VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 100940

Last change on this file since 100940 was 100940, checked in by vboxsync, 14 months ago

VMM: Make CPUMIsGuestIn64Bit[Code|CodeEx|Slow] use a const CPUM context parameter.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 253.2 KB
Line 
1/* $Id: CPUM.cpp 100940 2023-08-22 14:29:29Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28/** @page pg_cpum CPUM - CPU Monitor / Manager
29 *
30 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
31 * also responsible for lazy FPU handling and some of the context loading
32 * in raw mode.
33 *
34 * There are three CPU contexts, the most important one is the guest one (GC).
35 * When running in raw-mode (RC) there is a special hyper context for the VMM
36 * part that floats around inside the guest address space. When running in
37 * raw-mode, CPUM also maintains a host context for saving and restoring
38 * registers across world switches. This latter is done in cooperation with the
39 * world switcher (@see pg_vmm).
40 *
41 * @see grp_cpum
42 *
43 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
44 *
45 * TODO: proper write up, currently just some notes.
46 *
47 * The ring-0 FPU handling per OS:
48 *
49 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
50 * convention (Visual C++ doesn't seem to have a way to disable
51 * generating such code either), so CR0.TS/EM are always zero from what I
52 * can tell. We are also forced to always load/save the guest XMM0-XMM15
53 * registers when entering/leaving guest context. Interrupt handlers
54 * using FPU/SSE will offically have call save and restore functions
55 * exported by the kernel, if the really really have to use the state.
56 *
57 * - 32-bit windows does lazy FPU handling, I think, probably including
58 * lazying saving. The Windows Internals book states that it's a bad
59 * idea to use the FPU in kernel space. However, it looks like it will
60 * restore the FPU state of the current thread in case of a kernel \#NM.
61 * Interrupt handlers should be same as for 64-bit.
62 *
63 * - Darwin allows taking \#NM in kernel space, restoring current thread's
64 * state if I read the code correctly. It saves the FPU state of the
65 * outgoing thread, and uses CR0.TS to lazily load the state of the
66 * incoming one. No idea yet how the FPU is treated by interrupt
67 * handlers, i.e. whether they are allowed to disable the state or
68 * something.
69 *
70 * - Linux also allows \#NM in kernel space (don't know since when), and
71 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
72 * loads the incoming unless configured to agressivly load it. Interrupt
73 * handlers can ask whether they're allowed to use the FPU, and may
74 * freely trash the state if Linux thinks it has saved the thread's state
75 * already. This is a problem.
76 *
77 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
78 * context. When switching threads, the kernel will save the state of
79 * the outgoing thread and lazy load the incoming one using CR0.TS.
80 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
81 * to do stuff, HAT are among the users. The routines there will
82 * manually clear CR0.TS and save the XMM registers they use only if
83 * CR0.TS was zero upon entry. They will skip it when not, because as
84 * mentioned above, the FPU state is saved when switching away from a
85 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
86 * preserve. This is a problem if we restore CR0.TS to 1 after loading
87 * the guest state.
88 *
89 * - FreeBSD - no idea yet.
90 *
91 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
92 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
93 * FPU states.
94 *
95 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
96 * saving and restoring the host and guest states. The motivation for this
97 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
98 *
99 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
100 * state and only restore it once we've restore the host FPU state. This has the
101 * accidental side effect of triggering Solaris to preserve XMM registers in
102 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
103 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
104 *
105 *
106 * @section sec_cpum_logging Logging Level Assignments.
107 *
108 * Following log level assignments:
109 * - Log6 is used for FPU state management.
110 * - Log7 is used for FPU state actualization.
111 *
112 */
113
114
115/*********************************************************************************************************************************
116* Header Files *
117*********************************************************************************************************************************/
118#define LOG_GROUP LOG_GROUP_CPUM
119#define CPUM_WITH_NONCONST_HOST_FEATURES
120#include <VBox/vmm/cpum.h>
121#include <VBox/vmm/cpumdis.h>
122#include <VBox/vmm/cpumctx-v1_6.h>
123#include <VBox/vmm/pgm.h>
124#include <VBox/vmm/apic.h>
125#include <VBox/vmm/mm.h>
126#include <VBox/vmm/em.h>
127#include <VBox/vmm/iem.h>
128#include <VBox/vmm/selm.h>
129#include <VBox/vmm/dbgf.h>
130#include <VBox/vmm/hm.h>
131#include <VBox/vmm/hmvmxinline.h>
132#include <VBox/vmm/ssm.h>
133#include "CPUMInternal.h"
134#include <VBox/vmm/vm.h>
135
136#include <VBox/param.h>
137#include <VBox/dis.h>
138#include <VBox/err.h>
139#include <VBox/log.h>
140#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
141# include <iprt/asm-amd64-x86.h>
142#endif
143#include <iprt/assert.h>
144#include <iprt/cpuset.h>
145#include <iprt/mem.h>
146#include <iprt/mp.h>
147#include <iprt/rand.h>
148#include <iprt/string.h>
149
150
151/*********************************************************************************************************************************
152* Defined Constants And Macros *
153*********************************************************************************************************************************/
154/**
155 * This was used in the saved state up to the early life of version 14.
156 *
157 * It indicates that we may have some out-of-sync hidden segement registers.
158 * It is only relevant for raw-mode.
159 */
160#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
161
162
163/** For saved state only: Block injection of non-maskable interrupts to the guest.
164 * @note This flag was moved to CPUMCTX::eflags.uBoth in v7.0.4. */
165#define CPUM_OLD_VMCPU_FF_BLOCK_NMIS RT_BIT_64(25)
166
167
168/*********************************************************************************************************************************
169* Structures and Typedefs *
170*********************************************************************************************************************************/
171
172/**
173 * What kind of cpu info dump to perform.
174 */
175typedef enum CPUMDUMPTYPE
176{
177 CPUMDUMPTYPE_TERSE,
178 CPUMDUMPTYPE_DEFAULT,
179 CPUMDUMPTYPE_VERBOSE
180} CPUMDUMPTYPE;
181/** Pointer to a cpu info dump type. */
182typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
183
184
185/*********************************************************************************************************************************
186* Internal Functions *
187*********************************************************************************************************************************/
188static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
189static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
190static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
191static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
192static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
193static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
194static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
195static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
196static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
197static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
198static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
199
200
201/*********************************************************************************************************************************
202* Global Variables *
203*********************************************************************************************************************************/
204#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
205/** Host CPU features. */
206DECL_HIDDEN_DATA(CPUHOSTFEATURES) g_CpumHostFeatures;
207#endif
208
209/** Saved state field descriptors for CPUMCTX. */
210static const SSMFIELD g_aCpumCtxFields[] =
211{
212 SSMFIELD_ENTRY( CPUMCTX, rdi),
213 SSMFIELD_ENTRY( CPUMCTX, rsi),
214 SSMFIELD_ENTRY( CPUMCTX, rbp),
215 SSMFIELD_ENTRY( CPUMCTX, rax),
216 SSMFIELD_ENTRY( CPUMCTX, rbx),
217 SSMFIELD_ENTRY( CPUMCTX, rdx),
218 SSMFIELD_ENTRY( CPUMCTX, rcx),
219 SSMFIELD_ENTRY( CPUMCTX, rsp),
220 SSMFIELD_ENTRY( CPUMCTX, rflags),
221 SSMFIELD_ENTRY( CPUMCTX, rip),
222 SSMFIELD_ENTRY( CPUMCTX, r8),
223 SSMFIELD_ENTRY( CPUMCTX, r9),
224 SSMFIELD_ENTRY( CPUMCTX, r10),
225 SSMFIELD_ENTRY( CPUMCTX, r11),
226 SSMFIELD_ENTRY( CPUMCTX, r12),
227 SSMFIELD_ENTRY( CPUMCTX, r13),
228 SSMFIELD_ENTRY( CPUMCTX, r14),
229 SSMFIELD_ENTRY( CPUMCTX, r15),
230 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
231 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
232 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
233 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
234 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
235 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
236 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
237 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
238 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
239 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
240 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
241 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
242 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
243 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
244 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
245 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
246 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
247 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
248 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
249 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
250 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
251 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
252 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
253 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
254 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
255 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
256 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
257 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
258 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
259 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
260 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
261 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
262 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
263 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
264 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
265 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
266 SSMFIELD_ENTRY( CPUMCTX, cr0),
267 SSMFIELD_ENTRY( CPUMCTX, cr2),
268 SSMFIELD_ENTRY( CPUMCTX, cr3),
269 SSMFIELD_ENTRY( CPUMCTX, cr4),
270 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
271 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
272 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
273 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
274 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
275 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
276 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
277 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
278 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
279 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
280 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
281 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
282 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
283 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
284 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
285 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
286 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
287 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
288 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
289 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
290 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
291 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
292 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
293 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
294 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
295 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
296 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
297 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
298 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
299 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
300 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
301 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
302 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
303 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
304 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
305 SSMFIELD_ENTRY_TERM()
306};
307
308/** Saved state field descriptors for SVM nested hardware-virtualization
309 * Host State. */
310static const SSMFIELD g_aSvmHwvirtHostState[] =
311{
312 SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
313 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
314 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
315 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
316 SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
317 SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
318 SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
319 SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
320 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
321 SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
322 SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
323 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
324 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
325 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
326 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
327 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
328 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
329 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
330 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
331 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
332 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
333 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
334 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
335 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
336 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
337 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
338 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
339 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
340 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
341 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
342 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
343 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
344 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
345 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
346 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
347 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
348 SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
349 SSMFIELD_ENTRY_TERM()
350};
351
352/** Saved state field descriptors for VMX nested hardware-virtualization
353 * VMCS. */
354static const SSMFIELD g_aVmxHwvirtVmcs[] =
355{
356 SSMFIELD_ENTRY( VMXVVMCS, u32VmcsRevId),
357 SSMFIELD_ENTRY( VMXVVMCS, enmVmxAbort),
358 SSMFIELD_ENTRY( VMXVVMCS, fVmcsState),
359 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au8Padding0),
360 SSMFIELD_ENTRY_VER( VMXVVMCS, u32RestoreProcCtls2, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_4),
361 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved0),
362
363 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, u16Reserved0),
364
365 SSMFIELD_ENTRY( VMXVVMCS, u32RoVmInstrError),
366 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitReason),
367 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntInfo),
368 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntErrCode),
369 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringInfo),
370 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringErrCode),
371 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrLen),
372 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrInfo),
373 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32RoReserved2),
374
375 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestPhysAddr),
376 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved1),
377
378 SSMFIELD_ENTRY( VMXVVMCS, u64RoExitQual),
379 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRcx),
380 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRsi),
381 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRdi),
382 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRip),
383 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestLinearAddr),
384 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved5),
385
386 SSMFIELD_ENTRY( VMXVVMCS, u16Vpid),
387 SSMFIELD_ENTRY( VMXVVMCS, u16PostIntNotifyVector),
388 SSMFIELD_ENTRY( VMXVVMCS, u16EptpIndex),
389 SSMFIELD_ENTRY_VER( VMXVVMCS, u16HlatPrefixSize, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_3),
390 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved0),
391
392 SSMFIELD_ENTRY( VMXVVMCS, u32PinCtls),
393 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls),
394 SSMFIELD_ENTRY( VMXVVMCS, u32XcptBitmap),
395 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMask),
396 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMatch),
397 SSMFIELD_ENTRY( VMXVVMCS, u32Cr3TargetCount),
398 SSMFIELD_ENTRY( VMXVVMCS, u32ExitCtls),
399 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrStoreCount),
400 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrLoadCount),
401 SSMFIELD_ENTRY( VMXVVMCS, u32EntryCtls),
402 SSMFIELD_ENTRY( VMXVVMCS, u32EntryMsrLoadCount),
403 SSMFIELD_ENTRY( VMXVVMCS, u32EntryIntInfo),
404 SSMFIELD_ENTRY( VMXVVMCS, u32EntryXcptErrCode),
405 SSMFIELD_ENTRY( VMXVVMCS, u32EntryInstrLen),
406 SSMFIELD_ENTRY( VMXVVMCS, u32TprThreshold),
407 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls2),
408 SSMFIELD_ENTRY( VMXVVMCS, u32PleGap),
409 SSMFIELD_ENTRY( VMXVVMCS, u32PleWindow),
410 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved1),
411
412 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapA),
413 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapB),
414 SSMFIELD_ENTRY( VMXVVMCS, u64AddrMsrBitmap),
415 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrStore),
416 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrLoad),
417 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEntryMsrLoad),
418 SSMFIELD_ENTRY( VMXVVMCS, u64ExecVmcsPtr),
419 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPml),
420 SSMFIELD_ENTRY( VMXVVMCS, u64TscOffset),
421 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVirtApic),
422 SSMFIELD_ENTRY( VMXVVMCS, u64AddrApicAccess),
423 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPostedIntDesc),
424 SSMFIELD_ENTRY( VMXVVMCS, u64VmFuncCtls),
425 SSMFIELD_ENTRY( VMXVVMCS, u64EptPtr),
426 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap0),
427 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap1),
428 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap2),
429 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap3),
430 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEptpList),
431 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmreadBitmap),
432 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmwriteBitmap),
433 SSMFIELD_ENTRY( VMXVVMCS, u64AddrXcptVeInfo),
434 SSMFIELD_ENTRY( VMXVVMCS, u64XssExitBitmap),
435 SSMFIELD_ENTRY( VMXVVMCS, u64EnclsExitBitmap),
436 SSMFIELD_ENTRY( VMXVVMCS, u64SppTablePtr),
437 SSMFIELD_ENTRY( VMXVVMCS, u64TscMultiplier),
438 SSMFIELD_ENTRY_VER( VMXVVMCS, u64ProcCtls3, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
439 SSMFIELD_ENTRY_VER( VMXVVMCS, u64EnclvExitBitmap, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
440 SSMFIELD_ENTRY_VER( VMXVVMCS, u64PconfigExitBitmap, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_3),
441 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HlatPtr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_3),
442 SSMFIELD_ENTRY_VER( VMXVVMCS, u64ExitCtls2, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_3),
443 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved0),
444
445 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0Mask),
446 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4Mask),
447 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0ReadShadow),
448 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4ReadShadow),
449 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target0),
450 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target1),
451 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target2),
452 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target3),
453 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved4),
454
455 SSMFIELD_ENTRY( VMXVVMCS, HostEs),
456 SSMFIELD_ENTRY( VMXVVMCS, HostCs),
457 SSMFIELD_ENTRY( VMXVVMCS, HostSs),
458 SSMFIELD_ENTRY( VMXVVMCS, HostDs),
459 SSMFIELD_ENTRY( VMXVVMCS, HostFs),
460 SSMFIELD_ENTRY( VMXVVMCS, HostGs),
461 SSMFIELD_ENTRY( VMXVVMCS, HostTr),
462 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved2),
463
464 SSMFIELD_ENTRY( VMXVVMCS, u32HostSysenterCs),
465 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved4),
466
467 SSMFIELD_ENTRY( VMXVVMCS, u64HostPatMsr),
468 SSMFIELD_ENTRY( VMXVVMCS, u64HostEferMsr),
469 SSMFIELD_ENTRY( VMXVVMCS, u64HostPerfGlobalCtlMsr),
470 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostPkrsMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
471 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved3),
472
473 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr0),
474 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr3),
475 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr4),
476 SSMFIELD_ENTRY( VMXVVMCS, u64HostFsBase),
477 SSMFIELD_ENTRY( VMXVVMCS, u64HostGsBase),
478 SSMFIELD_ENTRY( VMXVVMCS, u64HostTrBase),
479 SSMFIELD_ENTRY( VMXVVMCS, u64HostGdtrBase),
480 SSMFIELD_ENTRY( VMXVVMCS, u64HostIdtrBase),
481 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEsp),
482 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEip),
483 SSMFIELD_ENTRY( VMXVVMCS, u64HostRsp),
484 SSMFIELD_ENTRY( VMXVVMCS, u64HostRip),
485 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostSCetMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
486 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostSsp, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
487 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostIntrSspTableAddrMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
488 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved7),
489
490 SSMFIELD_ENTRY( VMXVVMCS, GuestEs),
491 SSMFIELD_ENTRY( VMXVVMCS, GuestCs),
492 SSMFIELD_ENTRY( VMXVVMCS, GuestSs),
493 SSMFIELD_ENTRY( VMXVVMCS, GuestDs),
494 SSMFIELD_ENTRY( VMXVVMCS, GuestFs),
495 SSMFIELD_ENTRY( VMXVVMCS, GuestGs),
496 SSMFIELD_ENTRY( VMXVVMCS, GuestLdtr),
497 SSMFIELD_ENTRY( VMXVVMCS, GuestTr),
498 SSMFIELD_ENTRY( VMXVVMCS, u16GuestIntStatus),
499 SSMFIELD_ENTRY( VMXVVMCS, u16PmlIndex),
500 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved1),
501
502 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsLimit),
503 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsLimit),
504 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsLimit),
505 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsLimit),
506 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsLimit),
507 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsLimit),
508 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrLimit),
509 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrLimit),
510 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGdtrLimit),
511 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIdtrLimit),
512 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsAttr),
513 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsAttr),
514 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsAttr),
515 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsAttr),
516 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsAttr),
517 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsAttr),
518 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrAttr),
519 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrAttr),
520 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIntrState),
521 SSMFIELD_ENTRY( VMXVVMCS, u32GuestActivityState),
522 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSmBase),
523 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSysenterCS),
524 SSMFIELD_ENTRY( VMXVVMCS, u32PreemptTimer),
525 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved3),
526
527 SSMFIELD_ENTRY( VMXVVMCS, u64VmcsLinkPtr),
528 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDebugCtlMsr),
529 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPatMsr),
530 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEferMsr),
531 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPerfGlobalCtlMsr),
532 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte0),
533 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte1),
534 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte2),
535 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte3),
536 SSMFIELD_ENTRY( VMXVVMCS, u64GuestBndcfgsMsr),
537 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRtitCtlMsr),
538 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestPkrsMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
539 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved2),
540
541 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr0),
542 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr3),
543 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr4),
544 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEsBase),
545 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCsBase),
546 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSsBase),
547 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDsBase),
548 SSMFIELD_ENTRY( VMXVVMCS, u64GuestFsBase),
549 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGsBase),
550 SSMFIELD_ENTRY( VMXVVMCS, u64GuestLdtrBase),
551 SSMFIELD_ENTRY( VMXVVMCS, u64GuestTrBase),
552 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGdtrBase),
553 SSMFIELD_ENTRY( VMXVVMCS, u64GuestIdtrBase),
554 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDr7),
555 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRsp),
556 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRip),
557 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRFlags),
558 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPendingDbgXcpts),
559 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEsp),
560 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEip),
561 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestSCetMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
562 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestSsp, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
563 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestIntrSspTableAddrMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
564 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved6),
565
566 SSMFIELD_ENTRY_TERM()
567};
568
569/** Saved state field descriptors for CPUMCTX. */
570static const SSMFIELD g_aCpumX87Fields[] =
571{
572 SSMFIELD_ENTRY( X86FXSTATE, FCW),
573 SSMFIELD_ENTRY( X86FXSTATE, FSW),
574 SSMFIELD_ENTRY( X86FXSTATE, FTW),
575 SSMFIELD_ENTRY( X86FXSTATE, FOP),
576 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
577 SSMFIELD_ENTRY( X86FXSTATE, CS),
578 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
579 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
580 SSMFIELD_ENTRY( X86FXSTATE, DS),
581 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
582 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
583 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
584 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
585 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
586 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
587 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
588 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
589 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
590 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
591 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
592 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
593 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
594 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
595 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
596 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
597 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
598 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
599 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
600 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
601 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
602 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
603 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
604 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
605 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
606 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
607 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
608 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
609 SSMFIELD_ENTRY_TERM()
610};
611
612/** Saved state field descriptors for X86XSAVEHDR. */
613static const SSMFIELD g_aCpumXSaveHdrFields[] =
614{
615 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
616 SSMFIELD_ENTRY_TERM()
617};
618
619/** Saved state field descriptors for X86XSAVEYMMHI. */
620static const SSMFIELD g_aCpumYmmHiFields[] =
621{
622 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
623 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
624 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
625 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
626 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
627 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
628 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
629 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
630 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
631 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
632 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
633 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
634 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
635 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
636 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
637 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
638 SSMFIELD_ENTRY_TERM()
639};
640
641/** Saved state field descriptors for X86XSAVEBNDREGS. */
642static const SSMFIELD g_aCpumBndRegsFields[] =
643{
644 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
645 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
646 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
647 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
648 SSMFIELD_ENTRY_TERM()
649};
650
651/** Saved state field descriptors for X86XSAVEBNDCFG. */
652static const SSMFIELD g_aCpumBndCfgFields[] =
653{
654 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
655 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
656 SSMFIELD_ENTRY_TERM()
657};
658
659#if 0 /** @todo */
660/** Saved state field descriptors for X86XSAVEOPMASK. */
661static const SSMFIELD g_aCpumOpmaskFields[] =
662{
663 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
664 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
665 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
666 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
667 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
668 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
669 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
670 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
671 SSMFIELD_ENTRY_TERM()
672};
673#endif
674
675/** Saved state field descriptors for X86XSAVEZMMHI256. */
676static const SSMFIELD g_aCpumZmmHi256Fields[] =
677{
678 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
679 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
680 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
681 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
682 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
683 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
684 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
685 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
686 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
687 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
688 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
689 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
690 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
691 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
692 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
693 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
694 SSMFIELD_ENTRY_TERM()
695};
696
697/** Saved state field descriptors for X86XSAVEZMM16HI. */
698static const SSMFIELD g_aCpumZmm16HiFields[] =
699{
700 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
701 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
702 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
703 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
704 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
705 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
706 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
707 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
708 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
709 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
710 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
711 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
712 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
713 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
714 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
715 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
716 SSMFIELD_ENTRY_TERM()
717};
718
719
720
721/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
722 * registeres changed. */
723static const SSMFIELD g_aCpumX87FieldsMem[] =
724{
725 SSMFIELD_ENTRY( X86FXSTATE, FCW),
726 SSMFIELD_ENTRY( X86FXSTATE, FSW),
727 SSMFIELD_ENTRY( X86FXSTATE, FTW),
728 SSMFIELD_ENTRY( X86FXSTATE, FOP),
729 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
730 SSMFIELD_ENTRY( X86FXSTATE, CS),
731 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
732 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
733 SSMFIELD_ENTRY( X86FXSTATE, DS),
734 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
735 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
736 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
737 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
738 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
739 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
740 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
741 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
742 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
743 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
744 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
745 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
746 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
747 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
748 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
749 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
750 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
751 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
752 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
753 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
754 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
755 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
756 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
757 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
758 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
759 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
760 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
761 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
762 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
763};
764
765/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
766 * registeres changed. */
767static const SSMFIELD g_aCpumCtxFieldsMem[] =
768{
769 SSMFIELD_ENTRY( CPUMCTX, rdi),
770 SSMFIELD_ENTRY( CPUMCTX, rsi),
771 SSMFIELD_ENTRY( CPUMCTX, rbp),
772 SSMFIELD_ENTRY( CPUMCTX, rax),
773 SSMFIELD_ENTRY( CPUMCTX, rbx),
774 SSMFIELD_ENTRY( CPUMCTX, rdx),
775 SSMFIELD_ENTRY( CPUMCTX, rcx),
776 SSMFIELD_ENTRY( CPUMCTX, rsp),
777 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
778 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
779 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
780 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
781 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
782 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
783 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
784 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
785 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
786 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
787 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
788 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
789 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
790 SSMFIELD_ENTRY( CPUMCTX, rflags),
791 SSMFIELD_ENTRY( CPUMCTX, rip),
792 SSMFIELD_ENTRY( CPUMCTX, r8),
793 SSMFIELD_ENTRY( CPUMCTX, r9),
794 SSMFIELD_ENTRY( CPUMCTX, r10),
795 SSMFIELD_ENTRY( CPUMCTX, r11),
796 SSMFIELD_ENTRY( CPUMCTX, r12),
797 SSMFIELD_ENTRY( CPUMCTX, r13),
798 SSMFIELD_ENTRY( CPUMCTX, r14),
799 SSMFIELD_ENTRY( CPUMCTX, r15),
800 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
801 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
802 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
803 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
804 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
805 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
806 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
807 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
808 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
809 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
810 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
811 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
812 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
813 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
814 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
815 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
816 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
817 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
818 SSMFIELD_ENTRY( CPUMCTX, cr0),
819 SSMFIELD_ENTRY( CPUMCTX, cr2),
820 SSMFIELD_ENTRY( CPUMCTX, cr3),
821 SSMFIELD_ENTRY( CPUMCTX, cr4),
822 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
823 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
824 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
825 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
826 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
827 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
828 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
829 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
830 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
831 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
832 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
833 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
834 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
835 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
836 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
837 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
838 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
839 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
840 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
841 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
842 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
843 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
844 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
845 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
846 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
847 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
848 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
849 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
850 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
851 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
852 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
853 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
854 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
855 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
856 SSMFIELD_ENTRY_TERM()
857};
858
859/** Saved state field descriptors for CPUMCTX_VER1_6. */
860static const SSMFIELD g_aCpumX87FieldsV16[] =
861{
862 SSMFIELD_ENTRY( X86FXSTATE, FCW),
863 SSMFIELD_ENTRY( X86FXSTATE, FSW),
864 SSMFIELD_ENTRY( X86FXSTATE, FTW),
865 SSMFIELD_ENTRY( X86FXSTATE, FOP),
866 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
867 SSMFIELD_ENTRY( X86FXSTATE, CS),
868 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
869 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
870 SSMFIELD_ENTRY( X86FXSTATE, DS),
871 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
872 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
873 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
874 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
875 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
876 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
877 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
878 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
879 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
880 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
881 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
882 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
883 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
884 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
885 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
886 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
887 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
888 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
889 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
890 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
891 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
892 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
893 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
894 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
895 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
896 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
897 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
898 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
899 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
900 SSMFIELD_ENTRY_TERM()
901};
902
903/** Saved state field descriptors for CPUMCTX_VER1_6. */
904static const SSMFIELD g_aCpumCtxFieldsV16[] =
905{
906 SSMFIELD_ENTRY( CPUMCTX, rdi),
907 SSMFIELD_ENTRY( CPUMCTX, rsi),
908 SSMFIELD_ENTRY( CPUMCTX, rbp),
909 SSMFIELD_ENTRY( CPUMCTX, rax),
910 SSMFIELD_ENTRY( CPUMCTX, rbx),
911 SSMFIELD_ENTRY( CPUMCTX, rdx),
912 SSMFIELD_ENTRY( CPUMCTX, rcx),
913 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
914 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
915 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
916 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
917 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
918 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
919 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
920 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
921 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
922 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
923 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
924 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
925 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
926 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
927 SSMFIELD_ENTRY( CPUMCTX, rflags),
928 SSMFIELD_ENTRY( CPUMCTX, rip),
929 SSMFIELD_ENTRY( CPUMCTX, r8),
930 SSMFIELD_ENTRY( CPUMCTX, r9),
931 SSMFIELD_ENTRY( CPUMCTX, r10),
932 SSMFIELD_ENTRY( CPUMCTX, r11),
933 SSMFIELD_ENTRY( CPUMCTX, r12),
934 SSMFIELD_ENTRY( CPUMCTX, r13),
935 SSMFIELD_ENTRY( CPUMCTX, r14),
936 SSMFIELD_ENTRY( CPUMCTX, r15),
937 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
938 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
939 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
940 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
941 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
942 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
943 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
944 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
945 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
946 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
947 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
948 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
949 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
950 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
951 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
952 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
953 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
954 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
955 SSMFIELD_ENTRY( CPUMCTX, cr0),
956 SSMFIELD_ENTRY( CPUMCTX, cr2),
957 SSMFIELD_ENTRY( CPUMCTX, cr3),
958 SSMFIELD_ENTRY( CPUMCTX, cr4),
959 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
960 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
961 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
962 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
963 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
964 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
965 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
966 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
967 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
968 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
969 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
970 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
971 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
972 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
973 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
974 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
975 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
976 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
977 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
978 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
979 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
980 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
981 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
982 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
983 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
984 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
985 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
986 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
987 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
988 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
989 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
990 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
991 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
992 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
993 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
994 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
995 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
996 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
997 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
998 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
999 SSMFIELD_ENTRY_TERM()
1000};
1001
1002
1003#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
1004/**
1005 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
1006 *
1007 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
1008 * (last instruction pointer, last data pointer, last opcode) except when the ES
1009 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
1010 * clear these registers there is potential, local FPU leakage from a process
1011 * using the FPU to another.
1012 *
1013 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
1014 *
1015 * @param pVM The cross context VM structure.
1016 */
1017static void cpumR3CheckLeakyFpu(PVM pVM)
1018{
1019 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
1020 uint32_t const u32Family = u32CpuVersion >> 8;
1021 if ( u32Family >= 6 /* K7 and higher */
1022 && (ASMIsAmdCpu() || ASMIsHygonCpu()) )
1023 {
1024 uint32_t cExt = ASMCpuId_EAX(0x80000000);
1025 if (RTX86IsValidExtRange(cExt))
1026 {
1027 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
1028 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
1029 {
1030 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1031 {
1032 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1033 pVCpu->cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
1034 }
1035 Log(("CPUM: Host CPU has leaky fxsave/fxrstor behaviour\n"));
1036 }
1037 }
1038 }
1039}
1040#endif
1041
1042
1043/**
1044 * Initialize the SVM hardware virtualization state.
1045 *
1046 * @param pVM The cross context VM structure.
1047 */
1048static void cpumR3InitSvmHwVirtState(PVM pVM)
1049{
1050 LogRel(("CPUM: AMD-V nested-guest init\n"));
1051 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1052 {
1053 PVMCPU pVCpu = pVM->apCpusR3[i];
1054 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1055
1056 /* Initialize that SVM hardware virtualization is available. */
1057 pCtx->hwvirt.enmHwvirt = CPUMHWVIRT_SVM;
1058
1059 AssertCompile(sizeof(pCtx->hwvirt.svm.Vmcb) == SVM_VMCB_PAGES * X86_PAGE_SIZE);
1060 AssertCompile(sizeof(pCtx->hwvirt.svm.abMsrBitmap) == SVM_MSRPM_PAGES * X86_PAGE_SIZE);
1061 AssertCompile(sizeof(pCtx->hwvirt.svm.abIoBitmap) == SVM_IOPM_PAGES * X86_PAGE_SIZE);
1062
1063 /* Initialize non-zero values. */
1064 pCtx->hwvirt.svm.GCPhysVmcb = NIL_RTGCPHYS;
1065 }
1066}
1067
1068
1069/**
1070 * Resets per-VCPU SVM hardware virtualization state.
1071 *
1072 * @param pVCpu The cross context virtual CPU structure.
1073 */
1074DECLINLINE(void) cpumR3ResetSvmHwVirtState(PVMCPU pVCpu)
1075{
1076 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1077 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_SVM);
1078
1079 RT_ZERO(pCtx->hwvirt.svm.Vmcb);
1080 RT_ZERO(pCtx->hwvirt.svm.HostState);
1081 RT_ZERO(pCtx->hwvirt.svm.abMsrBitmap);
1082 RT_ZERO(pCtx->hwvirt.svm.abIoBitmap);
1083
1084 pCtx->hwvirt.svm.uMsrHSavePa = 0;
1085 pCtx->hwvirt.svm.uPrevPauseTick = 0;
1086 pCtx->hwvirt.svm.GCPhysVmcb = NIL_RTGCPHYS;
1087 pCtx->hwvirt.svm.cPauseFilter = 0;
1088 pCtx->hwvirt.svm.cPauseFilterThreshold = 0;
1089 pCtx->hwvirt.svm.fInterceptEvents = false;
1090}
1091
1092
1093/**
1094 * Initializes the VMX hardware virtualization state.
1095 *
1096 * @param pVM The cross context VM structure.
1097 */
1098static void cpumR3InitVmxHwVirtState(PVM pVM)
1099{
1100 LogRel(("CPUM: VT-x nested-guest init\n"));
1101 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1102 {
1103 PVMCPU pVCpu = pVM->apCpusR3[i];
1104 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1105
1106 /* Initialize that VMX hardware virtualization is available. */
1107 pCtx->hwvirt.enmHwvirt = CPUMHWVIRT_VMX;
1108
1109 AssertCompile(sizeof(pCtx->hwvirt.vmx.Vmcs) == VMX_V_VMCS_PAGES * X86_PAGE_SIZE);
1110 AssertCompile(sizeof(pCtx->hwvirt.vmx.Vmcs) == VMX_V_VMCS_SIZE);
1111 AssertCompile(sizeof(pCtx->hwvirt.vmx.ShadowVmcs) == VMX_V_SHADOW_VMCS_PAGES * X86_PAGE_SIZE);
1112 AssertCompile(sizeof(pCtx->hwvirt.vmx.ShadowVmcs) == VMX_V_SHADOW_VMCS_SIZE);
1113 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmreadBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_PAGES * X86_PAGE_SIZE);
1114 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmreadBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1115 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmwriteBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_PAGES * X86_PAGE_SIZE);
1116 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmwriteBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1117 AssertCompile(sizeof(pCtx->hwvirt.vmx.aEntryMsrLoadArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE);
1118 AssertCompile(sizeof(pCtx->hwvirt.vmx.aEntryMsrLoadArea) == VMX_V_AUTOMSR_AREA_SIZE);
1119 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrStoreArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE);
1120 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrStoreArea) == VMX_V_AUTOMSR_AREA_SIZE);
1121 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrLoadArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE);
1122 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrLoadArea) == VMX_V_AUTOMSR_AREA_SIZE);
1123 AssertCompile(sizeof(pCtx->hwvirt.vmx.abMsrBitmap) == VMX_V_MSR_BITMAP_PAGES * X86_PAGE_SIZE);
1124 AssertCompile(sizeof(pCtx->hwvirt.vmx.abMsrBitmap) == VMX_V_MSR_BITMAP_SIZE);
1125 AssertCompile(sizeof(pCtx->hwvirt.vmx.abIoBitmap) == (VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES) * X86_PAGE_SIZE);
1126 AssertCompile(sizeof(pCtx->hwvirt.vmx.abIoBitmap) == VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
1127
1128 /* Initialize non-zero values. */
1129 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1130 pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS;
1131 pCtx->hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS;
1132 }
1133}
1134
1135
1136/**
1137 * Resets per-VCPU VMX hardware virtualization state.
1138 *
1139 * @param pVCpu The cross context virtual CPU structure.
1140 */
1141DECLINLINE(void) cpumR3ResetVmxHwVirtState(PVMCPU pVCpu)
1142{
1143 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1144 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_VMX);
1145
1146 RT_ZERO(pCtx->hwvirt.vmx.Vmcs);
1147 RT_ZERO(pCtx->hwvirt.vmx.ShadowVmcs);
1148 RT_ZERO(pCtx->hwvirt.vmx.abVmreadBitmap);
1149 RT_ZERO(pCtx->hwvirt.vmx.abVmwriteBitmap);
1150 RT_ZERO(pCtx->hwvirt.vmx.aEntryMsrLoadArea);
1151 RT_ZERO(pCtx->hwvirt.vmx.aExitMsrStoreArea);
1152 RT_ZERO(pCtx->hwvirt.vmx.aExitMsrLoadArea);
1153 RT_ZERO(pCtx->hwvirt.vmx.abMsrBitmap);
1154 RT_ZERO(pCtx->hwvirt.vmx.abIoBitmap);
1155
1156 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1157 pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS;
1158 pCtx->hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS;
1159 pCtx->hwvirt.vmx.fInVmxRootMode = false;
1160 pCtx->hwvirt.vmx.fInVmxNonRootMode = false;
1161 /* Don't reset diagnostics here. */
1162
1163 pCtx->hwvirt.vmx.fInterceptEvents = false;
1164 pCtx->hwvirt.vmx.fNmiUnblockingIret = false;
1165 pCtx->hwvirt.vmx.uFirstPauseLoopTick = 0;
1166 pCtx->hwvirt.vmx.uPrevPauseTick = 0;
1167 pCtx->hwvirt.vmx.uEntryTick = 0;
1168 pCtx->hwvirt.vmx.offVirtApicWrite = 0;
1169 pCtx->hwvirt.vmx.fVirtNmiBlocking = false;
1170
1171 /* Stop any VMX-preemption timer. */
1172 CPUMStopGuestVmxPremptTimer(pVCpu);
1173
1174 /* Clear all nested-guest FFs. */
1175 VMCPU_FF_CLEAR_MASK(pVCpu, VMCPU_FF_VMX_ALL_MASK);
1176}
1177
1178
1179/**
1180 * Displays the host and guest VMX features.
1181 *
1182 * @param pVM The cross context VM structure.
1183 * @param pHlp The info helper functions.
1184 * @param pszArgs "terse", "default" or "verbose".
1185 */
1186static DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1187{
1188 RT_NOREF(pszArgs);
1189 PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures;
1190 PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
1191 if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL
1192 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA
1193 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_SHANGHAI)
1194 {
1195#define VMXFEATDUMP(a_szDesc, a_Var) \
1196 pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var)
1197
1198 pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n");
1199 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
1200 VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx);
1201 /* Basic. */
1202 VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo);
1203
1204 /* Pin-based controls. */
1205 VMXFEATDUMP("ExtIntExit - External interrupt exiting ", fVmxExtIntExit);
1206 VMXFEATDUMP("NmiExit - NMI exiting ", fVmxNmiExit);
1207 VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi);
1208 VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer);
1209 VMXFEATDUMP("PostedInt - Posted interrupts ", fVmxPostedInt);
1210
1211 /* Processor-based controls. */
1212 VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit);
1213 VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting);
1214 VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit);
1215 VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit);
1216 VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit);
1217 VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit);
1218 VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit);
1219 VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit);
1220 VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit);
1221 VMXFEATDUMP("TertiaryExecCtls - Activate tertiary controls ", fVmxTertiaryExecCtls);
1222 VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit);
1223 VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit);
1224 VMXFEATDUMP("UseTprShadow - Use TPR shadow ", fVmxUseTprShadow);
1225 VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit);
1226 VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit);
1227 VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit);
1228 VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps);
1229 VMXFEATDUMP("MonitorTrapFlag - Monitor Trap Flag ", fVmxMonitorTrapFlag);
1230 VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps);
1231 VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit);
1232 VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit);
1233 VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls);
1234
1235 /* Secondary processor-based controls. */
1236 VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess);
1237 VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt);
1238 VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit);
1239 VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp);
1240 VMXFEATDUMP("VirtX2ApicMode - Virtualize-x2APIC mode ", fVmxVirtX2ApicMode);
1241 VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid);
1242 VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit);
1243 VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest);
1244 VMXFEATDUMP("ApicRegVirt - APIC-register virtualization ", fVmxApicRegVirt);
1245 VMXFEATDUMP("VirtIntDelivery - Virtual-interrupt delivery ", fVmxVirtIntDelivery);
1246 VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit);
1247 VMXFEATDUMP("RdrandExit - RDRAND exiting ", fVmxRdrandExit);
1248 VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid);
1249 VMXFEATDUMP("VmFuncs - Enable VM Functions ", fVmxVmFunc);
1250 VMXFEATDUMP("VmcsShadowing - VMCS shadowing ", fVmxVmcsShadowing);
1251 VMXFEATDUMP("RdseedExiting - RDSEED exiting ", fVmxRdseedExit);
1252 VMXFEATDUMP("PML - Page-Modification Log (PML) ", fVmxPml);
1253 VMXFEATDUMP("EptVe - EPT violations can cause #VE ", fVmxEptXcptVe);
1254 VMXFEATDUMP("ConcealVmxFromPt - Conceal VMX from Processor Trace ", fVmxConcealVmxFromPt);
1255 VMXFEATDUMP("XsavesXRstors - Enable XSAVES/XRSTORS ", fVmxXsavesXrstors);
1256 VMXFEATDUMP("ModeBasedExecuteEpt - Mode-based execute permissions ", fVmxModeBasedExecuteEpt);
1257 VMXFEATDUMP("SppEpt - Sub-page page write permissions for EPT ", fVmxSppEpt);
1258 VMXFEATDUMP("PtEpt - Processor Trace address' translatable by EPT ", fVmxPtEpt);
1259 VMXFEATDUMP("UseTscScaling - Use TSC scaling ", fVmxUseTscScaling);
1260 VMXFEATDUMP("UserWaitPause - Enable TPAUSE, UMONITOR and UMWAIT ", fVmxUserWaitPause);
1261 VMXFEATDUMP("EnclvExit - ENCLV exiting ", fVmxEnclvExit);
1262
1263 /* Tertiary processor-based controls. */
1264 VMXFEATDUMP("LoadIwKeyExit - LOADIWKEY exiting ", fVmxLoadIwKeyExit);
1265
1266 /* VM-entry controls. */
1267 VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls);
1268 VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest);
1269 VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER MSR on VM-entry ", fVmxEntryLoadEferMsr);
1270 VMXFEATDUMP("EntryLoadPatMsr - Load IA32_PAT MSR on VM-entry ", fVmxEntryLoadPatMsr);
1271
1272 /* VM-exit controls. */
1273 VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls);
1274 VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize);
1275 VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt);
1276 VMXFEATDUMP("ExitSavePatMsr - Save IA32_PAT MSR on VM-exit ", fVmxExitSavePatMsr);
1277 VMXFEATDUMP("ExitLoadPatMsr - Load IA32_PAT MSR on VM-exit ", fVmxExitLoadPatMsr);
1278 VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER MSR on VM-exit ", fVmxExitSaveEferMsr);
1279 VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER MSR on VM-exit ", fVmxExitLoadEferMsr);
1280 VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer);
1281 VMXFEATDUMP("SecondaryExitCtls - Secondary VM-exit controls ", fVmxSecondaryExitCtls);
1282
1283 /* Miscellaneous data. */
1284 VMXFEATDUMP("ExitSaveEferLma - Save IA32_EFER.LMA on VM-exit ", fVmxExitSaveEferLma);
1285 VMXFEATDUMP("IntelPt - Intel PT (Processor Trace) in VMX operation ", fVmxPt);
1286 VMXFEATDUMP("VmwriteAll - VMWRITE to any supported VMCS field ", fVmxVmwriteAll);
1287 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
1288#undef VMXFEATDUMP
1289 }
1290 else
1291 pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n");
1292}
1293
1294
1295/**
1296 * Checks whether nested-guest execution using hardware-assisted VMX (e.g, using HM
1297 * or NEM) is allowed.
1298 *
1299 * @returns @c true if hardware-assisted nested-guest execution is allowed, @c false
1300 * otherwise.
1301 * @param pVM The cross context VM structure.
1302 */
1303static bool cpumR3IsHwAssistNstGstExecAllowed(PVM pVM)
1304{
1305 AssertMsg(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET, ("Calling this function too early!\n"));
1306#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
1307 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT
1308 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
1309 return true;
1310#else
1311 NOREF(pVM);
1312#endif
1313 return false;
1314}
1315
1316
1317/**
1318 * Initializes the VMX guest MSRs from guest CPU features based on the host MSRs.
1319 *
1320 * @param pVM The cross context VM structure.
1321 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1322 * and no hardware-assisted nested-guest execution is
1323 * possible for this VM.
1324 * @param pGuestFeatures The guest features to use (only VMX features are
1325 * accessed).
1326 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1327 *
1328 * @remarks This function ASSUMES the VMX guest-features are already exploded!
1329 */
1330static void cpumR3InitVmxGuestMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PCCPUMFEATURES pGuestFeatures, PVMXMSRS pGuestVmxMsrs)
1331{
1332 bool const fIsNstGstHwExecAllowed = cpumR3IsHwAssistNstGstExecAllowed(pVM);
1333
1334 Assert(!fIsNstGstHwExecAllowed || pHostVmxMsrs);
1335 Assert(pGuestFeatures->fVmx);
1336
1337 /* Basic information. */
1338 uint8_t const fTrueVmxMsrs = 1;
1339 {
1340 uint64_t const u64Basic = RT_BF_MAKE(VMX_BF_BASIC_VMCS_ID, VMX_V_VMCS_REVISION_ID )
1341 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_SIZE, VMX_V_VMCS_SIZE )
1342 | RT_BF_MAKE(VMX_BF_BASIC_PHYSADDR_WIDTH, !pGuestFeatures->fLongMode )
1343 | RT_BF_MAKE(VMX_BF_BASIC_DUAL_MON, 0 )
1344 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_MEM_TYPE, VMX_BASIC_MEM_TYPE_WB )
1345 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_INS_OUTS, pGuestFeatures->fVmxInsOutInfo)
1346 | RT_BF_MAKE(VMX_BF_BASIC_TRUE_CTLS, fTrueVmxMsrs );
1347 pGuestVmxMsrs->u64Basic = u64Basic;
1348 }
1349
1350 /* Pin-based VM-execution controls. */
1351 {
1352 uint32_t const fFeatures = (pGuestFeatures->fVmxExtIntExit << VMX_BF_PIN_CTLS_EXT_INT_EXIT_SHIFT )
1353 | (pGuestFeatures->fVmxNmiExit << VMX_BF_PIN_CTLS_NMI_EXIT_SHIFT )
1354 | (pGuestFeatures->fVmxVirtNmi << VMX_BF_PIN_CTLS_VIRT_NMI_SHIFT )
1355 | (pGuestFeatures->fVmxPreemptTimer << VMX_BF_PIN_CTLS_PREEMPT_TIMER_SHIFT)
1356 | (pGuestFeatures->fVmxPostedInt << VMX_BF_PIN_CTLS_POSTED_INT_SHIFT );
1357 uint32_t const fAllowed0 = VMX_PIN_CTLS_DEFAULT1;
1358 uint32_t const fAllowed1 = fFeatures | VMX_PIN_CTLS_DEFAULT1;
1359 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n",
1360 fAllowed0, fAllowed1, fFeatures));
1361 pGuestVmxMsrs->PinCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1362
1363 /* True pin-based VM-execution controls. */
1364 if (fTrueVmxMsrs)
1365 {
1366 /* VMX_PIN_CTLS_DEFAULT1 contains MB1 reserved bits and must be reserved MB1 in true pin-based controls as well. */
1367 pGuestVmxMsrs->TruePinCtls.u = pGuestVmxMsrs->PinCtls.u;
1368 }
1369 }
1370
1371 /* Processor-based VM-execution controls. */
1372 {
1373 uint32_t const fFeatures = (pGuestFeatures->fVmxIntWindowExit << VMX_BF_PROC_CTLS_INT_WINDOW_EXIT_SHIFT )
1374 | (pGuestFeatures->fVmxTscOffsetting << VMX_BF_PROC_CTLS_USE_TSC_OFFSETTING_SHIFT)
1375 | (pGuestFeatures->fVmxHltExit << VMX_BF_PROC_CTLS_HLT_EXIT_SHIFT )
1376 | (pGuestFeatures->fVmxInvlpgExit << VMX_BF_PROC_CTLS_INVLPG_EXIT_SHIFT )
1377 | (pGuestFeatures->fVmxMwaitExit << VMX_BF_PROC_CTLS_MWAIT_EXIT_SHIFT )
1378 | (pGuestFeatures->fVmxRdpmcExit << VMX_BF_PROC_CTLS_RDPMC_EXIT_SHIFT )
1379 | (pGuestFeatures->fVmxRdtscExit << VMX_BF_PROC_CTLS_RDTSC_EXIT_SHIFT )
1380 | (pGuestFeatures->fVmxCr3LoadExit << VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_SHIFT )
1381 | (pGuestFeatures->fVmxCr3StoreExit << VMX_BF_PROC_CTLS_CR3_STORE_EXIT_SHIFT )
1382 | (pGuestFeatures->fVmxTertiaryExecCtls << VMX_BF_PROC_CTLS_USE_TERTIARY_CTLS_SHIFT )
1383 | (pGuestFeatures->fVmxCr8LoadExit << VMX_BF_PROC_CTLS_CR8_LOAD_EXIT_SHIFT )
1384 | (pGuestFeatures->fVmxCr8StoreExit << VMX_BF_PROC_CTLS_CR8_STORE_EXIT_SHIFT )
1385 | (pGuestFeatures->fVmxUseTprShadow << VMX_BF_PROC_CTLS_USE_TPR_SHADOW_SHIFT )
1386 | (pGuestFeatures->fVmxNmiWindowExit << VMX_BF_PROC_CTLS_NMI_WINDOW_EXIT_SHIFT )
1387 | (pGuestFeatures->fVmxMovDRxExit << VMX_BF_PROC_CTLS_MOV_DR_EXIT_SHIFT )
1388 | (pGuestFeatures->fVmxUncondIoExit << VMX_BF_PROC_CTLS_UNCOND_IO_EXIT_SHIFT )
1389 | (pGuestFeatures->fVmxUseIoBitmaps << VMX_BF_PROC_CTLS_USE_IO_BITMAPS_SHIFT )
1390 | (pGuestFeatures->fVmxMonitorTrapFlag << VMX_BF_PROC_CTLS_MONITOR_TRAP_FLAG_SHIFT )
1391 | (pGuestFeatures->fVmxUseMsrBitmaps << VMX_BF_PROC_CTLS_USE_MSR_BITMAPS_SHIFT )
1392 | (pGuestFeatures->fVmxMonitorExit << VMX_BF_PROC_CTLS_MONITOR_EXIT_SHIFT )
1393 | (pGuestFeatures->fVmxPauseExit << VMX_BF_PROC_CTLS_PAUSE_EXIT_SHIFT )
1394 | (pGuestFeatures->fVmxSecondaryExecCtls << VMX_BF_PROC_CTLS_USE_SECONDARY_CTLS_SHIFT);
1395 uint32_t const fAllowed0 = VMX_PROC_CTLS_DEFAULT1;
1396 uint32_t const fAllowed1 = fFeatures | VMX_PROC_CTLS_DEFAULT1;
1397 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1398 fAllowed1, fFeatures));
1399 pGuestVmxMsrs->ProcCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1400
1401 /* True processor-based VM-execution controls. */
1402 if (fTrueVmxMsrs)
1403 {
1404 /* VMX_PROC_CTLS_DEFAULT1 contains MB1 reserved bits but the following are not really reserved. */
1405 uint32_t const fTrueAllowed0 = VMX_PROC_CTLS_DEFAULT1 & ~( VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_MASK
1406 | VMX_BF_PROC_CTLS_CR3_STORE_EXIT_MASK);
1407 uint32_t const fTrueAllowed1 = fFeatures | fTrueAllowed0;
1408 pGuestVmxMsrs->TrueProcCtls.u = RT_MAKE_U64(fTrueAllowed0, fTrueAllowed1);
1409 }
1410 }
1411
1412 /* Secondary processor-based VM-execution controls. */
1413 if (pGuestFeatures->fVmxSecondaryExecCtls)
1414 {
1415 uint32_t const fFeatures = (pGuestFeatures->fVmxVirtApicAccess << VMX_BF_PROC_CTLS2_VIRT_APIC_ACCESS_SHIFT )
1416 | (pGuestFeatures->fVmxEpt << VMX_BF_PROC_CTLS2_EPT_SHIFT )
1417 | (pGuestFeatures->fVmxDescTableExit << VMX_BF_PROC_CTLS2_DESC_TABLE_EXIT_SHIFT )
1418 | (pGuestFeatures->fVmxRdtscp << VMX_BF_PROC_CTLS2_RDTSCP_SHIFT )
1419 | (pGuestFeatures->fVmxVirtX2ApicMode << VMX_BF_PROC_CTLS2_VIRT_X2APIC_MODE_SHIFT )
1420 | (pGuestFeatures->fVmxVpid << VMX_BF_PROC_CTLS2_VPID_SHIFT )
1421 | (pGuestFeatures->fVmxWbinvdExit << VMX_BF_PROC_CTLS2_WBINVD_EXIT_SHIFT )
1422 | (pGuestFeatures->fVmxUnrestrictedGuest << VMX_BF_PROC_CTLS2_UNRESTRICTED_GUEST_SHIFT )
1423 | (pGuestFeatures->fVmxApicRegVirt << VMX_BF_PROC_CTLS2_APIC_REG_VIRT_SHIFT )
1424 | (pGuestFeatures->fVmxVirtIntDelivery << VMX_BF_PROC_CTLS2_VIRT_INT_DELIVERY_SHIFT )
1425 | (pGuestFeatures->fVmxPauseLoopExit << VMX_BF_PROC_CTLS2_PAUSE_LOOP_EXIT_SHIFT )
1426 | (pGuestFeatures->fVmxRdrandExit << VMX_BF_PROC_CTLS2_RDRAND_EXIT_SHIFT )
1427 | (pGuestFeatures->fVmxInvpcid << VMX_BF_PROC_CTLS2_INVPCID_SHIFT )
1428 | (pGuestFeatures->fVmxVmFunc << VMX_BF_PROC_CTLS2_VMFUNC_SHIFT )
1429 | (pGuestFeatures->fVmxVmcsShadowing << VMX_BF_PROC_CTLS2_VMCS_SHADOWING_SHIFT )
1430 | (pGuestFeatures->fVmxRdseedExit << VMX_BF_PROC_CTLS2_RDSEED_EXIT_SHIFT )
1431 | (pGuestFeatures->fVmxPml << VMX_BF_PROC_CTLS2_PML_SHIFT )
1432 | (pGuestFeatures->fVmxEptXcptVe << VMX_BF_PROC_CTLS2_EPT_VE_SHIFT )
1433 | (pGuestFeatures->fVmxConcealVmxFromPt << VMX_BF_PROC_CTLS2_CONCEAL_VMX_FROM_PT_SHIFT)
1434 | (pGuestFeatures->fVmxXsavesXrstors << VMX_BF_PROC_CTLS2_XSAVES_XRSTORS_SHIFT )
1435 | (pGuestFeatures->fVmxModeBasedExecuteEpt << VMX_BF_PROC_CTLS2_MODE_BASED_EPT_PERM_SHIFT)
1436 | (pGuestFeatures->fVmxSppEpt << VMX_BF_PROC_CTLS2_SPP_EPT_SHIFT )
1437 | (pGuestFeatures->fVmxPtEpt << VMX_BF_PROC_CTLS2_PT_EPT_SHIFT )
1438 | (pGuestFeatures->fVmxUseTscScaling << VMX_BF_PROC_CTLS2_TSC_SCALING_SHIFT )
1439 | (pGuestFeatures->fVmxUserWaitPause << VMX_BF_PROC_CTLS2_USER_WAIT_PAUSE_SHIFT )
1440 | (pGuestFeatures->fVmxEnclvExit << VMX_BF_PROC_CTLS2_ENCLV_EXIT_SHIFT );
1441 uint32_t const fAllowed0 = 0;
1442 uint32_t const fAllowed1 = fFeatures;
1443 pGuestVmxMsrs->ProcCtls2.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1444 }
1445
1446 /* Tertiary processor-based VM-execution controls. */
1447 if (pGuestFeatures->fVmxTertiaryExecCtls)
1448 {
1449 pGuestVmxMsrs->u64ProcCtls3 = (pGuestFeatures->fVmxLoadIwKeyExit << VMX_BF_PROC_CTLS3_LOADIWKEY_EXIT_SHIFT);
1450 }
1451
1452 /* VM-exit controls. */
1453 {
1454 uint32_t const fFeatures = (pGuestFeatures->fVmxExitSaveDebugCtls << VMX_BF_EXIT_CTLS_SAVE_DEBUG_SHIFT )
1455 | (pGuestFeatures->fVmxHostAddrSpaceSize << VMX_BF_EXIT_CTLS_HOST_ADDR_SPACE_SIZE_SHIFT)
1456 | (pGuestFeatures->fVmxExitAckExtInt << VMX_BF_EXIT_CTLS_ACK_EXT_INT_SHIFT )
1457 | (pGuestFeatures->fVmxExitSavePatMsr << VMX_BF_EXIT_CTLS_SAVE_PAT_MSR_SHIFT )
1458 | (pGuestFeatures->fVmxExitLoadPatMsr << VMX_BF_EXIT_CTLS_LOAD_PAT_MSR_SHIFT )
1459 | (pGuestFeatures->fVmxExitSaveEferMsr << VMX_BF_EXIT_CTLS_SAVE_EFER_MSR_SHIFT )
1460 | (pGuestFeatures->fVmxExitLoadEferMsr << VMX_BF_EXIT_CTLS_LOAD_EFER_MSR_SHIFT )
1461 | (pGuestFeatures->fVmxSavePreemptTimer << VMX_BF_EXIT_CTLS_SAVE_PREEMPT_TIMER_SHIFT )
1462 | (pGuestFeatures->fVmxSecondaryExitCtls << VMX_BF_EXIT_CTLS_USE_SECONDARY_CTLS_SHIFT );
1463 /* Set the default1 class bits. See Intel spec. A.4 "VM-exit Controls". */
1464 uint32_t const fAllowed0 = VMX_EXIT_CTLS_DEFAULT1;
1465 uint32_t const fAllowed1 = fFeatures | VMX_EXIT_CTLS_DEFAULT1;
1466 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1467 fAllowed1, fFeatures));
1468 pGuestVmxMsrs->ExitCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1469
1470 /* True VM-exit controls. */
1471 if (fTrueVmxMsrs)
1472 {
1473 /* VMX_EXIT_CTLS_DEFAULT1 contains MB1 reserved bits but the following are not really reserved */
1474 uint32_t const fTrueAllowed0 = VMX_EXIT_CTLS_DEFAULT1 & ~VMX_BF_EXIT_CTLS_SAVE_DEBUG_MASK;
1475 uint32_t const fTrueAllowed1 = fFeatures | fTrueAllowed0;
1476 pGuestVmxMsrs->TrueExitCtls.u = RT_MAKE_U64(fTrueAllowed0, fTrueAllowed1);
1477 }
1478 }
1479
1480 /* VM-entry controls. */
1481 {
1482 uint32_t const fFeatures = (pGuestFeatures->fVmxEntryLoadDebugCtls << VMX_BF_ENTRY_CTLS_LOAD_DEBUG_SHIFT )
1483 | (pGuestFeatures->fVmxIa32eModeGuest << VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_SHIFT)
1484 | (pGuestFeatures->fVmxEntryLoadEferMsr << VMX_BF_ENTRY_CTLS_LOAD_EFER_MSR_SHIFT )
1485 | (pGuestFeatures->fVmxEntryLoadPatMsr << VMX_BF_ENTRY_CTLS_LOAD_PAT_MSR_SHIFT );
1486 uint32_t const fAllowed0 = VMX_ENTRY_CTLS_DEFAULT1;
1487 uint32_t const fAllowed1 = fFeatures | VMX_ENTRY_CTLS_DEFAULT1;
1488 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed0=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1489 fAllowed1, fFeatures));
1490 pGuestVmxMsrs->EntryCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1491
1492 /* True VM-entry controls. */
1493 if (fTrueVmxMsrs)
1494 {
1495 /* VMX_ENTRY_CTLS_DEFAULT1 contains MB1 reserved bits but the following are not really reserved */
1496 uint32_t const fTrueAllowed0 = VMX_ENTRY_CTLS_DEFAULT1 & ~( VMX_BF_ENTRY_CTLS_LOAD_DEBUG_MASK
1497 | VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_MASK
1498 | VMX_BF_ENTRY_CTLS_ENTRY_SMM_MASK
1499 | VMX_BF_ENTRY_CTLS_DEACTIVATE_DUAL_MON_MASK);
1500 uint32_t const fTrueAllowed1 = fFeatures | fTrueAllowed0;
1501 pGuestVmxMsrs->TrueEntryCtls.u = RT_MAKE_U64(fTrueAllowed0, fTrueAllowed1);
1502 }
1503 }
1504
1505 /* Miscellaneous data. */
1506 {
1507 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Misc : 0;
1508
1509 uint8_t const cMaxMsrs = RT_MIN(RT_BF_GET(uHostMsr, VMX_BF_MISC_MAX_MSRS), VMX_V_AUTOMSR_COUNT_MAX);
1510 uint8_t const fActivityState = RT_BF_GET(uHostMsr, VMX_BF_MISC_ACTIVITY_STATES) & VMX_V_GUEST_ACTIVITY_STATE_MASK;
1511 pGuestVmxMsrs->u64Misc = RT_BF_MAKE(VMX_BF_MISC_PREEMPT_TIMER_TSC, VMX_V_PREEMPT_TIMER_SHIFT )
1512 | RT_BF_MAKE(VMX_BF_MISC_EXIT_SAVE_EFER_LMA, pGuestFeatures->fVmxExitSaveEferLma )
1513 | RT_BF_MAKE(VMX_BF_MISC_ACTIVITY_STATES, fActivityState )
1514 | RT_BF_MAKE(VMX_BF_MISC_INTEL_PT, pGuestFeatures->fVmxPt )
1515 | RT_BF_MAKE(VMX_BF_MISC_SMM_READ_SMBASE_MSR, 0 )
1516 | RT_BF_MAKE(VMX_BF_MISC_CR3_TARGET, VMX_V_CR3_TARGET_COUNT )
1517 | RT_BF_MAKE(VMX_BF_MISC_MAX_MSRS, cMaxMsrs )
1518 | RT_BF_MAKE(VMX_BF_MISC_VMXOFF_BLOCK_SMI, 0 )
1519 | RT_BF_MAKE(VMX_BF_MISC_VMWRITE_ALL, pGuestFeatures->fVmxVmwriteAll )
1520 | RT_BF_MAKE(VMX_BF_MISC_ENTRY_INJECT_SOFT_INT, pGuestFeatures->fVmxEntryInjectSoftInt)
1521 | RT_BF_MAKE(VMX_BF_MISC_MSEG_ID, VMX_V_MSEG_REV_ID );
1522 }
1523
1524 /* CR0 Fixed-0 (we report this fixed value regardless of whether UX is supported as it does on real hardware). */
1525 pGuestVmxMsrs->u64Cr0Fixed0 = VMX_V_CR0_FIXED0;
1526
1527 /* CR0 Fixed-1. */
1528 {
1529 /*
1530 * All CPUs I've looked at so far report CR0 fixed-1 bits as 0xffffffff.
1531 * This is different from CR4 fixed-1 bits which are reported as per the
1532 * CPU features and/or micro-architecture/generation. Why? Ask Intel.
1533 */
1534 pGuestVmxMsrs->u64Cr0Fixed1 = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr0Fixed1 : VMX_V_CR0_FIXED1;
1535
1536 /* Make sure the CR0 MB1 bits are not clear. */
1537 Assert((pGuestVmxMsrs->u64Cr0Fixed1 & pGuestVmxMsrs->u64Cr0Fixed0) == pGuestVmxMsrs->u64Cr0Fixed0);
1538 }
1539
1540 /* CR4 Fixed-0. */
1541 pGuestVmxMsrs->u64Cr4Fixed0 = VMX_V_CR4_FIXED0;
1542
1543 /* CR4 Fixed-1. */
1544 {
1545 pGuestVmxMsrs->u64Cr4Fixed1 = CPUMGetGuestCR4ValidMask(pVM) & pHostVmxMsrs->u64Cr4Fixed1;
1546
1547 /* Make sure the CR4 MB1 bits are not clear. */
1548 Assert((pGuestVmxMsrs->u64Cr4Fixed1 & pGuestVmxMsrs->u64Cr4Fixed0) == pGuestVmxMsrs->u64Cr4Fixed0);
1549
1550 /* Make sure bits that must always be set are set. */
1551 Assert(pGuestVmxMsrs->u64Cr4Fixed1 & X86_CR4_PAE);
1552 Assert(pGuestVmxMsrs->u64Cr4Fixed1 & X86_CR4_VMXE);
1553 }
1554
1555 /* VMCS Enumeration. */
1556 pGuestVmxMsrs->u64VmcsEnum = VMX_V_VMCS_MAX_INDEX << VMX_BF_VMCS_ENUM_HIGHEST_IDX_SHIFT;
1557
1558 /* VPID and EPT Capabilities. */
1559 if (pGuestFeatures->fVmxEpt)
1560 {
1561 /*
1562 * INVVPID instruction always causes a VM-exit unconditionally, so we are free to fake
1563 * and emulate any INVVPID flush type. However, it only makes sense to expose the types
1564 * when INVVPID instruction is supported just to be more compatible with guest
1565 * hypervisors that may make assumptions by only looking at this MSR even though they
1566 * are technically supposed to refer to VMX_PROC_CTLS2_VPID first.
1567 *
1568 * See Intel spec. 25.1.2 "Instructions That Cause VM Exits Unconditionally".
1569 * See Intel spec. 30.3 "VMX Instructions".
1570 */
1571 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64EptVpidCaps : UINT64_MAX;
1572 uint8_t const fVpid = pGuestFeatures->fVmxVpid;
1573
1574 uint8_t const fExecOnly = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_EXEC_ONLY);
1575 uint8_t const fPml4 = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1576 uint8_t const fMemTypeUc = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_MEMTYPE_UC);
1577 uint8_t const fMemTypeWb = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_MEMTYPE_WB);
1578 uint8_t const f2MPage = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PDE_2M);
1579 uint8_t const fInvept = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT);
1580 /** @todo Nested VMX: Support accessed/dirty bits, see @bugref{10092#c25}. */
1581 /* uint8_t const fAccessDirty = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY); */
1582 uint8_t const fEptSingle = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX);
1583 uint8_t const fEptAll = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX);
1584 uint8_t const fVpidIndiv = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1585 uint8_t const fVpidSingle = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX);
1586 uint8_t const fVpidAll = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX);
1587 uint8_t const fVpidSingleGlobal = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS);
1588 pGuestVmxMsrs->u64EptVpidCaps = RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_EXEC_ONLY, fExecOnly)
1589 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4, fPml4)
1590 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_MEMTYPE_UC, fMemTypeUc)
1591 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_MEMTYPE_WB, fMemTypeWb)
1592 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PDE_2M, f2MPage)
1593 //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PDPTE_1G, 0)
1594 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT, fInvept)
1595 //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY, 0)
1596 //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_ADVEXITINFO_EPT_VIOLATION, 0)
1597 //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_SUPER_SHW_STACK, 0)
1598 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX, fEptSingle)
1599 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX, fEptAll)
1600 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID, fVpid)
1601 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR, fVpid & fVpidIndiv)
1602 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX, fVpid & fVpidSingle)
1603 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX, fVpid & fVpidAll)
1604 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS, fVpid & fVpidSingleGlobal);
1605 }
1606
1607 /* VM Functions. */
1608 if (pGuestFeatures->fVmxVmFunc)
1609 pGuestVmxMsrs->u64VmFunc = RT_BF_MAKE(VMX_BF_VMFUNC_EPTP_SWITCHING, 1);
1610}
1611
1612
1613/**
1614 * Checks whether the given guest CPU VMX features are compatible with the provided
1615 * base features.
1616 *
1617 * @returns @c true if compatible, @c false otherwise.
1618 * @param pVM The cross context VM structure.
1619 * @param pBase The base VMX CPU features.
1620 * @param pGst The guest VMX CPU features.
1621 *
1622 * @remarks Only VMX feature bits are examined.
1623 */
1624static bool cpumR3AreVmxCpuFeaturesCompatible(PVM pVM, PCCPUMFEATURES pBase, PCCPUMFEATURES pGst)
1625{
1626 if (!cpumR3IsHwAssistNstGstExecAllowed(pVM))
1627 return false;
1628
1629#define CPUM_VMX_FEAT_SHIFT(a_pFeat, a_FeatName, a_cShift) ((uint64_t)(a_pFeat->a_FeatName) << (a_cShift))
1630#define CPUM_VMX_MAKE_FEATURES_1(a_pFeat) ( CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxInsOutInfo , 0) \
1631 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExtIntExit , 1) \
1632 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxNmiExit , 2) \
1633 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtNmi , 3) \
1634 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPreemptTimer , 4) \
1635 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPostedInt , 5) \
1636 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxIntWindowExit , 6) \
1637 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxTscOffsetting , 7) \
1638 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxHltExit , 8) \
1639 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxInvlpgExit , 9) \
1640 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMwaitExit , 10) \
1641 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdpmcExit , 12) \
1642 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdtscExit , 13) \
1643 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr3LoadExit , 14) \
1644 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr3StoreExit , 15) \
1645 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxTertiaryExecCtls , 16) \
1646 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr8LoadExit , 17) \
1647 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr8StoreExit , 18) \
1648 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseTprShadow , 19) \
1649 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxNmiWindowExit , 20) \
1650 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMovDRxExit , 21) \
1651 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUncondIoExit , 22) \
1652 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseIoBitmaps , 23) \
1653 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMonitorTrapFlag , 24) \
1654 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseMsrBitmaps , 25) \
1655 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMonitorExit , 26) \
1656 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPauseExit , 27) \
1657 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxSecondaryExecCtls , 28) \
1658 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtApicAccess , 29) \
1659 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEpt , 30) \
1660 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxDescTableExit , 31) \
1661 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdtscp , 32) \
1662 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtX2ApicMode , 33) \
1663 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVpid , 34) \
1664 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxWbinvdExit , 35) \
1665 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUnrestrictedGuest , 36) \
1666 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxApicRegVirt , 37) \
1667 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtIntDelivery , 38) \
1668 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPauseLoopExit , 39) \
1669 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdrandExit , 40) \
1670 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxInvpcid , 41) \
1671 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVmFunc , 42) \
1672 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVmcsShadowing , 43) \
1673 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdseedExit , 44) \
1674 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPml , 45) \
1675 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEptXcptVe , 46) \
1676 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxConcealVmxFromPt , 47) \
1677 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxXsavesXrstors , 48) \
1678 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxModeBasedExecuteEpt, 49) \
1679 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxSppEpt , 50) \
1680 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPtEpt , 51) \
1681 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseTscScaling , 52) \
1682 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUserWaitPause , 53) \
1683 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEnclvExit , 54) \
1684 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxLoadIwKeyExit , 55) \
1685 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryLoadDebugCtls , 56) \
1686 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxIa32eModeGuest , 57) \
1687 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryLoadEferMsr , 58) \
1688 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryLoadPatMsr , 59) \
1689 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSaveDebugCtls , 60) \
1690 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxHostAddrSpaceSize , 61) \
1691 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitAckExtInt , 62) \
1692 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSavePatMsr , 63))
1693
1694#define CPUM_VMX_MAKE_FEATURES_2(a_pFeat) ( CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitLoadPatMsr , 0) \
1695 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSaveEferMsr , 1) \
1696 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitLoadEferMsr , 2) \
1697 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxSavePreemptTimer , 3) \
1698 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxSecondaryExitCtls , 4) \
1699 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSaveEferLma , 5) \
1700 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPt , 6) \
1701 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVmwriteAll , 7) \
1702 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryInjectSoftInt , 8))
1703
1704 /* Check first set of feature bits. */
1705 {
1706 uint64_t const fBase = CPUM_VMX_MAKE_FEATURES_1(pBase);
1707 uint64_t const fGst = CPUM_VMX_MAKE_FEATURES_1(pGst);
1708 if ((fBase | fGst) != fBase)
1709 {
1710 uint64_t const fDiff = fBase ^ fGst;
1711 LogRel(("CPUM: VMX features (1) now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n",
1712 fBase, fGst, fDiff));
1713 return false;
1714 }
1715 }
1716
1717 /* Check second set of feature bits. */
1718 {
1719 uint64_t const fBase = CPUM_VMX_MAKE_FEATURES_2(pBase);
1720 uint64_t const fGst = CPUM_VMX_MAKE_FEATURES_2(pGst);
1721 if ((fBase | fGst) != fBase)
1722 {
1723 uint64_t const fDiff = fBase ^ fGst;
1724 LogRel(("CPUM: VMX features (2) now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n",
1725 fBase, fGst, fDiff));
1726 return false;
1727 }
1728 }
1729#undef CPUM_VMX_FEAT_SHIFT
1730#undef CPUM_VMX_MAKE_FEATURES_1
1731#undef CPUM_VMX_MAKE_FEATURES_2
1732
1733 return true;
1734}
1735
1736
1737/**
1738 * Initializes VMX guest features and MSRs.
1739 *
1740 * @param pVM The cross context VM structure.
1741 * @param pCpumCfg The CPUM CFGM configuration node.
1742 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1743 * and no hardware-assisted nested-guest execution is
1744 * possible for this VM.
1745 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1746 */
1747void cpumR3InitVmxGuestFeaturesAndMsrs(PVM pVM, PCFGMNODE pCpumCfg, PCVMXMSRS pHostVmxMsrs, PVMXMSRS pGuestVmxMsrs)
1748{
1749 Assert(pVM);
1750 Assert(pCpumCfg);
1751 Assert(pGuestVmxMsrs);
1752
1753 /*
1754 * Query VMX features from CFGM.
1755 */
1756 bool fVmxPreemptTimer;
1757 bool fVmxEpt;
1758 bool fVmxUnrestrictedGuest;
1759 {
1760 /** @cfgm{/CPUM/NestedVmxPreemptTimer, bool, true}
1761 * Whether to expose the VMX-preemption timer feature to the guest (if also
1762 * supported by the host hardware). When disabled will prevent exposing the
1763 * VMX-preemption timer feature to the guest even if the host supports it.
1764 *
1765 * @todo Currently disabled, see @bugref{9180#c108}.
1766 */
1767 int rc = CFGMR3QueryBoolDef(pCpumCfg, "NestedVmxPreemptTimer", &fVmxPreemptTimer, false);
1768 AssertLogRelRCReturnVoid(rc);
1769
1770#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
1771 /** @cfgm{/CPUM/NestedVmxEpt, bool, true}
1772 * Whether to expose the EPT feature to the guest. The default is true.
1773 * When disabled will automatically prevent exposing features that rely
1774 * on it. This is dependent upon nested paging being enabled for the VM.
1775 */
1776 rc = CFGMR3QueryBoolDef(pCpumCfg, "NestedVmxEpt", &fVmxEpt, true);
1777 AssertLogRelRCReturnVoid(rc);
1778
1779 /** @cfgm{/CPUM/NestedVmxUnrestrictedGuest, bool, true}
1780 * Whether to expose the Unrestricted Guest feature to the guest. The
1781 * default is the same a /CPUM/Nested/VmxEpt. When disabled will
1782 * automatically prevent exposing features that rely on it.
1783 */
1784 rc = CFGMR3QueryBoolDef(pCpumCfg, "NestedVmxUnrestrictedGuest", &fVmxUnrestrictedGuest, fVmxEpt);
1785 AssertLogRelRCReturnVoid(rc);
1786#else
1787 fVmxEpt = fVmxUnrestrictedGuest = false;
1788#endif
1789 }
1790
1791 if (fVmxEpt)
1792 {
1793 const char *pszWhy = NULL;
1794 if (!VM_IS_HM_ENABLED(pVM) && !VM_IS_EXEC_ENGINE_IEM(pVM))
1795 pszWhy = "execution engine is neither HM nor IEM";
1796 else if (VM_IS_HM_ENABLED(pVM) && !HMIsNestedPagingActive(pVM))
1797 pszWhy = "nested paging is not enabled for the VM or it is not supported by the host";
1798 else if (VM_IS_HM_ENABLED(pVM) && !pVM->cpum.s.HostFeatures.fNoExecute)
1799 pszWhy = "NX is not available on the host";
1800 if (pszWhy)
1801 {
1802 LogRel(("CPUM: Warning! EPT not exposed to the guest because %s\n", pszWhy));
1803 fVmxEpt = false;
1804 }
1805 }
1806 else if (fVmxUnrestrictedGuest)
1807 {
1808 LogRel(("CPUM: Warning! Can't expose \"Unrestricted Guest\" to the guest when EPT is not exposed!\n"));
1809 fVmxUnrestrictedGuest = false;
1810 }
1811
1812 /*
1813 * Initialize the set of VMX features we emulate.
1814 *
1815 * Note! Some bits might be reported as 1 always if they fall under the
1816 * default1 class bits (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}.
1817 */
1818 CPUMFEATURES EmuFeat;
1819 RT_ZERO(EmuFeat);
1820 EmuFeat.fVmx = 1;
1821 EmuFeat.fVmxInsOutInfo = 1;
1822 EmuFeat.fVmxExtIntExit = 1;
1823 EmuFeat.fVmxNmiExit = 1;
1824 EmuFeat.fVmxVirtNmi = 1;
1825 EmuFeat.fVmxPreemptTimer = fVmxPreemptTimer;
1826 EmuFeat.fVmxPostedInt = 0;
1827 EmuFeat.fVmxIntWindowExit = 1;
1828 EmuFeat.fVmxTscOffsetting = 1;
1829 EmuFeat.fVmxHltExit = 1;
1830 EmuFeat.fVmxInvlpgExit = 1;
1831 EmuFeat.fVmxMwaitExit = 1;
1832 EmuFeat.fVmxRdpmcExit = 1;
1833 EmuFeat.fVmxRdtscExit = 1;
1834 EmuFeat.fVmxCr3LoadExit = 1;
1835 EmuFeat.fVmxCr3StoreExit = 1;
1836 EmuFeat.fVmxTertiaryExecCtls = 0;
1837 EmuFeat.fVmxCr8LoadExit = 1;
1838 EmuFeat.fVmxCr8StoreExit = 1;
1839 EmuFeat.fVmxUseTprShadow = 1;
1840 EmuFeat.fVmxNmiWindowExit = 1;
1841 EmuFeat.fVmxMovDRxExit = 1;
1842 EmuFeat.fVmxUncondIoExit = 1;
1843 EmuFeat.fVmxUseIoBitmaps = 1;
1844 EmuFeat.fVmxMonitorTrapFlag = 0;
1845 EmuFeat.fVmxUseMsrBitmaps = 1;
1846 EmuFeat.fVmxMonitorExit = 1;
1847 EmuFeat.fVmxPauseExit = 1;
1848 EmuFeat.fVmxSecondaryExecCtls = 1;
1849 EmuFeat.fVmxVirtApicAccess = 1;
1850 EmuFeat.fVmxEpt = fVmxEpt;
1851 EmuFeat.fVmxDescTableExit = 1;
1852 EmuFeat.fVmxRdtscp = 1;
1853 EmuFeat.fVmxVirtX2ApicMode = 0;
1854 EmuFeat.fVmxVpid = 1;
1855 EmuFeat.fVmxWbinvdExit = 1;
1856 EmuFeat.fVmxUnrestrictedGuest = fVmxUnrestrictedGuest;
1857 EmuFeat.fVmxApicRegVirt = 0;
1858 EmuFeat.fVmxVirtIntDelivery = 0;
1859 EmuFeat.fVmxPauseLoopExit = 1;
1860 EmuFeat.fVmxRdrandExit = 0;
1861 EmuFeat.fVmxInvpcid = 1;
1862 EmuFeat.fVmxVmFunc = 0;
1863 EmuFeat.fVmxVmcsShadowing = 0;
1864 EmuFeat.fVmxRdseedExit = 0;
1865 EmuFeat.fVmxPml = 0;
1866 EmuFeat.fVmxEptXcptVe = 0;
1867 EmuFeat.fVmxConcealVmxFromPt = 0;
1868 EmuFeat.fVmxXsavesXrstors = 0;
1869 EmuFeat.fVmxModeBasedExecuteEpt = 0;
1870 EmuFeat.fVmxSppEpt = 0;
1871 EmuFeat.fVmxPtEpt = 0;
1872 EmuFeat.fVmxUseTscScaling = 0;
1873 EmuFeat.fVmxUserWaitPause = 0;
1874 EmuFeat.fVmxEnclvExit = 0;
1875 EmuFeat.fVmxLoadIwKeyExit = 0;
1876 EmuFeat.fVmxEntryLoadDebugCtls = 1;
1877 EmuFeat.fVmxIa32eModeGuest = 1;
1878 EmuFeat.fVmxEntryLoadEferMsr = 1;
1879 EmuFeat.fVmxEntryLoadPatMsr = 1;
1880 EmuFeat.fVmxExitSaveDebugCtls = 1;
1881 EmuFeat.fVmxHostAddrSpaceSize = 1;
1882 EmuFeat.fVmxExitAckExtInt = 1;
1883 EmuFeat.fVmxExitSavePatMsr = 1;
1884 EmuFeat.fVmxExitLoadPatMsr = 1;
1885 EmuFeat.fVmxExitSaveEferMsr = 1;
1886 EmuFeat.fVmxExitLoadEferMsr = 1;
1887 EmuFeat.fVmxSavePreemptTimer = 0; /* Cannot be enabled if VMX-preemption timer is disabled. */
1888 EmuFeat.fVmxSecondaryExitCtls = 0;
1889 EmuFeat.fVmxExitSaveEferLma = 1; /* Cannot be disabled if unrestricted guest is enabled. */
1890 EmuFeat.fVmxPt = 0;
1891 EmuFeat.fVmxVmwriteAll = 0; /** @todo NSTVMX: enable this when nested VMCS shadowing is enabled. */
1892 EmuFeat.fVmxEntryInjectSoftInt = 1;
1893
1894 /*
1895 * Merge guest features.
1896 *
1897 * When hardware-assisted VMX may be used, any feature we emulate must also be supported
1898 * by the hardware, hence we merge our emulated features with the host features below.
1899 */
1900 PCCPUMFEATURES pBaseFeat = cpumR3IsHwAssistNstGstExecAllowed(pVM) ? &pVM->cpum.s.HostFeatures : &EmuFeat;
1901 PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures;
1902 Assert(pBaseFeat->fVmx);
1903 pGuestFeat->fVmxInsOutInfo = (pBaseFeat->fVmxInsOutInfo & EmuFeat.fVmxInsOutInfo );
1904 pGuestFeat->fVmxExtIntExit = (pBaseFeat->fVmxExtIntExit & EmuFeat.fVmxExtIntExit );
1905 pGuestFeat->fVmxNmiExit = (pBaseFeat->fVmxNmiExit & EmuFeat.fVmxNmiExit );
1906 pGuestFeat->fVmxVirtNmi = (pBaseFeat->fVmxVirtNmi & EmuFeat.fVmxVirtNmi );
1907 pGuestFeat->fVmxPreemptTimer = (pBaseFeat->fVmxPreemptTimer & EmuFeat.fVmxPreemptTimer );
1908 pGuestFeat->fVmxPostedInt = (pBaseFeat->fVmxPostedInt & EmuFeat.fVmxPostedInt );
1909 pGuestFeat->fVmxIntWindowExit = (pBaseFeat->fVmxIntWindowExit & EmuFeat.fVmxIntWindowExit );
1910 pGuestFeat->fVmxTscOffsetting = (pBaseFeat->fVmxTscOffsetting & EmuFeat.fVmxTscOffsetting );
1911 pGuestFeat->fVmxHltExit = (pBaseFeat->fVmxHltExit & EmuFeat.fVmxHltExit );
1912 pGuestFeat->fVmxInvlpgExit = (pBaseFeat->fVmxInvlpgExit & EmuFeat.fVmxInvlpgExit );
1913 pGuestFeat->fVmxMwaitExit = (pBaseFeat->fVmxMwaitExit & EmuFeat.fVmxMwaitExit );
1914 pGuestFeat->fVmxRdpmcExit = (pBaseFeat->fVmxRdpmcExit & EmuFeat.fVmxRdpmcExit );
1915 pGuestFeat->fVmxRdtscExit = (pBaseFeat->fVmxRdtscExit & EmuFeat.fVmxRdtscExit );
1916 pGuestFeat->fVmxCr3LoadExit = (pBaseFeat->fVmxCr3LoadExit & EmuFeat.fVmxCr3LoadExit );
1917 pGuestFeat->fVmxCr3StoreExit = (pBaseFeat->fVmxCr3StoreExit & EmuFeat.fVmxCr3StoreExit );
1918 pGuestFeat->fVmxTertiaryExecCtls = (pBaseFeat->fVmxTertiaryExecCtls & EmuFeat.fVmxTertiaryExecCtls );
1919 pGuestFeat->fVmxCr8LoadExit = (pBaseFeat->fVmxCr8LoadExit & EmuFeat.fVmxCr8LoadExit );
1920 pGuestFeat->fVmxCr8StoreExit = (pBaseFeat->fVmxCr8StoreExit & EmuFeat.fVmxCr8StoreExit );
1921 pGuestFeat->fVmxUseTprShadow = (pBaseFeat->fVmxUseTprShadow & EmuFeat.fVmxUseTprShadow );
1922 pGuestFeat->fVmxNmiWindowExit = (pBaseFeat->fVmxNmiWindowExit & EmuFeat.fVmxNmiWindowExit );
1923 pGuestFeat->fVmxMovDRxExit = (pBaseFeat->fVmxMovDRxExit & EmuFeat.fVmxMovDRxExit );
1924 pGuestFeat->fVmxUncondIoExit = (pBaseFeat->fVmxUncondIoExit & EmuFeat.fVmxUncondIoExit );
1925 pGuestFeat->fVmxUseIoBitmaps = (pBaseFeat->fVmxUseIoBitmaps & EmuFeat.fVmxUseIoBitmaps );
1926 pGuestFeat->fVmxMonitorTrapFlag = (pBaseFeat->fVmxMonitorTrapFlag & EmuFeat.fVmxMonitorTrapFlag );
1927 pGuestFeat->fVmxUseMsrBitmaps = (pBaseFeat->fVmxUseMsrBitmaps & EmuFeat.fVmxUseMsrBitmaps );
1928 pGuestFeat->fVmxMonitorExit = (pBaseFeat->fVmxMonitorExit & EmuFeat.fVmxMonitorExit );
1929 pGuestFeat->fVmxPauseExit = (pBaseFeat->fVmxPauseExit & EmuFeat.fVmxPauseExit );
1930 pGuestFeat->fVmxSecondaryExecCtls = (pBaseFeat->fVmxSecondaryExecCtls & EmuFeat.fVmxSecondaryExecCtls );
1931 pGuestFeat->fVmxVirtApicAccess = (pBaseFeat->fVmxVirtApicAccess & EmuFeat.fVmxVirtApicAccess );
1932 pGuestFeat->fVmxEpt = (pBaseFeat->fVmxEpt & EmuFeat.fVmxEpt );
1933 pGuestFeat->fVmxDescTableExit = (pBaseFeat->fVmxDescTableExit & EmuFeat.fVmxDescTableExit );
1934 pGuestFeat->fVmxRdtscp = (pBaseFeat->fVmxRdtscp & EmuFeat.fVmxRdtscp );
1935 pGuestFeat->fVmxVirtX2ApicMode = (pBaseFeat->fVmxVirtX2ApicMode & EmuFeat.fVmxVirtX2ApicMode );
1936 pGuestFeat->fVmxVpid = (pBaseFeat->fVmxVpid & EmuFeat.fVmxVpid );
1937 pGuestFeat->fVmxWbinvdExit = (pBaseFeat->fVmxWbinvdExit & EmuFeat.fVmxWbinvdExit );
1938 pGuestFeat->fVmxUnrestrictedGuest = (pBaseFeat->fVmxUnrestrictedGuest & EmuFeat.fVmxUnrestrictedGuest );
1939 pGuestFeat->fVmxApicRegVirt = (pBaseFeat->fVmxApicRegVirt & EmuFeat.fVmxApicRegVirt );
1940 pGuestFeat->fVmxVirtIntDelivery = (pBaseFeat->fVmxVirtIntDelivery & EmuFeat.fVmxVirtIntDelivery );
1941 pGuestFeat->fVmxPauseLoopExit = (pBaseFeat->fVmxPauseLoopExit & EmuFeat.fVmxPauseLoopExit );
1942 pGuestFeat->fVmxRdrandExit = (pBaseFeat->fVmxRdrandExit & EmuFeat.fVmxRdrandExit );
1943 pGuestFeat->fVmxInvpcid = (pBaseFeat->fVmxInvpcid & EmuFeat.fVmxInvpcid );
1944 pGuestFeat->fVmxVmFunc = (pBaseFeat->fVmxVmFunc & EmuFeat.fVmxVmFunc );
1945 pGuestFeat->fVmxVmcsShadowing = (pBaseFeat->fVmxVmcsShadowing & EmuFeat.fVmxVmcsShadowing );
1946 pGuestFeat->fVmxRdseedExit = (pBaseFeat->fVmxRdseedExit & EmuFeat.fVmxRdseedExit );
1947 pGuestFeat->fVmxPml = (pBaseFeat->fVmxPml & EmuFeat.fVmxPml );
1948 pGuestFeat->fVmxEptXcptVe = (pBaseFeat->fVmxEptXcptVe & EmuFeat.fVmxEptXcptVe );
1949 pGuestFeat->fVmxConcealVmxFromPt = (pBaseFeat->fVmxConcealVmxFromPt & EmuFeat.fVmxConcealVmxFromPt );
1950 pGuestFeat->fVmxXsavesXrstors = (pBaseFeat->fVmxXsavesXrstors & EmuFeat.fVmxXsavesXrstors );
1951 pGuestFeat->fVmxModeBasedExecuteEpt = (pBaseFeat->fVmxModeBasedExecuteEpt & EmuFeat.fVmxModeBasedExecuteEpt );
1952 pGuestFeat->fVmxSppEpt = (pBaseFeat->fVmxSppEpt & EmuFeat.fVmxSppEpt );
1953 pGuestFeat->fVmxPtEpt = (pBaseFeat->fVmxPtEpt & EmuFeat.fVmxPtEpt );
1954 pGuestFeat->fVmxUseTscScaling = (pBaseFeat->fVmxUseTscScaling & EmuFeat.fVmxUseTscScaling );
1955 pGuestFeat->fVmxUserWaitPause = (pBaseFeat->fVmxUserWaitPause & EmuFeat.fVmxUserWaitPause );
1956 pGuestFeat->fVmxEnclvExit = (pBaseFeat->fVmxEnclvExit & EmuFeat.fVmxEnclvExit );
1957 pGuestFeat->fVmxLoadIwKeyExit = (pBaseFeat->fVmxLoadIwKeyExit & EmuFeat.fVmxLoadIwKeyExit );
1958 pGuestFeat->fVmxEntryLoadDebugCtls = (pBaseFeat->fVmxEntryLoadDebugCtls & EmuFeat.fVmxEntryLoadDebugCtls );
1959 pGuestFeat->fVmxIa32eModeGuest = (pBaseFeat->fVmxIa32eModeGuest & EmuFeat.fVmxIa32eModeGuest );
1960 pGuestFeat->fVmxEntryLoadEferMsr = (pBaseFeat->fVmxEntryLoadEferMsr & EmuFeat.fVmxEntryLoadEferMsr );
1961 pGuestFeat->fVmxEntryLoadPatMsr = (pBaseFeat->fVmxEntryLoadPatMsr & EmuFeat.fVmxEntryLoadPatMsr );
1962 pGuestFeat->fVmxExitSaveDebugCtls = (pBaseFeat->fVmxExitSaveDebugCtls & EmuFeat.fVmxExitSaveDebugCtls );
1963 pGuestFeat->fVmxHostAddrSpaceSize = (pBaseFeat->fVmxHostAddrSpaceSize & EmuFeat.fVmxHostAddrSpaceSize );
1964 pGuestFeat->fVmxExitAckExtInt = (pBaseFeat->fVmxExitAckExtInt & EmuFeat.fVmxExitAckExtInt );
1965 pGuestFeat->fVmxExitSavePatMsr = (pBaseFeat->fVmxExitSavePatMsr & EmuFeat.fVmxExitSavePatMsr );
1966 pGuestFeat->fVmxExitLoadPatMsr = (pBaseFeat->fVmxExitLoadPatMsr & EmuFeat.fVmxExitLoadPatMsr );
1967 pGuestFeat->fVmxExitSaveEferMsr = (pBaseFeat->fVmxExitSaveEferMsr & EmuFeat.fVmxExitSaveEferMsr );
1968 pGuestFeat->fVmxExitLoadEferMsr = (pBaseFeat->fVmxExitLoadEferMsr & EmuFeat.fVmxExitLoadEferMsr );
1969 pGuestFeat->fVmxSavePreemptTimer = (pBaseFeat->fVmxSavePreemptTimer & EmuFeat.fVmxSavePreemptTimer );
1970 pGuestFeat->fVmxSecondaryExitCtls = (pBaseFeat->fVmxSecondaryExitCtls & EmuFeat.fVmxSecondaryExitCtls );
1971 pGuestFeat->fVmxExitSaveEferLma = (pBaseFeat->fVmxExitSaveEferLma & EmuFeat.fVmxExitSaveEferLma );
1972 pGuestFeat->fVmxPt = (pBaseFeat->fVmxPt & EmuFeat.fVmxPt );
1973 pGuestFeat->fVmxVmwriteAll = (pBaseFeat->fVmxVmwriteAll & EmuFeat.fVmxVmwriteAll );
1974 pGuestFeat->fVmxEntryInjectSoftInt = (pBaseFeat->fVmxEntryInjectSoftInt & EmuFeat.fVmxEntryInjectSoftInt );
1975
1976#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
1977 /* Don't expose VMX preemption timer if host is subject to VMX-preemption timer erratum. */
1978 if ( pGuestFeat->fVmxPreemptTimer
1979 && HMIsSubjectToVmxPreemptTimerErratum())
1980 {
1981 LogRel(("CPUM: Warning! VMX-preemption timer not exposed to guest due to host CPU erratum\n"));
1982 pGuestFeat->fVmxPreemptTimer = 0;
1983 pGuestFeat->fVmxSavePreemptTimer = 0;
1984 }
1985#endif
1986
1987 /* Sanity checking. */
1988 if (!pGuestFeat->fVmxSecondaryExecCtls)
1989 {
1990 Assert(!pGuestFeat->fVmxVirtApicAccess);
1991 Assert(!pGuestFeat->fVmxEpt);
1992 Assert(!pGuestFeat->fVmxDescTableExit);
1993 Assert(!pGuestFeat->fVmxRdtscp);
1994 Assert(!pGuestFeat->fVmxVirtX2ApicMode);
1995 Assert(!pGuestFeat->fVmxVpid);
1996 Assert(!pGuestFeat->fVmxWbinvdExit);
1997 Assert(!pGuestFeat->fVmxUnrestrictedGuest);
1998 Assert(!pGuestFeat->fVmxApicRegVirt);
1999 Assert(!pGuestFeat->fVmxVirtIntDelivery);
2000 Assert(!pGuestFeat->fVmxPauseLoopExit);
2001 Assert(!pGuestFeat->fVmxRdrandExit);
2002 Assert(!pGuestFeat->fVmxInvpcid);
2003 Assert(!pGuestFeat->fVmxVmFunc);
2004 Assert(!pGuestFeat->fVmxVmcsShadowing);
2005 Assert(!pGuestFeat->fVmxRdseedExit);
2006 Assert(!pGuestFeat->fVmxPml);
2007 Assert(!pGuestFeat->fVmxEptXcptVe);
2008 Assert(!pGuestFeat->fVmxConcealVmxFromPt);
2009 Assert(!pGuestFeat->fVmxXsavesXrstors);
2010 Assert(!pGuestFeat->fVmxModeBasedExecuteEpt);
2011 Assert(!pGuestFeat->fVmxSppEpt);
2012 Assert(!pGuestFeat->fVmxPtEpt);
2013 Assert(!pGuestFeat->fVmxUseTscScaling);
2014 Assert(!pGuestFeat->fVmxUserWaitPause);
2015 Assert(!pGuestFeat->fVmxEnclvExit);
2016 }
2017 else if (pGuestFeat->fVmxUnrestrictedGuest)
2018 {
2019 /* See footnote in Intel spec. 27.2 "Recording VM-Exit Information And Updating VM-entry Control Fields". */
2020 Assert(pGuestFeat->fVmxExitSaveEferLma);
2021 /* Unrestricted guest execution requires EPT. See Intel spec. 25.2.1.1 "VM-Execution Control Fields". */
2022 Assert(pGuestFeat->fVmxEpt);
2023 }
2024
2025 if (!pGuestFeat->fVmxTertiaryExecCtls)
2026 Assert(!pGuestFeat->fVmxLoadIwKeyExit);
2027
2028 /*
2029 * Finally initialize the VMX guest MSRs.
2030 */
2031 cpumR3InitVmxGuestMsrs(pVM, pHostVmxMsrs, pGuestFeat, pGuestVmxMsrs);
2032}
2033
2034
2035/**
2036 * Gets the host hardware-virtualization MSRs.
2037 *
2038 * @returns VBox status code.
2039 * @param pMsrs Where to store the MSRs.
2040 */
2041static int cpumR3GetHostHwvirtMsrs(PCPUMMSRS pMsrs)
2042{
2043 Assert(pMsrs);
2044
2045 uint32_t fCaps = 0;
2046 int rc = SUPR3QueryVTCaps(&fCaps);
2047 if (RT_SUCCESS(rc))
2048 {
2049 if (fCaps & (SUPVTCAPS_VT_X | SUPVTCAPS_AMD_V))
2050 {
2051 SUPHWVIRTMSRS HwvirtMsrs;
2052 rc = SUPR3GetHwvirtMsrs(&HwvirtMsrs, false /* fForceRequery */);
2053 if (RT_SUCCESS(rc))
2054 {
2055 if (fCaps & SUPVTCAPS_VT_X)
2056 HMGetVmxMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.vmx);
2057 else
2058 HMGetSvmMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.svm);
2059 return VINF_SUCCESS;
2060 }
2061
2062 LogRel(("CPUM: Querying hardware-virtualization MSRs failed. rc=%Rrc\n", rc));
2063 return rc;
2064 }
2065
2066 LogRel(("CPUM: Querying hardware-virtualization capability succeeded but did not find VT-x or AMD-V\n"));
2067 return VERR_INTERNAL_ERROR_5;
2068 }
2069
2070 LogRel(("CPUM: No hardware-virtualization capability detected\n"));
2071 return VINF_SUCCESS;
2072}
2073
2074
2075/**
2076 * @callback_method_impl{FNTMTIMERINT,
2077 * Callback that fires when the nested VMX-preemption timer expired.}
2078 */
2079static DECLCALLBACK(void) cpumR3VmxPreemptTimerCallback(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
2080{
2081 RT_NOREF(pVM, hTimer);
2082 PVMCPU pVCpu = (PVMCPUR3)pvUser;
2083 AssertPtr(pVCpu);
2084 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER);
2085}
2086
2087
2088/**
2089 * Initializes the CPUM.
2090 *
2091 * @returns VBox status code.
2092 * @param pVM The cross context VM structure.
2093 */
2094VMMR3DECL(int) CPUMR3Init(PVM pVM)
2095{
2096 LogFlow(("CPUMR3Init\n"));
2097
2098 /*
2099 * Assert alignment, sizes and tables.
2100 */
2101 AssertCompileMemberAlignment(VM, cpum.s, 32);
2102 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
2103 AssertCompileSizeAlignment(CPUMCTX, 64);
2104 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
2105 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
2106 AssertCompileMemberAlignment(VM, cpum, 64);
2107 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
2108#ifdef VBOX_STRICT
2109 int rc2 = cpumR3MsrStrictInitChecks();
2110 AssertRCReturn(rc2, rc2);
2111#endif
2112
2113 /*
2114 * Gather info about the host CPU.
2115 */
2116#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2117 if (!ASMHasCpuId())
2118 {
2119 LogRel(("The CPU doesn't support CPUID!\n"));
2120 return VERR_UNSUPPORTED_CPU;
2121 }
2122
2123 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
2124#endif
2125
2126 CPUMMSRS HostMsrs;
2127 RT_ZERO(HostMsrs);
2128 int rc = cpumR3GetHostHwvirtMsrs(&HostMsrs);
2129 AssertLogRelRCReturn(rc, rc);
2130
2131#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2132 /* Use the host features detected by CPUMR0ModuleInit if available. */
2133 if (pVM->cpum.s.HostFeatures.enmCpuVendor != CPUMCPUVENDOR_INVALID)
2134 g_CpumHostFeatures.s = pVM->cpum.s.HostFeatures;
2135 else
2136 {
2137 PCPUMCPUIDLEAF paLeaves;
2138 uint32_t cLeaves;
2139 rc = CPUMCpuIdCollectLeavesX86(&paLeaves, &cLeaves);
2140 AssertLogRelRCReturn(rc, rc);
2141
2142 rc = cpumCpuIdExplodeFeaturesX86(paLeaves, cLeaves, &HostMsrs, &g_CpumHostFeatures.s);
2143 RTMemFree(paLeaves);
2144 AssertLogRelRCReturn(rc, rc);
2145 }
2146 pVM->cpum.s.HostFeatures = g_CpumHostFeatures.s;
2147 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
2148#endif
2149
2150 /*
2151 * Check that the CPU supports the minimum features we require.
2152 */
2153#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
2154 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
2155 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
2156 if (!pVM->cpum.s.HostFeatures.fMmx)
2157 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
2158 if (!pVM->cpum.s.HostFeatures.fTsc)
2159 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
2160#endif
2161
2162 /*
2163 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
2164 */
2165 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
2166 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
2167
2168 /*
2169 * Figure out which XSAVE/XRSTOR features are available on the host.
2170 */
2171 uint64_t fXcr0Host = 0;
2172 uint64_t fXStateHostMask = 0;
2173#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2174 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
2175 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
2176 {
2177 fXStateHostMask = fXcr0Host = ASMGetXcr0();
2178 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
2179 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
2180 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
2181 }
2182#endif
2183 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
2184 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
2185 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
2186
2187 /*
2188 * Initialize the host XSAVE/XRSTOR mask.
2189 */
2190#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2191 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
2192 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
2193 AssertLogRelReturn( pVM->cpum.s.HostFeatures.cbMaxExtendedState >= sizeof(X86FXSTATE)
2194 && pVM->cpum.s.HostFeatures.cbMaxExtendedState <= sizeof(pVM->apCpusR3[0]->cpum.s.Host.XState)
2195 && pVM->cpum.s.HostFeatures.cbMaxExtendedState <= sizeof(pVM->apCpusR3[0]->cpum.s.Guest.XState)
2196 , VERR_CPUM_IPE_2);
2197#endif
2198
2199 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2200 {
2201 PVMCPU pVCpu = pVM->apCpusR3[i];
2202
2203 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
2204 pVCpu->cpum.s.hNestedVmxPreemptTimer = NIL_TMTIMERHANDLE;
2205 }
2206
2207 /*
2208 * Register saved state data item.
2209 */
2210 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
2211 NULL, cpumR3LiveExec, NULL,
2212 NULL, cpumR3SaveExec, NULL,
2213 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
2214 if (RT_FAILURE(rc))
2215 return rc;
2216
2217 /*
2218 * Register info handlers and registers with the debugger facility.
2219 */
2220 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
2221 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
2222 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
2223 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
2224 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
2225 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
2226 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
2227 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
2228 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
2229 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
2230 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
2231 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
2232 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.",
2233 &cpumR3CpuIdInfo);
2234 DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.",
2235 &cpumR3InfoVmxFeatures);
2236
2237 rc = cpumR3DbgInit(pVM);
2238 if (RT_FAILURE(rc))
2239 return rc;
2240
2241#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2242 /*
2243 * Check if we need to workaround partial/leaky FPU handling.
2244 */
2245 cpumR3CheckLeakyFpu(pVM);
2246#endif
2247
2248 /*
2249 * Initialize the Guest CPUID and MSR states.
2250 */
2251 rc = cpumR3InitCpuIdAndMsrs(pVM, &HostMsrs);
2252 if (RT_FAILURE(rc))
2253 return rc;
2254
2255 /*
2256 * Generate the RFLAGS cookie.
2257 */
2258 pVM->cpum.s.fReservedRFlagsCookie = RTRandU64() & ~(CPUMX86EFLAGS_HW_MASK_64 | CPUMX86EFLAGS_INT_MASK_64);
2259
2260 /*
2261 * Init the VMX/SVM state.
2262 *
2263 * This must be done after initializing CPUID/MSR features as we access the
2264 * the VMX/SVM guest features below.
2265 *
2266 * In the case of nested VT-x, we also need to create the per-VCPU
2267 * VMX preemption timers.
2268 */
2269 if (pVM->cpum.s.GuestFeatures.fVmx)
2270 cpumR3InitVmxHwVirtState(pVM);
2271 else if (pVM->cpum.s.GuestFeatures.fSvm)
2272 cpumR3InitSvmHwVirtState(pVM);
2273 else
2274 Assert(pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.enmHwvirt == CPUMHWVIRT_NONE);
2275
2276 /*
2277 * Initialize the general guest CPU state.
2278 */
2279 CPUMR3Reset(pVM);
2280
2281 return VINF_SUCCESS;
2282}
2283
2284
2285/**
2286 * Applies relocations to data and code managed by this
2287 * component. This function will be called at init and
2288 * whenever the VMM need to relocate it self inside the GC.
2289 *
2290 * The CPUM will update the addresses used by the switcher.
2291 *
2292 * @param pVM The cross context VM structure.
2293 */
2294VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
2295{
2296 RT_NOREF(pVM);
2297}
2298
2299
2300/**
2301 * Terminates the CPUM.
2302 *
2303 * Termination means cleaning up and freeing all resources,
2304 * the VM it self is at this point powered off or suspended.
2305 *
2306 * @returns VBox status code.
2307 * @param pVM The cross context VM structure.
2308 */
2309VMMR3DECL(int) CPUMR3Term(PVM pVM)
2310{
2311#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2312 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2313 {
2314 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2315 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
2316 pVCpu->cpum.s.uMagic = 0;
2317 pvCpu->cpum.s.Guest.dr[5] = 0;
2318 }
2319#endif
2320
2321 if (pVM->cpum.s.GuestFeatures.fVmx)
2322 {
2323 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2324 {
2325 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2326 if (pVCpu->cpum.s.hNestedVmxPreemptTimer != NIL_TMTIMERHANDLE)
2327 {
2328 int rc = TMR3TimerDestroy(pVM, pVCpu->cpum.s.hNestedVmxPreemptTimer); AssertRC(rc);
2329 pVCpu->cpum.s.hNestedVmxPreemptTimer = NIL_TMTIMERHANDLE;
2330 }
2331 }
2332 }
2333 return VINF_SUCCESS;
2334}
2335
2336
2337/**
2338 * Resets a virtual CPU.
2339 *
2340 * Used by CPUMR3Reset and CPU hot plugging.
2341 *
2342 * @param pVM The cross context VM structure.
2343 * @param pVCpu The cross context virtual CPU structure of the CPU that is
2344 * being reset. This may differ from the current EMT.
2345 */
2346VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2347{
2348 /** @todo anything different for VCPU > 0? */
2349 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2350
2351 /*
2352 * Initialize everything to ZERO first.
2353 */
2354 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
2355
2356 RT_BZERO(pCtx, RT_UOFFSETOF(CPUMCTX, aoffXState));
2357
2358 pVCpu->cpum.s.fUseFlags = fUseFlags;
2359
2360 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
2361 pCtx->eip = 0x0000fff0;
2362 pCtx->edx = 0x00000600; /* P6 processor */
2363
2364 Assert((pVM->cpum.s.fReservedRFlagsCookie & (X86_EFL_LIVE_MASK | X86_EFL_RAZ_LO_MASK | X86_EFL_RA1_MASK)) == 0);
2365 pCtx->rflags.uBoth = pVM->cpum.s.fReservedRFlagsCookie | X86_EFL_RA1_MASK;
2366
2367 pCtx->cs.Sel = 0xf000;
2368 pCtx->cs.ValidSel = 0xf000;
2369 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2370 pCtx->cs.u64Base = UINT64_C(0xffff0000);
2371 pCtx->cs.u32Limit = 0x0000ffff;
2372 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
2373 pCtx->cs.Attr.n.u1Present = 1;
2374 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
2375
2376 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
2377 pCtx->ds.u32Limit = 0x0000ffff;
2378 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
2379 pCtx->ds.Attr.n.u1Present = 1;
2380 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2381
2382 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
2383 pCtx->es.u32Limit = 0x0000ffff;
2384 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
2385 pCtx->es.Attr.n.u1Present = 1;
2386 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2387
2388 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
2389 pCtx->fs.u32Limit = 0x0000ffff;
2390 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
2391 pCtx->fs.Attr.n.u1Present = 1;
2392 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2393
2394 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
2395 pCtx->gs.u32Limit = 0x0000ffff;
2396 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
2397 pCtx->gs.Attr.n.u1Present = 1;
2398 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2399
2400 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
2401 pCtx->ss.u32Limit = 0x0000ffff;
2402 pCtx->ss.Attr.n.u1Present = 1;
2403 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
2404 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2405
2406 pCtx->idtr.cbIdt = 0xffff;
2407 pCtx->gdtr.cbGdt = 0xffff;
2408
2409 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2410 pCtx->ldtr.u32Limit = 0xffff;
2411 pCtx->ldtr.Attr.n.u1Present = 1;
2412 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
2413
2414 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2415 pCtx->tr.u32Limit = 0xffff;
2416 pCtx->tr.Attr.n.u1Present = 1;
2417 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
2418
2419 pCtx->dr[6] = X86_DR6_INIT_VAL;
2420 pCtx->dr[7] = X86_DR7_INIT_VAL;
2421
2422 PX86FXSTATE pFpuCtx = &pCtx->XState.x87;
2423 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
2424 pFpuCtx->FCW = 0x37f;
2425
2426 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
2427 IA-32 Processor States Following Power-up, Reset, or INIT */
2428 pFpuCtx->MXCSR = 0x1F80;
2429 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
2430
2431 pCtx->aXcr[0] = XSAVE_C_X87;
2432 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr))
2433 {
2434 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
2435 as we don't know what happened before. (Bother optimize later?) */
2436 pCtx->XState.Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
2437 }
2438
2439 /*
2440 * MSRs.
2441 */
2442 /* Init PAT MSR */
2443 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
2444
2445 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
2446 * The Intel docs don't mention it. */
2447 Assert(!pCtx->msrEFER);
2448
2449 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
2450 is supposed to be here, just trying provide useful/sensible values. */
2451 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
2452 if (pRange)
2453 {
2454 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2455 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
2456 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
2457 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
2458 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2459 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
2460 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
2461 }
2462
2463 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
2464
2465 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
2466 * called from each EMT while we're getting called by CPUMR3Reset()
2467 * iteratively on the same thread. Fix later. */
2468#if 0 /** @todo r=bird: This we will do in TM, not here. */
2469 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
2470 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
2471#endif
2472
2473
2474 /* C-state control. Guesses. */
2475 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
2476 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
2477 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
2478 * functionality. The default value must be different due to incompatible write mask.
2479 */
2480 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
2481 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
2482 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
2483 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
2484
2485 /*
2486 * Hardware virtualization state.
2487 */
2488 CPUMSetGuestGif(pCtx, true);
2489 Assert(!pVM->cpum.s.GuestFeatures.fVmx || !pVM->cpum.s.GuestFeatures.fSvm); /* Paranoia. */
2490 if (pVM->cpum.s.GuestFeatures.fVmx)
2491 cpumR3ResetVmxHwVirtState(pVCpu);
2492 else if (pVM->cpum.s.GuestFeatures.fSvm)
2493 cpumR3ResetSvmHwVirtState(pVCpu);
2494}
2495
2496
2497/**
2498 * Resets the CPU.
2499 *
2500 * @param pVM The cross context VM structure.
2501 */
2502VMMR3DECL(void) CPUMR3Reset(PVM pVM)
2503{
2504 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2505 {
2506 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2507 CPUMR3ResetCpu(pVM, pVCpu);
2508
2509#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2510
2511 /* Magic marker for searching in crash dumps. */
2512 strcpy((char *)pVCpu->.cpum.s.aMagic, "CPUMCPU Magic");
2513 pVCpu->cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
2514 pVCpu->cpum.s.Guest->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
2515#endif
2516 }
2517}
2518
2519
2520
2521
2522/**
2523 * Pass 0 live exec callback.
2524 *
2525 * @returns VINF_SSM_DONT_CALL_AGAIN.
2526 * @param pVM The cross context VM structure.
2527 * @param pSSM The saved state handle.
2528 * @param uPass The pass (0).
2529 */
2530static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2531{
2532 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
2533 cpumR3SaveCpuId(pVM, pSSM);
2534 return VINF_SSM_DONT_CALL_AGAIN;
2535}
2536
2537
2538/**
2539 * Execute state save operation.
2540 *
2541 * @returns VBox status code.
2542 * @param pVM The cross context VM structure.
2543 * @param pSSM SSM operation handle.
2544 */
2545static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2546{
2547 /*
2548 * Save.
2549 */
2550 SSMR3PutU32(pSSM, pVM->cCpus);
2551 SSMR3PutU32(pSSM, sizeof(pVM->apCpusR3[0]->cpum.s.GuestMsrs.msr));
2552 CPUMCTX DummyHyperCtx;
2553 RT_ZERO(DummyHyperCtx);
2554 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2555 {
2556 PVMCPU const pVCpu = pVM->apCpusR3[idCpu];
2557 PCPUMCTX const pGstCtx = &pVCpu->cpum.s.Guest;
2558
2559 /** @todo ditch this the next time we change the saved state. */
2560 SSMR3PutStructEx(pSSM, &DummyHyperCtx, sizeof(DummyHyperCtx), 0, g_aCpumCtxFields, NULL);
2561
2562 uint64_t const fSavedRFlags = pGstCtx->rflags.uBoth;
2563 pGstCtx->rflags.uBoth &= CPUMX86EFLAGS_HW_MASK_64; /* Temporarily clear the non-hardware bits in RFLAGS while saving. */
2564 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2565 pGstCtx->rflags.uBoth = fSavedRFlags;
2566
2567 SSMR3PutStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87), 0, g_aCpumX87Fields, NULL);
2568 if (pGstCtx->fXStateMask != 0)
2569 SSMR3PutStructEx(pSSM, &pGstCtx->XState.Hdr, sizeof(pGstCtx->XState.Hdr), 0, g_aCpumXSaveHdrFields, NULL);
2570 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2571 {
2572 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2573 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2574 }
2575 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2576 {
2577 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2578 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2579 }
2580 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2581 {
2582 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2583 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2584 }
2585 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2586 {
2587 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2588 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2589 }
2590 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2591 {
2592 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2593 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2594 }
2595 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[0].u);
2596 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[1].u);
2597 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[2].u);
2598 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[3].u);
2599 if (pVM->cpum.s.GuestFeatures.fSvm)
2600 {
2601 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
2602 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
2603 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
2604 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
2605 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2606 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
2607 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
2608 g_aSvmHwvirtHostState, NULL /* pvUser */);
2609 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.Vmcb, sizeof(pGstCtx->hwvirt.svm.Vmcb));
2610 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.svm.abMsrBitmap));
2611 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.abIoBitmap[0], sizeof(pGstCtx->hwvirt.svm.abIoBitmap));
2612 /* This is saved in the old VMCPUM_FF format. Change if more flags are added. */
2613 SSMR3PutU32(pSSM, pGstCtx->hwvirt.fSavedInhibit & CPUMCTX_INHIBIT_NMI ? CPUM_OLD_VMCPU_FF_BLOCK_NMIS : 0);
2614 SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
2615 }
2616 if (pVM->cpum.s.GuestFeatures.fVmx)
2617 {
2618 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmxon);
2619 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmcs);
2620 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2621 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxRootMode);
2622 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2623 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInterceptEvents);
2624 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2625 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.vmx.Vmcs, sizeof(pGstCtx->hwvirt.vmx.Vmcs), 0, g_aVmxHwvirtVmcs, NULL);
2626 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.vmx.ShadowVmcs, sizeof(pGstCtx->hwvirt.vmx.ShadowVmcs),
2627 0, g_aVmxHwvirtVmcs, NULL);
2628 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abVmreadBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmreadBitmap));
2629 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abVmwriteBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmwriteBitmap));
2630 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aEntryMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aEntryMsrLoadArea));
2631 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrStoreArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrStoreArea));
2632 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrLoadArea));
2633 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abMsrBitmap));
2634 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abIoBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abIoBitmap));
2635 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2636 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uPrevPauseTick);
2637 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uEntryTick);
2638 SSMR3PutU16(pSSM, pGstCtx->hwvirt.vmx.offVirtApicWrite);
2639 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2640 SSMR3PutU64(pSSM, MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON); /* Deprecated since 2021/09/22. Value kept backwards compatibile with 6.1.26. */
2641 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2642 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2643 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2644 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2645 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2646 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2647 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2648 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2649 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2650 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2651 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2652 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2653 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2654 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2655 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2656 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2657 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2658 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2659 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64ProcCtls3);
2660 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64ExitCtls2);
2661 }
2662 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
2663 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
2664 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
2665 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
2666 }
2667
2668 cpumR3SaveCpuId(pVM, pSSM);
2669 return VINF_SUCCESS;
2670}
2671
2672
2673/**
2674 * @callback_method_impl{FNSSMINTLOADPREP}
2675 */
2676static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2677{
2678 NOREF(pSSM);
2679 pVM->cpum.s.fPendingRestore = true;
2680 return VINF_SUCCESS;
2681}
2682
2683
2684/**
2685 * @callback_method_impl{FNSSMINTLOADEXEC}
2686 */
2687static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2688{
2689 int rc; /* Only for AssertRCReturn use. */
2690
2691 /*
2692 * Validate version.
2693 */
2694 if ( uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_4
2695 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_3
2696 && uVersion != CPUM_SAVED_STATE_VERSION_PAE_PDPES
2697 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2
2698 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX
2699 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
2700 && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
2701 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
2702 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
2703 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
2704 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
2705 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
2706 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2707 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2708 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2709 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2710 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2711 {
2712 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2713 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2714 }
2715
2716 if (uPass == SSM_PASS_FINAL)
2717 {
2718 /*
2719 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2720 * really old SSM file versions.)
2721 */
2722 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2723 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2724 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2725 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR));
2726
2727 /*
2728 * Figure x86 and ctx field definitions to use for older states.
2729 */
2730 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
2731 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
2732 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
2733 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2734 {
2735 paCpumCtx1Fields = g_aCpumX87FieldsV16;
2736 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
2737 }
2738 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2739 {
2740 paCpumCtx1Fields = g_aCpumX87FieldsMem;
2741 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
2742 }
2743
2744 /*
2745 * The hyper state used to preceed the CPU count. Starting with
2746 * XSAVE it was moved down till after we've got the count.
2747 */
2748 CPUMCTX HyperCtxIgnored;
2749 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
2750 {
2751 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2752 {
2753 X86FXSTATE Ign;
2754 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2755 SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored),
2756 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2757 }
2758 }
2759
2760 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2761 {
2762 uint32_t cCpus;
2763 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2764 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2765 VERR_SSM_UNEXPECTED_DATA);
2766 }
2767 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
2768 || pVM->cCpus == 1,
2769 ("cCpus=%u\n", pVM->cCpus),
2770 VERR_SSM_UNEXPECTED_DATA);
2771
2772 uint32_t cbMsrs = 0;
2773 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2774 {
2775 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
2776 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
2777 VERR_SSM_UNEXPECTED_DATA);
2778 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
2779 VERR_SSM_UNEXPECTED_DATA);
2780 }
2781
2782 /*
2783 * Do the per-CPU restoring.
2784 */
2785 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2786 {
2787 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2788 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2789
2790 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
2791 {
2792 /*
2793 * The XSAVE saved state layout moved the hyper state down here.
2794 */
2795 rc = SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored), 0, g_aCpumCtxFields, NULL);
2796 AssertRCReturn(rc, rc);
2797
2798 /*
2799 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
2800 */
2801 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2802 rc = SSMR3GetStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87), 0, g_aCpumX87Fields, NULL);
2803 AssertRCReturn(rc, rc);
2804
2805 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
2806 if (pGstCtx->fXStateMask != 0)
2807 {
2808 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
2809 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
2810 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
2811 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
2812 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
2813 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2814 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2815 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2816 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2817 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2818 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2819 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2820 }
2821
2822 /* Check that the XCR0 mask is valid (invalid results in #GP). */
2823 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
2824 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
2825 {
2826 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
2827 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
2828 VERR_CPUM_INVALID_XCR0);
2829 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
2830 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2831 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2832 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2833 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2834 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2835 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2836 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2837 }
2838
2839 /* Check that the XCR1 is zero, as we don't implement it yet. */
2840 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2841
2842 /*
2843 * Restore the individual extended state components we support.
2844 */
2845 if (pGstCtx->fXStateMask != 0)
2846 {
2847 rc = SSMR3GetStructEx(pSSM, &pGstCtx->XState.Hdr, sizeof(pGstCtx->XState.Hdr),
2848 0, g_aCpumXSaveHdrFields, NULL);
2849 AssertRCReturn(rc, rc);
2850 AssertLogRelMsgReturn(!(pGstCtx->XState.Hdr.bmXState & ~pGstCtx->fXStateMask),
2851 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
2852 pGstCtx->XState.Hdr.bmXState, pGstCtx->fXStateMask),
2853 VERR_CPUM_INVALID_XSAVE_HDR);
2854 }
2855 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2856 {
2857 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
2858 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2859 }
2860 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2861 {
2862 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
2863 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2864 }
2865 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2866 {
2867 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
2868 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2869 }
2870 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2871 {
2872 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
2873 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2874 }
2875 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2876 {
2877 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
2878 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2879 }
2880 if (uVersion >= CPUM_SAVED_STATE_VERSION_PAE_PDPES)
2881 {
2882 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[0].u);
2883 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[1].u);
2884 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[2].u);
2885 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[3].u);
2886 }
2887 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
2888 {
2889 if (pVM->cpum.s.GuestFeatures.fSvm)
2890 {
2891 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
2892 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
2893 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
2894 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
2895 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2896 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
2897 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
2898 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
2899 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.Vmcb, sizeof(pGstCtx->hwvirt.svm.Vmcb));
2900 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.svm.abMsrBitmap));
2901 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.abIoBitmap[0], sizeof(pGstCtx->hwvirt.svm.abIoBitmap));
2902
2903 uint32_t fSavedLocalFFs = 0;
2904 rc = SSMR3GetU32(pSSM, &fSavedLocalFFs);
2905 AssertRCReturn(rc, rc);
2906 Assert(fSavedLocalFFs == 0 || fSavedLocalFFs == CPUM_OLD_VMCPU_FF_BLOCK_NMIS);
2907 pGstCtx->hwvirt.fSavedInhibit = fSavedLocalFFs & CPUM_OLD_VMCPU_FF_BLOCK_NMIS ? CPUMCTX_INHIBIT_NMI : 0;
2908
2909 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
2910 }
2911 }
2912 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX)
2913 {
2914 if (pVM->cpum.s.GuestFeatures.fVmx)
2915 {
2916 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmxon);
2917 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmcs);
2918 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2919 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxRootMode);
2920 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2921 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInterceptEvents);
2922 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2923 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.vmx.Vmcs, sizeof(pGstCtx->hwvirt.vmx.Vmcs),
2924 0, g_aVmxHwvirtVmcs, NULL);
2925 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.vmx.ShadowVmcs, sizeof(pGstCtx->hwvirt.vmx.ShadowVmcs),
2926 0, g_aVmxHwvirtVmcs, NULL);
2927 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abVmreadBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmreadBitmap));
2928 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abVmwriteBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmwriteBitmap));
2929 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aEntryMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aEntryMsrLoadArea));
2930 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrStoreArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrStoreArea));
2931 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrLoadArea));
2932 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abMsrBitmap));
2933 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abIoBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abIoBitmap));
2934 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2935 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uPrevPauseTick);
2936 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uEntryTick);
2937 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.vmx.offVirtApicWrite);
2938 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2939 SSMR3Skip(pSSM, sizeof(uint64_t)); /* Unused - used to be IA32_FEATURE_CONTROL, see @bugref{10106}. */
2940 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2941 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2942 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2943 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2944 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2945 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2946 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2947 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2948 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2949 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2950 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2951 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2952 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2953 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2954 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2955 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2956 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2957 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2958 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2)
2959 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64ProcCtls3);
2960 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_3)
2961 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64ExitCtls2);
2962 }
2963 }
2964 }
2965 else
2966 {
2967 /*
2968 * Pre XSAVE saved state.
2969 */
2970 SSMR3GetStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87),
2971 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2972 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2973 }
2974
2975 /*
2976 * Restore a couple of flags and the MSRs.
2977 */
2978 uint32_t fIgnoredUsedFlags = 0;
2979 rc = SSMR3GetU32(pSSM, &fIgnoredUsedFlags); /* we're recalc the two relevant flags after loading state. */
2980 AssertRCReturn(rc, rc);
2981 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
2982
2983 rc = VINF_SUCCESS;
2984 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2985 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
2986 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2987 {
2988 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
2989 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
2990 }
2991 AssertRCReturn(rc, rc);
2992
2993 /* Deal with the reusing of reserved RFLAGS bits. */
2994 pGstCtx->rflags.uBoth |= pVM->cpum.s.fReservedRFlagsCookie;
2995
2996 /* REM and other may have cleared must-be-one fields in DR6 and
2997 DR7, fix these. */
2998 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
2999 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
3000 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
3001 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
3002 }
3003
3004 /* Older states does not have the internal selector register flags
3005 and valid selector value. Supply those. */
3006 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
3007 {
3008 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3009 {
3010 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3011 bool const fValid = true /*!VM_IS_RAW_MODE_ENABLED(pVM)*/
3012 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
3013 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
3014 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
3015 if (fValid)
3016 {
3017 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
3018 {
3019 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
3020 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
3021 }
3022
3023 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
3024 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
3025 }
3026 else
3027 {
3028 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
3029 {
3030 paSelReg[iSelReg].fFlags = 0;
3031 paSelReg[iSelReg].ValidSel = 0;
3032 }
3033
3034 /* This might not be 104% correct, but I think it's close
3035 enough for all practical purposes... (REM always loaded
3036 LDTR registers.) */
3037 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
3038 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
3039 }
3040 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
3041 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
3042 }
3043 }
3044
3045 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
3046 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
3047 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
3048 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3049 {
3050 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3051 pVCpu->cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
3052 }
3053
3054 /*
3055 * A quick sanity check.
3056 */
3057 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3058 {
3059 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3060 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3061 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3062 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3063 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3064 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3065 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
3066 }
3067 }
3068
3069 pVM->cpum.s.fPendingRestore = false;
3070
3071 /*
3072 * Guest CPUIDs (and VMX MSR features).
3073 */
3074 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
3075 {
3076 CPUMMSRS GuestMsrs;
3077 RT_ZERO(GuestMsrs);
3078
3079 CPUMFEATURES BaseFeatures;
3080 bool const fVmxGstFeat = pVM->cpum.s.GuestFeatures.fVmx;
3081 if (fVmxGstFeat)
3082 {
3083 /*
3084 * At this point the MSRs in the guest CPU-context are loaded with the guest VMX MSRs from the saved state.
3085 * However the VMX sub-features have not been exploded yet. So cache the base (host derived) VMX features
3086 * here so we can compare them for compatibility after exploding guest features.
3087 */
3088 BaseFeatures = pVM->cpum.s.GuestFeatures;
3089
3090 /* Use the VMX MSR features from the saved state while exploding guest features. */
3091 GuestMsrs.hwvirt.vmx = pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.vmx.Msrs;
3092 }
3093
3094 /* Load CPUID and explode guest features. */
3095 rc = cpumR3LoadCpuId(pVM, pSSM, uVersion, &GuestMsrs);
3096 if (fVmxGstFeat)
3097 {
3098 /*
3099 * Check if the exploded VMX features from the saved state are compatible with the host-derived features
3100 * we cached earlier (above). The is required if we use hardware-assisted nested-guest execution with
3101 * VMX features presented to the guest.
3102 */
3103 bool const fIsCompat = cpumR3AreVmxCpuFeaturesCompatible(pVM, &BaseFeatures, &pVM->cpum.s.GuestFeatures);
3104 if (!fIsCompat)
3105 return VERR_CPUM_INVALID_HWVIRT_FEAT_COMBO;
3106 }
3107 return rc;
3108 }
3109 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
3110}
3111
3112
3113/**
3114 * @callback_method_impl{FNSSMINTLOADDONE}
3115 */
3116static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
3117{
3118 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
3119 return VINF_SUCCESS;
3120
3121 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
3122 if (pVM->cpum.s.fPendingRestore)
3123 {
3124 LogRel(("CPUM: Missing state!\n"));
3125 return VERR_INTERNAL_ERROR_2;
3126 }
3127
3128 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
3129 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3130 {
3131 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3132
3133 /* Notify PGM of the NXE states in case they've changed. */
3134 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
3135
3136 /* During init. this is done in CPUMR3InitCompleted(). */
3137 if (fSupportsLongMode)
3138 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
3139
3140 /* Recalc the CPUM_USE_DEBUG_REGS_HYPER value. */
3141 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX);
3142 }
3143 return VINF_SUCCESS;
3144}
3145
3146
3147/**
3148 * Checks if the CPUM state restore is still pending.
3149 *
3150 * @returns true / false.
3151 * @param pVM The cross context VM structure.
3152 */
3153VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
3154{
3155 return pVM->cpum.s.fPendingRestore;
3156}
3157
3158
3159/**
3160 * Formats the EFLAGS value into mnemonics.
3161 *
3162 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
3163 * @param efl The EFLAGS value with both guest hardware and VBox
3164 * internal bits included.
3165 */
3166static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
3167{
3168 /*
3169 * Format the flags.
3170 */
3171 static const struct
3172 {
3173 const char *pszSet; const char *pszClear; uint32_t fFlag;
3174 } s_aFlags[] =
3175 {
3176 { "vip",NULL, X86_EFL_VIP },
3177 { "vif",NULL, X86_EFL_VIF },
3178 { "ac", NULL, X86_EFL_AC },
3179 { "vm", NULL, X86_EFL_VM },
3180 { "rf", NULL, X86_EFL_RF },
3181 { "nt", NULL, X86_EFL_NT },
3182 { "ov", "nv", X86_EFL_OF },
3183 { "dn", "up", X86_EFL_DF },
3184 { "ei", "di", X86_EFL_IF },
3185 { "tf", NULL, X86_EFL_TF },
3186 { "nt", "pl", X86_EFL_SF },
3187 { "nz", "zr", X86_EFL_ZF },
3188 { "ac", "na", X86_EFL_AF },
3189 { "po", "pe", X86_EFL_PF },
3190 { "cy", "nc", X86_EFL_CF },
3191 { "inh-ss", NULL, CPUMCTX_INHIBIT_SHADOW_SS },
3192 { "inh-sti", NULL, CPUMCTX_INHIBIT_SHADOW_STI },
3193 { "inh-nmi", NULL, CPUMCTX_INHIBIT_NMI },
3194 };
3195 char *psz = pszEFlags;
3196 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
3197 {
3198 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
3199 if (pszAdd)
3200 {
3201 strcpy(psz, pszAdd);
3202 psz += strlen(pszAdd);
3203 *psz++ = ' ';
3204 }
3205 }
3206 psz[-1] = '\0';
3207}
3208
3209
3210/**
3211 * Formats a full register dump.
3212 *
3213 * @param pVM The cross context VM structure.
3214 * @param pVCpu The cross context virtual CPU structure.
3215 * @param pHlp Output functions.
3216 * @param enmType The dump type.
3217 * @param pszPrefix Register name prefix.
3218 */
3219static void cpumR3InfoOne(PVM pVM, PCVMCPU pVCpu, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType, const char *pszPrefix)
3220{
3221 PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3222
3223 /*
3224 * Format the EFLAGS.
3225 */
3226 char szEFlags[80];
3227 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->eflags.uBoth);
3228
3229 /*
3230 * Format the registers.
3231 */
3232 uint32_t const efl = pCtx->eflags.u;
3233 switch (enmType)
3234 {
3235 case CPUMDUMPTYPE_TERSE:
3236 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3237 pHlp->pfnPrintf(pHlp,
3238 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3239 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3240 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3241 "%sr14=%016RX64 %sr15=%016RX64\n"
3242 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3243 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3244 pszPrefix, pCtx->rax, pszPrefix, pCtx->rbx, pszPrefix, pCtx->rcx, pszPrefix, pCtx->rdx, pszPrefix, pCtx->rsi, pszPrefix, pCtx->rdi,
3245 pszPrefix, pCtx->r8, pszPrefix, pCtx->r9, pszPrefix, pCtx->r10, pszPrefix, pCtx->r11, pszPrefix, pCtx->r12, pszPrefix, pCtx->r13,
3246 pszPrefix, pCtx->r14, pszPrefix, pCtx->r15,
3247 pszPrefix, pCtx->rip, pszPrefix, pCtx->rsp, pszPrefix, pCtx->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3248 pszPrefix, pCtx->cs.Sel, pszPrefix, pCtx->ss.Sel, pszPrefix, pCtx->ds.Sel, pszPrefix, pCtx->es.Sel,
3249 pszPrefix, pCtx->fs.Sel, pszPrefix, pCtx->gs.Sel, pszPrefix, efl);
3250 else
3251 pHlp->pfnPrintf(pHlp,
3252 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3253 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3254 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3255 pszPrefix, pCtx->eax, pszPrefix, pCtx->ebx, pszPrefix, pCtx->ecx, pszPrefix, pCtx->edx, pszPrefix, pCtx->esi, pszPrefix, pCtx->edi,
3256 pszPrefix, pCtx->eip, pszPrefix, pCtx->esp, pszPrefix, pCtx->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3257 pszPrefix, pCtx->cs.Sel, pszPrefix, pCtx->ss.Sel, pszPrefix, pCtx->ds.Sel, pszPrefix, pCtx->es.Sel,
3258 pszPrefix, pCtx->fs.Sel, pszPrefix, pCtx->gs.Sel, pszPrefix, efl);
3259 break;
3260
3261 case CPUMDUMPTYPE_DEFAULT:
3262 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3263 pHlp->pfnPrintf(pHlp,
3264 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3265 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3266 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3267 "%sr14=%016RX64 %sr15=%016RX64\n"
3268 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3269 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3270 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
3271 ,
3272 pszPrefix, pCtx->rax, pszPrefix, pCtx->rbx, pszPrefix, pCtx->rcx, pszPrefix, pCtx->rdx, pszPrefix, pCtx->rsi, pszPrefix, pCtx->rdi,
3273 pszPrefix, pCtx->r8, pszPrefix, pCtx->r9, pszPrefix, pCtx->r10, pszPrefix, pCtx->r11, pszPrefix, pCtx->r12, pszPrefix, pCtx->r13,
3274 pszPrefix, pCtx->r14, pszPrefix, pCtx->r15,
3275 pszPrefix, pCtx->rip, pszPrefix, pCtx->rsp, pszPrefix, pCtx->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3276 pszPrefix, pCtx->cs.Sel, pszPrefix, pCtx->ss.Sel, pszPrefix, pCtx->ds.Sel, pszPrefix, pCtx->es.Sel,
3277 pszPrefix, pCtx->fs.Sel, pszPrefix, pCtx->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3278 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3279 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3280 else
3281 pHlp->pfnPrintf(pHlp,
3282 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3283 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3284 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3285 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
3286 ,
3287 pszPrefix, pCtx->eax, pszPrefix, pCtx->ebx, pszPrefix, pCtx->ecx, pszPrefix, pCtx->edx, pszPrefix, pCtx->esi, pszPrefix, pCtx->edi,
3288 pszPrefix, pCtx->eip, pszPrefix, pCtx->esp, pszPrefix, pCtx->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3289 pszPrefix, pCtx->cs.Sel, pszPrefix, pCtx->ss.Sel, pszPrefix, pCtx->ds.Sel, pszPrefix, pCtx->es.Sel,
3290 pszPrefix, pCtx->fs.Sel, pszPrefix, pCtx->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3291 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3292 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3293 break;
3294
3295 case CPUMDUMPTYPE_VERBOSE:
3296 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3297 pHlp->pfnPrintf(pHlp,
3298 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3299 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3300 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3301 "%sr14=%016RX64 %sr15=%016RX64\n"
3302 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3303 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3304 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3305 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3306 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3307 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3308 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3309 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
3310 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
3311 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
3312 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3313 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3314 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3315 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
3316 ,
3317 pszPrefix, pCtx->rax, pszPrefix, pCtx->rbx, pszPrefix, pCtx->rcx, pszPrefix, pCtx->rdx, pszPrefix, pCtx->rsi, pszPrefix, pCtx->rdi,
3318 pszPrefix, pCtx->r8, pszPrefix, pCtx->r9, pszPrefix, pCtx->r10, pszPrefix, pCtx->r11, pszPrefix, pCtx->r12, pszPrefix, pCtx->r13,
3319 pszPrefix, pCtx->r14, pszPrefix, pCtx->r15,
3320 pszPrefix, pCtx->rip, pszPrefix, pCtx->rsp, pszPrefix, pCtx->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3321 pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
3322 pszPrefix, pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
3323 pszPrefix, pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
3324 pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
3325 pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
3326 pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
3327 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3328 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3329 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3330 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3331 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3332 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3333 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3334 else
3335 pHlp->pfnPrintf(pHlp,
3336 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3337 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3338 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
3339 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
3340 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
3341 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
3342 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
3343 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
3344 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3345 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3346 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3347 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
3348 ,
3349 pszPrefix, pCtx->eax, pszPrefix, pCtx->ebx, pszPrefix, pCtx->ecx, pszPrefix, pCtx->edx, pszPrefix, pCtx->esi, pszPrefix, pCtx->edi,
3350 pszPrefix, pCtx->eip, pszPrefix, pCtx->esp, pszPrefix, pCtx->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3351 pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
3352 pszPrefix, pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3353 pszPrefix, pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
3354 pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3355 pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
3356 pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3357 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3358 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3359 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3360 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3361
3362 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
3363 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
3364 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
3365 {
3366 PCX86FXSTATE pFpuCtx = &pCtx->XState.x87;
3367 pHlp->pfnPrintf(pHlp,
3368 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
3369 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
3370 ,
3371 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
3372 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
3373 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
3374 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
3375 );
3376 /*
3377 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
3378 * not (FP)R0-7 as Intel SDM suggests.
3379 */
3380 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
3381 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
3382 {
3383 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
3384 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
3385 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
3386 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
3387 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
3388 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
3389 iExponent -= 16383; /* subtract bias */
3390 /** @todo This isn't entirenly correct and needs more work! */
3391 pHlp->pfnPrintf(pHlp,
3392 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
3393 pszPrefix, iST, pszPrefix, iFPR,
3394 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
3395 uTag, chSign, iInteger, u64Fraction, iExponent);
3396 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
3397 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
3398 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
3399 else
3400 pHlp->pfnPrintf(pHlp, "\n");
3401 }
3402
3403 /* XMM/YMM/ZMM registers. */
3404 if (pCtx->fXStateMask & XSAVE_C_YMM)
3405 {
3406 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
3407 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
3408 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3409 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3410 pszPrefix, i, i < 10 ? " " : "",
3411 pYmmHiCtx->aYmmHi[i].au32[3],
3412 pYmmHiCtx->aYmmHi[i].au32[2],
3413 pYmmHiCtx->aYmmHi[i].au32[1],
3414 pYmmHiCtx->aYmmHi[i].au32[0],
3415 pFpuCtx->aXMM[i].au32[3],
3416 pFpuCtx->aXMM[i].au32[2],
3417 pFpuCtx->aXMM[i].au32[1],
3418 pFpuCtx->aXMM[i].au32[0]);
3419 else
3420 {
3421 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
3422 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3423 pHlp->pfnPrintf(pHlp,
3424 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3425 pszPrefix, i, i < 10 ? " " : "",
3426 pZmmHi256->aHi256Regs[i].au32[7],
3427 pZmmHi256->aHi256Regs[i].au32[6],
3428 pZmmHi256->aHi256Regs[i].au32[5],
3429 pZmmHi256->aHi256Regs[i].au32[4],
3430 pZmmHi256->aHi256Regs[i].au32[3],
3431 pZmmHi256->aHi256Regs[i].au32[2],
3432 pZmmHi256->aHi256Regs[i].au32[1],
3433 pZmmHi256->aHi256Regs[i].au32[0],
3434 pYmmHiCtx->aYmmHi[i].au32[3],
3435 pYmmHiCtx->aYmmHi[i].au32[2],
3436 pYmmHiCtx->aYmmHi[i].au32[1],
3437 pYmmHiCtx->aYmmHi[i].au32[0],
3438 pFpuCtx->aXMM[i].au32[3],
3439 pFpuCtx->aXMM[i].au32[2],
3440 pFpuCtx->aXMM[i].au32[1],
3441 pFpuCtx->aXMM[i].au32[0]);
3442
3443 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
3444 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
3445 pHlp->pfnPrintf(pHlp,
3446 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3447 pszPrefix, i + 16,
3448 pZmm16Hi->aRegs[i].au32[15],
3449 pZmm16Hi->aRegs[i].au32[14],
3450 pZmm16Hi->aRegs[i].au32[13],
3451 pZmm16Hi->aRegs[i].au32[12],
3452 pZmm16Hi->aRegs[i].au32[11],
3453 pZmm16Hi->aRegs[i].au32[10],
3454 pZmm16Hi->aRegs[i].au32[9],
3455 pZmm16Hi->aRegs[i].au32[8],
3456 pZmm16Hi->aRegs[i].au32[7],
3457 pZmm16Hi->aRegs[i].au32[6],
3458 pZmm16Hi->aRegs[i].au32[5],
3459 pZmm16Hi->aRegs[i].au32[4],
3460 pZmm16Hi->aRegs[i].au32[3],
3461 pZmm16Hi->aRegs[i].au32[2],
3462 pZmm16Hi->aRegs[i].au32[1],
3463 pZmm16Hi->aRegs[i].au32[0]);
3464 }
3465 }
3466 else
3467 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3468 pHlp->pfnPrintf(pHlp,
3469 i & 1
3470 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
3471 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
3472 pszPrefix, i, i < 10 ? " " : "",
3473 pFpuCtx->aXMM[i].au32[3],
3474 pFpuCtx->aXMM[i].au32[2],
3475 pFpuCtx->aXMM[i].au32[1],
3476 pFpuCtx->aXMM[i].au32[0]);
3477
3478 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
3479 {
3480 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
3481 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
3482 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
3483 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
3484 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
3485 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
3486 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
3487 }
3488
3489 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
3490 {
3491 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
3492 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
3493 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
3494 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
3495 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
3496 }
3497
3498 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
3499 {
3500 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
3501 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
3502 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
3503 }
3504
3505 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
3506 if (pFpuCtx->au32RsrvdRest[i])
3507 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
3508 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) );
3509 }
3510
3511 pHlp->pfnPrintf(pHlp,
3512 "%sEFER =%016RX64\n"
3513 "%sPAT =%016RX64\n"
3514 "%sSTAR =%016RX64\n"
3515 "%sCSTAR =%016RX64\n"
3516 "%sLSTAR =%016RX64\n"
3517 "%sSFMASK =%016RX64\n"
3518 "%sKERNELGSBASE =%016RX64\n",
3519 pszPrefix, pCtx->msrEFER,
3520 pszPrefix, pCtx->msrPAT,
3521 pszPrefix, pCtx->msrSTAR,
3522 pszPrefix, pCtx->msrCSTAR,
3523 pszPrefix, pCtx->msrLSTAR,
3524 pszPrefix, pCtx->msrSFMASK,
3525 pszPrefix, pCtx->msrKERNELGSBASE);
3526
3527 if (CPUMIsGuestInPAEModeEx(pCtx))
3528 for (unsigned i = 0; i < RT_ELEMENTS(pCtx->aPaePdpes); i++)
3529 pHlp->pfnPrintf(pHlp, "%sPAE PDPTE %u =%016RX64\n", pszPrefix, i, pCtx->aPaePdpes[i]);
3530
3531 /*
3532 * MTRRs.
3533 */
3534 if (pVM->cpum.s.GuestFeatures.fMtrr)
3535 {
3536 pHlp->pfnPrintf(pHlp,
3537 "%sMTRR_CAP =%016RX64\n"
3538 "%sMTRR_DEF_TYPE =%016RX64\n"
3539 "%sMtrrFix64K_00000 =%016RX64\n"
3540 "%sMtrrFix16K_80000 =%016RX64\n"
3541 "%sMtrrFix16K_A0000 =%016RX64\n"
3542 "%sMtrrFix4K_C0000 =%016RX64\n"
3543 "%sMtrrFix4K_C8000 =%016RX64\n"
3544 "%sMtrrFix4K_D0000 =%016RX64\n"
3545 "%sMtrrFix4K_D8000 =%016RX64\n"
3546 "%sMtrrFix4K_E0000 =%016RX64\n"
3547 "%sMtrrFix4K_E8000 =%016RX64\n"
3548 "%sMtrrFix4K_F0000 =%016RX64\n"
3549 "%sMtrrFix4K_F8000 =%016RX64\n",
3550 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrCap,
3551 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrDefType,
3552 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix64K_00000,
3553 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix16K_80000,
3554 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix16K_A0000,
3555 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_C0000,
3556 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_C8000,
3557 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_D0000,
3558 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_D8000,
3559 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_E0000,
3560 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_E8000,
3561 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_F0000,
3562 pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_F8000);
3563
3564 for (uint8_t iRange = 0; iRange < RT_ELEMENTS(pVCpu->cpum.s.GuestMsrs.msr.aMtrrVarMsrs); iRange++)
3565 {
3566 PCX86MTRRVAR pMtrrVar = &pVCpu->cpum.s.GuestMsrs.msr.aMtrrVarMsrs[iRange];
3567 bool const fIsValid = RT_BOOL(pMtrrVar->MtrrPhysMask & MSR_IA32_MTRR_PHYSMASK_VALID);
3568 if (fIsValid)
3569 {
3570 uint64_t const fInvPhysMask = ~(RT_BIT_64(pVM->cpum.s.GuestFeatures.cMaxPhysAddrWidth) - 1U);
3571 RTGCPHYS const GCPhysMask = pMtrrVar->MtrrPhysMask & X86_PAGE_BASE_MASK;
3572 RTGCPHYS const GCPhysFirst = pMtrrVar->MtrrPhysBase & X86_PAGE_BASE_MASK;
3573 RTGCPHYS const GCPhysLast = (GCPhysFirst | ~GCPhysMask) & ~fInvPhysMask;
3574 Assert((GCPhysLast & GCPhysMask) == (GCPhysFirst & GCPhysMask));
3575 Assert(((GCPhysLast + 1) & GCPhysMask) != (GCPhysFirst & GCPhysMask));
3576 pHlp->pfnPrintf(pHlp,
3577 "%sMTRR_PHYSBASE[%2u] =%016RX64 First=%016RX64\n"
3578 "%sMTRR_PHYSMASK[%2u] =%016RX64 Last =%016RX64\n",
3579 pszPrefix, iRange, pMtrrVar->MtrrPhysBase, GCPhysFirst,
3580 pszPrefix, iRange, pMtrrVar->MtrrPhysMask, GCPhysLast);
3581 }
3582 else
3583 pHlp->pfnPrintf(pHlp,
3584 "%sMTRR_PHYSBASE[%2u] =%016RX64\n"
3585 "%sMTRR_PHYSMASK[%2u] =%016RX64\n",
3586 pszPrefix, iRange, pMtrrVar->MtrrPhysBase,
3587 pszPrefix, iRange, pMtrrVar->MtrrPhysMask);
3588 }
3589 }
3590 break;
3591 }
3592}
3593
3594
3595/**
3596 * Display all cpu states and any other cpum info.
3597 *
3598 * @param pVM The cross context VM structure.
3599 * @param pHlp The info helper functions.
3600 * @param pszArgs Arguments, ignored.
3601 */
3602static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3603{
3604 cpumR3InfoGuest(pVM, pHlp, pszArgs);
3605 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
3606 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
3607 cpumR3InfoHyper(pVM, pHlp, pszArgs);
3608 cpumR3InfoHost(pVM, pHlp, pszArgs);
3609}
3610
3611
3612/**
3613 * Parses the info argument.
3614 *
3615 * The argument starts with 'verbose', 'terse' or 'default' and then
3616 * continues with the comment string.
3617 *
3618 * @param pszArgs The pointer to the argument string.
3619 * @param penmType Where to store the dump type request.
3620 * @param ppszComment Where to store the pointer to the comment string.
3621 */
3622static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
3623{
3624 if (!pszArgs)
3625 {
3626 *penmType = CPUMDUMPTYPE_DEFAULT;
3627 *ppszComment = "";
3628 }
3629 else
3630 {
3631 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
3632 {
3633 pszArgs += 7;
3634 *penmType = CPUMDUMPTYPE_VERBOSE;
3635 }
3636 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
3637 {
3638 pszArgs += 5;
3639 *penmType = CPUMDUMPTYPE_TERSE;
3640 }
3641 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
3642 {
3643 pszArgs += 7;
3644 *penmType = CPUMDUMPTYPE_DEFAULT;
3645 }
3646 else
3647 *penmType = CPUMDUMPTYPE_DEFAULT;
3648 *ppszComment = RTStrStripL(pszArgs);
3649 }
3650}
3651
3652
3653/**
3654 * Display the guest cpu state.
3655 *
3656 * @param pVM The cross context VM structure.
3657 * @param pHlp The info helper functions.
3658 * @param pszArgs Arguments.
3659 */
3660static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3661{
3662 CPUMDUMPTYPE enmType;
3663 const char *pszComment;
3664 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3665
3666 PCVMCPU pVCpu = VMMGetCpu(pVM);
3667 if (!pVCpu)
3668 pVCpu = pVM->apCpusR3[0];
3669
3670 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
3671
3672 cpumR3InfoOne(pVM, pVCpu, pHlp, enmType, "");
3673}
3674
3675
3676/**
3677 * Displays an SVM VMCB control area.
3678 *
3679 * @param pHlp The info helper functions.
3680 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
3681 * @param pszPrefix Caller specified string prefix.
3682 */
3683static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
3684{
3685 AssertReturnVoid(pHlp);
3686 AssertReturnVoid(pVmcbCtrl);
3687
3688 pHlp->pfnPrintf(pHlp, "%sCRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
3689 pHlp->pfnPrintf(pHlp, "%sCRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
3690 pHlp->pfnPrintf(pHlp, "%sDRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
3691 pHlp->pfnPrintf(pHlp, "%sDRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
3692 pHlp->pfnPrintf(pHlp, "%sException intercepts = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
3693 pHlp->pfnPrintf(pHlp, "%sControl intercepts = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
3694 pHlp->pfnPrintf(pHlp, "%sPause-filter threshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
3695 pHlp->pfnPrintf(pHlp, "%sPause-filter count = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
3696 pHlp->pfnPrintf(pHlp, "%sIOPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
3697 pHlp->pfnPrintf(pHlp, "%sMSRPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
3698 pHlp->pfnPrintf(pHlp, "%sTSC offset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
3699 pHlp->pfnPrintf(pHlp, "%sTLB Control\n", pszPrefix);
3700 pHlp->pfnPrintf(pHlp, " %sASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
3701 pHlp->pfnPrintf(pHlp, " %sTLB-flush type = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
3702 pHlp->pfnPrintf(pHlp, "%sInterrupt Control\n", pszPrefix);
3703 pHlp->pfnPrintf(pHlp, " %sVTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
3704 pHlp->pfnPrintf(pHlp, " %sVIRQ (Pending) = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
3705 pHlp->pfnPrintf(pHlp, " %sVINTR vector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
3706 pHlp->pfnPrintf(pHlp, " %sVGIF = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
3707 pHlp->pfnPrintf(pHlp, " %sVINTR priority = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
3708 pHlp->pfnPrintf(pHlp, " %sIgnore TPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
3709 pHlp->pfnPrintf(pHlp, " %sVINTR masking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
3710 pHlp->pfnPrintf(pHlp, " %sVGIF enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
3711 pHlp->pfnPrintf(pHlp, " %sAVIC enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
3712 pHlp->pfnPrintf(pHlp, "%sInterrupt Shadow\n", pszPrefix);
3713 pHlp->pfnPrintf(pHlp, " %sInterrupt shadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
3714 pHlp->pfnPrintf(pHlp, " %sGuest-interrupt Mask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
3715 pHlp->pfnPrintf(pHlp, "%sExit Code = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
3716 pHlp->pfnPrintf(pHlp, "%sEXITINFO1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
3717 pHlp->pfnPrintf(pHlp, "%sEXITINFO2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
3718 pHlp->pfnPrintf(pHlp, "%sExit Interrupt Info\n", pszPrefix);
3719 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
3720 pHlp->pfnPrintf(pHlp, " %sVector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
3721 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
3722 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
3723 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
3724 pHlp->pfnPrintf(pHlp, "%sNested paging and SEV\n", pszPrefix);
3725 pHlp->pfnPrintf(pHlp, " %sNested paging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
3726 pHlp->pfnPrintf(pHlp, " %sSEV (Secure Encrypted VM) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
3727 pHlp->pfnPrintf(pHlp, " %sSEV-ES (Encrypted State) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
3728 pHlp->pfnPrintf(pHlp, "%sEvent Inject\n", pszPrefix);
3729 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
3730 pHlp->pfnPrintf(pHlp, " %sVector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
3731 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
3732 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
3733 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
3734 pHlp->pfnPrintf(pHlp, "%sNested-paging CR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
3735 pHlp->pfnPrintf(pHlp, "%sLBR Virtualization\n", pszPrefix);
3736 pHlp->pfnPrintf(pHlp, " %sLBR virt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
3737 pHlp->pfnPrintf(pHlp, " %sVirt. VMSAVE/VMLOAD = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
3738 pHlp->pfnPrintf(pHlp, "%sVMCB Clean Bits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
3739 pHlp->pfnPrintf(pHlp, "%sNext-RIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
3740 pHlp->pfnPrintf(pHlp, "%sInstruction bytes fetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
3741 pHlp->pfnPrintf(pHlp, "%sInstruction bytes = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
3742 pHlp->pfnPrintf(pHlp, "%sAVIC\n", pszPrefix);
3743 pHlp->pfnPrintf(pHlp, " %sBar addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
3744 pHlp->pfnPrintf(pHlp, " %sBacking page addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
3745 pHlp->pfnPrintf(pHlp, " %sLogical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
3746 pHlp->pfnPrintf(pHlp, " %sPhysical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
3747 pHlp->pfnPrintf(pHlp, " %sLast guest core Id = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
3748}
3749
3750
3751/**
3752 * Helper for dumping the SVM VMCB selector registers.
3753 *
3754 * @param pHlp The info helper functions.
3755 * @param pSel Pointer to the SVM selector register.
3756 * @param pszName Name of the selector.
3757 * @param pszPrefix Caller specified string prefix.
3758 */
3759DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
3760{
3761 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
3762 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
3763 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
3764}
3765
3766
3767/**
3768 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
3769 *
3770 * @param pHlp The info helper functions.
3771 * @param pXdtr Pointer to the descriptor table register.
3772 * @param pszName Name of the descriptor table register.
3773 * @param pszPrefix Caller specified string prefix.
3774 */
3775DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
3776{
3777 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
3778 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
3779}
3780
3781
3782/**
3783 * Displays an SVM VMCB state-save area.
3784 *
3785 * @param pHlp The info helper functions.
3786 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
3787 * @param pszPrefix Caller specified string prefix.
3788 */
3789static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
3790{
3791 AssertReturnVoid(pHlp);
3792 AssertReturnVoid(pVmcbStateSave);
3793
3794 char szEFlags[80];
3795 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
3796
3797 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
3798 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
3799 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
3800 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
3801 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
3802 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
3803 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
3804 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
3805 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
3806 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
3807 pHlp->pfnPrintf(pHlp, "%sCPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
3808 pHlp->pfnPrintf(pHlp, "%sEFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
3809 pHlp->pfnPrintf(pHlp, "%sCR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
3810 pHlp->pfnPrintf(pHlp, "%sCR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
3811 pHlp->pfnPrintf(pHlp, "%sCR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
3812 pHlp->pfnPrintf(pHlp, "%sDR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
3813 pHlp->pfnPrintf(pHlp, "%sDR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
3814 pHlp->pfnPrintf(pHlp, "%sRFLAGS = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
3815 pHlp->pfnPrintf(pHlp, "%sRIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
3816 pHlp->pfnPrintf(pHlp, "%sRSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
3817 pHlp->pfnPrintf(pHlp, "%sRAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
3818 pHlp->pfnPrintf(pHlp, "%sSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
3819 pHlp->pfnPrintf(pHlp, "%sLSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
3820 pHlp->pfnPrintf(pHlp, "%sCSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
3821 pHlp->pfnPrintf(pHlp, "%sSFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
3822 pHlp->pfnPrintf(pHlp, "%sKERNELGSBASE = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
3823 pHlp->pfnPrintf(pHlp, "%sSysEnter CS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
3824 pHlp->pfnPrintf(pHlp, "%sSysEnter EIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
3825 pHlp->pfnPrintf(pHlp, "%sSysEnter ESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
3826 pHlp->pfnPrintf(pHlp, "%sCR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
3827 pHlp->pfnPrintf(pHlp, "%sPAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
3828 pHlp->pfnPrintf(pHlp, "%sDBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
3829 pHlp->pfnPrintf(pHlp, "%sBR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
3830 pHlp->pfnPrintf(pHlp, "%sBR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
3831 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
3832 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
3833}
3834
3835
3836/**
3837 * Displays a virtual-VMCS.
3838 *
3839 * @param pVCpu The cross context virtual CPU structure.
3840 * @param pHlp The info helper functions.
3841 * @param pVmcs Pointer to a virtual VMCS.
3842 * @param pszPrefix Caller specified string prefix.
3843 */
3844static void cpumR3InfoVmxVmcs(PVMCPU pVCpu, PCDBGFINFOHLP pHlp, PCVMXVVMCS pVmcs, const char *pszPrefix)
3845{
3846 AssertReturnVoid(pHlp);
3847 AssertReturnVoid(pVmcs);
3848
3849 /* The string width of -4 used in the macros below to cover 'LDTR', 'GDTR', 'IDTR. */
3850#define CPUMVMX_DUMP_HOST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3851 do { \
3852 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64}\n", \
3853 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Host##a_Seg##Base.u); \
3854 } while (0)
3855
3856#define CPUMVMX_DUMP_HOST_FS_GS_TR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3857 do { \
3858 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64}\n", \
3859 (a_pszPrefix), (a_SegName), (a_pVmcs)->Host##a_Seg, (a_pVmcs)->u64Host##a_Seg##Base.u); \
3860 } while (0)
3861
3862#define CPUMVMX_DUMP_GUEST_SEGREG(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3863 do { \
3864 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", \
3865 (a_pszPrefix), (a_SegName), (a_pVmcs)->Guest##a_Seg, (a_pVmcs)->u64Guest##a_Seg##Base.u, \
3866 (a_pVmcs)->u32Guest##a_Seg##Limit, (a_pVmcs)->u32Guest##a_Seg##Attr); \
3867 } while (0)
3868
3869#define CPUMVMX_DUMP_GUEST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3870 do { \
3871 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64 limit=%08x}\n", \
3872 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Guest##a_Seg##Base.u, (a_pVmcs)->u32Guest##a_Seg##Limit); \
3873 } while (0)
3874
3875 /* Header. */
3876 {
3877 pHlp->pfnPrintf(pHlp, "%sHeader:\n", pszPrefix);
3878 pHlp->pfnPrintf(pHlp, " %sVMCS revision id = %#RX32\n", pszPrefix, pVmcs->u32VmcsRevId);
3879 pHlp->pfnPrintf(pHlp, " %sVMX-abort id = %#RX32 (%s)\n", pszPrefix, pVmcs->enmVmxAbort, VMXGetAbortDesc(pVmcs->enmVmxAbort));
3880 pHlp->pfnPrintf(pHlp, " %sVMCS state = %#x (%s)\n", pszPrefix, pVmcs->fVmcsState, VMXGetVmcsStateDesc(pVmcs->fVmcsState));
3881 }
3882
3883 /* Control fields. */
3884 {
3885 /* 16-bit. */
3886 pHlp->pfnPrintf(pHlp, "%sControl:\n", pszPrefix);
3887 pHlp->pfnPrintf(pHlp, " %sVPID = %#RX16\n", pszPrefix, pVmcs->u16Vpid);
3888 pHlp->pfnPrintf(pHlp, " %sPosted intr notify vector = %#RX16\n", pszPrefix, pVmcs->u16PostIntNotifyVector);
3889 pHlp->pfnPrintf(pHlp, " %sEPTP index = %#RX16\n", pszPrefix, pVmcs->u16EptpIndex);
3890 pHlp->pfnPrintf(pHlp, " %sHLAT prefix size = %#RX16\n", pszPrefix, pVmcs->u16HlatPrefixSize);
3891
3892 /* 32-bit. */
3893 pHlp->pfnPrintf(pHlp, " %sPin ctls = %#RX32\n", pszPrefix, pVmcs->u32PinCtls);
3894 pHlp->pfnPrintf(pHlp, " %sProcessor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls);
3895 pHlp->pfnPrintf(pHlp, " %sSecondary processor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls2);
3896 pHlp->pfnPrintf(pHlp, " %sVM-exit ctls = %#RX32\n", pszPrefix, pVmcs->u32ExitCtls);
3897 pHlp->pfnPrintf(pHlp, " %sVM-entry ctls = %#RX32\n", pszPrefix, pVmcs->u32EntryCtls);
3898 pHlp->pfnPrintf(pHlp, " %sException bitmap = %#RX32\n", pszPrefix, pVmcs->u32XcptBitmap);
3899 pHlp->pfnPrintf(pHlp, " %sPage-fault mask = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMask);
3900 pHlp->pfnPrintf(pHlp, " %sPage-fault match = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMatch);
3901 pHlp->pfnPrintf(pHlp, " %sCR3-target count = %RU32\n", pszPrefix, pVmcs->u32Cr3TargetCount);
3902 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrStoreCount);
3903 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrLoadCount);
3904 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load count = %RU32\n", pszPrefix, pVmcs->u32EntryMsrLoadCount);
3905 pHlp->pfnPrintf(pHlp, " %sVM-entry interruption info = %#RX32\n", pszPrefix, pVmcs->u32EntryIntInfo);
3906 {
3907 uint32_t const fInfo = pVmcs->u32EntryIntInfo;
3908 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(fInfo);
3909 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_VALID(fInfo