VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 88346

Last change on this file since 88346 was 88346, checked in by vboxsync, 4 years ago

Forward ported r143574 from 6.1: VMM: Must do vmR3SetHaltMethodCallback on all EMTs or only one of them will be doing halting in ring-0. oem2ticketref:40

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 105.8 KB
Line 
1/* $Id: VMM.cpp 88346 2021-04-01 13:16:25Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually, maybe.
27 *
28 * VMM is made up of these components:
29 * - @subpage pg_cfgm
30 * - @subpage pg_cpum
31 * - @subpage pg_dbgf
32 * - @subpage pg_em
33 * - @subpage pg_gim
34 * - @subpage pg_gmm
35 * - @subpage pg_gvmm
36 * - @subpage pg_hm
37 * - @subpage pg_iem
38 * - @subpage pg_iom
39 * - @subpage pg_mm
40 * - @subpage pg_nem
41 * - @subpage pg_pdm
42 * - @subpage pg_pgm
43 * - @subpage pg_selm
44 * - @subpage pg_ssm
45 * - @subpage pg_stam
46 * - @subpage pg_tm
47 * - @subpage pg_trpm
48 * - @subpage pg_vm
49 *
50 *
51 * @see @ref grp_vmm @ref grp_vm @subpage pg_vmm_guideline @subpage pg_raw
52 *
53 *
54 * @section sec_vmmstate VMM State
55 *
56 * @image html VM_Statechart_Diagram.gif
57 *
58 * To be written.
59 *
60 *
61 * @subsection subsec_vmm_init VMM Initialization
62 *
63 * To be written.
64 *
65 *
66 * @subsection subsec_vmm_term VMM Termination
67 *
68 * To be written.
69 *
70 *
71 * @section sec_vmm_limits VMM Limits
72 *
73 * There are various resource limits imposed by the VMM and it's
74 * sub-components. We'll list some of them here.
75 *
76 * On 64-bit hosts:
77 * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES),
78 * can be increased up to 64K - 1.
79 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
80 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
81 * - A VM can be assigned all the memory we can use (16TB), however, the
82 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
83 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
84 *
85 * On 32-bit hosts:
86 * - Max 127 VMs. Imposed by GMM's per page structure.
87 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
88 * ROM pages. The limit is imposed by the 28-bit page ID used
89 * internally in GMM. It is also limited by PAE.
90 * - A VM can be assigned all the memory GMM can allocate, however, the
91 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
92 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
93 *
94 */
95
96
97/*********************************************************************************************************************************
98* Header Files *
99*********************************************************************************************************************************/
100#define LOG_GROUP LOG_GROUP_VMM
101#include <VBox/vmm/vmm.h>
102#include <VBox/vmm/vmapi.h>
103#include <VBox/vmm/pgm.h>
104#include <VBox/vmm/cfgm.h>
105#include <VBox/vmm/pdmqueue.h>
106#include <VBox/vmm/pdmcritsect.h>
107#include <VBox/vmm/pdmcritsectrw.h>
108#include <VBox/vmm/pdmapi.h>
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/gim.h>
111#include <VBox/vmm/mm.h>
112#include <VBox/vmm/nem.h>
113#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
114# include <VBox/vmm/iem.h>
115#endif
116#include <VBox/vmm/iom.h>
117#include <VBox/vmm/trpm.h>
118#include <VBox/vmm/selm.h>
119#include <VBox/vmm/em.h>
120#include <VBox/sup.h>
121#include <VBox/vmm/dbgf.h>
122#include <VBox/vmm/apic.h>
123#include <VBox/vmm/ssm.h>
124#include <VBox/vmm/tm.h>
125#include "VMMInternal.h"
126#include <VBox/vmm/vmcc.h>
127
128#include <VBox/err.h>
129#include <VBox/param.h>
130#include <VBox/version.h>
131#include <VBox/vmm/hm.h>
132#include <iprt/assert.h>
133#include <iprt/alloc.h>
134#include <iprt/asm.h>
135#include <iprt/time.h>
136#include <iprt/semaphore.h>
137#include <iprt/stream.h>
138#include <iprt/string.h>
139#include <iprt/stdarg.h>
140#include <iprt/ctype.h>
141#include <iprt/x86.h>
142
143
144/*********************************************************************************************************************************
145* Defined Constants And Macros *
146*********************************************************************************************************************************/
147/** The saved state version. */
148#define VMM_SAVED_STATE_VERSION 4
149/** The saved state version used by v3.0 and earlier. (Teleportation) */
150#define VMM_SAVED_STATE_VERSION_3_0 3
151
152/** Macro for flushing the ring-0 logging. */
153#define VMM_FLUSH_R0_LOG(a_pR0Logger, a_pR3Logger) \
154 do { \
155 PVMMR0LOGGER pVmmLogger = (a_pR0Logger); \
156 if (!pVmmLogger || pVmmLogger->Logger.offScratch == 0) \
157 { /* likely? */ } \
158 else \
159 RTLogFlushR0(a_pR3Logger, &pVmmLogger->Logger); \
160 } while (0)
161
162
163/*********************************************************************************************************************************
164* Internal Functions *
165*********************************************************************************************************************************/
166static int vmmR3InitStacks(PVM pVM);
167static int vmmR3InitLoggers(PVM pVM);
168static void vmmR3InitRegisterStats(PVM pVM);
169static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
170static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
171#if 0 /* pointless when timers doesn't run on EMT */
172static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser);
173#endif
174static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
175 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser);
176static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
177static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178
179
180/**
181 * Initializes the VMM.
182 *
183 * @returns VBox status code.
184 * @param pVM The cross context VM structure.
185 */
186VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
187{
188 LogFlow(("VMMR3Init\n"));
189
190 /*
191 * Assert alignment, sizes and order.
192 */
193 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
194 AssertCompile(RT_SIZEOFMEMB(VMCPU, vmm.s) <= RT_SIZEOFMEMB(VMCPU, vmm.padding));
195
196 /*
197 * Init basic VM VMM members.
198 */
199 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
200 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
201 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
202 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
203 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
204 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
205 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
206 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
207 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
208
209#if 0 /* pointless when timers doesn't run on EMT */
210 /** @cfgm{/YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
211 * The EMT yield interval. The EMT yielding is a hack we employ to play a
212 * bit nicer with the rest of the system (like for instance the GUI).
213 */
214 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
215 23 /* Value arrived at after experimenting with the grub boot prompt. */);
216 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
217#endif
218
219 /** @cfgm{/VMM/UsePeriodicPreemptionTimers, boolean, true}
220 * Controls whether we employ per-cpu preemption timers to limit the time
221 * spent executing guest code. This option is not available on all
222 * platforms and we will silently ignore this setting then. If we are
223 * running in VT-x mode, we will use the VMX-preemption timer instead of
224 * this one when possible.
225 */
226 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
227 int rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
228 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
229
230 /*
231 * Initialize the VMM rendezvous semaphores.
232 */
233 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
234 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
235 return VERR_NO_MEMORY;
236 for (VMCPUID i = 0; i < pVM->cCpus; i++)
237 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
238 for (VMCPUID i = 0; i < pVM->cCpus; i++)
239 {
240 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
241 AssertRCReturn(rc, rc);
242 }
243 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
244 AssertRCReturn(rc, rc);
245 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
246 AssertRCReturn(rc, rc);
247 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
248 AssertRCReturn(rc, rc);
249 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
250 AssertRCReturn(rc, rc);
251 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPush);
252 AssertRCReturn(rc, rc);
253 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPop);
254 AssertRCReturn(rc, rc);
255 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
256 AssertRCReturn(rc, rc);
257 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
258 AssertRCReturn(rc, rc);
259
260 /*
261 * Register the saved state data unit.
262 */
263 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
264 NULL, NULL, NULL,
265 NULL, vmmR3Save, NULL,
266 NULL, vmmR3Load, NULL);
267 if (RT_FAILURE(rc))
268 return rc;
269
270 /*
271 * Register the Ring-0 VM handle with the session for fast ioctl calls.
272 */
273 rc = SUPR3SetVMForFastIOCtl(VMCC_GET_VMR0_FOR_CALL(pVM));
274 if (RT_FAILURE(rc))
275 return rc;
276
277 /*
278 * Init various sub-components.
279 */
280 rc = vmmR3InitStacks(pVM);
281 if (RT_SUCCESS(rc))
282 {
283 rc = vmmR3InitLoggers(pVM);
284
285#ifdef VBOX_WITH_NMI
286 /*
287 * Allocate mapping for the host APIC.
288 */
289 if (RT_SUCCESS(rc))
290 {
291 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
292 AssertRC(rc);
293 }
294#endif
295 if (RT_SUCCESS(rc))
296 {
297 /*
298 * Debug info and statistics.
299 */
300 DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF);
301 vmmR3InitRegisterStats(pVM);
302 vmmInitFormatTypes();
303
304 return VINF_SUCCESS;
305 }
306 }
307 /** @todo Need failure cleanup? */
308
309 return rc;
310}
311
312
313/**
314 * Allocate & setup the VMM RC stack(s) (for EMTs).
315 *
316 * The stacks are also used for long jumps in Ring-0.
317 *
318 * @returns VBox status code.
319 * @param pVM The cross context VM structure.
320 *
321 * @remarks The optional guard page gets it protection setup up during R3 init
322 * completion because of init order issues.
323 */
324static int vmmR3InitStacks(PVM pVM)
325{
326 int rc = VINF_SUCCESS;
327#ifdef VMM_R0_SWITCH_STACK
328 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
329#else
330 uint32_t fFlags = 0;
331#endif
332
333 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
334 {
335 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
336
337#ifdef VBOX_STRICT_VMM_STACK
338 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
339#else
340 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
341#endif
342 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
343 if (RT_SUCCESS(rc))
344 {
345#ifdef VBOX_STRICT_VMM_STACK
346 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
347#endif
348 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
349
350 }
351 }
352
353 return rc;
354}
355
356
357/**
358 * Initialize the loggers.
359 *
360 * @returns VBox status code.
361 * @param pVM The cross context VM structure.
362 */
363static int vmmR3InitLoggers(PVM pVM)
364{
365 int rc;
366#define RTLogCalcSizeForR0(cGroups, fFlags) (RT_UOFFSETOF_DYN(VMMR0LOGGER, Logger.afGroups[cGroups]) + PAGE_SIZE)
367
368 /*
369 * Allocate R0 Logger instance (finalized in the relocator).
370 */
371#if defined(LOG_ENABLED) && defined(VBOX_WITH_R0_LOGGING)
372 PRTLOGGER pLogger = RTLogDefaultInstance();
373 if (pLogger)
374 {
375 size_t const cbLogger = RTLogCalcSizeForR0(pLogger->cGroups, 0);
376 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
377 {
378 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
379 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
380 (void **)&pVCpu->vmm.s.pR0LoggerR3);
381 if (RT_FAILURE(rc))
382 return rc;
383 pVCpu->vmm.s.pR0LoggerR3->pVM = VMCC_GET_VMR0_FOR_CALL(pVM);
384 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
385 pVCpu->vmm.s.pR0LoggerR3->cbLogger = (uint32_t)cbLogger;
386 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
387 }
388 }
389#endif /* LOG_ENABLED && VBOX_WITH_R0_LOGGING */
390
391 /*
392 * Release logging.
393 */
394 PRTLOGGER pRelLogger = RTLogRelGetDefaultInstance();
395 if (pRelLogger)
396 {
397 /*
398 * Ring-0 release logger.
399 */
400 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
401 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
402 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
403
404 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
405 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
406 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
407
408 size_t const cbLogger = RTLogCalcSizeForR0(pRelLogger->cGroups, 0);
409
410 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
411 {
412 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
413 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
414 (void **)&pVCpu->vmm.s.pR0RelLoggerR3);
415 if (RT_FAILURE(rc))
416 return rc;
417 PVMMR0LOGGER pVmmLogger = pVCpu->vmm.s.pR0RelLoggerR3;
418 RTR0PTR R0PtrVmmLogger = MMHyperR3ToR0(pVM, pVmmLogger);
419 pVCpu->vmm.s.pR0RelLoggerR0 = R0PtrVmmLogger;
420 pVmmLogger->pVM = VMCC_GET_VMR0_FOR_CALL(pVM);
421 pVmmLogger->cbLogger = (uint32_t)cbLogger;
422 pVmmLogger->fCreated = false;
423 pVmmLogger->fFlushingDisabled = false;
424 pVmmLogger->fRegistered = false;
425 pVmmLogger->idCpu = idCpu;
426
427 char szR0ThreadName[16];
428 RTStrPrintf(szR0ThreadName, sizeof(szR0ThreadName), "EMT-%u-R0", idCpu);
429 rc = RTLogCreateForR0(&pVmmLogger->Logger, pVmmLogger->cbLogger, R0PtrVmmLogger + RT_UOFFSETOF(VMMR0LOGGER, Logger),
430 pfnLoggerWrapper, pfnLoggerFlush,
431 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY, szR0ThreadName);
432 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
433
434 /* We only update the release log instance here. */
435 rc = RTLogCopyGroupsAndFlagsForR0(&pVmmLogger->Logger, R0PtrVmmLogger + RT_UOFFSETOF(VMMR0LOGGER, Logger),
436 pRelLogger, RTLOGFLAGS_BUFFERED, UINT32_MAX);
437 AssertReleaseMsgRCReturn(rc, ("RTLogCopyGroupsAndFlagsForR0 failed! rc=%Rra\n", rc), rc);
438
439 pVmmLogger->fCreated = true;
440 }
441 }
442
443 return VINF_SUCCESS;
444}
445
446
447/**
448 * VMMR3Init worker that register the statistics with STAM.
449 *
450 * @param pVM The cross context VM structure.
451 */
452static void vmmR3InitRegisterStats(PVM pVM)
453{
454 RT_NOREF_PV(pVM);
455
456 /*
457 * Statistics.
458 */
459 STAM_REG(pVM, &pVM->vmm.s.StatRunGC, STAMTYPE_COUNTER, "/VMM/RunGC", STAMUNIT_OCCURENCES, "Number of context switches.");
460 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
461 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
462 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
463 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
464 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
465 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
466 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
467 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
468 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
469 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
470 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns.");
471 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns.");
472 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_COMMIT_WRITE returns.");
473 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns.");
474 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns.");
475 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_COMMIT_WRITE returns.");
476 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns.");
477 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
478 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
479 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRRead, STAMTYPE_COUNTER, "/VMM/RZRet/MSRRead", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_READ returns.");
480 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MSRWrite", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_WRITE returns.");
481 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
482 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
483 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
484 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
485 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
486 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
487 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
488 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
489 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
490 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
491 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
492 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
493 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Total, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
494 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns without responsible force flag.");
495 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3FF, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TO_R3.");
496 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_TM_VIRTUAL_SYNC.");
497 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PGM_NEED_HANDY_PAGES.");
498 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_QUEUES.");
499 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_EMT_RENDEZVOUS.");
500 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TIMER.");
501 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_DMA.");
502 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_PDM_CRITSECT.");
503 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iem, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IEM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IEM.");
504 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iom, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IOM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IOM.");
505 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
506 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
507 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
508 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
509 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
510 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
511 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HM_PATCH_TPR_INSTR returns.");
512 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
513 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
514 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMCritSectEnter, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMCritSectEnter", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_CRITSECT_ENTER calls.");
515 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
516 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
517 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
518 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
519 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
520 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
521 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
522
523#ifdef VBOX_WITH_STATISTICS
524 for (VMCPUID i = 0; i < pVM->cCpus; i++)
525 {
526 PVMCPU pVCpu = pVM->apCpusR3[i];
527 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
528 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
529 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
530 }
531#endif
532 for (VMCPUID i = 0; i < pVM->cCpus; i++)
533 {
534 PVMCPU pVCpu = pVM->apCpusR3[i];
535 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlock, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlock", i);
536 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOnTime, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOnTime", i);
537 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOverslept, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOverslept", i);
538 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockInsomnia, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockInsomnia", i);
539 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExec, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec", i);
540 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromSpin", i);
541 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromBlock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromBlock", i);
542 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3FromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3FromSpin", i);
543 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0Halts, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryCounter", i);
544 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsSucceeded, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistorySucceeded", i);
545 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsToRing3, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryToRing3", i);
546 }
547}
548
549
550/**
551 * Worker for VMMR3InitR0 that calls ring-0 to do EMT specific initialization.
552 *
553 * @returns VBox status code.
554 * @param pVM The cross context VM structure.
555 * @param pVCpu The cross context per CPU structure.
556 * @thread EMT(pVCpu)
557 */
558static DECLCALLBACK(int) vmmR3InitR0Emt(PVM pVM, PVMCPU pVCpu)
559{
560 return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_INIT_EMT, 0, NULL);
561}
562
563
564/**
565 * Initializes the R0 VMM.
566 *
567 * @returns VBox status code.
568 * @param pVM The cross context VM structure.
569 */
570VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
571{
572 int rc;
573 PVMCPU pVCpu = VMMGetCpu(pVM);
574 Assert(pVCpu && pVCpu->idCpu == 0);
575
576#ifdef LOG_ENABLED
577 /*
578 * Initialize the ring-0 logger if we haven't done so yet.
579 */
580 if ( pVCpu->vmm.s.pR0LoggerR3
581 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
582 {
583 rc = VMMR3UpdateLoggers(pVM);
584 if (RT_FAILURE(rc))
585 return rc;
586 }
587#endif
588
589 /*
590 * Call Ring-0 entry with init code.
591 */
592 for (;;)
593 {
594#ifdef NO_SUPCALLR0VMM
595 //rc = VERR_GENERAL_FAILURE;
596 rc = VINF_SUCCESS;
597#else
598 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, RT_MAKE_U64(VMMGetSvnRev(), vmmGetBuildType()), NULL);
599#endif
600 /*
601 * Flush the logs.
602 */
603#ifdef LOG_ENABLED
604 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
605#endif
606 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
607 if (rc != VINF_VMM_CALL_HOST)
608 break;
609 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
610 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
611 break;
612 /* Resume R0 */
613 }
614
615 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
616 {
617 LogRel(("VMM: R0 init failed, rc=%Rra\n", rc));
618 if (RT_SUCCESS(rc))
619 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
620 }
621
622 /* Log whether thread-context hooks are used (on Linux this can depend on how the kernel is configured). */
623 if (pVM->apCpusR3[0]->vmm.s.hCtxHook != NIL_RTTHREADCTXHOOK)
624 LogRel(("VMM: Enabled thread-context hooks\n"));
625 else
626 LogRel(("VMM: Thread-context hooks unavailable\n"));
627
628 /* Log RTThreadPreemptIsPendingTrusty() and RTThreadPreemptIsPossible() results. */
629 if (pVM->vmm.s.fIsPreemptPendingApiTrusty)
630 LogRel(("VMM: RTThreadPreemptIsPending() can be trusted\n"));
631 else
632 LogRel(("VMM: Warning! RTThreadPreemptIsPending() cannot be trusted! Need to update kernel info?\n"));
633 if (pVM->vmm.s.fIsPreemptPossible)
634 LogRel(("VMM: Kernel preemption is possible\n"));
635 else
636 LogRel(("VMM: Kernel preemption is not possible it seems\n"));
637
638 /*
639 * Send all EMTs to ring-0 to get their logger initialized.
640 */
641 for (VMCPUID idCpu = 0; RT_SUCCESS(rc) && idCpu < pVM->cCpus; idCpu++)
642 rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)vmmR3InitR0Emt, 2, pVM, pVM->apCpusR3[idCpu]);
643
644 return rc;
645}
646
647
648/**
649 * Called when an init phase completes.
650 *
651 * @returns VBox status code.
652 * @param pVM The cross context VM structure.
653 * @param enmWhat Which init phase.
654 */
655VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
656{
657 int rc = VINF_SUCCESS;
658
659 switch (enmWhat)
660 {
661 case VMINITCOMPLETED_RING3:
662 {
663#if 0 /* pointless when timers doesn't run on EMT */
664 /*
665 * Create the EMT yield timer.
666 */
667 rc = TMR3TimerCreate(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, TMTIMER_FLAGS_NO_RING0,
668 "EMT Yielder", &pVM->vmm.s.hYieldTimer);
669 AssertRCReturn(rc, rc);
670
671 rc = TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldEveryMillies);
672 AssertRCReturn(rc, rc);
673#endif
674 break;
675 }
676
677 case VMINITCOMPLETED_HM:
678 {
679 /*
680 * Disable the periodic preemption timers if we can use the
681 * VMX-preemption timer instead.
682 */
683 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
684 && HMR3IsVmxPreemptionTimerUsed(pVM))
685 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
686 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
687
688 /*
689 * Last chance for GIM to update its CPUID leaves if it requires
690 * knowledge/information from HM initialization.
691 */
692 rc = GIMR3InitCompleted(pVM);
693 AssertRCReturn(rc, rc);
694
695 /*
696 * CPUM's post-initialization (print CPUIDs).
697 */
698 CPUMR3LogCpuIdAndMsrFeatures(pVM);
699 break;
700 }
701
702 default: /* shuts up gcc */
703 break;
704 }
705
706 return rc;
707}
708
709
710/**
711 * Terminate the VMM bits.
712 *
713 * @returns VBox status code.
714 * @param pVM The cross context VM structure.
715 */
716VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
717{
718 PVMCPU pVCpu = VMMGetCpu(pVM);
719 Assert(pVCpu && pVCpu->idCpu == 0);
720
721 /*
722 * Call Ring-0 entry with termination code.
723 */
724 int rc;
725 for (;;)
726 {
727#ifdef NO_SUPCALLR0VMM
728 //rc = VERR_GENERAL_FAILURE;
729 rc = VINF_SUCCESS;
730#else
731 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
732#endif
733 /*
734 * Flush the logs.
735 */
736#ifdef LOG_ENABLED
737 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
738#endif
739 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
740 if (rc != VINF_VMM_CALL_HOST)
741 break;
742 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
743 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
744 break;
745 /* Resume R0 */
746 }
747 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
748 {
749 LogRel(("VMM: VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
750 if (RT_SUCCESS(rc))
751 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
752 }
753
754 for (VMCPUID i = 0; i < pVM->cCpus; i++)
755 {
756 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
757 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
758 }
759 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
760 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
761 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
762 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
763 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
764 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
765 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
766 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
767 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
768 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
769 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
770 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
771 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
772 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
773 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
774 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
775
776 vmmTermFormatTypes();
777 return rc;
778}
779
780
781/**
782 * Applies relocations to data and code managed by this
783 * component. This function will be called at init and
784 * whenever the VMM need to relocate it self inside the GC.
785 *
786 * The VMM will need to apply relocations to the core code.
787 *
788 * @param pVM The cross context VM structure.
789 * @param offDelta The relocation delta.
790 */
791VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
792{
793 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
794 RT_NOREF(offDelta);
795
796 /*
797 * Update the logger.
798 */
799 VMMR3UpdateLoggers(pVM);
800}
801
802
803/**
804 * Updates the settings for the RC and R0 loggers.
805 *
806 * @returns VBox status code.
807 * @param pVM The cross context VM structure.
808 */
809VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
810{
811 int rc = VINF_SUCCESS;
812
813#ifdef LOG_ENABLED
814 /*
815 * For the ring-0 EMT logger, we use a per-thread logger instance
816 * in ring-0. Only initialize it once.
817 */
818 PRTLOGGER const pDefault = RTLogDefaultInstance();
819 for (VMCPUID i = 0; i < pVM->cCpus; i++)
820 {
821 PVMCPU pVCpu = pVM->apCpusR3[i];
822 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
823 if (pR0LoggerR3)
824 {
825 if (!pR0LoggerR3->fCreated)
826 {
827 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
828 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
829 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
830
831 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
832 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
833 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
834
835 char szR0ThreadName[16];
836 RTStrPrintf(szR0ThreadName, sizeof(szR0ThreadName), "EMT-%u-R0", i);
837 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger,
838 pVCpu->vmm.s.pR0LoggerR0 + RT_UOFFSETOF(VMMR0LOGGER, Logger),
839 pfnLoggerWrapper, pfnLoggerFlush,
840 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY, szR0ThreadName);
841 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
842
843 pR0LoggerR3->idCpu = i;
844 pR0LoggerR3->fCreated = true;
845 pR0LoggerR3->fFlushingDisabled = false;
846 }
847
848 rc = RTLogCopyGroupsAndFlagsForR0(&pR0LoggerR3->Logger, pVCpu->vmm.s.pR0LoggerR0 + RT_UOFFSETOF(VMMR0LOGGER, Logger),
849 pDefault, RTLOGFLAGS_BUFFERED, UINT32_MAX);
850 AssertRC(rc);
851 }
852 }
853#else
854 RT_NOREF(pVM);
855#endif
856
857 return rc;
858}
859
860
861/**
862 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
863 *
864 * @returns Pointer to the buffer.
865 * @param pVM The cross context VM structure.
866 */
867VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
868{
869 return pVM->vmm.s.szRing0AssertMsg1;
870}
871
872
873/**
874 * Returns the VMCPU of the specified virtual CPU.
875 *
876 * @returns The VMCPU pointer. NULL if @a idCpu or @a pUVM is invalid.
877 *
878 * @param pUVM The user mode VM handle.
879 * @param idCpu The ID of the virtual CPU.
880 */
881VMMR3DECL(PVMCPU) VMMR3GetCpuByIdU(PUVM pUVM, RTCPUID idCpu)
882{
883 UVM_ASSERT_VALID_EXT_RETURN(pUVM, NULL);
884 AssertReturn(idCpu < pUVM->cCpus, NULL);
885 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, NULL);
886 return pUVM->pVM->apCpusR3[idCpu];
887}
888
889
890/**
891 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
892 *
893 * @returns Pointer to the buffer.
894 * @param pVM The cross context VM structure.
895 */
896VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
897{
898 return pVM->vmm.s.szRing0AssertMsg2;
899}
900
901
902/**
903 * Execute state save operation.
904 *
905 * @returns VBox status code.
906 * @param pVM The cross context VM structure.
907 * @param pSSM SSM operation handle.
908 */
909static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
910{
911 LogFlow(("vmmR3Save:\n"));
912
913 /*
914 * Save the started/stopped state of all CPUs except 0 as it will always
915 * be running. This avoids breaking the saved state version. :-)
916 */
917 for (VMCPUID i = 1; i < pVM->cCpus; i++)
918 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(pVM->apCpusR3[i])));
919
920 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
921}
922
923
924/**
925 * Execute state load operation.
926 *
927 * @returns VBox status code.
928 * @param pVM The cross context VM structure.
929 * @param pSSM SSM operation handle.
930 * @param uVersion Data layout version.
931 * @param uPass The data pass.
932 */
933static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
934{
935 LogFlow(("vmmR3Load:\n"));
936 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
937
938 /*
939 * Validate version.
940 */
941 if ( uVersion != VMM_SAVED_STATE_VERSION
942 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
943 {
944 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
945 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
946 }
947
948 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
949 {
950 /* Ignore the stack bottom, stack pointer and stack bits. */
951 RTRCPTR RCPtrIgnored;
952 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
953 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
954#ifdef RT_OS_DARWIN
955 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
956 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
957 && SSMR3HandleRevision(pSSM) >= 48858
958 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
959 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
960 )
961 SSMR3Skip(pSSM, 16384);
962 else
963 SSMR3Skip(pSSM, 8192);
964#else
965 SSMR3Skip(pSSM, 8192);
966#endif
967 }
968
969 /*
970 * Restore the VMCPU states. VCPU 0 is always started.
971 */
972 VMCPU_SET_STATE(pVM->apCpusR3[0], VMCPUSTATE_STARTED);
973 for (VMCPUID i = 1; i < pVM->cCpus; i++)
974 {
975 bool fStarted;
976 int rc = SSMR3GetBool(pSSM, &fStarted);
977 if (RT_FAILURE(rc))
978 return rc;
979 VMCPU_SET_STATE(pVM->apCpusR3[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
980 }
981
982 /* terminator */
983 uint32_t u32;
984 int rc = SSMR3GetU32(pSSM, &u32);
985 if (RT_FAILURE(rc))
986 return rc;
987 if (u32 != UINT32_MAX)
988 {
989 AssertMsgFailed(("u32=%#x\n", u32));
990 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
991 }
992 return VINF_SUCCESS;
993}
994
995
996/**
997 * Suspends the CPU yielder.
998 *
999 * @param pVM The cross context VM structure.
1000 */
1001VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
1002{
1003#if 0 /* pointless when timers doesn't run on EMT */
1004 VMCPU_ASSERT_EMT(pVM->apCpusR3[0]);
1005 if (!pVM->vmm.s.cYieldResumeMillies)
1006 {
1007 uint64_t u64Now = TMTimerGet(pVM, pVM->vmm.s.hYieldTimer);
1008 uint64_t u64Expire = TMTimerGetExpire(pVM, pVM->vmm.s.hYieldTimer);
1009 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1010 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1011 else
1012 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM, pVM->vmm.s.hYieldTimer, u64Expire - u64Now);
1013 TMTimerStop(pVM, pVM->vmm.s.hYieldTimer);
1014 }
1015 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1016#else
1017 RT_NOREF(pVM);
1018#endif
1019}
1020
1021
1022/**
1023 * Stops the CPU yielder.
1024 *
1025 * @param pVM The cross context VM structure.
1026 */
1027VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1028{
1029#if 0 /* pointless when timers doesn't run on EMT */
1030 if (!pVM->vmm.s.cYieldResumeMillies)
1031 TMTimerStop(pVM, pVM->vmm.s.hYieldTimer);
1032 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1033 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1034#else
1035 RT_NOREF(pVM);
1036#endif
1037}
1038
1039
1040/**
1041 * Resumes the CPU yielder when it has been a suspended or stopped.
1042 *
1043 * @param pVM The cross context VM structure.
1044 */
1045VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1046{
1047#if 0 /* pointless when timers doesn't run on EMT */
1048 if (pVM->vmm.s.cYieldResumeMillies)
1049 {
1050 TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1051 pVM->vmm.s.cYieldResumeMillies = 0;
1052 }
1053#else
1054 RT_NOREF(pVM);
1055#endif
1056}
1057
1058
1059#if 0 /* pointless when timers doesn't run on EMT */
1060/**
1061 * @callback_method_impl{FNTMTIMERINT, EMT yielder}
1062 *
1063 * @todo This is a UNI core/thread thing, really... Should be reconsidered.
1064 */
1065static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
1066{
1067 NOREF(pvUser);
1068
1069 /*
1070 * This really needs some careful tuning. While we shouldn't be too greedy since
1071 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1072 * because that'll cause us to stop up.
1073 *
1074 * The current logic is to use the default interval when there is no lag worth
1075 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1076 *
1077 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1078 * so the lag is up to date.)
1079 */
1080 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1081 if ( u64Lag < 50000000 /* 50ms */
1082 || ( u64Lag < 1000000000 /* 1s */
1083 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1084 )
1085 {
1086 uint64_t u64Elapsed = RTTimeNanoTS();
1087 pVM->vmm.s.u64LastYield = u64Elapsed;
1088
1089 RTThreadYield();
1090
1091#ifdef LOG_ENABLED
1092 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1093 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1094#endif
1095 }
1096 TMTimerSetMillies(pVM, hTimer, pVM->vmm.s.cYieldEveryMillies);
1097}
1098#endif
1099
1100
1101/**
1102 * Executes guest code (Intel VT-x and AMD-V).
1103 *
1104 * @param pVM The cross context VM structure.
1105 * @param pVCpu The cross context virtual CPU structure.
1106 */
1107VMMR3_INT_DECL(int) VMMR3HmRunGC(PVM pVM, PVMCPU pVCpu)
1108{
1109 Log2(("VMMR3HmRunGC: (cs:rip=%04x:%RX64)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1110
1111 for (;;)
1112 {
1113 int rc;
1114 do
1115 {
1116#ifdef NO_SUPCALLR0VMM
1117 rc = VERR_GENERAL_FAILURE;
1118#else
1119 rc = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), VMMR0_DO_HM_RUN, pVCpu->idCpu);
1120 if (RT_LIKELY(rc == VINF_SUCCESS))
1121 rc = pVCpu->vmm.s.iLastGZRc;
1122#endif
1123 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1124
1125#if 0 /** @todo triggers too often */
1126 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3));
1127#endif
1128
1129 /*
1130 * Flush the logs
1131 */
1132#ifdef LOG_ENABLED
1133 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
1134#endif
1135 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
1136 if (rc != VINF_VMM_CALL_HOST)
1137 {
1138 Log2(("VMMR3HmRunGC: returns %Rrc (cs:rip=%04x:%RX64)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1139 return rc;
1140 }
1141 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1142 if (RT_FAILURE(rc))
1143 return rc;
1144 /* Resume R0 */
1145 }
1146}
1147
1148
1149/**
1150 * Perform one of the fast I/O control VMMR0 operation.
1151 *
1152 * @returns VBox strict status code.
1153 * @param pVM The cross context VM structure.
1154 * @param pVCpu The cross context virtual CPU structure.
1155 * @param enmOperation The operation to perform.
1156 */
1157VMMR3_INT_DECL(VBOXSTRICTRC) VMMR3CallR0EmtFast(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation)
1158{
1159 for (;;)
1160 {
1161 VBOXSTRICTRC rcStrict;
1162 do
1163 {
1164#ifdef NO_SUPCALLR0VMM
1165 rcStrict = VERR_GENERAL_FAILURE;
1166#else
1167 rcStrict = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), enmOperation, pVCpu->idCpu);
1168 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
1169 rcStrict = pVCpu->vmm.s.iLastGZRc;
1170#endif
1171 } while (rcStrict == VINF_EM_RAW_INTERRUPT_HYPER);
1172
1173 /*
1174 * Flush the logs
1175 */
1176#ifdef LOG_ENABLED
1177 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
1178#endif
1179 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
1180 if (rcStrict != VINF_VMM_CALL_HOST)
1181 return rcStrict;
1182 int rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1183 if (RT_FAILURE(rc))
1184 return rc;
1185 /* Resume R0 */
1186 }
1187}
1188
1189
1190/**
1191 * VCPU worker for VMMR3SendStartupIpi.
1192 *
1193 * @param pVM The cross context VM structure.
1194 * @param idCpu Virtual CPU to perform SIPI on.
1195 * @param uVector The SIPI vector.
1196 */
1197static DECLCALLBACK(int) vmmR3SendStarupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1198{
1199 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1200 VMCPU_ASSERT_EMT(pVCpu);
1201
1202 /*
1203 * In the INIT state, the target CPU is only responsive to an SIPI.
1204 * This is also true for when when the CPU is in VMX non-root mode.
1205 *
1206 * See AMD spec. 16.5 "Interprocessor Interrupts (IPI)".
1207 * See Intel spec. 26.6.2 "Activity State".
1208 */
1209 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1210 return VINF_SUCCESS;
1211
1212 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1213#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1214 if (CPUMIsGuestInVmxRootMode(pCtx))
1215 {
1216 /* If the CPU is in VMX non-root mode we must cause a VM-exit. */
1217 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1218 return VBOXSTRICTRC_TODO(IEMExecVmxVmexitStartupIpi(pVCpu, uVector));
1219
1220 /* If the CPU is in VMX root mode (and not in VMX non-root mode) SIPIs are blocked. */
1221 return VINF_SUCCESS;
1222 }
1223#endif
1224
1225 pCtx->cs.Sel = uVector << 8;
1226 pCtx->cs.ValidSel = uVector << 8;
1227 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1228 pCtx->cs.u64Base = uVector << 12;
1229 pCtx->cs.u32Limit = UINT32_C(0x0000ffff);
1230 pCtx->rip = 0;
1231
1232 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", idCpu, uVector));
1233
1234# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1235 EMSetState(pVCpu, EMSTATE_HALTED);
1236 return VINF_EM_RESCHEDULE;
1237# else /* And if we go the VMCPU::enmState way it can stay here. */
1238 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1239 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1240 return VINF_SUCCESS;
1241# endif
1242}
1243
1244
1245/**
1246 * VCPU worker for VMMR3SendInitIpi.
1247 *
1248 * @returns VBox status code.
1249 * @param pVM The cross context VM structure.
1250 * @param idCpu Virtual CPU to perform SIPI on.
1251 */
1252static DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1253{
1254 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1255 VMCPU_ASSERT_EMT(pVCpu);
1256
1257 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1258
1259 /** @todo r=ramshankar: We should probably block INIT signal when the CPU is in
1260 * wait-for-SIPI state. Verify. */
1261
1262 /* If the CPU is in VMX non-root mode, INIT signals cause VM-exits. */
1263#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1264 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1265 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1266 return VBOXSTRICTRC_TODO(IEMExecVmxVmexit(pVCpu, VMX_EXIT_INIT_SIGNAL, 0 /* uExitQual */));
1267#endif
1268
1269 /** @todo Figure out how to handle a SVM nested-guest intercepts here for INIT
1270 * IPI (e.g. SVM_EXIT_INIT). */
1271
1272 PGMR3ResetCpu(pVM, pVCpu);
1273 PDMR3ResetCpu(pVCpu); /* Only clears pending interrupts force flags */
1274 APICR3InitIpi(pVCpu);
1275 TRPMR3ResetCpu(pVCpu);
1276 CPUMR3ResetCpu(pVM, pVCpu);
1277 EMR3ResetCpu(pVCpu);
1278 HMR3ResetCpu(pVCpu);
1279 NEMR3ResetCpu(pVCpu, true /*fInitIpi*/);
1280
1281 /* This will trickle up on the target EMT. */
1282 return VINF_EM_WAIT_SIPI;
1283}
1284
1285
1286/**
1287 * Sends a Startup IPI to the virtual CPU by setting CS:EIP into
1288 * vector-dependent state and unhalting processor.
1289 *
1290 * @param pVM The cross context VM structure.
1291 * @param idCpu Virtual CPU to perform SIPI on.
1292 * @param uVector SIPI vector.
1293 */
1294VMMR3_INT_DECL(void) VMMR3SendStartupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1295{
1296 AssertReturnVoid(idCpu < pVM->cCpus);
1297
1298 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendStarupIpi, 3, pVM, idCpu, uVector);
1299 AssertRC(rc);
1300}
1301
1302
1303/**
1304 * Sends init IPI to the virtual CPU.
1305 *
1306 * @param pVM The cross context VM structure.
1307 * @param idCpu Virtual CPU to perform int IPI on.
1308 */
1309VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1310{
1311 AssertReturnVoid(idCpu < pVM->cCpus);
1312
1313 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1314 AssertRC(rc);
1315}
1316
1317
1318/**
1319 * Registers the guest memory range that can be used for patching.
1320 *
1321 * @returns VBox status code.
1322 * @param pVM The cross context VM structure.
1323 * @param pPatchMem Patch memory range.
1324 * @param cbPatchMem Size of the memory range.
1325 */
1326VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1327{
1328 VM_ASSERT_EMT(pVM);
1329 if (HMIsEnabled(pVM))
1330 return HMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1331
1332 return VERR_NOT_SUPPORTED;
1333}
1334
1335
1336/**
1337 * Deregisters the guest memory range that can be used for patching.
