VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInternal.h@ 103988

Last change on this file since 103988 was 103964, checked in by vboxsync, 14 months ago

VMM/IEM: Some statistics on the SIMD register allocator and some fixes, bugref:10614

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 312.8 KB
Line 
1/* $Id: IEMInternal.h 103964 2024-03-20 15:01:46Z vboxsync $ */
2/** @file
3 * IEM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
29#define VMM_INCLUDED_SRC_include_IEMInternal_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34#include <VBox/vmm/cpum.h>
35#include <VBox/vmm/iem.h>
36#include <VBox/vmm/pgm.h>
37#include <VBox/vmm/stam.h>
38#include <VBox/param.h>
39
40#include <iprt/setjmp-without-sigmask.h>
41#include <iprt/list.h>
42
43
44RT_C_DECLS_BEGIN
45
46
47/** @defgroup grp_iem_int Internals
48 * @ingroup grp_iem
49 * @internal
50 * @{
51 */
52
53/** For expanding symbol in slickedit and other products tagging and
54 * crossreferencing IEM symbols. */
55#ifndef IEM_STATIC
56# define IEM_STATIC static
57#endif
58
59/** @def IEM_WITH_SETJMP
60 * Enables alternative status code handling using setjmps.
61 *
62 * This adds a bit of expense via the setjmp() call since it saves all the
63 * non-volatile registers. However, it eliminates return code checks and allows
64 * for more optimal return value passing (return regs instead of stack buffer).
65 */
66#if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
67# define IEM_WITH_SETJMP
68#endif
69
70/** @def IEM_WITH_THROW_CATCH
71 * Enables using C++ throw/catch as an alternative to setjmp/longjmp in user
72 * mode code when IEM_WITH_SETJMP is in effect.
73 *
74 * With GCC 11.3.1 and code TLB on linux, using throw/catch instead of
75 * setjmp/long resulted in bs2-test-1 running 3.00% faster and all but on test
76 * result value improving by more than 1%. (Best out of three.)
77 *
78 * With Visual C++ 2019 and code TLB on windows, using throw/catch instead of
79 * setjmp/long resulted in bs2-test-1 running 3.68% faster and all but some of
80 * the MMIO and CPUID tests ran noticeably faster. Variation is greater than on
81 * Linux, but it should be quite a bit faster for normal code.
82 */
83#if (defined(__cplusplus) && defined(IEM_WITH_SETJMP) && defined(IN_RING3) && (defined(__GNUC__) || defined(_MSC_VER))) \
84 || defined(DOXYGEN_RUNNING)
85# define IEM_WITH_THROW_CATCH
86#endif
87
88/** @def IEMNATIVE_WITH_DELAYED_PC_UPDATING
89 * Enables the delayed PC updating optimization (see @bugref{10373}).
90 */
91#if defined(DOXYGEN_RUNNING) || 1
92# define IEMNATIVE_WITH_DELAYED_PC_UPDATING
93#endif
94
95/** Enables the SIMD register allocator @bugref{10614}. */
96#if defined(DOXYGEN_RUNNING) || 1
97# define IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
98#endif
99/** Enables access to even callee saved registers. */
100//# define IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
101
102/** @def VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
103 * Enables a quicker alternative to throw/longjmp for IEM_DO_LONGJMP when
104 * executing native translation blocks.
105 *
106 * This exploits the fact that we save all non-volatile registers in the TB
107 * prologue and thus just need to do the same as the TB epilogue to get the
108 * effect of a longjmp/throw. Since MSC marks XMM6 thru XMM15 as
109 * non-volatile (and does something even more crazy for ARM), this probably
110 * won't work reliably on Windows. */
111#if defined(DOXYGEN_RUNNING) || (!defined(RT_OS_WINDOWS) && (defined(RT_ARCH_ARM64) /*|| defined(_RT_ARCH_AMD64)*/))
112# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
113#endif
114#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
115# if !defined(IN_RING3) \
116 || !defined(VBOX_WITH_IEM_RECOMPILER) \
117 || !defined(VBOX_WITH_IEM_NATIVE_RECOMPILER)
118# undef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
119# elif defined(RT_OS_WINDOWS)
120# pragma message("VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP is not safe to use on windows")
121# endif
122#endif
123
124
125/** @def IEM_DO_LONGJMP
126 *
127 * Wrapper around longjmp / throw.
128 *
129 * @param a_pVCpu The CPU handle.
130 * @param a_rc The status code jump back with / throw.
131 */
132#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
133# ifdef IEM_WITH_THROW_CATCH
134# ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
135# define IEM_DO_LONGJMP(a_pVCpu, a_rc) do { \
136 if ((a_pVCpu)->iem.s.pvTbFramePointerR3) \
137 iemNativeTbLongJmp((a_pVCpu)->iem.s.pvTbFramePointerR3, (a_rc)); \
138 throw int(a_rc); \
139 } while (0)
140# else
141# define IEM_DO_LONGJMP(a_pVCpu, a_rc) throw int(a_rc)
142# endif
143# else
144# define IEM_DO_LONGJMP(a_pVCpu, a_rc) longjmp(*(a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf), (a_rc))
145# endif
146#endif
147
148/** For use with IEM function that may do a longjmp (when enabled).
149 *
150 * Visual C++ has trouble longjmp'ing from/over functions with the noexcept
151 * attribute. So, we indicate that function that may be part of a longjmp may
152 * throw "exceptions" and that the compiler should definitely not generate and
153 * std::terminate calling unwind code.
154 *
155 * Here is one example of this ending in std::terminate:
156 * @code{.txt}
15700 00000041`cadfda10 00007ffc`5d5a1f9f ucrtbase!abort+0x4e
15801 00000041`cadfda40 00007ffc`57af229a ucrtbase!terminate+0x1f
15902 00000041`cadfda70 00007ffb`eec91030 VCRUNTIME140!__std_terminate+0xa [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\ehhelpers.cpp @ 192]
16003 00000041`cadfdaa0 00007ffb`eec92c6d VCRUNTIME140_1!_CallSettingFrame+0x20 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\handlers.asm @ 50]
16104 00000041`cadfdad0 00007ffb`eec93ae5 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToState+0x241 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 1085]
16205 00000041`cadfdc00 00007ffb`eec92258 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToEmptyState+0x2d [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 218]
16306 00000041`cadfdc30 00007ffb`eec940e9 VCRUNTIME140_1!__InternalCxxFrameHandler<__FrameHandler4>+0x194 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 304]
16407 00000041`cadfdcd0 00007ffc`5f9f249f VCRUNTIME140_1!__CxxFrameHandler4+0xa9 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 290]
16508 00000041`cadfdd40 00007ffc`5f980939 ntdll!RtlpExecuteHandlerForUnwind+0xf
16609 00000041`cadfdd70 00007ffc`5f9a0edd ntdll!RtlUnwindEx+0x339
1670a 00000041`cadfe490 00007ffc`57aff976 ntdll!RtlUnwind+0xcd
1680b 00000041`cadfea00 00007ffb`e1b5de01 VCRUNTIME140!__longjmp_internal+0xe6 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\longjmp.asm @ 140]
1690c (Inline Function) --------`-------- VBoxVMM!iemOpcodeGetNextU8SlowJmp+0x95 [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 1155]
1700d 00000041`cadfea50 00007ffb`e1b60f6b VBoxVMM!iemOpcodeGetNextU8Jmp+0xc1 [L:\vbox-intern\src\VBox\VMM\include\IEMInline.h @ 402]
1710e 00000041`cadfea90 00007ffb`e1cc6201 VBoxVMM!IEMExecForExits+0xdb [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 10185]
1720f 00000041`cadfec70 00007ffb`e1d0df8d VBoxVMM!EMHistoryExec+0x4f1 [L:\vbox-intern\src\VBox\VMM\VMMAll\EMAll.cpp @ 452]
17310 00000041`cadfed60 00007ffb`e1d0d4c0 VBoxVMM!nemR3WinHandleExitCpuId+0x79d [L:\vbox-intern\src\VBox\VMM\VMMAll\NEMAllNativeTemplate-win.cpp.h @ 1829] @encode
174 @endcode
175 *
176 * @see https://developercommunity.visualstudio.com/t/fragile-behavior-of-longjmp-called-from-noexcept-f/1532859
177 */
178#if defined(IEM_WITH_SETJMP) && (defined(_MSC_VER) || defined(IEM_WITH_THROW_CATCH))
179# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT_EX(false)
180#else
181# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT
182#endif
183
184#define IEM_IMPLEMENTS_TASKSWITCH
185
186/** @def IEM_WITH_3DNOW
187 * Includes the 3DNow decoding. */
188#if (!defined(IEM_WITH_3DNOW) && !defined(IEM_WITHOUT_3DNOW)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
189# define IEM_WITH_3DNOW
190#endif
191
192/** @def IEM_WITH_THREE_0F_38
193 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
194#if (!defined(IEM_WITH_THREE_0F_38) && !defined(IEM_WITHOUT_THREE_0F_38)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
195# define IEM_WITH_THREE_0F_38
196#endif
197
198/** @def IEM_WITH_THREE_0F_3A
199 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
200#if (!defined(IEM_WITH_THREE_0F_3A) && !defined(IEM_WITHOUT_THREE_0F_3A)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
201# define IEM_WITH_THREE_0F_3A
202#endif
203
204/** @def IEM_WITH_VEX
205 * Includes the VEX decoding. */
206#if (!defined(IEM_WITH_VEX) && !defined(IEM_WITHOUT_VEX)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
207# define IEM_WITH_VEX
208#endif
209
210/** @def IEM_CFG_TARGET_CPU
211 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
212 *
213 * By default we allow this to be configured by the user via the
214 * CPUM/GuestCpuName config string, but this comes at a slight cost during
215 * decoding. So, for applications of this code where there is no need to
216 * be dynamic wrt target CPU, just modify this define.
217 */
218#if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
219# define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
220#endif
221
222//#define IEM_WITH_CODE_TLB // - work in progress
223//#define IEM_WITH_DATA_TLB // - work in progress
224
225
226/** @def IEM_USE_UNALIGNED_DATA_ACCESS
227 * Use unaligned accesses instead of elaborate byte assembly. */
228#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING)
229# define IEM_USE_UNALIGNED_DATA_ACCESS
230#endif
231
232//#define IEM_LOG_MEMORY_WRITES
233
234#if !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
235/** Instruction statistics. */
236typedef struct IEMINSTRSTATS
237{
238# define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
239# include "IEMInstructionStatisticsTmpl.h"
240# undef IEM_DO_INSTR_STAT
241} IEMINSTRSTATS;
242#else
243struct IEMINSTRSTATS;
244typedef struct IEMINSTRSTATS IEMINSTRSTATS;
245#endif
246/** Pointer to IEM instruction statistics. */
247typedef IEMINSTRSTATS *PIEMINSTRSTATS;
248
249
250/** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
251 * @{ */
252#define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
253#define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
254#define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
255#define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
256#define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
257/** Selects the right variant from a_aArray.
258 * pVCpu is implicit in the caller context. */
259#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
260 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
261/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
262 * be used because the host CPU does not support the operation. */
263#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
264 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
265/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
266 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
267 * into the two.
268 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
269#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
270# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
271 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
272#else
273# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
274 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
275#endif
276/** @} */
277
278/**
279 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
280 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
281 *
282 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
283 * indicator.
284 *
285 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
286 */
287#if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
288# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
289 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
290#else
291# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
292#endif
293
294
295/**
296 * Extended operand mode that includes a representation of 8-bit.
297 *
298 * This is used for packing down modes when invoking some C instruction
299 * implementations.
300 */
301typedef enum IEMMODEX
302{
303 IEMMODEX_16BIT = IEMMODE_16BIT,
304 IEMMODEX_32BIT = IEMMODE_32BIT,
305 IEMMODEX_64BIT = IEMMODE_64BIT,
306 IEMMODEX_8BIT
307} IEMMODEX;
308AssertCompileSize(IEMMODEX, 4);
309
310
311/**
312 * Branch types.
313 */
314typedef enum IEMBRANCH
315{
316 IEMBRANCH_JUMP = 1,
317 IEMBRANCH_CALL,
318 IEMBRANCH_TRAP,
319 IEMBRANCH_SOFTWARE_INT,
320 IEMBRANCH_HARDWARE_INT
321} IEMBRANCH;
322AssertCompileSize(IEMBRANCH, 4);
323
324
325/**
326 * INT instruction types.
327 */
328typedef enum IEMINT
329{
330 /** INT n instruction (opcode 0xcd imm). */
331 IEMINT_INTN = 0,
332 /** Single byte INT3 instruction (opcode 0xcc). */
333 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
334 /** Single byte INTO instruction (opcode 0xce). */
335 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
336 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
337 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
338} IEMINT;
339AssertCompileSize(IEMINT, 4);
340
341
342/**
343 * A FPU result.
344 */
345typedef struct IEMFPURESULT
346{
347 /** The output value. */
348 RTFLOAT80U r80Result;
349 /** The output status. */
350 uint16_t FSW;
351} IEMFPURESULT;
352AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
353/** Pointer to a FPU result. */
354typedef IEMFPURESULT *PIEMFPURESULT;
355/** Pointer to a const FPU result. */
356typedef IEMFPURESULT const *PCIEMFPURESULT;
357
358
359/**
360 * A FPU result consisting of two output values and FSW.
361 */
362typedef struct IEMFPURESULTTWO
363{
364 /** The first output value. */
365 RTFLOAT80U r80Result1;
366 /** The output status. */
367 uint16_t FSW;
368 /** The second output value. */
369 RTFLOAT80U r80Result2;
370} IEMFPURESULTTWO;
371AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
372AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
373/** Pointer to a FPU result consisting of two output values and FSW. */
374typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
375/** Pointer to a const FPU result consisting of two output values and FSW. */
376typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
377
378
379/**
380 * IEM TLB entry.
381 *
382 * Lookup assembly:
383 * @code{.asm}
384 ; Calculate tag.
385 mov rax, [VA]
386 shl rax, 16
387 shr rax, 16 + X86_PAGE_SHIFT
388 or rax, [uTlbRevision]
389
390 ; Do indexing.
391 movzx ecx, al
392 lea rcx, [pTlbEntries + rcx]
393
394 ; Check tag.
395 cmp [rcx + IEMTLBENTRY.uTag], rax
396 jne .TlbMiss
397
398 ; Check access.
399 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
400 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
401 cmp rax, [uTlbPhysRev]
402 jne .TlbMiss
403
404 ; Calc address and we're done.
405 mov eax, X86_PAGE_OFFSET_MASK
406 and eax, [VA]
407 or rax, [rcx + IEMTLBENTRY.pMappingR3]
408 %ifdef VBOX_WITH_STATISTICS
409 inc qword [cTlbHits]
410 %endif
411 jmp .Done
412
413 .TlbMiss:
414 mov r8d, ACCESS_FLAGS
415 mov rdx, [VA]
416 mov rcx, [pVCpu]
417 call iemTlbTypeMiss
418 .Done:
419
420 @endcode
421 *
422 */
423typedef struct IEMTLBENTRY
424{
425 /** The TLB entry tag.
426 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
427 * is ASSUMING a virtual address width of 48 bits.
428 *
429 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
430 *
431 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
432 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
433 * revision wraps around though, the tags needs to be zeroed.
434 *
435 * @note Try use SHRD instruction? After seeing
436 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
437 *
438 * @todo This will need to be reorganized for 57-bit wide virtual address and
439 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
440 * have to move the TLB entry versioning entirely to the
441 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
442 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
443 * consumed by PCID and ASID (12 + 6 = 18).
444 */
445 uint64_t uTag;
446 /** Access flags and physical TLB revision.
447 *
448 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
449 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
450 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
451 * - Bit 3 - pgm phys/virt - not directly writable.
452 * - Bit 4 - pgm phys page - not directly readable.
453 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
454 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
455 * - Bit 7 - tlb entry - pMappingR3 member not valid.
456 * - Bits 63 thru 8 are used for the physical TLB revision number.
457 *
458 * We're using complemented bit meanings here because it makes it easy to check
459 * whether special action is required. For instance a user mode write access
460 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
461 * non-zero result would mean special handling needed because either it wasn't
462 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
463 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
464 * need to check any PTE flag.
465 */
466 uint64_t fFlagsAndPhysRev;
467 /** The guest physical page address. */
468 uint64_t GCPhys;
469 /** Pointer to the ring-3 mapping. */
470 R3PTRTYPE(uint8_t *) pbMappingR3;
471#if HC_ARCH_BITS == 32
472 uint32_t u32Padding1;
473#endif
474} IEMTLBENTRY;
475AssertCompileSize(IEMTLBENTRY, 32);
476/** Pointer to an IEM TLB entry. */
477typedef IEMTLBENTRY *PIEMTLBENTRY;
478
479/** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
480 * @{ */
481#define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
482#define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
483#define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
484#define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
485#define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
486#define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
487#define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
488#define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(7) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
489#define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(8) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
490#define IEMTLBE_F_PG_CODE_PAGE RT_BIT_64(9) /**< Phys page: Code page. */
491#define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffffc00) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
492/** @} */
493
494
495/**
496 * An IEM TLB.
497 *
498 * We've got two of these, one for data and one for instructions.
499 */
500typedef struct IEMTLB
501{
502 /** The TLB entries.
503 * We've choosen 256 because that way we can obtain the result directly from a
504 * 8-bit register without an additional AND instruction. */
505 IEMTLBENTRY aEntries[256];
506 /** The TLB revision.
507 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
508 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
509 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
510 * (The revision zero indicates an invalid TLB entry.)
511 *
512 * The initial value is choosen to cause an early wraparound. */
513 uint64_t uTlbRevision;
514 /** The TLB physical address revision - shadow of PGM variable.
515 *
516 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
517 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
518 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
519 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
520 *
521 * The initial value is choosen to cause an early wraparound. */
522 uint64_t volatile uTlbPhysRev;
523
524 /* Statistics: */
525
526 /** TLB hits (VBOX_WITH_STATISTICS only). */
527 uint64_t cTlbHits;
528 /** TLB misses. */
529 uint32_t cTlbMisses;
530 /** Slow read path. */
531 uint32_t cTlbSlowReadPath;
532 /** Safe read path. */
533 uint32_t cTlbSafeReadPath;
534 /** Safe write path. */
535 uint32_t cTlbSafeWritePath;
536#if 0
537 /** TLB misses because of tag mismatch. */
538 uint32_t cTlbMissesTag;
539 /** TLB misses because of virtual access violation. */
540 uint32_t cTlbMissesVirtAccess;
541 /** TLB misses because of dirty bit. */
542 uint32_t cTlbMissesDirty;
543 /** TLB misses because of MMIO */
544 uint32_t cTlbMissesMmio;
545 /** TLB misses because of write access handlers. */
546 uint32_t cTlbMissesWriteHandler;
547 /** TLB misses because no r3(/r0) mapping. */
548 uint32_t cTlbMissesMapping;
549#endif
550 /** Alignment padding. */
551 uint32_t au32Padding[6];
552} IEMTLB;
553AssertCompileSizeAlignment(IEMTLB, 64);
554/** IEMTLB::uTlbRevision increment. */
555#define IEMTLB_REVISION_INCR RT_BIT_64(36)
556/** IEMTLB::uTlbRevision mask. */
557#define IEMTLB_REVISION_MASK (~(RT_BIT_64(36) - 1))
558/** IEMTLB::uTlbPhysRev increment.
559 * @sa IEMTLBE_F_PHYS_REV */
560#define IEMTLB_PHYS_REV_INCR RT_BIT_64(10)
561/**
562 * Calculates the TLB tag for a virtual address.
563 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
564 * @param a_pTlb The TLB.
565 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
566 * the clearing of the top 16 bits won't work (if 32-bit
567 * we'll end up with mostly zeros).
568 */
569#define IEMTLB_CALC_TAG(a_pTlb, a_GCPtr) ( IEMTLB_CALC_TAG_NO_REV(a_GCPtr) | (a_pTlb)->uTlbRevision )
570/**
571 * Calculates the TLB tag for a virtual address but without TLB revision.
572 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
573 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
574 * the clearing of the top 16 bits won't work (if 32-bit
575 * we'll end up with mostly zeros).
576 */
577#define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
578/**
579 * Converts a TLB tag value into a TLB index.
580 * @returns Index into IEMTLB::aEntries.
581 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
582 */
583#define IEMTLB_TAG_TO_INDEX(a_uTag) ( (uint8_t)(a_uTag) )
584/**
585 * Converts a TLB tag value into a TLB index.
586 * @returns Index into IEMTLB::aEntries.
587 * @param a_pTlb The TLB.
588 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
589 */
590#define IEMTLB_TAG_TO_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_INDEX(a_uTag)] )
591
592
593/** @name IEM_MC_F_XXX - MC block flags/clues.
594 * @todo Merge with IEM_CIMPL_F_XXX
595 * @{ */
596#define IEM_MC_F_ONLY_8086 RT_BIT_32(0)
597#define IEM_MC_F_MIN_186 RT_BIT_32(1)
598#define IEM_MC_F_MIN_286 RT_BIT_32(2)
599#define IEM_MC_F_NOT_286_OR_OLDER IEM_MC_F_MIN_386
600#define IEM_MC_F_MIN_386 RT_BIT_32(3)
601#define IEM_MC_F_MIN_486 RT_BIT_32(4)
602#define IEM_MC_F_MIN_PENTIUM RT_BIT_32(5)
603#define IEM_MC_F_MIN_PENTIUM_II IEM_MC_F_MIN_PENTIUM
604#define IEM_MC_F_MIN_CORE IEM_MC_F_MIN_PENTIUM
605#define IEM_MC_F_64BIT RT_BIT_32(6)
606#define IEM_MC_F_NOT_64BIT RT_BIT_32(7)
607/** This is set by IEMAllN8vePython.py to indicate a variation without the
608 * flags-clearing-and-checking, when there is also a variation with that.
609 * @note Do not use this manully, it's only for python and for testing in
610 * the native recompiler! */
611#define IEM_MC_F_WITHOUT_FLAGS RT_BIT_32(8)
612/** @} */
613
614/** @name IEM_CIMPL_F_XXX - State change clues for CIMPL calls.
615 *
616 * These clues are mainly for the recompiler, so that it can emit correct code.
617 *
618 * They are processed by the python script and which also automatically
619 * calculates flags for MC blocks based on the statements, extending the use of
620 * these flags to describe MC block behavior to the recompiler core. The python
621 * script pass the flags to the IEM_MC2_END_EMIT_CALLS macro, but mainly for
622 * error checking purposes. The script emits the necessary fEndTb = true and
623 * similar statements as this reduces compile time a tiny bit.
624 *
625 * @{ */
626/** Flag set if direct branch, clear if absolute or indirect. */
627#define IEM_CIMPL_F_BRANCH_DIRECT RT_BIT_32(0)
628/** Flag set if indirect branch, clear if direct or relative.
629 * This is also used for all system control transfers (SYSCALL, SYSRET, INT, ++)
630 * as well as for return instructions (RET, IRET, RETF). */
631#define IEM_CIMPL_F_BRANCH_INDIRECT RT_BIT_32(1)
632/** Flag set if relative branch, clear if absolute or indirect. */
633#define IEM_CIMPL_F_BRANCH_RELATIVE RT_BIT_32(2)
634/** Flag set if conditional branch, clear if unconditional. */
635#define IEM_CIMPL_F_BRANCH_CONDITIONAL RT_BIT_32(3)
636/** Flag set if it's a far branch (changes CS). */
637#define IEM_CIMPL_F_BRANCH_FAR RT_BIT_32(4)
638/** Convenience: Testing any kind of branch. */
639#define IEM_CIMPL_F_BRANCH_ANY (IEM_CIMPL_F_BRANCH_DIRECT | IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_RELATIVE)
640
641/** Execution flags may change (IEMCPU::fExec). */
642#define IEM_CIMPL_F_MODE RT_BIT_32(5)
643/** May change significant portions of RFLAGS. */
644#define IEM_CIMPL_F_RFLAGS RT_BIT_32(6)
645/** May change the status bits (X86_EFL_STATUS_BITS) in RFLAGS. */
646#define IEM_CIMPL_F_STATUS_FLAGS RT_BIT_32(7)
647/** May trigger interrupt shadowing. */
648#define IEM_CIMPL_F_INHIBIT_SHADOW RT_BIT_32(8)
649/** May enable interrupts, so recheck IRQ immediately afterwards executing
650 * the instruction. */
651#define IEM_CIMPL_F_CHECK_IRQ_AFTER RT_BIT_32(9)
652/** May disable interrupts, so recheck IRQ immediately before executing the
653 * instruction. */
654#define IEM_CIMPL_F_CHECK_IRQ_BEFORE RT_BIT_32(10)
655/** Convenience: Check for IRQ both before and after an instruction. */
656#define IEM_CIMPL_F_CHECK_IRQ_BEFORE_AND_AFTER (IEM_CIMPL_F_CHECK_IRQ_BEFORE | IEM_CIMPL_F_CHECK_IRQ_AFTER)
657/** May trigger a VM exit (treated like IEM_CIMPL_F_MODE atm). */
658#define IEM_CIMPL_F_VMEXIT RT_BIT_32(11)
659/** May modify FPU state.
660 * @todo Not sure if this is useful yet. */
661#define IEM_CIMPL_F_FPU RT_BIT_32(12)
662/** REP prefixed instruction which may yield before updating PC.
663 * @todo Not sure if this is useful, REP functions now return non-zero
664 * status if they don't update the PC. */
665#define IEM_CIMPL_F_REP RT_BIT_32(13)
666/** I/O instruction.
667 * @todo Not sure if this is useful yet. */
668#define IEM_CIMPL_F_IO RT_BIT_32(14)
669/** Force end of TB after the instruction. */
670#define IEM_CIMPL_F_END_TB RT_BIT_32(15)
671/** Flag set if a branch may also modify the stack (push/pop return address). */
672#define IEM_CIMPL_F_BRANCH_STACK RT_BIT_32(16)
673/** Flag set if a branch may also modify the stack (push/pop return address)
674 * and switch it (load/restore SS:RSP). */
675#define IEM_CIMPL_F_BRANCH_STACK_FAR RT_BIT_32(17)
676/** Convenience: Raise exception (technically unnecessary, since it shouldn't return VINF_SUCCESS). */
677#define IEM_CIMPL_F_XCPT \
678 (IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_FAR | IEM_CIMPL_F_BRANCH_STACK_FAR \
679 | IEM_CIMPL_F_MODE | IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_VMEXIT)
680
681/** The block calls a C-implementation instruction function with two implicit arguments.
682 * Mutually exclusive with IEM_CIMPL_F_CALLS_AIMPL and
683 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
684 * @note The python scripts will add this is missing. */
685#define IEM_CIMPL_F_CALLS_CIMPL RT_BIT_32(18)
686/** The block calls an ASM-implementation instruction function.
687 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL and
688 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
689 * @note The python scripts will add this is missing. */
690#define IEM_CIMPL_F_CALLS_AIMPL RT_BIT_32(19)
691/** The block calls an ASM-implementation instruction function with an implicit
692 * X86FXSTATE pointer argument.
693 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL and IEM_CIMPL_F_CALLS_AIMPL.
694 * @note The python scripts will add this is missing. */
695#define IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE RT_BIT_32(20)
696/** @} */
697
698
699/** @name IEM_F_XXX - Execution mode flags (IEMCPU::fExec, IEMTB::fFlags).
700 *
701 * These flags are set when entering IEM and adjusted as code is executed, such
702 * that they will always contain the current values as instructions are
703 * finished.
704 *
705 * In recompiled execution mode, (most of) these flags are included in the
706 * translation block selection key and stored in IEMTB::fFlags alongside the
707 * IEMTB_F_XXX flags. The latter flags uses bits 31 thru 24, which are all zero
708 * in IEMCPU::fExec.
709 *
710 * @{ */
711/** Mode: The block target mode mask. */
712#define IEM_F_MODE_MASK UINT32_C(0x0000001f)
713/** Mode: The IEMMODE part of the IEMTB_F_MODE_MASK value. */
714#define IEM_F_MODE_CPUMODE_MASK UINT32_C(0x00000003)
715/** X86 Mode: Bit used to indicating pre-386 CPU in 16-bit mode (for eliminating
716 * conditional in EIP/IP updating), and flat wide open CS, SS, DS, and ES in
717 * 32-bit mode (for simplifying most memory accesses). */
718#define IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK UINT32_C(0x00000004)
719/** X86 Mode: Bit indicating protected mode, real mode (or SMM) when not set. */
720#define IEM_F_MODE_X86_PROT_MASK UINT32_C(0x00000008)
721/** X86 Mode: Bit used to indicate virtual 8086 mode (only 16-bit). */
722#define IEM_F_MODE_X86_V86_MASK UINT32_C(0x00000010)
723
724/** X86 Mode: 16-bit on 386 or later. */
725#define IEM_F_MODE_X86_16BIT UINT32_C(0x00000000)
726/** X86 Mode: 80286, 80186 and 8086/88 targetting blocks (EIP update opt). */
727#define IEM_F_MODE_X86_16BIT_PRE_386 UINT32_C(0x00000004)
728/** X86 Mode: 16-bit protected mode on 386 or later. */
729#define IEM_F_MODE_X86_16BIT_PROT UINT32_C(0x00000008)
730/** X86 Mode: 16-bit protected mode on 386 or later. */
731#define IEM_F_MODE_X86_16BIT_PROT_PRE_386 UINT32_C(0x0000000c)
732/** X86 Mode: 16-bit virtual 8086 protected mode (on 386 or later). */
733#define IEM_F_MODE_X86_16BIT_PROT_V86 UINT32_C(0x00000018)
734
735/** X86 Mode: 32-bit on 386 or later. */
736#define IEM_F_MODE_X86_32BIT UINT32_C(0x00000001)
737/** X86 Mode: 32-bit mode with wide open flat CS, SS, DS and ES. */
738#define IEM_F_MODE_X86_32BIT_FLAT UINT32_C(0x00000005)
739/** X86 Mode: 32-bit protected mode. */
740#define IEM_F_MODE_X86_32BIT_PROT UINT32_C(0x00000009)
741/** X86 Mode: 32-bit protected mode with wide open flat CS, SS, DS and ES. */
742#define IEM_F_MODE_X86_32BIT_PROT_FLAT UINT32_C(0x0000000d)
743
744/** X86 Mode: 64-bit (includes protected, but not the flat bit). */
745#define IEM_F_MODE_X86_64BIT UINT32_C(0x0000000a)
746
747/** X86 Mode: Checks if @a a_fExec represent a FLAT mode. */
748#define IEM_F_MODE_X86_IS_FLAT(a_fExec) ( ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT \
749 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_PROT_FLAT \
750 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_FLAT)
751
752/** Bypass access handlers when set. */
753#define IEM_F_BYPASS_HANDLERS UINT32_C(0x00010000)
754/** Have pending hardware instruction breakpoints. */
755#define IEM_F_PENDING_BRK_INSTR UINT32_C(0x00020000)
756/** Have pending hardware data breakpoints. */
757#define IEM_F_PENDING_BRK_DATA UINT32_C(0x00040000)
758
759/** X86: Have pending hardware I/O breakpoints. */
760#define IEM_F_PENDING_BRK_X86_IO UINT32_C(0x00000400)
761/** X86: Disregard the lock prefix (implied or not) when set. */
762#define IEM_F_X86_DISREGARD_LOCK UINT32_C(0x00000800)
763
764/** Pending breakpoint mask (what iemCalcExecDbgFlags works out). */
765#define IEM_F_PENDING_BRK_MASK (IEM_F_PENDING_BRK_INSTR | IEM_F_PENDING_BRK_DATA | IEM_F_PENDING_BRK_X86_IO)
766
767/** Caller configurable options. */
768#define IEM_F_USER_OPTS (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK)
769
770/** X86: The current protection level (CPL) shift factor. */
771#define IEM_F_X86_CPL_SHIFT 8
772/** X86: The current protection level (CPL) mask. */
773#define IEM_F_X86_CPL_MASK UINT32_C(0x00000300)
774/** X86: The current protection level (CPL) shifted mask. */
775#define IEM_F_X86_CPL_SMASK UINT32_C(0x00000003)
776
777/** X86 execution context.
778 * The IEM_F_X86_CTX_XXX values are individual flags that can be combined (with
779 * the exception of IEM_F_X86_CTX_NORMAL). This allows running VMs from SMM
780 * mode. */
781#define IEM_F_X86_CTX_MASK UINT32_C(0x0000f000)
782/** X86 context: Plain regular execution context. */
783#define IEM_F_X86_CTX_NORMAL UINT32_C(0x00000000)
784/** X86 context: VT-x enabled. */
785#define IEM_F_X86_CTX_VMX UINT32_C(0x00001000)
786/** X86 context: AMD-V enabled. */
787#define IEM_F_X86_CTX_SVM UINT32_C(0x00002000)
788/** X86 context: In AMD-V or VT-x guest mode. */
789#define IEM_F_X86_CTX_IN_GUEST UINT32_C(0x00004000)
790/** X86 context: System management mode (SMM). */
791#define IEM_F_X86_CTX_SMM UINT32_C(0x00008000)
792
793/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
794 * iemRegFinishClearingRF() most for most situations (CPUMCTX_DBG_HIT_DRX_MASK
795 * and CPUMCTX_DBG_DBGF_MASK are covered by the IEM_F_PENDING_BRK_XXX bits
796 * alread). */
797
798/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
799 * iemRegFinishClearingRF() most for most situations
800 * (CPUMCTX_DBG_HIT_DRX_MASK and CPUMCTX_DBG_DBGF_MASK are covered by
801 * the IEM_F_PENDING_BRK_XXX bits alread). */
802
803/** @} */
804
805
806/** @name IEMTB_F_XXX - Translation block flags (IEMTB::fFlags).
807 *
808 * Extends the IEM_F_XXX flags (subject to IEMTB_F_IEM_F_MASK) to make up the
809 * translation block flags. The combined flag mask (subject to
810 * IEMTB_F_KEY_MASK) is used as part of the lookup key for translation blocks.
811 *
812 * @{ */
813/** Mask of IEM_F_XXX flags included in IEMTB_F_XXX. */
814#define IEMTB_F_IEM_F_MASK UINT32_C(0x00ffffff)
815
816/** Type: The block type mask. */
817#define IEMTB_F_TYPE_MASK UINT32_C(0x03000000)
818/** Type: Purly threaded recompiler (via tables). */
819#define IEMTB_F_TYPE_THREADED UINT32_C(0x01000000)
820/** Type: Native recompilation. */
821#define IEMTB_F_TYPE_NATIVE UINT32_C(0x02000000)
822
823/** Set when we're starting the block in an "interrupt shadow".
824 * We don't need to distingish between the two types of this mask, thus the one.
825 * @see CPUMCTX_INHIBIT_SHADOW, CPUMIsInInterruptShadow() */
826#define IEMTB_F_INHIBIT_SHADOW UINT32_C(0x04000000)
827/** Set when we're currently inhibiting NMIs
828 * @see CPUMCTX_INHIBIT_NMI, CPUMAreInterruptsInhibitedByNmi() */
829#define IEMTB_F_INHIBIT_NMI UINT32_C(0x08000000)
830
831/** Checks that EIP/IP is wihin CS.LIM before each instruction. Used when
832 * we're close the limit before starting a TB, as determined by
833 * iemGetTbFlagsForCurrentPc(). */
834#define IEMTB_F_CS_LIM_CHECKS UINT32_C(0x10000000)
835
836/** Mask of the IEMTB_F_XXX flags that are part of the TB lookup key.
837 *
838 * @note We skip all of IEM_F_X86_CTX_MASK, with the exception of SMM (which we
839 * don't implement), because we don't currently generate any context
840 * specific code - that's all handled in CIMPL functions.
841 *
842 * For the threaded recompiler we don't generate any CPL specific code
843 * either, but the native recompiler does for memory access (saves getting
844 * the CPL from fExec and turning it into IEMTLBE_F_PT_NO_USER).
845 * Since most OSes will not share code between rings, this shouldn't
846 * have any real effect on TB/memory/recompiling load.
847 */
848#define IEMTB_F_KEY_MASK ((UINT32_MAX & ~(IEM_F_X86_CTX_MASK | IEMTB_F_TYPE_MASK)) | IEM_F_X86_CTX_SMM)
849/** @} */
850
851AssertCompile( (IEM_F_MODE_X86_16BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
852AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
853AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_PROT_MASK));
854AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_V86_MASK));
855AssertCompile( (IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
856AssertCompile( IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
857AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_PROT_MASK));
858AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
859AssertCompile( (IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
860AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
861AssertCompile( IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
862AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_V86_MASK));
863AssertCompile( (IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
864AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
865AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_PROT_MASK);
866AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
867AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_PROT_MASK);
868AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
869AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_V86_MASK);
870
871AssertCompile( (IEM_F_MODE_X86_32BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
872AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
873AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_PROT_MASK));
874AssertCompile( (IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
875AssertCompile( IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
876AssertCompile(!(IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_PROT_MASK));
877AssertCompile( (IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
878AssertCompile(!(IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
879AssertCompile( IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
880AssertCompile( (IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
881AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
882AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_PROT_MASK);
883
884AssertCompile( (IEM_F_MODE_X86_64BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT);
885AssertCompile( IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_PROT_MASK);
886AssertCompile(!(IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
887
888/** Native instruction type for use with the native code generator.
889 * This is a byte (uint8_t) for x86 and amd64 and uint32_t for the other(s). */
890#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
891typedef uint8_t IEMNATIVEINSTR;
892#else
893typedef uint32_t IEMNATIVEINSTR;
894#endif
895/** Pointer to a native instruction unit. */
896typedef IEMNATIVEINSTR *PIEMNATIVEINSTR;
897/** Pointer to a const native instruction unit. */
898typedef IEMNATIVEINSTR const *PCIEMNATIVEINSTR;
899
900/**
901 * A call for the threaded call table.
902 */
903typedef struct IEMTHRDEDCALLENTRY
904{
905 /** The function to call (IEMTHREADEDFUNCS). */
906 uint16_t enmFunction;
907 /** Instruction number in the TB (for statistics). */
908 uint8_t idxInstr;
909 uint8_t uUnused0;
910
911 /** Offset into IEMTB::pabOpcodes. */
912 uint16_t offOpcode;
913 /** The opcode length. */
914 uint8_t cbOpcode;
915 /** Index in to IEMTB::aRanges. */
916 uint8_t idxRange;
917
918 /** Generic parameters. */
919 uint64_t auParams[3];
920} IEMTHRDEDCALLENTRY;
921AssertCompileSize(IEMTHRDEDCALLENTRY, sizeof(uint64_t) * 4);
922/** Pointer to a threaded call entry. */
923typedef struct IEMTHRDEDCALLENTRY *PIEMTHRDEDCALLENTRY;
924/** Pointer to a const threaded call entry. */
925typedef IEMTHRDEDCALLENTRY const *PCIEMTHRDEDCALLENTRY;
926
927/**
928 * Native IEM TB 'function' typedef.
929 *
930 * This will throw/longjmp on occation.
931 *
932 * @note AMD64 doesn't have that many non-volatile registers and does sport
933 * 32-bit address displacments, so we don't need pCtx.
934 *
935 * On ARM64 pCtx allows us to directly address the whole register
936 * context without requiring a separate indexing register holding the
937 * offset. This saves an instruction loading the offset for each guest
938 * CPU context access, at the cost of a non-volatile register.
939 * Fortunately, ARM64 has quite a lot more registers.
940 */
941typedef
942#ifdef RT_ARCH_AMD64
943int FNIEMTBNATIVE(PVMCPUCC pVCpu)
944#else
945int FNIEMTBNATIVE(PVMCPUCC pVCpu, PCPUMCTX pCtx)
946#endif
947#if RT_CPLUSPLUS_PREREQ(201700)
948 IEM_NOEXCEPT_MAY_LONGJMP
949#endif
950 ;
951/** Pointer to a native IEM TB entry point function.
952 * This will throw/longjmp on occation. */
953typedef FNIEMTBNATIVE *PFNIEMTBNATIVE;
954
955
956/**
957 * Translation block debug info entry type.
958 */
959typedef enum IEMTBDBGENTRYTYPE
960{
961 kIemTbDbgEntryType_Invalid = 0,
962 /** The entry is for marking a native code position.
963 * Entries following this all apply to this position. */
964 kIemTbDbgEntryType_NativeOffset,
965 /** The entry is for a new guest instruction. */
966 kIemTbDbgEntryType_GuestInstruction,
967 /** Marks the start of a threaded call. */
968 kIemTbDbgEntryType_ThreadedCall,
969 /** Marks the location of a label. */
970 kIemTbDbgEntryType_Label,
971 /** Info about a host register shadowing a guest register. */
972 kIemTbDbgEntryType_GuestRegShadowing,
973#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
974 /** Info about a host SIMD register shadowing a guest SIMD register. */
975 kIemTbDbgEntryType_GuestSimdRegShadowing,
976#endif
977#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
978 /** Info about a delayed RIP update. */
979 kIemTbDbgEntryType_DelayedPcUpdate,
980#endif
981 kIemTbDbgEntryType_End
982} IEMTBDBGENTRYTYPE;
983
984/**
985 * Translation block debug info entry.
986 */
987typedef union IEMTBDBGENTRY
988{
989 /** Plain 32-bit view. */
990 uint32_t u;
991
992 /** Generic view for getting at the type field. */
993 struct
994 {
995 /** IEMTBDBGENTRYTYPE */
996 uint32_t uType : 4;
997 uint32_t uTypeSpecific : 28;
998 } Gen;
999
1000 struct
1001 {
1002 /** kIemTbDbgEntryType_ThreadedCall1. */
1003 uint32_t uType : 4;
1004 /** Native code offset. */
1005 uint32_t offNative : 28;
1006 } NativeOffset;
1007
1008 struct
1009 {
1010 /** kIemTbDbgEntryType_GuestInstruction. */
1011 uint32_t uType : 4;
1012 uint32_t uUnused : 4;
1013 /** The IEM_F_XXX flags. */
1014 uint32_t fExec : 24;
1015 } GuestInstruction;
1016
1017 struct
1018 {
1019 /* kIemTbDbgEntryType_ThreadedCall. */
1020 uint32_t uType : 4;
1021 /** Set if the call was recompiled to native code, clear if just calling
1022 * threaded function. */
1023 uint32_t fRecompiled : 1;
1024 uint32_t uUnused : 11;
1025 /** The threaded call number (IEMTHREADEDFUNCS). */
1026 uint32_t enmCall : 16;
1027 } ThreadedCall;
1028
1029 struct
1030 {
1031 /* kIemTbDbgEntryType_Label. */
1032 uint32_t uType : 4;
1033 uint32_t uUnused : 4;
1034 /** The label type (IEMNATIVELABELTYPE). */
1035 uint32_t enmLabel : 8;
1036 /** The label data. */
1037 uint32_t uData : 16;
1038 } Label;
1039
1040 struct
1041 {
1042 /* kIemTbDbgEntryType_GuestRegShadowing. */
1043 uint32_t uType : 4;
1044 uint32_t uUnused : 4;
1045 /** The guest register being shadowed (IEMNATIVEGSTREG). */
1046 uint32_t idxGstReg : 8;
1047 /** The host new register number, UINT8_MAX if dropped. */
1048 uint32_t idxHstReg : 8;
1049 /** The previous host register number, UINT8_MAX if new. */
1050 uint32_t idxHstRegPrev : 8;
1051 } GuestRegShadowing;
1052
1053#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1054 struct
1055 {
1056 /* kIemTbDbgEntryType_GuestSimdRegShadowing. */
1057 uint32_t uType : 4;
1058 uint32_t uUnused : 4;
1059 /** The guest register being shadowed (IEMNATIVEGSTSIMDREG). */
1060 uint32_t idxGstSimdReg : 8;
1061 /** The host new register number, UINT8_MAX if dropped. */
1062 uint32_t idxHstSimdReg : 8;
1063 /** The previous host register number, UINT8_MAX if new. */
1064 uint32_t idxHstSimdRegPrev : 8;
1065 } GuestSimdRegShadowing;
1066#endif
1067
1068#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1069 struct
1070 {
1071 /* kIemTbDbgEntryType_DelayedPcUpdate. */
1072 uint32_t uType : 4;
1073 /* The instruction offset added to the program counter. */
1074 uint32_t offPc : 14;
1075 /** Number of instructions skipped. */
1076 uint32_t cInstrSkipped : 14;
1077 } DelayedPcUpdate;
1078#endif
1079
1080} IEMTBDBGENTRY;
1081AssertCompileSize(IEMTBDBGENTRY, sizeof(uint32_t));
1082/** Pointer to a debug info entry. */
1083typedef IEMTBDBGENTRY *PIEMTBDBGENTRY;
1084/** Pointer to a const debug info entry. */
1085typedef IEMTBDBGENTRY const *PCIEMTBDBGENTRY;
1086
1087/**
1088 * Translation block debug info.
1089 */
1090typedef struct IEMTBDBG
1091{
1092 /** Number of entries in aEntries. */
1093 uint32_t cEntries;
1094 /** Debug info entries. */
1095 RT_FLEXIBLE_ARRAY_EXTENSION
1096 IEMTBDBGENTRY aEntries[RT_FLEXIBLE_ARRAY];
1097} IEMTBDBG;
1098/** Pointer to TB debug info. */
1099typedef IEMTBDBG *PIEMTBDBG;
1100/** Pointer to const TB debug info. */
1101typedef IEMTBDBG const *PCIEMTBDBG;
1102
1103
1104/**
1105 * Translation block.
1106 *
1107 * The current plan is to just keep TBs and associated lookup hash table private
1108 * to each VCpu as that simplifies TB removal greatly (no races) and generally
1109 * avoids using expensive atomic primitives for updating lists and stuff.
1110 */
1111#pragma pack(2) /* to prevent the Thrd structure from being padded unnecessarily */
1112typedef struct IEMTB
1113{
1114 /** Next block with the same hash table entry. */
1115 struct IEMTB *pNext;
1116 /** Usage counter. */
1117 uint32_t cUsed;
1118 /** The IEMCPU::msRecompilerPollNow last time it was used. */
1119 uint32_t msLastUsed;
1120
1121 /** @name What uniquely identifies the block.
1122 * @{ */
1123 RTGCPHYS GCPhysPc;
1124 /** IEMTB_F_XXX (i.e. IEM_F_XXX ++). */
1125 uint32_t fFlags;
1126 union
1127 {
1128 struct
1129 {
1130 /**< Relevant CS X86DESCATTR_XXX bits. */
1131 uint16_t fAttr;
1132 } x86;
1133 };
1134 /** @} */
1135
1136 /** Number of opcode ranges. */
1137 uint8_t cRanges;
1138 /** Statistics: Number of instructions in the block. */
1139 uint8_t cInstructions;
1140
1141 /** Type specific info. */
1142 union
1143 {
1144 struct
1145 {
1146 /** The call sequence table. */
1147 PIEMTHRDEDCALLENTRY paCalls;
1148 /** Number of calls in paCalls. */
1149 uint16_t cCalls;
1150 /** Number of calls allocated. */
1151 uint16_t cAllocated;
1152 } Thrd;
1153 struct
1154 {
1155 /** The native instructions (PFNIEMTBNATIVE). */
1156 PIEMNATIVEINSTR paInstructions;
1157 /** Number of instructions pointed to by paInstructions. */
1158 uint32_t cInstructions;
1159 } Native;
1160 /** Generic view for zeroing when freeing. */
1161 struct
1162 {
1163 uintptr_t uPtr;
1164 uint32_t uData;
1165 } Gen;
1166 };
1167
1168 /** The allocation chunk this TB belongs to. */
1169 uint8_t idxAllocChunk;
1170 uint8_t bUnused;
1171
1172 /** Number of bytes of opcodes stored in pabOpcodes.
1173 * @todo this field isn't really needed, aRanges keeps the actual info. */
1174 uint16_t cbOpcodes;
1175 /** Pointer to the opcode bytes this block was recompiled from. */
1176 uint8_t *pabOpcodes;
1177
1178 /** Debug info if enabled.
1179 * This is only generated by the native recompiler. */
1180 PIEMTBDBG pDbgInfo;
1181
1182 /* --- 64 byte cache line end --- */
1183
1184 /** Opcode ranges.
1185 *
1186 * The opcode checkers and maybe TLB loading functions will use this to figure
1187 * out what to do. The parameter will specify an entry and the opcode offset to
1188 * start at and the minimum number of bytes to verify (instruction length).
1189 *
1190 * When VT-x and AMD-V looks up the opcode bytes for an exitting instruction,
1191 * they'll first translate RIP (+ cbInstr - 1) to a physical address using the
1192 * code TLB (must have a valid entry for that address) and scan the ranges to
1193 * locate the corresponding opcodes. Probably.
1194 */
1195 struct IEMTBOPCODERANGE
1196 {
1197 /** Offset within pabOpcodes. */
1198 uint16_t offOpcodes;
1199 /** Number of bytes. */
1200 uint16_t cbOpcodes;
1201 /** The page offset. */
1202 RT_GCC_EXTENSION
1203 uint16_t offPhysPage : 12;
1204 /** Unused bits. */
1205 RT_GCC_EXTENSION
1206 uint16_t u2Unused : 2;
1207 /** Index into GCPhysPc + aGCPhysPages for the physical page address. */
1208 RT_GCC_EXTENSION
1209 uint16_t idxPhysPage : 2;
1210 } aRanges[8];
1211
1212 /** Physical pages that this TB covers.
1213 * The GCPhysPc w/o page offset is element zero, so starting here with 1. */
1214 RTGCPHYS aGCPhysPages[2];
1215} IEMTB;
1216#pragma pack()
1217AssertCompileMemberAlignment(IEMTB, GCPhysPc, sizeof(RTGCPHYS));
1218AssertCompileMemberAlignment(IEMTB, Thrd, sizeof(void *));
1219AssertCompileMemberAlignment(IEMTB, pabOpcodes, sizeof(void *));
1220AssertCompileMemberAlignment(IEMTB, pDbgInfo, sizeof(void *));
1221AssertCompileMemberAlignment(IEMTB, aGCPhysPages, sizeof(RTGCPHYS));
1222AssertCompileMemberOffset(IEMTB, aRanges, 64);
1223AssertCompileMemberSize(IEMTB, aRanges[0], 6);
1224#if 1
1225AssertCompileSize(IEMTB, 128);
1226# define IEMTB_SIZE_IS_POWER_OF_TWO /**< The IEMTB size is a power of two. */
1227#else
1228AssertCompileSize(IEMTB, 168);
1229# undef IEMTB_SIZE_IS_POWER_OF_TWO
1230#endif
1231
1232/** Pointer to a translation block. */
1233typedef IEMTB *PIEMTB;
1234/** Pointer to a const translation block. */
1235typedef IEMTB const *PCIEMTB;
1236
1237/**
1238 * A chunk of memory in the TB allocator.
1239 */
1240typedef struct IEMTBCHUNK
1241{
1242 /** Pointer to the translation blocks in this chunk. */
1243 PIEMTB paTbs;
1244#ifdef IN_RING0
1245 /** Allocation handle. */
1246 RTR0MEMOBJ hMemObj;
1247#endif
1248} IEMTBCHUNK;
1249
1250/**
1251 * A per-CPU translation block allocator.
1252 *
1253 * Because of how the IEMTBCACHE uses the lower 6 bits of the TB address to keep
1254 * the length of the collision list, and of course also for cache line alignment
1255 * reasons, the TBs must be allocated with at least 64-byte alignment.
1256 * Memory is there therefore allocated using one of the page aligned allocators.
1257 *
1258 *
1259 * To avoid wasting too much memory, it is allocated piecemeal as needed,
1260 * in chunks (IEMTBCHUNK) of 2 MiB or more. The TB has an 8-bit chunk index
1261 * that enables us to quickly calculate the allocation bitmap position when
1262 * freeing the translation block.
1263 */
1264typedef struct IEMTBALLOCATOR
1265{
1266 /** Magic value (IEMTBALLOCATOR_MAGIC). */
1267 uint32_t uMagic;
1268
1269#ifdef IEMTB_SIZE_IS_POWER_OF_TWO
1270 /** Mask corresponding to cTbsPerChunk - 1. */
1271 uint32_t fChunkMask;
1272 /** Shift count corresponding to cTbsPerChunk. */
1273 uint8_t cChunkShift;
1274#else
1275 uint32_t uUnused;
1276 uint8_t bUnused;
1277#endif
1278 /** Number of chunks we're allowed to allocate. */
1279 uint8_t cMaxChunks;
1280 /** Number of chunks currently populated. */
1281 uint16_t cAllocatedChunks;
1282 /** Number of translation blocks per chunk. */
1283 uint32_t cTbsPerChunk;
1284 /** Chunk size. */
1285 uint32_t cbPerChunk;
1286
1287 /** The maximum number of TBs. */
1288 uint32_t cMaxTbs;
1289 /** Total number of TBs in the populated chunks.
1290 * (cAllocatedChunks * cTbsPerChunk) */
1291 uint32_t cTotalTbs;
1292 /** The current number of TBs in use.
1293 * The number of free TBs: cAllocatedTbs - cInUseTbs; */
1294 uint32_t cInUseTbs;
1295 /** Statistics: Number of the cInUseTbs that are native ones. */
1296 uint32_t cNativeTbs;
1297 /** Statistics: Number of the cInUseTbs that are threaded ones. */
1298 uint32_t cThreadedTbs;
1299
1300 /** Where to start pruning TBs from when we're out.
1301 * See iemTbAllocatorAllocSlow for details. */
1302 uint32_t iPruneFrom;
1303 /** Hint about which bit to start scanning the bitmap from. */
1304 uint32_t iStartHint;
1305 /** Where to start pruning native TBs from when we're out of executable memory.
1306 * See iemTbAllocatorFreeupNativeSpace for details. */
1307 uint32_t iPruneNativeFrom;
1308 uint32_t uPadding;
1309
1310 /** Statistics: Number of TB allocation calls. */
1311 STAMCOUNTER StatAllocs;
1312 /** Statistics: Number of TB free calls. */
1313 STAMCOUNTER StatFrees;
1314 /** Statistics: Time spend pruning. */
1315 STAMPROFILE StatPrune;
1316 /** Statistics: Time spend pruning native TBs. */
1317 STAMPROFILE StatPruneNative;
1318
1319 /** The delayed free list (see iemTbAlloctorScheduleForFree). */
1320 PIEMTB pDelayedFreeHead;
1321
1322 /** Allocation chunks. */
1323 IEMTBCHUNK aChunks[256];
1324
1325 /** Allocation bitmap for all possible chunk chunks. */
1326 RT_FLEXIBLE_ARRAY_EXTENSION
1327 uint64_t bmAllocated[RT_FLEXIBLE_ARRAY];
1328} IEMTBALLOCATOR;
1329/** Pointer to a TB allocator. */
1330typedef struct IEMTBALLOCATOR *PIEMTBALLOCATOR;
1331
1332/** Magic value for the TB allocator (Emmet Harley Cohen). */
1333#define IEMTBALLOCATOR_MAGIC UINT32_C(0x19900525)
1334
1335
1336/**
1337 * A per-CPU translation block cache (hash table).
1338 *
1339 * The hash table is allocated once during IEM initialization and size double
1340 * the max TB count, rounded up to the nearest power of two (so we can use and
1341 * AND mask rather than a rest division when hashing).
1342 */
1343typedef struct IEMTBCACHE
1344{
1345 /** Magic value (IEMTBCACHE_MAGIC). */
1346 uint32_t uMagic;
1347 /** Size of the hash table. This is a power of two. */
1348 uint32_t cHash;
1349 /** The mask corresponding to cHash. */
1350 uint32_t uHashMask;
1351 uint32_t uPadding;
1352
1353 /** @name Statistics
1354 * @{ */
1355 /** Number of collisions ever. */
1356 STAMCOUNTER cCollisions;
1357
1358 /** Statistics: Number of TB lookup misses. */
1359 STAMCOUNTER cLookupMisses;
1360 /** Statistics: Number of TB lookup hits (debug only). */
1361 STAMCOUNTER cLookupHits;
1362 STAMCOUNTER auPadding2[3];
1363 /** Statistics: Collision list length pruning. */
1364 STAMPROFILE StatPrune;
1365 /** @} */
1366
1367 /** The hash table itself.
1368 * @note The lower 6 bits of the pointer is used for keeping the collision
1369 * list length, so we can take action when it grows too long.
1370 * This works because TBs are allocated using a 64 byte (or
1371 * higher) alignment from page aligned chunks of memory, so the lower
1372 * 6 bits of the address will always be zero.
1373 * See IEMTBCACHE_PTR_COUNT_MASK, IEMTBCACHE_PTR_MAKE and friends.
1374 */
1375 RT_FLEXIBLE_ARRAY_EXTENSION
1376 PIEMTB apHash[RT_FLEXIBLE_ARRAY];
1377} IEMTBCACHE;
1378/** Pointer to a per-CPU translation block cahce. */
1379typedef IEMTBCACHE *PIEMTBCACHE;
1380
1381/** Magic value for IEMTBCACHE (Johnny O'Neal). */
1382#define IEMTBCACHE_MAGIC UINT32_C(0x19561010)
1383
1384/** The collision count mask for IEMTBCACHE::apHash entries. */
1385#define IEMTBCACHE_PTR_COUNT_MASK ((uintptr_t)0x3f)
1386/** The max collision count for IEMTBCACHE::apHash entries before pruning. */
1387#define IEMTBCACHE_PTR_MAX_COUNT ((uintptr_t)0x30)
1388/** Combine a TB pointer and a collision list length into a value for an
1389 * IEMTBCACHE::apHash entry. */
1390#define IEMTBCACHE_PTR_MAKE(a_pTb, a_cCount) (PIEMTB)((uintptr_t)(a_pTb) | (a_cCount))
1391/** Combine a TB pointer and a collision list length into a value for an
1392 * IEMTBCACHE::apHash entry. */
1393#define IEMTBCACHE_PTR_GET_TB(a_pHashEntry) (PIEMTB)((uintptr_t)(a_pHashEntry) & ~IEMTBCACHE_PTR_COUNT_MASK)
1394/** Combine a TB pointer and a collision list length into a value for an
1395 * IEMTBCACHE::apHash entry. */
1396#define IEMTBCACHE_PTR_GET_COUNT(a_pHashEntry) ((uintptr_t)(a_pHashEntry) & IEMTBCACHE_PTR_COUNT_MASK)
1397
1398/**
1399 * Calculates the hash table slot for a TB from physical PC address and TB flags.
1400 */
1401#define IEMTBCACHE_HASH(a_paCache, a_fTbFlags, a_GCPhysPc) \
1402 IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, (a_fTbFlags) & IEMTB_F_KEY_MASK, a_GCPhysPc)
1403
1404/**
1405 * Calculates the hash table slot for a TB from physical PC address and TB
1406 * flags, ASSUMING the caller has applied IEMTB_F_KEY_MASK to @a a_fTbFlags.
1407 */
1408#define IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, a_fTbFlags, a_GCPhysPc) \
1409 (((uint32_t)(a_GCPhysPc) ^ (a_fTbFlags)) & (a_paCache)->uHashMask)
1410
1411
1412/** @name IEMBRANCHED_F_XXX - Branched indicator (IEMCPU::fTbBranched).
1413 *
1414 * These flags parallels the main IEM_CIMPL_F_BRANCH_XXX flags.
1415 *
1416 * @{ */
1417/** Value if no branching happened recently. */
1418#define IEMBRANCHED_F_NO UINT8_C(0x00)
1419/** Flag set if direct branch, clear if absolute or indirect. */
1420#define IEMBRANCHED_F_DIRECT UINT8_C(0x01)
1421/** Flag set if indirect branch, clear if direct or relative. */
1422#define IEMBRANCHED_F_INDIRECT UINT8_C(0x02)
1423/** Flag set if relative branch, clear if absolute or indirect. */
1424#define IEMBRANCHED_F_RELATIVE UINT8_C(0x04)
1425/** Flag set if conditional branch, clear if unconditional. */
1426#define IEMBRANCHED_F_CONDITIONAL UINT8_C(0x08)
1427/** Flag set if it's a far branch. */
1428#define IEMBRANCHED_F_FAR UINT8_C(0x10)
1429/** Flag set if the stack pointer is modified. */
1430#define IEMBRANCHED_F_STACK UINT8_C(0x20)
1431/** Flag set if the stack pointer and (maybe) the stack segment are modified. */
1432#define IEMBRANCHED_F_STACK_FAR UINT8_C(0x40)
1433/** Flag set (by IEM_MC_REL_JMP_XXX) if it's a zero bytes relative jump. */
1434#define IEMBRANCHED_F_ZERO UINT8_C(0x80)
1435/** @} */
1436
1437
1438/**
1439 * The per-CPU IEM state.
1440 */
1441typedef struct IEMCPU
1442{
1443 /** Info status code that needs to be propagated to the IEM caller.
1444 * This cannot be passed internally, as it would complicate all success
1445 * checks within the interpreter making the code larger and almost impossible
1446 * to get right. Instead, we'll store status codes to pass on here. Each
1447 * source of these codes will perform appropriate sanity checks. */
1448 int32_t rcPassUp; /* 0x00 */
1449 /** Execution flag, IEM_F_XXX. */
1450 uint32_t fExec; /* 0x04 */
1451
1452 /** @name Decoder state.
1453 * @{ */
1454#ifdef IEM_WITH_CODE_TLB
1455 /** The offset of the next instruction byte. */
1456 uint32_t offInstrNextByte; /* 0x08 */
1457 /** The number of bytes available at pbInstrBuf for the current instruction.
1458 * This takes the max opcode length into account so that doesn't need to be
1459 * checked separately. */
1460 uint32_t cbInstrBuf; /* 0x0c */
1461 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
1462 * This can be NULL if the page isn't mappable for some reason, in which
1463 * case we'll do fallback stuff.
1464 *
1465 * If we're executing an instruction from a user specified buffer,
1466 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
1467 * aligned pointer but pointer to the user data.
1468 *
1469 * For instructions crossing pages, this will start on the first page and be
1470 * advanced to the next page by the time we've decoded the instruction. This
1471 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
1472 */
1473 uint8_t const *pbInstrBuf; /* 0x10 */
1474# if ARCH_BITS == 32
1475 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
1476# endif
1477 /** The program counter corresponding to pbInstrBuf.
1478 * This is set to a non-canonical address when we need to invalidate it. */
1479 uint64_t uInstrBufPc; /* 0x18 */
1480 /** The guest physical address corresponding to pbInstrBuf. */
1481 RTGCPHYS GCPhysInstrBuf; /* 0x20 */
1482 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
1483 * This takes the CS segment limit into account.
1484 * @note Set to zero when the code TLB is flushed to trigger TLB reload. */
1485 uint16_t cbInstrBufTotal; /* 0x28 */
1486# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1487 /** Offset into pbInstrBuf of the first byte of the current instruction.
1488 * Can be negative to efficiently handle cross page instructions. */
1489 int16_t offCurInstrStart; /* 0x2a */
1490
1491 /** The prefix mask (IEM_OP_PRF_XXX). */
1492 uint32_t fPrefixes; /* 0x2c */
1493 /** The extra REX ModR/M register field bit (REX.R << 3). */
1494 uint8_t uRexReg; /* 0x30 */
1495 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1496 * (REX.B << 3). */
1497 uint8_t uRexB; /* 0x31 */
1498 /** The extra REX SIB index field bit (REX.X << 3). */
1499 uint8_t uRexIndex; /* 0x32 */
1500
1501 /** The effective segment register (X86_SREG_XXX). */
1502 uint8_t iEffSeg; /* 0x33 */
1503
1504 /** The offset of the ModR/M byte relative to the start of the instruction. */
1505 uint8_t offModRm; /* 0x34 */
1506
1507# ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
1508 /** The current offset into abOpcode. */
1509 uint8_t offOpcode; /* 0x35 */
1510# else
1511 uint8_t bUnused; /* 0x35 */
1512# endif
1513# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1514 uint8_t abOpaqueDecoderPart1[0x36 - 0x2a];
1515# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1516
1517#else /* !IEM_WITH_CODE_TLB */
1518# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1519 /** The size of what has currently been fetched into abOpcode. */
1520 uint8_t cbOpcode; /* 0x08 */
1521 /** The current offset into abOpcode. */
1522 uint8_t offOpcode; /* 0x09 */
1523 /** The offset of the ModR/M byte relative to the start of the instruction. */
1524 uint8_t offModRm; /* 0x0a */
1525
1526 /** The effective segment register (X86_SREG_XXX). */
1527 uint8_t iEffSeg; /* 0x0b */
1528
1529 /** The prefix mask (IEM_OP_PRF_XXX). */
1530 uint32_t fPrefixes; /* 0x0c */
1531 /** The extra REX ModR/M register field bit (REX.R << 3). */
1532 uint8_t uRexReg; /* 0x10 */
1533 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1534 * (REX.B << 3). */
1535 uint8_t uRexB; /* 0x11 */
1536 /** The extra REX SIB index field bit (REX.X << 3). */
1537 uint8_t uRexIndex; /* 0x12 */
1538
1539# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1540 uint8_t abOpaqueDecoderPart1[0x13 - 0x08];
1541# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1542#endif /* !IEM_WITH_CODE_TLB */
1543
1544#ifndef IEM_WITH_OPAQUE_DECODER_STATE
1545 /** The effective operand mode. */
1546 IEMMODE enmEffOpSize; /* 0x36, 0x13 */
1547 /** The default addressing mode. */
1548 IEMMODE enmDefAddrMode; /* 0x37, 0x14 */
1549 /** The effective addressing mode. */
1550 IEMMODE enmEffAddrMode; /* 0x38, 0x15 */
1551 /** The default operand mode. */
1552 IEMMODE enmDefOpSize; /* 0x39, 0x16 */
1553
1554 /** Prefix index (VEX.pp) for two byte and three byte tables. */
1555 uint8_t idxPrefix; /* 0x3a, 0x17 */
1556 /** 3rd VEX/EVEX/XOP register.
1557 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
1558 uint8_t uVex3rdReg; /* 0x3b, 0x18 */
1559 /** The VEX/EVEX/XOP length field. */
1560 uint8_t uVexLength; /* 0x3c, 0x19 */
1561 /** Additional EVEX stuff. */
1562 uint8_t fEvexStuff; /* 0x3d, 0x1a */
1563
1564# ifndef IEM_WITH_CODE_TLB
1565 /** Explicit alignment padding. */
1566 uint8_t abAlignment2a[1]; /* 0x1b */
1567# endif
1568 /** The FPU opcode (FOP). */
1569 uint16_t uFpuOpcode; /* 0x3e, 0x1c */
1570# ifndef IEM_WITH_CODE_TLB
1571 /** Explicit alignment padding. */
1572 uint8_t abAlignment2b[2]; /* 0x1e */
1573# endif
1574
1575 /** The opcode bytes. */
1576 uint8_t abOpcode[15]; /* 0x40, 0x20 */
1577 /** Explicit alignment padding. */
1578# ifdef IEM_WITH_CODE_TLB
1579 //uint8_t abAlignment2c[0x4f - 0x4f]; /* 0x4f */
1580# else
1581 uint8_t abAlignment2c[0x4f - 0x2f]; /* 0x2f */
1582# endif
1583
1584#else /* IEM_WITH_OPAQUE_DECODER_STATE */
1585# ifdef IEM_WITH_CODE_TLB
1586 uint8_t abOpaqueDecoderPart2[0x4f - 0x36];
1587# else
1588 uint8_t abOpaqueDecoderPart2[0x4f - 0x13];
1589# endif
1590#endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1591 /** @} */
1592
1593
1594 /** The number of active guest memory mappings. */
1595 uint8_t cActiveMappings; /* 0x4f, 0x4f */
1596
1597 /** Records for tracking guest memory mappings. */
1598 struct
1599 {
1600 /** The address of the mapped bytes. */
1601 R3R0PTRTYPE(void *) pv;
1602 /** The access flags (IEM_ACCESS_XXX).
1603 * IEM_ACCESS_INVALID if the entry is unused. */
1604 uint32_t fAccess;
1605#if HC_ARCH_BITS == 64
1606 uint32_t u32Alignment4; /**< Alignment padding. */
1607#endif
1608 } aMemMappings[3]; /* 0x50 LB 0x30 */
1609
1610 /** Locking records for the mapped memory. */
1611 union
1612 {
1613 PGMPAGEMAPLOCK Lock;
1614 uint64_t au64Padding[2];
1615 } aMemMappingLocks[3]; /* 0x80 LB 0x30 */
1616
1617 /** Bounce buffer info.
1618 * This runs in parallel to aMemMappings. */
1619 struct
1620 {
1621 /** The physical address of the first byte. */
1622 RTGCPHYS GCPhysFirst;
1623 /** The physical address of the second page. */
1624 RTGCPHYS GCPhysSecond;
1625 /** The number of bytes in the first page. */
1626 uint16_t cbFirst;
1627 /** The number of bytes in the second page. */
1628 uint16_t cbSecond;
1629 /** Whether it's unassigned memory. */
1630 bool fUnassigned;
1631 /** Explicit alignment padding. */
1632 bool afAlignment5[3];
1633 } aMemBbMappings[3]; /* 0xb0 LB 0x48 */
1634
1635 /** The flags of the current exception / interrupt. */
1636 uint32_t fCurXcpt; /* 0xf8 */
1637 /** The current exception / interrupt. */
1638 uint8_t uCurXcpt; /* 0xfc */
1639 /** Exception / interrupt recursion depth. */
1640 int8_t cXcptRecursions; /* 0xfb */
1641
1642 /** The next unused mapping index.
1643 * @todo try find room for this up with cActiveMappings. */
1644 uint8_t iNextMapping; /* 0xfd */
1645 uint8_t abAlignment7[1];
1646
1647 /** Bounce buffer storage.
1648 * This runs in parallel to aMemMappings and aMemBbMappings. */
1649 struct
1650 {
1651 uint8_t ab[512];
1652 } aBounceBuffers[3]; /* 0x100 LB 0x600 */
1653
1654
1655 /** Pointer set jump buffer - ring-3 context. */
1656 R3PTRTYPE(jmp_buf *) pJmpBufR3;
1657 /** Pointer set jump buffer - ring-0 context. */
1658 R0PTRTYPE(jmp_buf *) pJmpBufR0;
1659
1660 /** @todo Should move this near @a fCurXcpt later. */
1661 /** The CR2 for the current exception / interrupt. */
1662 uint64_t uCurXcptCr2;
1663 /** The error code for the current exception / interrupt. */
1664 uint32_t uCurXcptErr;
1665
1666 /** @name Statistics
1667 * @{ */
1668 /** The number of instructions we've executed. */
1669 uint32_t cInstructions;
1670 /** The number of potential exits. */
1671 uint32_t cPotentialExits;
1672 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
1673 * This may contain uncommitted writes. */
1674 uint32_t cbWritten;
1675 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
1676 uint32_t cRetInstrNotImplemented;
1677 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
1678 uint32_t cRetAspectNotImplemented;
1679 /** Counts informational statuses returned (other than VINF_SUCCESS). */
1680 uint32_t cRetInfStatuses;
1681 /** Counts other error statuses returned. */
1682 uint32_t cRetErrStatuses;
1683 /** Number of times rcPassUp has been used. */
1684 uint32_t cRetPassUpStatus;
1685 /** Number of times RZ left with instruction commit pending for ring-3. */
1686 uint32_t cPendingCommit;
1687 /** Number of misaligned (host sense) atomic instruction accesses. */
1688 uint32_t cMisalignedAtomics;
1689 /** Number of long jumps. */
1690 uint32_t cLongJumps;
1691 /** @} */
1692
1693 /** @name Target CPU information.
1694 * @{ */
1695#if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
1696 /** The target CPU. */
1697 uint8_t uTargetCpu;
1698#else
1699 uint8_t bTargetCpuPadding;
1700#endif
1701 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
1702 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
1703 * native host support and the 2nd for when there is.
1704 *
1705 * The two values are typically indexed by a g_CpumHostFeatures bit.
1706 *
1707 * This is for instance used for the BSF & BSR instructions where AMD and
1708 * Intel CPUs produce different EFLAGS. */
1709 uint8_t aidxTargetCpuEflFlavour[2];
1710
1711 /** The CPU vendor. */
1712 CPUMCPUVENDOR enmCpuVendor;
1713 /** @} */
1714
1715 /** @name Host CPU information.
1716 * @{ */
1717 /** The CPU vendor. */
1718 CPUMCPUVENDOR enmHostCpuVendor;
1719 /** @} */
1720
1721 /** Counts RDMSR \#GP(0) LogRel(). */
1722 uint8_t cLogRelRdMsr;
1723 /** Counts WRMSR \#GP(0) LogRel(). */
1724 uint8_t cLogRelWrMsr;
1725 /** Alignment padding. */
1726 uint8_t abAlignment9[42];
1727
1728 /** @name Recompilation
1729 * @{ */
1730 /** Pointer to the current translation block.
1731 * This can either be one being executed or one being compiled. */
1732 R3PTRTYPE(PIEMTB) pCurTbR3;
1733#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
1734 /** Frame pointer for the last native TB to execute. */
1735 R3PTRTYPE(void *) pvTbFramePointerR3;
1736#else
1737 R3PTRTYPE(void *) pvUnusedR3;
1738#endif
1739 /** Fixed TB used for threaded recompilation.
1740 * This is allocated once with maxed-out sizes and re-used afterwards. */
1741 R3PTRTYPE(PIEMTB) pThrdCompileTbR3;
1742 /** Pointer to the ring-3 TB cache for this EMT. */
1743 R3PTRTYPE(PIEMTBCACHE) pTbCacheR3;
1744 /** The PC (RIP) at the start of pCurTbR3/pCurTbR0.
1745 * The TBs are based on physical addresses, so this is needed to correleated
1746 * RIP to opcode bytes stored in the TB (AMD-V / VT-x). */
1747 uint64_t uCurTbStartPc;
1748 /** Number of threaded TBs executed. */
1749 uint64_t cTbExecThreaded;
1750 /** Number of native TBs executed. */
1751 uint64_t cTbExecNative;
1752 /** Whether we need to check the opcode bytes for the current instruction.
1753 * This is set by a previous instruction if it modified memory or similar. */
1754 bool fTbCheckOpcodes;
1755 /** Indicates whether and how we just branched - IEMBRANCHED_F_XXX. */
1756 uint8_t fTbBranched;
1757 /** Set when GCPhysInstrBuf is updated because of a page crossing. */
1758 bool fTbCrossedPage;
1759 /** Whether to end the current TB. */
1760 bool fEndTb;
1761 /** Number of instructions before we need emit an IRQ check call again.
1762 * This helps making sure we don't execute too long w/o checking for
1763 * interrupts and immediately following instructions that may enable
1764 * interrupts (e.g. POPF, IRET, STI). With STI an additional hack is
1765 * required to make sure we check following the next instruction as well, see
1766 * fTbCurInstrIsSti. */
1767 uint8_t cInstrTillIrqCheck;
1768 /** Indicates that the current instruction is an STI. This is set by the
1769 * iemCImpl_sti code and subsequently cleared by the recompiler. */
1770 bool fTbCurInstrIsSti;
1771 /** The size of the IEMTB::pabOpcodes allocation in pThrdCompileTbR3. */
1772 uint16_t cbOpcodesAllocated;
1773 /** The current instruction number in a native TB.
1774 * This is set by code that may trigger an unexpected TB exit (throw/longjmp)
1775 * and will be picked up by the TB execution loop. Only used when
1776 * IEMNATIVE_WITH_INSTRUCTION_COUNTING is defined. */
1777 uint8_t idxTbCurInstr;
1778 /** Spaced reserved for recompiler data / alignment. */
1779 bool afRecompilerStuff1[3];
1780 /** The virtual sync time at the last timer poll call. */
1781 uint32_t msRecompilerPollNow;
1782 /** The IEM_CIMPL_F_XXX mask for the current instruction. */
1783 uint32_t fTbCurInstr;
1784 /** The IEM_CIMPL_F_XXX mask for the previous instruction. */
1785 uint32_t fTbPrevInstr;
1786 /** Previous GCPhysInstrBuf value - only valid if fTbCrossedPage is set. */
1787 RTGCPHYS GCPhysInstrBufPrev;
1788 /** Strict: Tracking skipped EFLAGS calculations. Any bits set here are
1789 * currently not up to date in EFLAGS. */
1790 uint32_t fSkippingEFlags;
1791 uint32_t au32Padding[1];
1792 /** Pointer to the ring-3 TB allocator for this EMT. */
1793 R3PTRTYPE(PIEMTBALLOCATOR) pTbAllocatorR3;
1794 /** Pointer to the ring-3 executable memory allocator for this EMT. */
1795 R3PTRTYPE(struct IEMEXECMEMALLOCATOR *) pExecMemAllocatorR3;
1796 /** Pointer to the native recompiler state for ring-3. */
1797 R3PTRTYPE(struct IEMRECOMPILERSTATE *) pNativeRecompilerStateR3;
1798
1799 /** Statistics: Times TB execution was broken off before reaching the end. */
1800 STAMCOUNTER StatTbExecBreaks;
1801 /** Statistics: Times BltIn_CheckIrq breaks out of the TB. */
1802 STAMCOUNTER StatCheckIrqBreaks;
1803 /** Statistics: Times BltIn_CheckMode breaks out of the TB. */
1804 STAMCOUNTER StatCheckModeBreaks;
1805 /** Statistics: Times a post jump target check missed and had to find new TB. */
1806 STAMCOUNTER StatCheckBranchMisses;
1807 /** Statistics: Times a jump or page crossing required a TB with CS.LIM checking. */
1808 STAMCOUNTER StatCheckNeedCsLimChecking;
1809 /** Native TB statistics: Number of fully recompiled TBs. */
1810 STAMCOUNTER StatNativeFullyRecompiledTbs;
1811 /** Threaded TB statistics: Number of instructions per TB. */
1812 STAMPROFILE StatTbThreadedInstr;
1813 /** Threaded TB statistics: Number of calls per TB. */
1814 STAMPROFILE StatTbThreadedCalls;
1815 /** Native TB statistics: Native code size per TB. */
1816 STAMPROFILE StatTbNativeCode;
1817 /** Native TB statistics: Profiling native recompilation. */
1818 STAMPROFILE StatNativeRecompilation;
1819 /** Native TB statistics: Number of calls per TB that were recompiled properly. */
1820 STAMPROFILE StatNativeCallsRecompiled;
1821 /** Native TB statistics: Number of threaded calls per TB that weren't recompiled. */
1822 STAMPROFILE StatNativeCallsThreaded;
1823 /** Native recompiled execution: TLB hits for data fetches. */
1824 STAMCOUNTER StatNativeTlbHitsForFetch;
1825 /** Native recompiled execution: TLB hits for data stores. */
1826 STAMCOUNTER StatNativeTlbHitsForStore;
1827 /** Native recompiled execution: TLB hits for stack accesses. */
1828 STAMCOUNTER StatNativeTlbHitsForStack;
1829 /** Native recompiled execution: TLB hits for mapped accesses. */
1830 STAMCOUNTER StatNativeTlbHitsForMapped;
1831 /** Native recompiled execution: Code TLB misses for new page. */
1832 STAMCOUNTER StatNativeCodeTlbMissesNewPage;
1833 /** Native recompiled execution: Code TLB hits for new page. */
1834 STAMCOUNTER StatNativeCodeTlbHitsForNewPage;
1835 /** Native recompiled execution: Code TLB misses for new page with offset. */
1836 STAMCOUNTER StatNativeCodeTlbMissesNewPageWithOffset;
1837 /** Native recompiled execution: Code TLB hits for new page with offset. */
1838 STAMCOUNTER StatNativeCodeTlbHitsForNewPageWithOffset;
1839
1840 /** Native recompiler: Number of calls to iemNativeRegAllocFindFree. */
1841 STAMCOUNTER StatNativeRegFindFree;
1842 /** Native recompiler: Number of times iemNativeRegAllocFindFree needed
1843 * to free a variable. */
1844 STAMCOUNTER StatNativeRegFindFreeVar;
1845 /** Native recompiler: Number of times iemNativeRegAllocFindFree did
1846 * not need to free any variables. */
1847 STAMCOUNTER StatNativeRegFindFreeNoVar;
1848 /** Native recompiler: Liveness info freed shadowed guest registers in
1849 * iemNativeRegAllocFindFree. */
1850 STAMCOUNTER StatNativeRegFindFreeLivenessUnshadowed;
1851 /** Native recompiler: Liveness info helped with the allocation in
1852 * iemNativeRegAllocFindFree. */
1853 STAMCOUNTER StatNativeRegFindFreeLivenessHelped;
1854
1855 /** Native recompiler: Number of times status flags calc has been skipped. */
1856 STAMCOUNTER StatNativeEflSkippedArithmetic;
1857 /** Native recompiler: Number of times status flags calc has been skipped. */
1858 STAMCOUNTER StatNativeEflSkippedLogical;
1859
1860 /** Native recompiler: Number of opportunities to skip EFLAGS.CF updating. */
1861 STAMCOUNTER StatNativeLivenessEflCfSkippable;
1862 /** Native recompiler: Number of opportunities to skip EFLAGS.PF updating. */
1863 STAMCOUNTER StatNativeLivenessEflPfSkippable;
1864 /** Native recompiler: Number of opportunities to skip EFLAGS.AF updating. */
1865 STAMCOUNTER StatNativeLivenessEflAfSkippable;
1866 /** Native recompiler: Number of opportunities to skip EFLAGS.ZF updating. */
1867 STAMCOUNTER StatNativeLivenessEflZfSkippable;
1868 /** Native recompiler: Number of opportunities to skip EFLAGS.SF updating. */
1869 STAMCOUNTER StatNativeLivenessEflSfSkippable;
1870 /** Native recompiler: Number of opportunities to skip EFLAGS.OF updating. */
1871 STAMCOUNTER StatNativeLivenessEflOfSkippable;
1872 /** Native recompiler: Number of required EFLAGS.CF updates. */
1873 STAMCOUNTER StatNativeLivenessEflCfRequired;
1874 /** Native recompiler: Number of required EFLAGS.PF updates. */
1875 STAMCOUNTER StatNativeLivenessEflPfRequired;
1876 /** Native recompiler: Number of required EFLAGS.AF updates. */
1877 STAMCOUNTER StatNativeLivenessEflAfRequired;
1878 /** Native recompiler: Number of required EFLAGS.ZF updates. */
1879 STAMCOUNTER StatNativeLivenessEflZfRequired;
1880 /** Native recompiler: Number of required EFLAGS.SF updates. */
1881 STAMCOUNTER StatNativeLivenessEflSfRequired;
1882 /** Native recompiler: Number of required EFLAGS.OF updates. */
1883 STAMCOUNTER StatNativeLivenessEflOfRequired;
1884 /** Native recompiler: Number of potentially delayable EFLAGS.CF updates. */
1885 STAMCOUNTER StatNativeLivenessEflCfDelayable;
1886 /** Native recompiler: Number of potentially delayable EFLAGS.PF updates. */
1887 STAMCOUNTER StatNativeLivenessEflPfDelayable;
1888 /** Native recompiler: Number of potentially delayable EFLAGS.AF updates. */
1889 STAMCOUNTER StatNativeLivenessEflAfDelayable;
1890 /** Native recompiler: Number of potentially delayable EFLAGS.ZF updates. */
1891 STAMCOUNTER StatNativeLivenessEflZfDelayable;
1892 /** Native recompiler: Number of potentially delayable EFLAGS.SF updates. */
1893 STAMCOUNTER StatNativeLivenessEflSfDelayable;
1894 /** Native recompiler: Number of potentially delayable EFLAGS.OF updates. */
1895 STAMCOUNTER StatNativeLivenessEflOfDelayable;
1896
1897 /** Native recompiler: Number of potential PC updates in total. */
1898 STAMCOUNTER StatNativePcUpdateTotal;
1899 /** Native recompiler: Number of PC updates which could be delayed. */
1900 STAMCOUNTER StatNativePcUpdateDelayed;
1901
1902#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1903 /** Native recompiler: Number of calls to iemNativeSimdRegAllocFindFree. */
1904 STAMCOUNTER StatNativeSimdRegFindFree;
1905 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree needed
1906 * to free a variable. */
1907 STAMCOUNTER StatNativeSimdRegFindFreeVar;
1908 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree did
1909 * not need to free any variables. */
1910 STAMCOUNTER StatNativeSimdRegFindFreeNoVar;
1911 /** Native recompiler: Liveness info freed shadowed guest registers in
1912 * iemNativeSimdRegAllocFindFree. */
1913 STAMCOUNTER StatNativeSimdRegFindFreeLivenessUnshadowed;
1914 /** Native recompiler: Liveness info helped with the allocation in
1915 * iemNativeSimdRegAllocFindFree. */
1916 STAMCOUNTER StatNativeSimdRegFindFreeLivenessHelped;
1917
1918 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks. */
1919 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckPotential;
1920 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks. */
1921 STAMCOUNTER StatNativeMaybeSseXcptCheckPotential;
1922 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks. */
1923 STAMCOUNTER StatNativeMaybeAvxXcptCheckPotential;
1924
1925 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks omitted. */
1926 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckOmitted;
1927 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks omitted. */
1928 STAMCOUNTER StatNativeMaybeSseXcptCheckOmitted;
1929 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks omitted. */
1930 STAMCOUNTER StatNativeMaybeAvxXcptCheckOmitted;
1931#endif
1932
1933 uint64_t au64Padding[5];
1934 /** @} */
1935
1936 /** Data TLB.
1937 * @remarks Must be 64-byte aligned. */
1938 IEMTLB DataTlb;
1939 /** Instruction TLB.
1940 * @remarks Must be 64-byte aligned. */
1941 IEMTLB CodeTlb;
1942
1943 /** Exception statistics. */
1944 STAMCOUNTER aStatXcpts[32];
1945 /** Interrupt statistics. */
1946 uint32_t aStatInts[256];
1947
1948#if defined(VBOX_WITH_STATISTICS) && !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
1949 /** Instruction statistics for ring-0/raw-mode. */
1950 IEMINSTRSTATS StatsRZ;
1951 /** Instruction statistics for ring-3. */
1952 IEMINSTRSTATS StatsR3;
1953# ifdef VBOX_WITH_IEM_RECOMPILER
1954 /** Statistics per threaded function call.
1955 * Updated by both the threaded and native recompilers. */
1956 uint32_t acThreadedFuncStats[0x5000 /*20480*/];
1957# endif
1958#endif
1959} IEMCPU;
1960AssertCompileMemberOffset(IEMCPU, cActiveMappings, 0x4f);
1961AssertCompileMemberAlignment(IEMCPU, aMemMappings, 16);
1962AssertCompileMemberAlignment(IEMCPU, aMemMappingLocks, 16);
1963AssertCompileMemberAlignment(IEMCPU, aBounceBuffers, 64);
1964AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
1965AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
1966
1967/** Pointer to the per-CPU IEM state. */
1968typedef IEMCPU *PIEMCPU;
1969/** Pointer to the const per-CPU IEM state. */
1970typedef IEMCPU const *PCIEMCPU;
1971
1972
1973/** @def IEM_GET_CTX
1974 * Gets the guest CPU context for the calling EMT.
1975 * @returns PCPUMCTX
1976 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1977 */
1978#define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
1979
1980/** @def IEM_CTX_ASSERT
1981 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
1982 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1983 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
1984 */
1985#define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) \
1986 AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
1987 ("fExtrn=%#RX64 & fExtrnMbz=%#RX64 -> %#RX64\n", \
1988 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz), (a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz) ))
1989
1990/** @def IEM_CTX_IMPORT_RET
1991 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1992 *
1993 * Will call the keep to import the bits as needed.
1994 *
1995 * Returns on import failure.
1996 *
1997 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1998 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
1999 */
2000#define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
2001 do { \
2002 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2003 { /* likely */ } \
2004 else \
2005 { \
2006 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2007 AssertRCReturn(rcCtxImport, rcCtxImport); \
2008 } \
2009 } while (0)
2010
2011/** @def IEM_CTX_IMPORT_NORET
2012 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2013 *
2014 * Will call the keep to import the bits as needed.
2015 *
2016 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2017 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2018 */
2019#define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
2020 do { \
2021 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2022 { /* likely */ } \
2023 else \
2024 { \
2025 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2026 AssertLogRelRC(rcCtxImport); \
2027 } \
2028 } while (0)
2029
2030/** @def IEM_CTX_IMPORT_JMP
2031 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2032 *
2033 * Will call the keep to import the bits as needed.
2034 *
2035 * Jumps on import failure.
2036 *
2037 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2038 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2039 */
2040#define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
2041 do { \
2042 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2043 { /* likely */ } \
2044 else \
2045 { \
2046 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2047 AssertRCStmt(rcCtxImport, IEM_DO_LONGJMP(pVCpu, rcCtxImport)); \
2048 } \
2049 } while (0)
2050
2051
2052
2053/** @def IEM_GET_TARGET_CPU
2054 * Gets the current IEMTARGETCPU value.
2055 * @returns IEMTARGETCPU value.
2056 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2057 */
2058#if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
2059# define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
2060#else
2061# define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
2062#endif
2063
2064/** @def IEM_GET_INSTR_LEN
2065 * Gets the instruction length. */
2066#ifdef IEM_WITH_CODE_TLB
2067# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
2068#else
2069# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
2070#endif
2071
2072/** @def IEM_TRY_SETJMP
2073 * Wrapper around setjmp / try, hiding all the ugly differences.
2074 *
2075 * @note Use with extreme care as this is a fragile macro.
2076 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2077 * @param a_rcTarget The variable that should receive the status code in case
2078 * of a longjmp/throw.
2079 */
2080/** @def IEM_TRY_SETJMP_AGAIN
2081 * For when setjmp / try is used again in the same variable scope as a previous
2082 * IEM_TRY_SETJMP invocation.
2083 */
2084/** @def IEM_CATCH_LONGJMP_BEGIN
2085 * Start wrapper for catch / setjmp-else.
2086 *
2087 * This will set up a scope.
2088 *
2089 * @note Use with extreme care as this is a fragile macro.
2090 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2091 * @param a_rcTarget The variable that should receive the status code in case
2092 * of a longjmp/throw.
2093 */
2094/** @def IEM_CATCH_LONGJMP_END
2095 * End wrapper for catch / setjmp-else.
2096 *
2097 * This will close the scope set up by IEM_CATCH_LONGJMP_BEGIN and clean up the
2098 * state.
2099 *
2100 * @note Use with extreme care as this is a fragile macro.
2101 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2102 */
2103#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
2104# ifdef IEM_WITH_THROW_CATCH
2105# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2106 a_rcTarget = VINF_SUCCESS; \
2107 try
2108# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2109 IEM_TRY_SETJMP(a_pVCpu, a_rcTarget)
2110# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2111 catch (int rcThrown) \
2112 { \
2113 a_rcTarget = rcThrown
2114# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2115 } \
2116 ((void)0)
2117# else /* !IEM_WITH_THROW_CATCH */
2118# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2119 jmp_buf JmpBuf; \
2120 jmp_buf * volatile pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2121 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2122 if ((rcStrict = setjmp(JmpBuf)) == 0)
2123# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2124 pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2125 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2126 if ((rcStrict = setjmp(JmpBuf)) == 0)
2127# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2128 else \
2129 { \
2130 ((void)0)
2131# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2132 } \
2133 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf
2134# endif /* !IEM_WITH_THROW_CATCH */
2135#endif /* IEM_WITH_SETJMP */
2136
2137
2138/**
2139 * Shared per-VM IEM data.
2140 */
2141typedef struct IEM
2142{
2143 /** The VMX APIC-access page handler type. */
2144 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
2145#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
2146 /** Set if the CPUID host call functionality is enabled. */
2147 bool fCpuIdHostCall;
2148#endif
2149} IEM;
2150
2151
2152
2153/** @name IEM_ACCESS_XXX - Access details.
2154 * @{ */
2155#define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
2156#define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
2157#define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
2158#define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
2159#define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
2160#define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
2161#define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
2162#define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
2163#define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
2164#define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
2165/** The writes are partial, so if initialize the bounce buffer with the
2166 * orignal RAM content. */
2167#define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
2168/** Used in aMemMappings to indicate that the entry is bounce buffered. */
2169#define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
2170/** Bounce buffer with ring-3 write pending, first page. */
2171#define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
2172/** Bounce buffer with ring-3 write pending, second page. */
2173#define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
2174/** Not locked, accessed via the TLB. */
2175#define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
2176/** Atomic access.
2177 * This enables special alignment checks and the VINF_EM_EMULATE_SPLIT_LOCK
2178 * fallback for misaligned stuff. See @bugref{10547}. */
2179#define IEM_ACCESS_ATOMIC UINT32_C(0x00002000)
2180/** Valid bit mask. */
2181#define IEM_ACCESS_VALID_MASK UINT32_C(0x00003fff)
2182/** Shift count for the TLB flags (upper word). */
2183#define IEM_ACCESS_SHIFT_TLB_FLAGS 16
2184
2185/** Atomic read+write data alias. */
2186#define IEM_ACCESS_DATA_ATOMIC (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA | IEM_ACCESS_ATOMIC)
2187/** Read+write data alias. */
2188#define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2189/** Write data alias. */
2190#define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2191/** Read data alias. */
2192#define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
2193/** Instruction fetch alias. */
2194#define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
2195/** Stack write alias. */
2196#define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2197/** Stack read alias. */
2198#define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
2199/** Stack read+write alias. */
2200#define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2201/** Read system table alias. */
2202#define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
2203/** Read+write system table alias. */
2204#define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
2205/** @} */
2206
2207/** @name Prefix constants (IEMCPU::fPrefixes)
2208 * @{ */
2209#define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
2210#define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
2211#define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
2212#define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
2213#define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
2214#define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
2215#define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
2216
2217#define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
2218#define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
2219#define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
2220
2221#define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
2222#define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
2223#define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
2224
2225#define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
2226#define IEM_OP_PRF_REX_B RT_BIT_32(25) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
2227#define IEM_OP_PRF_REX_X RT_BIT_32(26) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
2228#define IEM_OP_PRF_REX_R RT_BIT_32(27) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
2229/** Mask with all the REX prefix flags.
2230 * This is generally for use when needing to undo the REX prefixes when they
2231 * are followed legacy prefixes and therefore does not immediately preceed
2232 * the first opcode byte.
2233 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
2234#define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
2235
2236#define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
2237#define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
2238#define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
2239/** @} */
2240
2241/** @name IEMOPFORM_XXX - Opcode forms
2242 * @note These are ORed together with IEMOPHINT_XXX.
2243 * @{ */
2244/** ModR/M: reg, r/m */
2245#define IEMOPFORM_RM 0
2246/** ModR/M: reg, r/m (register) */
2247#define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
2248/** ModR/M: reg, r/m (memory) */
2249#define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
2250/** ModR/M: reg, r/m, imm */
2251#define IEMOPFORM_RMI 1
2252/** ModR/M: reg, r/m (register), imm */
2253#define IEMOPFORM_RMI_REG (IEMOPFORM_RMI | IEMOPFORM_MOD3)
2254/** ModR/M: reg, r/m (memory), imm */
2255#define IEMOPFORM_RMI_MEM (IEMOPFORM_RMI | IEMOPFORM_NOT_MOD3)
2256/** ModR/M: reg, r/m, xmm0 */
2257#define IEMOPFORM_RM0 2
2258/** ModR/M: reg, r/m (register), xmm0 */
2259#define IEMOPFORM_RM0_REG (IEMOPFORM_RM0 | IEMOPFORM_MOD3)
2260/** ModR/M: reg, r/m (memory), xmm0 */
2261#define IEMOPFORM_RM0_MEM (IEMOPFORM_RM0 | IEMOPFORM_NOT_MOD3)
2262/** ModR/M: r/m, reg */
2263#define IEMOPFORM_MR 3
2264/** ModR/M: r/m (register), reg */
2265#define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
2266/** ModR/M: r/m (memory), reg */
2267#define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
2268/** ModR/M: r/m, reg, imm */
2269#define IEMOPFORM_MRI 4
2270/** ModR/M: r/m (register), reg, imm */
2271#define IEMOPFORM_MRI_REG (IEMOPFORM_MRI | IEMOPFORM_MOD3)
2272/** ModR/M: r/m (memory), reg, imm */
2273#define IEMOPFORM_MRI_MEM (IEMOPFORM_MRI | IEMOPFORM_NOT_MOD3)
2274/** ModR/M: r/m only */
2275#define IEMOPFORM_M 5
2276/** ModR/M: r/m only (register). */
2277#define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
2278/** ModR/M: r/m only (memory). */
2279#define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
2280/** ModR/M: r/m, imm */
2281#define IEMOPFORM_MI 6
2282/** ModR/M: r/m (register), imm */
2283#define IEMOPFORM_MI_REG (IEMOPFORM_MI | IEMOPFORM_MOD3)
2284/** ModR/M: r/m (memory), imm */
2285#define IEMOPFORM_MI_MEM (IEMOPFORM_MI | IEMOPFORM_NOT_MOD3)
2286/** ModR/M: r/m, 1 (shift and rotate instructions) */
2287#define IEMOPFORM_M1 7
2288/** ModR/M: r/m (register), 1. */
2289#define IEMOPFORM_M1_REG (IEMOPFORM_M1 | IEMOPFORM_MOD3)
2290/** ModR/M: r/m (memory), 1. */
2291#define IEMOPFORM_M1_MEM (IEMOPFORM_M1 | IEMOPFORM_NOT_MOD3)
2292/** ModR/M: r/m, CL (shift and rotate instructions)
2293 * @todo This should just've been a generic fixed register. But the python
2294 * code doesn't needs more convincing. */
2295#define IEMOPFORM_M_CL 8
2296/** ModR/M: r/m (register), CL. */
2297#define IEMOPFORM_M_CL_REG (IEMOPFORM_M_CL | IEMOPFORM_MOD3)
2298/** ModR/M: r/m (memory), CL. */
2299#define IEMOPFORM_M_CL_MEM (IEMOPFORM_M_CL | IEMOPFORM_NOT_MOD3)
2300/** ModR/M: reg only */
2301#define IEMOPFORM_R 9
2302
2303/** VEX+ModR/M: reg, r/m */
2304#define IEMOPFORM_VEX_RM 16
2305/** VEX+ModR/M: reg, r/m (register) */
2306#define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
2307/** VEX+ModR/M: reg, r/m (memory) */
2308#define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
2309/** VEX+ModR/M: r/m, reg */
2310#define IEMOPFORM_VEX_MR 17
2311/** VEX+ModR/M: r/m (register), reg */
2312#define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
2313/** VEX+ModR/M: r/m (memory), reg */
2314#define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
2315/** VEX+ModR/M: r/m, reg, imm8 */
2316#define IEMOPFORM_VEX_MRI 18
2317/** VEX+ModR/M: r/m (register), reg, imm8 */
2318#define IEMOPFORM_VEX_MRI_REG (IEMOPFORM_VEX_MRI | IEMOPFORM_MOD3)
2319/** VEX+ModR/M: r/m (memory), reg, imm8 */
2320#define IEMOPFORM_VEX_MRI_MEM (IEMOPFORM_VEX_MRI | IEMOPFORM_NOT_MOD3)
2321/** VEX+ModR/M: r/m only */
2322#define IEMOPFORM_VEX_M 19
2323/** VEX+ModR/M: r/m only (register). */
2324#define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
2325/** VEX+ModR/M: r/m only (memory). */
2326#define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
2327/** VEX+ModR/M: reg only */
2328#define IEMOPFORM_VEX_R 20
2329/** VEX+ModR/M: reg, vvvv, r/m */
2330#define IEMOPFORM_VEX_RVM 21
2331/** VEX+ModR/M: reg, vvvv, r/m (register). */
2332#define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
2333/** VEX+ModR/M: reg, vvvv, r/m (memory). */
2334#define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
2335/** VEX+ModR/M: reg, vvvv, r/m, imm */
2336#define IEMOPFORM_VEX_RVMI 22
2337/** VEX+ModR/M: reg, vvvv, r/m (register), imm. */
2338#define IEMOPFORM_VEX_RVMI_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2339/** VEX+ModR/M: reg, vvvv, r/m (memory), imm. */
2340#define IEMOPFORM_VEX_RVMI_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2341/** VEX+ModR/M: reg, vvvv, r/m, imm(reg) */
2342#define IEMOPFORM_VEX_RVMR 23
2343/** VEX+ModR/M: reg, vvvv, r/m (register), imm(reg). */
2344#define IEMOPFORM_VEX_RVMR_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2345/** VEX+ModR/M: reg, vvvv, r/m (memory), imm(reg). */
2346#define IEMOPFORM_VEX_RVMR_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2347/** VEX+ModR/M: reg, r/m, vvvv */
2348#define IEMOPFORM_VEX_RMV 24
2349/** VEX+ModR/M: reg, r/m, vvvv (register). */
2350#define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
2351/** VEX+ModR/M: reg, r/m, vvvv (memory). */
2352#define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
2353/** VEX+ModR/M: reg, r/m, imm8 */
2354#define IEMOPFORM_VEX_RMI 25
2355/** VEX+ModR/M: reg, r/m, imm8 (register). */
2356#define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
2357/** VEX+ModR/M: reg, r/m, imm8 (memory). */
2358#define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
2359/** VEX+ModR/M: r/m, vvvv, reg */
2360#define IEMOPFORM_VEX_MVR 26
2361/** VEX+ModR/M: r/m, vvvv, reg (register) */
2362#define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
2363/** VEX+ModR/M: r/m, vvvv, reg (memory) */
2364#define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
2365/** VEX+ModR/M+/n: vvvv, r/m */
2366#define IEMOPFORM_VEX_VM 27
2367/** VEX+ModR/M+/n: vvvv, r/m (register) */
2368#define IEMOPFORM_VEX_VM_REG (IEMOPFORM_VEX_VM | IEMOPFORM_MOD3)
2369/** VEX+ModR/M+/n: vvvv, r/m (memory) */
2370#define IEMOPFORM_VEX_VM_MEM (IEMOPFORM_VEX_VM | IEMOPFORM_NOT_MOD3)
2371/** VEX+ModR/M+/n: vvvv, r/m, imm8 */
2372#define IEMOPFORM_VEX_VMI 28
2373/** VEX+ModR/M+/n: vvvv, r/m, imm8 (register) */
2374#define IEMOPFORM_VEX_VMI_REG (IEMOPFORM_VEX_VMI | IEMOPFORM_MOD3)
2375/** VEX+ModR/M+/n: vvvv, r/m, imm8 (memory) */
2376#define IEMOPFORM_VEX_VMI_MEM (IEMOPFORM_VEX_VMI | IEMOPFORM_NOT_MOD3)
2377
2378/** Fixed register instruction, no R/M. */
2379#define IEMOPFORM_FIXED 32
2380
2381/** The r/m is a register. */
2382#define IEMOPFORM_MOD3 RT_BIT_32(8)
2383/** The r/m is a memory access. */
2384#define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
2385/** @} */
2386
2387/** @name IEMOPHINT_XXX - Additional Opcode Hints
2388 * @note These are ORed together with IEMOPFORM_XXX.
2389 * @{ */
2390/** Ignores the operand size prefix (66h). */
2391#define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
2392/** Ignores REX.W (aka WIG). */
2393#define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
2394/** Both the operand size prefixes (66h + REX.W) are ignored. */
2395#define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
2396/** Allowed with the lock prefix. */
2397#define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
2398/** The VEX.L value is ignored (aka LIG). */
2399#define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
2400/** The VEX.L value must be zero (i.e. 128-bit width only). */
2401#define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
2402/** The VEX.L value must be one (i.e. 256-bit width only). */
2403#define IEMOPHINT_VEX_L_ONE RT_BIT_32(14)
2404/** The VEX.V value must be zero. */
2405#define IEMOPHINT_VEX_V_ZERO RT_BIT_32(15)
2406/** The REX.W/VEX.V value must be zero. */
2407#define IEMOPHINT_REX_W_ZERO RT_BIT_32(16)
2408#define IEMOPHINT_VEX_W_ZERO IEMOPHINT_REX_W_ZERO
2409/** The REX.W/VEX.V value must be one. */
2410#define IEMOPHINT_REX_W_ONE RT_BIT_32(17)
2411#define IEMOPHINT_VEX_W_ONE IEMOPHINT_REX_W_ONE
2412
2413/** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
2414#define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
2415/** @} */
2416
2417/**
2418 * Possible hardware task switch sources.
2419 */
2420typedef enum IEMTASKSWITCH
2421{
2422 /** Task switch caused by an interrupt/exception. */
2423 IEMTASKSWITCH_INT_XCPT = 1,
2424 /** Task switch caused by a far CALL. */
2425 IEMTASKSWITCH_CALL,
2426 /** Task switch caused by a far JMP. */
2427 IEMTASKSWITCH_JUMP,
2428 /** Task switch caused by an IRET. */
2429 IEMTASKSWITCH_IRET
2430} IEMTASKSWITCH;
2431AssertCompileSize(IEMTASKSWITCH, 4);
2432
2433/**
2434 * Possible CrX load (write) sources.
2435 */
2436typedef enum IEMACCESSCRX
2437{
2438 /** CrX access caused by 'mov crX' instruction. */
2439 IEMACCESSCRX_MOV_CRX,
2440 /** CrX (CR0) write caused by 'lmsw' instruction. */
2441 IEMACCESSCRX_LMSW,
2442 /** CrX (CR0) write caused by 'clts' instruction. */
2443 IEMACCESSCRX_CLTS,
2444 /** CrX (CR0) read caused by 'smsw' instruction. */
2445 IEMACCESSCRX_SMSW
2446} IEMACCESSCRX;
2447
2448#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2449/** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
2450 *
2451 * These flags provide further context to SLAT page-walk failures that could not be
2452 * determined by PGM (e.g, PGM is not privy to memory access permissions).
2453 *
2454 * @{
2455 */
2456/** Translating a nested-guest linear address failed accessing a nested-guest
2457 * physical address. */
2458# define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
2459/** Translating a nested-guest linear address failed accessing a
2460 * paging-structure entry or updating accessed/dirty bits. */
2461# define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
2462/** @} */
2463
2464DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
2465# ifndef IN_RING3
2466DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
2467# endif
2468#endif
2469
2470/**
2471 * Indicates to the verifier that the given flag set is undefined.
2472 *
2473 * Can be invoked again to add more flags.
2474 *
2475 * This is a NOOP if the verifier isn't compiled in.
2476 *
2477 * @note We're temporarily keeping this until code is converted to new
2478 * disassembler style opcode handling.
2479 */
2480#define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
2481
2482
2483/** @def IEM_DECL_IMPL_TYPE
2484 * For typedef'ing an instruction implementation function.
2485 *
2486 * @param a_RetType The return type.
2487 * @param a_Name The name of the type.
2488 * @param a_ArgList The argument list enclosed in parentheses.
2489 */
2490
2491/** @def IEM_DECL_IMPL_DEF
2492 * For defining an instruction implementation function.
2493 *
2494 * @param a_RetType The return type.
2495 * @param a_Name The name of the type.
2496 * @param a_ArgList The argument list enclosed in parentheses.
2497 */
2498
2499#if defined(__GNUC__) && defined(RT_ARCH_X86)
2500# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2501 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
2502# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2503 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2504# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2505 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2506
2507#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
2508# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2509 a_RetType (__fastcall a_Name) a_ArgList
2510# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2511 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2512# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2513 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2514
2515#elif __cplusplus >= 201700 /* P0012R1 support */
2516# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2517 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
2518# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2519 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2520# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2521 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2522
2523#else
2524# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2525 a_RetType (VBOXCALL a_Name) a_ArgList
2526# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2527 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2528# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2529 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2530
2531#endif
2532
2533/** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
2534RT_C_DECLS_BEGIN
2535extern uint8_t const g_afParity[256];
2536RT_C_DECLS_END
2537
2538
2539/** @name Arithmetic assignment operations on bytes (binary).
2540 * @{ */
2541typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU8, (uint8_t *pu8Dst, uint8_t u8Src, uint32_t *pEFlags));
2542typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
2543FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
2544FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
2545FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
2546FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
2547FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
2548FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
2549FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
2550/** @} */
2551
2552/** @name Arithmetic assignment operations on words (binary).
2553 * @{ */
2554typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU16, (uint16_t *pu16Dst, uint16_t u16Src, uint32_t *pEFlags));
2555typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
2556FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
2557FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
2558FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
2559FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
2560FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
2561FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
2562FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
2563/** @} */
2564
2565/** @name Arithmetic assignment operations on double words (binary).
2566 * @{ */
2567typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU32, (uint32_t *pu32Dst, uint32_t u32Src, uint32_t *pEFlags));
2568typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
2569FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
2570FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
2571FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
2572FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
2573FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
2574FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
2575FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
2576FNIEMAIMPLBINU32 iemAImpl_blsi_u32, iemAImpl_blsi_u32_fallback;
2577FNIEMAIMPLBINU32 iemAImpl_blsr_u32, iemAImpl_blsr_u32_fallback;
2578FNIEMAIMPLBINU32 iemAImpl_blsmsk_u32, iemAImpl_blsmsk_u32_fallback;
2579/** @} */
2580
2581/** @name Arithmetic assignment operations on quad words (binary).
2582 * @{ */
2583typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU64, (uint64_t *pu64Dst, uint64_t u64Src, uint32_t *pEFlags));
2584typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
2585FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
2586FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
2587FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
2588FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
2589FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
2590FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
2591FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
2592FNIEMAIMPLBINU64 iemAImpl_blsi_u64, iemAImpl_blsi_u64_fallback;
2593FNIEMAIMPLBINU64 iemAImpl_blsr_u64, iemAImpl_blsr_u64_fallback;
2594FNIEMAIMPLBINU64 iemAImpl_blsmsk_u64, iemAImpl_blsmsk_u64_fallback;
2595/** @} */
2596
2597typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU8,(uint8_t const *pu8Dst, uint8_t u8Src, uint32_t *pEFlags));
2598typedef FNIEMAIMPLBINROU8 *PFNIEMAIMPLBINROU8;
2599typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU16,(uint16_t const *pu16Dst, uint16_t u16Src, uint32_t *pEFlags));
2600typedef FNIEMAIMPLBINROU16 *PFNIEMAIMPLBINROU16;
2601typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU32,(uint32_t const *pu32Dst, uint32_t u32Src, uint32_t *pEFlags));
2602typedef FNIEMAIMPLBINROU32 *PFNIEMAIMPLBINROU32;
2603typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU64,(uint64_t const *pu64Dst, uint64_t u64Src, uint32_t *pEFlags));
2604typedef FNIEMAIMPLBINROU64 *PFNIEMAIMPLBINROU64;
2605
2606/** @name Compare operations (thrown in with the binary ops).
2607 * @{ */
2608FNIEMAIMPLBINROU8 iemAImpl_cmp_u8;
2609FNIEMAIMPLBINROU16 iemAImpl_cmp_u16;
2610FNIEMAIMPLBINROU32 iemAImpl_cmp_u32;
2611FNIEMAIMPLBINROU64 iemAImpl_cmp_u64;
2612/** @} */
2613
2614/** @name Test operations (thrown in with the binary ops).
2615 * @{ */
2616FNIEMAIMPLBINROU8 iemAImpl_test_u8;
2617FNIEMAIMPLBINROU16 iemAImpl_test_u16;
2618FNIEMAIMPLBINROU32 iemAImpl_test_u32;
2619FNIEMAIMPLBINROU64 iemAImpl_test_u64;
2620/** @} */
2621
2622/** @name Bit operations operations (thrown in with the binary ops).
2623 * @{ */
2624FNIEMAIMPLBINROU16 iemAImpl_bt_u16;
2625FNIEMAIMPLBINROU32 iemAImpl_bt_u32;
2626FNIEMAIMPLBINROU64 iemAImpl_bt_u64;
2627FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
2628FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
2629FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
2630FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
2631FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
2632FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
2633FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
2634FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
2635FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
2636/** @} */
2637
2638/** @name Arithmetic three operand operations on double words (binary).
2639 * @{ */
2640typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
2641typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
2642FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
2643FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
2644FNIEMAIMPLBINVEXU32 iemAImpl_bzhi_u32, iemAImpl_bzhi_u32_fallback;
2645/** @} */
2646
2647/** @name Arithmetic three operand operations on quad words (binary).
2648 * @{ */
2649typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
2650typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
2651FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
2652FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
2653FNIEMAIMPLBINVEXU64 iemAImpl_bzhi_u64, iemAImpl_bzhi_u64_fallback;
2654/** @} */
2655
2656/** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
2657 * @{ */
2658typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
2659typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
2660FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pdep_u32, iemAImpl_pdep_u32_fallback;
2661FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pext_u32, iemAImpl_pext_u32_fallback;
2662FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
2663FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
2664FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
2665FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
2666/** @} */
2667
2668/** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
2669 * @{ */
2670typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
2671typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
2672FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pdep_u64, iemAImpl_pdep_u64_fallback;
2673FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pext_u64, iemAImpl_pext_u64_fallback;
2674FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
2675FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
2676FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
2677FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
2678/** @} */
2679
2680/** @name MULX 32-bit and 64-bit.
2681 * @{ */
2682typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU32, (uint32_t *puDst1, uint32_t *puDst2, uint32_t uSrc1, uint32_t uSrc2));
2683typedef FNIEMAIMPLMULXVEXU32 *PFNIEMAIMPLMULXVEXU32;
2684FNIEMAIMPLMULXVEXU32 iemAImpl_mulx_u32, iemAImpl_mulx_u32_fallback;
2685
2686typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU64, (uint64_t *puDst1, uint64_t *puDst2, uint64_t uSrc1, uint64_t uSrc2));
2687typedef FNIEMAIMPLMULXVEXU64 *PFNIEMAIMPLMULXVEXU64;
2688FNIEMAIMPLMULXVEXU64 iemAImpl_mulx_u64, iemAImpl_mulx_u64_fallback;
2689/** @} */
2690
2691
2692/** @name Exchange memory with register operations.
2693 * @{ */
2694IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2695IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2696IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2697IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2698IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2699IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2700IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2701IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2702/** @} */
2703
2704/** @name Exchange and add operations.
2705 * @{ */
2706IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2707IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2708IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2709IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2710IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2711IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2712IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2713IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2714/** @} */
2715
2716/** @name Compare and exchange.
2717 * @{ */
2718IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2719IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2720IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2721IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2722IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2723IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2724#if ARCH_BITS == 32
2725IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2726IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2727#else
2728IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2729IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2730#endif
2731IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2732 uint32_t *pEFlags));
2733IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2734 uint32_t *pEFlags));
2735IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2736 uint32_t *pEFlags));
2737IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2738 uint32_t *pEFlags));
2739#ifndef RT_ARCH_ARM64
2740IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
2741 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
2742#endif
2743/** @} */
2744
2745/** @name Memory ordering
2746 * @{ */
2747typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
2748typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
2749IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
2750IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
2751IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
2752#ifndef RT_ARCH_ARM64
2753IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
2754#endif
2755/** @} */
2756
2757/** @name Double precision shifts
2758 * @{ */
2759typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
2760typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
2761typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
2762typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
2763typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
2764typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
2765FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
2766FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
2767FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
2768FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
2769FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
2770FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
2771/** @} */
2772
2773
2774/** @name Bit search operations (thrown in with the binary ops).
2775 * @{ */
2776FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
2777FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
2778FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
2779FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
2780FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
2781FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
2782FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
2783FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
2784FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
2785FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
2786FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
2787FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
2788FNIEMAIMPLBINU16 iemAImpl_popcnt_u16, iemAImpl_popcnt_u16_fallback;
2789FNIEMAIMPLBINU32 iemAImpl_popcnt_u32, iemAImpl_popcnt_u32_fallback;
2790FNIEMAIMPLBINU64 iemAImpl_popcnt_u64, iemAImpl_popcnt_u64_fallback;
2791/** @} */
2792
2793/** @name Signed multiplication operations (thrown in with the binary ops).
2794 * @{ */
2795FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
2796FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
2797FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
2798/** @} */
2799
2800/** @name Arithmetic assignment operations on bytes (unary).
2801 * @{ */
2802typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
2803typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
2804FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
2805FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
2806FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
2807FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
2808/** @} */
2809
2810/** @name Arithmetic assignment operations on words (unary).
2811 * @{ */
2812typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
2813typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
2814FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
2815FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
2816FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
2817FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
2818/** @} */
2819
2820/** @name Arithmetic assignment operations on double words (unary).
2821 * @{ */
2822typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
2823typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
2824FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
2825FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
2826FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
2827FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
2828/** @} */
2829
2830/** @name Arithmetic assignment operations on quad words (unary).
2831 * @{ */
2832typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
2833typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
2834FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
2835FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
2836FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
2837FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
2838/** @} */
2839
2840
2841/** @name Shift operations on bytes (Group 2).
2842 * @{ */
2843typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU8,(uint8_t *pu8Dst, uint8_t cShift, uint32_t *pEFlags));
2844typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
2845FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
2846FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
2847FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
2848FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
2849FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
2850FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
2851FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
2852/** @} */
2853
2854/** @name Shift operations on words (Group 2).
2855 * @{ */
2856typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU16,(uint16_t *pu16Dst, uint8_t cShift, uint32_t *pEFlags));
2857typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
2858FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
2859FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
2860FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
2861FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
2862FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
2863FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
2864FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
2865/** @} */
2866
2867/** @name Shift operations on double words (Group 2).
2868 * @{ */
2869typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU32,(uint32_t *pu32Dst, uint8_t cShift, uint32_t *pEFlags));
2870typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
2871FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
2872FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
2873FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
2874FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
2875FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
2876FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
2877FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
2878/** @} */
2879
2880/** @name Shift operations on words (Group 2).
2881 * @{ */
2882typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU64,(uint64_t *pu64Dst, uint8_t cShift, uint32_t *pEFlags));
2883typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
2884FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
2885FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
2886FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
2887FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
2888FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
2889FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
2890FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
2891/** @} */
2892
2893/** @name Multiplication and division operations.
2894 * @{ */
2895typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t *pEFlags));
2896typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
2897FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
2898FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
2899FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
2900FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
2901
2902typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t *pEFlags));
2903typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
2904FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
2905FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
2906FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
2907FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
2908
2909typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t *pEFlags));
2910typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
2911FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
2912FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
2913FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
2914FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
2915
2916typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t *pEFlags));
2917typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
2918FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
2919FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
2920FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
2921FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
2922/** @} */
2923
2924/** @name Byte Swap.
2925 * @{ */
2926IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
2927IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
2928IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
2929/** @} */
2930
2931/** @name Misc.
2932 * @{ */
2933FNIEMAIMPLBINU16 iemAImpl_arpl;
2934/** @} */
2935
2936/** @name RDRAND and RDSEED
2937 * @{ */
2938typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU16,(uint16_t *puDst, uint32_t *pEFlags));
2939typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU32,(uint32_t *puDst, uint32_t *pEFlags));
2940typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU64,(uint64_t *puDst, uint32_t *pEFlags));
2941typedef FNIEMAIMPLRDRANDSEEDU16 *PFNIEMAIMPLRDRANDSEEDU16;
2942typedef FNIEMAIMPLRDRANDSEEDU32 *PFNIEMAIMPLRDRANDSEEDU32;
2943typedef FNIEMAIMPLRDRANDSEEDU64 *PFNIEMAIMPLRDRANDSEEDU64;
2944
2945FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdrand_u16, iemAImpl_rdrand_u16_fallback;
2946FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdrand_u32, iemAImpl_rdrand_u32_fallback;
2947FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdrand_u64, iemAImpl_rdrand_u64_fallback;
2948FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdseed_u16, iemAImpl_rdseed_u16_fallback;
2949FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdseed_u32, iemAImpl_rdseed_u32_fallback;
2950FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdseed_u64, iemAImpl_rdseed_u64_fallback;
2951/** @} */
2952
2953/** @name ADOX and ADCX
2954 * @{ */
2955FNIEMAIMPLBINU32 iemAImpl_adcx_u32, iemAImpl_adcx_u32_fallback;
2956FNIEMAIMPLBINU64 iemAImpl_adcx_u64, iemAImpl_adcx_u64_fallback;
2957FNIEMAIMPLBINU32 iemAImpl_adox_u32, iemAImpl_adox_u32_fallback;
2958FNIEMAIMPLBINU64 iemAImpl_adox_u64, iemAImpl_adox_u64_fallback;
2959/** @} */
2960
2961/** @name FPU operations taking a 32-bit float argument
2962 * @{ */
2963typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2964 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
2965typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
2966
2967typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2968 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
2969typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
2970
2971FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
2972FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
2973FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
2974FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
2975FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
2976FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
2977FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
2978
2979IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
2980IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2981 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
2982/** @} */
2983
2984/** @name FPU operations taking a 64-bit float argument
2985 * @{ */
2986typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2987 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
2988typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
2989
2990typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2991 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
2992typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
2993
2994FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
2995FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
2996FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
2997FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
2998FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
2999FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
3000FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
3001
3002IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
3003IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3004 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
3005/** @} */
3006
3007/** @name FPU operations taking a 80-bit float argument
3008 * @{ */
3009typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3010 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3011typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
3012FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
3013FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
3014FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
3015FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
3016FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
3017FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
3018FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
3019FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
3020FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
3021
3022FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
3023FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
3024FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
3025
3026typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3027 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3028typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
3029FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
3030FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
3031
3032typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
3033 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3034typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
3035FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
3036FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
3037
3038typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3039typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
3040FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
3041FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
3042FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
3043FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
3044FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
3045FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
3046FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
3047
3048typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
3049typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
3050FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
3051FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
3052
3053typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
3054typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
3055FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
3056FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
3057FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
3058FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
3059FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
3060FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
3061FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
3062
3063typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
3064 PCRTFLOAT80U pr80Val));
3065typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
3066FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
3067FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
3068FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
3069
3070IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3071IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3072 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
3073
3074IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
3075IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3076 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
3077
3078/** @} */
3079
3080/** @name FPU operations taking a 16-bit signed integer argument
3081 * @{ */
3082typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3083 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3084typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
3085typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3086 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
3087typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
3088
3089FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
3090FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
3091FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
3092FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
3093FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
3094FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
3095
3096typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3097 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3098typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
3099FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
3100
3101IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
3102FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
3103FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
3104/** @} */
3105
3106/** @name FPU operations taking a 32-bit signed integer argument
3107 * @{ */
3108typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3109 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3110typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
3111typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3112 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
3113typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
3114
3115FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
3116FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
3117FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
3118FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
3119FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
3120FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
3121
3122typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3123 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3124typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
3125FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
3126
3127IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
3128FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
3129FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
3130/** @} */
3131
3132/** @name FPU operations taking a 64-bit signed integer argument
3133 * @{ */
3134typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3135 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
3136typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
3137
3138IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
3139FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
3140FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
3141/** @} */
3142
3143
3144/** Temporary type representing a 256-bit vector register. */
3145typedef struct { uint64_t au64[4]; } IEMVMM256;
3146/** Temporary type pointing to a 256-bit vector register. */
3147typedef IEMVMM256 *PIEMVMM256;
3148/** Temporary type pointing to a const 256-bit vector register. */
3149typedef IEMVMM256 *PCIEMVMM256;
3150
3151
3152/** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
3153 * @{ */
3154typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc));
3155typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
3156typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc));
3157typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
3158typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U128,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3159typedef FNIEMAIMPLMEDIAF3U128 *PFNIEMAIMPLMEDIAF3U128;
3160typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U256,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3161typedef FNIEMAIMPLMEDIAF3U256 *PFNIEMAIMPLMEDIAF3U256;
3162typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U64,(uint64_t *puDst, uint64_t const *puSrc));
3163typedef FNIEMAIMPLMEDIAOPTF2U64 *PFNIEMAIMPLMEDIAOPTF2U64;
3164typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128,(PRTUINT128U puDst, PCRTUINT128U puSrc));
3165typedef FNIEMAIMPLMEDIAOPTF2U128 *PFNIEMAIMPLMEDIAOPTF2U128;
3166typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3167typedef FNIEMAIMPLMEDIAOPTF3U128 *PFNIEMAIMPLMEDIAOPTF3U128;
3168typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3169typedef FNIEMAIMPLMEDIAOPTF3U256 *PFNIEMAIMPLMEDIAOPTF3U256;
3170typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256,(PRTUINT256U puDst, PCRTUINT256U puSrc));
3171typedef FNIEMAIMPLMEDIAOPTF2U256 *PFNIEMAIMPLMEDIAOPTF2U256;
3172FNIEMAIMPLMEDIAF2U64 iemAImpl_pshufb_u64, iemAImpl_pshufb_u64_fallback;
3173FNIEMAIMPLMEDIAF2U64 iemAImpl_pand_u64, iemAImpl_pandn_u64, iemAImpl_por_u64, iemAImpl_pxor_u64;
3174FNIEMAIMPLMEDIAF2U64 iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
3175FNIEMAIMPLMEDIAF2U64 iemAImpl_pcmpgtb_u64, iemAImpl_pcmpgtw_u64, iemAImpl_pcmpgtd_u64;
3176FNIEMAIMPLMEDIAF2U64 iemAImpl_paddb_u64, iemAImpl_paddsb_u64, iemAImpl_paddusb_u64;
3177FNIEMAIMPLMEDIAF2U64 iemAImpl_paddw_u64, iemAImpl_paddsw_u64, iemAImpl_paddusw_u64;
3178FNIEMAIMPLMEDIAF2U64 iemAImpl_paddd_u64;
3179FNIEMAIMPLMEDIAF2U64 iemAImpl_paddq_u64;
3180FNIEMAIMPLMEDIAF2U64 iemAImpl_psubb_u64, iemAImpl_psubsb_u64, iemAImpl_psubusb_u64;
3181FNIEMAIMPLMEDIAF2U64 iemAImpl_psubw_u64, iemAImpl_psubsw_u64, iemAImpl_psubusw_u64;
3182FNIEMAIMPLMEDIAF2U64 iemAImpl_psubd_u64;
3183FNIEMAIMPLMEDIAF2U64 iemAImpl_psubq_u64;
3184FNIEMAIMPLMEDIAF2U64 iemAImpl_pmaddwd_u64, iemAImpl_pmaddwd_u64_fallback;
3185FNIEMAIMPLMEDIAF2U64 iemAImpl_pmullw_u64, iemAImpl_pmulhw_u64;
3186FNIEMAIMPLMEDIAF2U64 iemAImpl_pminub_u64, iemAImpl_pmaxub_u64;
3187FNIEMAIMPLMEDIAF2U64 iemAImpl_pminsw_u64, iemAImpl_pmaxsw_u64;
3188FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsb_u64, iemAImpl_pabsb_u64_fallback;
3189FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsw_u64, iemAImpl_pabsw_u64_fallback;
3190FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsd_u64, iemAImpl_pabsd_u64_fallback;
3191FNIEMAIMPLMEDIAF2U64 iemAImpl_psignb_u64, iemAImpl_psignb_u64_fallback;
3192FNIEMAIMPLMEDIAF2U64 iemAImpl_psignw_u64, iemAImpl_psignw_u64_fallback;
3193FNIEMAIMPLMEDIAF2U64 iemAImpl_psignd_u64, iemAImpl_psignd_u64_fallback;
3194FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddw_u64, iemAImpl_phaddw_u64_fallback;
3195FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddd_u64, iemAImpl_phaddd_u64_fallback;
3196FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubw_u64, iemAImpl_phsubw_u64_fallback;
3197FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubd_u64, iemAImpl_phsubd_u64_fallback;
3198FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddsw_u64, iemAImpl_phaddsw_u64_fallback;
3199FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubsw_u64, iemAImpl_phsubsw_u64_fallback;
3200FNIEMAIMPLMEDIAF2U64 iemAImpl_pmaddubsw_u64, iemAImpl_pmaddubsw_u64_fallback;
3201FNIEMAIMPLMEDIAF2U64 iemAImpl_pmulhrsw_u64, iemAImpl_pmulhrsw_u64_fallback;
3202FNIEMAIMPLMEDIAF2U64 iemAImpl_pmuludq_u64;
3203FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllw_u64, iemAImpl_psrlw_u64, iemAImpl_psraw_u64;
3204FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pslld_u64, iemAImpl_psrld_u64, iemAImpl_psrad_u64;
3205FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllq_u64, iemAImpl_psrlq_u64;
3206FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packsswb_u64, iemAImpl_packuswb_u64;
3207FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packssdw_u64;
3208FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhuw_u64;
3209FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pavgb_u64, iemAImpl_pavgw_u64;
3210FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psadbw_u64;
3211
3212FNIEMAIMPLMEDIAF2U128 iemAImpl_pshufb_u128, iemAImpl_pshufb_u128_fallback;
3213FNIEMAIMPLMEDIAF2U128 iemAImpl_pand_u128, iemAImpl_pandn_u128, iemAImpl_por_u128, iemAImpl_pxor_u128;
3214FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
3215FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpeqq_u128, iemAImpl_pcmpeqq_u128_fallback;
3216FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpgtb_u128, iemAImpl_pcmpgtw_u128, iemAImpl_pcmpgtd_u128;
3217FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpgtq_u128, iemAImpl_pcmpgtq_u128_fallback;
3218FNIEMAIMPLMEDIAF2U128 iemAImpl_paddb_u128, iemAImpl_paddsb_u128, iemAImpl_paddusb_u128;
3219FNIEMAIMPLMEDIAF2U128 iemAImpl_paddw_u128, iemAImpl_paddsw_u128, iemAImpl_paddusw_u128;
3220FNIEMAIMPLMEDIAF2U128 iemAImpl_paddd_u128;
3221FNIEMAIMPLMEDIAF2U128 iemAImpl_paddq_u128;
3222FNIEMAIMPLMEDIAF2U128 iemAImpl_psubb_u128, iemAImpl_psubsb_u128, iemAImpl_psubusb_u128;
3223FNIEMAIMPLMEDIAF2U128 iemAImpl_psubw_u128, iemAImpl_psubsw_u128, iemAImpl_psubusw_u128;
3224FNIEMAIMPLMEDIAF2U128 iemAImpl_psubd_u128;
3225FNIEMAIMPLMEDIAF2U128 iemAImpl_psubq_u128;
3226FNIEMAIMPLMEDIAF2U128 iemAImpl_pmullw_u128, iemAImpl_pmullw_u128_fallback;
3227FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulhw_u128;
3228FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulld_u128, iemAImpl_pmulld_u128_fallback;
3229FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3230FNIEMAIMPLMEDIAF2U128 iemAImpl_pminub_u128;
3231FNIEMAIMPLMEDIAF2U128 iemAImpl_pminud_u128, iemAImpl_pminud_u128_fallback;
3232FNIEMAIMPLMEDIAF2U128 iemAImpl_pminuw_u128, iemAImpl_pminuw_u128_fallback;
3233FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsb_u128, iemAImpl_pminsb_u128_fallback;
3234FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsd_u128, iemAImpl_pminsd_u128_fallback;
3235FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsw_u128, iemAImpl_pminsw_u128_fallback;
3236FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxub_u128;
3237FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxud_u128, iemAImpl_pmaxud_u128_fallback;
3238FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxuw_u128, iemAImpl_pmaxuw_u128_fallback;
3239FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsb_u128, iemAImpl_pmaxsb_u128_fallback;
3240FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsw_u128;
3241FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsd_u128, iemAImpl_pmaxsd_u128_fallback;
3242FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsb_u128, iemAImpl_pabsb_u128_fallback;
3243FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsw_u128, iemAImpl_pabsw_u128_fallback;
3244FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsd_u128, iemAImpl_pabsd_u128_fallback;
3245FNIEMAIMPLMEDIAF2U128 iemAImpl_psignb_u128, iemAImpl_psignb_u128_fallback;
3246FNIEMAIMPLMEDIAF2U128 iemAImpl_psignw_u128, iemAImpl_psignw_u128_fallback;
3247FNIEMAIMPLMEDIAF2U128 iemAImpl_psignd_u128, iemAImpl_psignd_u128_fallback;
3248FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddw_u128, iemAImpl_phaddw_u128_fallback;
3249FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddd_u128, iemAImpl_phaddd_u128_fallback;
3250FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubw_u128, iemAImpl_phsubw_u128_fallback;
3251FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubd_u128, iemAImpl_phsubd_u128_fallback;
3252FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddsw_u128, iemAImpl_phaddsw_u128_fallback;
3253FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubsw_u128, iemAImpl_phsubsw_u128_fallback;
3254FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaddubsw_u128, iemAImpl_pmaddubsw_u128_fallback;
3255FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulhrsw_u128, iemAImpl_pmulhrsw_u128_fallback;
3256FNIEMAIMPLMEDIAF2U128 iemAImpl_pmuludq_u128;
3257FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3258FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packsswb_u128, iemAImpl_packuswb_u128;
3259FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packssdw_u128, iemAImpl_packusdw_u128;
3260FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllw_u128, iemAImpl_psrlw_u128, iemAImpl_psraw_u128;
3261FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pslld_u128, iemAImpl_psrld_u128, iemAImpl_psrad_u128;
3262FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllq_u128, iemAImpl_psrlq_u128;
3263FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhuw_u128;
3264FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pavgb_u128, iemAImpl_pavgw_u128;
3265FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psadbw_u128;
3266FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuldq_u128, iemAImpl_pmuldq_u128_fallback;
3267FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpcklps_u128, iemAImpl_unpcklpd_u128;
3268FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpckhps_u128, iemAImpl_unpckhpd_u128;
3269FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phminposuw_u128, iemAImpl_phminposuw_u128_fallback;
3270
3271FNIEMAIMPLMEDIAF3U128 iemAImpl_vpshufb_u128, iemAImpl_vpshufb_u128_fallback;
3272FNIEMAIMPLMEDIAF3U128 iemAImpl_vpand_u128, iemAImpl_vpand_u128_fallback;
3273FNIEMAIMPLMEDIAF3U128 iemAImpl_vpandn_u128, iemAImpl_vpandn_u128_fallback;
3274FNIEMAIMPLMEDIAF3U128 iemAImpl_vpor_u128, iemAImpl_vpor_u128_fallback;
3275FNIEMAIMPLMEDIAF3U128 iemAImpl_vpxor_u128, iemAImpl_vpxor_u128_fallback;
3276FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqb_u128, iemAImpl_vpcmpeqb_u128_fallback;
3277FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqw_u128, iemAImpl_vpcmpeqw_u128_fallback;
3278FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqd_u128, iemAImpl_vpcmpeqd_u128_fallback;
3279FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqq_u128, iemAImpl_vpcmpeqq_u128_fallback;
3280FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtb_u128, iemAImpl_vpcmpgtb_u128_fallback;
3281FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtw_u128, iemAImpl_vpcmpgtw_u128_fallback;
3282FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtd_u128, iemAImpl_vpcmpgtd_u128_fallback;
3283FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtq_u128, iemAImpl_vpcmpgtq_u128_fallback;
3284FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddb_u128, iemAImpl_vpaddb_u128_fallback;
3285FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddw_u128, iemAImpl_vpaddw_u128_fallback;
3286FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddd_u128, iemAImpl_vpaddd_u128_fallback;
3287FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddq_u128, iemAImpl_vpaddq_u128_fallback;
3288FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubb_u128, iemAImpl_vpsubb_u128_fallback;
3289FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubw_u128, iemAImpl_vpsubw_u128_fallback;
3290FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubd_u128, iemAImpl_vpsubd_u128_fallback;
3291FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubq_u128, iemAImpl_vpsubq_u128_fallback;
3292FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminub_u128, iemAImpl_vpminub_u128_fallback;
3293FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminuw_u128, iemAImpl_vpminuw_u128_fallback;
3294FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminud_u128, iemAImpl_vpminud_u128_fallback;
3295FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsb_u128, iemAImpl_vpminsb_u128_fallback;
3296FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsw_u128, iemAImpl_vpminsw_u128_fallback;
3297FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsd_u128, iemAImpl_vpminsd_u128_fallback;
3298FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxub_u128, iemAImpl_vpmaxub_u128_fallback;
3299FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxuw_u128, iemAImpl_vpmaxuw_u128_fallback;
3300FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxud_u128, iemAImpl_vpmaxud_u128_fallback;
3301FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsb_u128, iemAImpl_vpmaxsb_u128_fallback;
3302FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsw_u128, iemAImpl_vpmaxsw_u128_fallback;
3303FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsd_u128, iemAImpl_vpmaxsd_u128_fallback;
3304FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpacksswb_u128, iemAImpl_vpacksswb_u128_fallback;
3305FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackssdw_u128, iemAImpl_vpackssdw_u128_fallback;
3306FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackuswb_u128, iemAImpl_vpackuswb_u128_fallback;
3307FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackusdw_u128, iemAImpl_vpackusdw_u128_fallback;
3308FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmullw_u128, iemAImpl_vpmullw_u128_fallback;
3309FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulld_u128, iemAImpl_vpmulld_u128_fallback;
3310FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhw_u128, iemAImpl_vpmulhw_u128_fallback;
3311FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhuw_u128, iemAImpl_vpmulhuw_u128_fallback;
3312FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgb_u128, iemAImpl_vpavgb_u128_fallback;
3313FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgw_u128, iemAImpl_vpavgw_u128_fallback;
3314FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignb_u128, iemAImpl_vpsignb_u128_fallback;
3315FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignw_u128, iemAImpl_vpsignw_u128_fallback;
3316FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignd_u128, iemAImpl_vpsignd_u128_fallback;
3317FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddw_u128, iemAImpl_vphaddw_u128_fallback;
3318FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddd_u128, iemAImpl_vphaddd_u128_fallback;
3319FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubw_u128, iemAImpl_vphsubw_u128_fallback;
3320FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubd_u128, iemAImpl_vphsubd_u128_fallback;
3321FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddsw_u128, iemAImpl_vphaddsw_u128_fallback;
3322FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubsw_u128, iemAImpl_vphsubsw_u128_fallback;
3323FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddubsw_u128, iemAImpl_vpmaddubsw_u128_fallback;
3324FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhrsw_u128, iemAImpl_vpmulhrsw_u128_fallback;
3325FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsadbw_u128, iemAImpl_vpsadbw_u128_fallback;
3326FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuldq_u128, iemAImpl_vpmuldq_u128_fallback;
3327FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuludq_u128, iemAImpl_vpmuludq_u128_fallback;
3328FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsb_u128, iemAImpl_vpsubsb_u128_fallback;
3329FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsw_u128, iemAImpl_vpsubsw_u128_fallback;
3330FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusb_u128, iemAImpl_vpsubusb_u128_fallback;
3331FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusw_u128, iemAImpl_vpsubusw_u128_fallback;
3332FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusb_u128, iemAImpl_vpaddusb_u128_fallback;
3333FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusw_u128, iemAImpl_vpaddusw_u128_fallback;
3334FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsb_u128, iemAImpl_vpaddsb_u128_fallback;
3335FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsw_u128, iemAImpl_vpaddsw_u128_fallback;
3336FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllw_u128, iemAImpl_vpsllw_u128_fallback;
3337FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpslld_u128, iemAImpl_vpslld_u128_fallback;
3338FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllq_u128, iemAImpl_vpsllq_u128_fallback;
3339FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsraw_u128, iemAImpl_vpsraw_u128_fallback;
3340FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrad_u128, iemAImpl_vpsrad_u128_fallback;
3341FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlw_u128, iemAImpl_vpsrlw_u128_fallback;
3342FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrld_u128, iemAImpl_vpsrld_u128_fallback;
3343FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlq_u128, iemAImpl_vpsrlq_u128_fallback;
3344FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddwd_u128, iemAImpl_vpmaddwd_u128_fallback;
3345
3346FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsb_u128, iemAImpl_vpabsb_u128_fallback;
3347FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsw_u128, iemAImpl_vpabsd_u128_fallback;
3348FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsd_u128, iemAImpl_vpabsw_u128_fallback;
3349FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vphminposuw_u128, iemAImpl_vphminposuw_u128_fallback;
3350
3351FNIEMAIMPLMEDIAF3U256 iemAImpl_vpshufb_u256, iemAImpl_vpshufb_u256_fallback;
3352FNIEMAIMPLMEDIAF3U256 iemAImpl_vpand_u256, iemAImpl_vpand_u256_fallback;
3353FNIEMAIMPLMEDIAF3U256 iemAImpl_vpandn_u256, iemAImpl_vpandn_u256_fallback;
3354FNIEMAIMPLMEDIAF3U256 iemAImpl_vpor_u256, iemAImpl_vpor_u256_fallback;
3355FNIEMAIMPLMEDIAF3U256 iemAImpl_vpxor_u256, iemAImpl_vpxor_u256_fallback;
3356FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqb_u256, iemAImpl_vpcmpeqb_u256_fallback;
3357FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqw_u256, iemAImpl_vpcmpeqw_u256_fallback;
3358FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqd_u256, iemAImpl_vpcmpeqd_u256_fallback;
3359FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqq_u256, iemAImpl_vpcmpeqq_u256_fallback;
3360FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtb_u256, iemAImpl_vpcmpgtb_u256_fallback;
3361FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtw_u256, iemAImpl_vpcmpgtw_u256_fallback;
3362FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtd_u256, iemAImpl_vpcmpgtd_u256_fallback;
3363FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtq_u256, iemAImpl_vpcmpgtq_u256_fallback;
3364FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddb_u256, iemAImpl_vpaddb_u256_fallback;
3365FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddw_u256, iemAImpl_vpaddw_u256_fallback;
3366FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddd_u256, iemAImpl_vpaddd_u256_fallback;
3367FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddq_u256, iemAImpl_vpaddq_u256_fallback;
3368FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubb_u256, iemAImpl_vpsubb_u256_fallback;
3369FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubw_u256, iemAImpl_vpsubw_u256_fallback;
3370FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubd_u256, iemAImpl_vpsubd_u256_fallback;
3371FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubq_u256, iemAImpl_vpsubq_u256_fallback;
3372FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminub_u256, iemAImpl_vpminub_u256_fallback;
3373FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminuw_u256, iemAImpl_vpminuw_u256_fallback;
3374FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminud_u256, iemAImpl_vpminud_u256_fallback;
3375FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsb_u256, iemAImpl_vpminsb_u256_fallback;
3376FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsw_u256, iemAImpl_vpminsw_u256_fallback;
3377FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsd_u256, iemAImpl_vpminsd_u256_fallback;
3378FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxub_u256, iemAImpl_vpmaxub_u256_fallback;
3379FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxuw_u256, iemAImpl_vpmaxuw_u256_fallback;
3380FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxud_u256, iemAImpl_vpmaxud_u256_fallback;
3381FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsb_u256, iemAImpl_vpmaxsb_u256_fallback;
3382FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsw_u256, iemAImpl_vpmaxsw_u256_fallback;
3383FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsd_u256, iemAImpl_vpmaxsd_u256_fallback;
3384FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpacksswb_u256, iemAImpl_vpacksswb_u256_fallback;
3385FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackssdw_u256, iemAImpl_vpackssdw_u256_fallback;
3386FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackuswb_u256, iemAImpl_vpackuswb_u256_fallback;
3387FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackusdw_u256, iemAImpl_vpackusdw_u256_fallback;
3388FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmullw_u256, iemAImpl_vpmullw_u256_fallback;
3389FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulld_u256, iemAImpl_vpmulld_u256_fallback;
3390FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhw_u256, iemAImpl_vpmulhw_u256_fallback;
3391FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhuw_u256, iemAImpl_vpmulhuw_u256_fallback;
3392FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgb_u256, iemAImpl_vpavgb_u256_fallback;
3393FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgw_u256, iemAImpl_vpavgw_u256_fallback;
3394FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignb_u256, iemAImpl_vpsignb_u256_fallback;
3395FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignw_u256, iemAImpl_vpsignw_u256_fallback;
3396FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignd_u256, iemAImpl_vpsignd_u256_fallback;
3397FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddw_u256, iemAImpl_vphaddw_u256_fallback;
3398FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddd_u256, iemAImpl_vphaddd_u256_fallback;
3399FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubw_u256, iemAImpl_vphsubw_u256_fallback;
3400FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubd_u256, iemAImpl_vphsubd_u256_fallback;
3401FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddsw_u256, iemAImpl_vphaddsw_u256_fallback;
3402FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubsw_u256, iemAImpl_vphsubsw_u256_fallback;
3403FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddubsw_u256, iemAImpl_vpmaddubsw_u256_fallback;
3404FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhrsw_u256, iemAImpl_vpmulhrsw_u256_fallback;
3405FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsadbw_u256, iemAImpl_vpsadbw_u256_fallback;
3406FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuldq_u256, iemAImpl_vpmuldq_u256_fallback;
3407FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuludq_u256, iemAImpl_vpmuludq_u256_fallback;
3408FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsb_u256, iemAImpl_vpsubsb_u256_fallback;
3409FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsw_u256, iemAImpl_vpsubsw_u256_fallback;
3410FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusb_u256, iemAImpl_vpsubusb_u256_fallback;
3411FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusw_u256, iemAImpl_vpsubusw_u256_fallback;
3412FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusb_u256, iemAImpl_vpaddusb_u256_fallback;
3413FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusw_u256, iemAImpl_vpaddusw_u256_fallback;
3414FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsb_u256, iemAImpl_vpaddsb_u256_fallback;
3415FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsw_u256, iemAImpl_vpaddsw_u256_fallback;
3416FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllw_u256, iemAImpl_vpsllw_u256_fallback;
3417FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpslld_u256, iemAImpl_vpslld_u256_fallback;
3418FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllq_u256, iemAImpl_vpsllq_u256_fallback;
3419FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsraw_u256, iemAImpl_vpsraw_u256_fallback;
3420FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrad_u256, iemAImpl_vpsrad_u256_fallback;
3421FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlw_u256, iemAImpl_vpsrlw_u256_fallback;
3422FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrld_u256, iemAImpl_vpsrld_u256_fallback;
3423FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlq_u256, iemAImpl_vpsrlq_u256_fallback;
3424FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddwd_u256, iemAImpl_vpmaddwd_u256_fallback;
3425
3426FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsb_u256, iemAImpl_vpabsb_u256_fallback;
3427FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsw_u256, iemAImpl_vpabsw_u256_fallback;
3428FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsd_u256, iemAImpl_vpabsd_u256_fallback;
3429/** @} */
3430
3431/** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
3432 * @{ */
3433FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
3434FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
3435FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpcklbw_u128, iemAImpl_vpunpcklbw_u128_fallback,
3436 iemAImpl_vpunpcklwd_u128, iemAImpl_vpunpcklwd_u128_fallback,
3437 iemAImpl_vpunpckldq_u128, iemAImpl_vpunpckldq_u128_fallback,
3438 iemAImpl_vpunpcklqdq_u128, iemAImpl_vpunpcklqdq_u128_fallback,
3439 iemAImpl_vunpcklps_u128, iemAImpl_vunpcklps_u128_fallback,
3440 iemAImpl_vunpcklpd_u128, iemAImpl_vunpcklpd_u128_fallback,
3441 iemAImpl_vunpckhps_u128, iemAImpl_vunpckhps_u128_fallback,
3442 iemAImpl_vunpckhpd_u128, iemAImpl_vunpckhpd_u128_fallback;
3443
3444FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpcklbw_u256, iemAImpl_vpunpcklbw_u256_fallback,
3445 iemAImpl_vpunpcklwd_u256, iemAImpl_vpunpcklwd_u256_fallback,
3446 iemAImpl_vpunpckldq_u256, iemAImpl_vpunpckldq_u256_fallback,
3447 iemAImpl_vpunpcklqdq_u256, iemAImpl_vpunpcklqdq_u256_fallback,
3448 iemAImpl_vunpcklps_u256, iemAImpl_vunpcklps_u256_fallback,
3449 iemAImpl_vunpcklpd_u256, iemAImpl_vunpcklpd_u256_fallback,
3450 iemAImpl_vunpckhps_u256, iemAImpl_vunpckhps_u256_fallback,
3451 iemAImpl_vunpckhpd_u256, iemAImpl_vunpckhpd_u256_fallback;
3452/** @} */
3453
3454/** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
3455 * @{ */
3456FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
3457FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
3458FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpckhbw_u128, iemAImpl_vpunpckhbw_u128_fallback,
3459 iemAImpl_vpunpckhwd_u128, iemAImpl_vpunpckhwd_u128_fallback,
3460 iemAImpl_vpunpckhdq_u128, iemAImpl_vpunpckhdq_u128_fallback,
3461 iemAImpl_vpunpckhqdq_u128, iemAImpl_vpunpckhqdq_u128_fallback;
3462FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpckhbw_u256, iemAImpl_vpunpckhbw_u256_fallback,
3463 iemAImpl_vpunpckhwd_u256, iemAImpl_vpunpckhwd_u256_fallback,
3464 iemAImpl_vpunpckhdq_u256, iemAImpl_vpunpckhdq_u256_fallback,
3465 iemAImpl_vpunpckhqdq_u256, iemAImpl_vpunpckhqdq_u256_fallback;
3466/** @} */
3467
3468/** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
3469 * @{ */
3470typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3471typedef FNIEMAIMPLMEDIAPSHUFU128 *PFNIEMAIMPLMEDIAPSHUFU128;
3472typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3473typedef FNIEMAIMPLMEDIAPSHUFU256 *PFNIEMAIMPLMEDIAPSHUFU256;
3474IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil));
3475FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_pshufhw_u128, iemAImpl_pshuflw_u128, iemAImpl_pshufd_u128;
3476#ifndef IEM_WITHOUT_ASSEMBLY
3477FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256, iemAImpl_vpshuflw_u256, iemAImpl_vpshufd_u256;
3478#endif
3479FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256_fallback, iemAImpl_vpshuflw_u256_fallback, iemAImpl_vpshufd_u256_fallback;
3480/** @} */
3481
3482/** @name Media (SSE/MMX/AVX) operation: Shift Immediate Stuff (evil)
3483 * @{ */
3484typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU64,(uint64_t *puDst, uint8_t bShift));
3485typedef FNIEMAIMPLMEDIAPSHIFTU64 *PFNIEMAIMPLMEDIAPSHIFTU64;
3486typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU128,(PRTUINT128U puDst, uint8_t bShift));
3487typedef FNIEMAIMPLMEDIAPSHIFTU128 *PFNIEMAIMPLMEDIAPSHIFTU128;
3488typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU256,(PRTUINT256U puDst, uint8_t bShift));
3489typedef FNIEMAIMPLMEDIAPSHIFTU256 *PFNIEMAIMPLMEDIAPSHIFTU256;
3490FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psllw_imm_u64, iemAImpl_pslld_imm_u64, iemAImpl_psllq_imm_u64;
3491FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psrlw_imm_u64, iemAImpl_psrld_imm_u64, iemAImpl_psrlq_imm_u64;
3492FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psraw_imm_u64, iemAImpl_psrad_imm_u64;
3493FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psllw_imm_u128, iemAImpl_pslld_imm_u128, iemAImpl_psllq_imm_u128;
3494FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psrlw_imm_u128, iemAImpl_psrld_imm_u128, iemAImpl_psrlq_imm_u128;
3495FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psraw_imm_u128, iemAImpl_psrad_imm_u128;
3496FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_pslldq_imm_u128, iemAImpl_psrldq_imm_u128;
3497/** @} */
3498
3499/** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
3500 * @{ */
3501IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *puSrc));
3502IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U puSrc));
3503#ifndef IEM_WITHOUT_ASSEMBLY
3504IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3505#endif
3506IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3507/** @} */
3508
3509/** @name Media (SSE/MMX/AVX) operations: Variable Blend Packed Bytes/R32/R64.
3510 * @{ */
3511typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask));
3512typedef FNIEMAIMPLBLENDU128 *PFNIEMAIMPLBLENDU128;
3513typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask));
3514typedef FNIEMAIMPLAVXBLENDU128 *PFNIEMAIMPLAVXBLENDU128;
3515typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask));
3516typedef FNIEMAIMPLAVXBLENDU256 *PFNIEMAIMPLAVXBLENDU256;
3517
3518FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128;
3519FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128_fallback;
3520FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128;
3521FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128_fallback;
3522FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256;
3523FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256_fallback;
3524
3525FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128;
3526FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128_fallback;
3527FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128;
3528FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128_fallback;
3529FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256;
3530FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256_fallback;
3531
3532FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128;
3533FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128_fallback;
3534FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128;
3535FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128_fallback;
3536FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256;
3537FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256_fallback;
3538/** @} */
3539
3540
3541/** @name Media (SSE/MMX/AVX) operation: Sort this later
3542 * @{ */
3543IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
3544IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
3545IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
3546IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
3547IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
3548IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
3549
3550IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3551IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3552IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3553IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3554IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3555
3556IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3557IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3558IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3559IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3560IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3561
3562IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3563IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3564IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3565IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3566IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3567
3568IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3569IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3570IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3571IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3572IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3573
3574IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3575IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3576IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3577IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3578IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3579
3580IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3581IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3582IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3583IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3584IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3585
3586IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3587IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3588IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3589IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3590IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3591
3592IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3593IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3594IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3595IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3596IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3597
3598IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3599IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3600IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3601IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3602IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3603
3604IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3605IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3606IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3607IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3608IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3609
3610IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3611IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3612IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3613IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3614IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3615
3616IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3617IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3618IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3619IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3620IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3621
3622IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3623IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3624IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3625IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3626IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3627
3628IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3629IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3630IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3631IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3632IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3633
3634IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3635IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3636
3637IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u64,(uint64_t *pu64Dst, uint16_t u16Src, uint8_t bEvil));
3638IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u128,(PRTUINT128U puDst, uint16_t u16Src, uint8_t bEvil));
3639IEM_DECL_IMPL_DEF(void, iemAImpl_vpinsrw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint16_t u16Src, uint8_t bEvil));
3640IEM_DECL_IMPL_DEF(void, iemAImpl_vpinsrw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint16_t u16Src, uint8_t bEvil));
3641
3642IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3643IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3644IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3645IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3646IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3647
3648IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3649IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3650IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3651IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3652IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3653
3654
3655typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3656typedef FNIEMAIMPLMEDIAOPTF2U128IMM8 *PFNIEMAIMPLMEDIAOPTF2U128IMM8;
3657typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3658typedef FNIEMAIMPLMEDIAOPTF2U256IMM8 *PFNIEMAIMPLMEDIAOPTF2U256IMM8;
3659typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3660typedef FNIEMAIMPLMEDIAOPTF3U128IMM8 *PFNIEMAIMPLMEDIAOPTF3U128IMM8;
3661typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3662typedef FNIEMAIMPLMEDIAOPTF3U256IMM8 *PFNIEMAIMPLMEDIAOPTF3U256IMM8;
3663
3664FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_palignr_u128, iemAImpl_palignr_u128_fallback;
3665FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pblendw_u128, iemAImpl_pblendw_u128_fallback;
3666FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendps_u128, iemAImpl_blendps_u128_fallback;
3667FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendpd_u128, iemAImpl_blendpd_u128_fallback;
3668
3669FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpalignr_u128, iemAImpl_vpalignr_u128_fallback;
3670FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendw_u128, iemAImpl_vpblendw_u128_fallback;
3671FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendd_u128, iemAImpl_vpblendd_u128_fallback;
3672FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendps_u128, iemAImpl_vblendps_u128_fallback;
3673FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendpd_u128, iemAImpl_vblendpd_u128_fallback;
3674
3675FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpalignr_u256, iemAImpl_vpalignr_u256_fallback;
3676FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendw_u256, iemAImpl_vpblendw_u256_fallback;
3677FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendd_u256, iemAImpl_vpblendd_u256_fallback;
3678FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendps_u256, iemAImpl_vblendps_u256_fallback;
3679FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendpd_u256, iemAImpl_vblendpd_u256_fallback;
3680FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2i128_u256, iemAImpl_vperm2i128_u256_fallback;
3681FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2f128_u256, iemAImpl_vperm2f128_u256_fallback;
3682
3683FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesimc_u128, iemAImpl_aesimc_u128_fallback;
3684FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenc_u128, iemAImpl_aesenc_u128_fallback;
3685FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenclast_u128, iemAImpl_aesenclast_u128_fallback;
3686FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdec_u128, iemAImpl_aesdec_u128_fallback;
3687FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdeclast_u128, iemAImpl_aesdeclast_u128_fallback;
3688
3689FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesimc_u128, iemAImpl_vaesimc_u128_fallback;
3690FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenc_u128, iemAImpl_vaesenc_u128_fallback;
3691FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenclast_u128, iemAImpl_vaesenclast_u128_fallback;
3692FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdec_u128, iemAImpl_vaesdec_u128_fallback;
3693FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdeclast_u128, iemAImpl_vaesdeclast_u128_fallback;
3694
3695FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_aeskeygenassist_u128, iemAImpl_aeskeygenassist_u128_fallback;
3696
3697FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vaeskeygenassist_u128, iemAImpl_vaeskeygenassist_u128_fallback;
3698
3699FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1nexte_u128, iemAImpl_sha1nexte_u128_fallback;
3700FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg1_u128, iemAImpl_sha1msg1_u128_fallback;
3701FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg2_u128, iemAImpl_sha1msg2_u128_fallback;
3702FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg1_u128, iemAImpl_sha256msg1_u128_fallback;
3703FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg2_u128, iemAImpl_sha256msg2_u128_fallback;
3704FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_sha1rnds4_u128, iemAImpl_sha1rnds4_u128_fallback;
3705IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3706IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3707
3708typedef struct IEMPCMPISTRXSRC
3709{
3710 RTUINT128U uSrc1;
3711 RTUINT128U uSrc2;
3712} IEMPCMPISTRXSRC;
3713typedef IEMPCMPISTRXSRC *PIEMPCMPISTRXSRC;
3714typedef const IEMPCMPISTRXSRC *PCIEMPCMPISTRXSRC;
3715
3716typedef struct IEMPCMPESTRXSRC
3717{
3718 RTUINT128U uSrc1;
3719 RTUINT128U uSrc2;
3720 uint64_t u64Rax;
3721 uint64_t u64Rdx;
3722} IEMPCMPESTRXSRC;
3723typedef IEMPCMPESTRXSRC *PIEMPCMPESTRXSRC;
3724typedef const IEMPCMPESTRXSRC *PCIEMPCMPESTRXSRC;
3725
3726typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
3727typedef FNIEMAIMPLPCMPISTRIU128IMM8 *PFNIEMAIMPLPCMPISTRIU128IMM8;
3728typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3729typedef FNIEMAIMPLPCMPESTRIU128IMM8 *PFNIEMAIMPLPCMPESTRIU128IMM8;
3730
3731typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
3732typedef FNIEMAIMPLPCMPISTRMU128IMM8 *PFNIEMAIMPLPCMPISTRMU128IMM8;
3733typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3734typedef FNIEMAIMPLPCMPESTRMU128IMM8 *PFNIEMAIMPLPCMPESTRMU128IMM8;
3735
3736FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_pcmpistri_u128, iemAImpl_pcmpistri_u128_fallback;
3737FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_pcmpestri_u128, iemAImpl_pcmpestri_u128_fallback;
3738FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_pcmpistrm_u128, iemAImpl_pcmpistrm_u128_fallback;
3739FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_pcmpestrm_u128, iemAImpl_pcmpestrm_u128_fallback;
3740
3741FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pclmulqdq_u128, iemAImpl_pclmulqdq_u128_fallback;
3742FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpclmulqdq_u128, iemAImpl_vpclmulqdq_u128_fallback;
3743
3744FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_mpsadbw_u128, iemAImpl_mpsadbw_u128_fallback;
3745FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vmpsadbw_u128, iemAImpl_vmpsadbw_u128_fallback;
3746FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vmpsadbw_u256, iemAImpl_vmpsadbw_u256_fallback;
3747
3748FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllw_imm_u128, iemAImpl_vpsllw_imm_u128_fallback;
3749FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllw_imm_u256, iemAImpl_vpsllw_imm_u256_fallback;
3750FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpslld_imm_u128, iemAImpl_vpslld_imm_u128_fallback;
3751FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpslld_imm_u256, iemAImpl_vpslld_imm_u256_fallback;
3752FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllq_imm_u128, iemAImpl_vpsllq_imm_u128_fallback;
3753FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllq_imm_u256, iemAImpl_vpsllq_imm_u256_fallback;
3754
3755FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsraw_imm_u128, iemAImpl_vpsraw_imm_u128_fallback;
3756FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsraw_imm_u256, iemAImpl_vpsraw_imm_u256_fallback;
3757FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrad_imm_u128, iemAImpl_vpsrad_imm_u128_fallback;
3758FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrad_imm_u256, iemAImpl_vpsrad_imm_u256_fallback;
3759
3760FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlw_imm_u128, iemAImpl_vpsrlw_imm_u128_fallback;
3761FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlw_imm_u256, iemAImpl_vpsrlw_imm_u256_fallback;
3762FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrld_imm_u128, iemAImpl_vpsrld_imm_u128_fallback;
3763FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrld_imm_u256, iemAImpl_vpsrld_imm_u256_fallback;
3764FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlq_imm_u128, iemAImpl_vpsrlq_imm_u128_fallback;
3765FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlq_imm_u256, iemAImpl_vpsrlq_imm_u256_fallback;
3766FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrldq_imm_u128, iemAImpl_vpsrldq_imm_u128_fallback;
3767FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrldq_imm_u256, iemAImpl_vpsrldq_imm_u256_fallback;
3768
3769FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilps_u128, iemAImpl_vpermilps_u128_fallback;
3770FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilps_imm_u128, iemAImpl_vpermilps_imm_u128_fallback;
3771FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilps_u256, iemAImpl_vpermilps_u256_fallback;
3772FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilps_imm_u256, iemAImpl_vpermilps_imm_u256_fallback;
3773
3774FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilpd_u128, iemAImpl_vpermilpd_u128_fallback;
3775FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilpd_imm_u128, iemAImpl_vpermilpd_imm_u128_fallback;
3776FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilpd_u256, iemAImpl_vpermilpd_u256_fallback;
3777FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilpd_imm_u256, iemAImpl_vpermilpd_imm_u256_fallback;
3778
3779FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvd_u128, iemAImpl_vpsllvd_u128_fallback;
3780FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvd_u256, iemAImpl_vpsllvd_u256_fallback;
3781FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvq_u128, iemAImpl_vpsllvq_u128_fallback;
3782FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvq_u256, iemAImpl_vpsllvq_u256_fallback;
3783FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsravd_u128, iemAImpl_vpsravd_u128_fallback;
3784FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsravd_u256, iemAImpl_vpsravd_u256_fallback;
3785FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvd_u128, iemAImpl_vpsrlvd_u128_fallback;
3786FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvd_u256, iemAImpl_vpsrlvd_u256_fallback;
3787FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvq_u128, iemAImpl_vpsrlvq_u128_fallback;
3788FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvq_u256, iemAImpl_vpsrlvq_u256_fallback;
3789/** @} */
3790
3791/** @name Media Odds and Ends
3792 * @{ */
3793typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U8,(uint32_t *puDst, uint8_t uSrc));
3794typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U16,(uint32_t *puDst, uint16_t uSrc));
3795typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U32,(uint32_t *puDst, uint32_t uSrc));
3796typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U64,(uint32_t *puDst, uint64_t uSrc));
3797FNIEMAIMPLCR32U8 iemAImpl_crc32_u8, iemAImpl_crc32_u8_fallback;
3798FNIEMAIMPLCR32U16 iemAImpl_crc32_u16, iemAImpl_crc32_u16_fallback;
3799FNIEMAIMPLCR32U32 iemAImpl_crc32_u32, iemAImpl_crc32_u32_fallback;
3800FNIEMAIMPLCR32U64 iemAImpl_crc32_u64, iemAImpl_crc32_u64_fallback;
3801
3802typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pEFlags));
3803typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL256,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pEFlags));
3804FNIEMAIMPLF2EFL128 iemAImpl_ptest_u128;
3805FNIEMAIMPLF2EFL256 iemAImpl_vptest_u256, iemAImpl_vptest_u256_fallback;
3806
3807typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I32U64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
3808typedef FNIEMAIMPLSSEF2I32U64 *PFNIEMAIMPLSSEF2I32U64;
3809typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I64U64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
3810typedef FNIEMAIMPLSSEF2I64U64 *PFNIEMAIMPLSSEF2I64U64;
3811typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I32U32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
3812typedef FNIEMAIMPLSSEF2I32U32 *PFNIEMAIMPLSSEF2I32U32;
3813typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I64U32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
3814typedef FNIEMAIMPLSSEF2I64U32 *PFNIEMAIMPLSSEF2I64U32;
3815
3816FNIEMAIMPLSSEF2I32U64 iemAImpl_cvttsd2si_i32_r64;
3817FNIEMAIMPLSSEF2I32U64 iemAImpl_cvtsd2si_i32_r64;
3818
3819FNIEMAIMPLSSEF2I64U64 iemAImpl_cvttsd2si_i64_r64;
3820FNIEMAIMPLSSEF2I64U64 iemAImpl_cvtsd2si_i64_r64;
3821
3822FNIEMAIMPLSSEF2I32U32 iemAImpl_cvttss2si_i32_r32;
3823FNIEMAIMPLSSEF2I32U32 iemAImpl_cvtss2si_i32_r32;
3824
3825FNIEMAIMPLSSEF2I64U32 iemAImpl_cvttss2si_i64_r32;
3826FNIEMAIMPLSSEF2I64U32 iemAImpl_cvtss2si_i64_r32;
3827
3828typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R32I32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int32_t *pi32Src));
3829typedef FNIEMAIMPLSSEF2R32I32 *PFNIEMAIMPLSSEF2R32I32;
3830typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R32I64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int64_t *pi64Src));
3831typedef FNIEMAIMPLSSEF2R32I64 *PFNIEMAIMPLSSEF2R32I64;
3832
3833FNIEMAIMPLSSEF2R32I32 iemAImpl_cvtsi2ss_r32_i32;
3834FNIEMAIMPLSSEF2R32I64 iemAImpl_cvtsi2ss_r32_i64;
3835
3836typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R64I32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int32_t *pi32Src));
3837typedef FNIEMAIMPLSSEF2R64I32 *PFNIEMAIMPLSSEF2R64I32;
3838typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R64I64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int64_t *pi64Src));
3839typedef FNIEMAIMPLSSEF2R64I64 *PFNIEMAIMPLSSEF2R64I64;
3840
3841FNIEMAIMPLSSEF2R64I32 iemAImpl_cvtsi2sd_r64_i32;
3842FNIEMAIMPLSSEF2R64I64 iemAImpl_cvtsi2sd_r64_i64;
3843
3844
3845typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFLMXCSR128,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3846typedef FNIEMAIMPLF2EFLMXCSR128 *PFNIEMAIMPLF2EFLMXCSR128;
3847
3848FNIEMAIMPLF2EFLMXCSR128 iemAImpl_ucomiss_u128;
3849FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vucomiss_u128, iemAImpl_vucomiss_u128_fallback;
3850
3851FNIEMAIMPLF2EFLMXCSR128 iemAImpl_ucomisd_u128;
3852FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vucomisd_u128, iemAImpl_vucomisd_u128_fallback;
3853
3854FNIEMAIMPLF2EFLMXCSR128 iemAImpl_comiss_u128;
3855FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vcomiss_u128, iemAImpl_vcomiss_u128_fallback;
3856
3857FNIEMAIMPLF2EFLMXCSR128 iemAImpl_comisd_u128;
3858FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vcomisd_u128, iemAImpl_vcomisd_u128_fallback;
3859
3860
3861typedef struct IEMMEDIAF2XMMSRC
3862{
3863 X86XMMREG uSrc1;
3864 X86XMMREG uSrc2;
3865} IEMMEDIAF2XMMSRC;
3866typedef IEMMEDIAF2XMMSRC *PIEMMEDIAF2XMMSRC;
3867typedef const IEMMEDIAF2XMMSRC *PCIEMMEDIAF2XMMSRC;
3868
3869typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRF2XMMIMM8,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC puSrc, uint8_t bEvil));
3870typedef FNIEMAIMPLMXCSRF2XMMIMM8 *PFNIEMAIMPLMXCSRF2XMMIMM8;
3871
3872FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpps_u128;
3873FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmppd_u128;
3874FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpss_u128;
3875FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpsd_u128;
3876FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundss_u128;
3877FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundsd_u128;
3878
3879FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundps_u128, iemAImpl_roundps_u128_fallback;
3880FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundpd_u128, iemAImpl_roundpd_u128_fallback;
3881
3882FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dpps_u128, iemAImpl_dpps_u128_fallback;
3883FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dppd_u128, iemAImpl_dppd_u128_fallback;
3884
3885typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU64U128,(uint32_t *pfMxcsr, uint64_t *pu64Dst, PCX86XMMREG pSrc));
3886typedef FNIEMAIMPLMXCSRU64U128 *PFNIEMAIMPLMXCSRU64U128;
3887
3888FNIEMAIMPLMXCSRU64U128 iemAImpl_cvtpd2pi_u128;
3889FNIEMAIMPLMXCSRU64U128 iemAImpl_cvttpd2pi_u128;
3890
3891typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU128U64,(uint32_t *pfMxcsr, PX86XMMREG pDst, uint64_t u64Src));
3892typedef FNIEMAIMPLMXCSRU128U64 *PFNIEMAIMPLMXCSRU128U64;
3893
3894FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2ps_u128;
3895FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2pd_u128;
3896
3897typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU64U64,(uint32_t *pfMxcsr, uint64_t *pu64Dst, uint64_t u64Src));
3898typedef FNIEMAIMPLMXCSRU64U64 *PFNIEMAIMPLMXCSRU64U64;
3899
3900FNIEMAIMPLMXCSRU64U64 iemAImpl_cvtps2pi_u128;
3901FNIEMAIMPLMXCSRU64U64 iemAImpl_cvttps2pi_u128;
3902
3903/** @} */
3904
3905
3906/** @name Function tables.
3907 * @{
3908 */
3909
3910/**
3911 * Function table for a binary operator providing implementation based on
3912 * operand size.
3913 */
3914typedef struct IEMOPBINSIZES
3915{
3916 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
3917 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
3918 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
3919 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
3920} IEMOPBINSIZES;
3921/** Pointer to a binary operator function table. */
3922typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
3923
3924
3925/**
3926 * Function table for a unary operator providing implementation based on
3927 * operand size.
3928 */
3929typedef struct IEMOPUNARYSIZES
3930{
3931 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
3932 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
3933 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
3934 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
3935} IEMOPUNARYSIZES;
3936/** Pointer to a unary operator function table. */
3937typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
3938
3939
3940/**
3941 * Function table for a shift operator providing implementation based on
3942 * operand size.
3943 */
3944typedef struct IEMOPSHIFTSIZES
3945{
3946 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
3947 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
3948 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
3949 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
3950} IEMOPSHIFTSIZES;
3951/** Pointer to a shift operator function table. */
3952typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
3953
3954
3955/**
3956 * Function table for a multiplication or division operation.
3957 */
3958typedef struct IEMOPMULDIVSIZES
3959{
3960 PFNIEMAIMPLMULDIVU8 pfnU8;
3961 PFNIEMAIMPLMULDIVU16 pfnU16;
3962 PFNIEMAIMPLMULDIVU32 pfnU32;
3963 PFNIEMAIMPLMULDIVU64 pfnU64;
3964} IEMOPMULDIVSIZES;
3965/** Pointer to a multiplication or division operation function table. */
3966typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
3967
3968
3969/**
3970 * Function table for a double precision shift operator providing implementation
3971 * based on operand size.
3972 */
3973typedef struct IEMOPSHIFTDBLSIZES
3974{
3975 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
3976 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
3977 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
3978} IEMOPSHIFTDBLSIZES;
3979/** Pointer to a double precision shift function table. */
3980typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
3981
3982
3983/**
3984 * Function table for media instruction taking two full sized media source
3985 * registers and one full sized destination register (AVX).
3986 */
3987typedef struct IEMOPMEDIAF3
3988{
3989 PFNIEMAIMPLMEDIAF3U128 pfnU128;
3990 PFNIEMAIMPLMEDIAF3U256 pfnU256;
3991} IEMOPMEDIAF3;
3992/** Pointer to a media operation function table for 3 full sized ops (AVX). */
3993typedef IEMOPMEDIAF3 const *PCIEMOPMEDIAF3;
3994
3995/** @def IEMOPMEDIAF3_INIT_VARS_EX
3996 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3997 * given functions as initializers. For use in AVX functions where a pair of
3998 * functions are only used once and the function table need not be public. */
3999#ifndef TST_IEM_CHECK_MC
4000# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4001# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4002 static IEMOPMEDIAF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4003 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4004# else
4005# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4006 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4007# endif
4008#else
4009# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4010#endif
4011/** @def IEMOPMEDIAF3_INIT_VARS
4012 * Generate AVX function tables for the @a a_InstrNm instruction.
4013 * @sa IEMOPMEDIAF3_INIT_VARS_EX */
4014#define IEMOPMEDIAF3_INIT_VARS(a_InstrNm) \
4015 IEMOPMEDIAF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4016 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4017
4018/**
4019 * Function table for media instruction taking two full sized media source
4020 * registers and one full sized destination register, but no additional state
4021 * (AVX).
4022 */
4023typedef struct IEMOPMEDIAOPTF3
4024{
4025 PFNIEMAIMPLMEDIAOPTF3U128 pfnU128;
4026 PFNIEMAIMPLMEDIAOPTF3U256 pfnU256;
4027} IEMOPMEDIAOPTF3;
4028/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4029typedef IEMOPMEDIAOPTF3 const *PCIEMOPMEDIAOPTF3;
4030
4031/** @def IEMOPMEDIAOPTF3_INIT_VARS_EX
4032 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4033 * given functions as initializers. For use in AVX functions where a pair of
4034 * functions are only used once and the function table need not be public. */
4035#ifndef TST_IEM_CHECK_MC
4036# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4037# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4038 static IEMOPMEDIAOPTF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4039 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4040# else
4041# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4042 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4043# endif
4044#else
4045# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4046#endif
4047/** @def IEMOPMEDIAOPTF3_INIT_VARS
4048 * Generate AVX function tables for the @a a_InstrNm instruction.
4049 * @sa IEMOPMEDIAOPTF3_INIT_VARS_EX */
4050#define IEMOPMEDIAOPTF3_INIT_VARS(a_InstrNm) \
4051 IEMOPMEDIAOPTF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4052 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4053
4054/**
4055 * Function table for media instruction taking one full sized media source
4056 * registers and one full sized destination register, but no additional state
4057 * (AVX).
4058 */
4059typedef struct IEMOPMEDIAOPTF2
4060{
4061 PFNIEMAIMPLMEDIAOPTF2U128 pfnU128;
4062 PFNIEMAIMPLMEDIAOPTF2U256 pfnU256;
4063} IEMOPMEDIAOPTF2;
4064/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4065typedef IEMOPMEDIAOPTF2 const *PCIEMOPMEDIAOPTF2;
4066
4067/** @def IEMOPMEDIAOPTF2_INIT_VARS_EX
4068 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4069 * given functions as initializers. For use in AVX functions where a pair of
4070 * functions are only used once and the function table need not be public. */
4071#ifndef TST_IEM_CHECK_MC
4072# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4073# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4074 static IEMOPMEDIAOPTF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4075 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4076# else
4077# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4078 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4079# endif
4080#else
4081# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4082#endif
4083/** @def IEMOPMEDIAOPTF2_INIT_VARS
4084 * Generate AVX function tables for the @a a_InstrNm instruction.
4085 * @sa IEMOPMEDIAOPTF2_INIT_VARS_EX */
4086#define IEMOPMEDIAOPTF2_INIT_VARS(a_InstrNm) \
4087 IEMOPMEDIAOPTF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4088 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4089
4090/**
4091 * Function table for media instruction taking one full sized media source
4092 * register and one full sized destination register and an 8-bit immediate, but no additional state
4093 * (AVX).
4094 */
4095typedef struct IEMOPMEDIAOPTF2IMM8
4096{
4097 PFNIEMAIMPLMEDIAOPTF2U128IMM8 pfnU128;
4098 PFNIEMAIMPLMEDIAOPTF2U256IMM8 pfnU256;
4099} IEMOPMEDIAOPTF2IMM8;
4100/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4101typedef IEMOPMEDIAOPTF2IMM8 const *PCIEMOPMEDIAOPTF2IMM8;
4102
4103/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX
4104 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4105 * given functions as initializers. For use in AVX functions where a pair of
4106 * functions are only used once and the function table need not be public. */
4107#ifndef TST_IEM_CHECK_MC
4108# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4109# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4110 static IEMOPMEDIAOPTF2IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4111 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4112# else
4113# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4114 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4115# endif
4116#else
4117# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4118#endif
4119/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS
4120 * Generate AVX function tables for the @a a_InstrNm instruction.
4121 * @sa IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX */
4122#define IEMOPMEDIAOPTF2IMM8_INIT_VARS(a_InstrNm) \
4123 IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256),\
4124 RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256_fallback))
4125
4126/**
4127 * Function table for media instruction taking two full sized media source
4128 * registers and one full sized destination register and an 8-bit immediate, but no additional state
4129 * (AVX).
4130 */
4131typedef struct IEMOPMEDIAOPTF3IMM8
4132{
4133 PFNIEMAIMPLMEDIAOPTF3U128IMM8 pfnU128;
4134 PFNIEMAIMPLMEDIAOPTF3U256IMM8 pfnU256;
4135} IEMOPMEDIAOPTF3IMM8;
4136/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4137typedef IEMOPMEDIAOPTF3IMM8 const *PCIEMOPMEDIAOPTF3IMM8;
4138
4139/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX
4140 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4141 * given functions as initializers. For use in AVX functions where a pair of
4142 * functions are only used once and the function table need not be public. */
4143#ifndef TST_IEM_CHECK_MC
4144# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4145# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4146 static IEMOPMEDIAOPTF3IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4147 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4148# else
4149# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4150 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4151# endif
4152#else
4153# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4154#endif
4155/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS
4156 * Generate AVX function tables for the @a a_InstrNm instruction.
4157 * @sa IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX */
4158#define IEMOPMEDIAOPTF3IMM8_INIT_VARS(a_InstrNm) \
4159 IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4160 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4161/** @} */
4162
4163
4164/**
4165 * Function table for blend type instruction taking three full sized media source
4166 * registers and one full sized destination register, but no additional state
4167 * (AVX).
4168 */
4169typedef struct IEMOPBLENDOP
4170{
4171 PFNIEMAIMPLAVXBLENDU128 pfnU128;
4172 PFNIEMAIMPLAVXBLENDU256 pfnU256;
4173} IEMOPBLENDOP;
4174/** Pointer to a media operation function table for 4 full sized ops (AVX). */
4175typedef IEMOPBLENDOP const *PCIEMOPBLENDOP;
4176
4177/** @def IEMOPBLENDOP_INIT_VARS_EX
4178 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4179 * given functions as initializers. For use in AVX functions where a pair of
4180 * functions are only used once and the function table need not be public. */
4181#ifndef TST_IEM_CHECK_MC
4182# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4183# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4184 static IEMOPBLENDOP const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4185 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4186# else
4187# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4188 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4189# endif
4190#else
4191# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4192#endif
4193/** @def IEMOPBLENDOP_INIT_VARS
4194 * Generate AVX function tables for the @a a_InstrNm instruction.
4195 * @sa IEMOPBLENDOP_INIT_VARS_EX */
4196#define IEMOPBLENDOP_INIT_VARS(a_InstrNm) \
4197 IEMOPBLENDOP_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4198 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4199
4200
4201/** @name SSE/AVX single/double precision floating point operations.
4202 * @{ */
4203/**
4204 * A SSE result.
4205 */
4206typedef struct IEMSSERESULT
4207{
4208 /** The output value. */
4209 X86XMMREG uResult;
4210 /** The output status. */
4211 uint32_t MXCSR;
4212} IEMSSERESULT;
4213AssertCompileMemberOffset(IEMSSERESULT, MXCSR, 128 / 8);
4214/** Pointer to a SSE result. */
4215typedef IEMSSERESULT *PIEMSSERESULT;
4216/** Pointer to a const SSE result. */
4217typedef IEMSSERESULT const *PCIEMSSERESULT;
4218
4219
4220/**
4221 * A AVX128 result.
4222 */
4223typedef struct IEMAVX128RESULT
4224{
4225 /** The output value. */
4226 X86XMMREG uResult;
4227 /** The output status. */
4228 uint32_t MXCSR;
4229} IEMAVX128RESULT;
4230AssertCompileMemberOffset(IEMAVX128RESULT, MXCSR, 128 / 8);
4231/** Pointer to a AVX128 result. */
4232typedef IEMAVX128RESULT *PIEMAVX128RESULT;
4233/** Pointer to a const AVX128 result. */
4234typedef IEMAVX128RESULT const *PCIEMAVX128RESULT;
4235
4236
4237/**
4238 * A AVX256 result.
4239 */
4240typedef struct IEMAVX256RESULT
4241{
4242 /** The output value. */
4243 X86YMMREG uResult;
4244 /** The output status. */
4245 uint32_t MXCSR;
4246} IEMAVX256RESULT;
4247AssertCompileMemberOffset(IEMAVX256RESULT, MXCSR, 256 / 8);
4248/** Pointer to a AVX256 result. */
4249typedef IEMAVX256RESULT *PIEMAVX256RESULT;
4250/** Pointer to a const AVX256 result. */
4251typedef IEMAVX256RESULT const *PCIEMAVX256RESULT;
4252
4253
4254typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4255typedef FNIEMAIMPLFPSSEF2U128 *PFNIEMAIMPLFPSSEF2U128;
4256typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128R32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4257typedef FNIEMAIMPLFPSSEF2U128R32 *PFNIEMAIMPLFPSSEF2U128R32;
4258typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128R64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4259typedef FNIEMAIMPLFPSSEF2U128R64 *PFNIEMAIMPLFPSSEF2U128R64;
4260
4261typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4262typedef FNIEMAIMPLFPAVXF3U128 *PFNIEMAIMPLFPAVXF3U128;
4263typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128R32,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4264typedef FNIEMAIMPLFPAVXF3U128R32 *PFNIEMAIMPLFPAVXF3U128R32;
4265typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128R64,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4266typedef FNIEMAIMPLFPAVXF3U128R64 *PFNIEMAIMPLFPAVXF3U128R64;
4267
4268typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U256,(PX86XSAVEAREA pExtState, PIEMAVX256RESULT pResult, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
4269typedef FNIEMAIMPLFPAVXF3U256 *PFNIEMAIMPLFPAVXF3U256;
4270
4271FNIEMAIMPLFPSSEF2U128 iemAImpl_addps_u128;
4272FNIEMAIMPLFPSSEF2U128 iemAImpl_addpd_u128;
4273FNIEMAIMPLFPSSEF2U128 iemAImpl_mulps_u128;
4274FNIEMAIMPLFPSSEF2U128 iemAImpl_mulpd_u128;
4275FNIEMAIMPLFPSSEF2U128 iemAImpl_subps_u128;
4276FNIEMAIMPLFPSSEF2U128 iemAImpl_subpd_u128;
4277FNIEMAIMPLFPSSEF2U128 iemAImpl_minps_u128;
4278FNIEMAIMPLFPSSEF2U128 iemAImpl_minpd_u128;
4279FNIEMAIMPLFPSSEF2U128 iemAImpl_divps_u128;
4280FNIEMAIMPLFPSSEF2U128 iemAImpl_divpd_u128;
4281FNIEMAIMPLFPSSEF2U128 iemAImpl_maxps_u128;
4282FNIEMAIMPLFPSSEF2U128 iemAImpl_maxpd_u128;
4283FNIEMAIMPLFPSSEF2U128 iemAImpl_haddps_u128;
4284FNIEMAIMPLFPSSEF2U128 iemAImpl_haddpd_u128;
4285FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubps_u128;
4286FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubpd_u128;
4287FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtps_u128;
4288FNIEMAIMPLFPSSEF2U128 iemAImpl_rsqrtps_u128;
4289FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtpd_u128;
4290FNIEMAIMPLFPSSEF2U128 iemAImpl_rcpps_u128;
4291FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubps_u128;
4292FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubpd_u128;
4293FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2ps_u128;
4294FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2pd_u128;
4295
4296FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2ps_u128;
4297FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2dq_u128;
4298FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttps2dq_u128;
4299FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttpd2dq_u128;
4300FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2pd_u128;
4301FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2dq_u128;
4302
4303FNIEMAIMPLFPSSEF2U128R32 iemAImpl_addss_u128_r32;
4304FNIEMAIMPLFPSSEF2U128R64 iemAImpl_addsd_u128_r64;
4305FNIEMAIMPLFPSSEF2U128R32 iemAImpl_mulss_u128_r32;
4306FNIEMAIMPLFPSSEF2U128R64 iemAImpl_mulsd_u128_r64;
4307FNIEMAIMPLFPSSEF2U128R32 iemAImpl_subss_u128_r32;
4308FNIEMAIMPLFPSSEF2U128R64 iemAImpl_subsd_u128_r64;
4309FNIEMAIMPLFPSSEF2U128R32 iemAImpl_minss_u128_r32;
4310FNIEMAIMPLFPSSEF2U128R64 iemAImpl_minsd_u128_r64;
4311FNIEMAIMPLFPSSEF2U128R32 iemAImpl_divss_u128_r32;
4312FNIEMAIMPLFPSSEF2U128R64 iemAImpl_divsd_u128_r64;
4313FNIEMAIMPLFPSSEF2U128R32 iemAImpl_maxss_u128_r32;
4314FNIEMAIMPLFPSSEF2U128R64 iemAImpl_maxsd_u128_r64;
4315FNIEMAIMPLFPSSEF2U128R32 iemAImpl_cvtss2sd_u128_r32;
4316FNIEMAIMPLFPSSEF2U128R64 iemAImpl_cvtsd2ss_u128_r64;
4317FNIEMAIMPLFPSSEF2U128R32 iemAImpl_sqrtss_u128_r32;
4318FNIEMAIMPLFPSSEF2U128R64 iemAImpl_sqrtsd_u128_r64;
4319FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rsqrtss_u128_r32;
4320FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rcpss_u128_r32;
4321
4322FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddps_u128, iemAImpl_vaddps_u128_fallback;
4323FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddpd_u128, iemAImpl_vaddpd_u128_fallback;
4324FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulps_u128, iemAImpl_vmulps_u128_fallback;
4325FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulpd_u128, iemAImpl_vmulpd_u128_fallback;
4326FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubps_u128, iemAImpl_vsubps_u128_fallback;
4327FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubpd_u128, iemAImpl_vsubpd_u128_fallback;
4328FNIEMAIMPLFPAVXF3U128 iemAImpl_vminps_u128, iemAImpl_vminps_u128_fallback;
4329FNIEMAIMPLFPAVXF3U128 iemAImpl_vminpd_u128, iemAImpl_vminpd_u128_fallback;
4330FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivps_u128, iemAImpl_vdivps_u128_fallback;
4331FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivpd_u128, iemAImpl_vdivpd_u128_fallback;
4332FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxps_u128, iemAImpl_vmaxps_u128_fallback;
4333FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxpd_u128, iemAImpl_vmaxpd_u128_fallback;
4334FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddps_u128, iemAImpl_vhaddps_u128_fallback;
4335FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddpd_u128, iemAImpl_vhaddpd_u128_fallback;
4336FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubps_u128, iemAImpl_vhsubps_u128_fallback;
4337FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubpd_u128, iemAImpl_vhsubpd_u128_fallback;
4338FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtps_u128, iemAImpl_vsqrtps_u128_fallback;
4339FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtpd_u128, iemAImpl_vsqrtpd_u128_fallback;
4340FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubps_u128, iemAImpl_vaddsubps_u128_fallback;
4341FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubpd_u128, iemAImpl_vaddsubpd_u128_fallback;
4342FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtpd2ps_u128, iemAImpl_vcvtpd2ps_u128_fallback;
4343FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtps2pd_u128, iemAImpl_vcvtps2pd_u128_fallback;
4344
4345FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vaddss_u128_r32, iemAImpl_vaddss_u128_r32_fallback;
4346FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vaddsd_u128_r64, iemAImpl_vaddsd_u128_r64_fallback;
4347FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmulss_u128_r32, iemAImpl_vmulss_u128_r32_fallback;
4348FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmulsd_u128_r64, iemAImpl_vmulsd_u128_r64_fallback;
4349FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsubss_u128_r32, iemAImpl_vsubss_u128_r32_fallback;
4350FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsubsd_u128_r64, iemAImpl_vsubsd_u128_r64_fallback;
4351FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vminss_u128_r32, iemAImpl_vminss_u128_r32_fallback;
4352FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vminsd_u128_r64, iemAImpl_vminsd_u128_r64_fallback;
4353FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vdivss_u128_r32, iemAImpl_vdivss_u128_r32_fallback;
4354FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vdivsd_u128_r64, iemAImpl_vdivsd_u128_r64_fallback;
4355FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmaxss_u128_r32, iemAImpl_vmaxss_u128_r32_fallback;
4356FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmaxsd_u128_r64, iemAImpl_vmaxsd_u128_r64_fallback;
4357FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsqrtss_u128_r32, iemAImpl_vsqrtss_u128_r32_fallback;
4358FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsqrtsd_u128_r64, iemAImpl_vsqrtsd_u128_r64_fallback;
4359
4360FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddps_u256, iemAImpl_vaddps_u256_fallback;
4361FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddpd_u256, iemAImpl_vaddpd_u256_fallback;
4362FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulps_u256, iemAImpl_vmulps_u256_fallback;
4363FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulpd_u256, iemAImpl_vmulpd_u256_fallback;
4364FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubps_u256, iemAImpl_vsubps_u256_fallback;
4365FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubpd_u256, iemAImpl_vsubpd_u256_fallback;
4366FNIEMAIMPLFPAVXF3U256 iemAImpl_vminps_u256, iemAImpl_vminps_u256_fallback;
4367FNIEMAIMPLFPAVXF3U256 iemAImpl_vminpd_u256, iemAImpl_vminpd_u256_fallback;
4368FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivps_u256, iemAImpl_vdivps_u256_fallback;
4369FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivpd_u256, iemAImpl_vdivpd_u256_fallback;
4370FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxps_u256, iemAImpl_vmaxps_u256_fallback;
4371FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxpd_u256, iemAImpl_vmaxpd_u256_fallback;
4372FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddps_u256, iemAImpl_vhaddps_u256_fallback;
4373FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddpd_u256, iemAImpl_vhaddpd_u256_fallback;
4374FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubps_u256, iemAImpl_vhsubps_u256_fallback;
4375FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubpd_u256, iemAImpl_vhsubpd_u256_fallback;
4376FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubps_u256, iemAImpl_vhaddsubps_u256_fallback;
4377FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubpd_u256, iemAImpl_vhaddsubpd_u256_fallback;
4378FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtpd2ps_u256, iemAImpl_vcvtpd2ps_u256_fallback;
4379FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtps2pd_u256, iemAImpl_vcvtps2pd_u256_fallback;
4380/** @} */
4381
4382/** @name C instruction implementations for anything slightly complicated.
4383 * @{ */
4384
4385/**
4386 * For typedef'ing or declaring a C instruction implementation function taking
4387 * no extra arguments.
4388 *
4389 * @param a_Name The name of the type.
4390 */
4391# define IEM_CIMPL_DECL_TYPE_0(a_Name) \
4392 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4393/**
4394 * For defining a C instruction implementation function taking no extra
4395 * arguments.
4396 *
4397 * @param a_Name The name of the function
4398 */
4399# define IEM_CIMPL_DEF_0(a_Name) \
4400 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4401/**
4402 * Prototype version of IEM_CIMPL_DEF_0.
4403 */
4404# define IEM_CIMPL_PROTO_0(a_Name) \
4405 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4406/**
4407 * For calling a C instruction implementation function taking no extra
4408 * arguments.
4409 *
4410 * This special call macro adds default arguments to the call and allow us to
4411 * change these later.
4412 *
4413 * @param a_fn The name of the function.
4414 */
4415# define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
4416
4417/** Type for a C instruction implementation function taking no extra
4418 * arguments. */
4419typedef IEM_CIMPL_DECL_TYPE_0(FNIEMCIMPL0);
4420/** Function pointer type for a C instruction implementation function taking
4421 * no extra arguments. */
4422typedef FNIEMCIMPL0 *PFNIEMCIMPL0;
4423
4424/**
4425 * For typedef'ing or declaring a C instruction implementation function taking
4426 * one extra argument.
4427 *
4428 * @param a_Name The name of the type.
4429 * @param a_Type0 The argument type.
4430 * @param a_Arg0 The argument name.
4431 */
4432# define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
4433 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4434/**
4435 * For defining a C instruction implementation function taking one extra
4436 * argument.
4437 *
4438 * @param a_Name The name of the function
4439 * @param a_Type0 The argument type.
4440 * @param a_Arg0 The argument name.
4441 */
4442# define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
4443 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4444/**
4445 * Prototype version of IEM_CIMPL_DEF_1.
4446 */
4447# define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
4448 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4449/**
4450 * For calling a C instruction implementation function taking one extra
4451 * argument.
4452 *
4453 * This special call macro adds default arguments to the call and allow us to
4454 * change these later.
4455 *
4456 * @param a_fn The name of the function.
4457 * @param a0 The name of the 1st argument.
4458 */
4459# define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
4460
4461/**
4462 * For typedef'ing or declaring a C instruction implementation function taking
4463 * two extra arguments.
4464 *
4465 * @param a_Name The name of the type.
4466 * @param a_Type0 The type of the 1st argument
4467 * @param a_Arg0 The name of the 1st argument.
4468 * @param a_Type1 The type of the 2nd argument.
4469 * @param a_Arg1 The name of the 2nd argument.
4470 */
4471# define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4472 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4473/**
4474 * For defining a C instruction implementation function taking two extra
4475 * arguments.
4476 *
4477 * @param a_Name The name of the function.
4478 * @param a_Type0 The type of the 1st argument
4479 * @param a_Arg0 The name of the 1st argument.
4480 * @param a_Type1 The type of the 2nd argument.
4481 * @param a_Arg1 The name of the 2nd argument.
4482 */
4483# define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4484 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4485/**
4486 * Prototype version of IEM_CIMPL_DEF_2.
4487 */
4488# define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4489 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4490/**
4491 * For calling a C instruction implementation function taking two extra
4492 * arguments.
4493 *
4494 * This special call macro adds default arguments to the call and allow us to
4495 * change these later.
4496 *
4497 * @param a_fn The name of the function.
4498 * @param a0 The name of the 1st argument.
4499 * @param a1 The name of the 2nd argument.
4500 */
4501# define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
4502
4503/**
4504 * For typedef'ing or declaring a C instruction implementation function taking
4505 * three extra arguments.
4506 *
4507 * @param a_Name The name of the type.
4508 * @param a_Type0 The type of the 1st argument
4509 * @param a_Arg0 The name of the 1st argument.
4510 * @param a_Type1 The type of the 2nd argument.
4511 * @param a_Arg1 The name of the 2nd argument.
4512 * @param a_Type2 The type of the 3rd argument.
4513 * @param a_Arg2 The name of the 3rd argument.
4514 */
4515# define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4516 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4517/**
4518 * For defining a C instruction implementation function taking three extra
4519 * arguments.
4520 *
4521 * @param a_Name The name of the function.
4522 * @param a_Type0 The type of the 1st argument
4523 * @param a_Arg0 The name of the 1st argument.
4524 * @param a_Type1 The type of the 2nd argument.
4525 * @param a_Arg1 The name of the 2nd argument.
4526 * @param a_Type2 The type of the 3rd argument.
4527 * @param a_Arg2 The name of the 3rd argument.
4528 */
4529# define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4530 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4531/**
4532 * Prototype version of IEM_CIMPL_DEF_3.
4533 */
4534# define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4535 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4536/**
4537 * For calling a C instruction implementation function taking three extra
4538 * arguments.
4539 *
4540 * This special call macro adds default arguments to the call and allow us to
4541 * change these later.
4542 *
4543 * @param a_fn The name of the function.
4544 * @param a0 The name of the 1st argument.
4545 * @param a1 The name of the 2nd argument.
4546 * @param a2 The name of the 3rd argument.
4547 */
4548# define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
4549
4550
4551/**
4552 * For typedef'ing or declaring a C instruction implementation function taking
4553 * four extra arguments.
4554 *
4555 * @param a_Name The name of the type.
4556 * @param a_Type0 The type of the 1st argument
4557 * @param a_Arg0 The name of the 1st argument.
4558 * @param a_Type1 The type of the 2nd argument.
4559 * @param a_Arg1 The name of the 2nd argument.
4560 * @param a_Type2 The type of the 3rd argument.
4561 * @param a_Arg2 The name of the 3rd argument.
4562 * @param a_Type3 The type of the 4th argument.
4563 * @param a_Arg3 The name of the 4th argument.
4564 */
4565# define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4566 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
4567/**
4568 * For defining a C instruction implementation function taking four extra
4569 * arguments.
4570 *
4571 * @param a_Name The name of the function.
4572 * @param a_Type0 The type of the 1st argument
4573 * @param a_Arg0 The name of the 1st argument.
4574 * @param a_Type1 The type of the 2nd argument.
4575 * @param a_Arg1 The name of the 2nd argument.
4576 * @param a_Type2 The type of the 3rd argument.
4577 * @param a_Arg2 The name of the 3rd argument.
4578 * @param a_Type3 The type of the 4th argument.
4579 * @param a_Arg3 The name of the 4th argument.
4580 */
4581# define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4582 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4583 a_Type2 a_Arg2, a_Type3 a_Arg3))
4584/**
4585 * Prototype version of IEM_CIMPL_DEF_4.
4586 */
4587# define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4588 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4589 a_Type2 a_Arg2, a_Type3 a_Arg3))
4590/**
4591 * For calling a C instruction implementation function taking four extra
4592 * arguments.
4593 *
4594 * This special call macro adds default arguments to the call and allow us to
4595 * change these later.
4596 *
4597 * @param a_fn The name of the function.
4598 * @param a0 The name of the 1st argument.
4599 * @param a1 The name of the 2nd argument.
4600 * @param a2 The name of the 3rd argument.
4601 * @param a3 The name of the 4th argument.
4602 */
4603# define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
4604
4605
4606/**
4607 * For typedef'ing or declaring a C instruction implementation function taking
4608 * five extra arguments.
4609 *
4610 * @param a_Name The name of the type.
4611 * @param a_Type0 The type of the 1st argument
4612 * @param a_Arg0 The name of the 1st argument.
4613 * @param a_Type1 The type of the 2nd argument.
4614 * @param a_Arg1 The name of the 2nd argument.
4615 * @param a_Type2 The type of the 3rd argument.
4616 * @param a_Arg2 The name of the 3rd argument.
4617 * @param a_Type3 The type of the 4th argument.
4618 * @param a_Arg3 The name of the 4th argument.
4619 * @param a_Type4 The type of the 5th argument.
4620 * @param a_Arg4 The name of the 5th argument.
4621 */
4622# define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4623 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
4624 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
4625 a_Type3 a_Arg3, a_Type4 a_Arg4))
4626/**
4627 * For defining a C instruction implementation function taking five extra
4628 * arguments.
4629 *
4630 * @param a_Name The name of the function.
4631 * @param a_Type0 The type of the 1st argument
4632 * @param a_Arg0 The name of the 1st argument.
4633 * @param a_Type1 The type of the 2nd argument.
4634 * @param a_Arg1 The name of the 2nd argument.
4635 * @param a_Type2 The type of the 3rd argument.
4636 * @param a_Arg2 The name of the 3rd argument.
4637 * @param a_Type3 The type of the 4th argument.
4638 * @param a_Arg3 The name of the 4th argument.
4639 * @param a_Type4 The type of the 5th argument.
4640 * @param a_Arg4 The name of the 5th argument.
4641 */
4642# define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4643 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4644 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4645/**
4646 * Prototype version of IEM_CIMPL_DEF_5.
4647 */
4648# define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4649 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4650 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4651/**
4652 * For calling a C instruction implementation function taking five extra
4653 * arguments.
4654 *
4655 * This special call macro adds default arguments to the call and allow us to
4656 * change these later.
4657 *
4658 * @param a_fn The name of the function.
4659 * @param a0 The name of the 1st argument.
4660 * @param a1 The name of the 2nd argument.
4661 * @param a2 The name of the 3rd argument.
4662 * @param a3 The name of the 4th argument.
4663 * @param a4 The name of the 5th argument.
4664 */
4665# define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
4666
4667/** @} */
4668
4669
4670/** @name Opcode Decoder Function Types.
4671 * @{ */
4672
4673/** @typedef PFNIEMOP
4674 * Pointer to an opcode decoder function.
4675 */
4676
4677/** @def FNIEMOP_DEF
4678 * Define an opcode decoder function.
4679 *
4680 * We're using macors for this so that adding and removing parameters as well as
4681 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
4682 *
4683 * @param a_Name The function name.
4684 */
4685
4686/** @typedef PFNIEMOPRM
4687 * Pointer to an opcode decoder function with RM byte.
4688 */
4689
4690/** @def FNIEMOPRM_DEF
4691 * Define an opcode decoder function with RM byte.
4692 *
4693 * We're using macors for this so that adding and removing parameters as well as
4694 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
4695 *
4696 * @param a_Name The function name.
4697 */
4698
4699#if defined(__GNUC__) && defined(RT_ARCH_X86)
4700typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
4701typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4702# define FNIEMOP_DEF(a_Name) \
4703 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
4704# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4705 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4706# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4707 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4708
4709#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
4710typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
4711typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4712# define FNIEMOP_DEF(a_Name) \
4713 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4714# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4715 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4716# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4717 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4718
4719#elif defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
4720typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4721typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4722# define FNIEMOP_DEF(a_Name) \
4723 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
4724# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4725 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4726# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4727 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4728
4729#else
4730typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4731typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4732# define FNIEMOP_DEF(a_Name) \
4733 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4734# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4735 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4736# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4737 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4738
4739#endif
4740#define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
4741
4742/**
4743 * Call an opcode decoder function.
4744 *
4745 * We're using macors for this so that adding and removing parameters can be
4746 * done as we please. See FNIEMOP_DEF.
4747 */
4748#define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
4749
4750/**
4751 * Call a common opcode decoder function taking one extra argument.
4752 *
4753 * We're using macors for this so that adding and removing parameters can be
4754 * done as we please. See FNIEMOP_DEF_1.
4755 */
4756#define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
4757
4758/**
4759 * Call a common opcode decoder function taking one extra argument.
4760 *
4761 * We're using macors for this so that adding and removing parameters can be
4762 * done as we please. See FNIEMOP_DEF_1.
4763 */
4764#define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
4765/** @} */
4766
4767
4768/** @name Misc Helpers
4769 * @{ */
4770
4771/** Used to shut up GCC warnings about variables that 'may be used uninitialized'
4772 * due to GCC lacking knowledge about the value range of a switch. */
4773#if RT_CPLUSPLUS_PREREQ(202000)
4774# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: [[unlikely]] AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4775#else
4776# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4777#endif
4778
4779/** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
4780#if RT_CPLUSPLUS_PREREQ(202000)
4781# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: [[unlikely]] AssertFailedReturn(a_RetValue)
4782#else
4783# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
4784#endif
4785
4786/**
4787 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4788 * occation.
4789 */
4790#ifdef LOG_ENABLED
4791# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4792 do { \
4793 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
4794 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4795 } while (0)
4796#else
4797# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4798 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4799#endif
4800
4801/**
4802 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4803 * occation using the supplied logger statement.
4804 *
4805 * @param a_LoggerArgs What to log on failure.
4806 */
4807#ifdef LOG_ENABLED
4808# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4809 do { \
4810 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
4811 /*LogFunc(a_LoggerArgs);*/ \
4812 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4813 } while (0)
4814#else
4815# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4816 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4817#endif
4818
4819/**
4820 * Gets the CPU mode (from fExec) as a IEMMODE value.
4821 *
4822 * @returns IEMMODE
4823 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4824 */
4825#define IEM_GET_CPU_MODE(a_pVCpu) ((a_pVCpu)->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK)
4826
4827/**
4828 * Check if we're currently executing in real or virtual 8086 mode.
4829 *
4830 * @returns @c true if it is, @c false if not.
4831 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4832 */
4833#define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (( ((a_pVCpu)->iem.s.fExec ^ IEM_F_MODE_X86_PROT_MASK) \
4834 & (IEM_F_MODE_X86_V86_MASK | IEM_F_MODE_X86_PROT_MASK)) != 0)
4835
4836/**
4837 * Check if we're currently executing in virtual 8086 mode.
4838 *
4839 * @returns @c true if it is, @c false if not.
4840 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4841 */
4842#define IEM_IS_V86_MODE(a_pVCpu) (((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_V86_MASK) != 0)
4843
4844/**
4845 * Check if we're currently executing in long mode.
4846 *
4847 * @returns @c true if it is, @c false if not.
4848 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4849 */
4850#define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
4851
4852/**
4853 * Check if we're currently executing in a 16-bit code segment.
4854 *
4855 * @returns @c true if it is, @c false if not.
4856 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4857 */
4858#define IEM_IS_16BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_16BIT)
4859
4860/**
4861 * Check if we're currently executing in a 32-bit code segment.
4862 *
4863 * @returns @c true if it is, @c false if not.
4864 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4865 */
4866#define IEM_IS_32BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_32BIT)
4867
4868/**
4869 * Check if we're currently executing in a 64-bit code segment.
4870 *
4871 * @returns @c true if it is, @c false if not.
4872 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4873 */
4874#define IEM_IS_64BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_64BIT)
4875
4876/**
4877 * Check if we're currently executing in real mode.
4878 *
4879 * @returns @c true if it is, @c false if not.
4880 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4881 */
4882#define IEM_IS_REAL_MODE(a_pVCpu) (!((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_PROT_MASK))
4883
4884/**
4885 * Gets the current protection level (CPL).
4886 *
4887 * @returns 0..3
4888 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4889 */
4890#define IEM_GET_CPL(a_pVCpu) (((a_pVCpu)->iem.s.fExec >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK)
4891
4892/**
4893 * Sets the current protection level (CPL).
4894 *
4895 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4896 */
4897#define IEM_SET_CPL(a_pVCpu, a_uCpl) \
4898 do { (a_pVCpu)->iem.s.fExec = ((a_pVCpu)->iem.s.fExec & ~IEM_F_X86_CPL_MASK) | ((a_uCpl) << IEM_F_X86_CPL_SHIFT); } while (0)
4899
4900/**
4901 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
4902 * @returns PCCPUMFEATURES
4903 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4904 */
4905#define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
4906
4907/**
4908 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
4909 * @returns PCCPUMFEATURES
4910 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4911 */
4912#define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
4913
4914/**
4915 * Evaluates to true if we're presenting an Intel CPU to the guest.
4916 */
4917#define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
4918
4919/**
4920 * Evaluates to true if we're presenting an AMD CPU to the guest.
4921 */
4922#define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
4923
4924/**
4925 * Check if the address is canonical.
4926 */
4927#define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
4928
4929/** Checks if the ModR/M byte is in register mode or not. */
4930#define IEM_IS_MODRM_REG_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) )
4931/** Checks if the ModR/M byte is in memory mode or not. */
4932#define IEM_IS_MODRM_MEM_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT) )
4933
4934/**
4935 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
4936 *
4937 * For use during decoding.
4938 */
4939#define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
4940/**
4941 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
4942 *
4943 * For use during decoding.
4944 */
4945#define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
4946
4947/**
4948 * Gets the register (reg) part of a ModR/M encoding, without REX.R.
4949 *
4950 * For use during decoding.
4951 */
4952#define IEM_GET_MODRM_REG_8(a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) )
4953/**
4954 * Gets the r/m part of a ModR/M encoding as a register index, without REX.B.
4955 *
4956 * For use during decoding.
4957 */
4958#define IEM_GET_MODRM_RM_8(a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) )
4959
4960/**
4961 * Gets the register (reg) part of a ModR/M encoding as an extended 8-bit
4962 * register index, with REX.R added in.
4963 *
4964 * For use during decoding.
4965 *
4966 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
4967 */
4968#define IEM_GET_MODRM_REG_EX8(a_pVCpu, a_bRm) \
4969 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
4970 || !((a_bRm) & (4 << X86_MODRM_REG_SHIFT)) /* IEM_GET_MODRM_REG(pVCpu, a_bRm) < 4 */ \
4971 ? IEM_GET_MODRM_REG(pVCpu, a_bRm) : (((a_bRm) >> X86_MODRM_REG_SHIFT) & 3) | 16)
4972/**
4973 * Gets the r/m part of a ModR/M encoding as an extended 8-bit register index,
4974 * with REX.B added in.
4975 *
4976 * For use during decoding.
4977 *
4978 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
4979 */
4980#define IEM_GET_MODRM_RM_EX8(a_pVCpu, a_bRm) \
4981 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
4982 || !((a_bRm) & 4) /* IEM_GET_MODRM_RM(pVCpu, a_bRm) < 4 */ \
4983 ? IEM_GET_MODRM_RM(pVCpu, a_bRm) : ((a_bRm) & 3) | 16)
4984
4985/**
4986 * Combines the prefix REX and ModR/M byte for passing to
4987 * iemOpHlpCalcRmEffAddrThreadedAddr64().
4988 *
4989 * @returns The ModRM byte but with bit 3 set to REX.B and bit 4 to REX.X.
4990 * The two bits are part of the REG sub-field, which isn't needed in
4991 * iemOpHlpCalcRmEffAddrThreadedAddr64().
4992 *
4993 * For use during decoding/recompiling.
4994 */
4995#define IEM_GET_MODRM_EX(a_pVCpu, a_bRm) \
4996 ( ((a_bRm) & ~X86_MODRM_REG_MASK) \
4997 | (uint8_t)( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X)) >> (25 - 3) ) )
4998AssertCompile(IEM_OP_PRF_REX_B == RT_BIT_32(25));
4999AssertCompile(IEM_OP_PRF_REX_X == RT_BIT_32(26));
5000
5001/**
5002 * Gets the effective VEX.VVVV value.
5003 *
5004 * The 4th bit is ignored if not 64-bit code.
5005 * @returns effective V-register value.
5006 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5007 */
5008#define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
5009 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
5010
5011
5012/**
5013 * Gets the register (reg) part of a the special 4th register byte used by
5014 * vblendvps and vblendvpd.
5015 *
5016 * For use during decoding.
5017 */
5018#define IEM_GET_IMM8_REG(a_pVCpu, a_bRegImm8) \
5019 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_bRegImm8) >> 4 : ((a_bRegImm8) >> 4) & 7)
5020
5021
5022/**
5023 * Checks if we're executing inside an AMD-V or VT-x guest.
5024 */
5025#if defined(VBOX_WITH_NESTED_HWVIRT_VMX) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
5026# define IEM_IS_IN_GUEST(a_pVCpu) RT_BOOL((a_pVCpu)->iem.s.fExec & IEM_F_X86_CTX_IN_GUEST)
5027#else
5028# define IEM_IS_IN_GUEST(a_pVCpu) false
5029#endif
5030
5031
5032#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5033
5034/**
5035 * Check if the guest has entered VMX root operation.
5036 */
5037# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
5038
5039/**
5040 * Check if the guest has entered VMX non-root operation.
5041 */
5042# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) ( ((a_pVCpu)->iem.s.fExec & (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST)) \
5043 == (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST) )
5044
5045/**
5046 * Check if the nested-guest has the given Pin-based VM-execution control set.
5047 */
5048# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
5049
5050/**
5051 * Check if the nested-guest has the given Processor-based VM-execution control set.
5052 */
5053# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
5054
5055/**
5056 * Check if the nested-guest has the given Secondary Processor-based VM-execution
5057 * control set.
5058 */
5059# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
5060
5061/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
5062# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
5063
5064/** Whether a shadow VMCS is present for the given VCPU. */
5065# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5066
5067/** Gets the VMXON region pointer. */
5068# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
5069
5070/** Gets the guest-physical address of the current VMCS for the given VCPU. */
5071# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
5072
5073/** Whether a current VMCS is present for the given VCPU. */
5074# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5075
5076/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
5077# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
5078 do \
5079 { \
5080 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
5081 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
5082 } while (0)
5083
5084/** Clears any current VMCS for the given VCPU. */
5085# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
5086 do \
5087 { \
5088 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
5089 } while (0)
5090
5091/**
5092 * Invokes the VMX VM-exit handler for an instruction intercept.
5093 */
5094# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
5095 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
5096
5097/**
5098 * Invokes the VMX VM-exit handler for an instruction intercept where the
5099 * instruction provides additional VM-exit information.
5100 */
5101# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
5102 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
5103
5104/**
5105 * Invokes the VMX VM-exit handler for a task switch.
5106 */
5107# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
5108 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
5109
5110/**
5111 * Invokes the VMX VM-exit handler for MWAIT.
5112 */
5113# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
5114 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
5115
5116/**
5117 * Invokes the VMX VM-exit handler for EPT faults.
5118 */
5119# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
5120 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
5121
5122/**
5123 * Invokes the VMX VM-exit handler.
5124 */
5125# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
5126 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
5127
5128#else
5129# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
5130# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
5131# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
5132# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
5133# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
5134# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5135# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5136# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5137# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5138# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5139# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
5140
5141#endif
5142
5143#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5144/**
5145 * Checks if we're executing a guest using AMD-V.
5146 */
5147# define IEM_SVM_IS_IN_GUEST(a_pVCpu) ( (a_pVCpu->iem.s.fExec & (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST)) \
5148 == (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST))
5149/**
5150 * Check if an SVM control/instruction intercept is set.
5151 */
5152# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
5153 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
5154
5155/**
5156 * Check if an SVM read CRx intercept is set.
5157 */
5158# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5159 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5160
5161/**
5162 * Check if an SVM write CRx intercept is set.
5163 */
5164# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5165 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5166
5167/**
5168 * Check if an SVM read DRx intercept is set.
5169 */
5170# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5171 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5172
5173/**
5174 * Check if an SVM write DRx intercept is set.
5175 */
5176# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5177 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5178
5179/**
5180 * Check if an SVM exception intercept is set.
5181 */
5182# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
5183 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
5184
5185/**
5186 * Invokes the SVM \#VMEXIT handler for the nested-guest.
5187 */
5188# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
5189 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
5190
5191/**
5192 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
5193 * corresponding decode assist information.
5194 */
5195# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
5196 do \
5197 { \
5198 uint64_t uExitInfo1; \
5199 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
5200 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
5201 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
5202 else \
5203 uExitInfo1 = 0; \
5204 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
5205 } while (0)
5206
5207/** Check and handles SVM nested-guest instruction intercept and updates
5208 * NRIP if needed.
5209 */
5210# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5211 do \
5212 { \
5213 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
5214 { \
5215 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5216 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
5217 } \
5218 } while (0)
5219
5220/** Checks and handles SVM nested-guest CR0 read intercept. */
5221# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5222 do \
5223 { \
5224 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
5225 { /* probably likely */ } \
5226 else \
5227 { \
5228 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5229 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
5230 } \
5231 } while (0)
5232
5233/**
5234 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
5235 */
5236# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) \
5237 do { \
5238 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
5239 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_cbInstr)); \
5240 } while (0)
5241
5242#else
5243# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
5244# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5245# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5246# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5247# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5248# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
5249# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
5250# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
5251# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, \
5252 a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5253# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5254# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) do { } while (0)
5255
5256#endif
5257
5258/** @} */
5259
5260uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu);
5261VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu);
5262
5263
5264/**
5265 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
5266 */
5267typedef union IEMSELDESC
5268{
5269 /** The legacy view. */
5270 X86DESC Legacy;
5271 /** The long mode view. */
5272 X86DESC64 Long;
5273} IEMSELDESC;
5274/** Pointer to a selector descriptor table entry. */
5275typedef IEMSELDESC *PIEMSELDESC;
5276
5277/** @name Raising Exceptions.
5278 * @{ */
5279VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
5280 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
5281
5282VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
5283 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5284#ifdef IEM_WITH_SETJMP
5285DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
5286 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP;
5287#endif
5288VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
5289#ifdef IEM_WITH_SETJMP
5290DECL_NO_RETURN(void) iemRaiseDivideErrorJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5291#endif
5292VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5293VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
5294VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
5295#ifdef IEM_WITH_SETJMP
5296DECL_NO_RETURN(void) iemRaiseUndefinedOpcodeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5297#endif
5298VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
5299#ifdef IEM_WITH_SETJMP
5300DECL_NO_RETURN(void) iemRaiseDeviceNotAvailableJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5301#endif
5302VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5303VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
5304VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5305VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5306/*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
5307VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5308VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5309VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5310VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5311VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5312VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5313#ifdef IEM_WITH_SETJMP
5314DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5315#endif
5316VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5317VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
5318VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5319#ifdef IEM_WITH_SETJMP
5320DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5321#endif
5322VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5323#ifdef IEM_WITH_SETJMP
5324DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP;
5325#endif
5326VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5327#ifdef IEM_WITH_SETJMP
5328DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5329#endif
5330VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT;
5331#ifdef IEM_WITH_SETJMP
5332DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP;
5333#endif
5334VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
5335#ifdef IEM_WITH_SETJMP
5336DECL_NO_RETURN(void) iemRaiseMathFaultJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5337#endif
5338VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5339#ifdef IEM_WITH_SETJMP
5340DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5341#endif
5342VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5343#ifdef IEM_WITH_SETJMP
5344DECL_NO_RETURN(void) iemRaiseSimdFpExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5345#endif
5346
5347void iemLogSyscallRealModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
5348void iemLogSyscallProtModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
5349
5350IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
5351IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
5352IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
5353
5354/**
5355 * Macro for calling iemCImplRaiseDivideError().
5356 *
5357 * This is for things that will _always_ decode to an \#DE, taking the
5358 * recompiler into consideration and everything.
5359 *
5360 * @return Strict VBox status code.
5361 */
5362#define IEMOP_RAISE_DIVIDE_ERROR_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseDivideError)
5363
5364/**
5365 * Macro for calling iemCImplRaiseInvalidLockPrefix().
5366 *
5367 * This is for things that will _always_ decode to an \#UD, taking the
5368 * recompiler into consideration and everything.
5369 *
5370 * @return Strict VBox status code.
5371 */
5372#define IEMOP_RAISE_INVALID_LOCK_PREFIX_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidLockPrefix)
5373
5374/**
5375 * Macro for calling iemCImplRaiseInvalidOpcode() for decode/static \#UDs.
5376 *
5377 * This is for things that will _always_ decode to an \#UD, taking the
5378 * recompiler into consideration and everything.
5379 *
5380 * @return Strict VBox status code.
5381 */
5382#define IEMOP_RAISE_INVALID_OPCODE_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
5383
5384/**
5385 * Macro for calling iemCImplRaiseInvalidOpcode() for runtime-style \#UDs.
5386 *
5387 * Using this macro means you've got _buggy_ _code_ and are doing things that
5388 * belongs exclusively in IEMAllCImpl.cpp during decoding.
5389 *
5390 * @return Strict VBox status code.
5391 * @see IEMOP_RAISE_INVALID_OPCODE_RET
5392 */
5393#define IEMOP_RAISE_INVALID_OPCODE_RUNTIME_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
5394
5395/** @} */
5396
5397/** @name Register Access.
5398 * @{ */
5399VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
5400 IEMMODE enmEffOpSize) RT_NOEXCEPT;
5401VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT;
5402VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
5403 IEMMODE enmEffOpSize) RT_NOEXCEPT;
5404/** @} */
5405
5406/** @name FPU access and helpers.
5407 * @{ */
5408void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
5409void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5410void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
5411void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5412void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5413void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
5414 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5415void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
5416 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5417void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5418void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5419void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5420void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5421void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5422void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5423void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5424void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5425void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5426void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5427void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5428void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5429void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5430void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5431void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5432/** @} */
5433
5434/** @name SSE+AVX SIMD access and helpers.
5435 * @{ */
5436void iemSseStoreResult(PVMCPUCC pVCpu, PCIEMSSERESULT pResult, uint8_t iXmmReg) RT_NOEXCEPT;
5437void iemSseUpdateMxcsr(PVMCPUCC pVCpu, uint32_t fMxcsr) RT_NOEXCEPT;
5438/** @} */
5439
5440/** @name Memory access.
5441 * @{ */
5442
5443/** Report a \#GP instead of \#AC and do not restrict to ring-3 */
5444#define IEM_MEMMAP_F_ALIGN_GP RT_BIT_32(16)
5445/** SSE access that should report a \#GP instead of \#AC, unless MXCSR.MM=1
5446 * when it works like normal \#AC. Always used with IEM_MEMMAP_F_ALIGN_GP. */
5447#define IEM_MEMMAP_F_ALIGN_SSE RT_BIT_32(17)
5448/** If \#AC is applicable, raise it. Always used with IEM_MEMMAP_F_ALIGN_GP.
5449 * Users include FXSAVE & FXRSTOR. */
5450#define IEM_MEMMAP_F_ALIGN_GP_OR_AC RT_BIT_32(18)
5451
5452VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, uint8_t *pbUnmapInfo, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
5453 uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT;
5454VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5455#ifndef IN_RING3
5456VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5457#endif
5458void iemMemRollbackAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5459void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
5460VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
5461VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5462VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
5463
5464void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr);
5465void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr);
5466#ifdef IEM_WITH_CODE_TLB
5467void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP;
5468#else
5469VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
5470#endif
5471#ifdef IEM_WITH_SETJMP
5472uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5473uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5474uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5475uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5476#else
5477VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
5478VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5479VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5480VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5481VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5482VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5483VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5484VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5485VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5486VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5487VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5488#endif
5489
5490VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5491VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5492VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5493VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5494VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5495VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5496VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5497VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5498VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5499VBOXSTRICTRC iemMemFetchDataU128NoAc(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5500VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5501VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5502VBOXSTRICTRC iemMemFetchDataU256NoAc(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5503VBOXSTRICTRC iemMemFetchDataU256AlignedAvx(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5504VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
5505 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
5506#ifdef IEM_WITH_SETJMP
5507uint8_t iemMemFetchDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5508uint16_t iemMemFetchDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5509uint32_t iemMemFetchDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5510uint32_t iemMemFlatFetchDataU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5511uint64_t iemMemFetchDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5512uint64_t iemMemFetchDataU64AlignedU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5513void iemMemFetchDataR80SafeJmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5514void iemMemFetchDataD80SafeJmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5515void iemMemFetchDataU128SafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5516void iemMemFetchDataU128NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5517void iemMemFetchDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5518void iemMemFetchDataU256SafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5519void iemMemFetchDataU256NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5520void iemMemFetchDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5521# if 0 /* these are inlined now */
5522uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5523uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5524uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5525uint32_t iemMemFlatFetchDataU32Jmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5526uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5527uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5528void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5529void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5530void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5531void iemMemFetchDataU128NoAcJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5532void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5533void iemMemFetchDataU256NoAcJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5534void iemMemFetchDataU256AlignedAvxJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5535# endif
5536void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5537#endif
5538
5539VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5540VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5541VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5542VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5543VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
5544
5545VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
5546VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
5547VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
5548VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
5549VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5550VBOXSTRICTRC iemMemStoreDataU128NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5551VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5552VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5553VBOXSTRICTRC iemMemStoreDataU256NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5554VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5555VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5556#ifdef IEM_WITH_SETJMP
5557void iemMemStoreDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5558void iemMemStoreDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5559void iemMemStoreDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5560void iemMemStoreDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5561void iemMemStoreDataU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5562void iemMemStoreDataU128NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5563void iemMemStoreDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5564void iemMemStoreDataU256SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5565void iemMemStoreDataU256NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5566void iemMemStoreDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5567void iemMemStoreDataR80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTFLOAT80U pr80Value) IEM_NOEXCEPT_MAY_LONGJMP;
5568void iemMemStoreDataD80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTPBCD80U pd80Value) IEM_NOEXCEPT_MAY_LONGJMP;
5569#if 0
5570void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5571void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5572void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5573void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5574void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5575void iemMemStoreDataNoAcU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5576void iemMemStoreDataU256NoAcJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5577void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5578#endif
5579void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5580void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5581#endif
5582
5583#ifdef IEM_WITH_SETJMP
5584uint8_t *iemMemMapDataU8RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5585uint8_t *iemMemMapDataU8AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5586uint8_t *iemMemMapDataU8WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5587uint8_t const *iemMemMapDataU8RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5588uint16_t *iemMemMapDataU16RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5589uint16_t *iemMemMapDataU16AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5590uint16_t *iemMemMapDataU16WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5591uint16_t const *iemMemMapDataU16RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5592uint32_t *iemMemMapDataU32RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5593uint32_t *iemMemMapDataU32AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5594uint32_t *iemMemMapDataU32WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5595uint32_t const *iemMemMapDataU32RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5596uint64_t *iemMemMapDataU64RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5597uint64_t *iemMemMapDataU64AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5598uint64_t *iemMemMapDataU64WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5599uint64_t const *iemMemMapDataU64RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5600PRTFLOAT80U iemMemMapDataR80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5601PRTFLOAT80U iemMemMapDataR80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5602PCRTFLOAT80U iemMemMapDataR80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5603PRTPBCD80U iemMemMapDataD80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5604PRTPBCD80U iemMemMapDataD80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5605PCRTPBCD80U iemMemMapDataD80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5606PRTUINT128U iemMemMapDataU128RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5607PRTUINT128U iemMemMapDataU128AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5608PRTUINT128U iemMemMapDataU128WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5609PCRTUINT128U iemMemMapDataU128RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5610
5611void iemMemCommitAndUnmapJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5612void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5613void iemMemCommitAndUnmapAtSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5614void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5615void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5616void iemMemRollbackAndUnmapWoSafe(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5617#endif
5618
5619VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5620 void **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
5621VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo, uint64_t uNewRsp) RT_NOEXCEPT;
5622VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
5623VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5624VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
5625VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5626VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5627VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5628VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5629VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5630 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
5631VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
5632 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t uCurNewRsp) RT_NOEXCEPT;
5633VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5634VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
5635VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
5636VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
5637VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5638VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5639VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5640
5641#ifdef IEM_WITH_SETJMP
5642void iemMemStackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5643void iemMemStackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5644void iemMemStackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5645void iemMemStackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5646void iemMemStackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5647void iemMemStackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5648void iemMemStackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5649
5650void iemMemFlat32StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5651void iemMemFlat32StackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5652void iemMemFlat32StackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5653void iemMemFlat32StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5654void iemMemFlat32StackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5655
5656void iemMemFlat64StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5657void iemMemFlat64StackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5658void iemMemFlat64StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5659void iemMemFlat64StackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5660
5661void iemMemStoreStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5662void iemMemStoreStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5663void iemMemStoreStackU32SRegSafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5664void iemMemStoreStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5665
5666uint16_t iemMemFetchStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5667uint32_t iemMemFetchStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5668uint64_t iemMemFetchStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5669
5670#endif
5671
5672/** @} */
5673
5674/** @name IEMAllCImpl.cpp
5675 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
5676 * @{ */
5677IEM_CIMPL_PROTO_2(iemCImpl_pop_mem16, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5678IEM_CIMPL_PROTO_2(iemCImpl_pop_mem32, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5679IEM_CIMPL_PROTO_2(iemCImpl_pop_mem64, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5680IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
5681IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
5682IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
5683IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
5684IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
5685IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
5686IEM_CIMPL_PROTO_1(iemCImpl_call_16, uint16_t, uNewPC);
5687IEM_CIMPL_PROTO_1(iemCImpl_call_rel_16, int16_t, offDisp);
5688IEM_CIMPL_PROTO_1(iemCImpl_call_32, uint32_t, uNewPC);
5689IEM_CIMPL_PROTO_1(iemCImpl_call_rel_32, int32_t, offDisp);
5690IEM_CIMPL_PROTO_1(iemCImpl_call_64, uint64_t, uNewPC);
5691IEM_CIMPL_PROTO_1(iemCImpl_call_rel_64, int64_t, offDisp);
5692IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5693IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5694typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5695typedef FNIEMCIMPLFARBRANCH *PFNIEMCIMPLFARBRANCH;
5696IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
5697IEM_CIMPL_PROTO_0(iemCImpl_retn_16);
5698IEM_CIMPL_PROTO_0(iemCImpl_retn_32);
5699IEM_CIMPL_PROTO_0(iemCImpl_retn_64);
5700IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_16, uint16_t, cbPop);
5701IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_32, uint16_t, cbPop);
5702IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_64, uint16_t, cbPop);
5703IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
5704IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
5705IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
5706IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
5707IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
5708IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
5709IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
5710IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
5711IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
5712IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
5713IEM_CIMPL_PROTO_0(iemCImpl_syscall);
5714IEM_CIMPL_PROTO_1(iemCImpl_sysret, IEMMODE, enmEffOpSize);
5715IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
5716IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
5717IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
5718IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
5719IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
5720IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
5721IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
5722IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
5723IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
5724IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5725IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5726IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5727IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5728IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
5729IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5730IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5731IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
5732IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5733IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5734IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
5735IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5736IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5737IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
5738IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
5739IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
5740IEM_CIMPL_PROTO_0(iemCImpl_clts);
5741IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
5742IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
5743IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
5744IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
5745IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
5746IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
5747IEM_CIMPL_PROTO_0(iemCImpl_invd);
5748IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
5749IEM_CIMPL_PROTO_0(iemCImpl_rsm);
5750IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
5751IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
5752IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
5753IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
5754IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
5755IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5756IEM_CIMPL_PROTO_2(iemCImpl_in_eAX_DX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5757IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5758IEM_CIMPL_PROTO_2(iemCImpl_out_DX_eAX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5759IEM_CIMPL_PROTO_0(iemCImpl_cli);
5760IEM_CIMPL_PROTO_0(iemCImpl_sti);
5761IEM_CIMPL_PROTO_0(iemCImpl_hlt);
5762IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
5763IEM_CIMPL_PROTO_0(iemCImpl_mwait);
5764IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
5765IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
5766IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
5767IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
5768IEM_CIMPL_PROTO_0(iemCImpl_daa);
5769IEM_CIMPL_PROTO_0(iemCImpl_das);
5770IEM_CIMPL_PROTO_0(iemCImpl_aaa);
5771IEM_CIMPL_PROTO_0(iemCImpl_aas);
5772IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
5773IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
5774IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
5775IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
5776IEM_CIMPL_PROTO_5(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
5777 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags, uint8_t, bUnmapInfo);
5778IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5779IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
5780IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5781IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5782IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5783IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5784IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5785IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5786IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5787IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5788IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5789IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5790IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5791IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
5792IEM_CIMPL_PROTO_2(iemCImpl_fxch_underflow, uint8_t, iStReg, uint16_t, uFpuOpcode);
5793IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, bool, fUCmp, uint32_t, uPopAndFpuOpcode);
5794IEM_CIMPL_PROTO_2(iemCImpl_rdseed, uint8_t, iReg, IEMMODE, enmEffOpSize);
5795IEM_CIMPL_PROTO_2(iemCImpl_rdrand, uint8_t, iReg, IEMMODE, enmEffOpSize);
5796/** @} */
5797
5798/** @name IEMAllCImplStrInstr.cpp.h
5799 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
5800 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
5801 * @{ */
5802IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
5803IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
5804IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
5805IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
5806IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
5807IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
5808IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
5809IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
5810IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
5811IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5812IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5813
5814IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
5815IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
5816IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
5817IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
5818IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
5819IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
5820IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
5821IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
5822IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
5823IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5824IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5825
5826IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
5827IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
5828IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
5829IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
5830IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
5831IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
5832IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
5833IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
5834IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
5835IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5836IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5837
5838
5839IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
5840IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
5841IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
5842IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
5843IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
5844IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
5845IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
5846IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
5847IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
5848IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5849IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5850
5851IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
5852IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
5853IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
5854IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
5855IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
5856IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
5857IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
5858IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
5859IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
5860IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5861IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5862
5863IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
5864IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
5865IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
5866IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
5867IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
5868IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
5869IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
5870IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
5871IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
5872IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5873IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5874
5875IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
5876IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
5877IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
5878IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
5879IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
5880IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
5881IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
5882IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
5883IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
5884IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5885IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5886
5887
5888IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
5889IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
5890IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
5891IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
5892IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
5893IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
5894IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
5895IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
5896IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
5897IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5898IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5899
5900IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
5901IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
5902IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
5903IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
5904IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
5905IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
5906IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
5907IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
5908IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
5909IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5910IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5911
5912IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
5913IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
5914IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
5915IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
5916IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
5917IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
5918IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
5919IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
5920IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
5921IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5922IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5923
5924IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
5925IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
5926IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
5927IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
5928IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
5929IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
5930IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
5931IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
5932IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
5933IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5934IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5935/** @} */
5936
5937#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5938VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
5939VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
5940VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
5941VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
5942VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
5943VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
5944VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
5945VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
5946VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
5947VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
5948 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
5949VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
5950 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
5951VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5952VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5953VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5954VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5955VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5956VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5957VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
5958VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
5959 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
5960VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
5961VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
5962VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
5963uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
5964void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
5965VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
5966 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
5967bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
5968IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
5969IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
5970IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
5971IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
5972IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5973IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5974IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5975IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
5976IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
5977IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
5978IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint64_t *, pu32Dst, uint32_t, u32VmcsField);
5979IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
5980IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
5981IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
5982IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
5983IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
5984#endif
5985
5986#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5987VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
5988VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5989VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
5990 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
5991VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite, uint8_t cbInstr) RT_NOEXCEPT;
5992IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
5993IEM_CIMPL_PROTO_0(iemCImpl_vmload);
5994IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
5995IEM_CIMPL_PROTO_0(iemCImpl_clgi);
5996IEM_CIMPL_PROTO_0(iemCImpl_stgi);
5997IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
5998IEM_CIMPL_PROTO_0(iemCImpl_skinit);
5999IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
6000#endif
6001
6002IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
6003IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
6004IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
6005
6006extern const PFNIEMOP g_apfnIemInterpretOnlyOneByteMap[256];
6007extern const PFNIEMOP g_apfnIemInterpretOnlyTwoByteMap[1024];
6008extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f3a[1024];
6009extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f38[1024];
6010extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap1[1024];
6011extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap2[1024];
6012extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap3[1024];
6013
6014/*
6015 * Recompiler related stuff.
6016 */
6017extern const PFNIEMOP g_apfnIemThreadedRecompilerOneByteMap[256];
6018extern const PFNIEMOP g_apfnIemThreadedRecompilerTwoByteMap[1024];
6019extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f3a[1024];
6020extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f38[1024];
6021extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap1[1024];
6022extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap2[1024];
6023extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap3[1024];
6024
6025DECLCALLBACK(int) iemTbInit(PVMCC pVM, uint32_t cInitialTbs, uint32_t cMaxTbs,
6026 uint64_t cbInitialExec, uint64_t cbMaxExec, uint32_t cbChunkExec);
6027void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb, bool fSafeToFree);
6028void iemTbAllocatorProcessDelayedFrees(PVMCPUCC pVCpu, PIEMTBALLOCATOR pTbAllocator);
6029void iemTbAllocatorFreeupNativeSpace(PVMCPUCC pVCpu, uint32_t cNeededInstrs);
6030DECLHIDDEN(const char *) iemTbFlagsToString(uint32_t fFlags, char *pszBuf, size_t cbBuf) RT_NOEXCEPT;
6031DECLHIDDEN(void) iemThreadedDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6032
6033
6034/** @todo FNIEMTHREADEDFUNC and friends may need more work... */
6035#if defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
6036typedef VBOXSTRICTRC /*__attribute__((__nothrow__))*/ FNIEMTHREADEDFUNC(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6037typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6038# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6039 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6040# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6041 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6042
6043#else
6044typedef VBOXSTRICTRC (FNIEMTHREADEDFUNC)(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6045typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6046# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6047 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6048# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6049 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6050#endif
6051
6052
6053IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_Nop);
6054IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_LogCpuState);
6055
6056IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_DeferToCImpl0);
6057
6058IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckIrq);
6059IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckMode);
6060IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckHwInstrBps);
6061IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLim);
6062
6063IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodes);
6064IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodes);
6065IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim);
6066
6067/* Branching: */
6068IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes);
6069IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodes);
6070IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim);
6071
6072IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb);
6073IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlb);
6074IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim);
6075
6076/* Natural page crossing: */
6077IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb);
6078IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb);
6079IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim);
6080
6081IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb);
6082IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb);
6083IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim);
6084
6085IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb);
6086IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb);
6087IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim);
6088
6089bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb);
6090bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb);
6091
6092/* Native recompiler public bits: */
6093DECLHIDDEN(PIEMTB) iemNativeRecompile(PVMCPUCC pVCpu, PIEMTB pTb) RT_NOEXCEPT;
6094DECLHIDDEN(void) iemNativeDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6095int iemExecMemAllocatorInit(PVMCPU pVCpu, uint64_t cbMax, uint64_t cbInitial, uint32_t cbChunk);
6096void iemExecMemAllocatorFree(PVMCPU pVCpu, void *pv, size_t cb);
6097DECLASM(DECL_NO_RETURN(void)) iemNativeTbLongJmp(void *pvFramePointer, int rc) RT_NOEXCEPT;
6098
6099
6100/** @} */
6101
6102RT_C_DECLS_END
6103
6104#endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */
6105
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette