VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/NEMR3Native-linux.cpp@ 96860

Last change on this file since 96860 was 96407, checked in by vboxsync, 22 months ago

scm copyright and license note update

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 117.1 KB
Line 
1/* $Id: NEMR3Native-linux.cpp 96407 2022-08-22 17:43:14Z vboxsync $ */
2/** @file
3 * NEM - Native execution manager, native ring-3 Linux backend.
4 */
5
6/*
7 * Copyright (C) 2021-2022 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_NEM
33#define VMCPU_INCL_CPUM_GST_CTX
34#include <VBox/vmm/nem.h>
35#include <VBox/vmm/iem.h>
36#include <VBox/vmm/em.h>
37#include <VBox/vmm/apic.h>
38#include <VBox/vmm/pdm.h>
39#include <VBox/vmm/trpm.h>
40#include "NEMInternal.h"
41#include <VBox/vmm/vmcc.h>
42
43#include <iprt/alloca.h>
44#include <iprt/string.h>
45#include <iprt/system.h>
46#include <iprt/x86.h>
47
48#include <errno.h>
49#include <unistd.h>
50#include <sys/ioctl.h>
51#include <sys/fcntl.h>
52#include <sys/mman.h>
53#include <linux/kvm.h>
54
55/*
56 * Supply stuff missing from the kvm.h on the build box.
57 */
58#ifndef KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON /* since 5.4 */
59# define KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON 4
60#endif
61
62
63
64/**
65 * Worker for nemR3NativeInit that gets the hypervisor capabilities.
66 *
67 * @returns VBox status code.
68 * @param pVM The cross context VM structure.
69 * @param pErrInfo Where to always return error info.
70 */
71static int nemR3LnxInitCheckCapabilities(PVM pVM, PRTERRINFO pErrInfo)
72{
73 AssertReturn(pVM->nem.s.fdVm != -1, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
74
75 /*
76 * Capabilities.
77 */
78 static const struct
79 {
80 const char *pszName;
81 int iCap;
82 uint32_t offNem : 24;
83 uint32_t cbNem : 3;
84 uint32_t fReqNonZero : 1;
85 uint32_t uReserved : 4;
86 } s_aCaps[] =
87 {
88#define CAP_ENTRY__L(a_Define) { #a_Define, a_Define, UINT32_C(0x00ffffff), 0, 0, 0 }
89#define CAP_ENTRY__S(a_Define, a_Member) { #a_Define, a_Define, RT_UOFFSETOF(NEM, a_Member), RT_SIZEOFMEMB(NEM, a_Member), 0, 0 }
90#define CAP_ENTRY_MS(a_Define, a_Member) { #a_Define, a_Define, RT_UOFFSETOF(NEM, a_Member), RT_SIZEOFMEMB(NEM, a_Member), 1, 0 }
91#define CAP_ENTRY__U(a_Number) { "KVM_CAP_" #a_Number, a_Number, UINT32_C(0x00ffffff), 0, 0, 0 }
92#define CAP_ENTRY_ML(a_Number) { "KVM_CAP_" #a_Number, a_Number, UINT32_C(0x00ffffff), 0, 1, 0 }
93
94 CAP_ENTRY__L(KVM_CAP_IRQCHIP), /* 0 */
95 CAP_ENTRY_ML(KVM_CAP_HLT),
96 CAP_ENTRY__L(KVM_CAP_MMU_SHADOW_CACHE_CONTROL),
97 CAP_ENTRY_ML(KVM_CAP_USER_MEMORY),
98 CAP_ENTRY__L(KVM_CAP_SET_TSS_ADDR),
99 CAP_ENTRY__U(5),
100 CAP_ENTRY__L(KVM_CAP_VAPIC),
101 CAP_ENTRY__L(KVM_CAP_EXT_CPUID),
102 CAP_ENTRY__L(KVM_CAP_CLOCKSOURCE),
103 CAP_ENTRY__L(KVM_CAP_NR_VCPUS),
104 CAP_ENTRY_MS(KVM_CAP_NR_MEMSLOTS, cMaxMemSlots), /* 10 */
105 CAP_ENTRY__L(KVM_CAP_PIT),
106 CAP_ENTRY__L(KVM_CAP_NOP_IO_DELAY),
107 CAP_ENTRY__L(KVM_CAP_PV_MMU),
108 CAP_ENTRY__L(KVM_CAP_MP_STATE),
109 CAP_ENTRY__L(KVM_CAP_COALESCED_MMIO),
110 CAP_ENTRY__L(KVM_CAP_SYNC_MMU),
111 CAP_ENTRY__U(17),
112 CAP_ENTRY__L(KVM_CAP_IOMMU),
113 CAP_ENTRY__U(19), /* Buggy KVM_CAP_JOIN_MEMORY_REGIONS? */
114 CAP_ENTRY__U(20), /* Mon-working KVM_CAP_DESTROY_MEMORY_REGION? */
115 CAP_ENTRY__L(KVM_CAP_DESTROY_MEMORY_REGION_WORKS), /* 21 */
116 CAP_ENTRY__L(KVM_CAP_USER_NMI),
117#ifdef __KVM_HAVE_GUEST_DEBUG
118 CAP_ENTRY__L(KVM_CAP_SET_GUEST_DEBUG),
119#endif
120#ifdef __KVM_HAVE_PIT
121 CAP_ENTRY__L(KVM_CAP_REINJECT_CONTROL),
122#endif
123 CAP_ENTRY__L(KVM_CAP_IRQ_ROUTING),
124 CAP_ENTRY__L(KVM_CAP_IRQ_INJECT_STATUS),
125 CAP_ENTRY__U(27),
126 CAP_ENTRY__U(28),
127 CAP_ENTRY__L(KVM_CAP_ASSIGN_DEV_IRQ),
128 CAP_ENTRY__L(KVM_CAP_JOIN_MEMORY_REGIONS_WORKS), /* 30 */
129#ifdef __KVM_HAVE_MCE
130 CAP_ENTRY__L(KVM_CAP_MCE),
131#endif
132 CAP_ENTRY__L(KVM_CAP_IRQFD),
133#ifdef __KVM_HAVE_PIT
134 CAP_ENTRY__L(KVM_CAP_PIT2),
135#endif
136 CAP_ENTRY__L(KVM_CAP_SET_BOOT_CPU_ID),
137#ifdef __KVM_HAVE_PIT_STATE2
138 CAP_ENTRY__L(KVM_CAP_PIT_STATE2),
139#endif
140 CAP_ENTRY__L(KVM_CAP_IOEVENTFD),
141 CAP_ENTRY__L(KVM_CAP_SET_IDENTITY_MAP_ADDR),
142#ifdef __KVM_HAVE_XEN_HVM
143 CAP_ENTRY__L(KVM_CAP_XEN_HVM),
144#endif
145 CAP_ENTRY_ML(KVM_CAP_ADJUST_CLOCK),
146 CAP_ENTRY__L(KVM_CAP_INTERNAL_ERROR_DATA), /* 40 */
147#ifdef __KVM_HAVE_VCPU_EVENTS
148 CAP_ENTRY_ML(KVM_CAP_VCPU_EVENTS),
149#else
150 CAP_ENTRY_MU(41),
151#endif
152 CAP_ENTRY__L(KVM_CAP_S390_PSW),
153 CAP_ENTRY__L(KVM_CAP_PPC_SEGSTATE),
154 CAP_ENTRY__L(KVM_CAP_HYPERV),
155 CAP_ENTRY__L(KVM_CAP_HYPERV_VAPIC),
156 CAP_ENTRY__L(KVM_CAP_HYPERV_SPIN),
157 CAP_ENTRY__L(KVM_CAP_PCI_SEGMENT),
158 CAP_ENTRY__L(KVM_CAP_PPC_PAIRED_SINGLES),
159 CAP_ENTRY__L(KVM_CAP_INTR_SHADOW),
160#ifdef __KVM_HAVE_DEBUGREGS
161 CAP_ENTRY__L(KVM_CAP_DEBUGREGS), /* 50 */
162#endif
163 CAP_ENTRY__S(KVM_CAP_X86_ROBUST_SINGLESTEP, fRobustSingleStep),
164 CAP_ENTRY__L(KVM_CAP_PPC_OSI),
165 CAP_ENTRY__L(KVM_CAP_PPC_UNSET_IRQ),
166 CAP_ENTRY__L(KVM_CAP_ENABLE_CAP),
167#ifdef __KVM_HAVE_XSAVE
168 CAP_ENTRY_ML(KVM_CAP_XSAVE),
169#else
170 CAP_ENTRY_MU(55),
171#endif
172#ifdef __KVM_HAVE_XCRS
173 CAP_ENTRY_ML(KVM_CAP_XCRS),
174#else
175 CAP_ENTRY_MU(56),
176#endif
177 CAP_ENTRY__L(KVM_CAP_PPC_GET_PVINFO),
178 CAP_ENTRY__L(KVM_CAP_PPC_IRQ_LEVEL),
179 CAP_ENTRY__L(KVM_CAP_ASYNC_PF),
180 CAP_ENTRY__L(KVM_CAP_TSC_CONTROL), /* 60 */
181 CAP_ENTRY__L(KVM_CAP_GET_TSC_KHZ),
182 CAP_ENTRY__L(KVM_CAP_PPC_BOOKE_SREGS),
183 CAP_ENTRY__L(KVM_CAP_SPAPR_TCE),
184 CAP_ENTRY__L(KVM_CAP_PPC_SMT),
185 CAP_ENTRY__L(KVM_CAP_PPC_RMA),
186 CAP_ENTRY__L(KVM_CAP_MAX_VCPUS),
187 CAP_ENTRY__L(KVM_CAP_PPC_HIOR),
188 CAP_ENTRY__L(KVM_CAP_PPC_PAPR),
189 CAP_ENTRY__L(KVM_CAP_SW_TLB),
190 CAP_ENTRY__L(KVM_CAP_ONE_REG), /* 70 */
191 CAP_ENTRY__L(KVM_CAP_S390_GMAP),
192 CAP_ENTRY__L(KVM_CAP_TSC_DEADLINE_TIMER),
193 CAP_ENTRY__L(KVM_CAP_S390_UCONTROL),
194 CAP_ENTRY__L(KVM_CAP_SYNC_REGS),
195 CAP_ENTRY__L(KVM_CAP_PCI_2_3),
196 CAP_ENTRY__L(KVM_CAP_KVMCLOCK_CTRL),
197 CAP_ENTRY__L(KVM_CAP_SIGNAL_MSI),
198 CAP_ENTRY__L(KVM_CAP_PPC_GET_SMMU_INFO),
199 CAP_ENTRY__L(KVM_CAP_S390_COW),
200 CAP_ENTRY__L(KVM_CAP_PPC_ALLOC_HTAB), /* 80 */
201 CAP_ENTRY__L(KVM_CAP_READONLY_MEM),
202 CAP_ENTRY__L(KVM_CAP_IRQFD_RESAMPLE),
203 CAP_ENTRY__L(KVM_CAP_PPC_BOOKE_WATCHDOG),
204 CAP_ENTRY__L(KVM_CAP_PPC_HTAB_FD),
205 CAP_ENTRY__L(KVM_CAP_S390_CSS_SUPPORT),
206 CAP_ENTRY__L(KVM_CAP_PPC_EPR),
207 CAP_ENTRY__L(KVM_CAP_ARM_PSCI),
208 CAP_ENTRY__L(KVM_CAP_ARM_SET_DEVICE_ADDR),
209 CAP_ENTRY__L(KVM_CAP_DEVICE_CTRL),
210 CAP_ENTRY__L(KVM_CAP_IRQ_MPIC), /* 90 */
211 CAP_ENTRY__L(KVM_CAP_PPC_RTAS),
212 CAP_ENTRY__L(KVM_CAP_IRQ_XICS),
213 CAP_ENTRY__L(KVM_CAP_ARM_EL1_32BIT),
214 CAP_ENTRY__L(KVM_CAP_SPAPR_MULTITCE),
215 CAP_ENTRY__L(KVM_CAP_EXT_EMUL_CPUID),
216 CAP_ENTRY__L(KVM_CAP_HYPERV_TIME),
217 CAP_ENTRY__L(KVM_CAP_IOAPIC_POLARITY_IGNORED),
218 CAP_ENTRY__L(KVM_CAP_ENABLE_CAP_VM),
219 CAP_ENTRY__L(KVM_CAP_S390_IRQCHIP),
220 CAP_ENTRY__L(KVM_CAP_IOEVENTFD_NO_LENGTH), /* 100 */
221 CAP_ENTRY__L(KVM_CAP_VM_ATTRIBUTES),
222 CAP_ENTRY__L(KVM_CAP_ARM_PSCI_0_2),
223 CAP_ENTRY__L(KVM_CAP_PPC_FIXUP_HCALL),
224 CAP_ENTRY__L(KVM_CAP_PPC_ENABLE_HCALL),
225 CAP_ENTRY__L(KVM_CAP_CHECK_EXTENSION_VM),
226 CAP_ENTRY__L(KVM_CAP_S390_USER_SIGP),
227 CAP_ENTRY__L(KVM_CAP_S390_VECTOR_REGISTERS),
228 CAP_ENTRY__L(KVM_CAP_S390_MEM_OP),
229 CAP_ENTRY__L(KVM_CAP_S390_USER_STSI),
230 CAP_ENTRY__L(KVM_CAP_S390_SKEYS), /* 110 */
231 CAP_ENTRY__L(KVM_CAP_MIPS_FPU),
232 CAP_ENTRY__L(KVM_CAP_MIPS_MSA),
233 CAP_ENTRY__L(KVM_CAP_S390_INJECT_IRQ),
234 CAP_ENTRY__L(KVM_CAP_S390_IRQ_STATE),
235 CAP_ENTRY__L(KVM_CAP_PPC_HWRNG),
236 CAP_ENTRY__L(KVM_CAP_DISABLE_QUIRKS),
237 CAP_ENTRY__L(KVM_CAP_X86_SMM),
238 CAP_ENTRY__L(KVM_CAP_MULTI_ADDRESS_SPACE),
239 CAP_ENTRY__L(KVM_CAP_GUEST_DEBUG_HW_BPS),
240 CAP_ENTRY__L(KVM_CAP_GUEST_DEBUG_HW_WPS), /* 120 */
241 CAP_ENTRY__L(KVM_CAP_SPLIT_IRQCHIP),
242 CAP_ENTRY__L(KVM_CAP_IOEVENTFD_ANY_LENGTH),
243 CAP_ENTRY__L(KVM_CAP_HYPERV_SYNIC),
244 CAP_ENTRY__L(KVM_CAP_S390_RI),
245 CAP_ENTRY__L(KVM_CAP_SPAPR_TCE_64),
246 CAP_ENTRY__L(KVM_CAP_ARM_PMU_V3),
247 CAP_ENTRY__L(KVM_CAP_VCPU_ATTRIBUTES),
248 CAP_ENTRY__L(KVM_CAP_MAX_VCPU_ID),
249 CAP_ENTRY__L(KVM_CAP_X2APIC_API),
250 CAP_ENTRY__L(KVM_CAP_S390_USER_INSTR0), /* 130 */
251 CAP_ENTRY__L(KVM_CAP_MSI_DEVID),
252 CAP_ENTRY__L(KVM_CAP_PPC_HTM),
253 CAP_ENTRY__L(KVM_CAP_SPAPR_RESIZE_HPT),
254 CAP_ENTRY__L(KVM_CAP_PPC_MMU_RADIX),
255 CAP_ENTRY__L(KVM_CAP_PPC_MMU_HASH_V3),
256 CAP_ENTRY__L(KVM_CAP_IMMEDIATE_EXIT),
257 CAP_ENTRY__L(KVM_CAP_MIPS_VZ),
258 CAP_ENTRY__L(KVM_CAP_MIPS_TE),
259 CAP_ENTRY__L(KVM_CAP_MIPS_64BIT),
260 CAP_ENTRY__L(KVM_CAP_S390_GS), /* 140 */
261 CAP_ENTRY__L(KVM_CAP_S390_AIS),
262 CAP_ENTRY__L(KVM_CAP_SPAPR_TCE_VFIO),
263 CAP_ENTRY__L(KVM_CAP_X86_DISABLE_EXITS),
264 CAP_ENTRY__L(KVM_CAP_ARM_USER_IRQ),
265 CAP_ENTRY__L(KVM_CAP_S390_CMMA_MIGRATION),
266 CAP_ENTRY__L(KVM_CAP_PPC_FWNMI),
267 CAP_ENTRY__L(KVM_CAP_PPC_SMT_POSSIBLE),
268 CAP_ENTRY__L(KVM_CAP_HYPERV_SYNIC2),
269 CAP_ENTRY__L(KVM_CAP_HYPERV_VP_INDEX),
270 CAP_ENTRY__L(KVM_CAP_S390_AIS_MIGRATION), /* 150 */
271 CAP_ENTRY__L(KVM_CAP_PPC_GET_CPU_CHAR),
272 CAP_ENTRY__L(KVM_CAP_S390_BPB),
273 CAP_ENTRY__L(KVM_CAP_GET_MSR_FEATURES),
274 CAP_ENTRY__L(KVM_CAP_HYPERV_EVENTFD),
275 CAP_ENTRY__L(KVM_CAP_HYPERV_TLBFLUSH),
276 CAP_ENTRY__L(KVM_CAP_S390_HPAGE_1M),
277 CAP_ENTRY__L(KVM_CAP_NESTED_STATE),
278 CAP_ENTRY__L(KVM_CAP_ARM_INJECT_SERROR_ESR),
279 CAP_ENTRY__L(KVM_CAP_MSR_PLATFORM_INFO),
280 CAP_ENTRY__L(KVM_CAP_PPC_NESTED_HV), /* 160 */
281 CAP_ENTRY__L(KVM_CAP_HYPERV_SEND_IPI),
282 CAP_ENTRY__L(KVM_CAP_COALESCED_PIO),
283 CAP_ENTRY__L(KVM_CAP_HYPERV_ENLIGHTENED_VMCS),
284 CAP_ENTRY__L(KVM_CAP_EXCEPTION_PAYLOAD),
285 CAP_ENTRY__L(KVM_CAP_ARM_VM_IPA_SIZE),
286 CAP_ENTRY__L(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT),
287 CAP_ENTRY__L(KVM_CAP_HYPERV_CPUID),
288 CAP_ENTRY__L(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2),
289 CAP_ENTRY__L(KVM_CAP_PPC_IRQ_XIVE),
290 CAP_ENTRY__L(KVM_CAP_ARM_SVE), /* 170 */
291 CAP_ENTRY__L(KVM_CAP_ARM_PTRAUTH_ADDRESS),
292 CAP_ENTRY__L(KVM_CAP_ARM_PTRAUTH_GENERIC),
293 CAP_ENTRY__L(KVM_CAP_PMU_EVENT_FILTER),
294 CAP_ENTRY__L(KVM_CAP_ARM_IRQ_LINE_LAYOUT_2),
295 CAP_ENTRY__L(KVM_CAP_HYPERV_DIRECT_TLBFLUSH),
296 CAP_ENTRY__L(KVM_CAP_PPC_GUEST_DEBUG_SSTEP),
297 CAP_ENTRY__L(KVM_CAP_ARM_NISV_TO_USER),
298 CAP_ENTRY__L(KVM_CAP_ARM_INJECT_EXT_DABT),
299 CAP_ENTRY__L(KVM_CAP_S390_VCPU_RESETS),
300 CAP_ENTRY__L(KVM_CAP_S390_PROTECTED), /* 180 */
301 CAP_ENTRY__L(KVM_CAP_PPC_SECURE_GUEST),
302 CAP_ENTRY__L(KVM_CAP_HALT_POLL),
303 CAP_ENTRY__L(KVM_CAP_ASYNC_PF_INT),
304 CAP_ENTRY__L(KVM_CAP_LAST_CPU),
305 CAP_ENTRY__L(KVM_CAP_SMALLER_MAXPHYADDR),
306 CAP_ENTRY__L(KVM_CAP_S390_DIAG318),
307 CAP_ENTRY__L(KVM_CAP_STEAL_TIME),
308 CAP_ENTRY_ML(KVM_CAP_X86_USER_SPACE_MSR), /* (since 5.10) */
309 CAP_ENTRY_ML(KVM_CAP_X86_MSR_FILTER),
310 CAP_ENTRY__L(KVM_CAP_ENFORCE_PV_FEATURE_CPUID), /* 190 */
311 CAP_ENTRY__L(KVM_CAP_SYS_HYPERV_CPUID),
312 CAP_ENTRY__L(KVM_CAP_DIRTY_LOG_RING),
313 CAP_ENTRY__L(KVM_CAP_X86_BUS_LOCK_EXIT),
314 CAP_ENTRY__L(KVM_CAP_PPC_DAWR1),
315 CAP_ENTRY__L(KVM_CAP_SET_GUEST_DEBUG2),
316 CAP_ENTRY__L(KVM_CAP_SGX_ATTRIBUTE),
317 CAP_ENTRY__L(KVM_CAP_VM_COPY_ENC_CONTEXT_FROM),
318 CAP_ENTRY__L(KVM_CAP_PTP_KVM),
319 CAP_ENTRY__U(199),
320 CAP_ENTRY__U(200),
321 CAP_ENTRY__U(201),
322 CAP_ENTRY__U(202),
323 CAP_ENTRY__U(203),
324 CAP_ENTRY__U(204),
325 CAP_ENTRY__U(205),
326 CAP_ENTRY__U(206),
327 CAP_ENTRY__U(207),
328 CAP_ENTRY__U(208),
329 CAP_ENTRY__U(209),
330 CAP_ENTRY__U(210),
331 CAP_ENTRY__U(211),
332 CAP_ENTRY__U(212),
333 CAP_ENTRY__U(213),
334 CAP_ENTRY__U(214),
335 CAP_ENTRY__U(215),
336 CAP_ENTRY__U(216),
337 };
338
339 LogRel(("NEM: KVM capabilities (system):\n"));
340 int rcRet = VINF_SUCCESS;
341 for (unsigned i = 0; i < RT_ELEMENTS(s_aCaps); i++)
342 {
343 int rc = ioctl(pVM->nem.s.fdVm, KVM_CHECK_EXTENSION, s_aCaps[i].iCap);
344 if (rc >= 10)
345 LogRel(("NEM: %36s: %#x (%d)\n", s_aCaps[i].pszName, rc, rc));
346 else if (rc >= 0)
347 LogRel(("NEM: %36s: %d\n", s_aCaps[i].pszName, rc));
348 else
349 LogRel(("NEM: %s failed: %d/%d\n", s_aCaps[i].pszName, rc, errno));
350 switch (s_aCaps[i].cbNem)
351 {
352 case 0:
353 break;
354 case 1:
355 {
356 uint8_t *puValue = (uint8_t *)&pVM->nem.padding[s_aCaps[i].offNem];
357 AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0);
358 *puValue = (uint8_t)rc;
359 AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc));
360 break;
361 }
362 case 2:
363 {
364 uint16_t *puValue = (uint16_t *)&pVM->nem.padding[s_aCaps[i].offNem];
365 AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0);
366 *puValue = (uint16_t)rc;
367 AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc));
368 break;
369 }
370 case 4:
371 {
372 uint32_t *puValue = (uint32_t *)&pVM->nem.padding[s_aCaps[i].offNem];
373 AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0);
374 *puValue = (uint32_t)rc;
375 AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc));
376 break;
377 }
378 default:
379 rcRet = RTErrInfoSetF(pErrInfo, VERR_NEM_IPE_0, "s_aCaps[%u] is bad: cbNem=%#x - %s",
380 i, s_aCaps[i].pszName, s_aCaps[i].cbNem);
381 AssertFailedReturn(rcRet);
382 }
383
384 /*
385 * Is a require non-zero entry zero or failing?
386 */
387 if (s_aCaps[i].fReqNonZero && rc <= 0)
388 rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_MISSING_FEATURE,
389 "Required capability '%s' is missing!", s_aCaps[i].pszName);
390 }
391
392 /*
393 * Get per VCpu KVM_RUN MMAP area size.
394 */
395 int rc = ioctl(pVM->nem.s.fdKvm, KVM_GET_VCPU_MMAP_SIZE, 0UL);
396 if ((unsigned)rc < _64M)
397 {
398 pVM->nem.s.cbVCpuMmap = (uint32_t)rc;
399 LogRel(("NEM: %36s: %#x (%d)\n", "KVM_GET_VCPU_MMAP_SIZE", rc, rc));
400 }
401 else if (rc < 0)
402 rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_MISSING_FEATURE, "KVM_GET_VCPU_MMAP_SIZE failed: %d", errno);
403 else
404 rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_INIT_FAILED, "Odd KVM_GET_VCPU_MMAP_SIZE value: %#x (%d)", rc, rc);
405
406 /*
407 * Init the slot ID bitmap.
408 */
409 ASMBitSet(&pVM->nem.s.bmSlotIds[0], 0); /* don't use slot 0 */
410 if (pVM->nem.s.cMaxMemSlots < _32K)
411 ASMBitSetRange(&pVM->nem.s.bmSlotIds[0], pVM->nem.s.cMaxMemSlots, _32K);
412 ASMBitSet(&pVM->nem.s.bmSlotIds[0], _32K - 1); /* don't use the last slot */
413
414 return rcRet;
415}
416
417
418/**
419 * Does the early setup of a KVM VM.
420 *
421 * @returns VBox status code.
422 * @param pVM The cross context VM structure.
423 * @param pErrInfo Where to always return error info.
424 */
425static int nemR3LnxInitSetupVm(PVM pVM, PRTERRINFO pErrInfo)
426{
427 AssertReturn(pVM->nem.s.fdVm != -1, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
428
429 /*
430 * Enable user space MSRs and let us check everything KVM cannot handle.
431 * We will set up filtering later when ring-3 init has completed.
432 */
433 struct kvm_enable_cap CapEn =
434 {
435 KVM_CAP_X86_USER_SPACE_MSR, 0,
436 { KVM_MSR_EXIT_REASON_FILTER | KVM_MSR_EXIT_REASON_UNKNOWN | KVM_MSR_EXIT_REASON_INVAL, 0, 0, 0}
437 };
438 int rcLnx = ioctl(pVM->nem.s.fdVm, KVM_ENABLE_CAP, &CapEn);
439 if (rcLnx == -1)
440 return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "Failed to enable KVM_CAP_X86_USER_SPACE_MSR failed: %u", errno);
441
442 /*
443 * Create the VCpus.
444 */
445 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
446 {
447 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
448
449 /* Create it. */
450 pVCpu->nem.s.fdVCpu = ioctl(pVM->nem.s.fdVm, KVM_CREATE_VCPU, (unsigned long)idCpu);
451 if (pVCpu->nem.s.fdVCpu < 0)
452 return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "KVM_CREATE_VCPU failed for VCpu #%u: %d", idCpu, errno);
453
454 /* Map the KVM_RUN area. */
455 pVCpu->nem.s.pRun = (struct kvm_run *)mmap(NULL, pVM->nem.s.cbVCpuMmap, PROT_READ | PROT_WRITE, MAP_SHARED,
456 pVCpu->nem.s.fdVCpu, 0 /*offset*/);
457 if ((void *)pVCpu->nem.s.pRun == MAP_FAILED)
458 return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "mmap failed for VCpu #%u: %d", idCpu, errno);
459
460 /* We want all x86 registers and events on each exit. */
461 pVCpu->nem.s.pRun->kvm_valid_regs = KVM_SYNC_X86_REGS | KVM_SYNC_X86_SREGS | KVM_SYNC_X86_EVENTS;
462 }
463 return VINF_SUCCESS;
464}
465
466
467/** @callback_method_impl{FNVMMEMTRENDEZVOUS} */
468static DECLCALLBACK(VBOXSTRICTRC) nemR3LnxFixThreadPoke(PVM pVM, PVMCPU pVCpu, void *pvUser)
469{
470 RT_NOREF(pVM, pvUser);
471 int rc = RTThreadControlPokeSignal(pVCpu->hThread, true /*fEnable*/);
472 AssertLogRelRC(rc);
473 return VINF_SUCCESS;
474}
475
476
477/**
478 * Try initialize the native API.
479 *
480 * This may only do part of the job, more can be done in
481 * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted().
482 *
483 * @returns VBox status code.
484 * @param pVM The cross context VM structure.
485 * @param fFallback Whether we're in fallback mode or use-NEM mode. In
486 * the latter we'll fail if we cannot initialize.
487 * @param fForced Whether the HMForced flag is set and we should
488 * fail if we cannot initialize.
489 */
490int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced)
491{
492 RT_NOREF(pVM, fFallback, fForced);
493 /*
494 * Some state init.
495 */
496 pVM->nem.s.fdKvm = -1;
497 pVM->nem.s.fdVm = -1;
498 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
499 {
500 PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
501 pNemCpu->fdVCpu = -1;
502 }
503
504 /*
505 * Error state.
506 * The error message will be non-empty on failure and 'rc' will be set too.
507 */
508 RTERRINFOSTATIC ErrInfo;
509 PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo);
510
511 /*
512 * Open kvm subsystem so we can issue system ioctls.
513 */
514 int rc;
515 int fdKvm = open("/dev/kvm", O_RDWR | O_CLOEXEC);
516 if (fdKvm >= 0)
517 {
518 pVM->nem.s.fdKvm = fdKvm;
519
520 /*
521 * Create an empty VM since it is recommended we check capabilities on
522 * the VM rather than the system descriptor.
523 */
524 int fdVm = ioctl(fdKvm, KVM_CREATE_VM, 0UL /* Type must be zero on x86 */);
525 if (fdVm >= 0)
526 {
527 pVM->nem.s.fdVm = fdVm;
528
529 /*
530 * Check capabilities.
531 */
532 rc = nemR3LnxInitCheckCapabilities(pVM, pErrInfo);
533 if (RT_SUCCESS(rc))
534 {
535 /*
536 * Set up the VM (more on this later).
537 */
538 rc = nemR3LnxInitSetupVm(pVM, pErrInfo);
539 if (RT_SUCCESS(rc))
540 {
541 /*
542 * Set ourselves as the execution engine and make config adjustments.
543 */
544 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API);
545 Log(("NEM: Marked active!\n"));
546 PGMR3EnableNemMode(pVM);
547
548 /*
549 * Register release statistics
550 */
551 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
552 {
553 PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
554 STAMR3RegisterF(pVM, &pNemCpu->StatImportOnDemand, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of on-demand state imports", "/NEM/CPU%u/ImportOnDemand", idCpu);
555 STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturn, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of state imports on loop return", "/NEM/CPU%u/ImportOnReturn", idCpu);
556 STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturnSkipped, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of skipped state imports on loop return", "/NEM/CPU%u/ImportOnReturnSkipped", idCpu);
557 STAMR3RegisterF(pVM, &pNemCpu->StatImportPendingInterrupt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times an interrupt was pending when importing from KVM", "/NEM/CPU%u/ImportPendingInterrupt", idCpu);
558 STAMR3RegisterF(pVM, &pNemCpu->StatExportPendingInterrupt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times an interrupt was pending when exporting to KVM", "/NEM/CPU%u/ExportPendingInterrupt", idCpu);
559 STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn", idCpu);
560 STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn1Loop, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-01-loop", idCpu);
561 STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn2Loops, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-02-loops", idCpu);
562 STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn3Loops, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-03-loops", idCpu);
563 STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn4PlusLoops, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-04-to-7-loops", idCpu);
564 STAMR3RegisterF(pVM, &pNemCpu->StatQueryCpuTick, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TSC queries", "/NEM/CPU%u/QueryCpuTick", idCpu);
565 STAMR3RegisterF(pVM, &pNemCpu->StatExitTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "All exits", "/NEM/CPU%u/Exit", idCpu);
566 STAMR3RegisterF(pVM, &pNemCpu->StatExitIo, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_IO", "/NEM/CPU%u/Exit/Io", idCpu);
567 STAMR3RegisterF(pVM, &pNemCpu->StatExitMmio, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_MMIO", "/NEM/CPU%u/Exit/Mmio", idCpu);
568 STAMR3RegisterF(pVM, &pNemCpu->StatExitSetTpr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_SET_TRP", "/NEM/CPU%u/Exit/SetTpr", idCpu);
569 STAMR3RegisterF(pVM, &pNemCpu->StatExitTprAccess, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_TPR_ACCESS", "/NEM/CPU%u/Exit/TprAccess", idCpu);
570 STAMR3RegisterF(pVM, &pNemCpu->StatExitRdMsr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_RDMSR", "/NEM/CPU%u/Exit/RdMsr", idCpu);
571 STAMR3RegisterF(pVM, &pNemCpu->StatExitWrMsr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_WRMSR", "/NEM/CPU%u/Exit/WrMsr", idCpu);
572 STAMR3RegisterF(pVM, &pNemCpu->StatExitIrqWindowOpen, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_IRQ_WINDOWS_OPEN", "/NEM/CPU%u/Exit/IrqWindowOpen", idCpu);
573 STAMR3RegisterF(pVM, &pNemCpu->StatExitHalt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_HLT", "/NEM/CPU%u/Exit/Hlt", idCpu);
574 STAMR3RegisterF(pVM, &pNemCpu->StatExitIntr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTR", "/NEM/CPU%u/Exit/Intr", idCpu);
575 STAMR3RegisterF(pVM, &pNemCpu->StatExitHypercall, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_HYPERCALL", "/NEM/CPU%u/Exit/Hypercall", idCpu);
576 STAMR3RegisterF(pVM, &pNemCpu->StatExitDebug, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_DEBUG", "/NEM/CPU%u/Exit/Debug", idCpu);
577 STAMR3RegisterF(pVM, &pNemCpu->StatExitBusLock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_BUS_LOCK", "/NEM/CPU%u/Exit/BusLock", idCpu);
578 STAMR3RegisterF(pVM, &pNemCpu->StatExitInternalErrorEmulation, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTERNAL_ERROR/EMULATION", "/NEM/CPU%u/Exit/InternalErrorEmulation", idCpu);
579 STAMR3RegisterF(pVM, &pNemCpu->StatExitInternalErrorFatal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTERNAL_ERROR/*", "/NEM/CPU%u/Exit/InternalErrorFatal", idCpu);
580 }
581
582 /*
583 * Success.
584 */
585 return VINF_SUCCESS;
586 }
587
588 /*
589 * Bail out.
590 */
591 }
592 close(fdVm);
593 pVM->nem.s.fdVm = -1;
594 }
595 else
596 rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "KVM_CREATE_VM failed: %u", errno);
597 close(fdKvm);
598 pVM->nem.s.fdKvm = -1;
599 }
600 else if (errno == EACCES)
601 rc = RTErrInfoSet(pErrInfo, VERR_ACCESS_DENIED, "Do not have access to open /dev/kvm for reading & writing.");
602 else if (errno == ENOENT)
603 rc = RTErrInfoSet(pErrInfo, VERR_NOT_SUPPORTED, "KVM is not availble (/dev/kvm does not exist)");
604 else
605 rc = RTErrInfoSetF(pErrInfo, RTErrConvertFromErrno(errno), "Failed to open '/dev/kvm': %u", errno);
606
607 /*
608 * We only fail if in forced mode, otherwise just log the complaint and return.
609 */
610 Assert(RTErrInfoIsSet(pErrInfo));
611 if ( (fForced || !fFallback)
612 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API)
613 return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg);
614 LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg));
615 return VINF_SUCCESS;
616}
617
618
619/**
620 * This is called after CPUMR3Init is done.
621 *
622 * @returns VBox status code.
623 * @param pVM The VM handle..
624 */
625int nemR3NativeInitAfterCPUM(PVM pVM)
626{
627 /*
628 * Validate sanity.
629 */
630 AssertReturn(pVM->nem.s.fdKvm >= 0, VERR_WRONG_ORDER);
631 AssertReturn(pVM->nem.s.fdVm >= 0, VERR_WRONG_ORDER);
632 AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER);
633
634 /** @todo */
635
636 return VINF_SUCCESS;
637}
638
639
640/**
641 * Update the CPUID leaves for a VCPU.
642 *
643 * The KVM_SET_CPUID2 call replaces any previous leaves, so we have to redo
644 * everything when there really just are single bit changes. That said, it
645 * looks like KVM update the XCR/XSAVE related stuff as well as the APIC enabled
646 * bit(s), so it should suffice if we do this at startup, I hope.
647 */
648static int nemR3LnxUpdateCpuIdsLeaves(PVM pVM, PVMCPU pVCpu)
649{
650 uint32_t cLeaves = 0;
651 PCCPUMCPUIDLEAF const paLeaves = CPUMR3CpuIdGetPtr(pVM, &cLeaves);
652 struct kvm_cpuid2 *pReq = (struct kvm_cpuid2 *)alloca(RT_UOFFSETOF_DYN(struct kvm_cpuid2, entries[cLeaves + 2]));
653
654 pReq->nent = cLeaves;
655 pReq->padding = 0;
656
657 for (uint32_t i = 0; i < cLeaves; i++)
658 {
659 CPUMGetGuestCpuId(pVCpu, paLeaves[i].uLeaf, paLeaves[i].uSubLeaf, -1 /*f64BitMode*/,
660 &pReq->entries[i].eax,
661 &pReq->entries[i].ebx,
662 &pReq->entries[i].ecx,
663 &pReq->entries[i].edx);
664 pReq->entries[i].function = paLeaves[i].uLeaf;
665 pReq->entries[i].index = paLeaves[i].uSubLeaf;
666 pReq->entries[i].flags = !paLeaves[i].fSubLeafMask ? 0 : KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
667 pReq->entries[i].padding[0] = 0;
668 pReq->entries[i].padding[1] = 0;
669 pReq->entries[i].padding[2] = 0;
670 }
671
672 int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_CPUID2, pReq);
673 AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d cLeaves=%#x\n", rcLnx, errno, cLeaves), RTErrConvertFromErrno(errno));
674
675 return VINF_SUCCESS;
676}
677
678
679int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
680{
681 /*
682 * Make RTThreadPoke work again (disabled for avoiding unnecessary
683 * critical section issues in ring-0).
684 */
685 if (enmWhat == VMINITCOMPLETED_RING3)
686 VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE, nemR3LnxFixThreadPoke, NULL);
687
688 /*
689 * Configure CPUIDs after ring-3 init has been done.
690 */
691 if (enmWhat == VMINITCOMPLETED_RING3)
692 {
693 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
694 {
695 int rc = nemR3LnxUpdateCpuIdsLeaves(pVM, pVM->apCpusR3[idCpu]);
696 AssertRCReturn(rc, rc);
697 }
698 }
699
700 /*
701 * Configure MSRs after ring-3 init is done.
702 *
703 * We only need to tell KVM which MSRs it can handle, as we already
704 * requested KVM_MSR_EXIT_REASON_FILTER, KVM_MSR_EXIT_REASON_UNKNOWN
705 * and KVM_MSR_EXIT_REASON_INVAL in nemR3LnxInitSetupVm, and here we
706 * will use KVM_MSR_FILTER_DEFAULT_DENY. So, all MSRs w/o a 1 in the
707 * bitmaps should be deferred to ring-3.
708 */
709 if (enmWhat == VMINITCOMPLETED_RING3)
710 {
711 struct kvm_msr_filter MsrFilters = {0}; /* Structure with a couple of implicit paddings on 64-bit systems. */
712 MsrFilters.flags = KVM_MSR_FILTER_DEFAULT_DENY;
713
714 unsigned iRange = 0;
715#define MSR_RANGE_BEGIN(a_uBase, a_uEnd, a_fFlags) \
716 AssertCompile(0x3000 <= KVM_MSR_FILTER_MAX_BITMAP_SIZE * 8); \
717 uint64_t RT_CONCAT(bm, a_uBase)[0x3000 / 64] = {0}; \
718 do { \
719 uint64_t * const pbm = RT_CONCAT(bm, a_uBase); \
720 uint32_t const uBase = UINT32_C(a_uBase); \
721 uint32_t const cMsrs = UINT32_C(a_uEnd) - UINT32_C(a_uBase); \
722 MsrFilters.ranges[iRange].base = UINT32_C(a_uBase); \
723 MsrFilters.ranges[iRange].nmsrs = cMsrs; \
724 MsrFilters.ranges[iRange].flags = (a_fFlags); \
725 MsrFilters.ranges[iRange].bitmap = (uint8_t *)&RT_CONCAT(bm, a_uBase)[0]
726#define MSR_RANGE_ADD(a_Msr) \
727 do { Assert((uint32_t)(a_Msr) - uBase < cMsrs); ASMBitSet(pbm, (uint32_t)(a_Msr) - uBase); } while (0)
728#define MSR_RANGE_END(a_cMinMsrs) \
729 /* optimize the range size before closing: */ \
730 uint32_t cBitmap = cMsrs / 64; \
731 while (cBitmap > ((a_cMinMsrs) + 63 / 64) && pbm[cBitmap - 1] == 0) \
732 cBitmap -= 1; \
733 MsrFilters.ranges[iRange].nmsrs = cBitmap * 64; \
734 iRange++; \
735 } while (0)
736
737 /* 1st Intel range: 0000_0000 to 0000_3000. */
738 MSR_RANGE_BEGIN(0x00000000, 0x00003000, KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE);
739 MSR_RANGE_ADD(MSR_IA32_TSC);
740 MSR_RANGE_ADD(MSR_IA32_SYSENTER_CS);
741 MSR_RANGE_ADD(MSR_IA32_SYSENTER_ESP);
742 MSR_RANGE_ADD(MSR_IA32_SYSENTER_EIP);
743 MSR_RANGE_ADD(MSR_IA32_CR_PAT);
744 /** @todo more? */
745 MSR_RANGE_END(64);
746
747 /* 1st AMD range: c000_0000 to c000_3000 */
748 MSR_RANGE_BEGIN(0xc0000000, 0xc0003000, KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE);
749 MSR_RANGE_ADD(MSR_K6_EFER);
750 MSR_RANGE_ADD(MSR_K6_STAR);
751 MSR_RANGE_ADD(MSR_K8_GS_BASE);
752 MSR_RANGE_ADD(MSR_K8_KERNEL_GS_BASE);
753 MSR_RANGE_ADD(MSR_K8_LSTAR);
754 MSR_RANGE_ADD(MSR_K8_CSTAR);
755 MSR_RANGE_ADD(MSR_K8_SF_MASK);
756 MSR_RANGE_ADD(MSR_K8_TSC_AUX);
757 /** @todo add more? */
758 MSR_RANGE_END(64);
759
760 /** @todo Specify other ranges too? Like hyper-V and KVM to make sure we get
761 * the MSR requests instead of KVM. */
762
763 int rcLnx = ioctl(pVM->nem.s.fdVm, KVM_X86_SET_MSR_FILTER, &MsrFilters);
764 if (rcLnx == -1)
765 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
766 "Failed to enable KVM_X86_SET_MSR_FILTER failed: %u", errno);
767 }
768
769 return VINF_SUCCESS;
770}
771
772
773int nemR3NativeTerm(PVM pVM)
774{
775 /*
776 * Per-cpu data
777 */
778 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
779 {
780 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
781
782 if (pVCpu->nem.s.fdVCpu != -1)
783 {
784 close(pVCpu->nem.s.fdVCpu);
785 pVCpu->nem.s.fdVCpu = -1;
786 }
787 if (pVCpu->nem.s.pRun)
788 {
789 munmap(pVCpu->nem.s.pRun, pVM->nem.s.cbVCpuMmap);
790 pVCpu->nem.s.pRun = NULL;
791 }
792 }
793
794 /*
795 * Global data.
796 */
797 if (pVM->nem.s.fdVm != -1)
798 {
799 close(pVM->nem.s.fdVm);
800 pVM->nem.s.fdVm = -1;
801 }
802
803 if (pVM->nem.s.fdKvm != -1)
804 {
805 close(pVM->nem.s.fdKvm);
806 pVM->nem.s.fdKvm = -1;
807 }
808 return VINF_SUCCESS;
809}
810
811
812/**
813 * VM reset notification.
814 *
815 * @param pVM The cross context VM structure.
816 */
817void nemR3NativeReset(PVM pVM)
818{
819 RT_NOREF(pVM);
820}
821
822
823/**
824 * Reset CPU due to INIT IPI or hot (un)plugging.
825 *
826 * @param pVCpu The cross context virtual CPU structure of the CPU being
827 * reset.
828 * @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case.
829 */
830void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi)
831{
832 RT_NOREF(pVCpu, fInitIpi);
833}
834
835
836/*********************************************************************************************************************************
837* Memory management *
838*********************************************************************************************************************************/
839
840
841/**
842 * Allocates a memory slot ID.
843 *
844 * @returns Slot ID on success, UINT16_MAX on failure.
845 */
846static uint16_t nemR3LnxMemSlotIdAlloc(PVM pVM)
847{
848 /* Use the hint first. */
849 uint16_t idHint = pVM->nem.s.idPrevSlot;
850 if (idHint < _32K - 1)
851 {
852 int32_t idx = ASMBitNextClear(&pVM->nem.s.bmSlotIds, _32K, idHint);
853 Assert(idx < _32K);
854 if (idx > 0 && !ASMAtomicBitTestAndSet(&pVM->nem.s.bmSlotIds, idx))
855 return pVM->nem.s.idPrevSlot = (uint16_t)idx;
856 }
857
858 /*
859 * Search the whole map from the start.
860 */
861 int32_t idx = ASMBitFirstClear(&pVM->nem.s.bmSlotIds, _32K);
862 Assert(idx < _32K);
863 if (idx > 0 && !ASMAtomicBitTestAndSet(&pVM->nem.s.bmSlotIds, idx))
864 return pVM->nem.s.idPrevSlot = (uint16_t)idx;
865
866 Assert(idx < 0 /*shouldn't trigger unless there is a race */);
867 return UINT16_MAX; /* caller is expected to assert. */
868}
869
870
871/**
872 * Frees a memory slot ID
873 */
874static void nemR3LnxMemSlotIdFree(PVM pVM, uint16_t idSlot)
875{
876 if (RT_LIKELY(idSlot < _32K && ASMAtomicBitTestAndClear(&pVM->nem.s.bmSlotIds, idSlot)))
877 { /*likely*/ }
878 else
879 AssertMsgFailed(("idSlot=%u (%#x)\n", idSlot, idSlot));
880}
881
882
883
884VMMR3_INT_DECL(int) NEMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvR3,
885 uint8_t *pu2State, uint32_t *puNemRange)
886{
887 uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM);
888 AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED);
889
890 Log5(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p pu2State=%p (%d) puNemRange=%p (%d) - idSlot=%#x\n",
891 GCPhys, cb, pvR3, pu2State, pu2State, puNemRange, *puNemRange, idSlot));
892
893 struct kvm_userspace_memory_region Region;
894 Region.slot = idSlot;
895 Region.flags = 0;
896 Region.guest_phys_addr = GCPhys;
897 Region.memory_size = cb;
898 Region.userspace_addr = (uintptr_t)pvR3;
899
900 int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
901 if (rc == 0)
902 {
903 *pu2State = 0;
904 *puNemRange = idSlot;
905 return VINF_SUCCESS;
906 }
907
908 LogRel(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p, idSlot=%#x failed: %u/%u\n", GCPhys, cb, pvR3, idSlot, rc, errno));
909 nemR3LnxMemSlotIdFree(pVM, idSlot);
910 return VERR_NEM_MAP_PAGES_FAILED;
911}
912
913
914VMMR3_INT_DECL(bool) NEMR3IsMmio2DirtyPageTrackingSupported(PVM pVM)
915{
916 RT_NOREF(pVM);
917 return true;
918}
919
920
921VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
922 void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
923{
924 Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p (%d) puNemRange=%p (%#x)\n",
925 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, *pu2State, puNemRange, puNemRange ? *puNemRange : UINT32_MAX));
926 RT_NOREF(pvRam);
927
928 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
929 {
930 /** @todo implement splitting and whatnot of ranges if we want to be 100%
931 * conforming (just modify RAM registrations in MM.cpp to test). */
932 AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p\n", GCPhys, cb, fFlags, pvRam, pvMmio2),
933 VERR_NEM_MAP_PAGES_FAILED);
934 }
935
936 /*
937 * Register MMIO2.
938 */
939 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
940 {
941 AssertReturn(pvMmio2, VERR_NEM_MAP_PAGES_FAILED);
942 AssertReturn(puNemRange, VERR_NEM_MAP_PAGES_FAILED);
943
944 uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM);
945 AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED);
946
947 struct kvm_userspace_memory_region Region;
948 Region.slot = idSlot;
949 Region.flags = fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES ? KVM_MEM_LOG_DIRTY_PAGES : 0;
950 Region.guest_phys_addr = GCPhys;
951 Region.memory_size = cb;
952 Region.userspace_addr = (uintptr_t)pvMmio2;
953
954 int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
955 if (rc == 0)
956 {
957 *pu2State = 0;
958 *puNemRange = idSlot;
959 Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvMmio2=%p - idSlot=%#x\n",
960 GCPhys, cb, fFlags, pvMmio2, idSlot));
961 return VINF_SUCCESS;
962 }
963
964 nemR3LnxMemSlotIdFree(pVM, idSlot);
965 AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvMmio2=%p, idSlot=%#x failed: %u/%u\n",
966 GCPhys, cb, fFlags, pvMmio2, idSlot, errno, rc),
967 VERR_NEM_MAP_PAGES_FAILED);
968 }
969
970 /* MMIO, don't care. */
971 *pu2State = 0;
972 *puNemRange = UINT32_MAX;
973 return VINF_SUCCESS;
974}
975
976
977VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
978 void *pvRam, void *pvMmio2, uint32_t *puNemRange)
979{
980 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, puNemRange);
981 return VINF_SUCCESS;
982}
983
984
985VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam,
986 void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
987{
988 Log5(("NEMR3NotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p puNemRange=%p (%#x)\n",
989 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, puNemRange, *puNemRange));
990 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State);
991
992 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
993 {
994 /** @todo implement splitting and whatnot of ranges if we want to be 100%
995 * conforming (just modify RAM registrations in MM.cpp to test). */
996 AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p\n", GCPhys, cb, fFlags, pvRam, pvMmio2),
997 VERR_NEM_UNMAP_PAGES_FAILED);
998 }
999
1000 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
1001 {
1002 uint32_t const idSlot = *puNemRange;
1003 AssertReturn(idSlot > 0 && idSlot < _32K, VERR_NEM_IPE_4);
1004 AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, idSlot), VERR_NEM_IPE_4);
1005
1006 struct kvm_userspace_memory_region Region;
1007 Region.slot = idSlot;
1008 Region.flags = 0;
1009 Region.guest_phys_addr = GCPhys;
1010 Region.memory_size = 0; /* this deregisters it. */
1011 Region.userspace_addr = (uintptr_t)pvMmio2;
1012
1013 int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
1014 if (rc == 0)
1015 {
1016 if (pu2State)
1017 *pu2State = 0;
1018 *puNemRange = UINT32_MAX;
1019 nemR3LnxMemSlotIdFree(pVM, idSlot);
1020 return VINF_SUCCESS;
1021 }
1022
1023 AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvMmio2=%p, idSlot=%#x failed: %u/%u\n",
1024 GCPhys, cb, fFlags, pvMmio2, idSlot, errno, rc),
1025 VERR_NEM_UNMAP_PAGES_FAILED);
1026 }
1027
1028 if (pu2State)
1029 *pu2State = UINT8_MAX;
1030 return VINF_SUCCESS;
1031}
1032
1033
1034VMMR3_INT_DECL(int) NEMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t uNemRange,
1035 void *pvBitmap, size_t cbBitmap)
1036{
1037 AssertReturn(uNemRange > 0 && uNemRange < _32K, VERR_NEM_IPE_4);
1038 AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, uNemRange), VERR_NEM_IPE_4);
1039
1040 RT_NOREF(GCPhys, cbBitmap);
1041
1042 struct kvm_dirty_log DirtyLog;
1043 DirtyLog.slot = uNemRange;
1044 DirtyLog.padding1 = 0;
1045 DirtyLog.dirty_bitmap = pvBitmap;
1046
1047 int rc = ioctl(pVM->nem.s.fdVm, KVM_GET_DIRTY_LOG, &DirtyLog);
1048 AssertLogRelMsgReturn(rc == 0, ("%RGp LB %RGp idSlot=%#x failed: %u/%u\n", GCPhys, cb, uNemRange, errno, rc),
1049 VERR_NEM_QUERY_DIRTY_BITMAP_FAILED);
1050
1051 return VINF_SUCCESS;
1052}
1053
1054
1055VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags,
1056 uint8_t *pu2State, uint32_t *puNemRange)
1057{
1058 Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp pvPages=%p fFlags=%#x\n", GCPhys, cb, pvPages, fFlags));
1059 *pu2State = UINT8_MAX;
1060
1061 /* Don't support puttint ROM where there is already RAM. For
1062 now just shuffle the registrations till it works... */
1063 AssertLogRelMsgReturn(!(fFlags & NEM_NOTIFY_PHYS_ROM_F_REPLACE), ("%RGp LB %RGp fFlags=%#x\n", GCPhys, cb, fFlags),
1064 VERR_NEM_MAP_PAGES_FAILED);
1065
1066 /** @todo figure out how to do shadow ROMs. */
1067
1068 /*
1069 * We only allocate a slot number here in case we need to use it to
1070 * fend of physical handler fun.
1071 */
1072 uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM);
1073 AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED);
1074
1075 *pu2State = 0;
1076 *puNemRange = idSlot;
1077 Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp fFlags=%#x pvPages=%p - idSlot=%#x\n",
1078 GCPhys, cb, fFlags, pvPages, idSlot));
1079 RT_NOREF(GCPhys, cb, fFlags, pvPages);
1080 return VINF_SUCCESS;
1081}
1082
1083
1084VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages,
1085 uint32_t fFlags, uint8_t *pu2State, uint32_t *puNemRange)
1086{
1087 Log5(("NEMR3NotifyPhysRomRegisterLate: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n",
1088 GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange));
1089
1090 AssertPtrReturn(pvPages, VERR_NEM_IPE_5);
1091
1092 uint32_t const idSlot = *puNemRange;
1093 AssertReturn(idSlot > 0 && idSlot < _32K, VERR_NEM_IPE_4);
1094 AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, idSlot), VERR_NEM_IPE_4);
1095
1096 *pu2State = UINT8_MAX;
1097
1098 /*
1099 * Do the actual setting of the user pages here now that we've
1100 * got a valid pvPages (typically isn't available during the early
1101 * notification, unless we're replacing RAM).
1102 */
1103 struct kvm_userspace_memory_region Region;
1104 Region.slot = idSlot;
1105 Region.flags = 0;
1106 Region.guest_phys_addr = GCPhys;
1107 Region.memory_size = cb;
1108 Region.userspace_addr = (uintptr_t)pvPages;
1109
1110 int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
1111 if (rc == 0)
1112 {
1113 *pu2State = 0;
1114 Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp fFlags=%#x pvPages=%p - idSlot=%#x\n",
1115 GCPhys, cb, fFlags, pvPages, idSlot));
1116 return VINF_SUCCESS;
1117 }
1118 AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvPages=%p, idSlot=%#x failed: %u/%u\n",
1119 GCPhys, cb, fFlags, pvPages, idSlot, errno, rc),
1120 VERR_NEM_MAP_PAGES_FAILED);
1121}
1122
1123
1124VMMR3_INT_DECL(void) NEMR3NotifySetA20(PVMCPU pVCpu, bool fEnabled)
1125{
1126 Log(("nemR3NativeNotifySetA20: fEnabled=%RTbool\n", fEnabled));
1127 Assert(VM_IS_NEM_ENABLED(pVCpu->CTX_SUFF(pVM)));
1128 RT_NOREF(pVCpu, fEnabled);
1129}
1130
1131
1132VMM_INT_DECL(void) NEMHCNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
1133 RTR3PTR pvMemR3, uint8_t *pu2State)
1134{
1135 Log5(("NEMHCNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d pvMemR3=%p pu2State=%p (%d)\n",
1136 GCPhys, cb, enmKind, pvMemR3, pu2State, *pu2State));
1137
1138 *pu2State = UINT8_MAX;
1139 RT_NOREF(pVM, enmKind, GCPhys, cb, pvMemR3);
1140}
1141
1142
1143void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
1144{
1145 Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
1146 RT_NOREF(pVM, enmKind, GCPhys, cb);
1147}
1148
1149
1150void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
1151 RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
1152{
1153 Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
1154 GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
1155 RT_NOREF(pVM, enmKind, GCPhysOld, GCPhysNew, cb, fRestoreAsRAM);
1156}
1157
1158
1159int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
1160 PGMPAGETYPE enmType, uint8_t *pu2State)
1161{
1162 Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
1163 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
1164 RT_NOREF(pVM, GCPhys, HCPhys, fPageProt, enmType, pu2State);
1165 return VINF_SUCCESS;
1166}
1167
1168
1169VMM_INT_DECL(void) NEMHCNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, RTR3PTR pvR3, uint32_t fPageProt,
1170 PGMPAGETYPE enmType, uint8_t *pu2State)
1171{
1172 Log5(("NEMHCNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
1173 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
1174 Assert(VM_IS_NEM_ENABLED(pVM));
1175 RT_NOREF(pVM, GCPhys, HCPhys, pvR3, fPageProt, enmType, pu2State);
1176
1177}
1178
1179
1180VMM_INT_DECL(void) NEMHCNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
1181 RTR3PTR pvNewR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
1182{
1183 Log5(("nemHCNativeNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp pvNewR3=%p fPageProt=%#x enmType=%d *pu2State=%d\n",
1184 GCPhys, HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType, *pu2State));
1185 Assert(VM_IS_NEM_ENABLED(pVM));
1186 RT_NOREF(pVM, GCPhys, HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType, pu2State);
1187}
1188
1189
1190/*********************************************************************************************************************************
1191* CPU State *
1192*********************************************************************************************************************************/
1193
1194/**
1195 * Worker that imports selected state from KVM.
1196 */
1197static int nemHCLnxImportState(PVMCPUCC pVCpu, uint64_t fWhat, PCPUMCTX pCtx, struct kvm_run *pRun)
1198{
1199 fWhat &= pVCpu->cpum.GstCtx.fExtrn;
1200 if (!fWhat)
1201 return VINF_SUCCESS;
1202
1203 /*
1204 * Stuff that goes into kvm_run::s.regs.regs:
1205 */
1206 if (fWhat & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK))
1207 {
1208 if (fWhat & CPUMCTX_EXTRN_RIP)
1209 pCtx->rip = pRun->s.regs.regs.rip;
1210 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
1211 pCtx->rflags.u = pRun->s.regs.regs.rflags;
1212
1213 if (fWhat & CPUMCTX_EXTRN_RAX)
1214 pCtx->rax = pRun->s.regs.regs.rax;
1215 if (fWhat & CPUMCTX_EXTRN_RCX)
1216 pCtx->rcx = pRun->s.regs.regs.rcx;
1217 if (fWhat & CPUMCTX_EXTRN_RDX)
1218 pCtx->rdx = pRun->s.regs.regs.rdx;
1219 if (fWhat & CPUMCTX_EXTRN_RBX)
1220 pCtx->rbx = pRun->s.regs.regs.rbx;
1221 if (fWhat & CPUMCTX_EXTRN_RSP)
1222 pCtx->rsp = pRun->s.regs.regs.rsp;
1223 if (fWhat & CPUMCTX_EXTRN_RBP)
1224 pCtx->rbp = pRun->s.regs.regs.rbp;
1225 if (fWhat & CPUMCTX_EXTRN_RSI)
1226 pCtx->rsi = pRun->s.regs.regs.rsi;
1227 if (fWhat & CPUMCTX_EXTRN_RDI)
1228 pCtx->rdi = pRun->s.regs.regs.rdi;
1229 if (fWhat & CPUMCTX_EXTRN_R8_R15)
1230 {
1231 pCtx->r8 = pRun->s.regs.regs.r8;
1232 pCtx->r9 = pRun->s.regs.regs.r9;
1233 pCtx->r10 = pRun->s.regs.regs.r10;
1234 pCtx->r11 = pRun->s.regs.regs.r11;
1235 pCtx->r12 = pRun->s.regs.regs.r12;
1236 pCtx->r13 = pRun->s.regs.regs.r13;
1237 pCtx->r14 = pRun->s.regs.regs.r14;
1238 pCtx->r15 = pRun->s.regs.regs.r15;
1239 }
1240 }
1241
1242 /*
1243 * Stuff that goes into kvm_run::s.regs.sregs.
1244 *
1245 * Note! The apic_base can be ignored because we gets all MSR writes to it
1246 * and VBox always keeps the correct value.
1247 */
1248 bool fMaybeChangedMode = false;
1249 bool fUpdateCr3 = false;
1250 if (fWhat & ( CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_CR_MASK
1251 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_APIC_TPR))
1252 {
1253 /** @todo what about Attr.n.u4LimitHigh? */
1254#define NEM_LNX_IMPORT_SEG(a_CtxSeg, a_KvmSeg) do { \
1255 (a_CtxSeg).u64Base = (a_KvmSeg).base; \
1256 (a_CtxSeg).u32Limit = (a_KvmSeg).limit; \
1257 (a_CtxSeg).ValidSel = (a_CtxSeg).Sel = (a_KvmSeg).selector; \
1258 (a_CtxSeg).Attr.n.u4Type = (a_KvmSeg).type; \
1259 (a_CtxSeg).Attr.n.u1DescType = (a_KvmSeg).s; \
1260 (a_CtxSeg).Attr.n.u2Dpl = (a_KvmSeg).dpl; \
1261 (a_CtxSeg).Attr.n.u1Present = (a_KvmSeg).present; \
1262 (a_CtxSeg).Attr.n.u1Available = (a_KvmSeg).avl; \
1263 (a_CtxSeg).Attr.n.u1Long = (a_KvmSeg).l; \
1264 (a_CtxSeg).Attr.n.u1DefBig = (a_KvmSeg).db; \
1265 (a_CtxSeg).Attr.n.u1Granularity = (a_KvmSeg).g; \
1266 (a_CtxSeg).Attr.n.u1Unusable = (a_KvmSeg).unusable; \
1267 (a_CtxSeg).fFlags = CPUMSELREG_FLAGS_VALID; \
1268 CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &(a_CtxSeg)); \
1269 } while (0)
1270
1271 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
1272 {
1273 if (fWhat & CPUMCTX_EXTRN_ES)
1274 NEM_LNX_IMPORT_SEG(pCtx->es, pRun->s.regs.sregs.es);
1275 if (fWhat & CPUMCTX_EXTRN_CS)
1276 NEM_LNX_IMPORT_SEG(pCtx->cs, pRun->s.regs.sregs.cs);
1277 if (fWhat & CPUMCTX_EXTRN_SS)
1278 NEM_LNX_IMPORT_SEG(pCtx->ss, pRun->s.regs.sregs.ss);
1279 if (fWhat & CPUMCTX_EXTRN_DS)
1280 NEM_LNX_IMPORT_SEG(pCtx->ds, pRun->s.regs.sregs.ds);
1281 if (fWhat & CPUMCTX_EXTRN_FS)
1282 NEM_LNX_IMPORT_SEG(pCtx->fs, pRun->s.regs.sregs.fs);
1283 if (fWhat & CPUMCTX_EXTRN_GS)
1284 NEM_LNX_IMPORT_SEG(pCtx->gs, pRun->s.regs.sregs.gs);
1285 }
1286 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
1287 {
1288 if (fWhat & CPUMCTX_EXTRN_GDTR)
1289 {
1290 pCtx->gdtr.pGdt = pRun->s.regs.sregs.gdt.base;
1291 pCtx->gdtr.cbGdt = pRun->s.regs.sregs.gdt.limit;
1292 }
1293 if (fWhat & CPUMCTX_EXTRN_IDTR)
1294 {
1295 pCtx->idtr.pIdt = pRun->s.regs.sregs.idt.base;
1296 pCtx->idtr.cbIdt = pRun->s.regs.sregs.idt.limit;
1297 }
1298 if (fWhat & CPUMCTX_EXTRN_LDTR)
1299 NEM_LNX_IMPORT_SEG(pCtx->ldtr, pRun->s.regs.sregs.ldt);
1300 if (fWhat & CPUMCTX_EXTRN_TR)
1301 NEM_LNX_IMPORT_SEG(pCtx->tr, pRun->s.regs.sregs.tr);
1302 }
1303 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
1304 {
1305 if (fWhat & CPUMCTX_EXTRN_CR0)
1306 {
1307 if (pVCpu->cpum.GstCtx.cr0 != pRun->s.regs.sregs.cr0)
1308 {
1309 CPUMSetGuestCR0(pVCpu, pRun->s.regs.sregs.cr0);
1310 fMaybeChangedMode = true;
1311 }
1312 }
1313 if (fWhat & CPUMCTX_EXTRN_CR2)
1314 pCtx->cr2 = pRun->s.regs.sregs.cr2;
1315 if (fWhat & CPUMCTX_EXTRN_CR3)
1316 {
1317 if (pCtx->cr3 != pRun->s.regs.sregs.cr3)
1318 {
1319 CPUMSetGuestCR3(pVCpu, pRun->s.regs.sregs.cr3);
1320 fUpdateCr3 = true;
1321 }
1322 }
1323 if (fWhat & CPUMCTX_EXTRN_CR4)
1324 {
1325 if (pCtx->cr4 != pRun->s.regs.sregs.cr4)
1326 {
1327 CPUMSetGuestCR4(pVCpu, pRun->s.regs.sregs.cr4);
1328 fMaybeChangedMode = true;
1329 }
1330 }
1331 }
1332 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
1333 APICSetTpr(pVCpu, (uint8_t)pRun->s.regs.sregs.cr8 << 4);
1334 if (fWhat & CPUMCTX_EXTRN_EFER)
1335 {
1336 if (pCtx->msrEFER != pRun->s.regs.sregs.efer)
1337 {
1338 Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, pRun->s.regs.sregs.efer));
1339 if ((pRun->s.regs.sregs.efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
1340 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pRun->s.regs.sregs.efer & MSR_K6_EFER_NXE));
1341 pCtx->msrEFER = pRun->s.regs.sregs.efer;
1342 fMaybeChangedMode = true;
1343 }
1344 }
1345#undef NEM_LNX_IMPORT_SEG
1346 }
1347
1348 /*
1349 * Debug registers.
1350 */
1351 if (fWhat & CPUMCTX_EXTRN_DR_MASK)
1352 {
1353 struct kvm_debugregs DbgRegs = {{0}};
1354 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_DEBUGREGS, &DbgRegs);
1355 AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
1356
1357 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
1358 {
1359 pCtx->dr[0] = DbgRegs.db[0];
1360 pCtx->dr[1] = DbgRegs.db[1];
1361 pCtx->dr[2] = DbgRegs.db[2];
1362 pCtx->dr[3] = DbgRegs.db[3];
1363 }
1364 if (fWhat & CPUMCTX_EXTRN_DR6)
1365 pCtx->dr[6] = DbgRegs.dr6;
1366 if (fWhat & CPUMCTX_EXTRN_DR7)
1367 pCtx->dr[7] = DbgRegs.dr7;
1368 }
1369
1370 /*
1371 * FPU, SSE, AVX, ++.
1372 */
1373 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx))
1374 {
1375 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
1376 {
1377 fWhat |= CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE; /* we do all or nothing at all */
1378
1379 AssertCompile(sizeof(pCtx->XState) >= sizeof(struct kvm_xsave));
1380 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_XSAVE, &pCtx->XState);
1381 AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
1382 }
1383
1384 if (fWhat & CPUMCTX_EXTRN_XCRx)
1385 {
1386 struct kvm_xcrs Xcrs =
1387 { /*.nr_xcrs = */ 2,
1388 /*.flags = */ 0,
1389 /*.xcrs= */ {
1390 { /*.xcr =*/ 0, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[0] },
1391 { /*.xcr =*/ 1, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[1] },
1392 }
1393 };
1394
1395 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_XCRS, &Xcrs);
1396 AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
1397
1398 pCtx->aXcr[0] = Xcrs.xcrs[0].value;
1399 pCtx->aXcr[1] = Xcrs.xcrs[1].value;
1400 }
1401 }
1402
1403 /*
1404 * MSRs.
1405 */
1406 if (fWhat & ( CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS
1407 | CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
1408 {
1409 union
1410 {
1411 struct kvm_msrs Core;
1412 uint64_t padding[2 + sizeof(struct kvm_msr_entry) * 32];
1413 } uBuf;
1414 uint64_t *pauDsts[32];
1415 uint32_t iMsr = 0;
1416 PCPUMCTXMSRS const pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1417
1418#define ADD_MSR(a_Msr, a_uValue) do { \
1419 Assert(iMsr < 32); \
1420 uBuf.Core.entries[iMsr].index = (a_Msr); \
1421 uBuf.Core.entries[iMsr].reserved = 0; \
1422 uBuf.Core.entries[iMsr].data = UINT64_MAX; \
1423 pauDsts[iMsr] = &(a_uValue); \
1424 iMsr += 1; \
1425 } while (0)
1426
1427 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1428 ADD_MSR(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
1429 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
1430 {
1431 ADD_MSR(MSR_K6_STAR, pCtx->msrSTAR);
1432 ADD_MSR(MSR_K8_LSTAR, pCtx->msrLSTAR);
1433 ADD_MSR(MSR_K8_CSTAR, pCtx->msrCSTAR);
1434 ADD_MSR(MSR_K8_SF_MASK, pCtx->msrSFMASK);
1435 }
1436 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
1437 {
1438 ADD_MSR(MSR_IA32_SYSENTER_CS, pCtx->SysEnter.cs);
1439 ADD_MSR(MSR_IA32_SYSENTER_EIP, pCtx->SysEnter.eip);
1440 ADD_MSR(MSR_IA32_SYSENTER_ESP, pCtx->SysEnter.esp);
1441 }
1442 if (fWhat & CPUMCTX_EXTRN_TSC_AUX)
1443 ADD_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
1444 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
1445 {
1446 ADD_MSR(MSR_IA32_CR_PAT, pCtx->msrPAT);
1447 /** @todo What do we _have_ to add here?
1448 * We also have: Mttr*, MiscEnable, FeatureControl. */
1449 }
1450
1451 uBuf.Core.pad = 0;
1452 uBuf.Core.nmsrs = iMsr;
1453 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_MSRS, &uBuf);
1454 AssertMsgReturn(rc == (int)iMsr,
1455 ("rc=%d iMsr=%d (->%#x) errno=%d\n",
1456 rc, iMsr, (uint32_t)rc < iMsr ? uBuf.Core.entries[rc].index : 0, errno),
1457 VERR_NEM_IPE_3);
1458
1459 while (iMsr-- > 0)
1460 *pauDsts[iMsr] = uBuf.Core.entries[iMsr].data;
1461#undef ADD_MSR
1462 }
1463
1464 /*
1465 * Interruptibility state and pending interrupts.
1466 */
1467 if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
1468 {
1469 fWhat |= CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI; /* always do both, see export and interrupt FF handling */
1470
1471 struct kvm_vcpu_events KvmEvents = {0};
1472 int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_VCPU_EVENTS, &KvmEvents);
1473 AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_3);
1474
1475 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RIP)
1476 pVCpu->cpum.GstCtx.rip = pRun->s.regs.regs.rip;
1477
1478 if (KvmEvents.interrupt.shadow)
1479 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
1480 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1481 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1482
1483 if (KvmEvents.nmi.masked)
1484 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
1485 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
1486 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
1487
1488 if (KvmEvents.interrupt.injected)
1489 {
1490 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportPendingInterrupt);
1491 TRPMAssertTrap(pVCpu, KvmEvents.interrupt.nr, !KvmEvents.interrupt.soft ? TRPM_HARDWARE_INT : TRPM_SOFTWARE_INT);
1492 }
1493
1494 Assert(KvmEvents.nmi.injected == 0);
1495 Assert(KvmEvents.nmi.pending == 0);
1496 }
1497
1498 /*
1499 * Update the external mask.
1500 */
1501 pCtx->fExtrn &= ~fWhat;
1502 pVCpu->cpum.GstCtx.fExtrn &= ~fWhat;
1503 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
1504 pVCpu->cpum.GstCtx.fExtrn = 0;
1505
1506 /*
1507 * We sometimes need to update PGM on the guest status.
1508 */
1509 if (!fMaybeChangedMode && !fUpdateCr3)
1510 { /* likely */ }
1511 else
1512 {
1513 /*
1514 * Make sure we got all the state PGM might need.
1515 */
1516 Log7(("nemHCLnxImportState: fMaybeChangedMode=%d fUpdateCr3=%d fExtrnNeeded=%#RX64\n", fMaybeChangedMode, fUpdateCr3,
1517 pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER) ));
1518 if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER))
1519 {
1520 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR0)
1521 {
1522 if (pVCpu->cpum.GstCtx.cr0 != pRun->s.regs.sregs.cr0)
1523 {
1524 CPUMSetGuestCR0(pVCpu, pRun->s.regs.sregs.cr0);
1525 fMaybeChangedMode = true;
1526 }
1527 }
1528 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR3)
1529 {
1530 if (pCtx->cr3 != pRun->s.regs.sregs.cr3)
1531 {
1532 CPUMSetGuestCR3(pVCpu, pRun->s.regs.sregs.cr3);
1533 fUpdateCr3 = true;
1534 }
1535 }
1536 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR4)
1537 {
1538 if (pCtx->cr4 != pRun->s.regs.sregs.cr4)
1539 {
1540 CPUMSetGuestCR4(pVCpu, pRun->s.regs.sregs.cr4);
1541 fMaybeChangedMode = true;
1542 }
1543 }
1544 if (fWhat & CPUMCTX_EXTRN_EFER)
1545 {
1546 if (pCtx->msrEFER != pRun->s.regs.sregs.efer)
1547 {
1548 Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, pRun->s.regs.sregs.efer));
1549 if ((pRun->s.regs.sregs.efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
1550 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pRun->s.regs.sregs.efer & MSR_K6_EFER_NXE));
1551 pCtx->msrEFER = pRun->s.regs.sregs.efer;
1552 fMaybeChangedMode = true;
1553 }
1554 }
1555
1556 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER);
1557 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
1558 pVCpu->cpum.GstCtx.fExtrn = 0;
1559 }
1560
1561 /*
1562 * Notify PGM about the changes.
1563 */
1564 if (fMaybeChangedMode)
1565 {
1566 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4,
1567 pVCpu->cpum.GstCtx.msrEFER, false /*fForce*/);
1568 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1);
1569 }
1570
1571 if (fUpdateCr3)
1572 {
1573 int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3);
1574 if (rc == VINF_SUCCESS)
1575 { /* likely */ }
1576 else
1577 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2);
1578 }
1579 }
1580
1581 return VINF_SUCCESS;
1582}
1583
1584
1585/**
1586 * Interface for importing state on demand (used by IEM).
1587 *
1588 * @returns VBox status code.
1589 * @param pVCpu The cross context CPU structure.
1590 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
1591 */
1592VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
1593{
1594 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);
1595 return nemHCLnxImportState(pVCpu, fWhat, &pVCpu->cpum.GstCtx, pVCpu->nem.s.pRun);
1596}
1597
1598
1599/**
1600 * Exports state to KVM.
1601 */
1602static int nemHCLnxExportState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, struct kvm_run *pRun)
1603{
1604 uint64_t const fExtrn = ~pCtx->fExtrn & CPUMCTX_EXTRN_ALL;
1605 Assert((~fExtrn & CPUMCTX_EXTRN_ALL) != CPUMCTX_EXTRN_ALL);
1606
1607 /*
1608 * Stuff that goes into kvm_run::s.regs.regs:
1609 */
1610 if (fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK))
1611 {
1612 if (fExtrn & CPUMCTX_EXTRN_RIP)
1613 pRun->s.regs.regs.rip = pCtx->rip;
1614 if (fExtrn & CPUMCTX_EXTRN_RFLAGS)
1615 pRun->s.regs.regs.rflags = pCtx->rflags.u;
1616
1617 if (fExtrn & CPUMCTX_EXTRN_RAX)
1618 pRun->s.regs.regs.rax = pCtx->rax;
1619 if (fExtrn & CPUMCTX_EXTRN_RCX)
1620 pRun->s.regs.regs.rcx = pCtx->rcx;
1621 if (fExtrn & CPUMCTX_EXTRN_RDX)
1622 pRun->s.regs.regs.rdx = pCtx->rdx;
1623 if (fExtrn & CPUMCTX_EXTRN_RBX)
1624 pRun->s.regs.regs.rbx = pCtx->rbx;
1625 if (fExtrn & CPUMCTX_EXTRN_RSP)
1626 pRun->s.regs.regs.rsp = pCtx->rsp;
1627 if (fExtrn & CPUMCTX_EXTRN_RBP)
1628 pRun->s.regs.regs.rbp = pCtx->rbp;
1629 if (fExtrn & CPUMCTX_EXTRN_RSI)
1630 pRun->s.regs.regs.rsi = pCtx->rsi;
1631 if (fExtrn & CPUMCTX_EXTRN_RDI)
1632 pRun->s.regs.regs.rdi = pCtx->rdi;
1633 if (fExtrn & CPUMCTX_EXTRN_R8_R15)
1634 {
1635 pRun->s.regs.regs.r8 = pCtx->r8;
1636 pRun->s.regs.regs.r9 = pCtx->r9;
1637 pRun->s.regs.regs.r10 = pCtx->r10;
1638 pRun->s.regs.regs.r11 = pCtx->r11;
1639 pRun->s.regs.regs.r12 = pCtx->r12;
1640 pRun->s.regs.regs.r13 = pCtx->r13;
1641 pRun->s.regs.regs.r14 = pCtx->r14;
1642 pRun->s.regs.regs.r15 = pCtx->r15;
1643 }
1644 pRun->kvm_dirty_regs |= KVM_SYNC_X86_REGS;
1645 }
1646
1647 /*
1648 * Stuff that goes into kvm_run::s.regs.sregs:
1649 *
1650 * The APIC base register updating is a little suboptimal... But at least
1651 * VBox always has the right base register value, so it's one directional.
1652 */
1653 uint64_t const uApicBase = APICGetBaseMsrNoCheck(pVCpu);
1654 if ( (fExtrn & ( CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_CR_MASK
1655 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_APIC_TPR))
1656 || uApicBase != pVCpu->nem.s.uKvmApicBase)
1657 {
1658 if ((pVCpu->nem.s.uKvmApicBase ^ uApicBase) & MSR_IA32_APICBASE_EN)
1659 Log(("NEM/%u: APICBASE_EN changed %#010RX64 -> %#010RX64\n", pVCpu->idCpu, pVCpu->nem.s.uKvmApicBase, uApicBase));
1660 pRun->s.regs.sregs.apic_base = uApicBase;
1661 pVCpu->nem.s.uKvmApicBase = uApicBase;
1662
1663 if (fExtrn & CPUMCTX_EXTRN_APIC_TPR)
1664 pRun->s.regs.sregs.cr8 = CPUMGetGuestCR8(pVCpu);
1665
1666#define NEM_LNX_EXPORT_SEG(a_KvmSeg, a_CtxSeg) do { \
1667 (a_KvmSeg).base = (a_CtxSeg).u64Base; \
1668 (a_KvmSeg).limit = (a_CtxSeg).u32Limit; \
1669 (a_KvmSeg).selector = (a_CtxSeg).Sel; \
1670 (a_KvmSeg).type = (a_CtxSeg).Attr.n.u4Type; \
1671 (a_KvmSeg).s = (a_CtxSeg).Attr.n.u1DescType; \
1672 (a_KvmSeg).dpl = (a_CtxSeg).Attr.n.u2Dpl; \
1673 (a_KvmSeg).present = (a_CtxSeg).Attr.n.u1Present; \
1674 (a_KvmSeg).avl = (a_CtxSeg).Attr.n.u1Available; \
1675 (a_KvmSeg).l = (a_CtxSeg).Attr.n.u1Long; \
1676 (a_KvmSeg).db = (a_CtxSeg).Attr.n.u1DefBig; \
1677 (a_KvmSeg).g = (a_CtxSeg).Attr.n.u1Granularity; \
1678 (a_KvmSeg).unusable = (a_CtxSeg).Attr.n.u1Unusable; \
1679 (a_KvmSeg).padding = 0; \
1680 } while (0)
1681
1682 if (fExtrn & CPUMCTX_EXTRN_SREG_MASK)
1683 {
1684 if (fExtrn & CPUMCTX_EXTRN_ES)
1685 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.es, pCtx->es);
1686 if (fExtrn & CPUMCTX_EXTRN_CS)
1687 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.cs, pCtx->cs);
1688 if (fExtrn & CPUMCTX_EXTRN_SS)
1689 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ss, pCtx->ss);
1690 if (fExtrn & CPUMCTX_EXTRN_DS)
1691 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ds, pCtx->ds);
1692 if (fExtrn & CPUMCTX_EXTRN_FS)
1693 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.fs, pCtx->fs);
1694 if (fExtrn & CPUMCTX_EXTRN_GS)
1695 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.gs, pCtx->gs);
1696 }
1697 if (fExtrn & CPUMCTX_EXTRN_TABLE_MASK)
1698 {
1699 if (fExtrn & CPUMCTX_EXTRN_GDTR)
1700 {
1701 pRun->s.regs.sregs.gdt.base = pCtx->gdtr.pGdt;
1702 pRun->s.regs.sregs.gdt.limit = pCtx->gdtr.cbGdt;
1703 pRun->s.regs.sregs.gdt.padding[0] = 0;
1704 pRun->s.regs.sregs.gdt.padding[1] = 0;
1705 pRun->s.regs.sregs.gdt.padding[2] = 0;
1706 }
1707 if (fExtrn & CPUMCTX_EXTRN_IDTR)
1708 {
1709 pRun->s.regs.sregs.idt.base = pCtx->idtr.pIdt;
1710 pRun->s.regs.sregs.idt.limit = pCtx->idtr.cbIdt;
1711 pRun->s.regs.sregs.idt.padding[0] = 0;
1712 pRun->s.regs.sregs.idt.padding[1] = 0;
1713 pRun->s.regs.sregs.idt.padding[2] = 0;
1714 }
1715 if (fExtrn & CPUMCTX_EXTRN_LDTR)
1716 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ldt, pCtx->ldtr);
1717 if (fExtrn & CPUMCTX_EXTRN_TR)
1718 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.tr, pCtx->tr);
1719 }
1720 if (fExtrn & CPUMCTX_EXTRN_CR_MASK)
1721 {
1722 if (fExtrn & CPUMCTX_EXTRN_CR0)
1723 pRun->s.regs.sregs.cr0 = pCtx->cr0;
1724 if (fExtrn & CPUMCTX_EXTRN_CR2)
1725 pRun->s.regs.sregs.cr2 = pCtx->cr2;
1726 if (fExtrn & CPUMCTX_EXTRN_CR3)
1727 pRun->s.regs.sregs.cr3 = pCtx->cr3;
1728 if (fExtrn & CPUMCTX_EXTRN_CR4)
1729 pRun->s.regs.sregs.cr4 = pCtx->cr4;
1730 }
1731 if (fExtrn & CPUMCTX_EXTRN_EFER)
1732 pRun->s.regs.sregs.efer = pCtx->msrEFER;
1733
1734 RT_ZERO(pRun->s.regs.sregs.interrupt_bitmap); /* this is an alternative interrupt injection interface */
1735
1736 pRun->kvm_dirty_regs |= KVM_SYNC_X86_SREGS;
1737 }
1738
1739 /*
1740 * Debug registers.
1741 */
1742 if (fExtrn & CPUMCTX_EXTRN_DR_MASK)
1743 {
1744 struct kvm_debugregs DbgRegs = {{0}};
1745
1746 if ((fExtrn & CPUMCTX_EXTRN_DR_MASK) != CPUMCTX_EXTRN_DR_MASK)
1747 {
1748 /* Partial debug state, we must get DbgRegs first so we can merge: */
1749 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_DEBUGREGS, &DbgRegs);
1750 AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
1751 }
1752
1753 if (fExtrn & CPUMCTX_EXTRN_DR0_DR3)
1754 {
1755 DbgRegs.db[0] = pCtx->dr[0];
1756 DbgRegs.db[1] = pCtx->dr[1];
1757 DbgRegs.db[2] = pCtx->dr[2];
1758 DbgRegs.db[3] = pCtx->dr[3];
1759 }
1760 if (fExtrn & CPUMCTX_EXTRN_DR6)
1761 DbgRegs.dr6 = pCtx->dr[6];
1762 if (fExtrn & CPUMCTX_EXTRN_DR7)
1763 DbgRegs.dr7 = pCtx->dr[7];
1764
1765 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_DEBUGREGS, &DbgRegs);
1766 AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
1767 }
1768
1769 /*
1770 * FPU, SSE, AVX, ++.
1771 */
1772 if (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx))
1773 {
1774 if (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
1775 {
1776 /** @todo could IEM just grab state partial control in some situations? */
1777 Assert( (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
1778 == (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE)); /* no partial states */
1779
1780 AssertCompile(sizeof(pCtx->XState) >= sizeof(struct kvm_xsave));
1781 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_XSAVE, &pCtx->XState);
1782 AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
1783 }
1784
1785 if (fExtrn & CPUMCTX_EXTRN_XCRx)
1786 {
1787 struct kvm_xcrs Xcrs =
1788 { /*.nr_xcrs = */ 2,
1789 /*.flags = */ 0,
1790 /*.xcrs= */ {
1791 { /*.xcr =*/ 0, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[0] },
1792 { /*.xcr =*/ 1, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[1] },
1793 }
1794 };
1795
1796 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_XCRS, &Xcrs);
1797 AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
1798 }
1799 }
1800
1801 /*
1802 * MSRs.
1803 */
1804 if (fExtrn & ( CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS
1805 | CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
1806 {
1807 union
1808 {
1809 struct kvm_msrs Core;
1810 uint64_t padding[2 + sizeof(struct kvm_msr_entry) * 32];
1811 } uBuf;
1812 uint32_t iMsr = 0;
1813 PCPUMCTXMSRS const pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1814
1815#define ADD_MSR(a_Msr, a_uValue) do { \
1816 Assert(iMsr < 32); \
1817 uBuf.Core.entries[iMsr].index = (a_Msr); \
1818 uBuf.Core.entries[iMsr].reserved = 0; \
1819 uBuf.Core.entries[iMsr].data = (a_uValue); \
1820 iMsr += 1; \
1821 } while (0)
1822
1823 if (fExtrn & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1824 ADD_MSR(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
1825 if (fExtrn & CPUMCTX_EXTRN_SYSCALL_MSRS)
1826 {
1827 ADD_MSR(MSR_K6_STAR, pCtx->msrSTAR);
1828 ADD_MSR(MSR_K8_LSTAR, pCtx->msrLSTAR);
1829 ADD_MSR(MSR_K8_CSTAR, pCtx->msrCSTAR);
1830 ADD_MSR(MSR_K8_SF_MASK, pCtx->msrSFMASK);
1831 }
1832 if (fExtrn & CPUMCTX_EXTRN_SYSENTER_MSRS)
1833 {
1834 ADD_MSR(MSR_IA32_SYSENTER_CS, pCtx->SysEnter.cs);
1835 ADD_MSR(MSR_IA32_SYSENTER_EIP, pCtx->SysEnter.eip);
1836 ADD_MSR(MSR_IA32_SYSENTER_ESP, pCtx->SysEnter.esp);
1837 }
1838 if (fExtrn & CPUMCTX_EXTRN_TSC_AUX)
1839 ADD_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
1840 if (fExtrn & CPUMCTX_EXTRN_OTHER_MSRS)
1841 {
1842 ADD_MSR(MSR_IA32_CR_PAT, pCtx->msrPAT);
1843 /** @todo What do we _have_ to add here?
1844 * We also have: Mttr*, MiscEnable, FeatureControl. */
1845 }
1846
1847 uBuf.Core.pad = 0;
1848 uBuf.Core.nmsrs = iMsr;
1849 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_MSRS, &uBuf);
1850 AssertMsgReturn(rc == (int)iMsr,
1851 ("rc=%d iMsr=%d (->%#x) errno=%d\n",
1852 rc, iMsr, (uint32_t)rc < iMsr ? uBuf.Core.entries[rc].index : 0, errno),
1853 VERR_NEM_IPE_3);
1854 }
1855
1856 /*
1857 * Interruptibility state.
1858 *
1859 * Note! This I/O control function sets most fields passed in, so when
1860 * raising an interrupt, NMI, SMI or exception, this must be done
1861 * by the code doing the rasing or we'll overwrite it here.
1862 */
1863 if (fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
1864 {
1865 Assert( (fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
1866 == (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI));
1867
1868 struct kvm_vcpu_events KvmEvents = {0};
1869
1870 KvmEvents.flags = KVM_VCPUEVENT_VALID_SHADOW;
1871 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1872 {
1873 if (pRun->s.regs.regs.rip == EMGetInhibitInterruptsPC(pVCpu))
1874 KvmEvents.interrupt.shadow = KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI;
1875 else
1876 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1877 }
1878
1879 /* No flag - this is updated unconditionally. */
1880 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
1881 KvmEvents.nmi.masked = 1;
1882
1883 if (TRPMHasTrap(pVCpu))
1884 {
1885 TRPMEVENT enmType = TRPM_32BIT_HACK;
1886 uint8_t bTrapNo = 0;
1887 TRPMQueryTrap(pVCpu, &bTrapNo, &enmType);
1888 Log(("nemHCLnxExportState: Pending trap: bTrapNo=%#x enmType=%d\n", bTrapNo, enmType));
1889 if ( enmType == TRPM_HARDWARE_INT
1890 || enmType == TRPM_SOFTWARE_INT)
1891 {
1892 KvmEvents.interrupt.soft = enmType == TRPM_SOFTWARE_INT;
1893 KvmEvents.interrupt.nr = bTrapNo;
1894 KvmEvents.interrupt.injected = 1;
1895 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExportPendingInterrupt);
1896 TRPMResetTrap(pVCpu);
1897 }
1898 else
1899 AssertFailed();
1900 }
1901
1902 int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_VCPU_EVENTS, &KvmEvents);
1903 AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_3);
1904 }
1905
1906 /*
1907 * KVM now owns all the state.
1908 */
1909 pCtx->fExtrn = CPUMCTX_EXTRN_KEEPER_NEM | CPUMCTX_EXTRN_ALL;
1910
1911 RT_NOREF(pVM);
1912 return VINF_SUCCESS;
1913}
1914
1915
1916/**
1917 * Query the CPU tick counter and optionally the TSC_AUX MSR value.
1918 *
1919 * @returns VBox status code.
1920 * @param pVCpu The cross context CPU structure.
1921 * @param pcTicks Where to return the CPU tick count.
1922 * @param puAux Where to return the TSC_AUX register value.
1923 */
1924VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux)
1925{
1926 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick);
1927 // KVM_GET_CLOCK?
1928 RT_NOREF(pVCpu, pcTicks, puAux);
1929 return VINF_SUCCESS;
1930}
1931
1932
1933/**
1934 * Resumes CPU clock (TSC) on all virtual CPUs.
1935 *
1936 * This is called by TM when the VM is started, restored, resumed or similar.
1937 *
1938 * @returns VBox status code.
1939 * @param pVM The cross context VM structure.
1940 * @param pVCpu The cross context CPU structure of the calling EMT.
1941 * @param uPausedTscValue The TSC value at the time of pausing.
1942 */
1943VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue)
1944{
1945 // KVM_SET_CLOCK?
1946 RT_NOREF(pVM, pVCpu, uPausedTscValue);
1947 return VINF_SUCCESS;
1948}
1949
1950
1951VMM_INT_DECL(uint32_t) NEMHCGetFeatures(PVMCC pVM)
1952{
1953 RT_NOREF(pVM);
1954 return NEM_FEAT_F_NESTED_PAGING
1955 | NEM_FEAT_F_FULL_GST_EXEC
1956 | NEM_FEAT_F_XSAVE_XRSTOR;
1957}
1958
1959
1960
1961/*********************************************************************************************************************************
1962* Execution *
1963*********************************************************************************************************************************/
1964
1965
1966VMMR3_INT_DECL(bool) NEMR3CanExecuteGuest(PVM pVM, PVMCPU pVCpu)
1967{
1968 /*
1969 * Only execute when the A20 gate is enabled as I cannot immediately
1970 * spot any A20 support in KVM.
1971 */
1972 RT_NOREF(pVM);
1973 Assert(VM_IS_NEM_ENABLED(pVM));
1974 return PGMPhysIsA20Enabled(pVCpu);
1975}
1976
1977
1978bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
1979{
1980 NOREF(pVM); NOREF(pVCpu); NOREF(fEnable);
1981 return false;
1982}
1983
1984
1985void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
1986{
1987 int rc = RTThreadPoke(pVCpu->hThread);
1988 LogFlow(("nemR3NativeNotifyFF: #%u -> %Rrc\n", pVCpu->idCpu, rc));
1989 AssertRC(rc);
1990 RT_NOREF(pVM, fFlags);
1991}
1992
1993
1994DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChanged(PVM pVM, bool fUseDebugLoop)
1995{
1996 RT_NOREF(pVM, fUseDebugLoop);
1997 return false;
1998}
1999
2000
2001DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu, bool fUseDebugLoop)
2002{
2003 RT_NOREF(pVM, pVCpu, fUseDebugLoop);
2004 return false;
2005}
2006
2007
2008/**
2009 * Deals with pending interrupt FFs prior to executing guest code.
2010 */
2011static VBOXSTRICTRC nemHCLnxHandleInterruptFF(PVM pVM, PVMCPU pVCpu, struct kvm_run *pRun)
2012{
2013 RT_NOREF_PV(pVM);
2014
2015 /*
2016 * Do not doing anything if TRPM has something pending already as we can
2017 * only inject one event per KVM_RUN call. This can only happend if we
2018 * can directly from the loop in EM, so the inhibit bits must be internal.
2019 */
2020 if (!TRPMHasTrap(pVCpu))
2021 { /* semi likely */ }
2022 else
2023 {
2024 Assert(!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI)));
2025 Log8(("nemHCLnxHandleInterruptFF: TRPM has an pending event already\n"));
2026 return VINF_SUCCESS;
2027 }
2028
2029 /*
2030 * First update APIC. We ASSUME this won't need TPR/CR8.
2031 */
2032 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
2033 {
2034 APICUpdatePendingInterrupts(pVCpu);
2035 if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC
2036 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
2037 return VINF_SUCCESS;
2038 }
2039
2040 /*
2041 * We don't currently implement SMIs.
2042 */
2043 AssertReturn(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_SMI), VERR_NEM_IPE_0);
2044
2045 /*
2046 * In KVM the CPUMCTX_EXTRN_INHIBIT_INT and CPUMCTX_EXTRN_INHIBIT_NMI states
2047 * are tied together with interrupt and NMI delivery, so we must get and
2048 * synchronize these all in one go and set both CPUMCTX_EXTRN_INHIBIT_XXX flags.
2049 * If we don't we may lose the interrupt/NMI we marked pending here when the
2050 * state is exported again before execution.
2051 */
2052 struct kvm_vcpu_events KvmEvents = {0};
2053 int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_VCPU_EVENTS, &KvmEvents);
2054 AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
2055
2056 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RIP))
2057 pRun->s.regs.regs.rip = pVCpu->cpum.GstCtx.rip;
2058
2059 KvmEvents.flags |= KVM_VCPUEVENT_VALID_SHADOW;
2060 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_INHIBIT_INT))
2061 {
2062 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2063 KvmEvents.interrupt.shadow = 0;
2064 else if (EMGetInhibitInterruptsPC(pVCpu) == pRun->s.regs.regs.rip)
2065 KvmEvents.interrupt.shadow = KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI;
2066 else
2067 {
2068 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2069 KvmEvents.interrupt.shadow = 0;
2070 }
2071 }
2072 else if (KvmEvents.interrupt.shadow)
2073 EMSetInhibitInterruptsPC(pVCpu, pRun->s.regs.regs.rip);
2074 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2075 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2076
2077 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_INHIBIT_NMI))
2078 KvmEvents.nmi.masked = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS) ? 1 : 0;
2079 else if (KvmEvents.nmi.masked)
2080 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
2081 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
2082 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
2083
2084 /* KVM will own the INT + NMI inhibit state soon: */
2085 pVCpu->cpum.GstCtx.fExtrn = (pVCpu->cpum.GstCtx.fExtrn & ~CPUMCTX_EXTRN_KEEPER_MASK)
2086 | CPUMCTX_EXTRN_KEEPER_NEM | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI;
2087
2088 /*
2089 * NMI? Try deliver it first.
2090 */
2091 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))
2092 {
2093#if 0
2094 int rcLnx = ioctl(pVCpu->nem.s.fdVm, KVM_NMI, 0UL);
2095 AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
2096#else
2097 KvmEvents.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
2098 KvmEvents.nmi.pending = 1;
2099#endif
2100 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
2101 Log8(("Queuing NMI on %u\n", pVCpu->idCpu));
2102 }
2103
2104 /*
2105 * APIC or PIC interrupt?
2106 */
2107 if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
2108 {
2109 if (pRun->s.regs.regs.rflags & X86_EFL_IF)
2110 {
2111 if (KvmEvents.interrupt.shadow == 0)
2112 {
2113 /*
2114 * If CR8 is in KVM, update the VBox copy so PDMGetInterrupt will
2115 * work correctly.
2116 */
2117 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_APIC_TPR)
2118 APICSetTpr(pVCpu, (uint8_t)pRun->cr8 << 4);
2119
2120 uint8_t bInterrupt;
2121 int rc = PDMGetInterrupt(pVCpu, &bInterrupt);
2122 if (RT_SUCCESS(rc))
2123 {
2124 Assert(KvmEvents.interrupt.injected == false);
2125#if 0
2126 int rcLnx = ioctl(pVCpu->nem.s.fdVm, KVM_INTERRUPT, (unsigned long)bInterrupt);
2127 AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
2128#else
2129 KvmEvents.interrupt.nr = bInterrupt;
2130 KvmEvents.interrupt.soft = false;
2131 KvmEvents.interrupt.injected = true;
2132#endif
2133 Log8(("Queuing interrupt %#x on %u: %04x:%08RX64 efl=%#x\n", bInterrupt, pVCpu->idCpu,
2134 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eflags));
2135 }
2136 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR) /** @todo this isn't extremely efficient if we get a lot of exits... */
2137 Log8(("VERR_APIC_INTR_MASKED_BY_TPR\n")); /* We'll get a TRP exit - no interrupt window needed. */
2138 else
2139 Log8(("PDMGetInterrupt failed -> %Rrc\n", rc));
2140 }
2141 else
2142 {
2143 pRun->request_interrupt_window = 1;
2144 Log8(("Interrupt window pending on %u (#2)\n", pVCpu->idCpu));
2145 }
2146 }
2147 else
2148 {
2149 pRun->request_interrupt_window = 1;
2150 Log8(("Interrupt window pending on %u (#1)\n", pVCpu->idCpu));
2151 }
2152 }
2153
2154 /*
2155 * Now, update the state.
2156 */
2157 /** @todo skip when possible... */
2158 rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_VCPU_EVENTS, &KvmEvents);
2159 AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
2160
2161 return VINF_SUCCESS;
2162}
2163
2164
2165/**
2166 * Handles KVM_EXIT_INTERNAL_ERROR.
2167 */
2168static VBOXSTRICTRC nemR3LnxHandleInternalError(PVMCPU pVCpu, struct kvm_run *pRun)
2169{
2170 Log(("NEM: KVM_EXIT_INTERNAL_ERROR! suberror=%#x (%d) ndata=%u data=%.*Rhxs\n", pRun->internal.suberror,
2171 pRun->internal.suberror, pRun->internal.ndata, sizeof(pRun->internal.data), &pRun->internal.data[0]));
2172
2173 /*
2174 * Deal with each suberror, returning if we don't want IEM to handle it.
2175 */
2176 switch (pRun->internal.suberror)
2177 {
2178 case KVM_INTERNAL_ERROR_EMULATION:
2179 {
2180 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTERNAL_ERROR_EMULATION),
2181 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2182 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInternalErrorEmulation);
2183 break;
2184 }
2185
2186 case KVM_INTERNAL_ERROR_SIMUL_EX:
2187 case KVM_INTERNAL_ERROR_DELIVERY_EV:
2188 case KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON:
2189 default:
2190 {
2191 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTERNAL_ERROR_FATAL),
2192 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2193 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInternalErrorFatal);
2194 const char *pszName;
2195 switch (pRun->internal.suberror)
2196 {
2197 case KVM_INTERNAL_ERROR_EMULATION: pszName = "KVM_INTERNAL_ERROR_EMULATION"; break;
2198 case KVM_INTERNAL_ERROR_SIMUL_EX: pszName = "KVM_INTERNAL_ERROR_SIMUL_EX"; break;
2199 case KVM_INTERNAL_ERROR_DELIVERY_EV: pszName = "KVM_INTERNAL_ERROR_DELIVERY_EV"; break;
2200 case KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON: pszName = "KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON"; break;
2201 default: pszName = "unknown"; break;
2202 }
2203 LogRel(("NEM: KVM_EXIT_INTERNAL_ERROR! suberror=%#x (%s) ndata=%u data=%.*Rhxs\n", pRun->internal.suberror, pszName,
2204 pRun->internal.ndata, sizeof(pRun->internal.data), &pRun->internal.data[0]));
2205 return VERR_NEM_IPE_0;
2206 }
2207 }
2208
2209 /*
2210 * Execute instruction in IEM and try get on with it.
2211 */
2212 Log2(("nemR3LnxHandleInternalError: Executing instruction at %04x:%08RX64 in IEM\n",
2213 pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip));
2214 VBOXSTRICTRC rcStrict = nemHCLnxImportState(pVCpu,
2215 IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_INHIBIT_INT
2216 | CPUMCTX_EXTRN_INHIBIT_NMI,
2217 &pVCpu->cpum.GstCtx, pRun);
2218 if (RT_SUCCESS(rcStrict))
2219 rcStrict = IEMExecOne(pVCpu);
2220 return rcStrict;
2221}
2222
2223
2224/**
2225 * Handles KVM_EXIT_IO.
2226 */
2227static VBOXSTRICTRC nemHCLnxHandleExitIo(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun)
2228{
2229 /*
2230 * Input validation.
2231 */
2232 Assert(pRun->io.count > 0);
2233 Assert(pRun->io.size == 1 || pRun->io.size == 2 || pRun->io.size == 4);
2234 Assert(pRun->io.direction == KVM_EXIT_IO_IN || pRun->io.direction == KVM_EXIT_IO_OUT);
2235 Assert(pRun->io.data_offset < pVM->nem.s.cbVCpuMmap);
2236 Assert(pRun->io.data_offset + pRun->io.size * pRun->io.count <= pVM->nem.s.cbVCpuMmap);
2237
2238 /*
2239 * We cannot easily act on the exit history here, because the I/O port
2240 * exit is stateful and the instruction will be completed in the next
2241 * KVM_RUN call. There seems no way to avoid this.
2242 */
2243 EMHistoryAddExit(pVCpu,
2244 pRun->io.count == 1
2245 ? ( pRun->io.direction == KVM_EXIT_IO_IN
2246 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_READ)
2247 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_WRITE))
2248 : ( pRun->io.direction == KVM_EXIT_IO_IN
2249 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_READ)
2250 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_WRITE)),
2251 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2252
2253 /*
2254 * Do the requested job.
2255 */
2256 VBOXSTRICTRC rcStrict;
2257 RTPTRUNION uPtrData;
2258 uPtrData.pu8 = (uint8_t *)pRun + pRun->io.data_offset;
2259 if (pRun->io.count == 1)
2260 {
2261 if (pRun->io.direction == KVM_EXIT_IO_IN)
2262 {
2263 uint32_t uValue = 0;
2264 rcStrict = IOMIOPortRead(pVM, pVCpu, pRun->io.port, &uValue, pRun->io.size);
2265 Log4(("IOExit/%u: %04x:%08RX64: IN %#x LB %u -> %#x, rcStrict=%Rrc\n",
2266 pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
2267 pRun->io.port, pRun->io.size, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
2268 if (IOM_SUCCESS(rcStrict))
2269 {
2270 if (pRun->io.size == 4)
2271 *uPtrData.pu32 = uValue;
2272 else if (pRun->io.size == 2)
2273 *uPtrData.pu16 = (uint16_t)uValue;
2274 else
2275 *uPtrData.pu8 = (uint8_t)uValue;
2276 }
2277 }
2278 else
2279 {
2280 uint32_t const uValue = pRun->io.size == 4 ? *uPtrData.pu32
2281 : pRun->io.size == 2 ? *uPtrData.pu16
2282 : *uPtrData.pu8;
2283 rcStrict = IOMIOPortWrite(pVM, pVCpu, pRun->io.port, uValue, pRun->io.size);
2284 Log4(("IOExit/%u: %04x:%08RX64: OUT %#x, %#x LB %u rcStrict=%Rrc\n",
2285 pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
2286 pRun->io.port, uValue, pRun->io.size, VBOXSTRICTRC_VAL(rcStrict) ));
2287 }
2288 }
2289 else
2290 {
2291 uint32_t cTransfers = pRun->io.count;
2292 if (pRun->io.direction == KVM_EXIT_IO_IN)
2293 {
2294 rcStrict = IOMIOPortReadString(pVM, pVCpu, pRun->io.port, uPtrData.pv, &cTransfers, pRun->io.size);
2295 Log4(("IOExit/%u: %04x:%08RX64: REP INS %#x LB %u * %#x times -> rcStrict=%Rrc cTransfers=%d\n",
2296 pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
2297 pRun->io.port, pRun->io.size, pRun->io.count, VBOXSTRICTRC_VAL(rcStrict), cTransfers ));
2298 }
2299 else
2300 {
2301 rcStrict = IOMIOPortWriteString(pVM, pVCpu, pRun->io.port, uPtrData.pv, &cTransfers, pRun->io.size);
2302 Log4(("IOExit/%u: %04x:%08RX64: REP OUTS %#x LB %u * %#x times -> rcStrict=%Rrc cTransfers=%d\n",
2303 pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
2304 pRun->io.port, pRun->io.size, pRun->io.count, VBOXSTRICTRC_VAL(rcStrict), cTransfers ));
2305 }
2306 Assert(cTransfers == 0);
2307 }
2308 return rcStrict;
2309}
2310
2311
2312/**
2313 * Handles KVM_EXIT_MMIO.
2314 */
2315static VBOXSTRICTRC nemHCLnxHandleExitMmio(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun)
2316{
2317 /*
2318 * Input validation.
2319 */
2320 Assert(pRun->mmio.len <= sizeof(pRun->mmio.data));
2321 Assert(pRun->mmio.is_write <= 1);
2322
2323 /*
2324 * We cannot easily act on the exit history here, because the MMIO port
2325 * exit is stateful and the instruction will be completed in the next
2326 * KVM_RUN call. There seems no way to circumvent this.
2327 */
2328 EMHistoryAddExit(pVCpu,
2329 pRun->mmio.is_write
2330 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE)
2331 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ),
2332 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2333
2334 /*
2335 * Do the requested job.
2336 */
2337 VBOXSTRICTRC rcStrict;
2338 if (pRun->mmio.is_write)
2339 {
2340 rcStrict = PGMPhysWrite(pVM, pRun->mmio.phys_addr, pRun->mmio.data, pRun->mmio.len, PGMACCESSORIGIN_HM);
2341 Log4(("MmioExit/%u: %04x:%08RX64: WRITE %#x LB %u, %.*Rhxs -> rcStrict=%Rrc\n",
2342 pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
2343 pRun->mmio.phys_addr, pRun->mmio.len, pRun->mmio.len, pRun->mmio.data, VBOXSTRICTRC_VAL(rcStrict) ));
2344 }
2345 else
2346 {
2347 rcStrict = PGMPhysRead(pVM, pRun->mmio.phys_addr, pRun->mmio.data, pRun->mmio.len, PGMACCESSORIGIN_HM);
2348 Log4(("MmioExit/%u: %04x:%08RX64: READ %#x LB %u -> %.*Rhxs rcStrict=%Rrc\n",
2349 pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
2350 pRun->mmio.phys_addr, pRun->mmio.len, pRun->mmio.len, pRun->mmio.data, VBOXSTRICTRC_VAL(rcStrict) ));
2351 }
2352 return rcStrict;
2353}
2354
2355
2356/**
2357 * Handles KVM_EXIT_RDMSR
2358 */
2359static VBOXSTRICTRC nemHCLnxHandleExitRdMsr(PVMCPUCC pVCpu, struct kvm_run *pRun)
2360{
2361 /*
2362 * Input validation.
2363 */
2364 Assert( pRun->msr.reason == KVM_MSR_EXIT_REASON_INVAL
2365 || pRun->msr.reason == KVM_MSR_EXIT_REASON_UNKNOWN
2366 || pRun->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
2367
2368 /*
2369 * We cannot easily act on the exit history here, because the MSR exit is
2370 * stateful and the instruction will be completed in the next KVM_RUN call.
2371 * There seems no way to circumvent this.
2372 */
2373 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_READ),
2374 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2375
2376 /*
2377 * Do the requested job.
2378 */
2379 uint64_t uValue = 0;
2380 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pRun->msr.index, &uValue);
2381 pRun->msr.data = uValue;
2382 if (rcStrict != VERR_CPUM_RAISE_GP_0)
2383 {
2384 Log3(("MsrRead/%u: %04x:%08RX64: msr=%#010x (reason=%#x) -> %#RX64 rcStrict=%Rrc\n", pVCpu->idCpu,
2385 pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.reason, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
2386 pRun->msr.error = 0;
2387 }
2388 else
2389 {
2390 Log3(("MsrRead/%u: %04x:%08RX64: msr=%#010x (reason%#x)-> %#RX64 rcStrict=#GP!\n", pVCpu->idCpu,
2391 pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.reason, uValue));
2392 pRun->msr.error = 1;
2393 rcStrict = VINF_SUCCESS;
2394 }
2395 return rcStrict;
2396}
2397
2398
2399/**
2400 * Handles KVM_EXIT_WRMSR
2401 */
2402static VBOXSTRICTRC nemHCLnxHandleExitWrMsr(PVMCPUCC pVCpu, struct kvm_run *pRun)
2403{
2404 /*
2405 * Input validation.
2406 */
2407 Assert( pRun->msr.reason == KVM_MSR_EXIT_REASON_INVAL
2408 || pRun->msr.reason == KVM_MSR_EXIT_REASON_UNKNOWN
2409 || pRun->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
2410
2411 /*
2412 * We cannot easily act on the exit history here, because the MSR exit is
2413 * stateful and the instruction will be completed in the next KVM_RUN call.
2414 * There seems no way to circumvent this.
2415 */
2416 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_WRITE),
2417 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2418
2419 /*
2420 * Do the requested job.
2421 */
2422 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pRun->msr.index, pRun->msr.data);
2423 if (rcStrict != VERR_CPUM_RAISE_GP_0)
2424 {
2425 Log3(("MsrWrite/%u: %04x:%08RX64: msr=%#010x := %#RX64 (reason=%#x) -> rcStrict=%Rrc\n", pVCpu->idCpu,
2426 pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.data, pRun->msr.reason, VBOXSTRICTRC_VAL(rcStrict) ));
2427 pRun->msr.error = 0;
2428 }
2429 else
2430 {
2431 Log3(("MsrWrite/%u: %04x:%08RX64: msr=%#010x := %#RX64 (reason%#x)-> rcStrict=#GP!\n", pVCpu->idCpu,
2432 pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.data, pRun->msr.reason));
2433 pRun->msr.error = 1;
2434 rcStrict = VINF_SUCCESS;
2435 }
2436 return rcStrict;
2437}
2438
2439
2440
2441static VBOXSTRICTRC nemHCLnxHandleExit(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun, bool *pfStatefulExit)
2442{
2443 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitTotal);
2444 switch (pRun->exit_reason)
2445 {
2446 case KVM_EXIT_EXCEPTION:
2447 AssertFailed();
2448 break;
2449
2450 case KVM_EXIT_IO:
2451 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIo);
2452 *pfStatefulExit = true;
2453 return nemHCLnxHandleExitIo(pVM, pVCpu, pRun);
2454
2455 case KVM_EXIT_MMIO:
2456 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMmio);
2457 *pfStatefulExit = true;
2458 return nemHCLnxHandleExitMmio(pVM, pVCpu, pRun);
2459
2460 case KVM_EXIT_IRQ_WINDOW_OPEN:
2461 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTTERRUPT_WINDOW),
2462 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2463 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIrqWindowOpen);
2464 Log5(("IrqWinOpen/%u: %d\n", pVCpu->idCpu, pRun->request_interrupt_window));
2465 pRun->request_interrupt_window = 0;
2466 return VINF_SUCCESS;
2467
2468 case KVM_EXIT_SET_TPR:
2469 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitSetTpr);
2470 AssertFailed();
2471 break;
2472
2473 case KVM_EXIT_TPR_ACCESS:
2474 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitTprAccess);
2475 AssertFailed();
2476 break;
2477
2478 case KVM_EXIT_X86_RDMSR:
2479 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitRdMsr);
2480 *pfStatefulExit = true;
2481 return nemHCLnxHandleExitRdMsr(pVCpu, pRun);
2482
2483 case KVM_EXIT_X86_WRMSR:
2484 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitWrMsr);
2485 *pfStatefulExit = true;
2486 return nemHCLnxHandleExitWrMsr(pVCpu, pRun);
2487
2488 case KVM_EXIT_HLT:
2489 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_HALT),
2490 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2491 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHalt);
2492 Log5(("Halt/%u\n", pVCpu->idCpu));
2493 return VINF_EM_HALT;
2494
2495 case KVM_EXIT_INTR: /* EINTR */
2496 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTERRUPTED),
2497 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2498 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIntr);
2499 Log5(("Intr/%u\n", pVCpu->idCpu));
2500 return VINF_SUCCESS;
2501
2502 case KVM_EXIT_HYPERCALL:
2503 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHypercall);
2504 AssertFailed();
2505 break;
2506
2507 case KVM_EXIT_DEBUG:
2508 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitDebug);
2509 AssertFailed();
2510 break;
2511
2512 case KVM_EXIT_SYSTEM_EVENT:
2513 AssertFailed();
2514 break;
2515 case KVM_EXIT_IOAPIC_EOI:
2516 AssertFailed();
2517 break;
2518 case KVM_EXIT_HYPERV:
2519 AssertFailed();
2520 break;
2521
2522 case KVM_EXIT_DIRTY_RING_FULL:
2523 AssertFailed();
2524 break;
2525 case KVM_EXIT_AP_RESET_HOLD:
2526 AssertFailed();
2527 break;
2528 case KVM_EXIT_X86_BUS_LOCK:
2529 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitBusLock);
2530 AssertFailed();
2531 break;
2532
2533
2534 case KVM_EXIT_SHUTDOWN:
2535 AssertFailed();
2536 break;
2537
2538 case KVM_EXIT_FAIL_ENTRY:
2539 LogRel(("NEM: KVM_EXIT_FAIL_ENTRY! hardware_entry_failure_reason=%#x cpu=%#x\n",
2540 pRun->fail_entry.hardware_entry_failure_reason, pRun->fail_entry.cpu));
2541 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_FAILED_ENTRY),
2542 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2543 return VERR_NEM_IPE_1;
2544
2545 case KVM_EXIT_INTERNAL_ERROR:
2546 /* we're counting sub-reasons inside the function. */
2547 return nemR3LnxHandleInternalError(pVCpu, pRun);
2548
2549 /*
2550 * Foreign and unknowns.
2551 */
2552 case KVM_EXIT_NMI:
2553 AssertLogRelMsgFailedReturn(("KVM_EXIT_NMI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2554 case KVM_EXIT_EPR:
2555 AssertLogRelMsgFailedReturn(("KVM_EXIT_EPR on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2556 case KVM_EXIT_WATCHDOG:
2557 AssertLogRelMsgFailedReturn(("KVM_EXIT_WATCHDOG on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2558 case KVM_EXIT_ARM_NISV:
2559 AssertLogRelMsgFailedReturn(("KVM_EXIT_ARM_NISV on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2560 case KVM_EXIT_S390_STSI:
2561 AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_STSI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2562 case KVM_EXIT_S390_TSCH:
2563 AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_TSCH on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2564 case KVM_EXIT_OSI:
2565 AssertLogRelMsgFailedReturn(("KVM_EXIT_OSI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2566 case KVM_EXIT_PAPR_HCALL:
2567 AssertLogRelMsgFailedReturn(("KVM_EXIT_PAPR_HCALL on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2568 case KVM_EXIT_S390_UCONTROL:
2569 AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_UCONTROL on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2570 case KVM_EXIT_DCR:
2571 AssertLogRelMsgFailedReturn(("KVM_EXIT_DCR on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2572 case KVM_EXIT_S390_SIEIC:
2573 AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_SIEIC on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2574 case KVM_EXIT_S390_RESET:
2575 AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_RESET on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2576 case KVM_EXIT_UNKNOWN:
2577 AssertLogRelMsgFailedReturn(("KVM_EXIT_UNKNOWN on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2578 case KVM_EXIT_XEN:
2579 AssertLogRelMsgFailedReturn(("KVM_EXIT_XEN on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2580 default:
2581 AssertLogRelMsgFailedReturn(("Unknown exit reason %u on VCpu #%u at %04x:%RX64!\n", pRun->exit_reason, pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2582 }
2583
2584 RT_NOREF(pVM, pVCpu, pRun);
2585 return VERR_NOT_IMPLEMENTED;
2586}
2587
2588
2589VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu)
2590{
2591 /*
2592 * Try switch to NEM runloop state.
2593 */
2594 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
2595 { /* likely */ }
2596 else
2597 {
2598 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
2599 LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
2600 return VINF_SUCCESS;
2601 }
2602
2603 /*
2604 * The run loop.
2605 */
2606 struct kvm_run * const pRun = pVCpu->nem.s.pRun;
2607 const bool fSingleStepping = DBGFIsStepping(pVCpu);
2608 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
2609 bool fStatefulExit = false; /* For MMIO and IO exits. */
2610 for (unsigned iLoop = 0;; iLoop++)
2611 {
2612 /*
2613 * Pending interrupts or such? Need to check and deal with this prior
2614 * to the state syncing.
2615 */
2616 if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_PIC
2617 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
2618 {
2619 /* Try inject interrupt. */
2620 rcStrict = nemHCLnxHandleInterruptFF(pVM, pVCpu, pRun);
2621 if (rcStrict == VINF_SUCCESS)
2622 { /* likely */ }
2623 else
2624 {
2625 LogFlow(("NEM/%u: breaking: nemHCLnxHandleInterruptFF -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
2626 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
2627 break;
2628 }
2629 }
2630
2631 /*
2632 * Do not execute in KVM if the A20 isn't enabled.
2633 */
2634 if (PGMPhysIsA20Enabled(pVCpu))
2635 { /* likely */ }
2636 else
2637 {
2638 rcStrict = VINF_EM_RESCHEDULE_REM;
2639 LogFlow(("NEM/%u: breaking: A20 disabled\n", pVCpu->idCpu));
2640 break;
2641 }
2642
2643 /*
2644 * Ensure KVM has the whole state.
2645 */
2646 if ((pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL) != CPUMCTX_EXTRN_ALL)
2647 {
2648 int rc2 = nemHCLnxExportState(pVM, pVCpu, &pVCpu->cpum.GstCtx, pRun);
2649 AssertRCReturn(rc2, rc2);
2650 }
2651
2652 /*
2653 * Poll timers and run for a bit.
2654 *
2655 * With the VID approach (ring-0 or ring-3) we can specify a timeout here,
2656 * so we take the time of the next timer event and uses that as a deadline.
2657 * The rounding heuristics are "tuned" so that rhel5 (1K timer) will boot fine.
2658 */
2659 /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
2660 * the whole polling job when timers have changed... */
2661 uint64_t offDeltaIgnored;
2662 uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
2663 if ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
2664 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2665 {
2666 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_WAIT, VMCPUSTATE_STARTED_EXEC_NEM))
2667 {
2668 LogFlow(("NEM/%u: Entry @ %04x:%08RX64 IF=%d EFL=%#RX64 SS:RSP=%04x:%08RX64 cr0=%RX64\n",
2669 pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
2670 !!(pRun->s.regs.regs.rflags & X86_EFL_IF), pRun->s.regs.regs.rflags,
2671 pRun->s.regs.sregs.ss.selector, pRun->s.regs.regs.rsp, pRun->s.regs.sregs.cr0));
2672 TMNotifyStartOfExecution(pVM, pVCpu);
2673
2674 int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_RUN, 0UL);
2675
2676 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
2677 TMNotifyEndOfExecution(pVM, pVCpu, ASMReadTSC());
2678
2679#ifdef LOG_ENABLED
2680 if (LogIsFlowEnabled())
2681 {
2682 struct kvm_mp_state MpState = {UINT32_MAX};
2683 ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_MP_STATE, &MpState);
2684 LogFlow(("NEM/%u: Exit @ %04x:%08RX64 IF=%d EFL=%#RX64 CR8=%#x Reason=%#x IrqReady=%d Flags=%#x %#lx\n", pVCpu->idCpu,
2685 pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->if_flag,
2686 pRun->s.regs.regs.rflags, pRun->s.regs.sregs.cr8, pRun->exit_reason,
2687 pRun->ready_for_interrupt_injection, pRun->flags, MpState.mp_state));
2688 }
2689#endif
2690 fStatefulExit = false;
2691 if (RT_LIKELY(rcLnx == 0 || errno == EINTR))
2692 {
2693 /*
2694 * Deal with the exit.
2695 */
2696 rcStrict = nemHCLnxHandleExit(pVM, pVCpu, pRun, &fStatefulExit);
2697 if (rcStrict == VINF_SUCCESS)
2698 { /* hopefully likely */ }
2699 else
2700 {
2701 LogFlow(("NEM/%u: breaking: nemHCLnxHandleExit -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
2702 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
2703 break;
2704 }
2705 }
2706 else
2707 {
2708 int rc2 = RTErrConvertFromErrno(errno);
2709 AssertLogRelMsgFailedReturn(("KVM_RUN failed: rcLnx=%d errno=%u rc=%Rrc\n", rcLnx, errno, rc2), rc2);
2710 }
2711
2712 /*
2713 * If no relevant FFs are pending, loop.
2714 */
2715 if ( !VM_FF_IS_ANY_SET( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
2716 && !VMCPU_FF_IS_ANY_SET(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
2717 { /* likely */ }
2718 else
2719 {
2720
2721 /** @todo Try handle pending flags, not just return to EM loops. Take care
2722 * not to set important RCs here unless we've handled an exit. */
2723 LogFlow(("NEM/%u: breaking: pending FF (%#x / %#RX64)\n",
2724 pVCpu->idCpu, pVM->fGlobalForcedActions, (uint64_t)pVCpu->fLocalForcedActions));
2725 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPost);
2726 break;
2727 }
2728 }
2729 else
2730 {
2731 LogFlow(("NEM/%u: breaking: canceled %d (pre exec)\n", pVCpu->idCpu, VMCPU_GET_STATE(pVCpu) ));
2732 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnCancel);
2733 break;
2734 }
2735 }
2736 else
2737 {
2738 LogFlow(("NEM/%u: breaking: pending FF (pre exec)\n", pVCpu->idCpu));
2739 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPre);
2740 break;
2741 }
2742 } /* the run loop */
2743
2744
2745 /*
2746 * If the last exit was stateful, commit the state we provided before
2747 * returning to the EM loop so we have a consistent state and can safely
2748 * be rescheduled and whatnot. This may require us to make multiple runs
2749 * for larger MMIO and I/O operations. Sigh^3.
2750 *
2751 * Note! There is no 'ing way to reset the kernel side completion callback
2752 * for these stateful i/o exits. Very annoying interface.
2753 */
2754 /** @todo check how this works with string I/O and string MMIO. */
2755 if (fStatefulExit && RT_SUCCESS(rcStrict))
2756 {
2757 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn);
2758 uint32_t const uOrgExit = pRun->exit_reason;
2759 for (uint32_t i = 0; ; i++)
2760 {
2761 pRun->immediate_exit = 1;
2762 int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_RUN, 0UL);
2763 Log(("NEM/%u: Flushed stateful exit -> %d/%d exit_reason=%d\n", pVCpu->idCpu, rcLnx, errno, pRun->exit_reason));
2764 if (rcLnx == -1 && errno == EINTR)
2765 {
2766 switch (i)
2767 {
2768 case 0: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn1Loop); break;
2769 case 1: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn2Loops); break;
2770 case 2: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn3Loops); break;
2771 default: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn4PlusLoops); break;
2772 }
2773 break;
2774 }
2775 AssertLogRelMsgBreakStmt(rcLnx == 0 && pRun->exit_reason == uOrgExit,
2776 ("rcLnx=%d errno=%d exit_reason=%d uOrgExit=%d\n", rcLnx, errno, pRun->exit_reason, uOrgExit),
2777 rcStrict = VERR_NEM_IPE_6);
2778 VBOXSTRICTRC rcStrict2 = nemHCLnxHandleExit(pVM, pVCpu, pRun, &fStatefulExit);
2779 if (rcStrict2 == VINF_SUCCESS || rcStrict2 == rcStrict)
2780 { /* likely */ }
2781 else if (RT_FAILURE(rcStrict2))
2782 {
2783 rcStrict = rcStrict2;
2784 break;
2785 }
2786 else
2787 {
2788 AssertLogRelMsgBreakStmt(rcStrict == VINF_SUCCESS,
2789 ("rcStrict=%Rrc rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict), VBOXSTRICTRC_VAL(rcStrict2)),
2790 rcStrict = VERR_NEM_IPE_7);
2791 rcStrict = rcStrict2;
2792 }
2793 }
2794 pRun->immediate_exit = 0;
2795 }
2796
2797 /*
2798 * If the CPU is running, make sure to stop it before we try sync back the
2799 * state and return to EM. We don't sync back the whole state if we can help it.
2800 */
2801 if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
2802 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
2803
2804 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL)
2805 {
2806 /* Try anticipate what we might need. */
2807 uint64_t fImport = CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI /* Required for processing APIC,PIC,NMI & SMI FFs. */
2808 | IEM_CPUMCTX_EXTRN_MUST_MASK /*?*/;
2809 if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
2810 || RT_FAILURE(rcStrict))
2811 fImport = CPUMCTX_EXTRN_ALL;
2812# ifdef IN_RING0 /* Ring-3 I/O port access optimizations: */
2813 else if ( rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
2814 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
2815 fImport = CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS;
2816 else if (rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
2817 fImport = CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS;
2818# endif
2819 else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC
2820 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
2821 fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;
2822
2823 if (pVCpu->cpum.GstCtx.fExtrn & fImport)
2824 {
2825 int rc2 = nemHCLnxImportState(pVCpu, fImport, &pVCpu->cpum.GstCtx, pRun);
2826 if (RT_SUCCESS(rc2))
2827 pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
2828 else if (RT_SUCCESS(rcStrict))
2829 rcStrict = rc2;
2830 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
2831 pVCpu->cpum.GstCtx.fExtrn = 0;
2832 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
2833 }
2834 else
2835 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
2836 }
2837 else
2838 {
2839 pVCpu->cpum.GstCtx.fExtrn = 0;
2840 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
2841 }
2842
2843 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
2844 pVCpu->cpum.GstCtx.rflags, VBOXSTRICTRC_VAL(rcStrict) ));
2845 return rcStrict;
2846}
2847
2848
2849/** @page pg_nem_linux NEM/linux - Native Execution Manager, Linux.
2850 *
2851 * This is using KVM.
2852 *
2853 */
2854
Note: See TracBrowser for help on using the repository browser.

© 2023 Oracle
ContactPrivacy policyTerms of Use