1338 *
1339 * @returns VBox status code.
1340 * @param pVM The cross context VM structure.
1341 * @param pPatchMem Patch memory range.
1342 * @param cbPatchMem Size of the memory range.
1343 */
1344VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1345{
1346 if (HMIsEnabled(pVM))
1347 return HMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1348
1349 return VINF_SUCCESS;
1350}
1351
1352
1353/**
1354 * Common recursion handler for the other EMTs.
1355 *
1356 * @returns Strict VBox status code.
1357 * @param pVM The cross context VM structure.
1358 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1359 * @param rcStrict Current status code to be combined with the one
1360 * from this recursion and returned.
1361 */
1362static VBOXSTRICTRC vmmR3EmtRendezvousCommonRecursion(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict)
1363{
1364 int rc2;
1365
1366 /*
1367 * We wait here while the initiator of this recursion reconfigures
1368 * everything. The last EMT to get in signals the initiator.
1369 */
1370 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) == pVM->cCpus)
1371 {
1372 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1373 AssertLogRelRC(rc2);
1374 }
1375
1376 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPush, RT_INDEFINITE_WAIT);
1377 AssertLogRelRC(rc2);
1378
1379 /*
1380 * Do the normal rendezvous processing.
1381 */
1382 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1383 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1384
1385 /*
1386 * Wait for the initiator to restore everything.
1387 */
1388 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPop, RT_INDEFINITE_WAIT);
1389 AssertLogRelRC(rc2);
1390
1391 /*
1392 * Last thread out of here signals the initiator.
1393 */
1394 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) == pVM->cCpus)
1395 {
1396 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1397 AssertLogRelRC(rc2);
1398 }
1399
1400 /*
1401 * Merge status codes and return.
1402 */
1403 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
1404 if ( rcStrict2 != VINF_SUCCESS
1405 && ( rcStrict == VINF_SUCCESS
1406 || rcStrict > rcStrict2))
1407 rcStrict = rcStrict2;
1408 return rcStrict;
1409}
1410
1411
1412/**
1413 * Count returns and have the last non-caller EMT wake up the caller.
1414 *
1415 * @returns VBox strict informational status code for EM scheduling. No failures
1416 * will be returned here, those are for the caller only.
1417 *
1418 * @param pVM The cross context VM structure.
1419 * @param rcStrict The current accumulated recursive status code,
1420 * to be merged with i32RendezvousStatus and
1421 * returned.
1422 */
1423DECL_FORCE_INLINE(VBOXSTRICTRC) vmmR3EmtRendezvousNonCallerReturn(PVM pVM, VBOXSTRICTRC rcStrict)
1424{
1425 VBOXSTRICTRC rcStrict2 = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1426
1427 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1428 if (cReturned == pVM->cCpus - 1U)
1429 {
1430 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1431 AssertLogRelRC(rc);
1432 }
1433
1434 /*
1435 * Merge the status codes, ignoring error statuses in this code path.
1436 */
1437 AssertLogRelMsgReturn( rcStrict2 <= VINF_SUCCESS
1438 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1439 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)),
1440 VERR_IPE_UNEXPECTED_INFO_STATUS);
1441
1442 if (RT_SUCCESS(rcStrict2))
1443 {
1444 if ( rcStrict2 != VINF_SUCCESS
1445 && ( rcStrict == VINF_SUCCESS
1446 || rcStrict > rcStrict2))
1447 rcStrict = rcStrict2;
1448 }
1449 return rcStrict;
1450}
1451
1452
1453/**
1454 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1455 *
1456 * @returns VBox strict informational status code for EM scheduling. No failures
1457 * will be returned here, those are for the caller only. When
1458 * fIsCaller is set, VINF_SUCCESS is always returned.
1459 *
1460 * @param pVM The cross context VM structure.
1461 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1462 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1463 * not.
1464 * @param fFlags The flags.
1465 * @param pfnRendezvous The callback.
1466 * @param pvUser The user argument for the callback.
1467 */
1468static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1469 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1470{
1471 int rc;
1472 VBOXSTRICTRC rcStrictRecursion = VINF_SUCCESS;
1473
1474 /*
1475 * Enter, the last EMT triggers the next callback phase.
1476 */
1477 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1478 if (cEntered != pVM->cCpus)
1479 {
1480 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1481 {
1482 /* Wait for our turn. */
1483 for (;;)
1484 {
1485 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1486 AssertLogRelRC(rc);
1487 if (!pVM->vmm.s.fRendezvousRecursion)
1488 break;
1489 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1490 }
1491 }
1492 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1493 {
1494 /* Wait for the last EMT to arrive and wake everyone up. */
1495 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1496 AssertLogRelRC(rc);
1497 Assert(!pVM->vmm.s.fRendezvousRecursion);
1498 }
1499 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1500 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1501 {
1502 /* Wait for our turn. */
1503 for (;;)
1504 {
1505 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1506 AssertLogRelRC(rc);
1507 if (!pVM->vmm.s.fRendezvousRecursion)
1508 break;
1509 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1510 }
1511 }
1512 else
1513 {
1514 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1515
1516 /*
1517 * The execute once is handled specially to optimize the code flow.
1518 *
1519 * The last EMT to arrive will perform the callback and the other
1520 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1521 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1522 * returns, that EMT will initiate the normal return sequence.
1523 */
1524 if (!fIsCaller)
1525 {
1526 for (;;)
1527 {
1528 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1529 AssertLogRelRC(rc);
1530 if (!pVM->vmm.s.fRendezvousRecursion)
1531 break;
1532 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1533 }
1534
1535 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1536 }
1537 return VINF_SUCCESS;
1538 }
1539 }
1540 else
1541 {
1542 /*
1543 * All EMTs are waiting, clear the FF and take action according to the
1544 * execution method.
1545 */
1546 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1547
1548 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1549 {
1550 /* Wake up everyone. */
1551 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1552 AssertLogRelRC(rc);
1553 }
1554 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1555 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1556 {
1557 /* Figure out who to wake up and wake it up. If it's ourself, then
1558 it's easy otherwise wait for our turn. */
1559 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1560 ? 0
1561 : pVM->cCpus - 1U;
1562 if (pVCpu->idCpu != iFirst)
1563 {
1564 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1565 AssertLogRelRC(rc);
1566 for (;;)
1567 {
1568 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1569 AssertLogRelRC(rc);
1570 if (!pVM->vmm.s.fRendezvousRecursion)
1571 break;
1572 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1573 }
1574 }
1575 }
1576 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1577 }
1578
1579
1580 /*
1581 * Do the callback and update the status if necessary.
1582 */
1583 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1584 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1585 {
1586 VBOXSTRICTRC rcStrict2 = pfnRendezvous(pVM, pVCpu, pvUser);
1587 if (rcStrict2 != VINF_SUCCESS)
1588 {
1589 AssertLogRelMsg( rcStrict2 <= VINF_SUCCESS
1590 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1591 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
1592 int32_t i32RendezvousStatus;
1593 do
1594 {
1595 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1596 if ( rcStrict2 == i32RendezvousStatus
1597 || RT_FAILURE(i32RendezvousStatus)
1598 || ( i32RendezvousStatus != VINF_SUCCESS
1599 && rcStrict2 > i32RendezvousStatus))
1600 break;
1601 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict2), i32RendezvousStatus));
1602 }
1603 }
1604
1605 /*
1606 * Increment the done counter and take action depending on whether we're
1607 * the last to finish callback execution.
1608 */
1609 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1610 if ( cDone != pVM->cCpus
1611 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1612 {
1613 /* Signal the next EMT? */
1614 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1615 {
1616 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1617 AssertLogRelRC(rc);
1618 }
1619 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1620 {
1621 Assert(cDone == pVCpu->idCpu + 1U);
1622 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1623 AssertLogRelRC(rc);
1624 }
1625 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1626 {
1627 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1628 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1629 AssertLogRelRC(rc);
1630 }
1631
1632 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1633 if (!fIsCaller)
1634 {
1635 for (;;)
1636 {
1637 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1638 AssertLogRelRC(rc);
1639 if (!pVM->vmm.s.fRendezvousRecursion)
1640 break;
1641 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1642 }
1643 }
1644 }
1645 else
1646 {
1647 /* Callback execution is all done, tell the rest to return. */
1648 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1649 AssertLogRelRC(rc);
1650 }
1651
1652 if (!fIsCaller)
1653 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1654 return rcStrictRecursion;
1655}
1656
1657
1658/**
1659 * Called in response to VM_FF_EMT_RENDEZVOUS.
1660 *
1661 * @returns VBox strict status code - EM scheduling. No errors will be returned
1662 * here, nor will any non-EM scheduling status codes be returned.
1663 *
1664 * @param pVM The cross context VM structure.
1665 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1666 *
1667 * @thread EMT
1668 */
1669VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1670{
1671 Assert(!pVCpu->vmm.s.fInRendezvous);
1672 Log(("VMMR3EmtRendezvousFF: EMT%#u\n", pVCpu->idCpu));
1673 pVCpu->vmm.s.fInRendezvous = true;
1674 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1675 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1676 pVCpu->vmm.s.fInRendezvous = false;
1677 Log(("VMMR3EmtRendezvousFF: EMT%#u returns %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
1678 return VBOXSTRICTRC_TODO(rcStrict);
1679}
1680
1681
1682/**
1683 * Helper for resetting an single wakeup event sempahore.
1684 *
1685 * @returns VERR_TIMEOUT on success, RTSemEventWait status otherwise.
1686 * @param hEvt The event semaphore to reset.
1687 */
1688static int vmmR3HlpResetEvent(RTSEMEVENT hEvt)
1689{
1690 for (uint32_t cLoops = 0; ; cLoops++)
1691 {
1692 int rc = RTSemEventWait(hEvt, 0 /*cMsTimeout*/);
1693 if (rc != VINF_SUCCESS || cLoops > _4K)
1694 return rc;
1695 }
1696}
1697
1698
1699/**
1700 * Worker for VMMR3EmtRendezvous that handles recursion.
1701 *
1702 * @returns VBox strict status code. This will be the first error,
1703 * VINF_SUCCESS, or an EM scheduling status code.
1704 *
1705 * @param pVM The cross context VM structure.
1706 * @param pVCpu The cross context virtual CPU structure of the
1707 * calling EMT.
1708 * @param fFlags Flags indicating execution methods. See
1709 * grp_VMMR3EmtRendezvous_fFlags.
1710 * @param pfnRendezvous The callback.
1711 * @param pvUser User argument for the callback.
1712 *
1713 * @thread EMT(pVCpu)
1714 */
1715static VBOXSTRICTRC vmmR3EmtRendezvousRecursive(PVM pVM, PVMCPU pVCpu, uint32_t fFlags,
1716 PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1717{
1718 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d\n", fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions));
1719 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
1720 Assert(pVCpu->vmm.s.fInRendezvous);
1721
1722 /*
1723 * Save the current state.
1724 */
1725 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
1726 uint32_t const cParentDone = pVM->vmm.s.cRendezvousEmtsDone;
1727 int32_t const iParentStatus = pVM->vmm.s.i32RendezvousStatus;
1728 PFNVMMEMTRENDEZVOUS const pfnParent = pVM->vmm.s.pfnRendezvous;
1729 void * const pvParentUser = pVM->vmm.s.pvRendezvousUser;
1730
1731 /*
1732 * Check preconditions and save the current state.
1733 */
1734 AssertReturn( (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1735 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1736 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
1737 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1738 VERR_INTERNAL_ERROR);
1739 AssertReturn(pVM->vmm.s.cRendezvousEmtsEntered == pVM->cCpus, VERR_INTERNAL_ERROR_2);
1740 AssertReturn(pVM->vmm.s.cRendezvousEmtsReturned == 0, VERR_INTERNAL_ERROR_3);
1741
1742 /*
1743 * Reset the recursion prep and pop semaphores.
1744 */
1745 int rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1746 AssertLogRelRCReturn(rc, rc);
1747 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1748 AssertLogRelRCReturn(rc, rc);
1749 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1750 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1751 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1752 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1753
1754 /*
1755 * Usher the other thread into the recursion routine.
1756 */
1757 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush, 0);
1758 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, true);
1759
1760 uint32_t cLeft = pVM->cCpus - (cParentDone + 1U);
1761 if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1762 while (cLeft-- > 0)
1763 {
1764 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1765 AssertLogRelRC(rc);
1766 }
1767 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1768 {
1769 Assert(cLeft == pVM->cCpus - (pVCpu->idCpu + 1U));
1770 for (VMCPUID iCpu = pVCpu->idCpu + 1U; iCpu < pVM->cCpus; iCpu++)
1771 {
1772 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu]);
1773 AssertLogRelRC(rc);
1774 }
1775 }
1776 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1777 {
1778 Assert(cLeft == pVCpu->idCpu);
1779 for (VMCPUID iCpu = pVCpu->idCpu; iCpu > 0; iCpu--)
1780 {
1781 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu - 1U]);
1782 AssertLogRelRC(rc);
1783 }
1784 }
1785 else
1786 AssertLogRelReturn((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1787 VERR_INTERNAL_ERROR_4);
1788
1789 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1790 AssertLogRelRC(rc);
1791 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1792 AssertLogRelRC(rc);
1793
1794
1795 /*
1796 * Wait for the EMTs to wake up and get out of the parent rendezvous code.
1797 */
1798 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) != pVM->cCpus)
1799 {
1800 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPushCaller, RT_INDEFINITE_WAIT);
1801 AssertLogRelRC(rc);
1802 }
1803
1804 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, false);
1805
1806 /*
1807 * Clear the slate and setup the new rendezvous.
1808 */
1809 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1810 {
1811 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1812 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1813 }
1814 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1815 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1816 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1817 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1818
1819 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1820 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1821 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1822 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1823 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1824 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1825 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1826 ASMAtomicIncU32(&pVM->vmm.s.cRendezvousRecursions);
1827
1828 /*
1829 * We're ready to go now, do normal rendezvous processing.
1830 */
1831 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1832 AssertLogRelRC(rc);
1833
1834 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /*fIsCaller*/, fFlags, pfnRendezvous, pvUser);
1835
1836 /*
1837 * The caller waits for the other EMTs to be done, return and waiting on the
1838 * pop semaphore.
1839 */
1840 for (;;)
1841 {
1842 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1843 AssertLogRelRC(rc);
1844 if (!pVM->vmm.s.fRendezvousRecursion)
1845 break;
1846 rcStrict = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict);
1847 }
1848
1849 /*
1850 * Get the return code and merge it with the above recursion status.
1851 */
1852 VBOXSTRICTRC rcStrict2 = pVM->vmm.s.i32RendezvousStatus;
1853 if ( rcStrict2 != VINF_SUCCESS
1854 && ( rcStrict == VINF_SUCCESS
1855 || rcStrict > rcStrict2))
1856 rcStrict = rcStrict2;
1857
1858 /*
1859 * Restore the parent rendezvous state.
1860 */
1861 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1862 {
1863 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1864 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1865 }
1866 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1867 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1868 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1869 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1870
1871 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, pVM->cCpus);
1872 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1873 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, cParentDone);
1874 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, iParentStatus);
1875 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fParentFlags);
1876 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvParentUser);
1877 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnParent);
1878
1879 /*
1880 * Usher the other EMTs back to their parent recursion routine, waiting
1881 * for them to all get there before we return (makes sure they've been
1882 * scheduled and are past the pop event sem, see below).
1883 */
1884 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop, 0);
1885 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1886 AssertLogRelRC(rc);
1887
1888 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) != pVM->cCpus)
1889 {
1890 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPopCaller, RT_INDEFINITE_WAIT);
1891 AssertLogRelRC(rc);
1892 }
1893
1894 /*
1895 * We must reset the pop semaphore on the way out (doing the pop caller too,
1896 * just in case). The parent may be another recursion.
1897 */
1898 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop); AssertLogRelRC(rc);
1899 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1900
1901 ASMAtomicDecU32(&pVM->vmm.s.cRendezvousRecursions);
1902
1903 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d returns %Rrc\n",
1904 fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions, VBOXSTRICTRC_VAL(rcStrict)));
1905 return rcStrict;
1906}
1907
1908
1909/**
1910 * EMT rendezvous.
1911 *
1912 * Gathers all the EMTs and execute some code on each of them, either in a one
1913 * by one fashion or all at once.
1914 *
1915 * @returns VBox strict status code. This will be the first error,
1916 * VINF_SUCCESS, or an EM scheduling status code.
1917 *
1918 * @retval VERR_DEADLOCK if recursion is attempted using a rendezvous type that
1919 * doesn't support it or if the recursion is too deep.
1920 *
1921 * @param pVM The cross context VM structure.
1922 * @param fFlags Flags indicating execution methods. See
1923 * grp_VMMR3EmtRendezvous_fFlags. The one-by-one,
1924 * descending and ascending rendezvous types support
1925 * recursion from inside @a pfnRendezvous.
1926 * @param pfnRendezvous The callback.
1927 * @param pvUser User argument for the callback.
1928 *
1929 * @thread Any.
1930 */
1931VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1932{
1933 /*
1934 * Validate input.
1935 */
1936 AssertReturn(pVM, VERR_INVALID_VM_HANDLE);
1937 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1938 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1939 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1940 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1941 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
1942 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
1943 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
1944
1945 VBOXSTRICTRC rcStrict;
1946 PVMCPU pVCpu = VMMGetCpu(pVM);
1947 if (!pVCpu)
1948 {
1949 /*
1950 * Forward the request to an EMT thread.
1951 */
1952 Log(("VMMR3EmtRendezvous: %#x non-EMT\n", fFlags));
1953 if (!(fFlags & VMMEMTRENDEZVOUS_FLAGS_PRIORITY))
1954 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1955 else
1956 rcStrict = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1957 Log(("VMMR3EmtRendezvous: %#x non-EMT returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
1958 }
1959 else if ( pVM->cCpus == 1
1960 || ( pVM->enmVMState == VMSTATE_DESTROYING
1961 && VMR3GetActiveEmts(pVM->pUVM) < pVM->cCpus ) )
1962 {
1963 /*
1964 * Shortcut for the single EMT case.
1965 *
1966 * We also ends up here if EMT(0) (or others) tries to issue a rendezvous
1967 * during vmR3Destroy after other emulation threads have started terminating.
1968 */
1969 if (!pVCpu->vmm.s.fInRendezvous)
1970 {
1971 Log(("VMMR3EmtRendezvous: %#x EMT (uni)\n", fFlags));
1972 pVCpu->vmm.s.fInRendezvous = true;
1973 pVM->vmm.s.fRendezvousFlags = fFlags;
1974 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1975 pVCpu->vmm.s.fInRendezvous = false;
1976 }
1977 else
1978 {
1979 /* Recursion. Do the same checks as in the SMP case. */
1980 Log(("VMMR3EmtRendezvous: %#x EMT (uni), recursion depth=%d\n", fFlags, pVM->vmm.s.cRendezvousRecursions));
1981 uint32_t fType = pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK;
1982 AssertLogRelReturn( !pVCpu->vmm.s.fInRendezvous
1983 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1984 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1985 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
1986 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
1987 , VERR_DEADLOCK);
1988
1989 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
1990 pVM->vmm.s.cRendezvousRecursions++;
1991 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
1992 pVM->vmm.s.fRendezvousFlags = fFlags;
1993
1994 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1995
1996 pVM->vmm.s.fRendezvousFlags = fParentFlags;
1997 pVM->vmm.s.cRendezvousRecursions--;
1998 }
1999 Log(("VMMR3EmtRendezvous: %#x EMT (uni) returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
2000 }
2001 else
2002 {
2003 /*
2004 * Spin lock. If busy, check for recursion, if not recursing wait for
2005 * the other EMT to finish while keeping a lookout for the RENDEZVOUS FF.
2006 */
2007 int rc;
2008 rcStrict = VINF_SUCCESS;
2009 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
2010 {
2011 /* Allow recursion in some cases. */
2012 if ( pVCpu->vmm.s.fInRendezvous
2013 && ( (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2014 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2015 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2016 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2017 ))
2018 return VBOXSTRICTRC_TODO(vmmR3EmtRendezvousRecursive(pVM, pVCpu, fFlags, pfnRendezvous, pvUser));
2019
2020 AssertLogRelMsgReturn(!pVCpu->vmm.s.fInRendezvous, ("fRendezvousFlags=%#x\n", pVM->vmm.s.fRendezvousFlags),
2021 VERR_DEADLOCK);
2022
2023 Log(("VMMR3EmtRendezvous: %#x EMT#%u, waiting for lock...\n", fFlags, pVCpu->idCpu));
2024 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
2025 {
2026 if (VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS))
2027 {
2028 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
2029 if ( rc != VINF_SUCCESS
2030 && ( rcStrict == VINF_SUCCESS
2031 || rcStrict > rc))
2032 rcStrict = rc;
2033 /** @todo Perhaps deal with termination here? */
2034 }
2035 ASMNopPause();
2036 }
2037 }
2038
2039 Log(("VMMR3EmtRendezvous: %#x EMT#%u\n", fFlags, pVCpu->idCpu));
2040 Assert(!VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS));
2041 Assert(!pVCpu->vmm.s.fInRendezvous);
2042 pVCpu->vmm.s.fInRendezvous = true;
2043
2044 /*
2045 * Clear the slate and setup the rendezvous. This is a semaphore ping-pong orgy. :-)
2046 */
2047 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2048 {
2049 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
2050 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2051 }
2052 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2053 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2054 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2055 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2056 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
2057 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
2058 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2059 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
2060 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
2061 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
2062 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
2063
2064 /*
2065 * Set the FF and poke the other EMTs.
2066 */
2067 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
2068 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
2069
2070 /*
2071 * Do the same ourselves.
2072 */
2073 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
2074
2075 /*
2076 * The caller waits for the other EMTs to be done and return before doing
2077 * the cleanup. This makes away with wakeup / reset races we would otherwise
2078 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
2079 */
2080 for (;;)
2081 {
2082 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
2083 AssertLogRelRC(rc);
2084 if (!pVM->vmm.s.fRendezvousRecursion)
2085 break;
2086 rcStrict2 = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict2);
2087 }
2088
2089 /*
2090 * Get the return code and clean up a little bit.
2091 */
2092 VBOXSTRICTRC rcStrict3 = pVM->vmm.s.i32RendezvousStatus;
2093 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
2094
2095 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
2096 pVCpu->vmm.s.fInRendezvous = false;
2097
2098 /*
2099 * Merge rcStrict, rcStrict2 and rcStrict3.
2100 */
2101 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
2102 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
2103 if ( rcStrict2 != VINF_SUCCESS
2104 && ( rcStrict == VINF_SUCCESS
2105 || rcStrict > rcStrict2))
2106 rcStrict = rcStrict2;
2107 if ( rcStrict3 != VINF_SUCCESS
2108 && ( rcStrict == VINF_SUCCESS
2109 || rcStrict > rcStrict3))
2110 rcStrict = rcStrict3;
2111 Log(("VMMR3EmtRendezvous: %#x EMT#%u returns %Rrc\n", fFlags, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
2112 }
2113
2114 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
2115 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
2116 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
2117 VERR_IPE_UNEXPECTED_INFO_STATUS);
2118 return VBOXSTRICTRC_VAL(rcStrict);
2119}
2120
2121
2122/**
2123 * Interface for vmR3SetHaltMethodU.
2124 *
2125 * @param pVCpu The cross context virtual CPU structure of the
2126 * calling EMT.
2127 * @param fMayHaltInRing0 The new state.
2128 * @param cNsSpinBlockThreshold The spin-vs-blocking threashold.
2129 * @thread EMT(pVCpu)
2130 *
2131 * @todo Move the EMT handling to VMM (or EM). I soooooo regret that VM
2132 * component.
2133 */
2134VMMR3_INT_DECL(void) VMMR3SetMayHaltInRing0(PVMCPU pVCpu, bool fMayHaltInRing0, uint32_t cNsSpinBlockThreshold)
2135{
2136 LogFlow(("VMMR3SetMayHaltInRing0(#%u, %d, %u)\n", pVCpu->idCpu, fMayHaltInRing0, cNsSpinBlockThreshold));
2137 pVCpu->vmm.s.fMayHaltInRing0 = fMayHaltInRing0;
2138 pVCpu->vmm.s.cNsSpinBlockThreshold = cNsSpinBlockThreshold;
2139}
2140
2141
2142/**
2143 * Read from the ring 0 jump buffer stack.
2144 *
2145 * @returns VBox status code.
2146 *
2147 * @param pVM The cross context VM structure.
2148 * @param idCpu The ID of the source CPU context (for the address).
2149 * @param R0Addr Where to start reading.
2150 * @param pvBuf Where to store the data we've read.
2151 * @param cbRead The number of bytes to read.
2152 */
2153VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
2154{
2155 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
2156 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
2157 AssertReturn(cbRead < ~(size_t)0 / 2, VERR_INVALID_PARAMETER);
2158
2159 int rc;
2160#ifdef VMM_R0_SWITCH_STACK
2161 RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
2162#else
2163 RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr);
2164#endif
2165 if ( off < VMM_STACK_SIZE
2166 && off + cbRead <= VMM_STACK_SIZE)
2167 {
2168 memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead);
2169 rc = VINF_SUCCESS;
2170 }
2171 else
2172 rc = VERR_INVALID_POINTER;
2173
2174 /* Supply the setjmp return RIP/EIP. */
2175 if ( pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation + sizeof(RTR0UINTPTR) > R0Addr
2176 && pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation < R0Addr + cbRead)
2177 {
2178 uint8_t const *pbSrc = (uint8_t const *)&pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue;
2179 size_t cbSrc = sizeof(pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue);
2180 size_t offDst = 0;
2181 if (R0Addr < pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2182 offDst = pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation - R0Addr;
2183 else if (R0Addr > pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2184 {
2185 size_t offSrc = R0Addr - pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation;
2186 Assert(offSrc < cbSrc);
2187 pbSrc -= offSrc;
2188 cbSrc -= offSrc;
2189 }
2190 if (cbSrc > cbRead - offDst)
2191 cbSrc = cbRead - offDst;
2192 memcpy((uint8_t *)pvBuf + offDst, pbSrc, cbSrc);
2193
2194 if (cbSrc == cbRead)
2195 rc = VINF_SUCCESS;
2196 }
2197
2198 return rc;
2199}
2200
2201
2202/**
2203 * Used by the DBGF stack unwinder to initialize the register state.
2204 *
2205 * @param pUVM The user mode VM handle.
2206 * @param idCpu The ID of the CPU being unwound.
2207 * @param pState The unwind state to initialize.
2208 */
2209VMMR3_INT_DECL(void) VMMR3InitR0StackUnwindState(PUVM pUVM, VMCPUID idCpu, struct RTDBGUNWINDSTATE *pState)
2210{
2211 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, idCpu);
2212 AssertReturnVoid(pVCpu);
2213
2214 /*
2215 * Locate the resume point on the stack.
2216 */
2217#ifdef VMM_R0_SWITCH_STACK
2218 uintptr_t off = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume - MMHyperCCToR0(pVCpu->pVMR3, pVCpu->vmm.s.pbEMTStackR3);
2219 AssertReturnVoid(off < VMM_STACK_SIZE);
2220#else
2221 uintptr_t off = 0;
2222#endif
2223
2224#ifdef RT_ARCH_AMD64
2225 /*
2226 * This code must match the .resume stuff in VMMR0JmpA-amd64.asm exactly.
2227 */
2228# ifdef VBOX_STRICT
2229 Assert(*(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2230 off += 8; /* RESUME_MAGIC */
2231# endif
2232# ifdef RT_OS_WINDOWS
2233 off += 0xa0; /* XMM6 thru XMM15 */
2234# endif
2235 pState->u.x86.uRFlags = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2236 off += 8;
2237 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2238 off += 8;
2239# ifdef RT_OS_WINDOWS
2240 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2241 off += 8;
2242 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2243 off += 8;
2244# endif
2245 pState->u.x86.auRegs[X86_GREG_x12] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2246 off += 8;
2247 pState->u.x86.auRegs[X86_GREG_x13] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2248 off += 8;
2249 pState->u.x86.auRegs[X86_GREG_x14] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2250 off += 8;
2251 pState->u.x86.auRegs[X86_GREG_x15] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2252 off += 8;
2253 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2254 off += 8;
2255 pState->uPc = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2256 off += 8;
2257
2258#elif defined(RT_ARCH_X86)
2259 /*
2260 * This code must match the .resume stuff in VMMR0JmpA-x86.asm exactly.
2261 */
2262# ifdef VBOX_STRICT
2263 Assert(*(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2264 off += 4; /* RESUME_MAGIC */
2265# endif
2266 pState->u.x86.uRFlags = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2267 off += 4;
2268 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2269 off += 4;
2270 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2271 off += 4;
2272 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2273 off += 4;
2274 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2275 off += 4;
2276 pState->uPc = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2277 off += 4;
2278#else
2279# error "Port me"
2280#endif
2281
2282 /*
2283 * This is all we really need here, though the above helps if the assembly
2284 * doesn't contain unwind info (currently only on win/64, so that is useful).
2285 */
2286 pState->u.x86.auRegs[X86_GREG_xBP] = pVCpu->vmm.s.CallRing3JmpBufR0.SavedEbp;
2287 pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume;
2288}
2289
2290
2291/**
2292 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2293 *
2294 * @returns VBox status code.
2295 * @param pVM The cross context VM structure.
2296 * @param uOperation Operation to execute.
2297 * @param u64Arg Constant argument.
2298 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2299 * details.
2300 */
2301VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2302{
2303 PVMCPU pVCpu = VMMGetCpu(pVM);
2304 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
2305 return VMMR3CallR0Emt(pVM, pVCpu, (VMMR0OPERATION)uOperation, u64Arg, pReqHdr);
2306}
2307
2308
2309/**
2310 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2311 *
2312 * @returns VBox status code.
2313 * @param pVM The cross context VM structure.
2314 * @param pVCpu The cross context VM structure.
2315 * @param enmOperation Operation to execute.
2316 * @param u64Arg Constant argument.
2317 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2318 * details.
2319 */
2320VMMR3_INT_DECL(int) VMMR3CallR0Emt(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2321{
2322 int rc;
2323 for (;;)
2324 {
2325#ifdef NO_SUPCALLR0VMM
2326 rc = VERR_GENERAL_FAILURE;
2327#else
2328 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, enmOperation, u64Arg, pReqHdr);
2329#endif
2330 /*
2331 * Flush the logs.
2332 */
2333#ifdef LOG_ENABLED
2334 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
2335#endif
2336 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
2337 if (rc != VINF_VMM_CALL_HOST)
2338 break;
2339 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2340 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
2341 break;
2342 /* Resume R0 */
2343 }
2344
2345 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
2346 ("enmOperation=%u rc=%Rrc\n", enmOperation, rc),
2347 VERR_IPE_UNEXPECTED_INFO_STATUS);
2348 return rc;
2349}
2350
2351
2352/**
2353 * Service a call to the ring-3 host code.
2354 *
2355 * @returns VBox status code.
2356 * @param pVM The cross context VM structure.
2357 * @param pVCpu The cross context virtual CPU structure.
2358 * @remarks Careful with critsects.
2359 */
2360static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2361{
2362 /*
2363 * We must also check for pending critsect exits or else we can deadlock
2364 * when entering other critsects here.
2365 */
2366 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PDM_CRITSECT))
2367 PDMCritSectBothFF(pVCpu);
2368
2369 switch (pVCpu->vmm.s.enmCallRing3Operation)
2370 {
2371 /*
2372 * Acquire a critical section.
2373 */
2374 case VMMCALLRING3_PDM_CRIT_SECT_ENTER:
2375 {
2376 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectEnterEx((PPDMCRITSECT)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2377 true /*fCallRing3*/);
2378 break;
2379 }
2380
2381 /*
2382 * Enter a r/w critical section exclusively.
2383 */
2384 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_EXCL:
2385 {
2386 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterExclEx((PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2387 true /*fCallRing3*/);
2388 break;
2389 }
2390
2391 /*
2392 * Enter a r/w critical section shared.
2393 */
2394 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_SHARED:
2395 {
2396 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterSharedEx((PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2397 true /*fCallRing3*/);
2398 break;
2399 }
2400
2401 /*
2402 * Acquire the PDM lock.
2403 */
2404 case VMMCALLRING3_PDM_LOCK:
2405 {
2406 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
2407 break;
2408 }
2409
2410 /*
2411 * Grow the PGM pool.
2412 */
2413 case VMMCALLRING3_PGM_POOL_GROW:
2414 {
2415 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM, pVCpu);
2416 break;
2417 }
2418
2419 /*
2420 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2421 */
2422 case VMMCALLRING3_PGM_MAP_CHUNK:
2423 {
2424 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2425 break;
2426 }
2427
2428 /*
2429 * Allocates more handy pages.
2430 */
2431 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2432 {
2433 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2434 break;
2435 }
2436
2437 /*
2438 * Allocates a large page.
2439 */
2440 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2441 {
2442 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2443 break;
2444 }
2445
2446 /*
2447 * Acquire the PGM lock.
2448 */
2449 case VMMCALLRING3_PGM_LOCK:
2450 {
2451 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
2452 break;
2453 }
2454
2455 /*
2456 * Acquire the MM hypervisor heap lock.
2457 */
2458 case VMMCALLRING3_MMHYPER_LOCK:
2459 {
2460 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
2461 break;
2462 }
2463
2464 /*
2465 * This is a noop. We just take this route to avoid unnecessary
2466 * tests in the loops.
2467 */
2468 case VMMCALLRING3_VMM_LOGGER_FLUSH:
2469 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2470 LogAlways(("*FLUSH*\n"));
2471 break;
2472
2473 /*
2474 * Set the VM error message.
2475 */
2476 case VMMCALLRING3_VM_SET_ERROR:
2477 VMR3SetErrorWorker(pVM);
2478 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2479 break;
2480
2481 /*
2482 * Set the VM runtime error message.
2483 */
2484 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
2485 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
2486 break;
2487
2488 /*
2489 * Signal a ring 0 hypervisor assertion.
2490 * Cancel the longjmp operation that's in progress.
2491 */
2492 case VMMCALLRING3_VM_R0_ASSERTION:
2493 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2494 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2495#ifdef RT_ARCH_X86
2496 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2497#else
2498 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2499#endif
2500#ifdef VMM_R0_SWITCH_STACK
2501 *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */
2502#endif
2503 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg1));
2504 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg2));
2505 return VERR_VMM_RING0_ASSERTION;
2506
2507 /*
2508 * A forced switch to ring 0 for preemption purposes.
2509 */
2510 case VMMCALLRING3_VM_R0_PREEMPT:
2511 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2512 break;
2513
2514 default:
2515 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2516 return VERR_VMM_UNKNOWN_RING3_CALL;
2517 }
2518
2519 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2520 return VINF_SUCCESS;
2521}
2522
2523
2524/**
2525 * Displays the Force action Flags.
2526 *
2527 * @param pVM The cross context VM structure.
2528 * @param pHlp The output helpers.
2529 * @param pszArgs The additional arguments (ignored).
2530 */
2531static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2532{
2533 int c;
2534 uint32_t f;
2535 NOREF(pszArgs);
2536
2537#define PRINT_FLAG(prf,flag) do { \
2538 if (f & (prf##flag)) \
2539 { \
2540 static const char *s_psz = #flag; \
2541 if (!(c % 6)) \
2542 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2543 else \
2544 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2545 c++; \
2546 f &= ~(prf##flag); \
2547 } \
2548 } while (0)
2549
2550#define PRINT_GROUP(prf,grp,sfx) do { \
2551 if (f & (prf##grp##sfx)) \
2552 { \
2553 static const char *s_psz = #grp; \
2554 if (!(c % 5)) \
2555 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2556 else \
2557 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2558 c++; \
2559 } \
2560 } while (0)
2561
2562 /*
2563 * The global flags.
2564 */
2565 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2566 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2567
2568 /* show the flag mnemonics */
2569 c = 0;
2570 f = fGlobalForcedActions;
2571 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2572 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2573 PRINT_FLAG(VM_FF_,PDM_DMA);
2574 PRINT_FLAG(VM_FF_,DBGF);
2575 PRINT_FLAG(VM_FF_,REQUEST);
2576 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2577 PRINT_FLAG(VM_FF_,RESET);
2578 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2579 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2580 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2581 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2582 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2583 if (f)
2584 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2585 else
2586 pHlp->pfnPrintf(pHlp, "\n");
2587
2588 /* the groups */
2589 c = 0;
2590 f = fGlobalForcedActions;
2591 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2592 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2593 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2594 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2595 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2596 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2597 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2598 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2599 if (c)
2600 pHlp->pfnPrintf(pHlp, "\n");
2601
2602 /*
2603 * Per CPU flags.
2604 */
2605 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2606 {
2607 PVMCPU pVCpu = pVM->apCpusR3[i];
2608 const uint64_t fLocalForcedActions = pVCpu->fLocalForcedActions;
2609 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX64", i, fLocalForcedActions);
2610
2611 /* show the flag mnemonics */
2612 c = 0;
2613 f = fLocalForcedActions;
2614 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2615 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2616 PRINT_FLAG(VMCPU_FF_,TIMER);
2617 PRINT_FLAG(VMCPU_FF_,INTERRUPT_NMI);
2618 PRINT_FLAG(VMCPU_FF_,INTERRUPT_SMI);
2619 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2620 PRINT_FLAG(VMCPU_FF_,UNHALT);
2621 PRINT_FLAG(VMCPU_FF_,IEM);
2622 PRINT_FLAG(VMCPU_FF_,UPDATE_APIC);
2623 PRINT_FLAG(VMCPU_FF_,DBGF);
2624 PRINT_FLAG(VMCPU_FF_,REQUEST);
2625 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_CR3);
2626 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_PAE_PDPES);
2627 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2628 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2629 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2630 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2631 PRINT_FLAG(VMCPU_FF_,BLOCK_NMIS);
2632 PRINT_FLAG(VMCPU_FF_,TO_R3);
2633 PRINT_FLAG(VMCPU_FF_,IOM);
2634 if (f)
2635 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX64\n", c ? "," : "", f);
2636 else
2637 pHlp->pfnPrintf(pHlp, "\n");
2638
2639 if (fLocalForcedActions & VMCPU_FF_INHIBIT_INTERRUPTS)
2640 pHlp->pfnPrintf(pHlp, " intr inhibit RIP: %RGp\n", EMGetInhibitInterruptsPC(pVCpu));
2641
2642 /* the groups */
2643 c = 0;
2644 f = fLocalForcedActions;
2645 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2646 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2647 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2648 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2649 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2650 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2651 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2652 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2653 PRINT_GROUP(VMCPU_FF_,HM_TO_R3,_MASK);
2654 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
2655 if (c)
2656 pHlp->pfnPrintf(pHlp, "\n");
2657 }
2658
2659#undef PRINT_FLAG
2660#undef PRINT_GROUP
2661}
2662
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette