917typedef struct IEMPCMPESTRXSRC
3918{
3919 RTUINT128U uSrc1;
3920 RTUINT128U uSrc2;
3921 uint64_t u64Rax;
3922 uint64_t u64Rdx;
3923} IEMPCMPESTRXSRC;
3924typedef IEMPCMPESTRXSRC *PIEMPCMPESTRXSRC;
3925typedef const IEMPCMPESTRXSRC *PCIEMPCMPESTRXSRC;
3926
3927typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLPCMPISTRIU128IMM8,(uint32_t *pEFlags, PCRTUINT128U pSrc1, PCRTUINT128U pSrc2, uint8_t bEvil));
3928typedef FNIEMAIMPLPCMPISTRIU128IMM8 *PFNIEMAIMPLPCMPISTRIU128IMM8;
3929typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3930typedef FNIEMAIMPLPCMPESTRIU128IMM8 *PFNIEMAIMPLPCMPESTRIU128IMM8;
3931
3932typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
3933typedef FNIEMAIMPLPCMPISTRMU128IMM8 *PFNIEMAIMPLPCMPISTRMU128IMM8;
3934typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3935typedef FNIEMAIMPLPCMPESTRMU128IMM8 *PFNIEMAIMPLPCMPESTRMU128IMM8;
3936
3937FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_pcmpistri_u128, iemAImpl_pcmpistri_u128_fallback;
3938FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_pcmpestri_u128, iemAImpl_pcmpestri_u128_fallback;
3939FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_pcmpistrm_u128, iemAImpl_pcmpistrm_u128_fallback;
3940FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_pcmpestrm_u128, iemAImpl_pcmpestrm_u128_fallback;
3941
3942FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pclmulqdq_u128, iemAImpl_pclmulqdq_u128_fallback;
3943FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpclmulqdq_u128, iemAImpl_vpclmulqdq_u128_fallback;
3944
3945FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_mpsadbw_u128, iemAImpl_mpsadbw_u128_fallback;
3946FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vmpsadbw_u128, iemAImpl_vmpsadbw_u128_fallback;
3947FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vmpsadbw_u256, iemAImpl_vmpsadbw_u256_fallback;
3948
3949FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllw_imm_u128, iemAImpl_vpsllw_imm_u128_fallback;
3950FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllw_imm_u256, iemAImpl_vpsllw_imm_u256_fallback;
3951FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpslld_imm_u128, iemAImpl_vpslld_imm_u128_fallback;
3952FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpslld_imm_u256, iemAImpl_vpslld_imm_u256_fallback;
3953FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllq_imm_u128, iemAImpl_vpsllq_imm_u128_fallback;
3954FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllq_imm_u256, iemAImpl_vpsllq_imm_u256_fallback;
3955IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
3956IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
3957IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
3958IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
3959
3960FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsraw_imm_u128, iemAImpl_vpsraw_imm_u128_fallback;
3961FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsraw_imm_u256, iemAImpl_vpsraw_imm_u256_fallback;
3962FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrad_imm_u128, iemAImpl_vpsrad_imm_u128_fallback;
3963FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrad_imm_u256, iemAImpl_vpsrad_imm_u256_fallback;
3964
3965FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlw_imm_u128, iemAImpl_vpsrlw_imm_u128_fallback;
3966FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlw_imm_u256, iemAImpl_vpsrlw_imm_u256_fallback;
3967FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrld_imm_u128, iemAImpl_vpsrld_imm_u128_fallback;
3968FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrld_imm_u256, iemAImpl_vpsrld_imm_u256_fallback;
3969FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlq_imm_u128, iemAImpl_vpsrlq_imm_u128_fallback;
3970FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlq_imm_u256, iemAImpl_vpsrlq_imm_u256_fallback;
3971IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
3972IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
3973IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
3974IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
3975
3976FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilps_u128, iemAImpl_vpermilps_u128_fallback;
3977FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilps_imm_u128, iemAImpl_vpermilps_imm_u128_fallback;
3978FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilps_u256, iemAImpl_vpermilps_u256_fallback;
3979FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilps_imm_u256, iemAImpl_vpermilps_imm_u256_fallback;
3980
3981FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilpd_u128, iemAImpl_vpermilpd_u128_fallback;
3982FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilpd_imm_u128, iemAImpl_vpermilpd_imm_u128_fallback;
3983FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilpd_u256, iemAImpl_vpermilpd_u256_fallback;
3984FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilpd_imm_u256, iemAImpl_vpermilpd_imm_u256_fallback;
3985
3986FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvd_u128, iemAImpl_vpsllvd_u128_fallback;
3987FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvd_u256, iemAImpl_vpsllvd_u256_fallback;
3988FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvq_u128, iemAImpl_vpsllvq_u128_fallback;
3989FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvq_u256, iemAImpl_vpsllvq_u256_fallback;
3990FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsravd_u128, iemAImpl_vpsravd_u128_fallback;
3991FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsravd_u256, iemAImpl_vpsravd_u256_fallback;
3992FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvd_u128, iemAImpl_vpsrlvd_u128_fallback;
3993FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvd_u256, iemAImpl_vpsrlvd_u256_fallback;
3994FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvq_u128, iemAImpl_vpsrlvq_u128_fallback;
3995FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvq_u256, iemAImpl_vpsrlvq_u256_fallback;
3996/** @} */
3997
3998/** @name Media Odds and Ends
3999 * @{ */
4000typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U8,(uint32_t *puDst, uint8_t uSrc));
4001typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U16,(uint32_t *puDst, uint16_t uSrc));
4002typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U32,(uint32_t *puDst, uint32_t uSrc));
4003typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U64,(uint32_t *puDst, uint64_t uSrc));
4004FNIEMAIMPLCR32U8 iemAImpl_crc32_u8, iemAImpl_crc32_u8_fallback;
4005FNIEMAIMPLCR32U16 iemAImpl_crc32_u16, iemAImpl_crc32_u16_fallback;
4006FNIEMAIMPLCR32U32 iemAImpl_crc32_u32, iemAImpl_crc32_u32_fallback;
4007FNIEMAIMPLCR32U64 iemAImpl_crc32_u64, iemAImpl_crc32_u64_fallback;
4008
4009typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pEFlags));
4010typedef FNIEMAIMPLF2EFL128 *PFNIEMAIMPLF2EFL128;
4011typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL256,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pEFlags));
4012typedef FNIEMAIMPLF2EFL256 *PFNIEMAIMPLF2EFL256;
4013FNIEMAIMPLF2EFL128 iemAImpl_ptest_u128;
4014FNIEMAIMPLF2EFL256 iemAImpl_vptest_u256, iemAImpl_vptest_u256_fallback;
4015FNIEMAIMPLF2EFL128 iemAImpl_vtestps_u128, iemAImpl_vtestps_u128_fallback;
4016FNIEMAIMPLF2EFL256 iemAImpl_vtestps_u256, iemAImpl_vtestps_u256_fallback;
4017FNIEMAIMPLF2EFL128 iemAImpl_vtestpd_u128, iemAImpl_vtestpd_u128_fallback;
4018FNIEMAIMPLF2EFL256 iemAImpl_vtestpd_u256, iemAImpl_vtestpd_u256_fallback;
4019
4020typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U64,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
4021typedef FNIEMAIMPLSSEF2I32U64 *PFNIEMAIMPLSSEF2I32U64;
4022typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U64,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
4023typedef FNIEMAIMPLSSEF2I64U64 *PFNIEMAIMPLSSEF2I64U64;
4024typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U32,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
4025typedef FNIEMAIMPLSSEF2I32U32 *PFNIEMAIMPLSSEF2I32U32;
4026typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U32,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
4027typedef FNIEMAIMPLSSEF2I64U32 *PFNIEMAIMPLSSEF2I64U32;
4028
4029FNIEMAIMPLSSEF2I32U64 iemAImpl_cvttsd2si_i32_r64;
4030FNIEMAIMPLSSEF2I32U64 iemAImpl_cvtsd2si_i32_r64;
4031
4032FNIEMAIMPLSSEF2I64U64 iemAImpl_cvttsd2si_i64_r64;
4033FNIEMAIMPLSSEF2I64U64 iemAImpl_cvtsd2si_i64_r64;
4034
4035FNIEMAIMPLSSEF2I32U32 iemAImpl_cvttss2si_i32_r32;
4036FNIEMAIMPLSSEF2I32U32 iemAImpl_cvtss2si_i32_r32;
4037
4038FNIEMAIMPLSSEF2I64U32 iemAImpl_cvttss2si_i64_r32;
4039FNIEMAIMPLSSEF2I64U32 iemAImpl_cvtss2si_i64_r32;
4040
4041typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I32,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int32_t *pi32Src));
4042typedef FNIEMAIMPLSSEF2R32I32 *PFNIEMAIMPLSSEF2R32I32;
4043typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I64,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int64_t *pi64Src));
4044typedef FNIEMAIMPLSSEF2R32I64 *PFNIEMAIMPLSSEF2R32I64;
4045
4046FNIEMAIMPLSSEF2R32I32 iemAImpl_cvtsi2ss_r32_i32;
4047FNIEMAIMPLSSEF2R32I64 iemAImpl_cvtsi2ss_r32_i64;
4048
4049typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I32,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int32_t *pi32Src));
4050typedef FNIEMAIMPLSSEF2R64I32 *PFNIEMAIMPLSSEF2R64I32;
4051typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I64,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int64_t *pi64Src));
4052typedef FNIEMAIMPLSSEF2R64I64 *PFNIEMAIMPLSSEF2R64I64;
4053
4054FNIEMAIMPLSSEF2R64I32 iemAImpl_cvtsi2sd_r64_i32;
4055FNIEMAIMPLSSEF2R64I64 iemAImpl_cvtsi2sd_r64_i64;
4056
4057
4058typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR32R32,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT32U uSrc1, RTFLOAT32U uSrc2));
4059typedef FNIEMAIMPLF2EFLMXCSRR32R32 *PFNIEMAIMPLF2EFLMXCSRR32R32;
4060
4061typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR64R64,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT64U uSrc1, RTFLOAT64U uSrc2));
4062typedef FNIEMAIMPLF2EFLMXCSRR64R64 *PFNIEMAIMPLF2EFLMXCSRR64R64;
4063
4064FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_ucomiss_u128;
4065FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vucomiss_u128, iemAImpl_vucomiss_u128_fallback;
4066
4067FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_ucomisd_u128;
4068FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vucomisd_u128, iemAImpl_vucomisd_u128_fallback;
4069
4070FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_comiss_u128;
4071FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vcomiss_u128, iemAImpl_vcomiss_u128_fallback;
4072
4073FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_comisd_u128;
4074FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vcomisd_u128, iemAImpl_vcomisd_u128_fallback;
4075
4076
4077typedef struct IEMMEDIAF2XMMSRC
4078{
4079 X86XMMREG uSrc1;
4080 X86XMMREG uSrc2;
4081} IEMMEDIAF2XMMSRC;
4082typedef IEMMEDIAF2XMMSRC *PIEMMEDIAF2XMMSRC;
4083typedef const IEMMEDIAF2XMMSRC *PCIEMMEDIAF2XMMSRC;
4084
4085typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRF2XMMIMM8,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC puSrc, uint8_t bEvil));
4086typedef FNIEMAIMPLMXCSRF2XMMIMM8 *PFNIEMAIMPLMXCSRF2XMMIMM8;
4087
4088FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpps_u128;
4089FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmppd_u128;
4090FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpss_u128;
4091FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpsd_u128;
4092FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundss_u128;
4093FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundsd_u128;
4094
4095FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundps_u128, iemAImpl_roundps_u128_fallback;
4096FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundpd_u128, iemAImpl_roundpd_u128_fallback;
4097
4098FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dpps_u128, iemAImpl_dpps_u128_fallback;
4099FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dppd_u128, iemAImpl_dppd_u128_fallback;
4100
4101typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U128,(uint32_t fMxCsrIn, uint64_t *pu64Dst, PCX86XMMREG pSrc));
4102typedef FNIEMAIMPLMXCSRU64U128 *PFNIEMAIMPLMXCSRU64U128;
4103
4104FNIEMAIMPLMXCSRU64U128 iemAImpl_cvtpd2pi_u128;
4105FNIEMAIMPLMXCSRU64U128 iemAImpl_cvttpd2pi_u128;
4106
4107typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU128U64,(uint32_t fMxCsrIn, PX86XMMREG pDst, uint64_t u64Src));
4108typedef FNIEMAIMPLMXCSRU128U64 *PFNIEMAIMPLMXCSRU128U64;
4109
4110FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2ps_u128;
4111FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2pd_u128;
4112
4113typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U64,(uint32_t fMxCsrIn, uint64_t *pu64Dst, uint64_t u64Src));
4114typedef FNIEMAIMPLMXCSRU64U64 *PFNIEMAIMPLMXCSRU64U64;
4115
4116FNIEMAIMPLMXCSRU64U64 iemAImpl_cvtps2pi_u128;
4117FNIEMAIMPLMXCSRU64U64 iemAImpl_cvttps2pi_u128;
4118
4119/** @} */
4120
4121
4122/** @name Function tables.
4123 * @{
4124 */
4125
4126/**
4127 * Function table for a binary operator providing implementation based on
4128 * operand size.
4129 */
4130typedef struct IEMOPBINSIZES
4131{
4132 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
4133 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
4134 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
4135 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
4136} IEMOPBINSIZES;
4137/** Pointer to a binary operator function table. */
4138typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
4139
4140
4141/**
4142 * Function table for a unary operator providing implementation based on
4143 * operand size.
4144 */
4145typedef struct IEMOPUNARYSIZES
4146{
4147 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
4148 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
4149 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
4150 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
4151} IEMOPUNARYSIZES;
4152/** Pointer to a unary operator function table. */
4153typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
4154
4155
4156/**
4157 * Function table for a shift operator providing implementation based on
4158 * operand size.
4159 */
4160typedef struct IEMOPSHIFTSIZES
4161{
4162 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
4163 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
4164 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
4165 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
4166} IEMOPSHIFTSIZES;
4167/** Pointer to a shift operator function table. */
4168typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
4169
4170
4171/**
4172 * Function table for a multiplication or division operation.
4173 */
4174typedef struct IEMOPMULDIVSIZES
4175{
4176 PFNIEMAIMPLMULDIVU8 pfnU8;
4177 PFNIEMAIMPLMULDIVU16 pfnU16;
4178 PFNIEMAIMPLMULDIVU32 pfnU32;
4179 PFNIEMAIMPLMULDIVU64 pfnU64;
4180} IEMOPMULDIVSIZES;
4181/** Pointer to a multiplication or division operation function table. */
4182typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
4183
4184
4185/**
4186 * Function table for a double precision shift operator providing implementation
4187 * based on operand size.
4188 */
4189typedef struct IEMOPSHIFTDBLSIZES
4190{
4191 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
4192 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
4193 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
4194} IEMOPSHIFTDBLSIZES;
4195/** Pointer to a double precision shift function table. */
4196typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
4197
4198
4199/**
4200 * Function table for media instruction taking two full sized media source
4201 * registers and one full sized destination register (AVX).
4202 */
4203typedef struct IEMOPMEDIAF3
4204{
4205 PFNIEMAIMPLMEDIAF3U128 pfnU128;
4206 PFNIEMAIMPLMEDIAF3U256 pfnU256;
4207} IEMOPMEDIAF3;
4208/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4209typedef IEMOPMEDIAF3 const *PCIEMOPMEDIAF3;
4210
4211/** @def IEMOPMEDIAF3_INIT_VARS_EX
4212 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4213 * given functions as initializers. For use in AVX functions where a pair of
4214 * functions are only used once and the function table need not be public. */
4215#ifndef TST_IEM_CHECK_MC
4216# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4217# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4218 static IEMOPMEDIAF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4219 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4220# else
4221# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4222 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4223# endif
4224#else
4225# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4226#endif
4227/** @def IEMOPMEDIAF3_INIT_VARS
4228 * Generate AVX function tables for the @a a_InstrNm instruction.
4229 * @sa IEMOPMEDIAF3_INIT_VARS_EX */
4230#define IEMOPMEDIAF3_INIT_VARS(a_InstrNm) \
4231 IEMOPMEDIAF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4232 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4233
4234/**
4235 * Function table for media instruction taking two full sized media source
4236 * registers and one full sized destination register, but no additional state
4237 * (AVX).
4238 */
4239typedef struct IEMOPMEDIAOPTF3
4240{
4241 PFNIEMAIMPLMEDIAOPTF3U128 pfnU128;
4242 PFNIEMAIMPLMEDIAOPTF3U256 pfnU256;
4243} IEMOPMEDIAOPTF3;
4244/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4245typedef IEMOPMEDIAOPTF3 const *PCIEMOPMEDIAOPTF3;
4246
4247/** @def IEMOPMEDIAOPTF3_INIT_VARS_EX
4248 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4249 * given functions as initializers. For use in AVX functions where a pair of
4250 * functions are only used once and the function table need not be public. */
4251#ifndef TST_IEM_CHECK_MC
4252# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4253# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4254 static IEMOPMEDIAOPTF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4255 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4256# else
4257# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4258 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4259# endif
4260#else
4261# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4262#endif
4263/** @def IEMOPMEDIAOPTF3_INIT_VARS
4264 * Generate AVX function tables for the @a a_InstrNm instruction.
4265 * @sa IEMOPMEDIAOPTF3_INIT_VARS_EX */
4266#define IEMOPMEDIAOPTF3_INIT_VARS(a_InstrNm) \
4267 IEMOPMEDIAOPTF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4268 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4269
4270/**
4271 * Function table for media instruction taking one full sized media source
4272 * registers and one full sized destination register, but no additional state
4273 * (AVX).
4274 */
4275typedef struct IEMOPMEDIAOPTF2
4276{
4277 PFNIEMAIMPLMEDIAOPTF2U128 pfnU128;
4278 PFNIEMAIMPLMEDIAOPTF2U256 pfnU256;
4279} IEMOPMEDIAOPTF2;
4280/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4281typedef IEMOPMEDIAOPTF2 const *PCIEMOPMEDIAOPTF2;
4282
4283/** @def IEMOPMEDIAOPTF2_INIT_VARS_EX
4284 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4285 * given functions as initializers. For use in AVX functions where a pair of
4286 * functions are only used once and the function table need not be public. */
4287#ifndef TST_IEM_CHECK_MC
4288# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4289# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4290 static IEMOPMEDIAOPTF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4291 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4292# else
4293# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4294 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4295# endif
4296#else
4297# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4298#endif
4299/** @def IEMOPMEDIAOPTF2_INIT_VARS
4300 * Generate AVX function tables for the @a a_InstrNm instruction.
4301 * @sa IEMOPMEDIAOPTF2_INIT_VARS_EX */
4302#define IEMOPMEDIAOPTF2_INIT_VARS(a_InstrNm) \
4303 IEMOPMEDIAOPTF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4304 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4305
4306/**
4307 * Function table for media instruction taking one full sized media source
4308 * register and one full sized destination register and an 8-bit immediate, but no additional state
4309 * (AVX).
4310 */
4311typedef struct IEMOPMEDIAOPTF2IMM8
4312{
4313 PFNIEMAIMPLMEDIAOPTF2U128IMM8 pfnU128;
4314 PFNIEMAIMPLMEDIAOPTF2U256IMM8 pfnU256;
4315} IEMOPMEDIAOPTF2IMM8;
4316/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4317typedef IEMOPMEDIAOPTF2IMM8 const *PCIEMOPMEDIAOPTF2IMM8;
4318
4319/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX
4320 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4321 * given functions as initializers. For use in AVX functions where a pair of
4322 * functions are only used once and the function table need not be public. */
4323#ifndef TST_IEM_CHECK_MC
4324# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4325# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4326 static IEMOPMEDIAOPTF2IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4327 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4328# else
4329# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4330 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4331# endif
4332#else
4333# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4334#endif
4335/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS
4336 * Generate AVX function tables for the @a a_InstrNm instruction.
4337 * @sa IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX */
4338#define IEMOPMEDIAOPTF2IMM8_INIT_VARS(a_InstrNm) \
4339 IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256),\
4340 RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256_fallback))
4341
4342/**
4343 * Function table for media instruction taking two full sized media source
4344 * registers and one full sized destination register and an 8-bit immediate, but no additional state
4345 * (AVX).
4346 */
4347typedef struct IEMOPMEDIAOPTF3IMM8
4348{
4349 PFNIEMAIMPLMEDIAOPTF3U128IMM8 pfnU128;
4350 PFNIEMAIMPLMEDIAOPTF3U256IMM8 pfnU256;
4351} IEMOPMEDIAOPTF3IMM8;
4352/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4353typedef IEMOPMEDIAOPTF3IMM8 const *PCIEMOPMEDIAOPTF3IMM8;
4354
4355/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX
4356 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4357 * given functions as initializers. For use in AVX functions where a pair of
4358 * functions are only used once and the function table need not be public. */
4359#ifndef TST_IEM_CHECK_MC
4360# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4361# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4362 static IEMOPMEDIAOPTF3IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4363 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4364# else
4365# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4366 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4367# endif
4368#else
4369# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4370#endif
4371/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS
4372 * Generate AVX function tables for the @a a_InstrNm instruction.
4373 * @sa IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX */
4374#define IEMOPMEDIAOPTF3IMM8_INIT_VARS(a_InstrNm) \
4375 IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4376 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4377/** @} */
4378
4379
4380/**
4381 * Function table for blend type instruction taking three full sized media source
4382 * registers and one full sized destination register, but no additional state
4383 * (AVX).
4384 */
4385typedef struct IEMOPBLENDOP
4386{
4387 PFNIEMAIMPLAVXBLENDU128 pfnU128;
4388 PFNIEMAIMPLAVXBLENDU256 pfnU256;
4389} IEMOPBLENDOP;
4390/** Pointer to a media operation function table for 4 full sized ops (AVX). */
4391typedef IEMOPBLENDOP const *PCIEMOPBLENDOP;
4392
4393/** @def IEMOPBLENDOP_INIT_VARS_EX
4394 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4395 * given functions as initializers. For use in AVX functions where a pair of
4396 * functions are only used once and the function table need not be public. */
4397#ifndef TST_IEM_CHECK_MC
4398# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4399# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4400 static IEMOPBLENDOP const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4401 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4402# else
4403# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4404 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4405# endif
4406#else
4407# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4408#endif
4409/** @def IEMOPBLENDOP_INIT_VARS
4410 * Generate AVX function tables for the @a a_InstrNm instruction.
4411 * @sa IEMOPBLENDOP_INIT_VARS_EX */
4412#define IEMOPBLENDOP_INIT_VARS(a_InstrNm) \
4413 IEMOPBLENDOP_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4414 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4415
4416
4417/** @name SSE/AVX single/double precision floating point operations.
4418 * @{ */
4419typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4420typedef FNIEMAIMPLFPSSEF2U128 *PFNIEMAIMPLFPSSEF2U128;
4421typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R32,(uint32_t uMxCsrIn, PX86XMMREG Result, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4422typedef FNIEMAIMPLFPSSEF2U128R32 *PFNIEMAIMPLFPSSEF2U128R32;
4423typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4424typedef FNIEMAIMPLFPSSEF2U128R64 *PFNIEMAIMPLFPSSEF2U128R64;
4425
4426typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4427typedef FNIEMAIMPLFPAVXF3U128 *PFNIEMAIMPLFPAVXF3U128;
4428typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R32,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4429typedef FNIEMAIMPLFPAVXF3U128R32 *PFNIEMAIMPLFPAVXF3U128R32;
4430typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4431typedef FNIEMAIMPLFPAVXF3U128R64 *PFNIEMAIMPLFPAVXF3U128R64;
4432
4433typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U256,(uint32_t uMxCsrIn, PX86YMMREG pResult, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
4434typedef FNIEMAIMPLFPAVXF3U256 *PFNIEMAIMPLFPAVXF3U256;
4435
4436FNIEMAIMPLFPSSEF2U128 iemAImpl_addps_u128;
4437FNIEMAIMPLFPSSEF2U128 iemAImpl_addpd_u128;
4438FNIEMAIMPLFPSSEF2U128 iemAImpl_mulps_u128;
4439FNIEMAIMPLFPSSEF2U128 iemAImpl_mulpd_u128;
4440FNIEMAIMPLFPSSEF2U128 iemAImpl_subps_u128;
4441FNIEMAIMPLFPSSEF2U128 iemAImpl_subpd_u128;
4442FNIEMAIMPLFPSSEF2U128 iemAImpl_minps_u128;
4443FNIEMAIMPLFPSSEF2U128 iemAImpl_minpd_u128;
4444FNIEMAIMPLFPSSEF2U128 iemAImpl_divps_u128;
4445FNIEMAIMPLFPSSEF2U128 iemAImpl_divpd_u128;
4446FNIEMAIMPLFPSSEF2U128 iemAImpl_maxps_u128;
4447FNIEMAIMPLFPSSEF2U128 iemAImpl_maxpd_u128;
4448FNIEMAIMPLFPSSEF2U128 iemAImpl_haddps_u128;
4449FNIEMAIMPLFPSSEF2U128 iemAImpl_haddpd_u128;
4450FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubps_u128;
4451FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubpd_u128;
4452FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtps_u128;
4453FNIEMAIMPLFPSSEF2U128 iemAImpl_rsqrtps_u128;
4454FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtpd_u128;
4455FNIEMAIMPLFPSSEF2U128 iemAImpl_rcpps_u128;
4456FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubps_u128;
4457FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubpd_u128;
4458
4459FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2ps_u128;
4460IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_cvtps2pd_u128,(uint32_t uMxCsrIn, PX86XMMREG pResult, uint64_t const *pu64Src));
4461
4462FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2ps_u128;
4463FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2dq_u128;
4464FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttps2dq_u128;
4465FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttpd2dq_u128;
4466FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2pd_u128;
4467FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2dq_u128;
4468
4469FNIEMAIMPLFPSSEF2U128R32 iemAImpl_addss_u128_r32;
4470FNIEMAIMPLFPSSEF2U128R64 iemAImpl_addsd_u128_r64;
4471FNIEMAIMPLFPSSEF2U128R32 iemAImpl_mulss_u128_r32;
4472FNIEMAIMPLFPSSEF2U128R64 iemAImpl_mulsd_u128_r64;
4473FNIEMAIMPLFPSSEF2U128R32 iemAImpl_subss_u128_r32;
4474FNIEMAIMPLFPSSEF2U128R64 iemAImpl_subsd_u128_r64;
4475FNIEMAIMPLFPSSEF2U128R32 iemAImpl_minss_u128_r32;
4476FNIEMAIMPLFPSSEF2U128R64 iemAImpl_minsd_u128_r64;
4477FNIEMAIMPLFPSSEF2U128R32 iemAImpl_divss_u128_r32;
4478FNIEMAIMPLFPSSEF2U128R64 iemAImpl_divsd_u128_r64;
4479FNIEMAIMPLFPSSEF2U128R32 iemAImpl_maxss_u128_r32;
4480FNIEMAIMPLFPSSEF2U128R64 iemAImpl_maxsd_u128_r64;
4481FNIEMAIMPLFPSSEF2U128R32 iemAImpl_cvtss2sd_u128_r32;
4482FNIEMAIMPLFPSSEF2U128R64 iemAImpl_cvtsd2ss_u128_r64;
4483FNIEMAIMPLFPSSEF2U128R32 iemAImpl_sqrtss_u128_r32;
4484FNIEMAIMPLFPSSEF2U128R64 iemAImpl_sqrtsd_u128_r64;
4485FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rsqrtss_u128_r32;
4486FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rcpss_u128_r32;
4487
4488FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddps_u128, iemAImpl_vaddps_u128_fallback;
4489FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddpd_u128, iemAImpl_vaddpd_u128_fallback;
4490FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulps_u128, iemAImpl_vmulps_u128_fallback;
4491FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulpd_u128, iemAImpl_vmulpd_u128_fallback;
4492FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubps_u128, iemAImpl_vsubps_u128_fallback;
4493FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubpd_u128, iemAImpl_vsubpd_u128_fallback;
4494FNIEMAIMPLFPAVXF3U128 iemAImpl_vminps_u128, iemAImpl_vminps_u128_fallback;
4495FNIEMAIMPLFPAVXF3U128 iemAImpl_vminpd_u128, iemAImpl_vminpd_u128_fallback;
4496FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivps_u128, iemAImpl_vdivps_u128_fallback;
4497FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivpd_u128, iemAImpl_vdivpd_u128_fallback;
4498FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxps_u128, iemAImpl_vmaxps_u128_fallback;
4499FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxpd_u128, iemAImpl_vmaxpd_u128_fallback;
4500FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddps_u128, iemAImpl_vhaddps_u128_fallback;
4501FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddpd_u128, iemAImpl_vhaddpd_u128_fallback;
4502FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubps_u128, iemAImpl_vhsubps_u128_fallback;
4503FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubpd_u128, iemAImpl_vhsubpd_u128_fallback;
4504FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtps_u128, iemAImpl_vsqrtps_u128_fallback;
4505FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtpd_u128, iemAImpl_vsqrtpd_u128_fallback;
4506FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubps_u128, iemAImpl_vaddsubps_u128_fallback;
4507FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubpd_u128, iemAImpl_vaddsubpd_u128_fallback;
4508FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtpd2ps_u128, iemAImpl_vcvtpd2ps_u128_fallback;
4509FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtps2pd_u128, iemAImpl_vcvtps2pd_u128_fallback;
4510
4511FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vaddss_u128_r32, iemAImpl_vaddss_u128_r32_fallback;
4512FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vaddsd_u128_r64, iemAImpl_vaddsd_u128_r64_fallback;
4513FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmulss_u128_r32, iemAImpl_vmulss_u128_r32_fallback;
4514FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmulsd_u128_r64, iemAImpl_vmulsd_u128_r64_fallback;
4515FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsubss_u128_r32, iemAImpl_vsubss_u128_r32_fallback;
4516FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsubsd_u128_r64, iemAImpl_vsubsd_u128_r64_fallback;
4517FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vminss_u128_r32, iemAImpl_vminss_u128_r32_fallback;
4518FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vminsd_u128_r64, iemAImpl_vminsd_u128_r64_fallback;
4519FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vdivss_u128_r32, iemAImpl_vdivss_u128_r32_fallback;
4520FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vdivsd_u128_r64, iemAImpl_vdivsd_u128_r64_fallback;
4521FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmaxss_u128_r32, iemAImpl_vmaxss_u128_r32_fallback;
4522FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmaxsd_u128_r64, iemAImpl_vmaxsd_u128_r64_fallback;
4523FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsqrtss_u128_r32, iemAImpl_vsqrtss_u128_r32_fallback;
4524FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsqrtsd_u128_r64, iemAImpl_vsqrtsd_u128_r64_fallback;
4525
4526FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddps_u256, iemAImpl_vaddps_u256_fallback;
4527FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddpd_u256, iemAImpl_vaddpd_u256_fallback;
4528FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulps_u256, iemAImpl_vmulps_u256_fallback;
4529FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulpd_u256, iemAImpl_vmulpd_u256_fallback;
4530FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubps_u256, iemAImpl_vsubps_u256_fallback;
4531FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubpd_u256, iemAImpl_vsubpd_u256_fallback;
4532FNIEMAIMPLFPAVXF3U256 iemAImpl_vminps_u256, iemAImpl_vminps_u256_fallback;
4533FNIEMAIMPLFPAVXF3U256 iemAImpl_vminpd_u256, iemAImpl_vminpd_u256_fallback;
4534FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivps_u256, iemAImpl_vdivps_u256_fallback;
4535FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivpd_u256, iemAImpl_vdivpd_u256_fallback;
4536FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxps_u256, iemAImpl_vmaxps_u256_fallback;
4537FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxpd_u256, iemAImpl_vmaxpd_u256_fallback;
4538FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddps_u256, iemAImpl_vhaddps_u256_fallback;
4539FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddpd_u256, iemAImpl_vhaddpd_u256_fallback;
4540FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubps_u256, iemAImpl_vhsubps_u256_fallback;
4541FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubpd_u256, iemAImpl_vhsubpd_u256_fallback;
4542FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubps_u256, iemAImpl_vhaddsubps_u256_fallback;
4543FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubpd_u256, iemAImpl_vhaddsubpd_u256_fallback;
4544FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtpd2ps_u256, iemAImpl_vcvtpd2ps_u256_fallback;
4545FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtps2pd_u256, iemAImpl_vcvtps2pd_u256_fallback;
4546/** @} */
4547
4548/** @name C instruction implementations for anything slightly complicated.
4549 * @{ */
4550
4551/**
4552 * For typedef'ing or declaring a C instruction implementation function taking
4553 * no extra arguments.
4554 *
4555 * @param a_Name The name of the type.
4556 */
4557# define IEM_CIMPL_DECL_TYPE_0(a_Name) \
4558 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4559/**
4560 * For defining a C instruction implementation function taking no extra
4561 * arguments.
4562 *
4563 * @param a_Name The name of the function
4564 */
4565# define IEM_CIMPL_DEF_0(a_Name) \
4566 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4567/**
4568 * Prototype version of IEM_CIMPL_DEF_0.
4569 */
4570# define IEM_CIMPL_PROTO_0(a_Name) \
4571 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4572/**
4573 * For calling a C instruction implementation function taking no extra
4574 * arguments.
4575 *
4576 * This special call macro adds default arguments to the call and allow us to
4577 * change these later.
4578 *
4579 * @param a_fn The name of the function.
4580 */
4581# define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
4582
4583/** Type for a C instruction implementation function taking no extra
4584 * arguments. */
4585typedef IEM_CIMPL_DECL_TYPE_0(FNIEMCIMPL0);
4586/** Function pointer type for a C instruction implementation function taking
4587 * no extra arguments. */
4588typedef FNIEMCIMPL0 *PFNIEMCIMPL0;
4589
4590/**
4591 * For typedef'ing or declaring a C instruction implementation function taking
4592 * one extra argument.
4593 *
4594 * @param a_Name The name of the type.
4595 * @param a_Type0 The argument type.
4596 * @param a_Arg0 The argument name.
4597 */
4598# define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
4599 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4600/**
4601 * For defining a C instruction implementation function taking one extra
4602 * argument.
4603 *
4604 * @param a_Name The name of the function
4605 * @param a_Type0 The argument type.
4606 * @param a_Arg0 The argument name.
4607 */
4608# define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
4609 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4610/**
4611 * Prototype version of IEM_CIMPL_DEF_1.
4612 */
4613# define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
4614 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4615/**
4616 * For calling a C instruction implementation function taking one extra
4617 * argument.
4618 *
4619 * This special call macro adds default arguments to the call and allow us to
4620 * change these later.
4621 *
4622 * @param a_fn The name of the function.
4623 * @param a0 The name of the 1st argument.
4624 */
4625# define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
4626
4627/**
4628 * For typedef'ing or declaring a C instruction implementation function taking
4629 * two extra arguments.
4630 *
4631 * @param a_Name The name of the type.
4632 * @param a_Type0 The type of the 1st argument
4633 * @param a_Arg0 The name of the 1st argument.
4634 * @param a_Type1 The type of the 2nd argument.
4635 * @param a_Arg1 The name of the 2nd argument.
4636 */
4637# define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4638 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4639/**
4640 * For defining a C instruction implementation function taking two extra
4641 * arguments.
4642 *
4643 * @param a_Name The name of the function.
4644 * @param a_Type0 The type of the 1st argument
4645 * @param a_Arg0 The name of the 1st argument.
4646 * @param a_Type1 The type of the 2nd argument.
4647 * @param a_Arg1 The name of the 2nd argument.
4648 */
4649# define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4650 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4651/**
4652 * Prototype version of IEM_CIMPL_DEF_2.
4653 */
4654# define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4655 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4656/**
4657 * For calling a C instruction implementation function taking two extra
4658 * arguments.
4659 *
4660 * This special call macro adds default arguments to the call and allow us to
4661 * change these later.
4662 *
4663 * @param a_fn The name of the function.
4664 * @param a0 The name of the 1st argument.
4665 * @param a1 The name of the 2nd argument.
4666 */
4667# define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
4668
4669/**
4670 * For typedef'ing or declaring a C instruction implementation function taking
4671 * three extra arguments.
4672 *
4673 * @param a_Name The name of the type.
4674 * @param a_Type0 The type of the 1st argument
4675 * @param a_Arg0 The name of the 1st argument.
4676 * @param a_Type1 The type of the 2nd argument.
4677 * @param a_Arg1 The name of the 2nd argument.
4678 * @param a_Type2 The type of the 3rd argument.
4679 * @param a_Arg2 The name of the 3rd argument.
4680 */
4681# define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4682 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4683/**
4684 * For defining a C instruction implementation function taking three extra
4685 * arguments.
4686 *
4687 * @param a_Name The name of the function.
4688 * @param a_Type0 The type of the 1st argument
4689 * @param a_Arg0 The name of the 1st argument.
4690 * @param a_Type1 The type of the 2nd argument.
4691 * @param a_Arg1 The name of the 2nd argument.
4692 * @param a_Type2 The type of the 3rd argument.
4693 * @param a_Arg2 The name of the 3rd argument.
4694 */
4695# define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4696 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4697/**
4698 * Prototype version of IEM_CIMPL_DEF_3.
4699 */
4700# define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4701 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4702/**
4703 * For calling a C instruction implementation function taking three extra
4704 * arguments.
4705 *
4706 * This special call macro adds default arguments to the call and allow us to
4707 * change these later.
4708 *
4709 * @param a_fn The name of the function.
4710 * @param a0 The name of the 1st argument.
4711 * @param a1 The name of the 2nd argument.
4712 * @param a2 The name of the 3rd argument.
4713 */
4714# define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
4715
4716
4717/**
4718 * For typedef'ing or declaring a C instruction implementation function taking
4719 * four extra arguments.
4720 *
4721 * @param a_Name The name of the type.
4722 * @param a_Type0 The type of the 1st argument
4723 * @param a_Arg0 The name of the 1st argument.
4724 * @param a_Type1 The type of the 2nd argument.
4725 * @param a_Arg1 The name of the 2nd argument.
4726 * @param a_Type2 The type of the 3rd argument.
4727 * @param a_Arg2 The name of the 3rd argument.
4728 * @param a_Type3 The type of the 4th argument.
4729 * @param a_Arg3 The name of the 4th argument.
4730 */
4731# define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4732 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
4733/**
4734 * For defining a C instruction implementation function taking four extra
4735 * arguments.
4736 *
4737 * @param a_Name The name of the function.
4738 * @param a_Type0 The type of the 1st argument
4739 * @param a_Arg0 The name of the 1st argument.
4740 * @param a_Type1 The type of the 2nd argument.
4741 * @param a_Arg1 The name of the 2nd argument.
4742 * @param a_Type2 The type of the 3rd argument.
4743 * @param a_Arg2 The name of the 3rd argument.
4744 * @param a_Type3 The type of the 4th argument.
4745 * @param a_Arg3 The name of the 4th argument.
4746 */
4747# define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4748 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4749 a_Type2 a_Arg2, a_Type3 a_Arg3))
4750/**
4751 * Prototype version of IEM_CIMPL_DEF_4.
4752 */
4753# define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4754 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4755 a_Type2 a_Arg2, a_Type3 a_Arg3))
4756/**
4757 * For calling a C instruction implementation function taking four extra
4758 * arguments.
4759 *
4760 * This special call macro adds default arguments to the call and allow us to
4761 * change these later.
4762 *
4763 * @param a_fn The name of the function.
4764 * @param a0 The name of the 1st argument.
4765 * @param a1 The name of the 2nd argument.
4766 * @param a2 The name of the 3rd argument.
4767 * @param a3 The name of the 4th argument.
4768 */
4769# define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
4770
4771
4772/**
4773 * For typedef'ing or declaring a C instruction implementation function taking
4774 * five extra arguments.
4775 *
4776 * @param a_Name The name of the type.
4777 * @param a_Type0 The type of the 1st argument
4778 * @param a_Arg0 The name of the 1st argument.
4779 * @param a_Type1 The type of the 2nd argument.
4780 * @param a_Arg1 The name of the 2nd argument.
4781 * @param a_Type2 The type of the 3rd argument.
4782 * @param a_Arg2 The name of the 3rd argument.
4783 * @param a_Type3 The type of the 4th argument.
4784 * @param a_Arg3 The name of the 4th argument.
4785 * @param a_Type4 The type of the 5th argument.
4786 * @param a_Arg4 The name of the 5th argument.
4787 */
4788# define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4789 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
4790 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
4791 a_Type3 a_Arg3, a_Type4 a_Arg4))
4792/**
4793 * For defining a C instruction implementation function taking five extra
4794 * arguments.
4795 *
4796 * @param a_Name The name of the function.
4797 * @param a_Type0 The type of the 1st argument
4798 * @param a_Arg0 The name of the 1st argument.
4799 * @param a_Type1 The type of the 2nd argument.
4800 * @param a_Arg1 The name of the 2nd argument.
4801 * @param a_Type2 The type of the 3rd argument.
4802 * @param a_Arg2 The name of the 3rd argument.
4803 * @param a_Type3 The type of the 4th argument.
4804 * @param a_Arg3 The name of the 4th argument.
4805 * @param a_Type4 The type of the 5th argument.
4806 * @param a_Arg4 The name of the 5th argument.
4807 */
4808# define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4809 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4810 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4811/**
4812 * Prototype version of IEM_CIMPL_DEF_5.
4813 */
4814# define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4815 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4816 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4817/**
4818 * For calling a C instruction implementation function taking five extra
4819 * arguments.
4820 *
4821 * This special call macro adds default arguments to the call and allow us to
4822 * change these later.
4823 *
4824 * @param a_fn The name of the function.
4825 * @param a0 The name of the 1st argument.
4826 * @param a1 The name of the 2nd argument.
4827 * @param a2 The name of the 3rd argument.
4828 * @param a3 The name of the 4th argument.
4829 * @param a4 The name of the 5th argument.
4830 */
4831# define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
4832
4833/** @} */
4834
4835
4836/** @name Opcode Decoder Function Types.
4837 * @{ */
4838
4839/** @typedef PFNIEMOP
4840 * Pointer to an opcode decoder function.
4841 */
4842
4843/** @def FNIEMOP_DEF
4844 * Define an opcode decoder function.
4845 *
4846 * We're using macors for this so that adding and removing parameters as well as
4847 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
4848 *
4849 * @param a_Name The function name.
4850 */
4851
4852/** @typedef PFNIEMOPRM
4853 * Pointer to an opcode decoder function with RM byte.
4854 */
4855
4856/** @def FNIEMOPRM_DEF
4857 * Define an opcode decoder function with RM byte.
4858 *
4859 * We're using macors for this so that adding and removing parameters as well as
4860 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
4861 *
4862 * @param a_Name The function name.
4863 */
4864
4865#if defined(__GNUC__) && defined(RT_ARCH_X86)
4866typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
4867typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4868# define FNIEMOP_DEF(a_Name) \
4869 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
4870# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4871 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4872# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4873 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4874
4875#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
4876typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
4877typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4878# define FNIEMOP_DEF(a_Name) \
4879 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4880# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4881 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4882# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4883 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4884
4885#elif defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
4886typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4887typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4888# define FNIEMOP_DEF(a_Name) \
4889 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
4890# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4891 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4892# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4893 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4894
4895#else
4896typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4897typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4898# define FNIEMOP_DEF(a_Name) \
4899 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4900# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4901 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4902# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4903 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4904
4905#endif
4906#define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
4907
4908/**
4909 * Call an opcode decoder function.
4910 *
4911 * We're using macors for this so that adding and removing parameters can be
4912 * done as we please. See FNIEMOP_DEF.
4913 */
4914#define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
4915
4916/**
4917 * Call a common opcode decoder function taking one extra argument.
4918 *
4919 * We're using macors for this so that adding and removing parameters can be
4920 * done as we please. See FNIEMOP_DEF_1.
4921 */
4922#define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
4923
4924/**
4925 * Call a common opcode decoder function taking one extra argument.
4926 *
4927 * We're using macors for this so that adding and removing parameters can be
4928 * done as we please. See FNIEMOP_DEF_1.
4929 */
4930#define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
4931/** @} */
4932
4933
4934/** @name Misc Helpers
4935 * @{ */
4936
4937/** Used to shut up GCC warnings about variables that 'may be used uninitialized'
4938 * due to GCC lacking knowledge about the value range of a switch. */
4939#if RT_CPLUSPLUS_PREREQ(202000)
4940# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: [[unlikely]] AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4941#else
4942# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4943#endif
4944
4945/** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
4946#if RT_CPLUSPLUS_PREREQ(202000)
4947# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: [[unlikely]] AssertFailedReturn(a_RetValue)
4948#else
4949# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
4950#endif
4951
4952/**
4953 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4954 * occation.
4955 */
4956#ifdef LOG_ENABLED
4957# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4958 do { \
4959 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
4960 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4961 } while (0)
4962#else
4963# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4964 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4965#endif
4966
4967/**
4968 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4969 * occation using the supplied logger statement.
4970 *
4971 * @param a_LoggerArgs What to log on failure.
4972 */
4973#ifdef LOG_ENABLED
4974# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4975 do { \
4976 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
4977 /*LogFunc(a_LoggerArgs);*/ \
4978 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4979 } while (0)
4980#else
4981# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4982 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4983#endif
4984
4985/**
4986 * Gets the CPU mode (from fExec) as a IEMMODE value.
4987 *
4988 * @returns IEMMODE
4989 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4990 */
4991#define IEM_GET_CPU_MODE(a_pVCpu) ((a_pVCpu)->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK)
4992
4993/**
4994 * Check if we're currently executing in real or virtual 8086 mode.
4995 *
4996 * @returns @c true if it is, @c false if not.
4997 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4998 */
4999#define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (( ((a_pVCpu)->iem.s.fExec ^ IEM_F_MODE_X86_PROT_MASK) \
5000 & (IEM_F_MODE_X86_V86_MASK | IEM_F_MODE_X86_PROT_MASK)) != 0)
5001
5002/**
5003 * Check if we're currently executing in virtual 8086 mode.
5004 *
5005 * @returns @c true if it is, @c false if not.
5006 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5007 */
5008#define IEM_IS_V86_MODE(a_pVCpu) (((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_V86_MASK) != 0)
5009
5010/**
5011 * Check if we're currently executing in long mode.
5012 *
5013 * @returns @c true if it is, @c false if not.
5014 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5015 */
5016#define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
5017
5018/**
5019 * Check if we're currently executing in a 16-bit code segment.
5020 *
5021 * @returns @c true if it is, @c false if not.
5022 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5023 */
5024#define IEM_IS_16BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_16BIT)
5025
5026/**
5027 * Check if we're currently executing in a 32-bit code segment.
5028 *
5029 * @returns @c true if it is, @c false if not.
5030 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5031 */
5032#define IEM_IS_32BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_32BIT)
5033
5034/**
5035 * Check if we're currently executing in a 64-bit code segment.
5036 *
5037 * @returns @c true if it is, @c false if not.
5038 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5039 */
5040#define IEM_IS_64BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_64BIT)
5041
5042/**
5043 * Check if we're currently executing in real mode.
5044 *
5045 * @returns @c true if it is, @c false if not.
5046 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5047 */
5048#define IEM_IS_REAL_MODE(a_pVCpu) (!((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_PROT_MASK))
5049
5050/**
5051 * Gets the current protection level (CPL).
5052 *
5053 * @returns 0..3
5054 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5055 */
5056#define IEM_GET_CPL(a_pVCpu) (((a_pVCpu)->iem.s.fExec >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK)
5057
5058/**
5059 * Sets the current protection level (CPL).
5060 *
5061 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5062 */
5063#define IEM_SET_CPL(a_pVCpu, a_uCpl) \
5064 do { (a_pVCpu)->iem.s.fExec = ((a_pVCpu)->iem.s.fExec & ~IEM_F_X86_CPL_MASK) | ((a_uCpl) << IEM_F_X86_CPL_SHIFT); } while (0)
5065
5066/**
5067 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
5068 * @returns PCCPUMFEATURES
5069 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5070 */
5071#define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
5072
5073/**
5074 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
5075 * @returns PCCPUMFEATURES
5076 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5077 */
5078#define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
5079
5080/**
5081 * Evaluates to true if we're presenting an Intel CPU to the guest.
5082 */
5083#define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
5084
5085/**
5086 * Evaluates to true if we're presenting an AMD CPU to the guest.
5087 */
5088#define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
5089
5090/**
5091 * Check if the address is canonical.
5092 */
5093#define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
5094
5095/** Checks if the ModR/M byte is in register mode or not. */
5096#define IEM_IS_MODRM_REG_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) )
5097/** Checks if the ModR/M byte is in memory mode or not. */
5098#define IEM_IS_MODRM_MEM_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT) )
5099
5100/**
5101 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
5102 *
5103 * For use during decoding.
5104 */
5105#define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
5106/**
5107 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
5108 *
5109 * For use during decoding.
5110 */
5111#define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
5112
5113/**
5114 * Gets the register (reg) part of a ModR/M encoding, without REX.R.
5115 *
5116 * For use during decoding.
5117 */
5118#define IEM_GET_MODRM_REG_8(a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) )
5119/**
5120 * Gets the r/m part of a ModR/M encoding as a register index, without REX.B.
5121 *
5122 * For use during decoding.
5123 */
5124#define IEM_GET_MODRM_RM_8(a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) )
5125
5126/**
5127 * Gets the register (reg) part of a ModR/M encoding as an extended 8-bit
5128 * register index, with REX.R added in.
5129 *
5130 * For use during decoding.
5131 *
5132 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5133 */
5134#define IEM_GET_MODRM_REG_EX8(a_pVCpu, a_bRm) \
5135 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5136 || !((a_bRm) & (4 << X86_MODRM_REG_SHIFT)) /* IEM_GET_MODRM_REG(pVCpu, a_bRm) < 4 */ \
5137 ? IEM_GET_MODRM_REG(pVCpu, a_bRm) : (((a_bRm) >> X86_MODRM_REG_SHIFT) & 3) | 16)
5138/**
5139 * Gets the r/m part of a ModR/M encoding as an extended 8-bit register index,
5140 * with REX.B added in.
5141 *
5142 * For use during decoding.
5143 *
5144 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5145 */
5146#define IEM_GET_MODRM_RM_EX8(a_pVCpu, a_bRm) \
5147 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5148 || !((a_bRm) & 4) /* IEM_GET_MODRM_RM(pVCpu, a_bRm) < 4 */ \
5149 ? IEM_GET_MODRM_RM(pVCpu, a_bRm) : ((a_bRm) & 3) | 16)
5150
5151/**
5152 * Combines the prefix REX and ModR/M byte for passing to
5153 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5154 *
5155 * @returns The ModRM byte but with bit 3 set to REX.B and bit 4 to REX.X.
5156 * The two bits are part of the REG sub-field, which isn't needed in
5157 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5158 *
5159 * For use during decoding/recompiling.
5160 */
5161#define IEM_GET_MODRM_EX(a_pVCpu, a_bRm) \
5162 ( ((a_bRm) & ~X86_MODRM_REG_MASK) \
5163 | (uint8_t)( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X)) >> (25 - 3) ) )
5164AssertCompile(IEM_OP_PRF_REX_B == RT_BIT_32(25));
5165AssertCompile(IEM_OP_PRF_REX_X == RT_BIT_32(26));
5166
5167/**
5168 * Gets the effective VEX.VVVV value.
5169 *
5170 * The 4th bit is ignored if not 64-bit code.
5171 * @returns effective V-register value.
5172 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5173 */
5174#define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
5175 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
5176
5177
5178/**
5179 * Gets the register (reg) part of a the special 4th register byte used by
5180 * vblendvps and vblendvpd.
5181 *
5182 * For use during decoding.
5183 */
5184#define IEM_GET_IMM8_REG(a_pVCpu, a_bRegImm8) \
5185 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_bRegImm8) >> 4 : ((a_bRegImm8) >> 4) & 7)
5186
5187
5188/**
5189 * Checks if we're executing inside an AMD-V or VT-x guest.
5190 */
5191#if defined(VBOX_WITH_NESTED_HWVIRT_VMX) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
5192# define IEM_IS_IN_GUEST(a_pVCpu) RT_BOOL((a_pVCpu)->iem.s.fExec & IEM_F_X86_CTX_IN_GUEST)
5193#else
5194# define IEM_IS_IN_GUEST(a_pVCpu) false
5195#endif
5196
5197
5198#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5199
5200/**
5201 * Check if the guest has entered VMX root operation.
5202 */
5203# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
5204
5205/**
5206 * Check if the guest has entered VMX non-root operation.
5207 */
5208# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) ( ((a_pVCpu)->iem.s.fExec & (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST)) \
5209 == (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST) )
5210
5211/**
5212 * Check if the nested-guest has the given Pin-based VM-execution control set.
5213 */
5214# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
5215
5216/**
5217 * Check if the nested-guest has the given Processor-based VM-execution control set.
5218 */
5219# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
5220
5221/**
5222 * Check if the nested-guest has the given Secondary Processor-based VM-execution
5223 * control set.
5224 */
5225# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
5226
5227/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
5228# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
5229
5230/** Whether a shadow VMCS is present for the given VCPU. */
5231# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5232
5233/** Gets the VMXON region pointer. */
5234# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
5235
5236/** Gets the guest-physical address of the current VMCS for the given VCPU. */
5237# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
5238
5239/** Whether a current VMCS is present for the given VCPU. */
5240# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5241
5242/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
5243# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
5244 do \
5245 { \
5246 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
5247 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
5248 } while (0)
5249
5250/** Clears any current VMCS for the given VCPU. */
5251# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
5252 do \
5253 { \
5254 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
5255 } while (0)
5256
5257/**
5258 * Invokes the VMX VM-exit handler for an instruction intercept.
5259 */
5260# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
5261 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
5262
5263/**
5264 * Invokes the VMX VM-exit handler for an instruction intercept where the
5265 * instruction provides additional VM-exit information.
5266 */
5267# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
5268 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
5269
5270/**
5271 * Invokes the VMX VM-exit handler for a task switch.
5272 */
5273# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
5274 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
5275
5276/**
5277 * Invokes the VMX VM-exit handler for MWAIT.
5278 */
5279# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
5280 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
5281
5282/**
5283 * Invokes the VMX VM-exit handler for EPT faults.
5284 */
5285# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
5286 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
5287
5288/**
5289 * Invokes the VMX VM-exit handler.
5290 */
5291# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
5292 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
5293
5294#else
5295# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
5296# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
5297# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
5298# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
5299# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
5300# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5301# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5302# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5303# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5304# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5305# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
5306
5307#endif
5308
5309#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5310/**
5311 * Checks if we're executing a guest using AMD-V.
5312 */
5313# define IEM_SVM_IS_IN_GUEST(a_pVCpu) ( (a_pVCpu->iem.s.fExec & (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST)) \
5314 == (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST))
5315/**
5316 * Check if an SVM control/instruction intercept is set.
5317 */
5318# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
5319 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
5320
5321/**
5322 * Check if an SVM read CRx intercept is set.
5323 */
5324# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5325 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5326
5327/**
5328 * Check if an SVM write CRx intercept is set.
5329 */
5330# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5331 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5332
5333/**
5334 * Check if an SVM read DRx intercept is set.
5335 */
5336# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5337 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5338
5339/**
5340 * Check if an SVM write DRx intercept is set.
5341 */
5342# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5343 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5344
5345/**
5346 * Check if an SVM exception intercept is set.
5347 */
5348# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
5349 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
5350
5351/**
5352 * Invokes the SVM \#VMEXIT handler for the nested-guest.
5353 */
5354# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
5355 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
5356
5357/**
5358 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
5359 * corresponding decode assist information.
5360 */
5361# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
5362 do \
5363 { \
5364 uint64_t uExitInfo1; \
5365 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
5366 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
5367 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
5368 else \
5369 uExitInfo1 = 0; \
5370 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
5371 } while (0)
5372
5373/** Check and handles SVM nested-guest instruction intercept and updates
5374 * NRIP if needed.
5375 */
5376# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5377 do \
5378 { \
5379 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
5380 { \
5381 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5382 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
5383 } \
5384 } while (0)
5385
5386/** Checks and handles SVM nested-guest CR0 read intercept. */
5387# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5388 do \
5389 { \
5390 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
5391 { /* probably likely */ } \
5392 else \
5393 { \
5394 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5395 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
5396 } \
5397 } while (0)
5398
5399/**
5400 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
5401 */
5402# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) \
5403 do { \
5404 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
5405 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_cbInstr)); \
5406 } while (0)
5407
5408#else
5409# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
5410# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5411# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5412# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5413# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5414# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
5415# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
5416# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
5417# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, \
5418 a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5419# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5420# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) do { } while (0)
5421
5422#endif
5423
5424/** @} */
5425
5426uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu);
5427VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu);
5428
5429
5430/**
5431 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
5432 */
5433typedef union IEMSELDESC
5434{
5435 /** The legacy view. */
5436 X86DESC Legacy;
5437 /** The long mode view. */
5438 X86DESC64 Long;
5439} IEMSELDESC;
5440/** Pointer to a selector descriptor table entry. */
5441typedef IEMSELDESC *PIEMSELDESC;
5442
5443/** @name Raising Exceptions.
5444 * @{ */
5445VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
5446 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
5447
5448VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
5449 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5450#ifdef IEM_WITH_SETJMP
5451DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
5452 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP;
5453#endif
5454VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
5455#ifdef IEM_WITH_SETJMP
5456DECL_NO_RETURN(void) iemRaiseDivideErrorJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5457#endif
5458VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5459VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
5460VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
5461#ifdef IEM_WITH_SETJMP
5462DECL_NO_RETURN(void) iemRaiseUndefinedOpcodeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5463#endif
5464VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
5465#ifdef IEM_WITH_SETJMP
5466DECL_NO_RETURN(void) iemRaiseDeviceNotAvailableJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5467#endif
5468VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5469VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
5470VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5471VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5472/*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
5473VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5474VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5475VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5476VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5477VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5478VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5479#ifdef IEM_WITH_SETJMP
5480DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5481#endif
5482VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5483VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
5484VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5485#ifdef IEM_WITH_SETJMP
5486DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5487#endif
5488VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5489#ifdef IEM_WITH_SETJMP
5490DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP;
5491#endif
5492VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5493#ifdef IEM_WITH_SETJMP
5494DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5495#endif
5496VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT;
5497#ifdef IEM_WITH_SETJMP
5498DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP;
5499#endif
5500VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
5501#ifdef IEM_WITH_SETJMP
5502DECL_NO_RETURN(void) iemRaiseMathFaultJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5503#endif
5504VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5505#ifdef IEM_WITH_SETJMP
5506DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5507#endif
5508VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5509#ifdef IEM_WITH_SETJMP
5510DECL_NO_RETURN(void) iemRaiseSimdFpExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5511#endif
5512
5513void iemLogSyscallRealModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
5514void iemLogSyscallProtModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
5515
5516IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
5517IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
5518IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
5519
5520/**
5521 * Macro for calling iemCImplRaiseDivideError().
5522 *
5523 * This is for things that will _always_ decode to an \#DE, taking the
5524 * recompiler into consideration and everything.
5525 *
5526 * @return Strict VBox status code.
5527 */
5528#define IEMOP_RAISE_DIVIDE_ERROR_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseDivideError)
5529
5530/**
5531 * Macro for calling iemCImplRaiseInvalidLockPrefix().
5532 *
5533 * This is for things that will _always_ decode to an \#UD, taking the
5534 * recompiler into consideration and everything.
5535 *
5536 * @return Strict VBox status code.
5537 */
5538#define IEMOP_RAISE_INVALID_LOCK_PREFIX_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidLockPrefix)
5539
5540/**
5541 * Macro for calling iemCImplRaiseInvalidOpcode() for decode/static \#UDs.
5542 *
5543 * This is for things that will _always_ decode to an \#UD, taking the
5544 * recompiler into consideration and everything.
5545 *
5546 * @return Strict VBox status code.
5547 */
5548#define IEMOP_RAISE_INVALID_OPCODE_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
5549
5550/**
5551 * Macro for calling iemCImplRaiseInvalidOpcode() for runtime-style \#UDs.
5552 *
5553 * Using this macro means you've got _buggy_ _code_ and are doing things that
5554 * belongs exclusively in IEMAllCImpl.cpp during decoding.
5555 *
5556 * @return Strict VBox status code.
5557 * @see IEMOP_RAISE_INVALID_OPCODE_RET
5558 */
5559#define IEMOP_RAISE_INVALID_OPCODE_RUNTIME_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
5560
5561/** @} */
5562
5563/** @name Register Access.
5564 * @{ */
5565VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
5566 IEMMODE enmEffOpSize) RT_NOEXCEPT;
5567VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT;
5568VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
5569 IEMMODE enmEffOpSize) RT_NOEXCEPT;
5570/** @} */
5571
5572/** @name FPU access and helpers.
5573 * @{ */
5574void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
5575void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5576void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
5577void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5578void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5579void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
5580 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5581void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
5582 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5583void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5584void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5585void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5586void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5587void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5588void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5589void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5590void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5591void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5592void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5593void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5594void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5595void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5596void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5597void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5598/** @} */
5599
5600/** @name SSE+AVX SIMD access and helpers.
5601 * @{ */
5602void iemSseUpdateMxcsr(PVMCPUCC pVCpu, uint32_t fMxcsr) RT_NOEXCEPT;
5603/** @} */
5604
5605/** @name Memory access.
5606 * @{ */
5607
5608/** Report a \#GP instead of \#AC and do not restrict to ring-3 */
5609#define IEM_MEMMAP_F_ALIGN_GP RT_BIT_32(16)
5610/** SSE access that should report a \#GP instead of \#AC, unless MXCSR.MM=1
5611 * when it works like normal \#AC. Always used with IEM_MEMMAP_F_ALIGN_GP. */
5612#define IEM_MEMMAP_F_ALIGN_SSE RT_BIT_32(17)
5613/** If \#AC is applicable, raise it. Always used with IEM_MEMMAP_F_ALIGN_GP.
5614 * Users include FXSAVE & FXRSTOR. */
5615#define IEM_MEMMAP_F_ALIGN_GP_OR_AC RT_BIT_32(18)
5616
5617VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, uint8_t *pbUnmapInfo, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
5618 uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT;
5619VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5620#ifndef IN_RING3
5621VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5622#endif
5623void iemMemRollbackAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5624void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
5625VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
5626VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5627VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
5628
5629void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr);
5630void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr);
5631#ifdef IEM_WITH_CODE_TLB
5632void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP;
5633#else
5634VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
5635#endif
5636#ifdef IEM_WITH_SETJMP
5637uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5638uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5639uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5640uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5641#else
5642VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
5643VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5644VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5645VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5646VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5647VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5648VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5649VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5650VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5651VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5652VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5653#endif
5654
5655VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5656VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5657VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5658VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5659VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5660VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5661VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5662VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5663VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5664VBOXSTRICTRC iemMemFetchDataU128NoAc(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5665VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5666VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5667VBOXSTRICTRC iemMemFetchDataU256NoAc(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5668VBOXSTRICTRC iemMemFetchDataU256AlignedAvx(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5669VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
5670 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
5671#ifdef IEM_WITH_SETJMP
5672uint8_t iemMemFetchDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5673uint16_t iemMemFetchDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5674uint32_t iemMemFetchDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5675uint32_t iemMemFlatFetchDataU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5676uint64_t iemMemFetchDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5677uint64_t iemMemFetchDataU64AlignedU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5678void iemMemFetchDataR80SafeJmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5679void iemMemFetchDataD80SafeJmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5680void iemMemFetchDataU128SafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5681void iemMemFetchDataU128NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5682void iemMemFetchDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5683void iemMemFetchDataU256SafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5684void iemMemFetchDataU256NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5685void iemMemFetchDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5686# if 0 /* these are inlined now */
5687uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5688uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5689uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5690uint32_t iemMemFlatFetchDataU32Jmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5691uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5692uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5693void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5694void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5695void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5696void iemMemFetchDataU128NoAcJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5697void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5698void iemMemFetchDataU256NoAcJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5699void iemMemFetchDataU256AlignedAvxJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5700# endif
5701void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5702#endif
5703
5704VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5705VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5706VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5707VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5708VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
5709
5710VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
5711VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
5712VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
5713VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
5714VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5715VBOXSTRICTRC iemMemStoreDataU128NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5716VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5717VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5718VBOXSTRICTRC iemMemStoreDataU256NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5719VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5720VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5721#ifdef IEM_WITH_SETJMP
5722void iemMemStoreDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5723void iemMemStoreDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5724void iemMemStoreDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5725void iemMemStoreDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5726void iemMemStoreDataU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5727void iemMemStoreDataU128NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5728void iemMemStoreDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5729void iemMemStoreDataU256SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5730void iemMemStoreDataU256NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5731void iemMemStoreDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5732void iemMemStoreDataR80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTFLOAT80U pr80Value) IEM_NOEXCEPT_MAY_LONGJMP;
5733void iemMemStoreDataD80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTPBCD80U pd80Value) IEM_NOEXCEPT_MAY_LONGJMP;
5734#if 0
5735void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5736void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5737void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5738void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5739void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5740void iemMemStoreDataNoAcU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5741void iemMemStoreDataU256NoAcJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5742void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5743#endif
5744void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5745void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5746#endif
5747
5748#ifdef IEM_WITH_SETJMP
5749uint8_t *iemMemMapDataU8RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5750uint8_t *iemMemMapDataU8AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5751uint8_t *iemMemMapDataU8WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5752uint8_t const *iemMemMapDataU8RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5753uint16_t *iemMemMapDataU16RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5754uint16_t *iemMemMapDataU16AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5755uint16_t *iemMemMapDataU16WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5756uint16_t const *iemMemMapDataU16RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5757uint32_t *iemMemMapDataU32RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5758uint32_t *iemMemMapDataU32AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5759uint32_t *iemMemMapDataU32WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5760uint32_t const *iemMemMapDataU32RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5761uint64_t *iemMemMapDataU64RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5762uint64_t *iemMemMapDataU64AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5763uint64_t *iemMemMapDataU64WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5764uint64_t const *iemMemMapDataU64RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5765PRTFLOAT80U iemMemMapDataR80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5766PRTFLOAT80U iemMemMapDataR80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5767PCRTFLOAT80U iemMemMapDataR80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5768PRTPBCD80U iemMemMapDataD80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5769PRTPBCD80U iemMemMapDataD80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5770PCRTPBCD80U iemMemMapDataD80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5771PRTUINT128U iemMemMapDataU128RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5772PRTUINT128U iemMemMapDataU128AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5773PRTUINT128U iemMemMapDataU128WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5774PCRTUINT128U iemMemMapDataU128RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5775
5776void iemMemCommitAndUnmapJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5777void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5778void iemMemCommitAndUnmapAtSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5779void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5780void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5781void iemMemRollbackAndUnmapWoSafe(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5782#endif
5783
5784VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5785 void **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
5786VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo, uint64_t uNewRsp) RT_NOEXCEPT;
5787VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
5788VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5789VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
5790VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5791VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5792VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5793VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5794VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5795 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
5796VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
5797 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t uCurNewRsp) RT_NOEXCEPT;
5798VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5799VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
5800VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
5801VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
5802VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5803VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5804VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5805
5806#ifdef IEM_WITH_SETJMP
5807void iemMemStackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5808void iemMemStackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5809void iemMemStackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5810void iemMemStackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5811void iemMemStackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5812void iemMemStackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5813void iemMemStackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5814
5815void iemMemFlat32StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5816void iemMemFlat32StackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5817void iemMemFlat32StackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5818void iemMemFlat32StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5819void iemMemFlat32StackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5820
5821void iemMemFlat64StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5822void iemMemFlat64StackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5823void iemMemFlat64StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5824void iemMemFlat64StackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5825
5826void iemMemStoreStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5827void iemMemStoreStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5828void iemMemStoreStackU32SRegSafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5829void iemMemStoreStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5830
5831uint16_t iemMemFetchStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5832uint32_t iemMemFetchStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5833uint64_t iemMemFetchStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5834
5835#endif
5836
5837/** @} */
5838
5839/** @name IEMAllCImpl.cpp
5840 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
5841 * @{ */
5842IEM_CIMPL_PROTO_2(iemCImpl_pop_mem16, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5843IEM_CIMPL_PROTO_2(iemCImpl_pop_mem32, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5844IEM_CIMPL_PROTO_2(iemCImpl_pop_mem64, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5845IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
5846IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
5847IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
5848IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
5849IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
5850IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
5851IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5852IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5853typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5854typedef FNIEMCIMPLFARBRANCH *PFNIEMCIMPLFARBRANCH;
5855IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
5856IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
5857IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
5858IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
5859IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
5860IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
5861IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
5862IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
5863IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
5864IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
5865IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
5866IEM_CIMPL_PROTO_0(iemCImpl_syscall);
5867IEM_CIMPL_PROTO_1(iemCImpl_sysret, IEMMODE, enmEffOpSize);
5868IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
5869IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
5870IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
5871IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
5872IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
5873IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
5874IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
5875IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
5876IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
5877IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5878IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5879IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5880IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5881IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
5882IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5883IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5884IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
5885IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5886IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5887IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
5888IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5889IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5890IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
5891IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
5892IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
5893IEM_CIMPL_PROTO_0(iemCImpl_clts);
5894IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
5895IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
5896IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
5897IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
5898IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
5899IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
5900IEM_CIMPL_PROTO_0(iemCImpl_invd);
5901IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
5902IEM_CIMPL_PROTO_0(iemCImpl_rsm);
5903IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
5904IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
5905IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
5906IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
5907IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
5908IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5909IEM_CIMPL_PROTO_2(iemCImpl_in_eAX_DX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5910IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5911IEM_CIMPL_PROTO_2(iemCImpl_out_DX_eAX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5912IEM_CIMPL_PROTO_0(iemCImpl_cli);
5913IEM_CIMPL_PROTO_0(iemCImpl_sti);
5914IEM_CIMPL_PROTO_0(iemCImpl_hlt);
5915IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
5916IEM_CIMPL_PROTO_0(iemCImpl_mwait);
5917IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
5918IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
5919IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
5920IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
5921IEM_CIMPL_PROTO_0(iemCImpl_daa);
5922IEM_CIMPL_PROTO_0(iemCImpl_das);
5923IEM_CIMPL_PROTO_0(iemCImpl_aaa);
5924IEM_CIMPL_PROTO_0(iemCImpl_aas);
5925IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
5926IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
5927IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
5928IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
5929IEM_CIMPL_PROTO_5(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
5930 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags, uint8_t, bUnmapInfo);
5931IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5932IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
5933IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5934IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5935IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5936IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5937IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5938IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5939IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5940IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5941IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5942IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5943IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5944IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
5945IEM_CIMPL_PROTO_2(iemCImpl_fxch_underflow, uint8_t, iStReg, uint16_t, uFpuOpcode);
5946IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, bool, fUCmp, uint32_t, uPopAndFpuOpcode);
5947IEM_CIMPL_PROTO_2(iemCImpl_rdseed, uint8_t, iReg, IEMMODE, enmEffOpSize);
5948IEM_CIMPL_PROTO_2(iemCImpl_rdrand, uint8_t, iReg, IEMMODE, enmEffOpSize);
5949IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5950IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5951IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
5952IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
5953IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5954IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5955IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
5956IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
5957IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5958IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5959IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
5960IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
5961IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5962IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5963IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
5964IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
5965
5966/** @} */
5967
5968/** @name IEMAllCImplStrInstr.cpp.h
5969 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
5970 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
5971 * @{ */
5972IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
5973IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
5974IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
5975IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
5976IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
5977IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
5978IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
5979IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
5980IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
5981IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5982IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5983
5984IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
5985IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
5986IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
5987IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
5988IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
5989IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
5990IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
5991IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
5992IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
5993IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5994IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5995
5996IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
5997IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
5998IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
5999IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
6000IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
6001IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
6002IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
6003IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
6004IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
6005IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6006IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6007
6008
6009IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
6010IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
6011IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
6012IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
6013IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
6014IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
6015IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
6016IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
6017IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
6018IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6019IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6020
6021IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
6022IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
6023IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
6024IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
6025IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
6026IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
6027IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
6028IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
6029IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
6030IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6031IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6032
6033IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
6034IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
6035IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
6036IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
6037IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
6038IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
6039IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
6040IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
6041IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
6042IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6043IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6044
6045IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
6046IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
6047IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
6048IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
6049IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
6050IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
6051IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
6052IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
6053IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
6054IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6055IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6056
6057
6058IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
6059IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
6060IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
6061IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
6062IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
6063IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
6064IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
6065IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
6066IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
6067IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6068IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6069
6070IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
6071IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
6072IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
6073IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
6074IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
6075IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
6076IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
6077IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
6078IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
6079IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6080IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6081
6082IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
6083IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
6084IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
6085IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
6086IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
6087IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
6088IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
6089IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
6090IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
6091IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6092IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6093
6094IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
6095IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
6096IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
6097IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
6098IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
6099IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
6100IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
6101IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
6102IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
6103IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6104IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6105/** @} */
6106
6107#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6108VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
6109VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
6110VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
6111VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
6112VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
6113VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
6114VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALKFAST pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
6115VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
6116VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
6117VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
6118 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
6119VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
6120 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
6121VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6122VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6123VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6124VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6125VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6126VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6127VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
6128VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
6129 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
6130VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
6131VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
6132VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
6133uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
6134void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
6135VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
6136 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
6137bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
6138IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
6139IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
6140IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
6141IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
6142IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6143IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6144IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6145IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
6146IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
6147IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
6148IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint64_t *, pu32Dst, uint32_t, u32VmcsField);
6149IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
6150IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
6151IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
6152IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
6153IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
6154#endif
6155
6156#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6157VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
6158VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
6159VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
6160 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
6161VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite, uint8_t cbInstr) RT_NOEXCEPT;
6162IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
6163IEM_CIMPL_PROTO_0(iemCImpl_vmload);
6164IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
6165IEM_CIMPL_PROTO_0(iemCImpl_clgi);
6166IEM_CIMPL_PROTO_0(iemCImpl_stgi);
6167IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
6168IEM_CIMPL_PROTO_0(iemCImpl_skinit);
6169IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
6170#endif
6171
6172IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
6173IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
6174IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
6175
6176extern const PFNIEMOP g_apfnIemInterpretOnlyOneByteMap[256];
6177extern const PFNIEMOP g_apfnIemInterpretOnlyTwoByteMap[1024];
6178extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f3a[1024];
6179extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f38[1024];
6180extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap1[1024];
6181extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap2[1024];
6182extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap3[1024];
6183
6184/*
6185 * Recompiler related stuff.
6186 */
6187extern const PFNIEMOP g_apfnIemThreadedRecompilerOneByteMap[256];
6188extern const PFNIEMOP g_apfnIemThreadedRecompilerTwoByteMap[1024];
6189extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f3a[1024];
6190extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f38[1024];
6191extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap1[1024];
6192extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap2[1024];
6193extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap3[1024];
6194
6195DECLCALLBACK(int) iemTbInit(PVMCC pVM, uint32_t cInitialTbs, uint32_t cMaxTbs,
6196 uint64_t cbInitialExec, uint64_t cbMaxExec, uint32_t cbChunkExec);
6197void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb, bool fSafeToFree);
6198DECLHIDDEN(void) iemTbAllocatorFree(PVMCPUCC pVCpu, PIEMTB pTb);
6199void iemTbAllocatorProcessDelayedFrees(PVMCPUCC pVCpu, PIEMTBALLOCATOR pTbAllocator);
6200void iemTbAllocatorFreeupNativeSpace(PVMCPUCC pVCpu, uint32_t cNeededInstrs);
6201DECLHIDDEN(const char *) iemTbFlagsToString(uint32_t fFlags, char *pszBuf, size_t cbBuf) RT_NOEXCEPT;
6202DECLHIDDEN(void) iemThreadedDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6203
6204
6205/** @todo FNIEMTHREADEDFUNC and friends may need more work... */
6206#if defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
6207typedef VBOXSTRICTRC /*__attribute__((__nothrow__))*/ FNIEMTHREADEDFUNC(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6208typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6209# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6210 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6211# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6212 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6213
6214#else
6215typedef VBOXSTRICTRC (FNIEMTHREADEDFUNC)(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6216typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6217# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6218 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6219# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6220 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6221#endif
6222
6223
6224IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_Nop);
6225IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_LogCpuState);
6226
6227IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_DeferToCImpl0);
6228
6229IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckIrq);
6230IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckMode);
6231IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckHwInstrBps);
6232IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLim);
6233
6234IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodes);
6235IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodes);
6236IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim);
6237
6238/* Branching: */
6239IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes);
6240IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodes);
6241IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim);
6242
6243IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb);
6244IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlb);
6245IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim);
6246
6247/* Natural page crossing: */
6248IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb);
6249IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb);
6250IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim);
6251
6252IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb);
6253IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb);
6254IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim);
6255
6256IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb);
6257IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb);
6258IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim);
6259
6260bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb);
6261bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb);
6262
6263/* Native recompiler public bits: */
6264DECLHIDDEN(PIEMTB) iemNativeRecompile(PVMCPUCC pVCpu, PIEMTB pTb) RT_NOEXCEPT;
6265DECLHIDDEN(void) iemNativeDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6266int iemExecMemAllocatorInit(PVMCPU pVCpu, uint64_t cbMax, uint64_t cbInitial, uint32_t cbChunk) RT_NOEXCEPT;
6267DECLHIDDEN(void *) iemExecMemAllocatorAlloc(PVMCPU pVCpu, uint32_t cbReq, PIEMTB pTb, void **ppvExec) RT_NOEXCEPT;
6268DECLHIDDEN(void) iemExecMemAllocatorReadyForUse(PVMCPUCC pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6269void iemExecMemAllocatorFree(PVMCPU pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6270DECLASM(DECL_NO_RETURN(void)) iemNativeTbLongJmp(void *pvFramePointer, int rc) RT_NOEXCEPT;
6271
6272#endif /* !RT_IN_ASSEMBLER - ASM-NOINC-END */
6273
6274
6275/** @} */
6276
6277RT_C_DECLS_END
6278
6279/* ASM-INC: %include "IEMInternalStruct.mac" */
6280
6281#endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */
6282
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette