VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/MM.cpp@ 80118

Last change on this file since 80118 was 80118, checked in by vboxsync, 5 years ago

VMM: Kicking out raw-mode and 32-bit hosts - MM, PGM, ++. bugref:9517 bugref:9511

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 30.6 KB
Line 
1/* $Id: MM.cpp 80118 2019-08-04 02:39:54Z vboxsync $ */
2/** @file
3 * MM - Memory Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/* @page pg_mm MM - The Memory Manager
20 *
21 * The memory manager is in charge of the following memory:
22 * - Hypervisor Memory Area (HMA) - Address space management (obsolete in 6.1).
23 * - Hypervisor Heap - A memory heap that lives in all contexts.
24 * - User-Kernel Heap - A memory heap lives in both host context.
25 * - Tagged ring-3 heap.
26 * - Page pools - Primarily used by PGM for shadow page tables.
27 * - Locked process memory - Guest RAM and other. (reduce/obsolete this)
28 * - Physical guest memory (RAM & ROM) - Moving to PGM. (obsolete this)
29 *
30 * The global memory manager (GMM) is the global counter part / partner of MM.
31 * MM will provide therefore ring-3 callable interfaces for some of the GMM APIs
32 * related to resource tracking (PGM is the user).
33 *
34 * @see grp_mm
35 *
36 *
37 * @section sec_mm_hma Hypervisor Memory Area - Obsolete in 6.1
38 *
39 * The HMA is used when executing in raw-mode. We borrow, with the help of
40 * PGMMap, some unused space (one or more page directory entries to be precise)
41 * in the guest's virtual memory context. PGM will monitor the guest's virtual
42 * address space for changes and relocate the HMA when required.
43 *
44 * To give some idea what's in the HMA, study the 'info hma' output:
45 * @verbatim
46VBoxDbg> info hma
47Hypervisor Memory Area (HMA) Layout: Base 00000000a0000000, 0x00800000 bytes
4800000000a05cc000-00000000a05cd000 DYNAMIC fence
4900000000a05c4000-00000000a05cc000 DYNAMIC Dynamic mapping
5000000000a05c3000-00000000a05c4000 DYNAMIC fence
5100000000a05b8000-00000000a05c3000 DYNAMIC Paging
5200000000a05b6000-00000000a05b8000 MMIO2 0000000000000000 PCNetShMem
5300000000a0536000-00000000a05b6000 MMIO2 0000000000000000 VGA VRam
5400000000a0523000-00000000a0536000 00002aaab3d0c000 LOCKED autofree alloc once (PDM_DEVICE)
5500000000a0522000-00000000a0523000 DYNAMIC fence
5600000000a051e000-00000000a0522000 00002aaab36f5000 LOCKED autofree VBoxDD2RC.rc
5700000000a051d000-00000000a051e000 DYNAMIC fence
5800000000a04eb000-00000000a051d000 00002aaab36c3000 LOCKED autofree VBoxDDRC.rc
5900000000a04ea000-00000000a04eb000 DYNAMIC fence
6000000000a04e9000-00000000a04ea000 00002aaab36c2000 LOCKED autofree ram range (High ROM Region)
6100000000a04e8000-00000000a04e9000 DYNAMIC fence
6200000000a040e000-00000000a04e8000 00002aaab2e6d000 LOCKED autofree VMMRC.rc
6300000000a0208000-00000000a040e000 00002aaab2c67000 LOCKED autofree alloc once (PATM)
6400000000a01f7000-00000000a0208000 00002aaaab92d000 LOCKED autofree alloc once (SELM)
6500000000a01e7000-00000000a01f7000 00002aaaab5e8000 LOCKED autofree alloc once (SELM)
6600000000a01e6000-00000000a01e7000 DYNAMIC fence
6700000000a01e5000-00000000a01e6000 00002aaaab5e7000 HCPHYS 00000000c363c000 Core Code
6800000000a01e4000-00000000a01e5000 DYNAMIC fence
6900000000a01e3000-00000000a01e4000 00002aaaaab26000 HCPHYS 00000000619cf000 GIP
7000000000a01a2000-00000000a01e3000 00002aaaabf32000 LOCKED autofree alloc once (PGM_PHYS)
7100000000a016b000-00000000a01a2000 00002aaab233f000 LOCKED autofree alloc once (PGM_POOL)
7200000000a016a000-00000000a016b000 DYNAMIC fence
7300000000a0165000-00000000a016a000 DYNAMIC CR3 mapping
7400000000a0164000-00000000a0165000 DYNAMIC fence
7500000000a0024000-00000000a0164000 00002aaab215f000 LOCKED autofree Heap
7600000000a0023000-00000000a0024000 DYNAMIC fence
7700000000a0001000-00000000a0023000 00002aaab1d24000 LOCKED pages VM
7800000000a0000000-00000000a0001000 DYNAMIC fence
79 @endverbatim
80 *
81 *
82 * @section sec_mm_hyperheap Hypervisor Heap
83 *
84 * The heap is accessible from ring-3, ring-0 and the raw-mode context. That
85 * said, it's not necessarily mapped into ring-0 on if that's possible since we
86 * don't wish to waste kernel address space without a good reason.
87 *
88 * Allocations within the heap are always in the same relative position in all
89 * contexts, so, it's possible to use offset based linking. In fact, the heap is
90 * internally using offset based linked lists tracking heap blocks. We use
91 * offset linked AVL trees and lists in a lot of places where share structures
92 * between RC, R3 and R0, so this is a strict requirement of the heap. However
93 * this means that we cannot easily extend the heap since the extension won't
94 * necessarily be in the continuation of the current heap memory in all (or any)
95 * context.
96 *
97 * All allocations are tagged. Per tag allocation statistics will be maintaining
98 * and exposed thru STAM when VBOX_WITH_STATISTICS is defined.
99 *
100 *
101 * @section sec_mm_r3heap Tagged Ring-3 Heap
102 *
103 * The ring-3 heap is a wrapper around the RTMem API adding allocation
104 * statistics and automatic cleanup on VM destruction.
105 *
106 * Per tag allocation statistics will be maintaining and exposed thru STAM when
107 * VBOX_WITH_STATISTICS is defined.
108 *
109 *
110 * @section sec_mm_page Page Pool
111 *
112 * The MM manages a page pool from which other components can allocate locked,
113 * page aligned and page sized memory objects. The pool provides facilities to
114 * convert back and forth between (host) physical and virtual addresses (within
115 * the pool of course). Several specialized interfaces are provided for the most
116 * common allocations and conversions to save the caller from bothersome casting
117 * and extra parameter passing.
118 *
119 *
120 * @section sec_mm_locked Locked Process Memory
121 *
122 * MM manages the locked process memory. This is used for a bunch of things
123 * (count the LOCKED entries in the 'info hma' output found in @ref sec_mm_hma),
124 * but the main consumer of memory is currently for guest RAM. There is an
125 * ongoing rewrite that will move all the guest RAM allocation to PGM and
126 * GMM.
127 *
128 * The locking of memory is something doing in cooperation with the VirtualBox
129 * support driver, SUPDrv (aka. VBoxDrv), thru the support library API,
130 * SUPR3 (aka. SUPLib).
131 *
132 *
133 * @section sec_mm_phys Physical Guest Memory
134 *
135 * MM is currently managing the physical memory for the guest. It relies heavily
136 * on PGM for this. There is an ongoing rewrite that will move this to PGM. (The
137 * rewrite is driven by the need for more flexible guest ram allocation, but
138 * also motivated by the fact that MMPhys is just adding stupid bureaucracy and
139 * that MMR3PhysReserve is a totally weird artifact that must go away.)
140 *
141 */
142
143
144/*********************************************************************************************************************************
145* Header Files *
146*********************************************************************************************************************************/
147#define LOG_GROUP LOG_GROUP_MM
148#include <VBox/vmm/mm.h>
149#include <VBox/vmm/pgm.h>
150#include <VBox/vmm/cfgm.h>
151#include <VBox/vmm/ssm.h>
152#include <VBox/vmm/gmm.h>
153#include "MMInternal.h"
154#include <VBox/vmm/vm.h>
155#include <VBox/vmm/uvm.h>
156#include <VBox/err.h>
157#include <VBox/param.h>
158
159#include <VBox/log.h>
160#include <iprt/alloc.h>
161#include <iprt/assert.h>
162#include <iprt/string.h>
163
164
165/*********************************************************************************************************************************
166* Defined Constants And Macros *
167*********************************************************************************************************************************/
168/** The current saved state version of MM. */
169#define MM_SAVED_STATE_VERSION 2
170
171
172/*********************************************************************************************************************************
173* Internal Functions *
174*********************************************************************************************************************************/
175static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM);
176static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
177
178
179
180
181/**
182 * Initializes the MM members of the UVM.
183 *
184 * This is currently only the ring-3 heap.
185 *
186 * @returns VBox status code.
187 * @param pUVM Pointer to the user mode VM structure.
188 */
189VMMR3DECL(int) MMR3InitUVM(PUVM pUVM)
190{
191 /*
192 * Assert sizes and order.
193 */
194 AssertCompile(sizeof(pUVM->mm.s) <= sizeof(pUVM->mm.padding));
195 AssertRelease(sizeof(pUVM->mm.s) <= sizeof(pUVM->mm.padding));
196 Assert(!pUVM->mm.s.pHeap);
197
198 /*
199 * Init the heap.
200 */
201 int rc = mmR3HeapCreateU(pUVM, &pUVM->mm.s.pHeap);
202 if (RT_SUCCESS(rc))
203 {
204 rc = mmR3UkHeapCreateU(pUVM, &pUVM->mm.s.pUkHeap);
205 if (RT_SUCCESS(rc))
206 return VINF_SUCCESS;
207 mmR3HeapDestroy(pUVM->mm.s.pHeap);
208 pUVM->mm.s.pHeap = NULL;
209 }
210 return rc;
211}
212
213
214/**
215 * Initializes the MM.
216 *
217 * MM is managing the virtual address space (among other things) and
218 * setup the hypervisor memory area mapping in the VM structure and
219 * the hypervisor alloc-only-heap. Assuming the current init order
220 * and components the hypervisor memory area looks like this:
221 * -# VM Structure.
222 * -# Hypervisor alloc only heap (also call Hypervisor memory region).
223 * -# Core code.
224 *
225 * MM determines the virtual address of the hypervisor memory area by
226 * checking for location at previous run. If that property isn't available
227 * it will choose a default starting location, currently 0xa0000000.
228 *
229 * @returns VBox status code.
230 * @param pVM The cross context VM structure.
231 */
232VMMR3DECL(int) MMR3Init(PVM pVM)
233{
234 LogFlow(("MMR3Init\n"));
235
236 /*
237 * Assert alignment, sizes and order.
238 */
239 AssertRelease(!(RT_UOFFSETOF(VM, mm.s) & 31));
240 AssertRelease(sizeof(pVM->mm.s) <= sizeof(pVM->mm.padding));
241 AssertMsg(pVM->mm.s.offVM == 0, ("Already initialized!\n"));
242
243 /*
244 * Init the structure.
245 */
246 pVM->mm.s.offVM = RT_UOFFSETOF(VM, mm);
247 pVM->mm.s.offLookupHyper = NIL_OFFSET;
248
249 /*
250 * Init the page pool.
251 */
252 int rc = mmR3PagePoolInit(pVM);
253 if (RT_SUCCESS(rc))
254 {
255 /*
256 * Init the hypervisor related stuff.
257 */
258 rc = mmR3HyperInit(pVM);
259 if (RT_SUCCESS(rc))
260 {
261 /*
262 * Register the saved state data unit.
263 */
264 rc = SSMR3RegisterInternal(pVM, "mm", 1, MM_SAVED_STATE_VERSION, sizeof(uint32_t) * 2,
265 NULL, NULL, NULL,
266 NULL, mmR3Save, NULL,
267 NULL, mmR3Load, NULL);
268 if (RT_SUCCESS(rc))
269 {
270 /*
271 * Statistics.
272 */
273 STAM_REG(pVM, &pVM->mm.s.cBasePages, STAMTYPE_U64, "/MM/Reserved/cBasePages", STAMUNIT_PAGES, "Reserved number of base pages, ROM and Shadow ROM included.");
274 STAM_REG(pVM, &pVM->mm.s.cHandyPages, STAMTYPE_U32, "/MM/Reserved/cHandyPages", STAMUNIT_PAGES, "Reserved number of handy pages.");
275 STAM_REG(pVM, &pVM->mm.s.cShadowPages, STAMTYPE_U32, "/MM/Reserved/cShadowPages", STAMUNIT_PAGES, "Reserved number of shadow paging pages.");
276 STAM_REG(pVM, &pVM->mm.s.cFixedPages, STAMTYPE_U32, "/MM/Reserved/cFixedPages", STAMUNIT_PAGES, "Reserved number of fixed pages (MMIO2).");
277 STAM_REG(pVM, &pVM->mm.s.cbRamBase, STAMTYPE_U64, "/MM/cbRamBase", STAMUNIT_BYTES, "Size of the base RAM.");
278
279 return rc;
280 }
281
282 /* .... failure .... */
283 }
284 }
285 MMR3Term(pVM);
286 return rc;
287}
288
289
290/**
291 * Initializes the MM parts which depends on PGM being initialized.
292 *
293 * @returns VBox status code.
294 * @param pVM The cross context VM structure.
295 * @remark No cleanup necessary since MMR3Term() will be called on failure.
296 */
297VMMR3DECL(int) MMR3InitPaging(PVM pVM)
298{
299 LogFlow(("MMR3InitPaging:\n"));
300
301 /*
302 * Query the CFGM values.
303 */
304 int rc;
305 PCFGMNODE pMMCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "MM");
306 if (!pMMCfg)
307 {
308 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "MM", &pMMCfg);
309 AssertRCReturn(rc, rc);
310 }
311
312 /** @cfgm{/RamSize, uint64_t, 0, 16TB, 0}
313 * Specifies the size of the base RAM that is to be set up during
314 * VM initialization.
315 */
316 uint64_t cbRam;
317 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
318 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
319 cbRam = 0;
320 else
321 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc), rc);
322 AssertLogRelMsg(!(cbRam & ~X86_PTE_PAE_PG_MASK), ("%RGp X86_PTE_PAE_PG_MASK=%RX64\n", cbRam, X86_PTE_PAE_PG_MASK));
323 AssertLogRelMsgReturn(cbRam <= GMM_GCPHYS_LAST, ("cbRam=%RGp GMM_GCPHYS_LAST=%RX64\n", cbRam, GMM_GCPHYS_LAST), VERR_OUT_OF_RANGE);
324 cbRam &= X86_PTE_PAE_PG_MASK;
325 pVM->mm.s.cbRamBase = cbRam;
326
327 /** @cfgm{/RamHoleSize, uint32_t, 0, 4032MB, 512MB}
328 * Specifies the size of the memory hole. The memory hole is used
329 * to avoid mapping RAM to the range normally used for PCI memory regions.
330 * Must be aligned on a 4MB boundary. */
331 uint32_t cbRamHole;
332 rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
333 AssertLogRelMsgRCReturn(rc, ("Configuration error: Failed to query integer \"RamHoleSize\", rc=%Rrc.\n", rc), rc);
334 AssertLogRelMsgReturn(cbRamHole <= 4032U * _1M,
335 ("Configuration error: \"RamHoleSize\"=%#RX32 is too large.\n", cbRamHole), VERR_OUT_OF_RANGE);
336 AssertLogRelMsgReturn(cbRamHole > 16 * _1M,
337 ("Configuration error: \"RamHoleSize\"=%#RX32 is too large.\n", cbRamHole), VERR_OUT_OF_RANGE);
338 AssertLogRelMsgReturn(!(cbRamHole & (_4M - 1)),
339 ("Configuration error: \"RamHoleSize\"=%#RX32 is misaligned.\n", cbRamHole), VERR_OUT_OF_RANGE);
340 uint64_t const offRamHole = _4G - cbRamHole;
341 if (cbRam < offRamHole)
342 Log(("MM: %RU64 bytes of RAM\n", cbRam));
343 else
344 Log(("MM: %RU64 bytes of RAM with a hole at %RU64 up to 4GB.\n", cbRam, offRamHole));
345
346 /** @cfgm{/MM/Policy, string, no overcommitment}
347 * Specifies the policy to use when reserving memory for this VM. The recognized
348 * value is 'no overcommitment' (default). See GMMPOLICY.
349 */
350 GMMOCPOLICY enmOcPolicy;
351 char sz[64];
352 rc = CFGMR3QueryString(CFGMR3GetRoot(pVM), "Policy", sz, sizeof(sz));
353 if (RT_SUCCESS(rc))
354 {
355 if ( !RTStrICmp(sz, "no_oc")
356 || !RTStrICmp(sz, "no overcommitment"))
357 enmOcPolicy = GMMOCPOLICY_NO_OC;
358 else
359 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, "Unknown \"MM/Policy\" value \"%s\"", sz);
360 }
361 else if (rc == VERR_CFGM_VALUE_NOT_FOUND)
362 enmOcPolicy = GMMOCPOLICY_NO_OC;
363 else
364 AssertMsgFailedReturn(("Configuration error: Failed to query string \"MM/Policy\", rc=%Rrc.\n", rc), rc);
365
366 /** @cfgm{/MM/Priority, string, normal}
367 * Specifies the memory priority of this VM. The priority comes into play when the
368 * system is overcommitted and the VMs needs to be milked for memory. The recognized
369 * values are 'low', 'normal' (default) and 'high'. See GMMPRIORITY.
370 */
371 GMMPRIORITY enmPriority;
372 rc = CFGMR3QueryString(CFGMR3GetRoot(pVM), "Priority", sz, sizeof(sz));
373 if (RT_SUCCESS(rc))
374 {
375 if (!RTStrICmp(sz, "low"))
376 enmPriority = GMMPRIORITY_LOW;
377 else if (!RTStrICmp(sz, "normal"))
378 enmPriority = GMMPRIORITY_NORMAL;
379 else if (!RTStrICmp(sz, "high"))
380 enmPriority = GMMPRIORITY_HIGH;
381 else
382 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, "Unknown \"MM/Priority\" value \"%s\"", sz);
383 }
384 else if (rc == VERR_CFGM_VALUE_NOT_FOUND)
385 enmPriority = GMMPRIORITY_NORMAL;
386 else
387 AssertMsgFailedReturn(("Configuration error: Failed to query string \"MM/Priority\", rc=%Rrc.\n", rc), rc);
388
389 /*
390 * Make the initial memory reservation with GMM.
391 */
392 uint64_t cBasePages = (cbRam >> PAGE_SHIFT) + pVM->mm.s.cBasePages;
393 rc = GMMR3InitialReservation(pVM,
394 RT_MAX(cBasePages + pVM->mm.s.cHandyPages, 1),
395 RT_MAX(pVM->mm.s.cShadowPages, 1),
396 RT_MAX(pVM->mm.s.cFixedPages, 1),
397 enmOcPolicy,
398 enmPriority);
399 if (RT_FAILURE(rc))
400 {
401 if (rc == VERR_GMM_MEMORY_RESERVATION_DECLINED)
402 return VMSetError(pVM, rc, RT_SRC_POS,
403 N_("Insufficient free memory to start the VM (cbRam=%#RX64 enmOcPolicy=%d enmPriority=%d)"),
404 cbRam, enmOcPolicy, enmPriority);
405 return VMSetError(pVM, rc, RT_SRC_POS, "GMMR3InitialReservation(,%#RX64,0,0,%d,%d)",
406 cbRam >> PAGE_SHIFT, enmOcPolicy, enmPriority);
407 }
408
409 /*
410 * If RamSize is 0 we're done now.
411 */
412 if (cbRam < PAGE_SIZE)
413 {
414 Log(("MM: No RAM configured\n"));
415 return VINF_SUCCESS;
416 }
417
418 /*
419 * Setup the base ram (PGM).
420 */
421 pVM->mm.s.cbRamHole = cbRamHole;
422 if (cbRam > offRamHole)
423 {
424 pVM->mm.s.cbRamBelow4GB = offRamHole;
425 rc = PGMR3PhysRegisterRam(pVM, 0, offRamHole, "Base RAM");
426 if (RT_SUCCESS(rc))
427 {
428 pVM->mm.s.cbRamAbove4GB = cbRam - offRamHole;
429 rc = PGMR3PhysRegisterRam(pVM, _4G, cbRam - offRamHole, "Above 4GB Base RAM");
430 }
431 }
432 else
433 {
434 pVM->mm.s.cbRamBelow4GB = cbRam;
435 pVM->mm.s.cbRamAbove4GB = 0;
436 rc = PGMR3PhysRegisterRam(pVM, 0, cbRam, "Base RAM");
437 }
438
439 /*
440 * Enabled mmR3UpdateReservation here since we don't want the
441 * PGMR3PhysRegisterRam calls above mess things up.
442 */
443 pVM->mm.s.fDoneMMR3InitPaging = true;
444 AssertMsg(pVM->mm.s.cBasePages == cBasePages || RT_FAILURE(rc), ("%RX64 != %RX64\n", pVM->mm.s.cBasePages, cBasePages));
445
446 LogFlow(("MMR3InitPaging: returns %Rrc\n", rc));
447 return rc;
448}
449
450
451/**
452 * Terminates the MM.
453 *
454 * Termination means cleaning up and freeing all resources,
455 * the VM it self is at this point powered off or suspended.
456 *
457 * @returns VBox status code.
458 * @param pVM The cross context VM structure.
459 */
460VMMR3DECL(int) MMR3Term(PVM pVM)
461{
462 /*
463 * Destroy the page pool. (first as it used the hyper heap)
464 */
465 mmR3PagePoolTerm(pVM);
466
467 /* Clean up the hypervisor heap. */
468 mmR3HyperTerm(pVM);
469
470 /*
471 * Zero stuff to detect after termination use of the MM interface
472 */
473 pVM->mm.s.offLookupHyper = NIL_OFFSET;
474 pVM->mm.s.pHyperHeapR3 = NULL; /* freed above. */
475 pVM->mm.s.pHyperHeapR0 = NIL_RTR0PTR; /* freed above. */
476 pVM->mm.s.pHyperHeapRC = NIL_RTRCPTR; /* freed above. */
477 pVM->mm.s.offVM = 0; /* init assertion on this */
478
479 /*
480 * Destroy the User-kernel heap here since the support driver session
481 * may have been terminated by the time we get to MMR3TermUVM.
482 */
483 mmR3UkHeapDestroy(pVM->pUVM->mm.s.pUkHeap);
484 pVM->pUVM->mm.s.pUkHeap = NULL;
485
486 return VINF_SUCCESS;
487}
488
489
490/**
491 * Terminates the UVM part of MM.
492 *
493 * Termination means cleaning up and freeing all resources,
494 * the VM it self is at this point powered off or suspended.
495 *
496 * @returns VBox status code.
497 * @param pUVM Pointer to the user mode VM structure.
498 */
499VMMR3DECL(void) MMR3TermUVM(PUVM pUVM)
500{
501 /*
502 * Destroy the heaps.
503 */
504 if (pUVM->mm.s.pUkHeap)
505 {
506 mmR3UkHeapDestroy(pUVM->mm.s.pUkHeap);
507 pUVM->mm.s.pUkHeap = NULL;
508 }
509 mmR3HeapDestroy(pUVM->mm.s.pHeap);
510 pUVM->mm.s.pHeap = NULL;
511}
512
513
514/**
515 * Checks if the both VM and UVM parts of MM have been initialized.
516 *
517 * @returns true if initialized, false if not.
518 * @param pVM The cross context VM structure.
519 */
520VMMR3_INT_DECL(bool) MMR3IsInitialized(PVM pVM)
521{
522 return pVM->mm.s.pHyperHeapR3 != NULL;
523}
524
525
526/**
527 * Execute state save operation.
528 *
529 * @returns VBox status code.
530 * @param pVM The cross context VM structure.
531 * @param pSSM SSM operation handle.
532 */
533static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM)
534{
535 LogFlow(("mmR3Save:\n"));
536
537 /* (PGM saves the physical memory.) */
538 SSMR3PutU64(pSSM, pVM->mm.s.cBasePages);
539 return SSMR3PutU64(pSSM, pVM->mm.s.cbRamBase);
540}
541
542
543/**
544 * Execute state load operation.
545 *
546 * @returns VBox status code.
547 * @param pVM The cross context VM structure.
548 * @param pSSM SSM operation handle.
549 * @param uVersion Data layout version.
550 * @param uPass The data pass.
551 */
552static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
553{
554 LogFlow(("mmR3Load:\n"));
555 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
556
557 /*
558 * Validate version.
559 */
560 if ( SSM_VERSION_MAJOR_CHANGED(uVersion, MM_SAVED_STATE_VERSION)
561 || !uVersion)
562 {
563 AssertMsgFailed(("mmR3Load: Invalid version uVersion=%d!\n", uVersion));
564 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
565 }
566
567 /*
568 * Check the cBasePages and cbRamBase values.
569 */
570 int rc;
571 RTUINT cb1;
572
573 /* cBasePages (ignored) */
574 uint64_t cPages;
575 if (uVersion >= 2)
576 rc = SSMR3GetU64(pSSM, &cPages);
577 else
578 {
579 rc = SSMR3GetUInt(pSSM, &cb1);
580 cPages = cb1 >> PAGE_SHIFT;
581 }
582 if (RT_FAILURE(rc))
583 return rc;
584
585 /* cbRamBase */
586 uint64_t cb;
587 if (uVersion != 1)
588 rc = SSMR3GetU64(pSSM, &cb);
589 else
590 {
591 rc = SSMR3GetUInt(pSSM, &cb1);
592 cb = cb1;
593 }
594 if (RT_FAILURE(rc))
595 return rc;
596 AssertLogRelMsgReturn(cb == pVM->mm.s.cbRamBase,
597 ("Memory configuration has changed. cbRamBase=%#RX64 save=%#RX64\n", pVM->mm.s.cbRamBase, cb),
598 VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH);
599
600 /* (PGM restores the physical memory.) */
601 return rc;
602}
603
604
605/**
606 * Updates GMM with memory reservation changes.
607 *
608 * Called when MM::cbRamRegistered, MM::cShadowPages or MM::cFixedPages changes.
609 *
610 * @returns VBox status code - see GMMR0UpdateReservation.
611 * @param pVM The cross context VM structure.
612 */
613int mmR3UpdateReservation(PVM pVM)
614{
615 VM_ASSERT_EMT(pVM);
616 if (pVM->mm.s.fDoneMMR3InitPaging)
617 return GMMR3UpdateReservation(pVM,
618 RT_MAX(pVM->mm.s.cBasePages + pVM->mm.s.cHandyPages, 1),
619 RT_MAX(pVM->mm.s.cShadowPages, 1),
620 RT_MAX(pVM->mm.s.cFixedPages, 1));
621 return VINF_SUCCESS;
622}
623
624
625/**
626 * Interface for PGM to increase the reservation of RAM and ROM pages.
627 *
628 * This can be called before MMR3InitPaging.
629 *
630 * @returns VBox status code. Will set VM error on failure.
631 * @param pVM The cross context VM structure.
632 * @param cAddBasePages The number of pages to add.
633 */
634VMMR3DECL(int) MMR3IncreaseBaseReservation(PVM pVM, uint64_t cAddBasePages)
635{
636 uint64_t cOld = pVM->mm.s.cBasePages;
637 pVM->mm.s.cBasePages += cAddBasePages;
638 LogFlow(("MMR3IncreaseBaseReservation: +%RU64 (%RU64 -> %RU64\n", cAddBasePages, cOld, pVM->mm.s.cBasePages));
639 int rc = mmR3UpdateReservation(pVM);
640 if (RT_FAILURE(rc))
641 {
642 VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserved physical memory for the RAM (%#RX64 -> %#RX64 + %#RX32)"),
643 cOld, pVM->mm.s.cBasePages, pVM->mm.s.cHandyPages);
644 pVM->mm.s.cBasePages = cOld;
645 }
646 return rc;
647}
648
649
650/**
651 * Interface for PGM to make reservations for handy pages in addition to the
652 * base memory.
653 *
654 * This can be called before MMR3InitPaging.
655 *
656 * @returns VBox status code. Will set VM error on failure.
657 * @param pVM The cross context VM structure.
658 * @param cHandyPages The number of handy pages.
659 */
660VMMR3DECL(int) MMR3ReserveHandyPages(PVM pVM, uint32_t cHandyPages)
661{
662 AssertReturn(!pVM->mm.s.cHandyPages, VERR_WRONG_ORDER);
663
664 pVM->mm.s.cHandyPages = cHandyPages;
665 LogFlow(("MMR3ReserveHandyPages: %RU32 (base %RU64)\n", pVM->mm.s.cHandyPages, pVM->mm.s.cBasePages));
666 int rc = mmR3UpdateReservation(pVM);
667 if (RT_FAILURE(rc))
668 {
669 VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserved physical memory for the RAM (%#RX64 + %#RX32)"),
670 pVM->mm.s.cBasePages, pVM->mm.s.cHandyPages);
671 pVM->mm.s.cHandyPages = 0;
672 }
673 return rc;
674}
675
676
677/**
678 * Interface for PGM to adjust the reservation of fixed pages.
679 *
680 * This can be called before MMR3InitPaging.
681 *
682 * @returns VBox status code. Will set VM error on failure.
683 * @param pVM The cross context VM structure.
684 * @param cDeltaFixedPages The number of pages to add (positive) or subtract (negative).
685 * @param pszDesc Some description associated with the reservation.
686 */
687VMMR3DECL(int) MMR3AdjustFixedReservation(PVM pVM, int32_t cDeltaFixedPages, const char *pszDesc)
688{
689 const uint32_t cOld = pVM->mm.s.cFixedPages;
690 pVM->mm.s.cFixedPages += cDeltaFixedPages;
691 LogFlow(("MMR3AdjustFixedReservation: %d (%u -> %u)\n", cDeltaFixedPages, cOld, pVM->mm.s.cFixedPages));
692 int rc = mmR3UpdateReservation(pVM);
693 if (RT_FAILURE(rc))
694 {
695 VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserve physical memory (%#x -> %#x; %s)"),
696 cOld, pVM->mm.s.cFixedPages, pszDesc);
697 pVM->mm.s.cFixedPages = cOld;
698 }
699 return rc;
700}
701
702
703/**
704 * Interface for PGM to update the reservation of shadow pages.
705 *
706 * This can be called before MMR3InitPaging.
707 *
708 * @returns VBox status code. Will set VM error on failure.
709 * @param pVM The cross context VM structure.
710 * @param cShadowPages The new page count.
711 */
712VMMR3DECL(int) MMR3UpdateShadowReservation(PVM pVM, uint32_t cShadowPages)
713{
714 const uint32_t cOld = pVM->mm.s.cShadowPages;
715 pVM->mm.s.cShadowPages = cShadowPages;
716 LogFlow(("MMR3UpdateShadowReservation: %u -> %u\n", cOld, pVM->mm.s.cShadowPages));
717 int rc = mmR3UpdateReservation(pVM);
718 if (RT_FAILURE(rc))
719 {
720 VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserve physical memory for shadow page tables (%#x -> %#x)"), cOld, pVM->mm.s.cShadowPages);
721 pVM->mm.s.cShadowPages = cOld;
722 }
723 return rc;
724}
725
726
727/**
728 * Convert HC Physical address to HC Virtual address.
729 *
730 * @returns VBox status code.
731 * @param pVM The cross context VM structure.
732 * @param HCPhys The host context virtual address.
733 * @param ppv Where to store the resulting address.
734 * @thread The Emulation Thread.
735 *
736 * @remarks Avoid whenever possible.
737 * Intended for the debugger facility only.
738 * @todo Rename to indicate the special usage.
739 */
740VMMR3DECL(int) MMR3HCPhys2HCVirt(PVM pVM, RTHCPHYS HCPhys, void **ppv)
741{
742 /*
743 * Try page tables.
744 */
745 int rc = MMPagePhys2PageTry(pVM, HCPhys, ppv);
746 if (RT_SUCCESS(rc))
747 return rc;
748
749 /*
750 * Iterate thru the lookup records for HMA.
751 */
752 uint32_t off = HCPhys & PAGE_OFFSET_MASK;
753 HCPhys &= X86_PTE_PAE_PG_MASK;
754 PMMLOOKUPHYPER pCur = (PMMLOOKUPHYPER)((uint8_t *)pVM->mm.s.CTX_SUFF(pHyperHeap) + pVM->mm.s.offLookupHyper);
755 for (;;)
756 {
757 switch (pCur->enmType)
758 {
759 case MMLOOKUPHYPERTYPE_LOCKED:
760 {
761 PCRTHCPHYS paHCPhysPages = pCur->u.Locked.paHCPhysPages;
762 size_t iPage = pCur->cb >> PAGE_SHIFT;
763 while (iPage-- > 0)
764 if (paHCPhysPages[iPage] == HCPhys)
765 {
766 *ppv = (char *)pCur->u.Locked.pvR3 + (iPage << PAGE_SHIFT) + off;
767 return VINF_SUCCESS;
768 }
769 break;
770 }
771
772 case MMLOOKUPHYPERTYPE_HCPHYS:
773 if (pCur->u.HCPhys.HCPhys - HCPhys < pCur->cb)
774 {
775 *ppv = (uint8_t *)pCur->u.HCPhys.pvR3 + pCur->u.HCPhys.HCPhys - HCPhys + off;
776 return VINF_SUCCESS;
777 }
778 break;
779
780 case MMLOOKUPHYPERTYPE_GCPHYS: /* (for now we'll not allow these kind of conversions) */
781 case MMLOOKUPHYPERTYPE_MMIO2:
782 case MMLOOKUPHYPERTYPE_DYNAMIC:
783 break;
784
785 default:
786 AssertMsgFailed(("enmType=%d\n", pCur->enmType));
787 break;
788 }
789
790 /* next */
791 if (pCur->offNext == (int32_t)NIL_OFFSET)
792 break;
793 pCur = (PMMLOOKUPHYPER)((uint8_t *)pCur + pCur->offNext);
794 }
795 /* give up */
796 return VERR_INVALID_POINTER;
797}
798
799
800
801/**
802 * Get the size of the base RAM.
803 * This usually means the size of the first contiguous block of physical memory.
804 *
805 * @returns The guest base RAM size.
806 * @param pVM The cross context VM structure.
807 * @thread Any.
808 *
809 * @deprecated
810 */
811VMMR3DECL(uint64_t) MMR3PhysGetRamSize(PVM pVM)
812{
813 return pVM->mm.s.cbRamBase;
814}
815
816
817/**
818 * Get the size of RAM below 4GB (starts at address 0x00000000).
819 *
820 * @returns The amount of RAM below 4GB in bytes.
821 * @param pVM The cross context VM structure.
822 * @thread Any.
823 */
824VMMR3DECL(uint32_t) MMR3PhysGetRamSizeBelow4GB(PVM pVM)
825{
826 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
827 return pVM->mm.s.cbRamBelow4GB;
828}
829
830
831/**
832 * Get the size of RAM above 4GB (starts at address 0x000100000000).
833 *
834 * @returns The amount of RAM above 4GB in bytes.
835 * @param pVM The cross context VM structure.
836 * @thread Any.
837 */
838VMMR3DECL(uint64_t) MMR3PhysGetRamSizeAbove4GB(PVM pVM)
839{
840 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
841 return pVM->mm.s.cbRamAbove4GB;
842}
843
844
845/**
846 * Get the size of the RAM hole below 4GB.
847 *
848 * @returns Size in bytes.
849 * @param pVM The cross context VM structure.
850 * @thread Any.
851 */
852VMMR3DECL(uint32_t) MMR3PhysGet4GBRamHoleSize(PVM pVM)
853{
854 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
855 return pVM->mm.s.cbRamHole;
856}
857
Note: See TracBrowser for help on using the repository browser.

© 2023 Oracle
ContactPrivacy policyTerms of Use