VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/MM.cpp@ 84044

Last change on this file since 84044 was 82968, checked in by vboxsync, 4 years ago

Copyright year updates by scm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 30.3 KB
Line 
1/* $Id: MM.cpp 82968 2020-02-04 10:35:17Z vboxsync $ */
2/** @file
3 * MM - Memory Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_mm MM - The Memory Manager
20 *
21 * The memory manager is in charge of the following memory:
22 * - Hypervisor Memory Area (HMA) - Address space management (obsolete in 6.1).
23 * - Hypervisor Heap - A memory heap that lives in all contexts.
24 * - User-Kernel Heap - A memory heap lives in both host context.
25 * - Tagged ring-3 heap.
26 * - Page pools - Primarily used by PGM for shadow page tables.
27 * - Locked process memory - Guest RAM and other. (reduce/obsolete this)
28 * - Physical guest memory (RAM & ROM) - Moving to PGM. (obsolete this)
29 *
30 * The global memory manager (GMM) is the global counter part / partner of MM.
31 * MM will provide therefore ring-3 callable interfaces for some of the GMM APIs
32 * related to resource tracking (PGM is the user).
33 *
34 * @see grp_mm
35 *
36 *
37 * @section sec_mm_hma Hypervisor Memory Area - Obsolete in 6.1
38 *
39 * The HMA is used when executing in raw-mode. We borrow, with the help of
40 * PGMMap, some unused space (one or more page directory entries to be precise)
41 * in the guest's virtual memory context. PGM will monitor the guest's virtual
42 * address space for changes and relocate the HMA when required.
43 *
44 * To give some idea what's in the HMA, study the 'info hma' output:
45 * @verbatim
46VBoxDbg> info hma
47Hypervisor Memory Area (HMA) Layout: Base 00000000a0000000, 0x00800000 bytes
4800000000a05cc000-00000000a05cd000 DYNAMIC fence
4900000000a05c4000-00000000a05cc000 DYNAMIC Dynamic mapping
5000000000a05c3000-00000000a05c4000 DYNAMIC fence
5100000000a05b8000-00000000a05c3000 DYNAMIC Paging
5200000000a05b6000-00000000a05b8000 MMIO2 0000000000000000 PCNetShMem
5300000000a0536000-00000000a05b6000 MMIO2 0000000000000000 VGA VRam
5400000000a0523000-00000000a0536000 00002aaab3d0c000 LOCKED autofree alloc once (PDM_DEVICE)
5500000000a0522000-00000000a0523000 DYNAMIC fence
5600000000a051e000-00000000a0522000 00002aaab36f5000 LOCKED autofree VBoxDD2RC.rc
5700000000a051d000-00000000a051e000 DYNAMIC fence
5800000000a04eb000-00000000a051d000 00002aaab36c3000 LOCKED autofree VBoxDDRC.rc
5900000000a04ea000-00000000a04eb000 DYNAMIC fence
6000000000a04e9000-00000000a04ea000 00002aaab36c2000 LOCKED autofree ram range (High ROM Region)
6100000000a04e8000-00000000a04e9000 DYNAMIC fence
6200000000a040e000-00000000a04e8000 00002aaab2e6d000 LOCKED autofree VMMRC.rc
6300000000a0208000-00000000a040e000 00002aaab2c67000 LOCKED autofree alloc once (PATM)
6400000000a01f7000-00000000a0208000 00002aaaab92d000 LOCKED autofree alloc once (SELM)
6500000000a01e7000-00000000a01f7000 00002aaaab5e8000 LOCKED autofree alloc once (SELM)
6600000000a01e6000-00000000a01e7000 DYNAMIC fence
6700000000a01e5000-00000000a01e6000 00002aaaab5e7000 HCPHYS 00000000c363c000 Core Code
6800000000a01e4000-00000000a01e5000 DYNAMIC fence
6900000000a01e3000-00000000a01e4000 00002aaaaab26000 HCPHYS 00000000619cf000 GIP
7000000000a01a2000-00000000a01e3000 00002aaaabf32000 LOCKED autofree alloc once (PGM_PHYS)
7100000000a016b000-00000000a01a2000 00002aaab233f000 LOCKED autofree alloc once (PGM_POOL)
7200000000a016a000-00000000a016b000 DYNAMIC fence
7300000000a0165000-00000000a016a000 DYNAMIC CR3 mapping
7400000000a0164000-00000000a0165000 DYNAMIC fence
7500000000a0024000-00000000a0164000 00002aaab215f000 LOCKED autofree Heap
7600000000a0023000-00000000a0024000 DYNAMIC fence
7700000000a0001000-00000000a0023000 00002aaab1d24000 LOCKED pages VM
7800000000a0000000-00000000a0001000 DYNAMIC fence
79 @endverbatim
80 *
81 *
82 * @section sec_mm_hyperheap Hypervisor Heap
83 *
84 * The heap is accessible from ring-3, ring-0 and the raw-mode context. That
85 * said, it's not necessarily mapped into ring-0 on if that's possible since we
86 * don't wish to waste kernel address space without a good reason.
87 *
88 * Allocations within the heap are always in the same relative position in all
89 * contexts, so, it's possible to use offset based linking. In fact, the heap is
90 * internally using offset based linked lists tracking heap blocks. We use
91 * offset linked AVL trees and lists in a lot of places where share structures
92 * between RC, R3 and R0, so this is a strict requirement of the heap. However
93 * this means that we cannot easily extend the heap since the extension won't
94 * necessarily be in the continuation of the current heap memory in all (or any)
95 * context.
96 *
97 * All allocations are tagged. Per tag allocation statistics will be maintaining
98 * and exposed thru STAM when VBOX_WITH_STATISTICS is defined.
99 *
100 *
101 * @section sec_mm_r3heap Tagged Ring-3 Heap
102 *
103 * The ring-3 heap is a wrapper around the RTMem API adding allocation
104 * statistics and automatic cleanup on VM destruction.
105 *
106 * Per tag allocation statistics will be maintaining and exposed thru STAM when
107 * VBOX_WITH_STATISTICS is defined.
108 *
109 *
110 * @section sec_mm_page Page Pool
111 *
112 * The MM manages a page pool from which other components can allocate locked,
113 * page aligned and page sized memory objects. The pool provides facilities to
114 * convert back and forth between (host) physical and virtual addresses (within
115 * the pool of course). Several specialized interfaces are provided for the most
116 * common allocations and conversions to save the caller from bothersome casting
117 * and extra parameter passing.
118 *
119 *
120 * @section sec_mm_locked Locked Process Memory
121 *
122 * MM manages the locked process memory. This is used for a bunch of things
123 * (count the LOCKED entries in the 'info hma' output found in @ref sec_mm_hma),
124 * but the main consumer of memory is currently for guest RAM. There is an
125 * ongoing rewrite that will move all the guest RAM allocation to PGM and
126 * GMM.
127 *
128 * The locking of memory is something doing in cooperation with the VirtualBox
129 * support driver, SUPDrv (aka. VBoxDrv), thru the support library API,
130 * SUPR3 (aka. SUPLib).
131 *
132 *
133 * @section sec_mm_phys Physical Guest Memory
134 *
135 * MM is currently managing the physical memory for the guest. It relies heavily
136 * on PGM for this. There is an ongoing rewrite that will move this to PGM. (The
137 * rewrite is driven by the need for more flexible guest ram allocation, but
138 * also motivated by the fact that MMPhys is just adding stupid bureaucracy and
139 * that MMR3PhysReserve is a totally weird artifact that must go away.)
140 *
141 */
142
143
144/*********************************************************************************************************************************
145* Header Files *
146*********************************************************************************************************************************/
147#define LOG_GROUP LOG_GROUP_MM
148#include <VBox/vmm/mm.h>
149#include <VBox/vmm/pgm.h>
150#include <VBox/vmm/cfgm.h>
151#include <VBox/vmm/ssm.h>
152#include <VBox/vmm/gmm.h>
153#include "MMInternal.h"
154#include <VBox/vmm/vm.h>
155#include <VBox/vmm/uvm.h>
156#include <VBox/err.h>
157#include <VBox/param.h>
158
159#include <VBox/log.h>
160#include <iprt/alloc.h>
161#include <iprt/assert.h>
162#include <iprt/string.h>
163
164
165/*********************************************************************************************************************************
166* Defined Constants And Macros *
167*********************************************************************************************************************************/
168/** The current saved state version of MM. */
169#define MM_SAVED_STATE_VERSION 2
170
171
172/*********************************************************************************************************************************
173* Internal Functions *
174*********************************************************************************************************************************/
175static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM);
176static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
177
178
179
180
181/**
182 * Initializes the MM members of the UVM.
183 *
184 * This is currently only the ring-3 heap.
185 *
186 * @returns VBox status code.
187 * @param pUVM Pointer to the user mode VM structure.
188 */
189VMMR3DECL(int) MMR3InitUVM(PUVM pUVM)
190{
191 /*
192 * Assert sizes and order.
193 */
194 AssertCompile(sizeof(pUVM->mm.s) <= sizeof(pUVM->mm.padding));
195 AssertRelease(sizeof(pUVM->mm.s) <= sizeof(pUVM->mm.padding));
196 Assert(!pUVM->mm.s.pHeap);
197
198 /*
199 * Init the heap.
200 */
201 int rc = mmR3HeapCreateU(pUVM, &pUVM->mm.s.pHeap);
202 if (RT_SUCCESS(rc))
203 {
204 rc = mmR3UkHeapCreateU(pUVM, &pUVM->mm.s.pUkHeap);
205 if (RT_SUCCESS(rc))
206 return VINF_SUCCESS;
207 mmR3HeapDestroy(pUVM->mm.s.pHeap);
208 pUVM->mm.s.pHeap = NULL;
209 }
210 return rc;
211}
212
213
214/**
215 * Initializes the MM.
216 *
217 * MM is managing the virtual address space (among other things) and
218 * setup the hypervisor memory area mapping in the VM structure and
219 * the hypervisor alloc-only-heap. Assuming the current init order
220 * and components the hypervisor memory area looks like this:
221 * -# VM Structure.
222 * -# Hypervisor alloc only heap (also call Hypervisor memory region).
223 * -# Core code.
224 *
225 * MM determines the virtual address of the hypervisor memory area by
226 * checking for location at previous run. If that property isn't available
227 * it will choose a default starting location, currently 0xa0000000.
228 *
229 * @returns VBox status code.
230 * @param pVM The cross context VM structure.
231 */
232VMMR3DECL(int) MMR3Init(PVM pVM)
233{
234 LogFlow(("MMR3Init\n"));
235
236 /*
237 * Assert alignment, sizes and order.
238 */
239 AssertRelease(!(RT_UOFFSETOF(VM, mm.s) & 31));
240 AssertRelease(sizeof(pVM->mm.s) <= sizeof(pVM->mm.padding));
241 AssertMsg(pVM->mm.s.offVM == 0, ("Already initialized!\n"));
242
243 /*
244 * Init the structure.
245 */
246 pVM->mm.s.offVM = RT_UOFFSETOF(VM, mm);
247 pVM->mm.s.offLookupHyper = NIL_OFFSET;
248
249 /*
250 * Init the hypervisor related stuff.
251 */
252 int rc = mmR3HyperInit(pVM);
253 if (RT_SUCCESS(rc))
254 {
255 /*
256 * Register the saved state data unit.
257 */
258 rc = SSMR3RegisterInternal(pVM, "mm", 1, MM_SAVED_STATE_VERSION, sizeof(uint32_t) * 2,
259 NULL, NULL, NULL,
260 NULL, mmR3Save, NULL,
261 NULL, mmR3Load, NULL);
262 if (RT_SUCCESS(rc))
263 {
264 /*
265 * Statistics.
266 */
267 STAM_REG(pVM, &pVM->mm.s.cBasePages, STAMTYPE_U64, "/MM/Reserved/cBasePages", STAMUNIT_PAGES, "Reserved number of base pages, ROM and Shadow ROM included.");
268 STAM_REG(pVM, &pVM->mm.s.cHandyPages, STAMTYPE_U32, "/MM/Reserved/cHandyPages", STAMUNIT_PAGES, "Reserved number of handy pages.");
269 STAM_REG(pVM, &pVM->mm.s.cShadowPages, STAMTYPE_U32, "/MM/Reserved/cShadowPages", STAMUNIT_PAGES, "Reserved number of shadow paging pages.");
270 STAM_REG(pVM, &pVM->mm.s.cFixedPages, STAMTYPE_U32, "/MM/Reserved/cFixedPages", STAMUNIT_PAGES, "Reserved number of fixed pages (MMIO2).");
271 STAM_REG(pVM, &pVM->mm.s.cbRamBase, STAMTYPE_U64, "/MM/cbRamBase", STAMUNIT_BYTES, "Size of the base RAM.");
272
273 return rc;
274 }
275
276 /* .... failure .... */
277 }
278 MMR3Term(pVM);
279 return rc;
280}
281
282
283/**
284 * Initializes the MM parts which depends on PGM being initialized.
285 *
286 * @returns VBox status code.
287 * @param pVM The cross context VM structure.
288 * @remark No cleanup necessary since MMR3Term() will be called on failure.
289 */
290VMMR3DECL(int) MMR3InitPaging(PVM pVM)
291{
292 LogFlow(("MMR3InitPaging:\n"));
293
294 /*
295 * Query the CFGM values.
296 */
297 int rc;
298 PCFGMNODE pMMCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "MM");
299 if (!pMMCfg)
300 {
301 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "MM", &pMMCfg);
302 AssertRCReturn(rc, rc);
303 }
304
305 /** @cfgm{/RamSize, uint64_t, 0, 16TB, 0}
306 * Specifies the size of the base RAM that is to be set up during
307 * VM initialization.
308 */
309 uint64_t cbRam;
310 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
311 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
312 cbRam = 0;
313 else
314 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc), rc);
315 AssertLogRelMsg(!(cbRam & ~X86_PTE_PAE_PG_MASK), ("%RGp X86_PTE_PAE_PG_MASK=%RX64\n", cbRam, X86_PTE_PAE_PG_MASK));
316 AssertLogRelMsgReturn(cbRam <= GMM_GCPHYS_LAST, ("cbRam=%RGp GMM_GCPHYS_LAST=%RX64\n", cbRam, GMM_GCPHYS_LAST), VERR_OUT_OF_RANGE);
317 cbRam &= X86_PTE_PAE_PG_MASK;
318 pVM->mm.s.cbRamBase = cbRam;
319
320 /** @cfgm{/RamHoleSize, uint32_t, 0, 4032MB, 512MB}
321 * Specifies the size of the memory hole. The memory hole is used
322 * to avoid mapping RAM to the range normally used for PCI memory regions.
323 * Must be aligned on a 4MB boundary. */
324 uint32_t cbRamHole;
325 rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
326 AssertLogRelMsgRCReturn(rc, ("Configuration error: Failed to query integer \"RamHoleSize\", rc=%Rrc.\n", rc), rc);
327 AssertLogRelMsgReturn(cbRamHole <= 4032U * _1M,
328 ("Configuration error: \"RamHoleSize\"=%#RX32 is too large.\n", cbRamHole), VERR_OUT_OF_RANGE);
329 AssertLogRelMsgReturn(cbRamHole > 16 * _1M,
330 ("Configuration error: \"RamHoleSize\"=%#RX32 is too large.\n", cbRamHole), VERR_OUT_OF_RANGE);
331 AssertLogRelMsgReturn(!(cbRamHole & (_4M - 1)),
332 ("Configuration error: \"RamHoleSize\"=%#RX32 is misaligned.\n", cbRamHole), VERR_OUT_OF_RANGE);
333 uint64_t const offRamHole = _4G - cbRamHole;
334 if (cbRam < offRamHole)
335 Log(("MM: %RU64 bytes of RAM\n", cbRam));
336 else
337 Log(("MM: %RU64 bytes of RAM with a hole at %RU64 up to 4GB.\n", cbRam, offRamHole));
338
339 /** @cfgm{/MM/Policy, string, no overcommitment}
340 * Specifies the policy to use when reserving memory for this VM. The recognized
341 * value is 'no overcommitment' (default). See GMMPOLICY.
342 */
343 GMMOCPOLICY enmOcPolicy;
344 char sz[64];
345 rc = CFGMR3QueryString(CFGMR3GetRoot(pVM), "Policy", sz, sizeof(sz));
346 if (RT_SUCCESS(rc))
347 {
348 if ( !RTStrICmp(sz, "no_oc")
349 || !RTStrICmp(sz, "no overcommitment"))
350 enmOcPolicy = GMMOCPOLICY_NO_OC;
351 else
352 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, "Unknown \"MM/Policy\" value \"%s\"", sz);
353 }
354 else if (rc == VERR_CFGM_VALUE_NOT_FOUND)
355 enmOcPolicy = GMMOCPOLICY_NO_OC;
356 else
357 AssertMsgFailedReturn(("Configuration error: Failed to query string \"MM/Policy\", rc=%Rrc.\n", rc), rc);
358
359 /** @cfgm{/MM/Priority, string, normal}
360 * Specifies the memory priority of this VM. The priority comes into play when the
361 * system is overcommitted and the VMs needs to be milked for memory. The recognized
362 * values are 'low', 'normal' (default) and 'high'. See GMMPRIORITY.
363 */
364 GMMPRIORITY enmPriority;
365 rc = CFGMR3QueryString(CFGMR3GetRoot(pVM), "Priority", sz, sizeof(sz));
366 if (RT_SUCCESS(rc))
367 {
368 if (!RTStrICmp(sz, "low"))
369 enmPriority = GMMPRIORITY_LOW;
370 else if (!RTStrICmp(sz, "normal"))
371 enmPriority = GMMPRIORITY_NORMAL;
372 else if (!RTStrICmp(sz, "high"))
373 enmPriority = GMMPRIORITY_HIGH;
374 else
375 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, "Unknown \"MM/Priority\" value \"%s\"", sz);
376 }
377 else if (rc == VERR_CFGM_VALUE_NOT_FOUND)
378 enmPriority = GMMPRIORITY_NORMAL;
379 else
380 AssertMsgFailedReturn(("Configuration error: Failed to query string \"MM/Priority\", rc=%Rrc.\n", rc), rc);
381
382 /*
383 * Make the initial memory reservation with GMM.
384 */
385 uint64_t cBasePages = (cbRam >> PAGE_SHIFT) + pVM->mm.s.cBasePages;
386 rc = GMMR3InitialReservation(pVM,
387 RT_MAX(cBasePages + pVM->mm.s.cHandyPages, 1),
388 RT_MAX(pVM->mm.s.cShadowPages, 1),
389 RT_MAX(pVM->mm.s.cFixedPages, 1),
390 enmOcPolicy,
391 enmPriority);
392 if (RT_FAILURE(rc))
393 {
394 if (rc == VERR_GMM_MEMORY_RESERVATION_DECLINED)
395 return VMSetError(pVM, rc, RT_SRC_POS,
396 N_("Insufficient free memory to start the VM (cbRam=%#RX64 enmOcPolicy=%d enmPriority=%d)"),
397 cbRam, enmOcPolicy, enmPriority);
398 return VMSetError(pVM, rc, RT_SRC_POS, "GMMR3InitialReservation(,%#RX64,0,0,%d,%d)",
399 cbRam >> PAGE_SHIFT, enmOcPolicy, enmPriority);
400 }
401
402 /*
403 * If RamSize is 0 we're done now.
404 */
405 if (cbRam < PAGE_SIZE)
406 {
407 Log(("MM: No RAM configured\n"));
408 return VINF_SUCCESS;
409 }
410
411 /*
412 * Setup the base ram (PGM).
413 */
414 pVM->mm.s.cbRamHole = cbRamHole;
415 if (cbRam > offRamHole)
416 {
417 pVM->mm.s.cbRamBelow4GB = offRamHole;
418 rc = PGMR3PhysRegisterRam(pVM, 0, offRamHole, "Base RAM");
419 if (RT_SUCCESS(rc))
420 {
421 pVM->mm.s.cbRamAbove4GB = cbRam - offRamHole;
422 rc = PGMR3PhysRegisterRam(pVM, _4G, cbRam - offRamHole, "Above 4GB Base RAM");
423 }
424 }
425 else
426 {
427 pVM->mm.s.cbRamBelow4GB = cbRam;
428 pVM->mm.s.cbRamAbove4GB = 0;
429 rc = PGMR3PhysRegisterRam(pVM, 0, cbRam, "Base RAM");
430 }
431
432 /*
433 * Enabled mmR3UpdateReservation here since we don't want the
434 * PGMR3PhysRegisterRam calls above mess things up.
435 */
436 pVM->mm.s.fDoneMMR3InitPaging = true;
437 AssertMsg(pVM->mm.s.cBasePages == cBasePages || RT_FAILURE(rc), ("%RX64 != %RX64\n", pVM->mm.s.cBasePages, cBasePages));
438
439 LogFlow(("MMR3InitPaging: returns %Rrc\n", rc));
440 return rc;
441}
442
443
444/**
445 * Terminates the MM.
446 *
447 * Termination means cleaning up and freeing all resources,
448 * the VM it self is at this point powered off or suspended.
449 *
450 * @returns VBox status code.
451 * @param pVM The cross context VM structure.
452 */
453VMMR3DECL(int) MMR3Term(PVM pVM)
454{
455 /*
456 * Clean up the hypervisor heap.
457 */
458 mmR3HyperTerm(pVM);
459
460 /*
461 * Zero stuff to detect after termination use of the MM interface
462 */
463 pVM->mm.s.offLookupHyper = NIL_OFFSET;
464 pVM->mm.s.pHyperHeapR3 = NULL; /* freed above. */
465 pVM->mm.s.pHyperHeapR0 = NIL_RTR0PTR; /* freed above. */
466 pVM->mm.s.pHyperHeapRC = NIL_RTRCPTR; /* freed above. */
467 pVM->mm.s.offVM = 0; /* init assertion on this */
468
469 /*
470 * Destroy the User-kernel heap here since the support driver session
471 * may have been terminated by the time we get to MMR3TermUVM.
472 */
473 mmR3UkHeapDestroy(pVM->pUVM->mm.s.pUkHeap);
474 pVM->pUVM->mm.s.pUkHeap = NULL;
475
476 return VINF_SUCCESS;
477}
478
479
480/**
481 * Terminates the UVM part of MM.
482 *
483 * Termination means cleaning up and freeing all resources,
484 * the VM it self is at this point powered off or suspended.
485 *
486 * @returns VBox status code.
487 * @param pUVM Pointer to the user mode VM structure.
488 */
489VMMR3DECL(void) MMR3TermUVM(PUVM pUVM)
490{
491 /*
492 * Destroy the heaps.
493 */
494 if (pUVM->mm.s.pUkHeap)
495 {
496 mmR3UkHeapDestroy(pUVM->mm.s.pUkHeap);
497 pUVM->mm.s.pUkHeap = NULL;
498 }
499 mmR3HeapDestroy(pUVM->mm.s.pHeap);
500 pUVM->mm.s.pHeap = NULL;
501}
502
503
504/**
505 * Checks if the both VM and UVM parts of MM have been initialized.
506 *
507 * @returns true if initialized, false if not.
508 * @param pVM The cross context VM structure.
509 */
510VMMR3_INT_DECL(bool) MMR3IsInitialized(PVM pVM)
511{
512 return pVM->mm.s.pHyperHeapR3 != NULL;
513}
514
515
516/**
517 * Execute state save operation.
518 *
519 * @returns VBox status code.
520 * @param pVM The cross context VM structure.
521 * @param pSSM SSM operation handle.
522 */
523static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM)
524{
525 LogFlow(("mmR3Save:\n"));
526
527 /* (PGM saves the physical memory.) */
528 SSMR3PutU64(pSSM, pVM->mm.s.cBasePages);
529 return SSMR3PutU64(pSSM, pVM->mm.s.cbRamBase);
530}
531
532
533/**
534 * Execute state load operation.
535 *
536 * @returns VBox status code.
537 * @param pVM The cross context VM structure.
538 * @param pSSM SSM operation handle.
539 * @param uVersion Data layout version.
540 * @param uPass The data pass.
541 */
542static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
543{
544 LogFlow(("mmR3Load:\n"));
545 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
546
547 /*
548 * Validate version.
549 */
550 if ( SSM_VERSION_MAJOR_CHANGED(uVersion, MM_SAVED_STATE_VERSION)
551 || !uVersion)
552 {
553 AssertMsgFailed(("mmR3Load: Invalid version uVersion=%d!\n", uVersion));
554 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
555 }
556
557 /*
558 * Check the cBasePages and cbRamBase values.
559 */
560 int rc;
561 RTUINT cb1;
562
563 /* cBasePages (ignored) */
564 uint64_t cPages;
565 if (uVersion >= 2)
566 rc = SSMR3GetU64(pSSM, &cPages);
567 else
568 {
569 rc = SSMR3GetUInt(pSSM, &cb1);
570 cPages = cb1 >> PAGE_SHIFT;
571 }
572 if (RT_FAILURE(rc))
573 return rc;
574
575 /* cbRamBase */
576 uint64_t cb;
577 if (uVersion != 1)
578 rc = SSMR3GetU64(pSSM, &cb);
579 else
580 {
581 rc = SSMR3GetUInt(pSSM, &cb1);
582 cb = cb1;
583 }
584 if (RT_FAILURE(rc))
585 return rc;
586 AssertLogRelMsgReturn(cb == pVM->mm.s.cbRamBase,
587 ("Memory configuration has changed. cbRamBase=%#RX64 save=%#RX64\n", pVM->mm.s.cbRamBase, cb),
588 VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH);
589
590 /* (PGM restores the physical memory.) */
591 return rc;
592}
593
594
595/**
596 * Updates GMM with memory reservation changes.
597 *
598 * Called when MM::cbRamRegistered, MM::cShadowPages or MM::cFixedPages changes.
599 *
600 * @returns VBox status code - see GMMR0UpdateReservation.
601 * @param pVM The cross context VM structure.
602 */
603int mmR3UpdateReservation(PVM pVM)
604{
605 VM_ASSERT_EMT(pVM);
606 if (pVM->mm.s.fDoneMMR3InitPaging)
607 return GMMR3UpdateReservation(pVM,
608 RT_MAX(pVM->mm.s.cBasePages + pVM->mm.s.cHandyPages, 1),
609 RT_MAX(pVM->mm.s.cShadowPages, 1),
610 RT_MAX(pVM->mm.s.cFixedPages, 1));
611 return VINF_SUCCESS;
612}
613
614
615/**
616 * Interface for PGM to increase the reservation of RAM and ROM pages.
617 *
618 * This can be called before MMR3InitPaging.
619 *
620 * @returns VBox status code. Will set VM error on failure.
621 * @param pVM The cross context VM structure.
622 * @param cAddBasePages The number of pages to add.
623 */
624VMMR3DECL(int) MMR3IncreaseBaseReservation(PVM pVM, uint64_t cAddBasePages)
625{
626 uint64_t cOld = pVM->mm.s.cBasePages;
627 pVM->mm.s.cBasePages += cAddBasePages;
628 LogFlow(("MMR3IncreaseBaseReservation: +%RU64 (%RU64 -> %RU64\n", cAddBasePages, cOld, pVM->mm.s.cBasePages));
629 int rc = mmR3UpdateReservation(pVM);
630 if (RT_FAILURE(rc))
631 {
632 VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserved physical memory for the RAM (%#RX64 -> %#RX64 + %#RX32)"),
633 cOld, pVM->mm.s.cBasePages, pVM->mm.s.cHandyPages);
634 pVM->mm.s.cBasePages = cOld;
635 }
636 return rc;
637}
638
639
640/**
641 * Interface for PGM to make reservations for handy pages in addition to the
642 * base memory.
643 *
644 * This can be called before MMR3InitPaging.
645 *
646 * @returns VBox status code. Will set VM error on failure.
647 * @param pVM The cross context VM structure.
648 * @param cHandyPages The number of handy pages.
649 */
650VMMR3DECL(int) MMR3ReserveHandyPages(PVM pVM, uint32_t cHandyPages)
651{
652 AssertReturn(!pVM->mm.s.cHandyPages, VERR_WRONG_ORDER);
653
654 pVM->mm.s.cHandyPages = cHandyPages;
655 LogFlow(("MMR3ReserveHandyPages: %RU32 (base %RU64)\n", pVM->mm.s.cHandyPages, pVM->mm.s.cBasePages));
656 int rc = mmR3UpdateReservation(pVM);
657 if (RT_FAILURE(rc))
658 {
659 VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserved physical memory for the RAM (%#RX64 + %#RX32)"),
660 pVM->mm.s.cBasePages, pVM->mm.s.cHandyPages);
661 pVM->mm.s.cHandyPages = 0;
662 }
663 return rc;
664}
665
666
667/**
668 * Interface for PGM to adjust the reservation of fixed pages.
669 *
670 * This can be called before MMR3InitPaging.
671 *
672 * @returns VBox status code. Will set VM error on failure.
673 * @param pVM The cross context VM structure.
674 * @param cDeltaFixedPages The number of pages to add (positive) or subtract (negative).
675 * @param pszDesc Some description associated with the reservation.
676 */
677VMMR3DECL(int) MMR3AdjustFixedReservation(PVM pVM, int32_t cDeltaFixedPages, const char *pszDesc)
678{
679 const uint32_t cOld = pVM->mm.s.cFixedPages;
680 pVM->mm.s.cFixedPages += cDeltaFixedPages;
681 LogFlow(("MMR3AdjustFixedReservation: %d (%u -> %u)\n", cDeltaFixedPages, cOld, pVM->mm.s.cFixedPages));
682 int rc = mmR3UpdateReservation(pVM);
683 if (RT_FAILURE(rc))
684 {
685 VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserve physical memory (%#x -> %#x; %s)"),
686 cOld, pVM->mm.s.cFixedPages, pszDesc);
687 pVM->mm.s.cFixedPages = cOld;
688 }
689 return rc;
690}
691
692
693/**
694 * Interface for PGM to update the reservation of shadow pages.
695 *
696 * This can be called before MMR3InitPaging.
697 *
698 * @returns VBox status code. Will set VM error on failure.
699 * @param pVM The cross context VM structure.
700 * @param cShadowPages The new page count.
701 */
702VMMR3DECL(int) MMR3UpdateShadowReservation(PVM pVM, uint32_t cShadowPages)
703{
704 const uint32_t cOld = pVM->mm.s.cShadowPages;
705 pVM->mm.s.cShadowPages = cShadowPages;
706 LogFlow(("MMR3UpdateShadowReservation: %u -> %u\n", cOld, pVM->mm.s.cShadowPages));
707 int rc = mmR3UpdateReservation(pVM);
708 if (RT_FAILURE(rc))
709 {
710 VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserve physical memory for shadow page tables (%#x -> %#x)"), cOld, pVM->mm.s.cShadowPages);
711 pVM->mm.s.cShadowPages = cOld;
712 }
713 return rc;
714}
715
716
717/**
718 * Convert HC Physical address to HC Virtual address.
719 *
720 * @returns VBox status code.
721 * @param pVM The cross context VM structure.
722 * @param HCPhys The host context virtual address.
723 * @param ppv Where to store the resulting address.
724 * @thread The Emulation Thread.
725 *
726 * @remarks Avoid whenever possible.
727 * Intended for the debugger facility only.
728 * @todo Rename to indicate the special usage.
729 */
730VMMR3DECL(int) MMR3HCPhys2HCVirt(PVM pVM, RTHCPHYS HCPhys, void **ppv)
731{
732#if 0
733 /*
734 * Try page tables.
735 */
736 int rc = MMPagePhys2PageTry(pVM, HCPhys, ppv);
737 if (RT_SUCCESS(rc))
738 return rc;
739#endif
740
741 /*
742 * Iterate thru the lookup records for HMA.
743 */
744 uint32_t off = HCPhys & PAGE_OFFSET_MASK;
745 HCPhys &= X86_PTE_PAE_PG_MASK;
746 PMMLOOKUPHYPER pCur = (PMMLOOKUPHYPER)((uint8_t *)pVM->mm.s.CTX_SUFF(pHyperHeap) + pVM->mm.s.offLookupHyper);
747 for (;;)
748 {
749 switch (pCur->enmType)
750 {
751 case MMLOOKUPHYPERTYPE_LOCKED:
752 {
753 PCRTHCPHYS paHCPhysPages = pCur->u.Locked.paHCPhysPages;
754 size_t iPage = pCur->cb >> PAGE_SHIFT;
755 while (iPage-- > 0)
756 if (paHCPhysPages[iPage] == HCPhys)
757 {
758 *ppv = (char *)pCur->u.Locked.pvR3 + (iPage << PAGE_SHIFT) + off;
759 return VINF_SUCCESS;
760 }
761 break;
762 }
763
764 case MMLOOKUPHYPERTYPE_HCPHYS:
765 if (pCur->u.HCPhys.HCPhys - HCPhys < pCur->cb)
766 {
767 *ppv = (uint8_t *)pCur->u.HCPhys.pvR3 + pCur->u.HCPhys.HCPhys - HCPhys + off;
768 return VINF_SUCCESS;
769 }
770 break;
771
772 case MMLOOKUPHYPERTYPE_GCPHYS: /* (for now we'll not allow these kind of conversions) */
773 case MMLOOKUPHYPERTYPE_MMIO2:
774 case MMLOOKUPHYPERTYPE_DYNAMIC:
775 break;
776
777 default:
778 AssertMsgFailed(("enmType=%d\n", pCur->enmType));
779 break;
780 }
781
782 /* next */
783 if (pCur->offNext == (int32_t)NIL_OFFSET)
784 break;
785 pCur = (PMMLOOKUPHYPER)((uint8_t *)pCur + pCur->offNext);
786 }
787 /* give up */
788 return VERR_INVALID_POINTER;
789}
790
791
792
793/**
794 * Get the size of the base RAM.
795 * This usually means the size of the first contiguous block of physical memory.
796 *
797 * @returns The guest base RAM size.
798 * @param pVM The cross context VM structure.
799 * @thread Any.
800 *
801 * @deprecated
802 */
803VMMR3DECL(uint64_t) MMR3PhysGetRamSize(PVM pVM)
804{
805 return pVM->mm.s.cbRamBase;
806}
807
808
809/**
810 * Get the size of RAM below 4GB (starts at address 0x00000000).
811 *
812 * @returns The amount of RAM below 4GB in bytes.
813 * @param pVM The cross context VM structure.
814 * @thread Any.
815 */
816VMMR3DECL(uint32_t) MMR3PhysGetRamSizeBelow4GB(PVM pVM)
817{
818 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
819 return pVM->mm.s.cbRamBelow4GB;
820}
821
822
823/**
824 * Get the size of RAM above 4GB (starts at address 0x000100000000).
825 *
826 * @returns The amount of RAM above 4GB in bytes.
827 * @param pVM The cross context VM structure.
828 * @thread Any.
829 */
830VMMR3DECL(uint64_t) MMR3PhysGetRamSizeAbove4GB(PVM pVM)
831{
832 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
833 return pVM->mm.s.cbRamAbove4GB;
834}
835
836
837/**
838 * Get the size of the RAM hole below 4GB.
839 *
840 * @returns Size in bytes.
841 * @param pVM The cross context VM structure.
842 * @thread Any.
843 */
844VMMR3DECL(uint32_t) MMR3PhysGet4GBRamHoleSize(PVM pVM)
845{
846 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
847 return pVM->mm.s.cbRamHole;
848}
849
Note: See TracBrowser for help on using the repository browser.

© 2023 Oracle
ContactPrivacy policyTerms of Use