VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/NEMR3Native-darwin.cpp@ 107801

Last change on this file since 107801 was 107801, checked in by vboxsync, 4 months ago

VMM/NEM,Main: Feed the cpu bug mitigation parameters to both HM and NEM. jiraref:VBP-947

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 181.7 KB
Line 
1/* $Id: NEMR3Native-darwin.cpp 107801 2025-01-16 00:23:19Z vboxsync $ */
2/** @file
3 * NEM - Native execution manager, native ring-3 macOS backend using Hypervisor.framework.
4 *
5 * Log group 2: Exit logging.
6 * Log group 3: Log context on exit.
7 * Log group 5: Ring-3 memory management
8 */
9
10/*
11 * Copyright (C) 2020-2024 Oracle and/or its affiliates.
12 *
13 * This file is part of VirtualBox base platform packages, as
14 * available from https://www.virtualbox.org.
15 *
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License
18 * as published by the Free Software Foundation, in version 3 of the
19 * License.
20 *
21 * This program is distributed in the hope that it will be useful, but
22 * WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 * General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, see <https://www.gnu.org/licenses>.
28 *
29 * SPDX-License-Identifier: GPL-3.0-only
30 */
31
32
33/*********************************************************************************************************************************
34* Header Files *
35*********************************************************************************************************************************/
36#define LOG_GROUP LOG_GROUP_NEM
37#define VMCPU_INCL_CPUM_GST_CTX
38#define CPUM_WITH_NONCONST_HOST_FEATURES /* required for initializing parts of the g_CpumHostFeatures structure here. */
39#include <VBox/vmm/nem.h>
40#include <VBox/vmm/iem.h>
41#include <VBox/vmm/em.h>
42#include <VBox/vmm/pdmapic.h>
43#include <VBox/vmm/pdm.h>
44#include <VBox/vmm/hm.h>
45#include <VBox/vmm/hm_vmx.h>
46#include <VBox/vmm/dbgftrace.h>
47#include <VBox/vmm/gcm.h>
48#include "VMXInternal.h"
49#include "NEMInternal.h"
50#include <VBox/vmm/vmcc.h>
51#include "dtrace/VBoxVMM.h"
52
53#include <iprt/asm.h>
54#include <iprt/ldr.h>
55#include <iprt/mem.h>
56#include <iprt/path.h>
57#include <iprt/string.h>
58#include <iprt/system.h>
59#include <iprt/utf16.h>
60
61#include <mach/mach_time.h>
62#include <mach/kern_return.h>
63
64
65/*********************************************************************************************************************************
66* Defined Constants And Macros *
67*********************************************************************************************************************************/
68/* No nested hwvirt (for now). */
69#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
70# undef VBOX_WITH_NESTED_HWVIRT_VMX
71#endif
72
73
74/** @name HV return codes.
75 * @{ */
76/** Operation was successful. */
77#define HV_SUCCESS 0
78/** An error occurred during operation. */
79#define HV_ERROR 0xfae94001
80/** The operation could not be completed right now, try again. */
81#define HV_BUSY 0xfae94002
82/** One of the parameters passed wis invalid. */
83#define HV_BAD_ARGUMENT 0xfae94003
84/** Not enough resources left to fulfill the operation. */
85#define HV_NO_RESOURCES 0xfae94005
86/** The device could not be found. */
87#define HV_NO_DEVICE 0xfae94006
88/** The operation is not supportd on this platform with this configuration. */
89#define HV_UNSUPPORTED 0xfae94007
90/** @} */
91
92
93/** @name HV memory protection flags.
94 * @{ */
95/** Memory is readable. */
96#define HV_MEMORY_READ RT_BIT_64(0)
97/** Memory is writeable. */
98#define HV_MEMORY_WRITE RT_BIT_64(1)
99/** Memory is executable. */
100#define HV_MEMORY_EXEC RT_BIT_64(2)
101/** @} */
102
103
104/** @name HV shadow VMCS protection flags.
105 * @{ */
106/** Shadow VMCS field is not accessible. */
107#define HV_SHADOW_VMCS_NONE 0
108/** Shadow VMCS fild is readable. */
109#define HV_SHADOW_VMCS_READ RT_BIT_64(0)
110/** Shadow VMCS field is writeable. */
111#define HV_SHADOW_VMCS_WRITE RT_BIT_64(1)
112/** @} */
113
114
115/** Default VM creation flags. */
116#define HV_VM_DEFAULT 0
117/** Default guest address space creation flags. */
118#define HV_VM_SPACE_DEFAULT 0
119/** Default vCPU creation flags. */
120#define HV_VCPU_DEFAULT 0
121
122#define HV_DEADLINE_FOREVER UINT64_MAX
123
124
125/*********************************************************************************************************************************
126* Structures and Typedefs *
127*********************************************************************************************************************************/
128
129/** HV return code type. */
130typedef uint32_t hv_return_t;
131/** HV capability bitmask. */
132typedef uint64_t hv_capability_t;
133/** Option bitmask type when creating a VM. */
134typedef uint64_t hv_vm_options_t;
135/** Option bitmask when creating a vCPU. */
136typedef uint64_t hv_vcpu_options_t;
137/** HV memory protection flags type. */
138typedef uint64_t hv_memory_flags_t;
139/** Shadow VMCS protection flags. */
140typedef uint64_t hv_shadow_flags_t;
141/** Guest physical address type. */
142typedef uint64_t hv_gpaddr_t;
143
144
145/**
146 * VMX Capability enumeration.
147 */
148typedef enum
149{
150 HV_VMX_CAP_PINBASED = 0,
151 HV_VMX_CAP_PROCBASED,
152 HV_VMX_CAP_PROCBASED2,
153 HV_VMX_CAP_ENTRY,
154 HV_VMX_CAP_EXIT,
155 HV_VMX_CAP_BASIC, /* Since 11.0 */
156 HV_VMX_CAP_TRUE_PINBASED, /* Since 11.0 */
157 HV_VMX_CAP_TRUE_PROCBASED, /* Since 11.0 */
158 HV_VMX_CAP_TRUE_ENTRY, /* Since 11.0 */
159 HV_VMX_CAP_TRUE_EXIT, /* Since 11.0 */
160 HV_VMX_CAP_MISC, /* Since 11.0 */
161 HV_VMX_CAP_CR0_FIXED0, /* Since 11.0 */
162 HV_VMX_CAP_CR0_FIXED1, /* Since 11.0 */
163 HV_VMX_CAP_CR4_FIXED0, /* Since 11.0 */
164 HV_VMX_CAP_CR4_FIXED1, /* Since 11.0 */
165 HV_VMX_CAP_VMCS_ENUM, /* Since 11.0 */
166 HV_VMX_CAP_EPT_VPID_CAP, /* Since 11.0 */
167 HV_VMX_CAP_PREEMPTION_TIMER = 32
168} hv_vmx_capability_t;
169
170
171/**
172 * MSR information.
173 */
174typedef enum
175{
176 HV_VMX_INFO_MSR_IA32_ARCH_CAPABILITIES = 0,
177 HV_VMX_INFO_MSR_IA32_PERF_CAPABILITIES,
178 HV_VMX_VALID_MSR_IA32_PERFEVNTSEL,
179 HV_VMX_VALID_MSR_IA32_FIXED_CTR_CTRL,
180 HV_VMX_VALID_MSR_IA32_PERF_GLOBAL_CTRL,
181 HV_VMX_VALID_MSR_IA32_PERF_GLOBAL_STATUS,
182 HV_VMX_VALID_MSR_IA32_DEBUGCTL,
183 HV_VMX_VALID_MSR_IA32_SPEC_CTRL,
184 HV_VMX_NEED_MSR_IA32_SPEC_CTRL
185} hv_vmx_msr_info_t;
186
187
188/**
189 * HV x86 register enumeration.
190 */
191typedef enum
192{
193 HV_X86_RIP = 0,
194 HV_X86_RFLAGS,
195 HV_X86_RAX,
196 HV_X86_RCX,
197 HV_X86_RDX,
198 HV_X86_RBX,
199 HV_X86_RSI,
200 HV_X86_RDI,
201 HV_X86_RSP,
202 HV_X86_RBP,
203 HV_X86_R8,
204 HV_X86_R9,
205 HV_X86_R10,
206 HV_X86_R11,
207 HV_X86_R12,
208 HV_X86_R13,
209 HV_X86_R14,
210 HV_X86_R15,
211 HV_X86_CS,
212 HV_X86_SS,
213 HV_X86_DS,
214 HV_X86_ES,
215 HV_X86_FS,
216 HV_X86_GS,
217 HV_X86_IDT_BASE,
218 HV_X86_IDT_LIMIT,
219 HV_X86_GDT_BASE,
220 HV_X86_GDT_LIMIT,
221 HV_X86_LDTR,
222 HV_X86_LDT_BASE,
223 HV_X86_LDT_LIMIT,
224 HV_X86_LDT_AR,
225 HV_X86_TR,
226 HV_X86_TSS_BASE,
227 HV_X86_TSS_LIMIT,
228 HV_X86_TSS_AR,
229 HV_X86_CR0,
230 HV_X86_CR1,
231 HV_X86_CR2,
232 HV_X86_CR3,
233 HV_X86_CR4,
234 HV_X86_DR0,
235 HV_X86_DR1,
236 HV_X86_DR2,
237 HV_X86_DR3,
238 HV_X86_DR4,
239 HV_X86_DR5,
240 HV_X86_DR6,
241 HV_X86_DR7,
242 HV_X86_TPR,
243 HV_X86_XCR0,
244 HV_X86_REGISTERS_MAX
245} hv_x86_reg_t;
246
247
248/** MSR permission flags type. */
249typedef uint32_t hv_msr_flags_t;
250/** MSR can't be accessed. */
251#define HV_MSR_NONE 0
252/** MSR is readable by the guest. */
253#define HV_MSR_READ RT_BIT(0)
254/** MSR is writeable by the guest. */
255#define HV_MSR_WRITE RT_BIT(1)
256
257
258typedef hv_return_t FN_HV_CAPABILITY(hv_capability_t capability, uint64_t *valu);
259typedef hv_return_t FN_HV_VM_CREATE(hv_vm_options_t flags);
260typedef hv_return_t FN_HV_VM_DESTROY(void);
261typedef hv_return_t FN_HV_VM_SPACE_CREATE(hv_vm_space_t *asid);
262typedef hv_return_t FN_HV_VM_SPACE_DESTROY(hv_vm_space_t asid);
263typedef hv_return_t FN_HV_VM_MAP(const void *uva, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
264typedef hv_return_t FN_HV_VM_UNMAP(hv_gpaddr_t gpa, size_t size);
265typedef hv_return_t FN_HV_VM_PROTECT(hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
266typedef hv_return_t FN_HV_VM_MAP_SPACE(hv_vm_space_t asid, const void *uva, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
267typedef hv_return_t FN_HV_VM_UNMAP_SPACE(hv_vm_space_t asid, hv_gpaddr_t gpa, size_t size);
268typedef hv_return_t FN_HV_VM_PROTECT_SPACE(hv_vm_space_t asid, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
269typedef hv_return_t FN_HV_VM_SYNC_TSC(uint64_t tsc);
270
271typedef hv_return_t FN_HV_VCPU_CREATE(hv_vcpuid_t *vcpu, hv_vcpu_options_t flags);
272typedef hv_return_t FN_HV_VCPU_DESTROY(hv_vcpuid_t vcpu);
273typedef hv_return_t FN_HV_VCPU_SET_SPACE(hv_vcpuid_t vcpu, hv_vm_space_t asid);
274typedef hv_return_t FN_HV_VCPU_READ_REGISTER(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t *value);
275typedef hv_return_t FN_HV_VCPU_WRITE_REGISTER(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t value);
276typedef hv_return_t FN_HV_VCPU_READ_FPSTATE(hv_vcpuid_t vcpu, void *buffer, size_t size);
277typedef hv_return_t FN_HV_VCPU_WRITE_FPSTATE(hv_vcpuid_t vcpu, const void *buffer, size_t size);
278typedef hv_return_t FN_HV_VCPU_ENABLE_NATIVE_MSR(hv_vcpuid_t vcpu, uint32_t msr, bool enable);
279typedef hv_return_t FN_HV_VCPU_READ_MSR(hv_vcpuid_t vcpu, uint32_t msr, uint64_t *value);
280typedef hv_return_t FN_HV_VCPU_WRITE_MSR(hv_vcpuid_t vcpu, uint32_t msr, uint64_t value);
281typedef hv_return_t FN_HV_VCPU_FLUSH(hv_vcpuid_t vcpu);
282typedef hv_return_t FN_HV_VCPU_INVALIDATE_TLB(hv_vcpuid_t vcpu);
283typedef hv_return_t FN_HV_VCPU_RUN(hv_vcpuid_t vcpu);
284typedef hv_return_t FN_HV_VCPU_RUN_UNTIL(hv_vcpuid_t vcpu, uint64_t deadline);
285typedef hv_return_t FN_HV_VCPU_INTERRUPT(hv_vcpuid_t *vcpus, unsigned int vcpu_count);
286typedef hv_return_t FN_HV_VCPU_GET_EXEC_TIME(hv_vcpuid_t *vcpus, uint64_t *time);
287
288typedef hv_return_t FN_HV_VMX_VCPU_READ_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *value);
289typedef hv_return_t FN_HV_VMX_VCPU_WRITE_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t value);
290
291typedef hv_return_t FN_HV_VMX_VCPU_READ_SHADOW_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *value);
292typedef hv_return_t FN_HV_VMX_VCPU_WRITE_SHADOW_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t value);
293typedef hv_return_t FN_HV_VMX_VCPU_SET_SHADOW_ACCESS(hv_vcpuid_t vcpu, uint32_t field, hv_shadow_flags_t flags);
294
295typedef hv_return_t FN_HV_VMX_READ_CAPABILITY(hv_vmx_capability_t field, uint64_t *value);
296typedef hv_return_t FN_HV_VMX_VCPU_SET_APIC_ADDRESS(hv_vcpuid_t vcpu, hv_gpaddr_t gpa);
297
298/* Since 11.0 */
299typedef hv_return_t FN_HV_VMX_GET_MSR_INFO(hv_vmx_msr_info_t field, uint64_t *value);
300typedef hv_return_t FN_HV_VMX_VCPU_GET_CAP_WRITE_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *allowed_0, uint64_t *allowed_1);
301typedef hv_return_t FN_HV_VCPU_ENABLE_MANAGED_MSR(hv_vcpuid_t vcpu, uint32_t msr, bool enable);
302typedef hv_return_t FN_HV_VCPU_SET_MSR_ACCESS(hv_vcpuid_t vcpu, uint32_t msr, hv_msr_flags_t flags);
303
304
305/*********************************************************************************************************************************
306* Global Variables *
307*********************************************************************************************************************************/
308static void nemR3DarwinVmcsDump(PVMCPU pVCpu);
309
310/** NEM_DARWIN_PAGE_STATE_XXX names. */
311NEM_TMPL_STATIC const char * const g_apszPageStates[4] = { "not-set", "unmapped", "readable", "writable" };
312/** MSRs. */
313static SUPHWVIRTMSRS g_HmMsrs;
314/** VMX: Set if swapping EFER is supported. */
315static bool g_fHmVmxSupportsVmcsEfer = false;
316/** @name APIs imported from Hypervisor.framework.
317 * @{ */
318static FN_HV_CAPABILITY *g_pfnHvCapability = NULL; /* Since 10.15 */
319static FN_HV_VM_CREATE *g_pfnHvVmCreate = NULL; /* Since 10.10 */
320static FN_HV_VM_DESTROY *g_pfnHvVmDestroy = NULL; /* Since 10.10 */
321static FN_HV_VM_SPACE_CREATE *g_pfnHvVmSpaceCreate = NULL; /* Since 10.15 */
322static FN_HV_VM_SPACE_DESTROY *g_pfnHvVmSpaceDestroy = NULL; /* Since 10.15 */
323static FN_HV_VM_MAP *g_pfnHvVmMap = NULL; /* Since 10.10 */
324static FN_HV_VM_UNMAP *g_pfnHvVmUnmap = NULL; /* Since 10.10 */
325static FN_HV_VM_PROTECT *g_pfnHvVmProtect = NULL; /* Since 10.10 */
326static FN_HV_VM_MAP_SPACE *g_pfnHvVmMapSpace = NULL; /* Since 10.15 */
327static FN_HV_VM_UNMAP_SPACE *g_pfnHvVmUnmapSpace = NULL; /* Since 10.15 */
328static FN_HV_VM_PROTECT_SPACE *g_pfnHvVmProtectSpace = NULL; /* Since 10.15 */
329static FN_HV_VM_SYNC_TSC *g_pfnHvVmSyncTsc = NULL; /* Since 10.10 */
330
331static FN_HV_VCPU_CREATE *g_pfnHvVCpuCreate = NULL; /* Since 10.10 */
332static FN_HV_VCPU_DESTROY *g_pfnHvVCpuDestroy = NULL; /* Since 10.10 */
333static FN_HV_VCPU_SET_SPACE *g_pfnHvVCpuSetSpace = NULL; /* Since 10.15 */
334static FN_HV_VCPU_READ_REGISTER *g_pfnHvVCpuReadRegister = NULL; /* Since 10.10 */
335static FN_HV_VCPU_WRITE_REGISTER *g_pfnHvVCpuWriteRegister = NULL; /* Since 10.10 */
336static FN_HV_VCPU_READ_FPSTATE *g_pfnHvVCpuReadFpState = NULL; /* Since 10.10 */
337static FN_HV_VCPU_WRITE_FPSTATE *g_pfnHvVCpuWriteFpState = NULL; /* Since 10.10 */
338static FN_HV_VCPU_ENABLE_NATIVE_MSR *g_pfnHvVCpuEnableNativeMsr = NULL; /* Since 10.10 */
339static FN_HV_VCPU_READ_MSR *g_pfnHvVCpuReadMsr = NULL; /* Since 10.10 */
340static FN_HV_VCPU_WRITE_MSR *g_pfnHvVCpuWriteMsr = NULL; /* Since 10.10 */
341static FN_HV_VCPU_FLUSH *g_pfnHvVCpuFlush = NULL; /* Since 10.10 */
342static FN_HV_VCPU_INVALIDATE_TLB *g_pfnHvVCpuInvalidateTlb = NULL; /* Since 10.10 */
343static FN_HV_VCPU_RUN *g_pfnHvVCpuRun = NULL; /* Since 10.10 */
344static FN_HV_VCPU_RUN_UNTIL *g_pfnHvVCpuRunUntil = NULL; /* Since 10.15 */
345static FN_HV_VCPU_INTERRUPT *g_pfnHvVCpuInterrupt = NULL; /* Since 10.10 */
346static FN_HV_VCPU_GET_EXEC_TIME *g_pfnHvVCpuGetExecTime = NULL; /* Since 10.10 */
347
348static FN_HV_VMX_READ_CAPABILITY *g_pfnHvVmxReadCapability = NULL; /* Since 10.10 */
349static FN_HV_VMX_VCPU_READ_VMCS *g_pfnHvVmxVCpuReadVmcs = NULL; /* Since 10.10 */
350static FN_HV_VMX_VCPU_WRITE_VMCS *g_pfnHvVmxVCpuWriteVmcs = NULL; /* Since 10.10 */
351static FN_HV_VMX_VCPU_READ_SHADOW_VMCS *g_pfnHvVmxVCpuReadShadowVmcs = NULL; /* Since 10.15 */
352static FN_HV_VMX_VCPU_WRITE_SHADOW_VMCS *g_pfnHvVmxVCpuWriteShadowVmcs = NULL; /* Since 10.15 */
353static FN_HV_VMX_VCPU_SET_SHADOW_ACCESS *g_pfnHvVmxVCpuSetShadowAccess = NULL; /* Since 10.15 */
354static FN_HV_VMX_VCPU_SET_APIC_ADDRESS *g_pfnHvVmxVCpuSetApicAddress = NULL; /* Since 10.10 */
355
356static FN_HV_VMX_GET_MSR_INFO *g_pfnHvVmxGetMsrInfo = NULL; /* Since 11.0 */
357static FN_HV_VMX_VCPU_GET_CAP_WRITE_VMCS *g_pfnHvVmxVCpuGetCapWriteVmcs = NULL; /* Since 11.0 */
358static FN_HV_VCPU_ENABLE_MANAGED_MSR *g_pfnHvVCpuEnableManagedMsr = NULL; /* Since 11.0 */
359static FN_HV_VCPU_SET_MSR_ACCESS *g_pfnHvVCpuSetMsrAccess = NULL; /* Since 11.0 */
360/** @} */
361
362
363/**
364 * Import instructions.
365 */
366static const struct
367{
368 bool fOptional; /**< Set if import is optional. */
369 void **ppfn; /**< The function pointer variable. */
370 const char *pszName; /**< The function name. */
371} g_aImports[] =
372{
373#define NEM_DARWIN_IMPORT(a_fOptional, a_Pfn, a_Name) { (a_fOptional), (void **)&(a_Pfn), #a_Name }
374 NEM_DARWIN_IMPORT(true, g_pfnHvCapability, hv_capability),
375 NEM_DARWIN_IMPORT(false, g_pfnHvVmCreate, hv_vm_create),
376 NEM_DARWIN_IMPORT(false, g_pfnHvVmDestroy, hv_vm_destroy),
377 NEM_DARWIN_IMPORT(true, g_pfnHvVmSpaceCreate, hv_vm_space_create),
378 NEM_DARWIN_IMPORT(true, g_pfnHvVmSpaceDestroy, hv_vm_space_destroy),
379 NEM_DARWIN_IMPORT(false, g_pfnHvVmMap, hv_vm_map),
380 NEM_DARWIN_IMPORT(false, g_pfnHvVmUnmap, hv_vm_unmap),
381 NEM_DARWIN_IMPORT(false, g_pfnHvVmProtect, hv_vm_protect),
382 NEM_DARWIN_IMPORT(true, g_pfnHvVmMapSpace, hv_vm_map_space),
383 NEM_DARWIN_IMPORT(true, g_pfnHvVmUnmapSpace, hv_vm_unmap_space),
384 NEM_DARWIN_IMPORT(true, g_pfnHvVmProtectSpace, hv_vm_protect_space),
385 NEM_DARWIN_IMPORT(false, g_pfnHvVmSyncTsc, hv_vm_sync_tsc),
386
387 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuCreate, hv_vcpu_create),
388 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuDestroy, hv_vcpu_destroy),
389 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuSetSpace, hv_vcpu_set_space),
390 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadRegister, hv_vcpu_read_register),
391 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteRegister, hv_vcpu_write_register),
392 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadFpState, hv_vcpu_read_fpstate),
393 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteFpState, hv_vcpu_write_fpstate),
394 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuEnableNativeMsr, hv_vcpu_enable_native_msr),
395 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadMsr, hv_vcpu_read_msr),
396 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteMsr, hv_vcpu_write_msr),
397 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuFlush, hv_vcpu_flush),
398 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuInvalidateTlb, hv_vcpu_invalidate_tlb),
399 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuRun, hv_vcpu_run),
400 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuRunUntil, hv_vcpu_run_until),
401 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuInterrupt, hv_vcpu_interrupt),
402 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuGetExecTime, hv_vcpu_get_exec_time),
403 NEM_DARWIN_IMPORT(false, g_pfnHvVmxReadCapability, hv_vmx_read_capability),
404 NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuReadVmcs, hv_vmx_vcpu_read_vmcs),
405 NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuWriteVmcs, hv_vmx_vcpu_write_vmcs),
406 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuReadShadowVmcs, hv_vmx_vcpu_read_shadow_vmcs),
407 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuWriteShadowVmcs, hv_vmx_vcpu_write_shadow_vmcs),
408 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuSetShadowAccess, hv_vmx_vcpu_set_shadow_access),
409 NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuSetApicAddress, hv_vmx_vcpu_set_apic_address),
410 NEM_DARWIN_IMPORT(true, g_pfnHvVmxGetMsrInfo, hv_vmx_get_msr_info),
411 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuGetCapWriteVmcs, hv_vmx_vcpu_get_cap_write_vmcs),
412 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuEnableManagedMsr, hv_vcpu_enable_managed_msr),
413 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuSetMsrAccess, hv_vcpu_set_msr_access)
414#undef NEM_DARWIN_IMPORT
415};
416
417
418/*
419 * Let the preprocessor alias the APIs to import variables for better autocompletion.
420 */
421#ifndef IN_SLICKEDIT
422# define hv_capability g_pfnHvCapability
423# define hv_vm_create g_pfnHvVmCreate
424# define hv_vm_destroy g_pfnHvVmDestroy
425# define hv_vm_space_create g_pfnHvVmSpaceCreate
426# define hv_vm_space_destroy g_pfnHvVmSpaceDestroy
427# define hv_vm_map g_pfnHvVmMap
428# define hv_vm_unmap g_pfnHvVmUnmap
429# define hv_vm_protect g_pfnHvVmProtect
430# define hv_vm_map_space g_pfnHvVmMapSpace
431# define hv_vm_unmap_space g_pfnHvVmUnmapSpace
432# define hv_vm_protect_space g_pfnHvVmProtectSpace
433# define hv_vm_sync_tsc g_pfnHvVmSyncTsc
434
435# define hv_vcpu_create g_pfnHvVCpuCreate
436# define hv_vcpu_destroy g_pfnHvVCpuDestroy
437# define hv_vcpu_set_space g_pfnHvVCpuSetSpace
438# define hv_vcpu_read_register g_pfnHvVCpuReadRegister
439# define hv_vcpu_write_register g_pfnHvVCpuWriteRegister
440# define hv_vcpu_read_fpstate g_pfnHvVCpuReadFpState
441# define hv_vcpu_write_fpstate g_pfnHvVCpuWriteFpState
442# define hv_vcpu_enable_native_msr g_pfnHvVCpuEnableNativeMsr
443# define hv_vcpu_read_msr g_pfnHvVCpuReadMsr
444# define hv_vcpu_write_msr g_pfnHvVCpuWriteMsr
445# define hv_vcpu_flush g_pfnHvVCpuFlush
446# define hv_vcpu_invalidate_tlb g_pfnHvVCpuInvalidateTlb
447# define hv_vcpu_run g_pfnHvVCpuRun
448# define hv_vcpu_run_until g_pfnHvVCpuRunUntil
449# define hv_vcpu_interrupt g_pfnHvVCpuInterrupt
450# define hv_vcpu_get_exec_time g_pfnHvVCpuGetExecTime
451
452# define hv_vmx_read_capability g_pfnHvVmxReadCapability
453# define hv_vmx_vcpu_read_vmcs g_pfnHvVmxVCpuReadVmcs
454# define hv_vmx_vcpu_write_vmcs g_pfnHvVmxVCpuWriteVmcs
455# define hv_vmx_vcpu_read_shadow_vmcs g_pfnHvVmxVCpuReadShadowVmcs
456# define hv_vmx_vcpu_write_shadow_vmcs g_pfnHvVmxVCpuWriteShadowVmcs
457# define hv_vmx_vcpu_set_shadow_access g_pfnHvVmxVCpuSetShadowAccess
458# define hv_vmx_vcpu_set_apic_address g_pfnHvVmxVCpuSetApicAddress
459
460# define hv_vmx_get_msr_info g_pfnHvVmxGetMsrInfo
461# define hv_vmx_vcpu_get_cap_write_vmcs g_pfnHvVmxVCpuGetCapWriteVmcs
462# define hv_vcpu_enable_managed_msr g_pfnHvVCpuEnableManagedMsr
463# define hv_vcpu_set_msr_access g_pfnHvVCpuSetMsrAccess
464#endif
465
466static const struct
467{
468 uint32_t u32VmcsFieldId; /**< The VMCS field identifier. */
469 const char *pszVmcsField; /**< The VMCS field name. */
470 bool f64Bit;
471} g_aVmcsFieldsCap[] =
472{
473#define NEM_DARWIN_VMCS64_FIELD_CAP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, true }
474#define NEM_DARWIN_VMCS32_FIELD_CAP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, false }
475
476 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PIN_EXEC),
477 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PROC_EXEC),
478 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_EXCEPTION_BITMAP),
479 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_EXIT),
480 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_ENTRY),
481 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PROC_EXEC2),
482 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PLE_GAP),
483 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PLE_WINDOW),
484 NEM_DARWIN_VMCS64_FIELD_CAP(VMX_VMCS64_CTRL_TSC_OFFSET_FULL),
485 NEM_DARWIN_VMCS64_FIELD_CAP(VMX_VMCS64_GUEST_DEBUGCTL_FULL)
486#undef NEM_DARWIN_VMCS64_FIELD_CAP
487#undef NEM_DARWIN_VMCS32_FIELD_CAP
488};
489
490
491/*********************************************************************************************************************************
492* Internal Functions *
493*********************************************************************************************************************************/
494DECLINLINE(void) vmxHCImportGuestIntrState(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo);
495
496
497/**
498 * Converts a HV return code to a VBox status code.
499 *
500 * @returns VBox status code.
501 * @param hrc The HV return code to convert.
502 */
503DECLINLINE(int) nemR3DarwinHvSts2Rc(hv_return_t hrc)
504{
505 if (hrc == HV_SUCCESS)
506 return VINF_SUCCESS;
507
508 switch (hrc)
509 {
510 case HV_ERROR: return VERR_INVALID_STATE;
511 case HV_BUSY: return VERR_RESOURCE_BUSY;
512 case HV_BAD_ARGUMENT: return VERR_INVALID_PARAMETER;
513 case HV_NO_RESOURCES: return VERR_OUT_OF_RESOURCES;
514 case HV_NO_DEVICE: return VERR_NOT_FOUND;
515 case HV_UNSUPPORTED: return VERR_NOT_SUPPORTED;
516 }
517
518 return VERR_IPE_UNEXPECTED_STATUS;
519}
520
521
522/**
523 * Unmaps the given guest physical address range (page aligned).
524 *
525 * @returns VBox status code.
526 * @param pVM The cross context VM structure.
527 * @param GCPhys The guest physical address to start unmapping at.
528 * @param cb The size of the range to unmap in bytes.
529 * @param pu2State Where to store the new state of the unmappd page, optional.
530 */
531DECLINLINE(int) nemR3DarwinUnmap(PVM pVM, RTGCPHYS GCPhys, size_t cb, uint8_t *pu2State)
532{
533 if (*pu2State == NEM_DARWIN_PAGE_STATE_UNMAPPED)
534 {
535 Log5(("nemR3DarwinUnmap: %RGp == unmapped\n", GCPhys));
536 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
537 return VINF_SUCCESS;
538 }
539
540 LogFlowFunc(("Unmapping %RGp LB %zu\n", GCPhys, cb));
541 hv_return_t hrc;
542 if (pVM->nem.s.fCreatedAsid)
543 hrc = hv_vm_unmap_space(pVM->nem.s.uVmAsid, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, cb);
544 else
545 hrc = hv_vm_unmap(GCPhys, cb);
546 if (RT_LIKELY(hrc == HV_SUCCESS))
547 {
548 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
549 if (pu2State)
550 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
551 Log5(("nemR3DarwinUnmap: %RGp => unmapped\n", GCPhys));
552 return VINF_SUCCESS;
553 }
554
555 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
556 LogRel(("nemR3DarwinUnmap(%RGp): failed! hrc=%#x\n",
557 GCPhys, hrc));
558 return VERR_NEM_IPE_6;
559}
560
561
562/**
563 * Resolves a NEM page state from the given protection flags.
564 *
565 * @returns NEM page state.
566 * @param fPageProt The page protection flags.
567 */
568DECLINLINE(uint8_t) nemR3DarwinPageStateFromProt(uint32_t fPageProt)
569{
570 switch (fPageProt)
571 {
572 case NEM_PAGE_PROT_NONE:
573 return NEM_DARWIN_PAGE_STATE_UNMAPPED;
574 case NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE:
575 return NEM_DARWIN_PAGE_STATE_RX;
576 case NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE:
577 return NEM_DARWIN_PAGE_STATE_RW;
578 case NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE:
579 return NEM_DARWIN_PAGE_STATE_RWX;
580 default:
581 break;
582 }
583
584 AssertLogRelMsgFailed(("Invalid combination of page protection flags %#x, can't map to page state!\n", fPageProt));
585 return NEM_DARWIN_PAGE_STATE_UNMAPPED;
586}
587
588
589/**
590 * Maps a given guest physical address range backed by the given memory with the given
591 * protection flags.
592 *
593 * @returns VBox status code.
594 * @param pVM The cross context VM structure.
595 * @param GCPhys The guest physical address to start mapping.
596 * @param pvRam The R3 pointer of the memory to back the range with.
597 * @param cb The size of the range, page aligned.
598 * @param fPageProt The page protection flags to use for this range, combination of NEM_PAGE_PROT_XXX
599 * @param pu2State Where to store the state for the new page, optional.
600 */
601DECLINLINE(int) nemR3DarwinMap(PVM pVM, RTGCPHYS GCPhys, const void *pvRam, size_t cb, uint32_t fPageProt, uint8_t *pu2State)
602{
603 LogFlowFunc(("Mapping %RGp LB %zu fProt=%#x\n", GCPhys, cb, fPageProt));
604
605 Assert(fPageProt != NEM_PAGE_PROT_NONE);
606
607 hv_memory_flags_t fHvMemProt = 0;
608 if (fPageProt & NEM_PAGE_PROT_READ)
609 fHvMemProt |= HV_MEMORY_READ;
610 if (fPageProt & NEM_PAGE_PROT_WRITE)
611 fHvMemProt |= HV_MEMORY_WRITE;
612 if (fPageProt & NEM_PAGE_PROT_EXECUTE)
613 fHvMemProt |= HV_MEMORY_EXEC;
614
615 hv_return_t hrc;
616 if (pVM->nem.s.fCreatedAsid)
617 hrc = hv_vm_map_space(pVM->nem.s.uVmAsid, pvRam, GCPhys, cb, fHvMemProt);
618 else
619 hrc = hv_vm_map(pvRam, GCPhys, cb, fHvMemProt);
620 if (hrc == HV_SUCCESS)
621 {
622 if (pu2State)
623 *pu2State = nemR3DarwinPageStateFromProt(fPageProt);
624 return VINF_SUCCESS;
625 }
626
627 return nemR3DarwinHvSts2Rc(hrc);
628}
629
630
631/**
632 * Changes the protection flags for the given guest physical address range.
633 *
634 * @returns VBox status code.
635 * @param pVM The cross context VM structure.
636 * @param GCPhys The guest physical address to start mapping.
637 * @param cb The size of the range, page aligned.
638 * @param fPageProt The page protection flags to use for this range, combination of NEM_PAGE_PROT_XXX
639 * @param pu2State Where to store the state for the new page, optional.
640 */
641DECLINLINE(int) nemR3DarwinProtect(PVM pVM, RTGCPHYS GCPhys, size_t cb, uint32_t fPageProt, uint8_t *pu2State)
642{
643 hv_memory_flags_t fHvMemProt = 0;
644 if (fPageProt & NEM_PAGE_PROT_READ)
645 fHvMemProt |= HV_MEMORY_READ;
646 if (fPageProt & NEM_PAGE_PROT_WRITE)
647 fHvMemProt |= HV_MEMORY_WRITE;
648 if (fPageProt & NEM_PAGE_PROT_EXECUTE)
649 fHvMemProt |= HV_MEMORY_EXEC;
650
651 hv_return_t hrc;
652 if (pVM->nem.s.fCreatedAsid)
653 hrc = hv_vm_protect_space(pVM->nem.s.uVmAsid, GCPhys, cb, fHvMemProt);
654 else
655 hrc = hv_vm_protect(GCPhys, cb, fHvMemProt);
656 if (hrc == HV_SUCCESS)
657 {
658 if (pu2State)
659 *pu2State = nemR3DarwinPageStateFromProt(fPageProt);
660 return VINF_SUCCESS;
661 }
662
663 return nemR3DarwinHvSts2Rc(hrc);
664}
665
666
667DECLINLINE(int) nemR3NativeGCPhys2R3PtrReadOnly(PVM pVM, RTGCPHYS GCPhys, const void **ppv)
668{
669 PGMPAGEMAPLOCK Lock;
670 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, &Lock);
671 if (RT_SUCCESS(rc))
672 PGMPhysReleasePageMappingLock(pVM, &Lock);
673 return rc;
674}
675
676
677DECLINLINE(int) nemR3NativeGCPhys2R3PtrWriteable(PVM pVM, RTGCPHYS GCPhys, void **ppv)
678{
679 PGMPAGEMAPLOCK Lock;
680 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, &Lock);
681 if (RT_SUCCESS(rc))
682 PGMPhysReleasePageMappingLock(pVM, &Lock);
683 return rc;
684}
685
686
687#ifdef LOG_ENABLED
688/**
689 * Logs the current CPU state.
690 */
691static void nemR3DarwinLogState(PVMCC pVM, PVMCPUCC pVCpu)
692{
693 if (LogIs3Enabled())
694 {
695#if 0
696 char szRegs[4096];
697 DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
698 "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
699 "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
700 "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
701 "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
702 "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
703 "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
704 "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
705 "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
706 "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
707 "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
708 "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
709 "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
710 "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
711 "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
712 "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
713 "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
714 " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
715 " efer=%016VR{efer}\n"
716 " pat=%016VR{pat}\n"
717 " sf_mask=%016VR{sf_mask}\n"
718 "krnl_gs_base=%016VR{krnl_gs_base}\n"
719 " lstar=%016VR{lstar}\n"
720 " star=%016VR{star} cstar=%016VR{cstar}\n"
721 "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
722 );
723
724 char szInstr[256];
725 DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
726 DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
727 szInstr, sizeof(szInstr), NULL);
728 Log3(("%s%s\n", szRegs, szInstr));
729#else
730 RT_NOREF(pVM, pVCpu);
731#endif
732 }
733}
734#endif /* LOG_ENABLED */
735
736
737DECLINLINE(int) nemR3DarwinReadVmcs16(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t *pData)
738{
739 uint64_t u64Data;
740 hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, &u64Data);
741 if (RT_LIKELY(hrc == HV_SUCCESS))
742 {
743 *pData = (uint16_t)u64Data;
744 return VINF_SUCCESS;
745 }
746
747 return nemR3DarwinHvSts2Rc(hrc);
748}
749
750
751DECLINLINE(int) nemR3DarwinReadVmcs32(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t *pData)
752{
753 uint64_t u64Data;
754 hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, &u64Data);
755 if (RT_LIKELY(hrc == HV_SUCCESS))
756 {
757 *pData = (uint32_t)u64Data;
758 return VINF_SUCCESS;
759 }
760
761 return nemR3DarwinHvSts2Rc(hrc);
762}
763
764
765DECLINLINE(int) nemR3DarwinReadVmcs64(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t *pData)
766{
767 hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, pData);
768 if (RT_LIKELY(hrc == HV_SUCCESS))
769 return VINF_SUCCESS;
770
771 return nemR3DarwinHvSts2Rc(hrc);
772}
773
774
775DECLINLINE(int) nemR3DarwinWriteVmcs16(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t u16Val)
776{
777 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u16Val);
778 if (RT_LIKELY(hrc == HV_SUCCESS))
779 return VINF_SUCCESS;
780
781 return nemR3DarwinHvSts2Rc(hrc);
782}
783
784
785DECLINLINE(int) nemR3DarwinWriteVmcs32(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t u32Val)
786{
787 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u32Val);
788 if (RT_LIKELY(hrc == HV_SUCCESS))
789 return VINF_SUCCESS;
790
791 return nemR3DarwinHvSts2Rc(hrc);
792}
793
794
795DECLINLINE(int) nemR3DarwinWriteVmcs64(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t u64Val)
796{
797 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u64Val);
798 if (RT_LIKELY(hrc == HV_SUCCESS))
799 return VINF_SUCCESS;
800
801 return nemR3DarwinHvSts2Rc(hrc);
802}
803
804DECLINLINE(int) nemR3DarwinMsrRead(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t *pu64Val)
805{
806 hv_return_t hrc = hv_vcpu_read_msr(pVCpu->nem.s.hVCpuId, idMsr, pu64Val);
807 if (RT_LIKELY(hrc == HV_SUCCESS))
808 return VINF_SUCCESS;
809
810 return nemR3DarwinHvSts2Rc(hrc);
811}
812
813#if 0 /*unused*/
814DECLINLINE(int) nemR3DarwinMsrWrite(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t u64Val)
815{
816 hv_return_t hrc = hv_vcpu_write_msr(pVCpu->nem.s.hVCpuId, idMsr, u64Val);
817 if (RT_LIKELY(hrc == HV_SUCCESS))
818 return VINF_SUCCESS;
819
820 return nemR3DarwinHvSts2Rc(hrc);
821}
822#endif
823
824static int nemR3DarwinCopyStateFromHv(PVMCC pVM, PVMCPUCC pVCpu, uint64_t fWhat)
825{
826#define READ_GREG(a_GReg, a_Value) \
827 do \
828 { \
829 hrc = hv_vcpu_read_register(pVCpu->nem.s.hVCpuId, (a_GReg), &(a_Value)); \
830 if (RT_LIKELY(hrc == HV_SUCCESS)) \
831 { /* likely */ } \
832 else \
833 return VERR_INTERNAL_ERROR; \
834 } while(0)
835#define READ_VMCS_FIELD(a_Field, a_Value) \
836 do \
837 { \
838 hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &(a_Value)); \
839 if (RT_LIKELY(hrc == HV_SUCCESS)) \
840 { /* likely */ } \
841 else \
842 return VERR_INTERNAL_ERROR; \
843 } while(0)
844#define READ_VMCS16_FIELD(a_Field, a_Value) \
845 do \
846 { \
847 uint64_t u64Data; \
848 hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &u64Data); \
849 if (RT_LIKELY(hrc == HV_SUCCESS)) \
850 { (a_Value) = (uint16_t)u64Data; } \
851 else \
852 return VERR_INTERNAL_ERROR; \
853 } while(0)
854#define READ_VMCS32_FIELD(a_Field, a_Value) \
855 do \
856 { \
857 uint64_t u64Data; \
858 hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &u64Data); \
859 if (RT_LIKELY(hrc == HV_SUCCESS)) \
860 { (a_Value) = (uint32_t)u64Data; } \
861 else \
862 return VERR_INTERNAL_ERROR; \
863 } while(0)
864#define READ_MSR(a_Msr, a_Value) \
865 do \
866 { \
867 hrc = hv_vcpu_read_msr(pVCpu->nem.s.hVCpuId, (a_Msr), &(a_Value)); \
868 if (RT_LIKELY(hrc == HV_SUCCESS)) \
869 { /* likely */ } \
870 else \
871 AssertFailedReturn(VERR_INTERNAL_ERROR); \
872 } while(0)
873
874 STAM_PROFILE_ADV_START(&pVCpu->nem.s.StatProfGstStateImport, x);
875
876 RT_NOREF(pVM);
877 fWhat &= pVCpu->cpum.GstCtx.fExtrn;
878
879 if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
880 vmxHCImportGuestIntrState(pVCpu, &pVCpu->nem.s.VmcsInfo);
881
882 /* GPRs */
883 hv_return_t hrc;
884 if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
885 {
886 if (fWhat & CPUMCTX_EXTRN_RAX)
887 READ_GREG(HV_X86_RAX, pVCpu->cpum.GstCtx.rax);
888 if (fWhat & CPUMCTX_EXTRN_RCX)
889 READ_GREG(HV_X86_RCX, pVCpu->cpum.GstCtx.rcx);
890 if (fWhat & CPUMCTX_EXTRN_RDX)
891 READ_GREG(HV_X86_RDX, pVCpu->cpum.GstCtx.rdx);
892 if (fWhat & CPUMCTX_EXTRN_RBX)
893 READ_GREG(HV_X86_RBX, pVCpu->cpum.GstCtx.rbx);
894 if (fWhat & CPUMCTX_EXTRN_RSP)
895 READ_GREG(HV_X86_RSP, pVCpu->cpum.GstCtx.rsp);
896 if (fWhat & CPUMCTX_EXTRN_RBP)
897 READ_GREG(HV_X86_RBP, pVCpu->cpum.GstCtx.rbp);
898 if (fWhat & CPUMCTX_EXTRN_RSI)
899 READ_GREG(HV_X86_RSI, pVCpu->cpum.GstCtx.rsi);
900 if (fWhat & CPUMCTX_EXTRN_RDI)
901 READ_GREG(HV_X86_RDI, pVCpu->cpum.GstCtx.rdi);
902 if (fWhat & CPUMCTX_EXTRN_R8_R15)
903 {
904 READ_GREG(HV_X86_R8, pVCpu->cpum.GstCtx.r8);
905 READ_GREG(HV_X86_R9, pVCpu->cpum.GstCtx.r9);
906 READ_GREG(HV_X86_R10, pVCpu->cpum.GstCtx.r10);
907 READ_GREG(HV_X86_R11, pVCpu->cpum.GstCtx.r11);
908 READ_GREG(HV_X86_R12, pVCpu->cpum.GstCtx.r12);
909 READ_GREG(HV_X86_R13, pVCpu->cpum.GstCtx.r13);
910 READ_GREG(HV_X86_R14, pVCpu->cpum.GstCtx.r14);
911 READ_GREG(HV_X86_R15, pVCpu->cpum.GstCtx.r15);
912 }
913 }
914
915 /* RIP & Flags */
916 if (fWhat & CPUMCTX_EXTRN_RIP)
917 READ_GREG(HV_X86_RIP, pVCpu->cpum.GstCtx.rip);
918 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
919 {
920 uint64_t fRFlagsTmp = 0;
921 READ_GREG(HV_X86_RFLAGS, fRFlagsTmp);
922 pVCpu->cpum.GstCtx.rflags.u = fRFlagsTmp;
923 }
924
925 /* Segments */
926#define READ_SEG(a_SReg, a_enmName) \
927 do { \
928 READ_VMCS16_FIELD(VMX_VMCS16_GUEST_ ## a_enmName ## _SEL, (a_SReg).Sel); \
929 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_ ## a_enmName ## _LIMIT, (a_SReg).u32Limit); \
930 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_ ## a_enmName ## _ACCESS_RIGHTS, (a_SReg).Attr.u); \
931 READ_VMCS_FIELD(VMX_VMCS_GUEST_ ## a_enmName ## _BASE, (a_SReg).u64Base); \
932 (a_SReg).ValidSel = (a_SReg).Sel; \
933 } while (0)
934 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
935 {
936 if (fWhat & CPUMCTX_EXTRN_ES)
937 READ_SEG(pVCpu->cpum.GstCtx.es, ES);
938 if (fWhat & CPUMCTX_EXTRN_CS)
939 READ_SEG(pVCpu->cpum.GstCtx.cs, CS);
940 if (fWhat & CPUMCTX_EXTRN_SS)
941 READ_SEG(pVCpu->cpum.GstCtx.ss, SS);
942 if (fWhat & CPUMCTX_EXTRN_DS)
943 READ_SEG(pVCpu->cpum.GstCtx.ds, DS);
944 if (fWhat & CPUMCTX_EXTRN_FS)
945 READ_SEG(pVCpu->cpum.GstCtx.fs, FS);
946 if (fWhat & CPUMCTX_EXTRN_GS)
947 READ_SEG(pVCpu->cpum.GstCtx.gs, GS);
948 }
949
950 /* Descriptor tables and the task segment. */
951 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
952 {
953 if (fWhat & CPUMCTX_EXTRN_LDTR)
954 READ_SEG(pVCpu->cpum.GstCtx.ldtr, LDTR);
955
956 if (fWhat & CPUMCTX_EXTRN_TR)
957 {
958 /* AMD-V likes loading TR with in AVAIL state, whereas intel insists on BUSY. So,
959 avoid to trigger sanity assertions around the code, always fix this. */
960 READ_SEG(pVCpu->cpum.GstCtx.tr, TR);
961 switch (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type)
962 {
963 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
964 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
965 break;
966 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
967 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
968 break;
969 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
970 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
971 break;
972 }
973 }
974 if (fWhat & CPUMCTX_EXTRN_IDTR)
975 {
976 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_IDTR_LIMIT, pVCpu->cpum.GstCtx.idtr.cbIdt);
977 READ_VMCS_FIELD(VMX_VMCS_GUEST_IDTR_BASE, pVCpu->cpum.GstCtx.idtr.pIdt);
978 }
979 if (fWhat & CPUMCTX_EXTRN_GDTR)
980 {
981 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_GDTR_LIMIT, pVCpu->cpum.GstCtx.gdtr.cbGdt);
982 READ_VMCS_FIELD(VMX_VMCS_GUEST_GDTR_BASE, pVCpu->cpum.GstCtx.gdtr.pGdt);
983 }
984 }
985
986 /* Control registers. */
987 bool fMaybeChangedMode = false;
988 bool fUpdateCr3 = false;
989 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
990 {
991 uint64_t u64CrTmp = 0;
992
993 if (fWhat & CPUMCTX_EXTRN_CR0)
994 {
995 READ_GREG(HV_X86_CR0, u64CrTmp);
996 if (pVCpu->cpum.GstCtx.cr0 != u64CrTmp)
997 {
998 CPUMSetGuestCR0(pVCpu, u64CrTmp);
999 fMaybeChangedMode = true;
1000 }
1001 }
1002 if (fWhat & CPUMCTX_EXTRN_CR2)
1003 READ_GREG(HV_X86_CR2, pVCpu->cpum.GstCtx.cr2);
1004 if (fWhat & CPUMCTX_EXTRN_CR3)
1005 {
1006 READ_GREG(HV_X86_CR3, u64CrTmp);
1007 if (pVCpu->cpum.GstCtx.cr3 != u64CrTmp)
1008 {
1009 CPUMSetGuestCR3(pVCpu, u64CrTmp);
1010 fUpdateCr3 = true;
1011 }
1012
1013 /*
1014 * If the guest is in PAE mode, sync back the PDPE's into the guest state.
1015 * CR4.PAE, CR0.PG, EFER MSR changes are always intercepted, so they're up to date.
1016 */
1017 if (CPUMIsGuestInPAEModeEx(&pVCpu->cpum.GstCtx))
1018 {
1019 X86PDPE aPaePdpes[4];
1020 READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE0_FULL, aPaePdpes[0].u);
1021 READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE1_FULL, aPaePdpes[1].u);
1022 READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE2_FULL, aPaePdpes[2].u);
1023 READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE3_FULL, aPaePdpes[3].u);
1024 if (memcmp(&aPaePdpes[0], &pVCpu->cpum.GstCtx.aPaePdpes[0], sizeof(aPaePdpes)))
1025 {
1026 memcpy(&pVCpu->cpum.GstCtx.aPaePdpes[0], &aPaePdpes[0], sizeof(aPaePdpes));
1027 fUpdateCr3 = true;
1028 }
1029 }
1030 }
1031 if (fWhat & CPUMCTX_EXTRN_CR4)
1032 {
1033 READ_GREG(HV_X86_CR4, u64CrTmp);
1034 u64CrTmp &= ~VMX_V_CR4_FIXED0;
1035
1036 if (pVCpu->cpum.GstCtx.cr4 != u64CrTmp)
1037 {
1038 CPUMSetGuestCR4(pVCpu, u64CrTmp);
1039 fMaybeChangedMode = true;
1040 }
1041 }
1042 }
1043
1044#if 0 /* Always done. */
1045 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
1046 {
1047 uint64_t u64Cr8 = 0;
1048
1049 READ_GREG(HV_X86_TPR, u64Cr8);
1050 APICSetTpr(pVCpu, u64Cr8 << 4);
1051 }
1052#endif
1053
1054 if (fWhat & CPUMCTX_EXTRN_XCRx)
1055 READ_GREG(HV_X86_XCR0, pVCpu->cpum.GstCtx.aXcr[0]);
1056
1057 /* Debug registers. */
1058 if (fWhat & CPUMCTX_EXTRN_DR7)
1059 {
1060 uint64_t u64Dr7;
1061 READ_GREG(HV_X86_DR7, u64Dr7);
1062 if (pVCpu->cpum.GstCtx.dr[7] != u64Dr7)
1063 CPUMSetGuestDR7(pVCpu, u64Dr7);
1064 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_DR7; /* Hack alert! Avoids asserting when processing CPUMCTX_EXTRN_DR0_DR3. */
1065 }
1066 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
1067 {
1068 uint64_t u64DrTmp;
1069
1070 READ_GREG(HV_X86_DR0, u64DrTmp);
1071 if (pVCpu->cpum.GstCtx.dr[0] != u64DrTmp)
1072 CPUMSetGuestDR0(pVCpu, u64DrTmp);
1073 READ_GREG(HV_X86_DR1, u64DrTmp);
1074 if (pVCpu->cpum.GstCtx.dr[1] != u64DrTmp)
1075 CPUMSetGuestDR1(pVCpu, u64DrTmp);
1076 READ_GREG(HV_X86_DR2, u64DrTmp);
1077 if (pVCpu->cpum.GstCtx.dr[2] != u64DrTmp)
1078 CPUMSetGuestDR2(pVCpu, u64DrTmp);
1079 READ_GREG(HV_X86_DR3, u64DrTmp);
1080 if (pVCpu->cpum.GstCtx.dr[3] != u64DrTmp)
1081 CPUMSetGuestDR3(pVCpu, u64DrTmp);
1082 }
1083 if (fWhat & CPUMCTX_EXTRN_DR6)
1084 {
1085 uint64_t u64Dr6;
1086 READ_GREG(HV_X86_DR6, u64Dr6);
1087 if (pVCpu->cpum.GstCtx.dr[6] != u64Dr6)
1088 CPUMSetGuestDR6(pVCpu, u64Dr6);
1089 }
1090
1091 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
1092 {
1093 hrc = hv_vcpu_read_fpstate(pVCpu->nem.s.hVCpuId, &pVCpu->cpum.GstCtx.XState, sizeof(pVCpu->cpum.GstCtx.XState));
1094 if (hrc == HV_SUCCESS)
1095 { /* likely */ }
1096 else
1097 {
1098 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
1099 return nemR3DarwinHvSts2Rc(hrc);
1100 }
1101 }
1102
1103 /* MSRs */
1104 if (fWhat & CPUMCTX_EXTRN_EFER)
1105 {
1106 uint64_t u64Efer;
1107
1108 READ_VMCS_FIELD(VMX_VMCS64_GUEST_EFER_FULL, u64Efer);
1109 if (u64Efer != pVCpu->cpum.GstCtx.msrEFER)
1110 {
1111 Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, u64Efer));
1112 if ((u64Efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
1113 PGMNotifyNxeChanged(pVCpu, RT_BOOL(u64Efer & MSR_K6_EFER_NXE));
1114 pVCpu->cpum.GstCtx.msrEFER = u64Efer;
1115 fMaybeChangedMode = true;
1116 }
1117 }
1118
1119 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1120 READ_MSR(MSR_K8_KERNEL_GS_BASE, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
1121 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
1122 {
1123 uint64_t u64Tmp;
1124 READ_MSR(MSR_IA32_SYSENTER_EIP, u64Tmp);
1125 pVCpu->cpum.GstCtx.SysEnter.eip = u64Tmp;
1126 READ_MSR(MSR_IA32_SYSENTER_ESP, u64Tmp);
1127 pVCpu->cpum.GstCtx.SysEnter.esp = u64Tmp;
1128 READ_MSR(MSR_IA32_SYSENTER_CS, u64Tmp);
1129 pVCpu->cpum.GstCtx.SysEnter.cs = u64Tmp;
1130 }
1131 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
1132 {
1133 READ_MSR(MSR_K6_STAR, pVCpu->cpum.GstCtx.msrSTAR);
1134 READ_MSR(MSR_K8_LSTAR, pVCpu->cpum.GstCtx.msrLSTAR);
1135 READ_MSR(MSR_K8_CSTAR, pVCpu->cpum.GstCtx.msrCSTAR);
1136 READ_MSR(MSR_K8_SF_MASK, pVCpu->cpum.GstCtx.msrSFMASK);
1137 }
1138 if (fWhat & CPUMCTX_EXTRN_TSC_AUX)
1139 {
1140 PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1141 READ_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
1142 }
1143 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
1144 {
1145 /* Last Branch Record. */
1146 if (pVM->nem.s.fLbr)
1147 {
1148 PVMXVMCSINFOSHARED const pVmcsInfoShared = &pVCpu->nem.s.vmx.VmcsInfo;
1149 uint32_t const idFromIpMsrStart = pVM->nem.s.idLbrFromIpMsrFirst;
1150 uint32_t const idToIpMsrStart = pVM->nem.s.idLbrToIpMsrFirst;
1151 uint32_t const idInfoMsrStart = pVM->nem.s.idLbrInfoMsrFirst;
1152 uint32_t const cLbrStack = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
1153 Assert(cLbrStack <= 32);
1154 for (uint32_t i = 0; i < cLbrStack; i++)
1155 {
1156 READ_MSR(idFromIpMsrStart + i, pVmcsInfoShared->au64LbrFromIpMsr[i]);
1157
1158 /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
1159 if (idToIpMsrStart != 0)
1160 READ_MSR(idToIpMsrStart + i, pVmcsInfoShared->au64LbrToIpMsr[i]);
1161 if (idInfoMsrStart != 0)
1162 READ_MSR(idInfoMsrStart + i, pVmcsInfoShared->au64LbrInfoMsr[i]);
1163 }
1164
1165 READ_MSR(pVM->nem.s.idLbrTosMsr, pVmcsInfoShared->u64LbrTosMsr);
1166
1167 if (pVM->nem.s.idLerFromIpMsr)
1168 READ_MSR(pVM->nem.s.idLerFromIpMsr, pVmcsInfoShared->u64LerFromIpMsr);
1169 if (pVM->nem.s.idLerToIpMsr)
1170 READ_MSR(pVM->nem.s.idLerToIpMsr, pVmcsInfoShared->u64LerToIpMsr);
1171 }
1172 }
1173
1174 /* Almost done, just update extrn flags and maybe change PGM mode. */
1175 pVCpu->cpum.GstCtx.fExtrn &= ~fWhat;
1176 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
1177 pVCpu->cpum.GstCtx.fExtrn = 0;
1178
1179#ifdef LOG_ENABLED
1180 nemR3DarwinLogState(pVM, pVCpu);
1181#endif
1182
1183 /* Typical. */
1184 if (!fMaybeChangedMode && !fUpdateCr3)
1185 {
1186 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
1187 return VINF_SUCCESS;
1188 }
1189
1190 /*
1191 * Slow.
1192 */
1193 if (fMaybeChangedMode)
1194 {
1195 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
1196 false /* fForce */);
1197 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1);
1198 }
1199
1200 if (fUpdateCr3)
1201 {
1202 int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3);
1203 if (rc == VINF_SUCCESS)
1204 { /* likely */ }
1205 else
1206 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2);
1207 }
1208
1209 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
1210
1211 return VINF_SUCCESS;
1212#undef READ_GREG
1213#undef READ_VMCS_FIELD
1214#undef READ_VMCS32_FIELD
1215#undef READ_SEG
1216#undef READ_MSR
1217}
1218
1219
1220/**
1221 * State to pass between vmxHCExitEptViolation
1222 * and nemR3DarwinHandleMemoryAccessPageCheckerCallback.
1223 */
1224typedef struct NEMHCDARWINHMACPCCSTATE
1225{
1226 /** Input: Write access. */
1227 bool fWriteAccess;
1228 /** Output: Set if we did something. */
1229 bool fDidSomething;
1230 /** Output: Set it we should resume. */
1231 bool fCanResume;
1232} NEMHCDARWINHMACPCCSTATE;
1233
1234/**
1235 * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE,
1236 * Worker for vmxHCExitEptViolation; pvUser points to a
1237 * NEMHCDARWINHMACPCCSTATE structure. }
1238 */
1239static DECLCALLBACK(int)
1240nemR3DarwinHandleMemoryAccessPageCheckerCallback(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys, PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
1241{
1242 RT_NOREF(pVCpu);
1243
1244 NEMHCDARWINHMACPCCSTATE *pState = (NEMHCDARWINHMACPCCSTATE *)pvUser;
1245 pState->fDidSomething = false;
1246 pState->fCanResume = false;
1247
1248 uint8_t u2State = pInfo->u2NemState;
1249
1250 /*
1251 * Consolidate current page state with actual page protection and access type.
1252 * We don't really consider downgrades here, as they shouldn't happen.
1253 */
1254 switch (u2State)
1255 {
1256 case NEM_DARWIN_PAGE_STATE_UNMAPPED:
1257 {
1258 if (pInfo->fNemProt == NEM_PAGE_PROT_NONE)
1259 {
1260 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #1\n", GCPhys));
1261 return VINF_SUCCESS;
1262 }
1263
1264 /* Don't bother remapping it if it's a write request to a non-writable page. */
1265 if ( pState->fWriteAccess
1266 && !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE))
1267 {
1268 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #1w\n", GCPhys));
1269 return VINF_SUCCESS;
1270 }
1271
1272 int rc = VINF_SUCCESS;
1273 if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1274 {
1275 void *pvPage;
1276 rc = nemR3NativeGCPhys2R3PtrWriteable(pVM, GCPhys, &pvPage);
1277 if (RT_SUCCESS(rc))
1278 rc = nemR3DarwinMap(pVM, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, pvPage, X86_PAGE_SIZE, pInfo->fNemProt, &u2State);
1279 }
1280 else if (pInfo->fNemProt & NEM_PAGE_PROT_READ)
1281 {
1282 const void *pvPage;
1283 rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhys, &pvPage);
1284 if (RT_SUCCESS(rc))
1285 rc = nemR3DarwinMap(pVM, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, pvPage, X86_PAGE_SIZE, pInfo->fNemProt, &u2State);
1286 }
1287 else /* Only EXECUTE doesn't work. */
1288 AssertReleaseFailed();
1289
1290 pInfo->u2NemState = u2State;
1291 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - synced => %s + %Rrc\n",
1292 GCPhys, g_apszPageStates[u2State], rc));
1293 pState->fDidSomething = true;
1294 pState->fCanResume = true;
1295 return rc;
1296 }
1297 case NEM_DARWIN_PAGE_STATE_RX:
1298 if ( !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1299 && (pInfo->fNemProt & (NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE)))
1300 {
1301 pState->fCanResume = true;
1302 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #2\n", GCPhys));
1303 return VINF_SUCCESS;
1304 }
1305 break;
1306
1307 case NEM_DARWIN_PAGE_STATE_RW:
1308 case NEM_DARWIN_PAGE_STATE_RWX:
1309 if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1310 {
1311 pState->fCanResume = true;
1312 if ( pInfo->u2OldNemState == NEM_DARWIN_PAGE_STATE_RW
1313 || pInfo->u2OldNemState == NEM_DARWIN_PAGE_STATE_RWX)
1314 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: Spurious EPT fault\n", GCPhys));
1315 return VINF_SUCCESS;
1316 }
1317 break;
1318
1319 default:
1320 AssertLogRelMsgFailedReturn(("u2State=%#x\n", u2State), VERR_NEM_IPE_4);
1321 }
1322
1323 /* Unmap and restart the instruction. */
1324 int rc = nemR3DarwinUnmap(pVM, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, X86_PAGE_SIZE, &u2State);
1325 if (RT_SUCCESS(rc))
1326 {
1327 pInfo->u2NemState = u2State;
1328 pState->fDidSomething = true;
1329 pState->fCanResume = true;
1330 Log5(("NEM GPA unmapped/exit: %RGp (was %s)\n", GCPhys, g_apszPageStates[u2State]));
1331 return VINF_SUCCESS;
1332 }
1333
1334 LogRel(("nemR3DarwinHandleMemoryAccessPageCheckerCallback/unmap: GCPhys=%RGp %s rc=%Rrc\n",
1335 GCPhys, g_apszPageStates[u2State], rc));
1336 return VERR_NEM_UNMAP_PAGES_FAILED;
1337}
1338
1339
1340DECL_FORCE_INLINE(bool) nemR3DarwinIsUnrestrictedGuest(PCVMCC pVM)
1341{
1342 RT_NOREF(pVM);
1343 return true;
1344}
1345
1346
1347DECL_FORCE_INLINE(bool) nemR3DarwinIsNestedPaging(PCVMCC pVM)
1348{
1349 RT_NOREF(pVM);
1350 return true;
1351}
1352
1353
1354DECL_FORCE_INLINE(bool) nemR3DarwinIsPreemptTimerUsed(PCVMCC pVM)
1355{
1356 RT_NOREF(pVM);
1357 return false;
1358}
1359
1360
1361#if 0 /* unused */
1362DECL_FORCE_INLINE(bool) nemR3DarwinIsVmxLbr(PCVMCC pVM)
1363{
1364 RT_NOREF(pVM);
1365 return false;
1366}
1367#endif
1368
1369
1370/*
1371 * Instantiate the code we share with ring-0.
1372 */
1373#define IN_NEM_DARWIN
1374//#define HMVMX_ALWAYS_TRAP_ALL_XCPTS
1375//#define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
1376//#define HMVMX_ALWAYS_INTERCEPT_CR3_ACCESS
1377#define VCPU_2_VMXSTATE(a_pVCpu) (a_pVCpu)->nem.s
1378#define VCPU_2_VMXSTATS(a_pVCpu) (*(a_pVCpu)->nem.s.pVmxStats)
1379
1380#define VM_IS_VMX_UNRESTRICTED_GUEST(a_pVM) nemR3DarwinIsUnrestrictedGuest((a_pVM))
1381#define VM_IS_VMX_NESTED_PAGING(a_pVM) nemR3DarwinIsNestedPaging((a_pVM))
1382#define VM_IS_VMX_PREEMPT_TIMER_USED(a_pVM) nemR3DarwinIsPreemptTimerUsed((a_pVM))
1383#define VM_IS_VMX_LBR(a_pVM) nemR3DarwinIsVmxLbr((a_pVM))
1384
1385#define VMX_VMCS_WRITE_16(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs16((a_pVCpu), (a_FieldEnc), (a_Val))
1386#define VMX_VMCS_WRITE_32(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs32((a_pVCpu), (a_FieldEnc), (a_Val))
1387#define VMX_VMCS_WRITE_64(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))
1388#define VMX_VMCS_WRITE_NW(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))
1389
1390#define VMX_VMCS_READ_16(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs16((a_pVCpu), (a_FieldEnc), (a_pVal))
1391#define VMX_VMCS_READ_32(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs32((a_pVCpu), (a_FieldEnc), (a_pVal))
1392#define VMX_VMCS_READ_64(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))
1393#define VMX_VMCS_READ_NW(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))
1394
1395#include "../VMMAll/VMXAllTemplate.cpp.h"
1396
1397#undef VMX_VMCS_WRITE_16
1398#undef VMX_VMCS_WRITE_32
1399#undef VMX_VMCS_WRITE_64
1400#undef VMX_VMCS_WRITE_NW
1401
1402#undef VMX_VMCS_READ_16
1403#undef VMX_VMCS_READ_32
1404#undef VMX_VMCS_READ_64
1405#undef VMX_VMCS_READ_NW
1406
1407#undef VM_IS_VMX_PREEMPT_TIMER_USED
1408#undef VM_IS_VMX_NESTED_PAGING
1409#undef VM_IS_VMX_UNRESTRICTED_GUEST
1410#undef VCPU_2_VMXSTATS
1411#undef VCPU_2_VMXSTATE
1412
1413
1414/**
1415 * Exports the guest GP registers to HV for execution.
1416 *
1417 * @returns VBox status code.
1418 * @param pVCpu The cross context virtual CPU structure of the
1419 * calling EMT.
1420 */
1421static int nemR3DarwinExportGuestGprs(PVMCPUCC pVCpu)
1422{
1423#define WRITE_GREG(a_GReg, a_Value) \
1424 do \
1425 { \
1426 hv_return_t hrc = hv_vcpu_write_register(pVCpu->nem.s.hVCpuId, (a_GReg), (a_Value)); \
1427 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1428 { /* likely */ } \
1429 else \
1430 return VERR_INTERNAL_ERROR; \
1431 } while(0)
1432
1433 uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->nem.s.fCtxChanged);
1434 if (fCtxChanged & HM_CHANGED_GUEST_GPRS_MASK)
1435 {
1436 if (fCtxChanged & HM_CHANGED_GUEST_RAX)
1437 WRITE_GREG(HV_X86_RAX, pVCpu->cpum.GstCtx.rax);
1438 if (fCtxChanged & HM_CHANGED_GUEST_RCX)
1439 WRITE_GREG(HV_X86_RCX, pVCpu->cpum.GstCtx.rcx);
1440 if (fCtxChanged & HM_CHANGED_GUEST_RDX)
1441 WRITE_GREG(HV_X86_RDX, pVCpu->cpum.GstCtx.rdx);
1442 if (fCtxChanged & HM_CHANGED_GUEST_RBX)
1443 WRITE_GREG(HV_X86_RBX, pVCpu->cpum.GstCtx.rbx);
1444 if (fCtxChanged & HM_CHANGED_GUEST_RSP)
1445 WRITE_GREG(HV_X86_RSP, pVCpu->cpum.GstCtx.rsp);
1446 if (fCtxChanged & HM_CHANGED_GUEST_RBP)
1447 WRITE_GREG(HV_X86_RBP, pVCpu->cpum.GstCtx.rbp);
1448 if (fCtxChanged & HM_CHANGED_GUEST_RSI)
1449 WRITE_GREG(HV_X86_RSI, pVCpu->cpum.GstCtx.rsi);
1450 if (fCtxChanged & HM_CHANGED_GUEST_RDI)
1451 WRITE_GREG(HV_X86_RDI, pVCpu->cpum.GstCtx.rdi);
1452 if (fCtxChanged & HM_CHANGED_GUEST_R8_R15)
1453 {
1454 WRITE_GREG(HV_X86_R8, pVCpu->cpum.GstCtx.r8);
1455 WRITE_GREG(HV_X86_R9, pVCpu->cpum.GstCtx.r9);
1456 WRITE_GREG(HV_X86_R10, pVCpu->cpum.GstCtx.r10);
1457 WRITE_GREG(HV_X86_R11, pVCpu->cpum.GstCtx.r11);
1458 WRITE_GREG(HV_X86_R12, pVCpu->cpum.GstCtx.r12);
1459 WRITE_GREG(HV_X86_R13, pVCpu->cpum.GstCtx.r13);
1460 WRITE_GREG(HV_X86_R14, pVCpu->cpum.GstCtx.r14);
1461 WRITE_GREG(HV_X86_R15, pVCpu->cpum.GstCtx.r15);
1462 }
1463
1464 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_GPRS_MASK);
1465 }
1466
1467 if (fCtxChanged & HM_CHANGED_GUEST_CR2)
1468 {
1469 WRITE_GREG(HV_X86_CR2, pVCpu->cpum.GstCtx.cr2);
1470 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_CR2);
1471 }
1472
1473 return VINF_SUCCESS;
1474#undef WRITE_GREG
1475}
1476
1477
1478/**
1479 * Exports the guest debug registers into the guest-state applying any hypervisor
1480 * debug related states (hardware breakpoints from the debugger, etc.).
1481 *
1482 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
1483 *
1484 * @returns VBox status code.
1485 * @param pVCpu The cross context virtual CPU structure.
1486 * @param pVmxTransient The VMX-transient structure.
1487 */
1488static int nemR3DarwinExportDebugState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
1489{
1490 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1491
1492#ifdef VBOX_STRICT
1493 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
1494 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
1495 {
1496 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
1497 Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
1498 Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
1499 }
1500#endif
1501
1502 bool fSteppingDB = false;
1503 bool fInterceptMovDRx = false;
1504 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
1505 if (pVCpu->nem.s.fSingleInstruction)
1506 {
1507 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
1508 if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
1509 {
1510 uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
1511 Assert(fSteppingDB == false);
1512 }
1513 else
1514 {
1515 pVCpu->cpum.GstCtx.eflags.u |= X86_EFL_TF;
1516 pVCpu->nem.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
1517 pVCpu->nem.s.fClearTrapFlag = true;
1518 fSteppingDB = true;
1519 }
1520 }
1521
1522 uint64_t u64GuestDr7;
1523 if ( fSteppingDB
1524 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1525 {
1526 /*
1527 * Use the combined guest and host DRx values found in the hypervisor register set
1528 * because the hypervisor debugger has breakpoints active or someone is single stepping
1529 * on the host side without a monitor trap flag.
1530 *
1531 * Note! DBGF expects a clean DR6 state before executing guest code.
1532 */
1533 if (!CPUMIsHyperDebugStateActive(pVCpu))
1534 {
1535 /*
1536 * Make sure the hypervisor values are up to date.
1537 */
1538 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX /* no loading, please */);
1539
1540 CPUMR3NemActivateHyperDebugState(pVCpu);
1541
1542 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1543 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1544 }
1545
1546 /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
1547 u64GuestDr7 = CPUMGetHyperDR7(pVCpu);
1548 pVCpu->nem.s.fUsingHyperDR7 = true;
1549 fInterceptMovDRx = true;
1550 }
1551 else
1552 {
1553 /*
1554 * If the guest has enabled debug registers, we need to load them prior to
1555 * executing guest code so they'll trigger at the right time.
1556 */
1557 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
1558 if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
1559 {
1560 if (!CPUMIsGuestDebugStateActive(pVCpu))
1561 {
1562 CPUMR3NemActivateGuestDebugState(pVCpu);
1563
1564 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1565 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1566 }
1567 Assert(!fInterceptMovDRx);
1568 }
1569 else if (!CPUMIsGuestDebugStateActive(pVCpu))
1570 {
1571 /*
1572 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
1573 * must intercept #DB in order to maintain a correct DR6 guest value, and
1574 * because we need to intercept it to prevent nested #DBs from hanging the
1575 * CPU, we end up always having to intercept it. See hmR0VmxSetupVmcsXcptBitmap().
1576 */
1577 fInterceptMovDRx = true;
1578 }
1579
1580 /* Update DR7 with the actual guest value. */
1581 u64GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
1582 pVCpu->nem.s.fUsingHyperDR7 = false;
1583 }
1584
1585 /** @todo The DRx handling is not quite correct breaking debugging inside the guest with gdb,
1586 * see @ticketref{21413} and @ticketref{21546}, so this is disabled for now. See @bugref{10504}
1587 * as well.
1588 */
1589#if 0
1590 if (fInterceptMovDRx)
1591 uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
1592 else
1593 uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
1594#endif
1595
1596 /*
1597 * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
1598 * monitor-trap flag and update our cache.
1599 */
1600 if (uProcCtls != pVmcsInfo->u32ProcCtls)
1601 {
1602 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
1603 AssertRC(rc);
1604 pVmcsInfo->u32ProcCtls = uProcCtls;
1605 }
1606
1607 /*
1608 * Update guest DR7.
1609 */
1610 int rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS_GUEST_DR7, u64GuestDr7);
1611 AssertRC(rc);
1612
1613 /*
1614 * If we have forced EFLAGS.TF to be set because we're single-stepping in the hypervisor debugger,
1615 * we need to clear interrupt inhibition if any as otherwise it causes a VM-entry failure.
1616 *
1617 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
1618 */
1619 if (fSteppingDB)
1620 {
1621 Assert(pVCpu->nem.s.fSingleInstruction);
1622 Assert(pVCpu->cpum.GstCtx.eflags.Bits.u1TF);
1623
1624 uint32_t fIntrState = 0;
1625 rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
1626 AssertRC(rc);
1627
1628 if (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
1629 {
1630 fIntrState &= ~(VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
1631 rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, fIntrState);
1632 AssertRC(rc);
1633 }
1634 }
1635
1636 /*
1637 * Store status of the shared guest/host debug state at the time of VM-entry.
1638 */
1639 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
1640 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
1641
1642 return VINF_SUCCESS;
1643}
1644
1645
1646/**
1647 * Converts the given CPUM externalized bitmask to the appropriate HM changed bitmask.
1648 *
1649 * @returns Bitmask of HM changed flags.
1650 * @param fCpumExtrn The CPUM extern bitmask.
1651 */
1652static uint64_t nemR3DarwinCpumExtrnToHmChanged(uint64_t fCpumExtrn)
1653{
1654 uint64_t fHmChanged = 0;
1655
1656 /* Invert to gt a mask of things which are kept in CPUM. */
1657 uint64_t fCpumIntern = ~fCpumExtrn;
1658
1659 if (fCpumIntern & CPUMCTX_EXTRN_GPRS_MASK)
1660 {
1661 if (fCpumIntern & CPUMCTX_EXTRN_RAX)
1662 fHmChanged |= HM_CHANGED_GUEST_RAX;
1663 if (fCpumIntern & CPUMCTX_EXTRN_RCX)
1664 fHmChanged |= HM_CHANGED_GUEST_RCX;
1665 if (fCpumIntern & CPUMCTX_EXTRN_RDX)
1666 fHmChanged |= HM_CHANGED_GUEST_RDX;
1667 if (fCpumIntern & CPUMCTX_EXTRN_RBX)
1668 fHmChanged |= HM_CHANGED_GUEST_RBX;
1669 if (fCpumIntern & CPUMCTX_EXTRN_RSP)
1670 fHmChanged |= HM_CHANGED_GUEST_RSP;
1671 if (fCpumIntern & CPUMCTX_EXTRN_RBP)
1672 fHmChanged |= HM_CHANGED_GUEST_RBP;
1673 if (fCpumIntern & CPUMCTX_EXTRN_RSI)
1674 fHmChanged |= HM_CHANGED_GUEST_RSI;
1675 if (fCpumIntern & CPUMCTX_EXTRN_RDI)
1676 fHmChanged |= HM_CHANGED_GUEST_RDI;
1677 if (fCpumIntern & CPUMCTX_EXTRN_R8_R15)
1678 fHmChanged |= HM_CHANGED_GUEST_R8_R15;
1679 }
1680
1681 /* RIP & Flags */
1682 if (fCpumIntern & CPUMCTX_EXTRN_RIP)
1683 fHmChanged |= HM_CHANGED_GUEST_RIP;
1684 if (fCpumIntern & CPUMCTX_EXTRN_RFLAGS)
1685 fHmChanged |= HM_CHANGED_GUEST_RFLAGS;
1686
1687 /* Segments */
1688 if (fCpumIntern & CPUMCTX_EXTRN_SREG_MASK)
1689 {
1690 if (fCpumIntern & CPUMCTX_EXTRN_ES)
1691 fHmChanged |= HM_CHANGED_GUEST_ES;
1692 if (fCpumIntern & CPUMCTX_EXTRN_CS)
1693 fHmChanged |= HM_CHANGED_GUEST_CS;
1694 if (fCpumIntern & CPUMCTX_EXTRN_SS)
1695 fHmChanged |= HM_CHANGED_GUEST_SS;
1696 if (fCpumIntern & CPUMCTX_EXTRN_DS)
1697 fHmChanged |= HM_CHANGED_GUEST_DS;
1698 if (fCpumIntern & CPUMCTX_EXTRN_FS)
1699 fHmChanged |= HM_CHANGED_GUEST_FS;
1700 if (fCpumIntern & CPUMCTX_EXTRN_GS)
1701 fHmChanged |= HM_CHANGED_GUEST_GS;
1702 }
1703
1704 /* Descriptor tables & task segment. */
1705 if (fCpumIntern & CPUMCTX_EXTRN_TABLE_MASK)
1706 {
1707 if (fCpumIntern & CPUMCTX_EXTRN_LDTR)
1708 fHmChanged |= HM_CHANGED_GUEST_LDTR;
1709 if (fCpumIntern & CPUMCTX_EXTRN_TR)
1710 fHmChanged |= HM_CHANGED_GUEST_TR;
1711 if (fCpumIntern & CPUMCTX_EXTRN_IDTR)
1712 fHmChanged |= HM_CHANGED_GUEST_IDTR;
1713 if (fCpumIntern & CPUMCTX_EXTRN_GDTR)
1714 fHmChanged |= HM_CHANGED_GUEST_GDTR;
1715 }
1716
1717 /* Control registers. */
1718 if (fCpumIntern & CPUMCTX_EXTRN_CR_MASK)
1719 {
1720 if (fCpumIntern & CPUMCTX_EXTRN_CR0)
1721 fHmChanged |= HM_CHANGED_GUEST_CR0;
1722 if (fCpumIntern & CPUMCTX_EXTRN_CR2)
1723 fHmChanged |= HM_CHANGED_GUEST_CR2;
1724 if (fCpumIntern & CPUMCTX_EXTRN_CR3)
1725 fHmChanged |= HM_CHANGED_GUEST_CR3;
1726 if (fCpumIntern & CPUMCTX_EXTRN_CR4)
1727 fHmChanged |= HM_CHANGED_GUEST_CR4;
1728 }
1729 if (fCpumIntern & CPUMCTX_EXTRN_APIC_TPR)
1730 fHmChanged |= HM_CHANGED_GUEST_APIC_TPR;
1731
1732 /* Debug registers. */
1733 if (fCpumIntern & CPUMCTX_EXTRN_DR0_DR3)
1734 fHmChanged |= HM_CHANGED_GUEST_DR0_DR3;
1735 if (fCpumIntern & CPUMCTX_EXTRN_DR6)
1736 fHmChanged |= HM_CHANGED_GUEST_DR6;
1737 if (fCpumIntern & CPUMCTX_EXTRN_DR7)
1738 fHmChanged |= HM_CHANGED_GUEST_DR7;
1739
1740 /* Floating point state. */
1741 if (fCpumIntern & CPUMCTX_EXTRN_X87)
1742 fHmChanged |= HM_CHANGED_GUEST_X87;
1743 if (fCpumIntern & CPUMCTX_EXTRN_SSE_AVX)
1744 fHmChanged |= HM_CHANGED_GUEST_SSE_AVX;
1745 if (fCpumIntern & CPUMCTX_EXTRN_OTHER_XSAVE)
1746 fHmChanged |= HM_CHANGED_GUEST_OTHER_XSAVE;
1747 if (fCpumIntern & CPUMCTX_EXTRN_XCRx)
1748 fHmChanged |= HM_CHANGED_GUEST_XCRx;
1749
1750 /* MSRs */
1751 if (fCpumIntern & CPUMCTX_EXTRN_EFER)
1752 fHmChanged |= HM_CHANGED_GUEST_EFER_MSR;
1753 if (fCpumIntern & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1754 fHmChanged |= HM_CHANGED_GUEST_KERNEL_GS_BASE;
1755 if (fCpumIntern & CPUMCTX_EXTRN_SYSENTER_MSRS)
1756 fHmChanged |= HM_CHANGED_GUEST_SYSENTER_MSR_MASK;
1757 if (fCpumIntern & CPUMCTX_EXTRN_SYSCALL_MSRS)
1758 fHmChanged |= HM_CHANGED_GUEST_SYSCALL_MSRS;
1759 if (fCpumIntern & CPUMCTX_EXTRN_TSC_AUX)
1760 fHmChanged |= HM_CHANGED_GUEST_TSC_AUX;
1761 if (fCpumIntern & CPUMCTX_EXTRN_OTHER_MSRS)
1762 fHmChanged |= HM_CHANGED_GUEST_OTHER_MSRS;
1763
1764 return fHmChanged;
1765}
1766
1767
1768/**
1769 * Exports the guest state to HV for execution.
1770 *
1771 * @returns VBox status code.
1772 * @param pVM The cross context VM structure.
1773 * @param pVCpu The cross context virtual CPU structure of the
1774 * calling EMT.
1775 * @param pVmxTransient The transient VMX structure.
1776 */
1777static int nemR3DarwinExportGuestState(PVMCC pVM, PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
1778{
1779#define WRITE_GREG(a_GReg, a_Value) \
1780 do \
1781 { \
1782 hv_return_t hrc = hv_vcpu_write_register(pVCpu->nem.s.hVCpuId, (a_GReg), (a_Value)); \
1783 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1784 { /* likely */ } \
1785 else \
1786 return VERR_INTERNAL_ERROR; \
1787 } while(0)
1788#define WRITE_VMCS_FIELD(a_Field, a_Value) \
1789 do \
1790 { \
1791 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), (a_Value)); \
1792 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1793 { /* likely */ } \
1794 else \
1795 return VERR_INTERNAL_ERROR; \
1796 } while(0)
1797#define WRITE_MSR(a_Msr, a_Value) \
1798 do \
1799 { \
1800 hv_return_t hrc = hv_vcpu_write_msr(pVCpu->nem.s.hVCpuId, (a_Msr), (a_Value)); \
1801 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1802 { /* likely */ } \
1803 else \
1804 AssertFailedReturn(VERR_INTERNAL_ERROR); \
1805 } while(0)
1806
1807 RT_NOREF(pVM);
1808
1809#ifdef LOG_ENABLED
1810 nemR3DarwinLogState(pVM, pVCpu);
1811#endif
1812
1813 STAM_PROFILE_ADV_START(&pVCpu->nem.s.StatProfGstStateExport, x);
1814
1815 uint64_t const fWhat = ~pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL;
1816 if (!fWhat)
1817 return VINF_SUCCESS;
1818
1819 pVCpu->nem.s.fCtxChanged |= nemR3DarwinCpumExtrnToHmChanged(pVCpu->cpum.GstCtx.fExtrn);
1820
1821 int rc = vmxHCExportGuestEntryExitCtls(pVCpu, pVmxTransient);
1822 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1823
1824 rc = nemR3DarwinExportGuestGprs(pVCpu);
1825 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1826
1827 rc = vmxHCExportGuestCR0(pVCpu, pVmxTransient);
1828 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1829
1830 VBOXSTRICTRC rcStrict = vmxHCExportGuestCR3AndCR4(pVCpu, pVmxTransient);
1831 if (rcStrict == VINF_SUCCESS)
1832 { /* likely */ }
1833 else
1834 {
1835 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
1836 return VBOXSTRICTRC_VAL(rcStrict);
1837 }
1838
1839 rc = nemR3DarwinExportDebugState(pVCpu, pVmxTransient);
1840 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1841
1842 vmxHCExportGuestXcptIntercepts(pVCpu, pVmxTransient);
1843 vmxHCExportGuestRip(pVCpu);
1844 //vmxHCExportGuestRsp(pVCpu);
1845 vmxHCExportGuestRflags(pVCpu, pVmxTransient);
1846
1847 rc = vmxHCExportGuestSegRegsXdtr(pVCpu, pVmxTransient);
1848 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1849
1850 if (fWhat & CPUMCTX_EXTRN_XCRx)
1851 {
1852 WRITE_GREG(HV_X86_XCR0, pVCpu->cpum.GstCtx.aXcr[0]);
1853 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_XCRx);
1854 }
1855
1856 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
1857 {
1858 Assert(pVCpu->nem.s.fCtxChanged & HM_CHANGED_GUEST_APIC_TPR);
1859 vmxHCExportGuestApicTpr(pVCpu, pVmxTransient);
1860
1861 rc = PDMApicGetTpr(pVCpu, &pVmxTransient->u8GuestTpr, NULL /*pfPending*/, NULL /*pu8PendingIntr*/);
1862 AssertRC(rc);
1863
1864 WRITE_GREG(HV_X86_TPR, pVmxTransient->u8GuestTpr);
1865 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
1866 }
1867
1868 /* Debug registers. */
1869 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
1870 {
1871 WRITE_GREG(HV_X86_DR0, CPUMGetHyperDR0(pVCpu));
1872 WRITE_GREG(HV_X86_DR1, CPUMGetHyperDR1(pVCpu));
1873 WRITE_GREG(HV_X86_DR2, CPUMGetHyperDR2(pVCpu));
1874 WRITE_GREG(HV_X86_DR3, CPUMGetHyperDR3(pVCpu));
1875 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR0_DR3);
1876 }
1877 if (fWhat & CPUMCTX_EXTRN_DR6)
1878 {
1879 WRITE_GREG(HV_X86_DR6, CPUMGetHyperDR6(pVCpu));
1880 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR6);
1881 }
1882 if (fWhat & CPUMCTX_EXTRN_DR7)
1883 {
1884 WRITE_GREG(HV_X86_DR7, CPUMGetHyperDR7(pVCpu));
1885 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR7);
1886 }
1887
1888 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
1889 {
1890 hv_return_t hrc = hv_vcpu_write_fpstate(pVCpu->nem.s.hVCpuId, &pVCpu->cpum.GstCtx.XState, sizeof(pVCpu->cpum.GstCtx.XState));
1891 if (hrc == HV_SUCCESS)
1892 { /* likely */ }
1893 else
1894 return nemR3DarwinHvSts2Rc(hrc);
1895
1896 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~(HM_CHANGED_GUEST_X87 | HM_CHANGED_GUEST_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE));
1897 }
1898
1899 /* MSRs */
1900 if (fWhat & CPUMCTX_EXTRN_EFER)
1901 {
1902 WRITE_VMCS_FIELD(VMX_VMCS64_GUEST_EFER_FULL, pVCpu->cpum.GstCtx.msrEFER);
1903 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
1904 }
1905 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1906 {
1907 WRITE_MSR(MSR_K8_KERNEL_GS_BASE, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
1908 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_KERNEL_GS_BASE);
1909 }
1910 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
1911 {
1912 WRITE_MSR(MSR_IA32_SYSENTER_CS, pVCpu->cpum.GstCtx.SysEnter.cs);
1913 WRITE_MSR(MSR_IA32_SYSENTER_EIP, pVCpu->cpum.GstCtx.SysEnter.eip);
1914 WRITE_MSR(MSR_IA32_SYSENTER_ESP, pVCpu->cpum.GstCtx.SysEnter.esp);
1915 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_MSR_MASK);
1916 }
1917 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
1918 {
1919 WRITE_MSR(MSR_K6_STAR, pVCpu->cpum.GstCtx.msrSTAR);
1920 WRITE_MSR(MSR_K8_LSTAR, pVCpu->cpum.GstCtx.msrLSTAR);
1921 WRITE_MSR(MSR_K8_CSTAR, pVCpu->cpum.GstCtx.msrCSTAR);
1922 WRITE_MSR(MSR_K8_SF_MASK, pVCpu->cpum.GstCtx.msrSFMASK);
1923 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSCALL_MSRS);
1924 }
1925 if (fWhat & CPUMCTX_EXTRN_TSC_AUX)
1926 {
1927 PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1928
1929 WRITE_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
1930 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_TSC_AUX);
1931 }
1932 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
1933 {
1934 /* Last Branch Record. */
1935 if (pVM->nem.s.fLbr)
1936 {
1937 PVMXVMCSINFOSHARED const pVmcsInfoShared = &pVCpu->nem.s.vmx.VmcsInfo;
1938 uint32_t const idFromIpMsrStart = pVM->nem.s.idLbrFromIpMsrFirst;
1939 uint32_t const idToIpMsrStart = pVM->nem.s.idLbrToIpMsrFirst;
1940 uint32_t const idInfoMsrStart = pVM->nem.s.idLbrInfoMsrFirst;
1941 uint32_t const cLbrStack = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
1942 Assert(cLbrStack <= 32);
1943 for (uint32_t i = 0; i < cLbrStack; i++)
1944 {
1945 WRITE_MSR(idFromIpMsrStart + i, pVmcsInfoShared->au64LbrFromIpMsr[i]);
1946
1947 /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
1948 if (idToIpMsrStart != 0)
1949 WRITE_MSR(idToIpMsrStart + i, pVmcsInfoShared->au64LbrToIpMsr[i]);
1950 if (idInfoMsrStart != 0)
1951 WRITE_MSR(idInfoMsrStart + i, pVmcsInfoShared->au64LbrInfoMsr[i]);
1952 }
1953
1954 WRITE_MSR(pVM->nem.s.idLbrTosMsr, pVmcsInfoShared->u64LbrTosMsr);
1955 if (pVM->nem.s.idLerFromIpMsr)
1956 WRITE_MSR(pVM->nem.s.idLerFromIpMsr, pVmcsInfoShared->u64LerFromIpMsr);
1957 if (pVM->nem.s.idLerToIpMsr)
1958 WRITE_MSR(pVM->nem.s.idLerToIpMsr, pVmcsInfoShared->u64LerToIpMsr);
1959 }
1960
1961 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_OTHER_MSRS);
1962 }
1963
1964 hv_vcpu_invalidate_tlb(pVCpu->nem.s.hVCpuId);
1965 hv_vcpu_flush(pVCpu->nem.s.hVCpuId);
1966
1967 pVCpu->cpum.GstCtx.fExtrn |= CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_NEM;
1968
1969 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
1970 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~( HM_CHANGED_GUEST_HWVIRT
1971 | HM_CHANGED_VMX_GUEST_AUTO_MSRS
1972 | HM_CHANGED_VMX_GUEST_LAZY_MSRS
1973 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
1974
1975 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateExport, x);
1976 return VINF_SUCCESS;
1977#undef WRITE_GREG
1978#undef WRITE_VMCS_FIELD
1979}
1980
1981
1982/**
1983 * Common worker for both nemR3DarwinHandleExit() and nemR3DarwinHandleExitDebug().
1984 *
1985 * @returns VBox strict status code.
1986 * @param pVM The cross context VM structure.
1987 * @param pVCpu The cross context virtual CPU structure of the
1988 * calling EMT.
1989 * @param pVmxTransient The transient VMX structure.
1990 */
1991DECLINLINE(int) nemR3DarwinHandleExitCommon(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
1992{
1993 uint32_t uExitReason;
1994 int rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
1995 AssertRC(rc);
1996 pVmxTransient->fVmcsFieldsRead = 0;
1997 pVmxTransient->fIsNestedGuest = false;
1998 pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
1999 pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
2000
2001 if (RT_UNLIKELY(pVmxTransient->fVMEntryFailed))
2002 AssertLogRelMsgFailedReturn(("Running guest failed for CPU #%u: %#x %u\n",
2003 pVCpu->idCpu, pVmxTransient->uExitReason, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
2004 VERR_NEM_IPE_0);
2005
2006 /** @todo Only copy the state on demand (the R0 VT-x code saves some stuff unconditionally and the VMX template assumes that
2007 * when handling exits). */
2008 /*
2009 * Note! What is being fetched here must match the default value for the
2010 * a_fDonePostExit parameter of vmxHCImportGuestState exactly!
2011 */
2012 rc = nemR3DarwinCopyStateFromHv(pVM, pVCpu, CPUMCTX_EXTRN_ALL);
2013 AssertRCReturn(rc, rc);
2014
2015 STAM_COUNTER_INC(&pVCpu->nem.s.pVmxStats->aStatExitReason[pVmxTransient->uExitReason & MASK_EXITREASON_STAT]);
2016 STAM_REL_COUNTER_INC(&pVCpu->nem.s.pVmxStats->StatExitAll);
2017 return VINF_SUCCESS;
2018}
2019
2020
2021/**
2022 * Handles an exit from hv_vcpu_run().
2023 *
2024 * @returns VBox strict status code.
2025 * @param pVM The cross context VM structure.
2026 * @param pVCpu The cross context virtual CPU structure of the
2027 * calling EMT.
2028 * @param pVmxTransient The transient VMX structure.
2029 */
2030static VBOXSTRICTRC nemR3DarwinHandleExit(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
2031{
2032 int rc = nemR3DarwinHandleExitCommon(pVM, pVCpu, pVmxTransient);
2033 AssertRCReturn(rc, rc);
2034
2035#ifndef HMVMX_USE_FUNCTION_TABLE
2036 return vmxHCHandleExit(pVCpu, pVmxTransient);
2037#else
2038 return g_aVMExitHandlers[pVmxTransient->uExitReason].pfn(pVCpu, pVmxTransient);
2039#endif
2040}
2041
2042
2043/**
2044 * Handles an exit from hv_vcpu_run() - debug runloop variant.
2045 *
2046 * @returns VBox strict status code.
2047 * @param pVM The cross context VM structure.
2048 * @param pVCpu The cross context virtual CPU structure of the
2049 * calling EMT.
2050 * @param pVmxTransient The transient VMX structure.
2051 * @param pDbgState The debug state structure.
2052 */
2053static VBOXSTRICTRC nemR3DarwinHandleExitDebug(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
2054{
2055 int rc = nemR3DarwinHandleExitCommon(pVM, pVCpu, pVmxTransient);
2056 AssertRCReturn(rc, rc);
2057
2058 return vmxHCRunDebugHandleExit(pVCpu, pVmxTransient, pDbgState);
2059}
2060
2061
2062/**
2063 * Worker for nemR3NativeInit that loads the Hypervisor.framework shared library.
2064 *
2065 * @returns VBox status code.
2066 * @param fForced Whether the HMForced flag is set and we should
2067 * fail if we cannot initialize.
2068 * @param pErrInfo Where to always return error info.
2069 */
2070static int nemR3DarwinLoadHv(bool fForced, PRTERRINFO pErrInfo)
2071{
2072 RTLDRMOD hMod = NIL_RTLDRMOD;
2073 static const char *s_pszHvPath = "/System/Library/Frameworks/Hypervisor.framework/Hypervisor";
2074
2075 int rc = RTLdrLoadEx(s_pszHvPath, &hMod, RTLDRLOAD_FLAGS_NO_UNLOAD | RTLDRLOAD_FLAGS_NO_SUFFIX, pErrInfo);
2076 if (RT_SUCCESS(rc))
2077 {
2078 for (unsigned i = 0; i < RT_ELEMENTS(g_aImports); i++)
2079 {
2080 int rc2 = RTLdrGetSymbol(hMod, g_aImports[i].pszName, (void **)g_aImports[i].ppfn);
2081 if (RT_SUCCESS(rc2))
2082 {
2083 if (g_aImports[i].fOptional)
2084 LogRel(("NEM: info: Found optional import Hypervisor!%s.\n",
2085 g_aImports[i].pszName));
2086 }
2087 else
2088 {
2089 *g_aImports[i].ppfn = NULL;
2090
2091 LogRel(("NEM: %s: Failed to import Hypervisor!%s: %Rrc\n",
2092 g_aImports[i].fOptional ? "info" : fForced ? "fatal" : "error",
2093 g_aImports[i].pszName, rc2));
2094 if (!g_aImports[i].fOptional)
2095 {
2096 if (RTErrInfoIsSet(pErrInfo))
2097 RTErrInfoAddF(pErrInfo, rc2, ", Hypervisor!%s", g_aImports[i].pszName);
2098 else
2099 rc = RTErrInfoSetF(pErrInfo, rc2, "Failed to import: Hypervisor!%s", g_aImports[i].pszName);
2100 Assert(RT_FAILURE(rc));
2101 }
2102 }
2103 }
2104 if (RT_SUCCESS(rc))
2105 {
2106 Assert(!RTErrInfoIsSet(pErrInfo));
2107 }
2108
2109 RTLdrClose(hMod);
2110 }
2111 else
2112 {
2113 RTErrInfoAddF(pErrInfo, rc, "Failed to load Hypervisor.framwork: %s: %Rrc", s_pszHvPath, rc);
2114 rc = VERR_NEM_INIT_FAILED;
2115 }
2116
2117 return rc;
2118}
2119
2120
2121/**
2122 * Read and initialize the global capabilities supported by this CPU.
2123 *
2124 * @returns VBox status code.
2125 */
2126static int nemR3DarwinCapsInit(PVM pVM)
2127{
2128 RT_ZERO(g_HmMsrs);
2129
2130 hv_return_t hrc = hv_vmx_read_capability(HV_VMX_CAP_PINBASED, &g_HmMsrs.u.vmx.PinCtls.u);
2131 if (hrc == HV_SUCCESS)
2132 hrc = hv_vmx_read_capability(HV_VMX_CAP_PROCBASED, &g_HmMsrs.u.vmx.ProcCtls.u);
2133 if (hrc == HV_SUCCESS)
2134 hrc = hv_vmx_read_capability(HV_VMX_CAP_ENTRY, &g_HmMsrs.u.vmx.EntryCtls.u);
2135 if (hrc == HV_SUCCESS)
2136 hrc = hv_vmx_read_capability(HV_VMX_CAP_EXIT, &g_HmMsrs.u.vmx.ExitCtls.u);
2137 if (hrc == HV_SUCCESS)
2138 {
2139 hrc = hv_vmx_read_capability(HV_VMX_CAP_BASIC, &g_HmMsrs.u.vmx.u64Basic);
2140 if (hrc == HV_SUCCESS)
2141 {
2142 if (hrc == HV_SUCCESS)
2143 hrc = hv_vmx_read_capability(HV_VMX_CAP_MISC, &g_HmMsrs.u.vmx.u64Misc);
2144 if (hrc == HV_SUCCESS)
2145 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR0_FIXED0, &g_HmMsrs.u.vmx.u64Cr0Fixed0);
2146 if (hrc == HV_SUCCESS)
2147 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR0_FIXED1, &g_HmMsrs.u.vmx.u64Cr0Fixed1);
2148 if (hrc == HV_SUCCESS)
2149 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR4_FIXED0, &g_HmMsrs.u.vmx.u64Cr4Fixed0);
2150 if (hrc == HV_SUCCESS)
2151 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR4_FIXED1, &g_HmMsrs.u.vmx.u64Cr4Fixed1);
2152 if (hrc == HV_SUCCESS)
2153 hrc = hv_vmx_read_capability(HV_VMX_CAP_VMCS_ENUM, &g_HmMsrs.u.vmx.u64VmcsEnum);
2154 if ( hrc == HV_SUCCESS
2155 && RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_TRUE_CTLS))
2156 {
2157 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_PINBASED, &g_HmMsrs.u.vmx.TruePinCtls.u);
2158 if (hrc == HV_SUCCESS)
2159 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_PROCBASED, &g_HmMsrs.u.vmx.TrueProcCtls.u);
2160 if (hrc == HV_SUCCESS)
2161 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_ENTRY, &g_HmMsrs.u.vmx.TrueEntryCtls.u);
2162 if (hrc == HV_SUCCESS)
2163 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_EXIT, &g_HmMsrs.u.vmx.TrueExitCtls.u);
2164 }
2165 }
2166 else
2167 {
2168 /* Likely running on anything < 11.0 (BigSur) so provide some sensible defaults. */
2169 g_HmMsrs.u.vmx.u64Cr0Fixed0 = 0x80000021;
2170 g_HmMsrs.u.vmx.u64Cr0Fixed1 = 0xffffffff;
2171 g_HmMsrs.u.vmx.u64Cr4Fixed0 = 0x2000;
2172 g_HmMsrs.u.vmx.u64Cr4Fixed1 = 0x1767ff;
2173 hrc = HV_SUCCESS;
2174 }
2175 }
2176
2177 if ( hrc == HV_SUCCESS
2178 && g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2179 {
2180 hrc = hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2, &g_HmMsrs.u.vmx.ProcCtls2.u);
2181
2182 if ( hrc == HV_SUCCESS
2183 && g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & (VMX_PROC_CTLS2_EPT | VMX_PROC_CTLS2_VPID))
2184 {
2185 hrc = hv_vmx_read_capability(HV_VMX_CAP_EPT_VPID_CAP, &g_HmMsrs.u.vmx.u64EptVpidCaps);
2186 if (hrc != HV_SUCCESS)
2187 hrc = HV_SUCCESS; /* Probably just outdated OS. */
2188 }
2189
2190 g_HmMsrs.u.vmx.u64VmFunc = 0; /* No way to read that on macOS. */
2191 }
2192
2193 if (hrc == HV_SUCCESS)
2194 {
2195 /*
2196 * Check for EFER swapping support.
2197 */
2198 g_fHmVmxSupportsVmcsEfer = true; //(g_HmMsrs.u.vmx.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
2199 //&& (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
2200 //&& (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR);
2201 }
2202
2203 /*
2204 * Get MSR_IA32_ARCH_CAPABILITIES and expand it into the host feature structure.
2205 *
2206 * This is only available with 11.0+ (BigSur) as the required API is only available there,
2207 * we could in theory initialize this when creating the EMTs using hv_vcpu_read_msr() but
2208 * the required vCPU handle is created after CPUM was initialized which is too late.
2209 * Given that the majority of users is on 11.0 and later we don't care for now.
2210 *
2211 * (Yes, this is done after CPUM init.)
2212 */
2213 uint64_t fHostArchVal = 0;
2214 bool fHasArchCap = false;
2215 if ( hrc == HV_SUCCESS
2216 && hv_vmx_get_msr_info)
2217 {
2218 uint32_t const cStdRange = ASMCpuId_EAX(0);
2219 if ( RTX86IsValidStdRange(cStdRange)
2220 && cStdRange >= 7)
2221 {
2222 uint32_t const fStdFeaturesEdx = ASMCpuId_EDX(1);
2223 uint32_t fStdExtFeaturesEdx;
2224 ASMCpuIdExSlow(7, 0, 0, 0, NULL, NULL, NULL, &fStdExtFeaturesEdx);
2225 if ( (fStdExtFeaturesEdx & X86_CPUID_STEXT_FEATURE_EDX_ARCHCAP)
2226 && (fStdFeaturesEdx & X86_CPUID_FEATURE_EDX_MSR))
2227 {
2228 fHasArchCap = true;
2229 hrc = hv_vmx_get_msr_info(HV_VMX_INFO_MSR_IA32_ARCH_CAPABILITIES, &fHostArchVal);
2230 if (hrc != HV_SUCCESS)
2231 fHostArchVal = 0;
2232 }
2233 }
2234 }
2235 CPUMCpuIdApplyX86HostArchCapabilities(pVM, fHasArchCap, fHostArchVal);
2236
2237 return nemR3DarwinHvSts2Rc(hrc);
2238}
2239
2240
2241/**
2242 * Sets up the LBR MSR ranges based on the host CPU.
2243 *
2244 * @returns VBox status code.
2245 * @param pVM The cross context VM structure.
2246 *
2247 * @sa hmR0VmxSetupLbrMsrRange
2248 */
2249static int nemR3DarwinSetupLbrMsrRange(PVMCC pVM)
2250{
2251 Assert(pVM->nem.s.fLbr);
2252 uint32_t idLbrFromIpMsrFirst;
2253 uint32_t idLbrFromIpMsrLast;
2254 uint32_t idLbrToIpMsrFirst;
2255 uint32_t idLbrToIpMsrLast;
2256 uint32_t idLbrInfoMsrFirst;
2257 uint32_t idLbrInfoMsrLast;
2258 uint32_t idLbrTosMsr;
2259 uint32_t idLbrSelectMsr;
2260 uint32_t idLerFromIpMsr;
2261 uint32_t idLerToIpMsr;
2262
2263 /*
2264 * Determine the LBR MSRs supported for this host CPU family and model.
2265 *
2266 * See Intel spec. 17.4.8 "LBR Stack".
2267 * See Intel "Model-Specific Registers" spec.
2268 */
2269 uint32_t const uFamilyModel = (g_CpumHostFeatures.s.uFamily << 8)
2270 | g_CpumHostFeatures.s.uModel;
2271 switch (uFamilyModel)
2272 {
2273 case 0x0f01: case 0x0f02:
2274 idLbrFromIpMsrFirst = MSR_P4_LASTBRANCH_0;
2275 idLbrFromIpMsrLast = MSR_P4_LASTBRANCH_3;
2276 idLbrToIpMsrFirst = 0x0;
2277 idLbrToIpMsrLast = 0x0;
2278 idLbrInfoMsrFirst = 0x0;
2279 idLbrInfoMsrLast = 0x0;
2280 idLbrTosMsr = MSR_P4_LASTBRANCH_TOS;
2281 idLbrSelectMsr = 0x0;
2282 idLerFromIpMsr = 0x0;
2283 idLerToIpMsr = 0x0;
2284 break;
2285
2286 case 0x065c: case 0x065f: case 0x064e: case 0x065e: case 0x068e:
2287 case 0x069e: case 0x0655: case 0x0666: case 0x067a: case 0x0667:
2288 case 0x066a: case 0x066c: case 0x067d: case 0x067e:
2289 idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
2290 idLbrFromIpMsrLast = MSR_LASTBRANCH_31_FROM_IP;
2291 idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
2292 idLbrToIpMsrLast = MSR_LASTBRANCH_31_TO_IP;
2293 idLbrInfoMsrFirst = MSR_LASTBRANCH_0_INFO;
2294 idLbrInfoMsrLast = MSR_LASTBRANCH_31_INFO;
2295 idLbrTosMsr = MSR_LASTBRANCH_TOS;
2296 idLbrSelectMsr = MSR_LASTBRANCH_SELECT;
2297 idLerFromIpMsr = MSR_LER_FROM_IP;
2298 idLerToIpMsr = MSR_LER_TO_IP;
2299 break;
2300
2301 case 0x063d: case 0x0647: case 0x064f: case 0x0656: case 0x063c:
2302 case 0x0645: case 0x0646: case 0x063f: case 0x062a: case 0x062d:
2303 case 0x063a: case 0x063e: case 0x061a: case 0x061e: case 0x061f:
2304 case 0x062e: case 0x0625: case 0x062c: case 0x062f:
2305 idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
2306 idLbrFromIpMsrLast = MSR_LASTBRANCH_15_FROM_IP;
2307 idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
2308 idLbrToIpMsrLast = MSR_LASTBRANCH_15_TO_IP;
2309 idLbrInfoMsrFirst = MSR_LASTBRANCH_0_INFO;
2310 idLbrInfoMsrLast = MSR_LASTBRANCH_15_INFO;
2311 idLbrTosMsr = MSR_LASTBRANCH_TOS;
2312 idLbrSelectMsr = MSR_LASTBRANCH_SELECT;
2313 idLerFromIpMsr = MSR_LER_FROM_IP;
2314 idLerToIpMsr = MSR_LER_TO_IP;
2315 break;
2316
2317 case 0x0617: case 0x061d: case 0x060f:
2318 idLbrFromIpMsrFirst = MSR_CORE2_LASTBRANCH_0_FROM_IP;
2319 idLbrFromIpMsrLast = MSR_CORE2_LASTBRANCH_3_FROM_IP;
2320 idLbrToIpMsrFirst = MSR_CORE2_LASTBRANCH_0_TO_IP;
2321 idLbrToIpMsrLast = MSR_CORE2_LASTBRANCH_3_TO_IP;
2322 idLbrInfoMsrFirst = 0x0;
2323 idLbrInfoMsrLast = 0x0;
2324 idLbrTosMsr = MSR_CORE2_LASTBRANCH_TOS;
2325 idLbrSelectMsr = 0x0;
2326 idLerFromIpMsr = 0x0;
2327 idLerToIpMsr = 0x0;
2328 break;
2329
2330 /* Atom and related microarchitectures we don't care about:
2331 case 0x0637: case 0x064a: case 0x064c: case 0x064d: case 0x065a:
2332 case 0x065d: case 0x061c: case 0x0626: case 0x0627: case 0x0635:
2333 case 0x0636: */
2334 /* All other CPUs: */
2335 default:
2336 {
2337 LogRelFunc(("Could not determine LBR stack size for the CPU model %#x\n", uFamilyModel));
2338 VMCC_GET_CPU_0(pVM)->nem.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_UNKNOWN;
2339 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2340 }
2341 }
2342
2343 /*
2344 * Validate.
2345 */
2346 uint32_t const cLbrStack = idLbrFromIpMsrLast - idLbrFromIpMsrFirst + 1;
2347 PCVMCPU pVCpu0 = VMCC_GET_CPU_0(pVM);
2348 AssertCompile( RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrFromIpMsr)
2349 == RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrToIpMsr));
2350 AssertCompile( RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrFromIpMsr)
2351 == RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrInfoMsr));
2352 if (cLbrStack > RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrFromIpMsr))
2353 {
2354 LogRelFunc(("LBR stack size of the CPU (%u) exceeds our buffer size\n", cLbrStack));
2355 VMCC_GET_CPU_0(pVM)->nem.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_OVERFLOW;
2356 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2357 }
2358 NOREF(pVCpu0);
2359
2360 /*
2361 * Update the LBR info. to the VM struct. for use later.
2362 */
2363 pVM->nem.s.idLbrTosMsr = idLbrTosMsr;
2364 pVM->nem.s.idLbrSelectMsr = idLbrSelectMsr;
2365
2366 pVM->nem.s.idLbrFromIpMsrFirst = idLbrFromIpMsrFirst;
2367 pVM->nem.s.idLbrFromIpMsrLast = idLbrFromIpMsrLast;
2368
2369 pVM->nem.s.idLbrToIpMsrFirst = idLbrToIpMsrFirst;
2370 pVM->nem.s.idLbrToIpMsrLast = idLbrToIpMsrLast;
2371
2372 pVM->nem.s.idLbrInfoMsrFirst = idLbrInfoMsrFirst;
2373 pVM->nem.s.idLbrInfoMsrLast = idLbrInfoMsrLast;
2374
2375 pVM->nem.s.idLerFromIpMsr = idLerFromIpMsr;
2376 pVM->nem.s.idLerToIpMsr = idLerToIpMsr;
2377 return VINF_SUCCESS;
2378}
2379
2380
2381/**
2382 * Sets up pin-based VM-execution controls in the VMCS.
2383 *
2384 * @returns VBox status code.
2385 * @param pVCpu The cross context virtual CPU structure.
2386 * @param pVmcsInfo The VMCS info. object.
2387 */
2388static int nemR3DarwinVmxSetupVmcsPinCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2389{
2390 //PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2391 uint32_t fVal = g_HmMsrs.u.vmx.PinCtls.n.allowed0; /* Bits set here must always be set. */
2392 uint32_t const fZap = g_HmMsrs.u.vmx.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2393
2394 if (g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
2395 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2396
2397#if 0 /** @todo Use preemption timer */
2398 /* Enable the VMX-preemption timer. */
2399 if (pVM->hmr0.s.vmx.fUsePreemptTimer)
2400 {
2401 Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
2402 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
2403 }
2404
2405 /* Enable posted-interrupt processing. */
2406 if (pVM->hm.s.fPostedIntrs)
2407 {
2408 Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
2409 Assert(g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
2410 fVal |= VMX_PIN_CTLS_POSTED_INT;
2411 }
2412#endif
2413
2414 if ((fVal & fZap) != fVal)
2415 {
2416 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2417 g_HmMsrs.u.vmx.PinCtls.n.allowed0, fVal, fZap));
2418 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2419 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2420 }
2421
2422 /* Commit it to the VMCS and update our cache. */
2423 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PIN_EXEC, fVal);
2424 AssertRC(rc);
2425 pVmcsInfo->u32PinCtls = fVal;
2426
2427 return VINF_SUCCESS;
2428}
2429
2430
2431/**
2432 * Sets up secondary processor-based VM-execution controls in the VMCS.
2433 *
2434 * @returns VBox status code.
2435 * @param pVCpu The cross context virtual CPU structure.
2436 * @param pVmcsInfo The VMCS info. object.
2437 */
2438static int nemR3DarwinVmxSetupVmcsProcCtls2(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2439{
2440 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2441 uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
2442 uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2443
2444 /* WBINVD causes a VM-exit. */
2445 if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
2446 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
2447
2448 /* Enable the INVPCID instruction if we expose it to the guest and is supported
2449 by the hardware. Without this, guest executing INVPCID would cause a #UD. */
2450 if ( pVM->cpum.ro.GuestFeatures.fInvpcid
2451 && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID))
2452 fVal |= VMX_PROC_CTLS2_INVPCID;
2453
2454#if 0 /** @todo */
2455 /* Enable VPID. */
2456 if (pVM->hmr0.s.vmx.fVpid)
2457 fVal |= VMX_PROC_CTLS2_VPID;
2458
2459 if (pVM->hm.s.fVirtApicRegs)
2460 {
2461 /* Enable APIC-register virtualization. */
2462 Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
2463 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
2464
2465 /* Enable virtual-interrupt delivery. */
2466 Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
2467 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
2468 }
2469
2470 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is
2471 where the TPR shadow resides. */
2472 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2473 * done dynamically. */
2474 if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
2475 {
2476 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS;
2477 hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
2478 }
2479#endif
2480
2481 /* Enable the RDTSCP instruction if we expose it to the guest and is supported
2482 by the hardware. Without this, guest executing RDTSCP would cause a #UD. */
2483 if ( pVM->cpum.ro.GuestFeatures.fRdTscP
2484 && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP))
2485 fVal |= VMX_PROC_CTLS2_RDTSCP;
2486
2487 /* Enable Pause-Loop exiting. */
2488 if ( (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
2489 && pVM->nem.s.cPleGapTicks
2490 && pVM->nem.s.cPleWindowTicks)
2491 {
2492 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
2493
2494 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PLE_GAP, pVM->nem.s.cPleGapTicks); AssertRC(rc);
2495 rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PLE_WINDOW, pVM->nem.s.cPleWindowTicks); AssertRC(rc);
2496 }
2497
2498 if ((fVal & fZap) != fVal)
2499 {
2500 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2501 g_HmMsrs.u.vmx.ProcCtls2.n.allowed0, fVal, fZap));
2502 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2503 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2504 }
2505
2506 /* Commit it to the VMCS and update our cache. */
2507 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
2508 AssertRC(rc);
2509 pVmcsInfo->u32ProcCtls2 = fVal;
2510
2511 return VINF_SUCCESS;
2512}
2513
2514
2515/**
2516 * Enables native access for the given MSR.
2517 *
2518 * @returns VBox status code.
2519 * @param pVCpu The cross context virtual CPU structure.
2520 * @param idMsr The MSR to enable native access for.
2521 */
2522static int nemR3DarwinMsrSetNative(PVMCPUCC pVCpu, uint32_t idMsr)
2523{
2524 hv_return_t hrc = hv_vcpu_enable_native_msr(pVCpu->nem.s.hVCpuId, idMsr, true /*enable*/);
2525 if (hrc == HV_SUCCESS)
2526 return VINF_SUCCESS;
2527
2528 return nemR3DarwinHvSts2Rc(hrc);
2529}
2530
2531
2532/**
2533 * Sets the MSR to managed for the given vCPU allowing the guest to access it.
2534 *
2535 * @returns VBox status code.
2536 * @param pVCpu The cross context virtual CPU structure.
2537 * @param idMsr The MSR to enable managed access for.
2538 * @param fMsrPerm The MSR permissions flags.
2539 */
2540static int nemR3DarwinMsrSetManaged(PVMCPUCC pVCpu, uint32_t idMsr, hv_msr_flags_t fMsrPerm)
2541{
2542 Assert(hv_vcpu_enable_managed_msr);
2543
2544 hv_return_t hrc = hv_vcpu_enable_managed_msr(pVCpu->nem.s.hVCpuId, idMsr, true /*enable*/);
2545 if (hrc == HV_SUCCESS)
2546 {
2547 hrc = hv_vcpu_set_msr_access(pVCpu->nem.s.hVCpuId, idMsr, fMsrPerm);
2548 if (hrc == HV_SUCCESS)
2549 return VINF_SUCCESS;
2550 }
2551
2552 return nemR3DarwinHvSts2Rc(hrc);
2553}
2554
2555
2556/**
2557 * Sets up the MSR permissions which don't change through the lifetime of the VM.
2558 *
2559 * @returns VBox status code.
2560 * @param pVCpu The cross context virtual CPU structure.
2561 * @param pVmcsInfo The VMCS info. object.
2562 */
2563static int nemR3DarwinSetupVmcsMsrPermissions(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2564{
2565 RT_NOREF(pVmcsInfo);
2566
2567 /*
2568 * The guest can access the following MSRs (read, write) without causing
2569 * VM-exits; they are loaded/stored automatically using fields in the VMCS.
2570 */
2571 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2572 int rc;
2573 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_CS); AssertRCReturn(rc, rc);
2574 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_ESP); AssertRCReturn(rc, rc);
2575 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_EIP); AssertRCReturn(rc, rc);
2576 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_GS_BASE); AssertRCReturn(rc, rc);
2577 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_FS_BASE); AssertRCReturn(rc, rc);
2578
2579 /*
2580 * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
2581 * associated with then. We never need to intercept access (writes need to be
2582 * executed without causing a VM-exit, reads will #GP fault anyway).
2583 *
2584 * The IA32_SPEC_CTRL MSR is read/write and has state. We allow the guest to
2585 * read/write them. We swap the guest/host MSR value using the
2586 * auto-load/store MSR area.
2587 */
2588 if (pVM->cpum.ro.GuestFeatures.fIbpb)
2589 {
2590 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_PRED_CMD);
2591 AssertRCReturn(rc, rc);
2592 }
2593#if 0 /* Doesn't work. */
2594 if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
2595 {
2596 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_FLUSH_CMD);
2597 AssertRCReturn(rc, rc);
2598 }
2599#endif
2600 if (pVM->cpum.ro.GuestFeatures.fIbrs)
2601 {
2602 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SPEC_CTRL);
2603 AssertRCReturn(rc, rc);
2604 }
2605
2606 /*
2607 * Allow full read/write access for the following MSRs (mandatory for VT-x)
2608 * required for 64-bit guests.
2609 */
2610 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_LSTAR); AssertRCReturn(rc, rc);
2611 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K6_STAR); AssertRCReturn(rc, rc);
2612 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_SF_MASK); AssertRCReturn(rc, rc);
2613 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_KERNEL_GS_BASE); AssertRCReturn(rc, rc);
2614
2615 /* Required for enabling the RDTSCP instruction. */
2616 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_TSC_AUX); AssertRCReturn(rc, rc);
2617
2618 /* Last Branch Record. */
2619 if (pVM->nem.s.fLbr)
2620 {
2621 uint32_t const idFromIpMsrStart = pVM->nem.s.idLbrFromIpMsrFirst;
2622 uint32_t const idToIpMsrStart = pVM->nem.s.idLbrToIpMsrFirst;
2623 uint32_t const idInfoMsrStart = pVM->nem.s.idLbrInfoMsrFirst;
2624 uint32_t const cLbrStack = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
2625 Assert(cLbrStack <= 32);
2626 for (uint32_t i = 0; i < cLbrStack; i++)
2627 {
2628 rc = nemR3DarwinMsrSetManaged(pVCpu, idFromIpMsrStart + i, HV_MSR_READ | HV_MSR_WRITE);
2629 AssertRCReturn(rc, rc);
2630
2631 /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
2632 if (idToIpMsrStart != 0)
2633 {
2634 rc = nemR3DarwinMsrSetManaged(pVCpu, idToIpMsrStart + i, HV_MSR_READ | HV_MSR_WRITE);
2635 AssertRCReturn(rc, rc);
2636 }
2637
2638 if (idInfoMsrStart != 0)
2639 {
2640 rc = nemR3DarwinMsrSetManaged(pVCpu, idInfoMsrStart + i, HV_MSR_READ | HV_MSR_WRITE);
2641 AssertRCReturn(rc, rc);
2642 }
2643 }
2644
2645 rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLbrTosMsr, HV_MSR_READ | HV_MSR_WRITE);
2646 AssertRCReturn(rc, rc);
2647
2648 if (pVM->nem.s.idLerFromIpMsr)
2649 {
2650 rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLerFromIpMsr, HV_MSR_READ | HV_MSR_WRITE);
2651 AssertRCReturn(rc, rc);
2652 }
2653
2654 if (pVM->nem.s.idLerToIpMsr)
2655 {
2656 rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLerToIpMsr, HV_MSR_READ | HV_MSR_WRITE);
2657 AssertRCReturn(rc, rc);
2658 }
2659
2660 if (pVM->nem.s.idLbrSelectMsr)
2661 {
2662 rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLbrSelectMsr, HV_MSR_READ | HV_MSR_WRITE);
2663 AssertRCReturn(rc, rc);
2664 }
2665 }
2666
2667 return VINF_SUCCESS;
2668}
2669
2670
2671/**
2672 * Sets up processor-based VM-execution controls in the VMCS.
2673 *
2674 * @returns VBox status code.
2675 * @param pVCpu The cross context virtual CPU structure.
2676 * @param pVmcsInfo The VMCS info. object.
2677 */
2678static int nemR3DarwinVmxSetupVmcsProcCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2679{
2680 uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
2681 uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2682
2683 /** @todo The DRx handling is not quite correct breaking debugging inside the guest with gdb,
2684 * see @ticketref{21413} and @ticketref{21546}, so intercepting mov drX is disabled for now. See @bugref{10504}
2685 * as well. This will break the hypervisor debugger but only very few people use it and even less on macOS
2686 * using the NEM backend.
2687 */
2688 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
2689// | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2690// | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2691 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2692 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2693 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2694 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2695
2696#ifdef HMVMX_ALWAYS_INTERCEPT_CR3_ACCESS
2697 fVal |= VMX_PROC_CTLS_CR3_LOAD_EXIT
2698 | VMX_PROC_CTLS_CR3_STORE_EXIT;
2699#endif
2700
2701 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2702 if ( !(g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
2703 || (g_HmMsrs.u.vmx.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
2704 {
2705 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2706 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2707 }
2708
2709 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2710 if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2711 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
2712
2713 if ((fVal & fZap) != fVal)
2714 {
2715 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2716 g_HmMsrs.u.vmx.ProcCtls.n.allowed0, fVal, fZap));
2717 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2718 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2719 }
2720
2721 /* Commit it to the VMCS and update our cache. */
2722 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, fVal);
2723 AssertRC(rc);
2724 pVmcsInfo->u32ProcCtls = fVal;
2725
2726 /* Set up MSR permissions that don't change through the lifetime of the VM. */
2727 rc = nemR3DarwinSetupVmcsMsrPermissions(pVCpu, pVmcsInfo);
2728 AssertRCReturn(rc, rc);
2729
2730 /*
2731 * Set up secondary processor-based VM-execution controls
2732 * (we assume the CPU to always support it as we rely on unrestricted guest execution support).
2733 */
2734 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
2735 return nemR3DarwinVmxSetupVmcsProcCtls2(pVCpu, pVmcsInfo);
2736}
2737
2738
2739/**
2740 * Sets up miscellaneous (everything other than Pin, Processor and secondary
2741 * Processor-based VM-execution) control fields in the VMCS.
2742 *
2743 * @returns VBox status code.
2744 * @param pVCpu The cross context virtual CPU structure.
2745 * @param pVmcsInfo The VMCS info. object.
2746 */
2747static int nemR3DarwinVmxSetupVmcsMiscCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2748{
2749 int rc = VINF_SUCCESS;
2750 //rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo); TODO
2751 if (RT_SUCCESS(rc))
2752 {
2753 uint64_t const u64Cr0Mask = vmxHCGetFixedCr0Mask(pVCpu);
2754 uint64_t const u64Cr4Mask = vmxHCGetFixedCr4Mask(pVCpu);
2755
2756 rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask); AssertRC(rc);
2757 rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask); AssertRC(rc);
2758
2759 pVmcsInfo->u64Cr0Mask = u64Cr0Mask;
2760 pVmcsInfo->u64Cr4Mask = u64Cr4Mask;
2761
2762 if (pVCpu->CTX_SUFF(pVM)->nem.s.fLbr)
2763 {
2764 rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS64_GUEST_DEBUGCTL_FULL, MSR_IA32_DEBUGCTL_LBR);
2765 AssertRC(rc);
2766 }
2767 return VINF_SUCCESS;
2768 }
2769 else
2770 LogRelFunc(("Failed to initialize VMCS auto-load/store MSR addresses. rc=%Rrc\n", rc));
2771 return rc;
2772}
2773
2774
2775/**
2776 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2777 *
2778 * We shall setup those exception intercepts that don't change during the
2779 * lifetime of the VM here. The rest are done dynamically while loading the
2780 * guest state.
2781 *
2782 * @param pVCpu The cross context virtual CPU structure.
2783 * @param pVmcsInfo The VMCS info. object.
2784 */
2785static void nemR3DarwinVmxSetupVmcsXcptBitmap(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2786{
2787 /*
2788 * The following exceptions are always intercepted:
2789 *
2790 * #AC - To prevent the guest from hanging the CPU and for dealing with
2791 * split-lock detecting host configs.
2792 * #DB - To maintain the DR6 state even when intercepting DRx reads/writes and
2793 * recursive #DBs can cause a CPU hang.
2794 */
2795 /** @todo The DRx handling is not quite correct breaking debugging inside the guest with gdb,
2796 * see @ticketref{21413} and @ticketref{21546}, so intercepting \#DB is disabled for now. See @bugref{10504}
2797 * as well. This will break the hypervisor debugger but only very few people use it and even less on macOS
2798 * using the NEM backend.
2799 */
2800 uint32_t const uXcptBitmap = RT_BIT(X86_XCPT_AC)
2801 /*| RT_BIT(X86_XCPT_DB)*/;
2802
2803 /* Commit it to the VMCS. */
2804 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
2805 AssertRC(rc);
2806
2807 /* Update our cache of the exception bitmap. */
2808 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
2809}
2810
2811
2812/**
2813 * Initialize the VMCS information field for the given vCPU.
2814 *
2815 * @returns VBox status code.
2816 * @param pVCpu The cross context virtual CPU structure of the
2817 * calling EMT.
2818 */
2819static int nemR3DarwinInitVmcs(PVMCPU pVCpu)
2820{
2821 int rc = nemR3DarwinVmxSetupVmcsPinCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
2822 if (RT_SUCCESS(rc))
2823 {
2824 rc = nemR3DarwinVmxSetupVmcsProcCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
2825 if (RT_SUCCESS(rc))
2826 {
2827 rc = nemR3DarwinVmxSetupVmcsMiscCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
2828 if (RT_SUCCESS(rc))
2829 {
2830 rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_CTRL_ENTRY, &pVCpu->nem.s.VmcsInfo.u32EntryCtls);
2831 if (RT_SUCCESS(rc))
2832 {
2833 rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_CTRL_EXIT, &pVCpu->nem.s.VmcsInfo.u32ExitCtls);
2834 if (RT_SUCCESS(rc))
2835 {
2836 nemR3DarwinVmxSetupVmcsXcptBitmap(pVCpu, &pVCpu->nem.s.VmcsInfo);
2837 return VINF_SUCCESS;
2838 }
2839 LogRelFunc(("Failed to read the exit controls. rc=%Rrc\n", rc));
2840 }
2841 else
2842 LogRelFunc(("Failed to read the entry controls. rc=%Rrc\n", rc));
2843 }
2844 else
2845 LogRelFunc(("Failed to setup miscellaneous controls. rc=%Rrc\n", rc));
2846 }
2847 else
2848 LogRelFunc(("Failed to setup processor-based VM-execution controls. rc=%Rrc\n", rc));
2849 }
2850 else
2851 LogRelFunc(("Failed to setup pin-based controls. rc=%Rrc\n", rc));
2852
2853 return rc;
2854}
2855
2856
2857/**
2858 * Registers statistics for the given vCPU.
2859 *
2860 * @returns VBox status code.
2861 * @param pVM The cross context VM structure.
2862 * @param idCpu The CPU ID.
2863 * @param pNemCpu The NEM CPU structure.
2864 */
2865static int nemR3DarwinStatisticsRegister(PVM pVM, VMCPUID idCpu, PNEMCPU pNemCpu)
2866{
2867#define NEM_REG_STAT(a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szNmFmt, a_szDesc) do { \
2868 int rc = STAMR3RegisterF(pVM, a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szDesc, a_szNmFmt, idCpu); \
2869 AssertRC(rc); \
2870 } while (0)
2871#define NEM_REG_PROFILE(a_pVar, a_szNmFmt, a_szDesc) \
2872 NEM_REG_STAT(a_pVar, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, a_szNmFmt, a_szDesc)
2873#define NEM_REG_COUNTER(a, b, desc) NEM_REG_STAT(a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, b, desc)
2874
2875 PVMXSTATISTICS const pVmxStats = pNemCpu->pVmxStats;
2876
2877 NEM_REG_COUNTER(&pVmxStats->StatExitCR0Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR0", "CR0 read.");
2878 NEM_REG_COUNTER(&pVmxStats->StatExitCR2Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR2", "CR2 read.");
2879 NEM_REG_COUNTER(&pVmxStats->StatExitCR3Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR3", "CR3 read.");
2880 NEM_REG_COUNTER(&pVmxStats->StatExitCR4Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR4", "CR4 read.");
2881 NEM_REG_COUNTER(&pVmxStats->StatExitCR8Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR8", "CR8 read.");
2882 NEM_REG_COUNTER(&pVmxStats->StatExitCR0Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR0", "CR0 write.");
2883 NEM_REG_COUNTER(&pVmxStats->StatExitCR2Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR2", "CR2 write.");
2884 NEM_REG_COUNTER(&pVmxStats->StatExitCR3Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR3", "CR3 write.");
2885 NEM_REG_COUNTER(&pVmxStats->StatExitCR4Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR4", "CR4 write.");
2886 NEM_REG_COUNTER(&pVmxStats->StatExitCR8Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR8", "CR8 write.");
2887
2888 NEM_REG_COUNTER(&pVmxStats->StatExitAll, "/NEM/CPU%u/Exit/All", "Total exits (including nested-guest exits).");
2889
2890 NEM_REG_COUNTER(&pVmxStats->StatImportGuestStateFallback, "/NEM/CPU%u/ImportGuestStateFallback", "Times vmxHCImportGuestState took the fallback code path.");
2891 NEM_REG_COUNTER(&pVmxStats->StatReadToTransientFallback, "/NEM/CPU%u/ReadToTransientFallback", "Times vmxHCReadToTransient took the fallback code path.");
2892
2893#ifdef VBOX_WITH_STATISTICS
2894 NEM_REG_PROFILE(&pNemCpu->StatProfGstStateImport, "/NEM/CPU%u/ImportGuestState", "Profiling of importing guest state from hardware after VM-exit.");
2895 NEM_REG_PROFILE(&pNemCpu->StatProfGstStateExport, "/NEM/CPU%u/ExportGuestState", "Profiling of exporting guest state from hardware after VM-exit.");
2896
2897 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
2898 {
2899 const char *pszExitName = HMGetVmxExitName(j);
2900 if (pszExitName)
2901 {
2902 int rc = STAMR3RegisterF(pVM, &pVmxStats->aStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
2903 STAMUNIT_OCCURENCES, pszExitName, "/NEM/CPU%u/Exit/Reason/%02x", idCpu, j);
2904 AssertRCReturn(rc, rc);
2905 }
2906 }
2907#endif
2908
2909 return VINF_SUCCESS;
2910
2911#undef NEM_REG_COUNTER
2912#undef NEM_REG_PROFILE
2913#undef NEM_REG_STAT
2914}
2915
2916
2917/**
2918 * Displays the HM Last-Branch-Record info. for the guest.
2919 *
2920 * @param pVM The cross context VM structure.
2921 * @param pHlp The info helper functions.
2922 * @param pszArgs Arguments, ignored.
2923 */
2924static DECLCALLBACK(void) nemR3DarwinInfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2925{
2926 NOREF(pszArgs);
2927 PVMCPU pVCpu = VMMGetCpu(pVM);
2928 if (!pVCpu)
2929 pVCpu = pVM->apCpusR3[0];
2930
2931 Assert(pVM->nem.s.fLbr);
2932
2933 PCVMXVMCSINFOSHARED pVmcsInfoShared = &pVCpu->nem.s.vmx.VmcsInfo;
2934 uint32_t const cLbrStack = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
2935
2936 /** @todo r=ramshankar: The index technically varies depending on the CPU, but
2937 * 0xf should cover everything we support thus far. Fix if necessary
2938 * later. */
2939 uint32_t const idxTopOfStack = pVmcsInfoShared->u64LbrTosMsr & 0xf;
2940 if (idxTopOfStack > cLbrStack)
2941 {
2942 pHlp->pfnPrintf(pHlp, "Top-of-stack LBR MSR seems corrupt (index=%u, msr=%#RX64) expected index < %u\n",
2943 idxTopOfStack, pVmcsInfoShared->u64LbrTosMsr, cLbrStack);
2944 return;
2945 }
2946
2947 /*
2948 * Dump the circular buffer of LBR records starting from the most recent record (contained in idxTopOfStack).
2949 */
2950 pHlp->pfnPrintf(pHlp, "CPU[%u]: LBRs (most-recent first)\n", pVCpu->idCpu);
2951 if (pVM->nem.s.idLerFromIpMsr)
2952 pHlp->pfnPrintf(pHlp, "LER: From IP=%#016RX64 - To IP=%#016RX64\n",
2953 pVmcsInfoShared->u64LerFromIpMsr, pVmcsInfoShared->u64LerToIpMsr);
2954 uint32_t idxCurrent = idxTopOfStack;
2955 Assert(idxTopOfStack < cLbrStack);
2956 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr) <= cLbrStack);
2957 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrToIpMsr) <= cLbrStack);
2958 for (;;)
2959 {
2960 if (pVM->nem.s.idLbrToIpMsrFirst)
2961 pHlp->pfnPrintf(pHlp, " Branch (%2u): From IP=%#016RX64 - To IP=%#016RX64 (Info: %#016RX64)\n", idxCurrent,
2962 pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent],
2963 pVmcsInfoShared->au64LbrToIpMsr[idxCurrent],
2964 pVmcsInfoShared->au64LbrInfoMsr[idxCurrent]);
2965 else
2966 pHlp->pfnPrintf(pHlp, " Branch (%2u): LBR=%#RX64\n", idxCurrent, pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent]);
2967
2968 idxCurrent = (idxCurrent - 1) % cLbrStack;
2969 if (idxCurrent == idxTopOfStack)
2970 break;
2971 }
2972}
2973
2974
2975/**
2976 * Try initialize the native API.
2977 *
2978 * This may only do part of the job, more can be done in
2979 * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted().
2980 *
2981 * @returns VBox status code.
2982 * @param pVM The cross context VM structure.
2983 * @param fFallback Whether we're in fallback mode or use-NEM mode. In
2984 * the latter we'll fail if we cannot initialize.
2985 * @param fForced Whether the HMForced flag is set and we should
2986 * fail if we cannot initialize.
2987 */
2988int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced)
2989{
2990 AssertReturn(!pVM->nem.s.fCreatedVm, VERR_WRONG_ORDER);
2991
2992 /*
2993 * Some state init.
2994 */
2995 PCFGMNODE pCfgNem = CFGMR3GetChild(CFGMR3GetRoot(pVM), "NEM/");
2996
2997 /** @cfgm{/NEM/VmxPleGap, uint32_t, 0}
2998 * The pause-filter exiting gap in TSC ticks. When the number of ticks between
2999 * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
3000 * latest PAUSE instruction to be start of a new PAUSE loop.
3001 */
3002 int rc = CFGMR3QueryU32Def(pCfgNem, "VmxPleGap", &pVM->nem.s.cPleGapTicks, 0);
3003 AssertRCReturn(rc, rc);
3004
3005 /** @cfgm{/NEM/VmxPleWindow, uint32_t, 0}
3006 * The pause-filter exiting window in TSC ticks. When the number of ticks
3007 * between the current PAUSE instruction and first PAUSE of a loop exceeds
3008 * VmxPleWindow, a VM-exit is triggered.
3009 *
3010 * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
3011 */
3012 rc = CFGMR3QueryU32Def(pCfgNem, "VmxPleWindow", &pVM->nem.s.cPleWindowTicks, 0);
3013 AssertRCReturn(rc, rc);
3014
3015 /** @cfgm{/NEM/VmxLbr, bool, false}
3016 * Whether to enable LBR for the guest. This is disabled by default as it's only
3017 * useful while debugging and enabling it causes a noticeable performance hit. */
3018 rc = CFGMR3QueryBoolDef(pCfgNem, "VmxLbr", &pVM->nem.s.fLbr, false);
3019 AssertRCReturn(rc, rc);
3020
3021 /*
3022 * Error state.
3023 * The error message will be non-empty on failure and 'rc' will be set too.
3024 */
3025 RTERRINFOSTATIC ErrInfo;
3026 PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo);
3027 rc = nemR3DarwinLoadHv(fForced, pErrInfo);
3028 if (RT_SUCCESS(rc))
3029 {
3030 if ( !hv_vcpu_enable_managed_msr
3031 && pVM->nem.s.fLbr)
3032 {
3033 LogRel(("NEM: LBR recording is disabled because the Hypervisor API misses hv_vcpu_enable_managed_msr/hv_vcpu_set_msr_access functionality\n"));
3034 pVM->nem.s.fLbr = false;
3035 }
3036
3037 /*
3038 * While hv_vcpu_run_until() is available starting with Catalina (10.15) it sometimes returns
3039 * an error there for no obvious reasons and there is no indication as to why this happens
3040 * and Apple doesn't document anything. Starting with BigSur (11.0) it appears to work correctly
3041 * so pretend that hv_vcpu_run_until() doesn't exist on Catalina which can be determined by checking
3042 * whether another method is available which was introduced with BigSur.
3043 */
3044 if (!hv_vmx_get_msr_info) /* Not available means this runs on < 11.0 */
3045 hv_vcpu_run_until = NULL;
3046
3047 if (hv_vcpu_run_until)
3048 {
3049 struct mach_timebase_info TimeInfo;
3050
3051 if (mach_timebase_info(&TimeInfo) == KERN_SUCCESS)
3052 {
3053 pVM->nem.s.cMachTimePerNs = RT_MIN(1, (double)TimeInfo.denom / (double)TimeInfo.numer);
3054 LogRel(("NEM: cMachTimePerNs=%llu (TimeInfo.numer=%u TimeInfo.denom=%u)\n",
3055 pVM->nem.s.cMachTimePerNs, TimeInfo.numer, TimeInfo.denom));
3056 }
3057 else
3058 hv_vcpu_run_until = NULL; /* To avoid running forever (TM asserts when the guest runs for longer than 4 seconds). */
3059 }
3060
3061 hv_return_t hrc = hv_vm_create(HV_VM_DEFAULT);
3062 if (hrc == HV_SUCCESS)
3063 {
3064 if (hv_vm_space_create)
3065 {
3066 hrc = hv_vm_space_create(&pVM->nem.s.uVmAsid);
3067 if (hrc == HV_SUCCESS)
3068 {
3069 LogRel(("NEM: Successfully created ASID: %u\n", pVM->nem.s.uVmAsid));
3070 pVM->nem.s.fCreatedAsid = true;
3071 }
3072 else
3073 LogRel(("NEM: Failed to create ASID for VM (hrc=%#x), continuing...\n", pVM->nem.s.uVmAsid));
3074 }
3075 pVM->nem.s.fCreatedVm = true;
3076
3077 /* Register release statistics */
3078 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3079 {
3080 PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
3081 PVMXSTATISTICS pVmxStats = (PVMXSTATISTICS)RTMemAllocZ(sizeof(*pVmxStats));
3082 if (RT_LIKELY(pVmxStats))
3083 {
3084 pNemCpu->pVmxStats = pVmxStats;
3085 rc = nemR3DarwinStatisticsRegister(pVM, idCpu, pNemCpu);
3086 AssertRC(rc);
3087 }
3088 else
3089 {
3090 rc = VERR_NO_MEMORY;
3091 break;
3092 }
3093 }
3094
3095 if (RT_SUCCESS(rc))
3096 {
3097 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API);
3098 Log(("NEM: Marked active!\n"));
3099 PGMR3EnableNemMode(pVM);
3100 }
3101 }
3102 else
3103 rc = RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
3104 "hv_vm_create() failed: %#x", hrc);
3105 }
3106
3107 /*
3108 * We only fail if in forced mode, otherwise just log the complaint and return.
3109 */
3110 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API || RTErrInfoIsSet(pErrInfo));
3111 if ( (fForced || !fFallback)
3112 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API)
3113 return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg);
3114
3115 if (pVM->nem.s.fLbr)
3116 {
3117 rc = DBGFR3InfoRegisterInternalEx(pVM, "lbr", "Dumps the NEM LBR info.", nemR3DarwinInfoLbr, DBGFINFO_FLAGS_ALL_EMTS);
3118 AssertRCReturn(rc, rc);
3119 }
3120
3121 if (RTErrInfoIsSet(pErrInfo))
3122 LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg));
3123 return VINF_SUCCESS;
3124}
3125
3126
3127/**
3128 * Worker to create the vCPU handle on the EMT running it later on (as required by HV).
3129 *
3130 * @returns VBox status code
3131 * @param pVM The VM handle.
3132 * @param pVCpu The vCPU handle.
3133 * @param idCpu ID of the CPU to create.
3134 */
3135static DECLCALLBACK(int) nemR3DarwinNativeInitVCpuOnEmt(PVM pVM, PVMCPU pVCpu, VMCPUID idCpu)
3136{
3137 hv_return_t hrc = hv_vcpu_create(&pVCpu->nem.s.hVCpuId, HV_VCPU_DEFAULT);
3138 if (hrc != HV_SUCCESS)
3139 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
3140 "Call to hv_vcpu_create failed on vCPU %u: %#x (%Rrc)", idCpu, hrc, nemR3DarwinHvSts2Rc(hrc));
3141
3142 if (idCpu == 0)
3143 {
3144 /* First call initializs the MSR structure holding the capabilities of the host CPU. */
3145 int rc = nemR3DarwinCapsInit(pVM);
3146 AssertRCReturn(rc, rc);
3147
3148 if (hv_vmx_vcpu_get_cap_write_vmcs)
3149 {
3150 /* Log the VMCS field write capabilities. */
3151 for (uint32_t i = 0; i < RT_ELEMENTS(g_aVmcsFieldsCap); i++)
3152 {
3153 uint64_t u64Allowed0 = 0;
3154 uint64_t u64Allowed1 = 0;
3155
3156 hrc = hv_vmx_vcpu_get_cap_write_vmcs(pVCpu->nem.s.hVCpuId, g_aVmcsFieldsCap[i].u32VmcsFieldId,
3157 &u64Allowed0, &u64Allowed1);
3158 if (hrc == HV_SUCCESS)
3159 {
3160 if (g_aVmcsFieldsCap[i].f64Bit)
3161 LogRel(("NEM: %s = (allowed_0=%#016RX64 allowed_1=%#016RX64)\n",
3162 g_aVmcsFieldsCap[i].pszVmcsField, u64Allowed0, u64Allowed1));
3163 else
3164 LogRel(("NEM: %s = (allowed_0=%#08RX32 allowed_1=%#08RX32)\n",
3165 g_aVmcsFieldsCap[i].pszVmcsField, (uint32_t)u64Allowed0, (uint32_t)u64Allowed1));
3166
3167 uint32_t cBits = g_aVmcsFieldsCap[i].f64Bit ? 64 : 32;
3168 for (uint32_t iBit = 0; iBit < cBits; iBit++)
3169 {
3170 bool fAllowed0 = RT_BOOL(u64Allowed0 & RT_BIT_64(iBit));
3171 bool fAllowed1 = RT_BOOL(u64Allowed1 & RT_BIT_64(iBit));
3172
3173 if (!fAllowed0 && !fAllowed1)
3174 LogRel(("NEM: Bit %02u = Must NOT be set\n", iBit));
3175 else if (!fAllowed0 && fAllowed1)
3176 LogRel(("NEM: Bit %02u = Can be set or not be set\n", iBit));
3177 else if (fAllowed0 && !fAllowed1)
3178 LogRel(("NEM: Bit %02u = UNDEFINED (AppleHV error)!\n", iBit));
3179 else if (fAllowed0 && fAllowed1)
3180 LogRel(("NEM: Bit %02u = MUST be set\n", iBit));
3181 else
3182 AssertFailed();
3183 }
3184 }
3185 else
3186 LogRel(("NEM: %s = failed to query (hrc=%d)\n", g_aVmcsFieldsCap[i].pszVmcsField, hrc));
3187 }
3188 }
3189 }
3190
3191 int rc = nemR3DarwinInitVmcs(pVCpu);
3192 AssertRCReturn(rc, rc);
3193
3194 if (pVM->nem.s.fCreatedAsid)
3195 {
3196 hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, pVM->nem.s.uVmAsid);
3197 AssertReturn(hrc == HV_SUCCESS, VERR_NEM_VM_CREATE_FAILED);
3198 }
3199
3200 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3201
3202 return VINF_SUCCESS;
3203}
3204
3205
3206/**
3207 * Worker to destroy the vCPU handle on the EMT running it later on (as required by HV).
3208 *
3209 * @returns VBox status code
3210 * @param pVCpu The vCPU handle.
3211 */
3212static DECLCALLBACK(int) nemR3DarwinNativeTermVCpuOnEmt(PVMCPU pVCpu)
3213{
3214 hv_return_t hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, 0 /*asid*/);
3215 Assert(hrc == HV_SUCCESS);
3216
3217 hrc = hv_vcpu_destroy(pVCpu->nem.s.hVCpuId);
3218 Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
3219 return VINF_SUCCESS;
3220}
3221
3222
3223/**
3224 * Worker to setup the TPR shadowing feature if available on the CPU and the VM has an APIC enabled.
3225 *
3226 * @returns VBox status code
3227 * @param pVM The VM handle.
3228 * @param pVCpu The vCPU handle.
3229 */
3230static DECLCALLBACK(int) nemR3DarwinNativeInitTprShadowing(PVM pVM, PVMCPU pVCpu)
3231{
3232 PVMXVMCSINFO pVmcsInfo = &pVCpu->nem.s.VmcsInfo;
3233 uint32_t fVal = pVmcsInfo->u32ProcCtls;
3234
3235 /* Use TPR shadowing if supported by the CPU. */
3236 if ( PDMHasApic(pVM)
3237 && (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
3238 {
3239 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
3240 /* CR8 writes cause a VM-exit based on TPR threshold. */
3241 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
3242 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
3243 }
3244 else
3245 {
3246 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
3247 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
3248 }
3249
3250 /* Commit it to the VMCS and update our cache. */
3251 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, fVal);
3252 AssertRC(rc);
3253 pVmcsInfo->u32ProcCtls = fVal;
3254
3255 return VINF_SUCCESS;
3256}
3257
3258
3259/**
3260 * This is called after CPUMR3Init is done.
3261 *
3262 * @returns VBox status code.
3263 * @param pVM The VM handle..
3264 */
3265int nemR3NativeInitAfterCPUM(PVM pVM)
3266{
3267 /*
3268 * Validate sanity.
3269 */
3270 AssertReturn(!pVM->nem.s.fCreatedEmts, VERR_WRONG_ORDER);
3271 AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER);
3272
3273 if (pVM->nem.s.fLbr)
3274 {
3275 int rc = nemR3DarwinSetupLbrMsrRange(pVM);
3276 AssertRCReturn(rc, rc);
3277 }
3278
3279 /*
3280 * Setup the EMTs.
3281 */
3282 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3283 {
3284 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3285
3286 int rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeInitVCpuOnEmt, 3, pVM, pVCpu, idCpu);
3287 if (RT_FAILURE(rc))
3288 {
3289 /* Rollback. */
3290 while (idCpu--)
3291 VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeTermVCpuOnEmt, 1, pVCpu);
3292
3293 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Call to hv_vcpu_create failed: %Rrc", rc);
3294 }
3295 }
3296
3297 pVM->nem.s.fCreatedEmts = true;
3298 return VINF_SUCCESS;
3299}
3300
3301
3302int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
3303{
3304 if (enmWhat == VMINITCOMPLETED_RING3)
3305 {
3306 /* Now that PDM is initialized the APIC state is known in order to enable the TPR shadowing feature on all EMTs. */
3307 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3308 {
3309 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3310
3311 int rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeInitTprShadowing, 2, pVM, pVCpu);
3312 if (RT_FAILURE(rc))
3313 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Setting up TPR shadowing failed: %Rrc", rc);
3314 }
3315 }
3316 return VINF_SUCCESS;
3317}
3318
3319
3320int nemR3NativeTerm(PVM pVM)
3321{
3322 /*
3323 * Delete the VM.
3324 */
3325
3326 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu--)
3327 {
3328 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3329
3330 /*
3331 * Need to do this or hv_vm_space_destroy() fails later on (on 10.15 at least). Could've been documented in
3332 * API reference so I wouldn't have to decompile the kext to find this out but we are talking
3333 * about Apple here unfortunately, API documentation is not their strong suit...
3334 * Would have been of course even better to just automatically drop the address space reference when the vCPU
3335 * gets destroyed.
3336 */
3337 hv_return_t hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, 0 /*asid*/);
3338 Assert(hrc == HV_SUCCESS);
3339
3340 /*
3341 * Apple's documentation states that the vCPU should be destroyed
3342 * on the thread running the vCPU but as all the other EMTs are gone
3343 * at this point, destroying the VM would hang.
3344 *
3345 * We seem to be at luck here though as destroying apparently works
3346 * from EMT(0) as well.
3347 */
3348 hrc = hv_vcpu_destroy(pVCpu->nem.s.hVCpuId);
3349 Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
3350
3351 if (pVCpu->nem.s.pVmxStats)
3352 {
3353 RTMemFree(pVCpu->nem.s.pVmxStats);
3354 pVCpu->nem.s.pVmxStats = NULL;
3355 }
3356 }
3357
3358 pVM->nem.s.fCreatedEmts = false;
3359
3360 if (pVM->nem.s.fCreatedAsid)
3361 {
3362 hv_return_t hrc = hv_vm_space_destroy(pVM->nem.s.uVmAsid);
3363 Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
3364 pVM->nem.s.fCreatedAsid = false;
3365 }
3366
3367 if (pVM->nem.s.fCreatedVm)
3368 {
3369 hv_return_t hrc = hv_vm_destroy();
3370 if (hrc != HV_SUCCESS)
3371 LogRel(("NEM: hv_vm_destroy() failed with %#x\n", hrc));
3372
3373 pVM->nem.s.fCreatedVm = false;
3374 }
3375 return VINF_SUCCESS;
3376}
3377
3378
3379/**
3380 * VM reset notification.
3381 *
3382 * @param pVM The cross context VM structure.
3383 */
3384void nemR3NativeReset(PVM pVM)
3385{
3386 RT_NOREF(pVM);
3387}
3388
3389
3390/**
3391 * Reset CPU due to INIT IPI or hot (un)plugging.
3392 *
3393 * @param pVCpu The cross context virtual CPU structure of the CPU being
3394 * reset.
3395 * @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case.
3396 */
3397void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi)
3398{
3399 RT_NOREF(fInitIpi);
3400 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3401}
3402
3403
3404/**
3405 * Dumps the VMCS in response to a faild hv_vcpu_run{_until}() call.
3406 *
3407 * @param pVCpu The cross context virtual CPU structure.
3408 */
3409static void nemR3DarwinVmcsDump(PVMCPU pVCpu)
3410{
3411 static const struct
3412 {
3413 uint32_t u32VmcsFieldId; /**< The VMCS field identifier. */
3414 const char *pszVmcsField; /**< The VMCS field name. */
3415 bool f64Bit;
3416 } s_aVmcsFieldsDump[] =
3417 {
3418 #define NEM_DARWIN_VMCSNW_FIELD_DUMP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, true }
3419 #define NEM_DARWIN_VMCS64_FIELD_DUMP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, true }
3420 #define NEM_DARWIN_VMCS32_FIELD_DUMP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, false }
3421 #define NEM_DARWIN_VMCS16_FIELD_DUMP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, false }
3422 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_VPID),
3423 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR),
3424 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_EPTP_INDEX),
3425 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_ES_SEL),
3426 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_CS_SEL),
3427 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_SS_SEL),
3428 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_DS_SEL),
3429 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_FS_SEL),
3430 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_GS_SEL),
3431 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_LDTR_SEL),
3432 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_TR_SEL),
3433 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_INTR_STATUS),
3434 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_PML_INDEX),
3435 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_ES_SEL),
3436 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_CS_SEL),
3437 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_SS_SEL),
3438 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_DS_SEL),
3439 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_FS_SEL),
3440 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_GS_SEL),
3441 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_TR_SEL),
3442
3443 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL),
3444 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH),
3445 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL),
3446 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH),
3447 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_MSR_BITMAP_FULL),
3448 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_MSR_BITMAP_HIGH),
3449 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL),
3450 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH),
3451 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL),
3452 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH),
3453 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL),
3454 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH),
3455 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL),
3456 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH),
3457 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL),
3458 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH),
3459 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_TSC_OFFSET_FULL),
3460 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_TSC_OFFSET_HIGH),
3461 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL),
3462 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH),
3463 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL),
3464 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH),
3465 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL),
3466 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH),
3467 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL),
3468 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH),
3469 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EPTP_FULL),
3470 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EPTP_HIGH),
3471 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL),
3472 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH),
3473 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL),
3474 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH),
3475 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL),
3476 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH),
3477 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL),
3478 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH),
3479 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EPTP_LIST_FULL),
3480 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EPTP_LIST_HIGH),
3481 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL),
3482 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH),
3483 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL),
3484 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH),
3485 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_FULL),
3486 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_HIGH),
3487 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL),
3488 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH),
3489 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_FULL),
3490 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_HIGH),
3491 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_SPPTP_FULL),
3492 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_SPPTP_HIGH),
3493 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL),
3494 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH),
3495 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_PROC_EXEC3_FULL),
3496 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_PROC_EXEC3_HIGH),
3497 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENCLV_EXITING_BITMAP_FULL),
3498 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENCLV_EXITING_BITMAP_HIGH),
3499 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL),
3500 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH),
3501 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL),
3502 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH),
3503 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_DEBUGCTL_FULL),
3504 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_DEBUGCTL_HIGH),
3505 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PAT_FULL),
3506 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PAT_HIGH),
3507 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_EFER_FULL),
3508 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_EFER_HIGH),
3509 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL),
3510 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_HIGH),
3511 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE0_FULL),
3512 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE0_HIGH),
3513 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE1_FULL),
3514 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE1_HIGH),
3515 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE2_FULL),
3516 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE2_HIGH),
3517 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE3_FULL),
3518 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE3_HIGH),
3519 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_BNDCFGS_FULL),
3520 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_BNDCFGS_HIGH),
3521 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_RTIT_CTL_FULL),
3522 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_RTIT_CTL_HIGH),
3523 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PKRS_FULL),
3524 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PKRS_HIGH),
3525 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PAT_FULL),
3526 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PAT_HIGH),
3527 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_EFER_FULL),
3528 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_EFER_HIGH),
3529 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL),
3530 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_HIGH),
3531 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PKRS_FULL),
3532 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PKRS_HIGH),
3533
3534 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PIN_EXEC),
3535 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PROC_EXEC),
3536 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_EXCEPTION_BITMAP),
3537 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK),
3538 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH),
3539 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_CR3_TARGET_COUNT),
3540 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_EXIT),
3541 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT),
3542 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT),
3543 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY),
3544 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT),
3545 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO),
3546 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE),
3547 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH),
3548 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_TPR_THRESHOLD),
3549 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PROC_EXEC2),
3550 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PLE_GAP),
3551 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PLE_WINDOW),
3552 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_VM_INSTR_ERROR),
3553 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_REASON),
3554 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO),
3555 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE),
3556 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_IDT_VECTORING_INFO),
3557 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE),
3558 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_INSTR_LENGTH),
3559 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_INSTR_INFO),
3560 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_ES_LIMIT),
3561 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_CS_LIMIT),
3562 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_SS_LIMIT),
3563 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_DS_LIMIT),
3564 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_FS_LIMIT),
3565 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_GS_LIMIT),
3566 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_LDTR_LIMIT),
3567 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_TR_LIMIT),
3568 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_GDTR_LIMIT),
3569 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_IDTR_LIMIT),
3570 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS),
3571 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS),
3572 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS),
3573 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS),
3574 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS),
3575 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS),
3576 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS),
3577 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS),
3578 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_INT_STATE),
3579 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_ACTIVITY_STATE),
3580 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_SMBASE),
3581 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_SYSENTER_CS),
3582 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_PREEMPT_TIMER_VALUE),
3583 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_HOST_SYSENTER_CS),
3584
3585 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR0_MASK),
3586 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR4_MASK),
3587 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR0_READ_SHADOW),
3588 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR4_READ_SHADOW),
3589 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR3_TARGET_VAL0),
3590 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR3_TARGET_VAL1),
3591 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR3_TARGET_VAL2),
3592 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR3_TARGET_VAL3),
3593 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_EXIT_QUALIFICATION),
3594 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_IO_RCX),
3595 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_IO_RSI),
3596 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_IO_RDI),
3597 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_IO_RIP),
3598 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_GUEST_LINEAR_ADDR),
3599 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_CR0),
3600 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_CR3),
3601 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_CR4),
3602 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_ES_BASE),
3603 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_CS_BASE),
3604 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_SS_BASE),
3605 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_DS_BASE),
3606 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_FS_BASE),
3607 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_GS_BASE),
3608 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_LDTR_BASE),
3609 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_TR_BASE),
3610 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_GDTR_BASE),
3611 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_IDTR_BASE),
3612 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_DR7),
3613 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_RSP),
3614 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_RIP),
3615 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_RFLAGS),
3616 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS),
3617 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_SYSENTER_ESP),
3618 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_SYSENTER_EIP),
3619 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_S_CET),
3620 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_SSP),
3621 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_INTR_SSP_TABLE_ADDR),
3622 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_CR0),
3623 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_CR3),
3624 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_CR4),
3625 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_FS_BASE),
3626 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_GS_BASE),
3627 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_TR_BASE),
3628 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_GDTR_BASE),
3629 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_IDTR_BASE),
3630 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_SYSENTER_ESP),
3631 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_SYSENTER_EIP),
3632 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_RSP),
3633 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_RIP),
3634 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_S_CET),
3635 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_SSP),
3636 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_INTR_SSP_TABLE_ADDR)
3637 #undef NEM_DARWIN_VMCSNW_FIELD_DUMP
3638 #undef NEM_DARWIN_VMCS64_FIELD_DUMP
3639 #undef NEM_DARWIN_VMCS32_FIELD_DUMP
3640 #undef NEM_DARWIN_VMCS16_FIELD_DUMP
3641 };
3642
3643 for (uint32_t i = 0; i < RT_ELEMENTS(s_aVmcsFieldsDump); i++)
3644 {
3645 if (s_aVmcsFieldsDump[i].f64Bit)
3646 {
3647 uint64_t u64Val;
3648 int rc = nemR3DarwinReadVmcs64(pVCpu, s_aVmcsFieldsDump[i].u32VmcsFieldId, &u64Val);
3649 if (RT_SUCCESS(rc))
3650 LogRel(("NEM/VMCS: %040s: 0x%016RX64\n", s_aVmcsFieldsDump[i].pszVmcsField, u64Val));
3651 else
3652 LogRel(("NEM/VMCS: %040s: rc=%Rrc\n", s_aVmcsFieldsDump[i].pszVmcsField, rc));
3653 }
3654 else
3655 {
3656 uint32_t u32Val;
3657 int rc = nemR3DarwinReadVmcs32(pVCpu, s_aVmcsFieldsDump[i].u32VmcsFieldId, &u32Val);
3658 if (RT_SUCCESS(rc))
3659 LogRel(("NEM/VMCS: %040s: 0x%08RX32\n", s_aVmcsFieldsDump[i].pszVmcsField, u32Val));
3660 else
3661 LogRel(("NEM/VMCS: %040s: rc=%Rrc\n", s_aVmcsFieldsDump[i].pszVmcsField, rc));
3662 }
3663 }
3664}
3665
3666
3667/**
3668 * Runs the guest once until an exit occurs.
3669 *
3670 * @returns HV status code.
3671 * @param pVM The cross context VM structure.
3672 * @param pVCpu The cross context virtual CPU structure.
3673 * @param pVmxTransient The transient VMX execution structure.
3674 */
3675static hv_return_t nemR3DarwinRunGuest(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
3676{
3677 TMNotifyStartOfExecution(pVM, pVCpu);
3678 Assert(!pVCpu->nem.s.fCtxChanged);
3679
3680 if (!(pVCpu->nem.s.fMdsClearOnVmEntry | pVCpu->nem.s.fMdsClearOnVmEntry))
3681 { /* likely*/ }
3682 else
3683 {
3684 uint16_t u16 = ASMGetDS();
3685 __asm__ __volatile__("verw %0" : "=m" (u16) : "0" (u16));
3686 }
3687
3688 hv_return_t hrc;
3689 if (hv_vcpu_run_until) /** @todo Configur the deadline dynamically based on when the next timer triggers. */
3690 hrc = hv_vcpu_run_until(pVCpu->nem.s.hVCpuId, mach_absolute_time() + 2 * RT_NS_1SEC_64 * pVM->nem.s.cMachTimePerNs);
3691 else
3692 hrc = hv_vcpu_run(pVCpu->nem.s.hVCpuId);
3693
3694 TMNotifyEndOfExecution(pVM, pVCpu, ASMReadTSC());
3695
3696 if (hrc != HV_SUCCESS)
3697 nemR3DarwinVmcsDump(pVCpu);
3698
3699 /*
3700 * Sync the TPR shadow with our APIC state.
3701 */
3702 if ( !pVmxTransient->fIsNestedGuest
3703 && (pVCpu->nem.s.VmcsInfo.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
3704 {
3705 uint64_t u64Tpr;
3706 hv_return_t hrc2 = hv_vcpu_read_register(pVCpu->nem.s.hVCpuId, HV_X86_TPR, &u64Tpr);
3707 Assert(hrc2 == HV_SUCCESS); RT_NOREF(hrc2);
3708
3709 if (pVmxTransient->u8GuestTpr != (uint8_t)u64Tpr)
3710 {
3711 int rc = PDMApicSetTpr(pVCpu, (uint8_t)u64Tpr);
3712 AssertRC(rc);
3713 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
3714 }
3715 }
3716
3717 return hrc;
3718}
3719
3720
3721/**
3722 * Prepares the VM to run the guest.
3723 *
3724 * @returns Strict VBox status code.
3725 * @param pVM The cross context VM structure.
3726 * @param pVCpu The cross context virtual CPU structure.
3727 * @param pVmxTransient The VMX transient state.
3728 * @param fSingleStepping Flag whether we run in single stepping mode.
3729 */
3730static VBOXSTRICTRC nemR3DarwinPreRunGuest(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, bool fSingleStepping)
3731{
3732 /*
3733 * Check and process force flag actions, some of which might require us to go back to ring-3.
3734 */
3735 VBOXSTRICTRC rcStrict = vmxHCCheckForceFlags(pVCpu, false /*fIsNestedGuest*/, fSingleStepping);
3736 if (rcStrict == VINF_SUCCESS)
3737 { /*likely */ }
3738 else
3739 return rcStrict;
3740
3741 /*
3742 * Do not execute in HV if the A20 isn't enabled.
3743 */
3744 if (PGMPhysIsA20Enabled(pVCpu))
3745 { /* likely */ }
3746 else
3747 {
3748 LogFlow(("NEM/%u: breaking: A20 disabled\n", pVCpu->idCpu));
3749 return VINF_EM_RESCHEDULE_REM;
3750 }
3751
3752 /*
3753 * Evaluate events to be injected into the guest.
3754 *
3755 * Events in TRPM can be injected without inspecting the guest state.
3756 * If any new events (interrupts/NMI) are pending currently, we try to set up the
3757 * guest to cause a VM-exit the next time they are ready to receive the event.
3758 */
3759 if (TRPMHasTrap(pVCpu))
3760 vmxHCTrpmTrapToPendingEvent(pVCpu);
3761
3762 uint32_t fIntrState;
3763 rcStrict = vmxHCEvaluatePendingEvent(pVCpu, &pVCpu->nem.s.VmcsInfo, &fIntrState);
3764
3765 /*
3766 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
3767 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
3768 * also result in triple-faulting the VM.
3769 *
3770 * With nested-guests, the above does not apply since unrestricted guest execution is a
3771 * requirement. Regardless, we do this here to avoid duplicating code elsewhere.
3772 */
3773 rcStrict = vmxHCInjectPendingEvent(pVCpu, &pVCpu->nem.s.VmcsInfo, false /*fIsNestedGuest*/, fIntrState, fSingleStepping);
3774 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3775 { /* likely */ }
3776 else
3777 return rcStrict;
3778
3779 int rc = nemR3DarwinExportGuestState(pVM, pVCpu, pVmxTransient);
3780 AssertRCReturn(rc, rc);
3781
3782 LogFlowFunc(("Running vCPU\n"));
3783 pVCpu->nem.s.Event.fPending = false;
3784 return VINF_SUCCESS;
3785}
3786
3787
3788/**
3789 * The normal runloop (no debugging features enabled).
3790 *
3791 * @returns Strict VBox status code.
3792 * @param pVM The cross context VM structure.
3793 * @param pVCpu The cross context virtual CPU structure.
3794 */
3795static VBOXSTRICTRC nemR3DarwinRunGuestNormal(PVM pVM, PVMCPU pVCpu)
3796{
3797 /*
3798 * The run loop.
3799 *
3800 * Current approach to state updating to use the sledgehammer and sync
3801 * everything every time. This will be optimized later.
3802 */
3803 VMXTRANSIENT VmxTransient;
3804 RT_ZERO(VmxTransient);
3805 VmxTransient.pVmcsInfo = &pVCpu->nem.s.VmcsInfo;
3806
3807 /*
3808 * Poll timers and run for a bit.
3809 */
3810 /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
3811 * the whole polling job when timers have changed... */
3812 uint64_t offDeltaIgnored;
3813 uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
3814 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
3815 for (unsigned iLoop = 0;; iLoop++)
3816 {
3817 rcStrict = nemR3DarwinPreRunGuest(pVM, pVCpu, &VmxTransient, false /* fSingleStepping */);
3818 if (rcStrict != VINF_SUCCESS)
3819 break;
3820
3821 hv_return_t hrc = nemR3DarwinRunGuest(pVM, pVCpu, &VmxTransient);
3822 if (hrc == HV_SUCCESS)
3823 {
3824 /*
3825 * Deal with the message.
3826 */
3827 rcStrict = nemR3DarwinHandleExit(pVM, pVCpu, &VmxTransient);
3828 if (rcStrict == VINF_SUCCESS)
3829 { /* hopefully likely */ }
3830 else
3831 {
3832 LogFlow(("NEM/%u: breaking: nemR3DarwinHandleExit -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
3833 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
3834 break;
3835 }
3836 }
3837 else
3838 {
3839 AssertLogRelMsgFailedReturn(("hv_vcpu_run()) failed for CPU #%u: %#x %u\n",
3840 pVCpu->idCpu, hrc, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
3841 VERR_NEM_IPE_0);
3842 }
3843 } /* the run loop */
3844
3845 return rcStrict;
3846}
3847
3848
3849/**
3850 * Checks if any expensive dtrace probes are enabled and we should go to the
3851 * debug loop.
3852 *
3853 * @returns true if we should use debug loop, false if not.
3854 */
3855static bool nemR3DarwinAnyExpensiveProbesEnabled(void)
3856{
3857 /** @todo Check performance penalty when checking these over and over */
3858 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED() /* expensive too due to context */
3859 | VBOXVMM_XCPT_DE_ENABLED()
3860 | VBOXVMM_XCPT_DB_ENABLED()
3861 | VBOXVMM_XCPT_BP_ENABLED()
3862 | VBOXVMM_XCPT_OF_ENABLED()
3863 | VBOXVMM_XCPT_BR_ENABLED()
3864 | VBOXVMM_XCPT_UD_ENABLED()
3865 | VBOXVMM_XCPT_NM_ENABLED()
3866 | VBOXVMM_XCPT_DF_ENABLED()
3867 | VBOXVMM_XCPT_TS_ENABLED()
3868 | VBOXVMM_XCPT_NP_ENABLED()
3869 | VBOXVMM_XCPT_SS_ENABLED()
3870 | VBOXVMM_XCPT_GP_ENABLED()
3871 | VBOXVMM_XCPT_PF_ENABLED()
3872 | VBOXVMM_XCPT_MF_ENABLED()
3873 | VBOXVMM_XCPT_AC_ENABLED()
3874 | VBOXVMM_XCPT_XF_ENABLED()
3875 | VBOXVMM_XCPT_VE_ENABLED()
3876 | VBOXVMM_XCPT_SX_ENABLED()
3877 | VBOXVMM_INT_SOFTWARE_ENABLED()
3878 /* not available in R3 | VBOXVMM_INT_HARDWARE_ENABLED()*/
3879 ) != 0
3880 || ( VBOXVMM_INSTR_HALT_ENABLED()
3881 | VBOXVMM_INSTR_MWAIT_ENABLED()
3882 | VBOXVMM_INSTR_MONITOR_ENABLED()
3883 | VBOXVMM_INSTR_CPUID_ENABLED()
3884 | VBOXVMM_INSTR_INVD_ENABLED()
3885 | VBOXVMM_INSTR_WBINVD_ENABLED()
3886 | VBOXVMM_INSTR_INVLPG_ENABLED()
3887 | VBOXVMM_INSTR_RDTSC_ENABLED()
3888 | VBOXVMM_INSTR_RDTSCP_ENABLED()
3889 | VBOXVMM_INSTR_RDPMC_ENABLED()
3890 | VBOXVMM_INSTR_RDMSR_ENABLED()
3891 | VBOXVMM_INSTR_WRMSR_ENABLED()
3892 | VBOXVMM_INSTR_CRX_READ_ENABLED()
3893 | VBOXVMM_INSTR_CRX_WRITE_ENABLED()
3894 | VBOXVMM_INSTR_DRX_READ_ENABLED()
3895 | VBOXVMM_INSTR_DRX_WRITE_ENABLED()
3896 | VBOXVMM_INSTR_PAUSE_ENABLED()
3897 | VBOXVMM_INSTR_XSETBV_ENABLED()
3898 | VBOXVMM_INSTR_SIDT_ENABLED()
3899 | VBOXVMM_INSTR_LIDT_ENABLED()
3900 | VBOXVMM_INSTR_SGDT_ENABLED()
3901 | VBOXVMM_INSTR_LGDT_ENABLED()
3902 | VBOXVMM_INSTR_SLDT_ENABLED()
3903 | VBOXVMM_INSTR_LLDT_ENABLED()
3904 | VBOXVMM_INSTR_STR_ENABLED()
3905 | VBOXVMM_INSTR_LTR_ENABLED()
3906 | VBOXVMM_INSTR_GETSEC_ENABLED()
3907 | VBOXVMM_INSTR_RSM_ENABLED()
3908 | VBOXVMM_INSTR_RDRAND_ENABLED()
3909 | VBOXVMM_INSTR_RDSEED_ENABLED()
3910 | VBOXVMM_INSTR_XSAVES_ENABLED()
3911 | VBOXVMM_INSTR_XRSTORS_ENABLED()
3912 | VBOXVMM_INSTR_VMM_CALL_ENABLED()
3913 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED()
3914 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED()
3915 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED()
3916 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED()
3917 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED()
3918 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED()
3919 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED()
3920 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED()
3921 | VBOXVMM_INSTR_VMX_VMXON_ENABLED()
3922 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED()
3923 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED()
3924 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED()
3925 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED()
3926 ) != 0
3927 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED()
3928 | VBOXVMM_EXIT_HALT_ENABLED()
3929 | VBOXVMM_EXIT_MWAIT_ENABLED()
3930 | VBOXVMM_EXIT_MONITOR_ENABLED()
3931 | VBOXVMM_EXIT_CPUID_ENABLED()
3932 | VBOXVMM_EXIT_INVD_ENABLED()
3933 | VBOXVMM_EXIT_WBINVD_ENABLED()
3934 | VBOXVMM_EXIT_INVLPG_ENABLED()
3935 | VBOXVMM_EXIT_RDTSC_ENABLED()
3936 | VBOXVMM_EXIT_RDTSCP_ENABLED()
3937 | VBOXVMM_EXIT_RDPMC_ENABLED()
3938 | VBOXVMM_EXIT_RDMSR_ENABLED()
3939 | VBOXVMM_EXIT_WRMSR_ENABLED()
3940 | VBOXVMM_EXIT_CRX_READ_ENABLED()
3941 | VBOXVMM_EXIT_CRX_WRITE_ENABLED()
3942 | VBOXVMM_EXIT_DRX_READ_ENABLED()
3943 | VBOXVMM_EXIT_DRX_WRITE_ENABLED()
3944 | VBOXVMM_EXIT_PAUSE_ENABLED()
3945 | VBOXVMM_EXIT_XSETBV_ENABLED()
3946 | VBOXVMM_EXIT_SIDT_ENABLED()
3947 | VBOXVMM_EXIT_LIDT_ENABLED()
3948 | VBOXVMM_EXIT_SGDT_ENABLED()
3949 | VBOXVMM_EXIT_LGDT_ENABLED()
3950 | VBOXVMM_EXIT_SLDT_ENABLED()
3951 | VBOXVMM_EXIT_LLDT_ENABLED()
3952 | VBOXVMM_EXIT_STR_ENABLED()
3953 | VBOXVMM_EXIT_LTR_ENABLED()
3954 | VBOXVMM_EXIT_GETSEC_ENABLED()
3955 | VBOXVMM_EXIT_RSM_ENABLED()
3956 | VBOXVMM_EXIT_RDRAND_ENABLED()
3957 | VBOXVMM_EXIT_RDSEED_ENABLED()
3958 | VBOXVMM_EXIT_XSAVES_ENABLED()
3959 | VBOXVMM_EXIT_XRSTORS_ENABLED()
3960 | VBOXVMM_EXIT_VMM_CALL_ENABLED()
3961 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED()
3962 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED()
3963 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED()
3964 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED()
3965 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED()
3966 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED()
3967 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED()
3968 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED()
3969 | VBOXVMM_EXIT_VMX_VMXON_ENABLED()
3970 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED()
3971 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED()
3972 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED()
3973 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED()
3974 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED()
3975 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED()
3976 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED()
3977 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED()
3978 ) != 0;
3979}
3980
3981
3982/**
3983 * The debug runloop.
3984 *
3985 * @returns Strict VBox status code.
3986 * @param pVM The cross context VM structure.
3987 * @param pVCpu The cross context virtual CPU structure.
3988 */
3989static VBOXSTRICTRC nemR3DarwinRunGuestDebug(PVM pVM, PVMCPU pVCpu)
3990{
3991 /*
3992 * The run loop.
3993 *
3994 * Current approach to state updating to use the sledgehammer and sync
3995 * everything every time. This will be optimized later.
3996 */
3997 VMXTRANSIENT VmxTransient;
3998 RT_ZERO(VmxTransient);
3999 VmxTransient.pVmcsInfo = &pVCpu->nem.s.VmcsInfo;
4000
4001 bool const fSavedSingleInstruction = pVCpu->nem.s.fSingleInstruction;
4002 pVCpu->nem.s.fSingleInstruction = pVCpu->nem.s.fSingleInstruction || DBGFIsStepping(pVCpu);
4003 pVCpu->nem.s.fDebugWantRdTscExit = false;
4004 pVCpu->nem.s.fUsingDebugLoop = true;
4005
4006 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
4007 VMXRUNDBGSTATE DbgState;
4008 vmxHCRunDebugStateInit(pVCpu, &VmxTransient, &DbgState);
4009 vmxHCPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
4010
4011 /*
4012 * Poll timers and run for a bit.
4013 */
4014 /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
4015 * the whole polling job when timers have changed... */
4016 uint64_t offDeltaIgnored;
4017 uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
4018 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
4019 for (unsigned iLoop = 0;; iLoop++)
4020 {
4021 bool fStepping = pVCpu->nem.s.fSingleInstruction;
4022
4023 /* Set up VM-execution controls the next two can respond to. */
4024 vmxHCPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
4025
4026 rcStrict = nemR3DarwinPreRunGuest(pVM, pVCpu, &VmxTransient, fStepping);
4027 if (rcStrict != VINF_SUCCESS)
4028 break;
4029
4030 /* Override any obnoxious code in the above call. */
4031 vmxHCPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
4032
4033 hv_return_t hrc = nemR3DarwinRunGuest(pVM, pVCpu, &VmxTransient);
4034 if (hrc == HV_SUCCESS)
4035 {
4036 /*
4037 * Deal with the message.
4038 */
4039 rcStrict = nemR3DarwinHandleExitDebug(pVM, pVCpu, &VmxTransient, &DbgState);
4040 if (rcStrict == VINF_SUCCESS)
4041 { /* hopefully likely */ }
4042 else
4043 {
4044 LogFlow(("NEM/%u: breaking: nemR3DarwinHandleExitDebug -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
4045 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
4046 break;
4047 }
4048
4049 /*
4050 * Stepping: Did the RIP change, if so, consider it a single step.
4051 * Otherwise, make sure one of the TFs gets set.
4052 */
4053 if (fStepping)
4054 {
4055 int rc = vmxHCImportGuestStateEx(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
4056 AssertRC(rc);
4057 if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
4058 || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
4059 {
4060 rcStrict = VINF_EM_DBG_STEPPED;
4061 break;
4062 }
4063 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
4064 }
4065 }
4066 else
4067 {
4068 AssertLogRelMsgFailedReturn(("hv_vcpu_run()) failed for CPU #%u: %#x %u\n",
4069 pVCpu->idCpu, hrc, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
4070 VERR_NEM_IPE_0);
4071 }
4072 } /* the run loop */
4073
4074 /*
4075 * Clear the X86_EFL_TF if necessary.
4076 */
4077 if (pVCpu->nem.s.fClearTrapFlag)
4078 {
4079 int rc = vmxHCImportGuestStateEx(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
4080 AssertRC(rc);
4081 pVCpu->nem.s.fClearTrapFlag = false;
4082 pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
4083 }
4084
4085 pVCpu->nem.s.fUsingDebugLoop = false;
4086 pVCpu->nem.s.fDebugWantRdTscExit = false;
4087 pVCpu->nem.s.fSingleInstruction = fSavedSingleInstruction;
4088
4089 /* Restore all controls applied by vmxHCPreRunGuestDebugStateApply above. */
4090 return vmxHCRunDebugStateRevert(pVCpu, &VmxTransient, &DbgState, rcStrict);
4091}
4092
4093
4094VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu)
4095{
4096 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 <=\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u));
4097#ifdef LOG_ENABLED
4098 if (LogIs3Enabled())
4099 nemR3DarwinLogState(pVM, pVCpu);
4100#endif
4101
4102 AssertReturn(NEMR3CanExecuteGuest(pVM, pVCpu), VERR_NEM_IPE_9);
4103
4104 /*
4105 * Try switch to NEM runloop state.
4106 */
4107 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
4108 { /* likely */ }
4109 else
4110 {
4111 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
4112 LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
4113 return VINF_SUCCESS;
4114 }
4115
4116 VBOXSTRICTRC rcStrict;
4117 if ( !pVCpu->nem.s.fUseDebugLoop
4118 && !nemR3DarwinAnyExpensiveProbesEnabled()
4119 && !DBGFIsStepping(pVCpu)
4120 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledSwBreakpoints)
4121 rcStrict = nemR3DarwinRunGuestNormal(pVM, pVCpu);
4122 else
4123 rcStrict = nemR3DarwinRunGuestDebug(pVM, pVCpu);
4124
4125 if (rcStrict == VINF_EM_RAW_TO_R3)
4126 rcStrict = VINF_SUCCESS;
4127
4128 /*
4129 * Convert any pending HM events back to TRPM due to premature exits.
4130 *
4131 * This is because execution may continue from IEM and we would need to inject
4132 * the event from there (hence place it back in TRPM).
4133 */
4134 if (pVCpu->nem.s.Event.fPending)
4135 {
4136 vmxHCPendingEventToTrpmTrap(pVCpu);
4137 Assert(!pVCpu->nem.s.Event.fPending);
4138
4139 /* Clear the events from the VMCS. */
4140 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
4141 rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0); AssertRC(rc);
4142 }
4143
4144
4145 if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
4146 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
4147
4148 if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL))
4149 {
4150 /* Try anticipate what we might need. */
4151 uint64_t fImport = NEM_DARWIN_CPUMCTX_EXTRN_MASK_FOR_IEM;
4152 if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
4153 || RT_FAILURE(rcStrict))
4154 fImport = CPUMCTX_EXTRN_ALL;
4155 else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC
4156 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
4157 fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;
4158
4159 if (pVCpu->cpum.GstCtx.fExtrn & fImport)
4160 {
4161 /* Only import what is external currently. */
4162 int rc2 = nemR3DarwinCopyStateFromHv(pVM, pVCpu, fImport);
4163 if (RT_SUCCESS(rc2))
4164 pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
4165 else if (RT_SUCCESS(rcStrict))
4166 rcStrict = rc2;
4167 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
4168 {
4169 pVCpu->cpum.GstCtx.fExtrn = 0;
4170 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4171 }
4172 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
4173 }
4174 else
4175 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
4176 }
4177 else
4178 {
4179 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
4180 pVCpu->cpum.GstCtx.fExtrn = 0;
4181 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4182 }
4183
4184 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n",
4185 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, VBOXSTRICTRC_VAL(rcStrict) ));
4186 return rcStrict;
4187}
4188
4189
4190VMMR3_INT_DECL(bool) NEMR3CanExecuteGuest(PVM pVM, PVMCPU pVCpu)
4191{
4192 NOREF(pVM);
4193 return PGMPhysIsA20Enabled(pVCpu);
4194}
4195
4196
4197bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
4198{
4199 VMCPU_ASSERT_EMT(pVCpu);
4200 bool fOld = pVCpu->nem.s.fSingleInstruction;
4201 pVCpu->nem.s.fSingleInstruction = fEnable;
4202 pVCpu->nem.s.fUseDebugLoop = fEnable || pVM->nem.s.fUseDebugLoop;
4203 return fOld;
4204}
4205
4206
4207void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
4208{
4209 LogFlowFunc(("pVM=%p pVCpu=%p fFlags=%#x\n", pVM, pVCpu, fFlags));
4210
4211 RT_NOREF(pVM, fFlags);
4212
4213 hv_return_t hrc = hv_vcpu_interrupt(&pVCpu->nem.s.hVCpuId, 1);
4214 if (hrc != HV_SUCCESS)
4215 LogRel(("NEM: hv_vcpu_interrupt(%u, 1) failed with %#x\n", pVCpu->nem.s.hVCpuId, hrc));
4216}
4217
4218
4219DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChanged(PVM pVM, bool fUseDebugLoop)
4220{
4221 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
4222 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
4223 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
4224 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
4225
4226 return fUseDebugLoop;
4227}
4228
4229
4230DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu, bool fUseDebugLoop)
4231{
4232 RT_NOREF(pVM, pVCpu);
4233 return fUseDebugLoop;
4234}
4235
4236
4237VMMR3_INT_DECL(int) NEMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvR3,
4238 uint8_t *pu2State, uint32_t *puNemRange)
4239{
4240 RT_NOREF(pVM, puNemRange);
4241
4242 Log5(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p\n", GCPhys, cb, pvR3));
4243#if defined(VBOX_WITH_PGM_NEM_MODE)
4244 if (pvR3)
4245 {
4246 int rc = nemR3DarwinMap(pVM, GCPhys, pvR3, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE, pu2State);
4247 if (RT_FAILURE(rc))
4248 {
4249 LogRel(("NEMR3NotifyPhysRamRegister: GCPhys=%RGp LB %RGp pvR3=%p rc=%Rrc\n", GCPhys, cb, pvR3, rc));
4250 return VERR_NEM_MAP_PAGES_FAILED;
4251 }
4252 }
4253 return VINF_SUCCESS;
4254#else
4255 RT_NOREF(pVM, GCPhys, cb, pvR3);
4256 return VERR_NEM_MAP_PAGES_FAILED;
4257#endif
4258}
4259
4260
4261VMMR3_INT_DECL(bool) NEMR3IsMmio2DirtyPageTrackingSupported(PVM pVM)
4262{
4263 RT_NOREF(pVM);
4264 return false;
4265}
4266
4267
4268VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
4269 void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
4270{
4271 RT_NOREF(pVM, puNemRange, pvRam, fFlags);
4272
4273 Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p (%d)\n",
4274 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, *pu2State));
4275
4276#if defined(VBOX_WITH_PGM_NEM_MODE)
4277 /*
4278 * Unmap the RAM we're replacing.
4279 */
4280 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
4281 {
4282 int rc = nemR3DarwinUnmap(pVM, GCPhys, cb, pu2State);
4283 if (RT_SUCCESS(rc))
4284 { /* likely */ }
4285 else if (pvMmio2)
4286 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rc(ignored)\n",
4287 GCPhys, cb, fFlags, rc));
4288 else
4289 {
4290 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
4291 GCPhys, cb, fFlags, rc));
4292 return VERR_NEM_UNMAP_PAGES_FAILED;
4293 }
4294 }
4295
4296 /*
4297 * Map MMIO2 if any.
4298 */
4299 if (pvMmio2)
4300 {
4301 Assert(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2);
4302 int rc = nemR3DarwinMap(pVM, GCPhys, pvMmio2, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE, pu2State);
4303 if (RT_FAILURE(rc))
4304 {
4305 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x pvMmio2=%p: Map -> rc=%Rrc\n",
4306 GCPhys, cb, fFlags, pvMmio2, rc));
4307 return VERR_NEM_MAP_PAGES_FAILED;
4308 }
4309 }
4310 else
4311 Assert(!(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2));
4312
4313#else
4314 RT_NOREF(pVM, GCPhys, cb, pvRam, pvMmio2);
4315 *pu2State = (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE) ? UINT8_MAX : NEM_DARWIN_PAGE_STATE_UNMAPPED;
4316#endif
4317 return VINF_SUCCESS;
4318}
4319
4320
4321VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
4322 void *pvRam, void *pvMmio2, uint32_t *puNemRange)
4323{
4324 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, puNemRange);
4325 return VINF_SUCCESS;
4326}
4327
4328
4329VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam,
4330 void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
4331{
4332 RT_NOREF(pVM, puNemRange);
4333
4334 Log5(("NEMR3NotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p uNemRange=%#x (%#x)\n",
4335 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, puNemRange, *puNemRange));
4336
4337 int rc = VINF_SUCCESS;
4338#if defined(VBOX_WITH_PGM_NEM_MODE)
4339 /*
4340 * Unmap the MMIO2 pages.
4341 */
4342 /** @todo If we implement aliasing (MMIO2 page aliased into MMIO range),
4343 * we may have more stuff to unmap even in case of pure MMIO... */
4344 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
4345 {
4346 rc = nemR3DarwinUnmap(pVM, GCPhys, cb, pu2State);
4347 if (RT_FAILURE(rc))
4348 {
4349 LogRel(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
4350 GCPhys, cb, fFlags, rc));
4351 return VERR_NEM_UNMAP_PAGES_FAILED;
4352 }
4353 }
4354
4355 /* Ensure the page is masked as unmapped if relevant. */
4356 Assert(!pu2State || *pu2State == NEM_DARWIN_PAGE_STATE_UNMAPPED);
4357
4358 /*
4359 * Restore the RAM we replaced.
4360 */
4361 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
4362 {
4363 AssertPtr(pvRam);
4364 rc = nemR3DarwinMap(pVM, GCPhys, pvRam, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE, pu2State);
4365 if (RT_SUCCESS(rc))
4366 { /* likely */ }
4367 else
4368 {
4369 LogRel(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp pvMmio2=%p rc=%Rrc\n", GCPhys, cb, pvMmio2, rc));
4370 rc = VERR_NEM_MAP_PAGES_FAILED;
4371 }
4372 }
4373
4374 RT_NOREF(pvMmio2);
4375#else
4376 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State);
4377 if (pu2State)
4378 *pu2State = UINT8_MAX;
4379 rc = VERR_NEM_UNMAP_PAGES_FAILED;
4380#endif
4381 return rc;
4382}
4383
4384
4385VMMR3_INT_DECL(int) NEMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t uNemRange,
4386 void *pvBitmap, size_t cbBitmap)
4387{
4388 RT_NOREF(pVM, GCPhys, cb, uNemRange, pvBitmap, cbBitmap);
4389 AssertFailed();
4390 return VERR_NOT_IMPLEMENTED;
4391}
4392
4393
4394VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags,
4395 uint8_t *pu2State, uint32_t *puNemRange)
4396{
4397 RT_NOREF(pvPages);
4398
4399 Log5(("nemR3NativeNotifyPhysRomRegisterEarly: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n",
4400 GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange));
4401 if (fFlags & NEM_NOTIFY_PHYS_ROM_F_REPLACE)
4402 {
4403 int rc = nemR3DarwinUnmap(pVM, GCPhys, cb, pu2State);
4404 if (RT_FAILURE(rc))
4405 {
4406 LogRel(("NEMR3NotifyPhysRomRegisterLate: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
4407 GCPhys, cb, fFlags, rc));
4408 return VERR_NEM_UNMAP_PAGES_FAILED;
4409 }
4410 }
4411
4412 *puNemRange = 0;
4413 return VINF_SUCCESS;
4414}
4415
4416
4417VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages,
4418 uint32_t fFlags, uint8_t *pu2State, uint32_t *puNemRange)
4419{
4420 Log5(("nemR3NativeNotifyPhysRomRegisterLate: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n",
4421 GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange));
4422 *pu2State = UINT8_MAX;
4423 RT_NOREF(pVM, GCPhys, cb, pvPages, fFlags, puNemRange);
4424 return VINF_SUCCESS;
4425}
4426
4427
4428VMM_INT_DECL(void) NEMHCNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
4429 RTR3PTR pvMemR3, uint8_t *pu2State)
4430{
4431 Log5(("NEMHCNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d pvMemR3=%p pu2State=%p (%d)\n",
4432 GCPhys, cb, enmKind, pvMemR3, pu2State, *pu2State));
4433 *pu2State = UINT8_MAX;
4434 RT_NOREF(pVM, enmKind, GCPhys, cb, pvMemR3);
4435}
4436
4437
4438VMMR3_INT_DECL(void) NEMR3NotifySetA20(PVMCPU pVCpu, bool fEnabled)
4439{
4440 Log(("NEMR3NotifySetA20: fEnabled=%RTbool\n", fEnabled));
4441 RT_NOREF(pVCpu, fEnabled);
4442}
4443
4444
4445void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
4446{
4447 Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
4448 NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb);
4449}
4450
4451
4452void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
4453 RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
4454{
4455 Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
4456 GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
4457 NOREF(pVM); NOREF(enmKind); NOREF(GCPhysOld); NOREF(GCPhysNew); NOREF(cb); NOREF(fRestoreAsRAM);
4458}
4459
4460
4461int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
4462 PGMPAGETYPE enmType, uint8_t *pu2State)
4463{
4464 Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
4465 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
4466 RT_NOREF(HCPhys, fPageProt, enmType);
4467
4468 return nemR3DarwinUnmap(pVM, GCPhys, X86_PAGE_SIZE, pu2State);
4469}
4470
4471
4472VMM_INT_DECL(void) NEMHCNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, RTR3PTR pvR3, uint32_t fPageProt,
4473 PGMPAGETYPE enmType, uint8_t *pu2State)
4474{
4475 Log5(("NEMHCNotifyPhysPageProtChanged: %RGp HCPhys=%RHp pvR3=%p fPageProt=%#x enmType=%d *pu2State=%d\n",
4476 GCPhys, HCPhys, pvR3, fPageProt, enmType, *pu2State));
4477 RT_NOREF(HCPhys, pvR3, fPageProt, enmType)
4478
4479 uint8_t u2StateOld = *pu2State;
4480 /* Can return early if this is an unmap request and the page is not mapped. */
4481 if ( fPageProt == NEM_PAGE_PROT_NONE
4482 && u2StateOld == NEM_DARWIN_PAGE_STATE_UNMAPPED)
4483 {
4484 Assert(!pvR3);
4485 return;
4486 }
4487
4488 int rc;
4489 if (u2StateOld == NEM_DARWIN_PAGE_STATE_UNMAPPED)
4490 {
4491 AssertPtr(pvR3);
4492 rc = nemR3DarwinMap(pVM, GCPhys, pvR3, X86_PAGE_SIZE, fPageProt, pu2State);
4493 }
4494 else
4495 rc = nemR3DarwinProtect(pVM, GCPhys, X86_PAGE_SIZE, fPageProt, pu2State);
4496 AssertLogRelMsgRC(rc, ("NEMHCNotifyPhysPageProtChanged: nemR3DarwinMap/nemR3DarwinProtect(,%p,%RGp,%RGp,) u2StateOld=%u -> %Rrc\n",
4497 pvR3, GCPhys, X86_PAGE_SIZE, u2StateOld, rc));
4498}
4499
4500
4501VMM_INT_DECL(void) NEMHCNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
4502 RTR3PTR pvNewR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
4503{
4504 Log5(("NEMHCNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
4505 GCPhys, HCPhysPrev, HCPhysNew, fPageProt, enmType, *pu2State));
4506 RT_NOREF(HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType);
4507
4508 int rc = nemR3DarwinUnmap(pVM, GCPhys, X86_PAGE_SIZE, pu2State);
4509 if (RT_SUCCESS(rc))
4510 {
4511 rc = nemR3DarwinMap(pVM, GCPhys, pvNewR3, X86_PAGE_SIZE, fPageProt, pu2State);
4512 AssertLogRelMsgRC(rc, ("NEMHCNotifyPhysPageChanged: nemR3DarwinMap(,%p,%RGp,%RGp,) -> %Rrc\n",
4513 pvNewR3, GCPhys, X86_PAGE_SIZE, rc));
4514 }
4515 else
4516 AssertReleaseFailed();
4517}
4518
4519
4520/**
4521 * Interface for importing state on demand (used by IEM).
4522 *
4523 * @returns VBox status code.
4524 * @param pVCpu The cross context CPU structure.
4525 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
4526 */
4527VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
4528{
4529 LogFlowFunc(("pVCpu=%p fWhat=%RX64\n", pVCpu, fWhat));
4530 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);
4531
4532 return nemR3DarwinCopyStateFromHv(pVCpu->pVMR3, pVCpu, fWhat);
4533}
4534
4535
4536/**
4537 * Query the CPU tick counter and optionally the TSC_AUX MSR value.
4538 *
4539 * @returns VBox status code.
4540 * @param pVCpu The cross context CPU structure.
4541 * @param pcTicks Where to return the CPU tick count.
4542 * @param puAux Where to return the TSC_AUX register value.
4543 */
4544VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux)
4545{
4546 LogFlowFunc(("pVCpu=%p pcTicks=%RX64 puAux=%RX32\n", pVCpu, pcTicks, puAux));
4547 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick);
4548
4549 int rc = nemR3DarwinMsrRead(pVCpu, MSR_IA32_TSC, pcTicks);
4550 if ( RT_SUCCESS(rc)
4551 && puAux)
4552 {
4553 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX)
4554 {
4555 uint64_t u64Aux;
4556 rc = nemR3DarwinMsrRead(pVCpu, MSR_K8_TSC_AUX, &u64Aux);
4557 if (RT_SUCCESS(rc))
4558 *puAux = (uint32_t)u64Aux;
4559 }
4560 else
4561 *puAux = CPUMGetGuestTscAux(pVCpu);
4562 }
4563
4564 return rc;
4565}
4566
4567
4568/**
4569 * Resumes CPU clock (TSC) on all virtual CPUs.
4570 *
4571 * This is called by TM when the VM is started, restored, resumed or similar.
4572 *
4573 * @returns VBox status code.
4574 * @param pVM The cross context VM structure.
4575 * @param pVCpu The cross context CPU structure of the calling EMT.
4576 * @param uPausedTscValue The TSC value at the time of pausing.
4577 */
4578VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue)
4579{
4580 LogFlowFunc(("pVM=%p pVCpu=%p uPausedTscValue=%RX64\n", pVCpu, uPausedTscValue));
4581 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT);
4582 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9);
4583
4584 hv_return_t hrc = hv_vm_sync_tsc(uPausedTscValue);
4585 if (RT_LIKELY(hrc == HV_SUCCESS))
4586 {
4587 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_TSC_AUX);
4588 return VINF_SUCCESS;
4589 }
4590
4591 return nemR3DarwinHvSts2Rc(hrc);
4592}
4593
4594
4595/**
4596 * Returns features supported by the NEM backend.
4597 *
4598 * @returns Flags of features supported by the native NEM backend.
4599 * @param pVM The cross context VM structure.
4600 */
4601VMM_INT_DECL(uint32_t) NEMHCGetFeatures(PVMCC pVM)
4602{
4603 RT_NOREF(pVM);
4604 /*
4605 * Apple's Hypervisor.framework is not supported if the CPU doesn't support nested paging
4606 * and unrestricted guest execution support so we can safely return these flags here always.
4607 */
4608 return NEM_FEAT_F_NESTED_PAGING | NEM_FEAT_F_FULL_GST_EXEC | NEM_FEAT_F_XSAVE_XRSTOR;
4609}
4610
4611
4612/** @page pg_nem_darwin NEM/darwin - Native Execution Manager, macOS.
4613 *
4614 * @todo Add notes as the implementation progresses...
4615 */
4616
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette