VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 64694

Last change on this file since 64694 was 64676, checked in by vboxsync, 9 years ago

VMM/HMVMXR0: Pass 'rcRun' from VMLAUNCH/VMRESUME to hmR0VmxPostRunGuest and not result of hmR0VmxPreRunGuest.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 584.0 KB
Line 
1/* $Id: HMVMXR0.cpp 64676 2016-11-15 15:40:18Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <iprt/x86.h>
24#include <iprt/asm-amd64-x86.h>
25#include <iprt/thread.h>
26
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/dbgf.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/selm.h>
32#include <VBox/vmm/tm.h>
33#include <VBox/vmm/gim.h>
34#include <VBox/vmm/apic.h>
35#ifdef VBOX_WITH_REM
36# include <VBox/vmm/rem.h>
37#endif
38#include "HMInternal.h"
39#include <VBox/vmm/vm.h>
40#include "HMVMXR0.h"
41#include "dtrace/VBoxVMM.h"
42
43#ifdef DEBUG_ramshankar
44# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
45# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
46# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
47# define HMVMX_ALWAYS_CHECK_GUEST_STATE
48# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
49# define HMVMX_ALWAYS_TRAP_PF
50# define HMVMX_ALWAYS_SWAP_FPU_STATE
51# define HMVMX_ALWAYS_FLUSH_TLB
52# define HMVMX_ALWAYS_SWAP_EFER
53#endif
54
55
56/*********************************************************************************************************************************
57* Defined Constants And Macros *
58*********************************************************************************************************************************/
59/** Use the function table. */
60#define HMVMX_USE_FUNCTION_TABLE
61
62/** Determine which tagged-TLB flush handler to use. */
63#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
64#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
65#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
66#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
67
68/** @name Updated-guest-state flags.
69 * @{ */
70#define HMVMX_UPDATED_GUEST_RIP RT_BIT(0)
71#define HMVMX_UPDATED_GUEST_RSP RT_BIT(1)
72#define HMVMX_UPDATED_GUEST_RFLAGS RT_BIT(2)
73#define HMVMX_UPDATED_GUEST_CR0 RT_BIT(3)
74#define HMVMX_UPDATED_GUEST_CR3 RT_BIT(4)
75#define HMVMX_UPDATED_GUEST_CR4 RT_BIT(5)
76#define HMVMX_UPDATED_GUEST_GDTR RT_BIT(6)
77#define HMVMX_UPDATED_GUEST_IDTR RT_BIT(7)
78#define HMVMX_UPDATED_GUEST_LDTR RT_BIT(8)
79#define HMVMX_UPDATED_GUEST_TR RT_BIT(9)
80#define HMVMX_UPDATED_GUEST_SEGMENT_REGS RT_BIT(10)
81#define HMVMX_UPDATED_GUEST_DEBUG RT_BIT(11)
82#define HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR RT_BIT(12)
83#define HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR RT_BIT(13)
84#define HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR RT_BIT(14)
85#define HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS RT_BIT(15)
86#define HMVMX_UPDATED_GUEST_LAZY_MSRS RT_BIT(16)
87#define HMVMX_UPDATED_GUEST_ACTIVITY_STATE RT_BIT(17)
88#define HMVMX_UPDATED_GUEST_INTR_STATE RT_BIT(18)
89#define HMVMX_UPDATED_GUEST_APIC_STATE RT_BIT(19)
90#define HMVMX_UPDATED_GUEST_ALL ( HMVMX_UPDATED_GUEST_RIP \
91 | HMVMX_UPDATED_GUEST_RSP \
92 | HMVMX_UPDATED_GUEST_RFLAGS \
93 | HMVMX_UPDATED_GUEST_CR0 \
94 | HMVMX_UPDATED_GUEST_CR3 \
95 | HMVMX_UPDATED_GUEST_CR4 \
96 | HMVMX_UPDATED_GUEST_GDTR \
97 | HMVMX_UPDATED_GUEST_IDTR \
98 | HMVMX_UPDATED_GUEST_LDTR \
99 | HMVMX_UPDATED_GUEST_TR \
100 | HMVMX_UPDATED_GUEST_SEGMENT_REGS \
101 | HMVMX_UPDATED_GUEST_DEBUG \
102 | HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR \
103 | HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR \
104 | HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR \
105 | HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS \
106 | HMVMX_UPDATED_GUEST_LAZY_MSRS \
107 | HMVMX_UPDATED_GUEST_ACTIVITY_STATE \
108 | HMVMX_UPDATED_GUEST_INTR_STATE \
109 | HMVMX_UPDATED_GUEST_APIC_STATE)
110/** @} */
111
112/** @name
113 * Flags to skip redundant reads of some common VMCS fields that are not part of
114 * the guest-CPU state but are in the transient structure.
115 */
116#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO RT_BIT(0)
117#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE RT_BIT(1)
118#define HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION RT_BIT(2)
119#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN RT_BIT(3)
120#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO RT_BIT(4)
121#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE RT_BIT(5)
122#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO RT_BIT(6)
123/** @} */
124
125/** @name
126 * States of the VMCS.
127 *
128 * This does not reflect all possible VMCS states but currently only those
129 * needed for maintaining the VMCS consistently even when thread-context hooks
130 * are used. Maybe later this can be extended (i.e. Nested Virtualization).
131 */
132#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
133#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
134#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
135/** @} */
136
137/**
138 * Exception bitmap mask for real-mode guests (real-on-v86).
139 *
140 * We need to intercept all exceptions manually except:
141 * - \#NM, \#MF handled in hmR0VmxLoadSharedCR0().
142 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
143 * due to bugs in Intel CPUs.
144 * - \#PF need not be intercepted even in real-mode if we have Nested Paging
145 * support.
146 */
147#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
148 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
149 | RT_BIT(X86_XCPT_UD) /* RT_BIT(X86_XCPT_NM) */ | RT_BIT(X86_XCPT_DF) \
150 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
151 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
152 /* RT_BIT(X86_XCPT_MF) always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
153 | RT_BIT(X86_XCPT_XF))
154
155/**
156 * Exception bitmap mask for all contributory exceptions.
157 *
158 * Page fault is deliberately excluded here as it's conditional as to whether
159 * it's contributory or benign. Page faults are handled separately.
160 */
161#define HMVMX_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
162 | RT_BIT(X86_XCPT_DE))
163
164/** Maximum VM-instruction error number. */
165#define HMVMX_INSTR_ERROR_MAX 28
166
167/** Profiling macro. */
168#ifdef HM_PROFILE_EXIT_DISPATCH
169# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
170# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
171#else
172# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
173# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
174#endif
175
176/** Assert that preemption is disabled or covered by thread-context hooks. */
177#define HMVMX_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
178 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
179
180/** Assert that we haven't migrated CPUs when thread-context hooks are not
181 * used. */
182#define HMVMX_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
183 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
184 ("Illegal migration! Entered on CPU %u Current %u\n", \
185 pVCpu->hm.s.idEnteredCpu, RTMpCpuId())); \
186
187/** Helper macro for VM-exit handlers called unexpectedly. */
188#define HMVMX_RETURN_UNEXPECTED_EXIT() \
189 do { \
190 pVCpu->hm.s.u32HMError = pVmxTransient->uExitReason; \
191 return VERR_VMX_UNEXPECTED_EXIT; \
192 } while (0)
193
194
195/*********************************************************************************************************************************
196* Structures and Typedefs *
197*********************************************************************************************************************************/
198/**
199 * VMX transient state.
200 *
201 * A state structure for holding miscellaneous information across
202 * VMX non-root operation and restored after the transition.
203 */
204typedef struct VMXTRANSIENT
205{
206 /** The host's rflags/eflags. */
207 RTCCUINTREG fEFlags;
208#if HC_ARCH_BITS == 32
209 uint32_t u32Alignment0;
210#endif
211 /** The guest's TPR value used for TPR shadowing. */
212 uint8_t u8GuestTpr;
213 /** Alignment. */
214 uint8_t abAlignment0[7];
215
216 /** The basic VM-exit reason. */
217 uint16_t uExitReason;
218 /** Alignment. */
219 uint16_t u16Alignment0;
220 /** The VM-exit interruption error code. */
221 uint32_t uExitIntErrorCode;
222 /** The VM-exit exit code qualification. */
223 uint64_t uExitQualification;
224
225 /** The VM-exit interruption-information field. */
226 uint32_t uExitIntInfo;
227 /** The VM-exit instruction-length field. */
228 uint32_t cbInstr;
229 /** The VM-exit instruction-information field. */
230 union
231 {
232 /** Plain unsigned int representation. */
233 uint32_t u;
234 /** INS and OUTS information. */
235 struct
236 {
237 uint32_t u7Reserved0 : 7;
238 /** The address size; 0=16-bit, 1=32-bit, 2=64-bit, rest undefined. */
239 uint32_t u3AddrSize : 3;
240 uint32_t u5Reserved1 : 5;
241 /** The segment register (X86_SREG_XXX). */
242 uint32_t iSegReg : 3;
243 uint32_t uReserved2 : 14;
244 } StrIo;
245 } ExitInstrInfo;
246 /** Whether the VM-entry failed or not. */
247 bool fVMEntryFailed;
248 /** Alignment. */
249 uint8_t abAlignment1[3];
250
251 /** The VM-entry interruption-information field. */
252 uint32_t uEntryIntInfo;
253 /** The VM-entry exception error code field. */
254 uint32_t uEntryXcptErrorCode;
255 /** The VM-entry instruction length field. */
256 uint32_t cbEntryInstr;
257
258 /** IDT-vectoring information field. */
259 uint32_t uIdtVectoringInfo;
260 /** IDT-vectoring error code. */
261 uint32_t uIdtVectoringErrorCode;
262
263 /** Mask of currently read VMCS fields; HMVMX_UPDATED_TRANSIENT_*. */
264 uint32_t fVmcsFieldsRead;
265
266 /** Whether the guest FPU was active at the time of VM-exit. */
267 bool fWasGuestFPUStateActive;
268 /** Whether the guest debug state was active at the time of VM-exit. */
269 bool fWasGuestDebugStateActive;
270 /** Whether the hyper debug state was active at the time of VM-exit. */
271 bool fWasHyperDebugStateActive;
272 /** Whether TSC-offsetting should be setup before VM-entry. */
273 bool fUpdateTscOffsettingAndPreemptTimer;
274 /** Whether the VM-exit was caused by a page-fault during delivery of a
275 * contributory exception or a page-fault. */
276 bool fVectoringDoublePF;
277 /** Whether the VM-exit was caused by a page-fault during delivery of an
278 * external interrupt or NMI. */
279 bool fVectoringPF;
280} VMXTRANSIENT;
281AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
282AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
283AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
284AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
285AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
286/** Pointer to VMX transient state. */
287typedef VMXTRANSIENT *PVMXTRANSIENT;
288
289
290/**
291 * MSR-bitmap read permissions.
292 */
293typedef enum VMXMSREXITREAD
294{
295 /** Reading this MSR causes a VM-exit. */
296 VMXMSREXIT_INTERCEPT_READ = 0xb,
297 /** Reading this MSR does not cause a VM-exit. */
298 VMXMSREXIT_PASSTHRU_READ
299} VMXMSREXITREAD;
300/** Pointer to MSR-bitmap read permissions. */
301typedef VMXMSREXITREAD* PVMXMSREXITREAD;
302
303/**
304 * MSR-bitmap write permissions.
305 */
306typedef enum VMXMSREXITWRITE
307{
308 /** Writing to this MSR causes a VM-exit. */
309 VMXMSREXIT_INTERCEPT_WRITE = 0xd,
310 /** Writing to this MSR does not cause a VM-exit. */
311 VMXMSREXIT_PASSTHRU_WRITE
312} VMXMSREXITWRITE;
313/** Pointer to MSR-bitmap write permissions. */
314typedef VMXMSREXITWRITE* PVMXMSREXITWRITE;
315
316
317/**
318 * VMX VM-exit handler.
319 *
320 * @returns Strict VBox status code (i.e. informational status codes too).
321 * @param pVCpu The cross context virtual CPU structure.
322 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
323 * out-of-sync. Make sure to update the required
324 * fields before using them.
325 * @param pVmxTransient Pointer to the VMX-transient structure.
326 */
327#ifndef HMVMX_USE_FUNCTION_TABLE
328typedef DECLINLINE(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
329#else
330typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
331/** Pointer to VM-exit handler. */
332typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
333#endif
334
335/**
336 * VMX VM-exit handler, non-strict status code.
337 *
338 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
339 *
340 * @returns VBox status code, no informational status code returned.
341 * @param pVCpu The cross context virtual CPU structure.
342 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
343 * out-of-sync. Make sure to update the required
344 * fields before using them.
345 * @param pVmxTransient Pointer to the VMX-transient structure.
346 *
347 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
348 * use of that status code will be replaced with VINF_EM_SOMETHING
349 * later when switching over to IEM.
350 */
351#ifndef HMVMX_USE_FUNCTION_TABLE
352typedef DECLINLINE(int) FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
353#else
354typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
355#endif
356
357
358/*********************************************************************************************************************************
359* Internal Functions *
360*********************************************************************************************************************************/
361static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush);
362static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr);
363static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu);
364static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
365 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress,
366 bool fStepping, uint32_t *puIntState);
367#if HC_ARCH_BITS == 32
368static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu);
369#endif
370#ifndef HMVMX_USE_FUNCTION_TABLE
371DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
372# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
373# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
374#else
375# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
376# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
377#endif
378
379
380/** @name VM-exit handlers.
381 * @{
382 */
383static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
384static FNVMXEXITHANDLER hmR0VmxExitExtInt;
385static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
386static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
387static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
388static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
389static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
390static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
391static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
392static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
393static FNVMXEXITHANDLER hmR0VmxExitCpuid;
394static FNVMXEXITHANDLER hmR0VmxExitGetsec;
395static FNVMXEXITHANDLER hmR0VmxExitHlt;
396static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
397static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
398static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
399static FNVMXEXITHANDLER hmR0VmxExitVmcall;
400static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
401static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
402static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
403static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
404static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
405static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
406static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
407static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
408static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
409static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
410static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
411static FNVMXEXITHANDLER hmR0VmxExitMwait;
412static FNVMXEXITHANDLER hmR0VmxExitMtf;
413static FNVMXEXITHANDLER hmR0VmxExitMonitor;
414static FNVMXEXITHANDLER hmR0VmxExitPause;
415static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
416static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
417static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
418static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
419static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
420static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
421static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
422static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
423static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
424static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
425static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
426static FNVMXEXITHANDLER hmR0VmxExitRdrand;
427static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
428/** @} */
429
430static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
431static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
432static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
433static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
434static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
435static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
436static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
437static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
438static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
439
440
441/*********************************************************************************************************************************
442* Global Variables *
443*********************************************************************************************************************************/
444#ifdef HMVMX_USE_FUNCTION_TABLE
445
446/**
447 * VMX_EXIT dispatch table.
448 */
449static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
450{
451 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
452 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
453 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
454 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
455 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
456 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
457 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
458 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
459 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
460 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
461 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
462 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
463 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
464 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
465 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
466 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
467 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
468 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
469 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
470 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
471 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
472 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
473 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
474 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
475 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
476 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
477 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
478 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
479 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
480 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
481 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
482 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
483 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
484 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
485 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
486 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
487 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
488 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
489 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
490 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
491 /* 40 UNDEFINED */ hmR0VmxExitPause,
492 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
493 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
494 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
495 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
496 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
497 /* 46 VMX_EXIT_XDTR_ACCESS */ hmR0VmxExitXdtrAccess,
498 /* 47 VMX_EXIT_TR_ACCESS */ hmR0VmxExitXdtrAccess,
499 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
500 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
501 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
502 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
503 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
504 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
505 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
506 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
507 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
508 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
509 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
510 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
511 /* 60 VMX_EXIT_RESERVED_60 */ hmR0VmxExitErrUndefined,
512 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
513 /* 62 VMX_EXIT_RESERVED_62 */ hmR0VmxExitErrUndefined,
514 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
515 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
516};
517#endif /* HMVMX_USE_FUNCTION_TABLE */
518
519#ifdef VBOX_STRICT
520static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
521{
522 /* 0 */ "(Not Used)",
523 /* 1 */ "VMCALL executed in VMX root operation.",
524 /* 2 */ "VMCLEAR with invalid physical address.",
525 /* 3 */ "VMCLEAR with VMXON pointer.",
526 /* 4 */ "VMLAUNCH with non-clear VMCS.",
527 /* 5 */ "VMRESUME with non-launched VMCS.",
528 /* 6 */ "VMRESUME after VMXOFF",
529 /* 7 */ "VM-entry with invalid control fields.",
530 /* 8 */ "VM-entry with invalid host state fields.",
531 /* 9 */ "VMPTRLD with invalid physical address.",
532 /* 10 */ "VMPTRLD with VMXON pointer.",
533 /* 11 */ "VMPTRLD with incorrect revision identifier.",
534 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
535 /* 13 */ "VMWRITE to read-only VMCS component.",
536 /* 14 */ "(Not Used)",
537 /* 15 */ "VMXON executed in VMX root operation.",
538 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
539 /* 17 */ "VM-entry with non-launched executing VMCS.",
540 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
541 /* 19 */ "VMCALL with non-clear VMCS.",
542 /* 20 */ "VMCALL with invalid VM-exit control fields.",
543 /* 21 */ "(Not Used)",
544 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
545 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
546 /* 24 */ "VMCALL with invalid SMM-monitor features.",
547 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
548 /* 26 */ "VM-entry with events blocked by MOV SS.",
549 /* 27 */ "(Not Used)",
550 /* 28 */ "Invalid operand to INVEPT/INVVPID."
551};
552#endif /* VBOX_STRICT */
553
554
555
556/**
557 * Updates the VM's last error record.
558 *
559 * If there was a VMX instruction error, reads the error data from the VMCS and
560 * updates VCPU's last error record as well.
561 *
562 * @param pVM The cross context VM structure.
563 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
564 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
565 * VERR_VMX_INVALID_VMCS_FIELD.
566 * @param rc The error code.
567 */
568static void hmR0VmxUpdateErrorRecord(PVM pVM, PVMCPU pVCpu, int rc)
569{
570 AssertPtr(pVM);
571 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
572 || rc == VERR_VMX_UNABLE_TO_START_VM)
573 {
574 AssertPtrReturnVoid(pVCpu);
575 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
576 }
577 pVM->hm.s.lLastError = rc;
578}
579
580
581/**
582 * Reads the VM-entry interruption-information field from the VMCS into the VMX
583 * transient structure.
584 *
585 * @returns VBox status code.
586 * @param pVmxTransient Pointer to the VMX transient structure.
587 *
588 * @remarks No-long-jump zone!!!
589 */
590DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
591{
592 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
593 AssertRCReturn(rc, rc);
594 return VINF_SUCCESS;
595}
596
597
598#ifdef VBOX_STRICT
599/**
600 * Reads the VM-entry exception error code field from the VMCS into
601 * the VMX transient structure.
602 *
603 * @returns VBox status code.
604 * @param pVmxTransient Pointer to the VMX transient structure.
605 *
606 * @remarks No-long-jump zone!!!
607 */
608DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
609{
610 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
611 AssertRCReturn(rc, rc);
612 return VINF_SUCCESS;
613}
614#endif /* VBOX_STRICT */
615
616
617#ifdef VBOX_STRICT
618/**
619 * Reads the VM-entry exception error code field from the VMCS into
620 * the VMX transient structure.
621 *
622 * @returns VBox status code.
623 * @param pVmxTransient Pointer to the VMX transient structure.
624 *
625 * @remarks No-long-jump zone!!!
626 */
627DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
628{
629 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
630 AssertRCReturn(rc, rc);
631 return VINF_SUCCESS;
632}
633#endif /* VBOX_STRICT */
634
635
636/**
637 * Reads the VM-exit interruption-information field from the VMCS into the VMX
638 * transient structure.
639 *
640 * @returns VBox status code.
641 * @param pVmxTransient Pointer to the VMX transient structure.
642 */
643DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
644{
645 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO))
646 {
647 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
648 AssertRCReturn(rc, rc);
649 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO;
650 }
651 return VINF_SUCCESS;
652}
653
654
655/**
656 * Reads the VM-exit interruption error code from the VMCS into the VMX
657 * transient structure.
658 *
659 * @returns VBox status code.
660 * @param pVmxTransient Pointer to the VMX transient structure.
661 */
662DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
663{
664 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE))
665 {
666 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
667 AssertRCReturn(rc, rc);
668 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE;
669 }
670 return VINF_SUCCESS;
671}
672
673
674/**
675 * Reads the VM-exit instruction length field from the VMCS into the VMX
676 * transient structure.
677 *
678 * @returns VBox status code.
679 * @param pVmxTransient Pointer to the VMX transient structure.
680 */
681DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
682{
683 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN))
684 {
685 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
686 AssertRCReturn(rc, rc);
687 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN;
688 }
689 return VINF_SUCCESS;
690}
691
692
693/**
694 * Reads the VM-exit instruction-information field from the VMCS into
695 * the VMX transient structure.
696 *
697 * @returns VBox status code.
698 * @param pVmxTransient Pointer to the VMX transient structure.
699 */
700DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
701{
702 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO))
703 {
704 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
705 AssertRCReturn(rc, rc);
706 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO;
707 }
708 return VINF_SUCCESS;
709}
710
711
712/**
713 * Reads the exit code qualification from the VMCS into the VMX transient
714 * structure.
715 *
716 * @returns VBox status code.
717 * @param pVCpu The cross context virtual CPU structure of the
718 * calling EMT. (Required for the VMCS cache case.)
719 * @param pVmxTransient Pointer to the VMX transient structure.
720 */
721DECLINLINE(int) hmR0VmxReadExitQualificationVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
722{
723 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION))
724 {
725 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQualification); NOREF(pVCpu);
726 AssertRCReturn(rc, rc);
727 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION;
728 }
729 return VINF_SUCCESS;
730}
731
732
733/**
734 * Reads the IDT-vectoring information field from the VMCS into the VMX
735 * transient structure.
736 *
737 * @returns VBox status code.
738 * @param pVmxTransient Pointer to the VMX transient structure.
739 *
740 * @remarks No-long-jump zone!!!
741 */
742DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
743{
744 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO))
745 {
746 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_INFO, &pVmxTransient->uIdtVectoringInfo);
747 AssertRCReturn(rc, rc);
748 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO;
749 }
750 return VINF_SUCCESS;
751}
752
753
754/**
755 * Reads the IDT-vectoring error code from the VMCS into the VMX
756 * transient structure.
757 *
758 * @returns VBox status code.
759 * @param pVmxTransient Pointer to the VMX transient structure.
760 */
761DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
762{
763 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE))
764 {
765 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
766 AssertRCReturn(rc, rc);
767 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE;
768 }
769 return VINF_SUCCESS;
770}
771
772
773/**
774 * Enters VMX root mode operation on the current CPU.
775 *
776 * @returns VBox status code.
777 * @param pVM The cross context VM structure. Can be
778 * NULL, after a resume.
779 * @param HCPhysCpuPage Physical address of the VMXON region.
780 * @param pvCpuPage Pointer to the VMXON region.
781 */
782static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
783{
784 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
785 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
786 Assert(pvCpuPage);
787 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
788
789 if (pVM)
790 {
791 /* Write the VMCS revision dword to the VMXON region. */
792 *(uint32_t *)pvCpuPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
793 }
794
795 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
796 RTCCUINTREG fEFlags = ASMIntDisableFlags();
797
798 /* Enable the VMX bit in CR4 if necessary. */
799 RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
800
801 /* Enter VMX root mode. */
802 int rc = VMXEnable(HCPhysCpuPage);
803 if (RT_FAILURE(rc))
804 {
805 if (!(uOldCr4 & X86_CR4_VMXE))
806 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
807
808 if (pVM)
809 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
810 }
811
812 /* Restore interrupts. */
813 ASMSetFlags(fEFlags);
814 return rc;
815}
816
817
818/**
819 * Exits VMX root mode operation on the current CPU.
820 *
821 * @returns VBox status code.
822 */
823static int hmR0VmxLeaveRootMode(void)
824{
825 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
826
827 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
828 RTCCUINTREG fEFlags = ASMIntDisableFlags();
829
830 /* If we're for some reason not in VMX root mode, then don't leave it. */
831 RTCCUINTREG uHostCR4 = ASMGetCR4();
832
833 int rc;
834 if (uHostCR4 & X86_CR4_VMXE)
835 {
836 /* Exit VMX root mode and clear the VMX bit in CR4. */
837 VMXDisable();
838 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
839 rc = VINF_SUCCESS;
840 }
841 else
842 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
843
844 /* Restore interrupts. */
845 ASMSetFlags(fEFlags);
846 return rc;
847}
848
849
850/**
851 * Allocates and maps one physically contiguous page. The allocated page is
852 * zero'd out. (Used by various VT-x structures).
853 *
854 * @returns IPRT status code.
855 * @param pMemObj Pointer to the ring-0 memory object.
856 * @param ppVirt Where to store the virtual address of the
857 * allocation.
858 * @param pHCPhys Where to store the physical address of the
859 * allocation.
860 */
861DECLINLINE(int) hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
862{
863 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
864 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
865 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
866
867 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
868 if (RT_FAILURE(rc))
869 return rc;
870 *ppVirt = RTR0MemObjAddress(*pMemObj);
871 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
872 ASMMemZero32(*ppVirt, PAGE_SIZE);
873 return VINF_SUCCESS;
874}
875
876
877/**
878 * Frees and unmaps an allocated physical page.
879 *
880 * @param pMemObj Pointer to the ring-0 memory object.
881 * @param ppVirt Where to re-initialize the virtual address of
882 * allocation as 0.
883 * @param pHCPhys Where to re-initialize the physical address of the
884 * allocation as 0.
885 */
886DECLINLINE(void) hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
887{
888 AssertPtr(pMemObj);
889 AssertPtr(ppVirt);
890 AssertPtr(pHCPhys);
891 if (*pMemObj != NIL_RTR0MEMOBJ)
892 {
893 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
894 AssertRC(rc);
895 *pMemObj = NIL_RTR0MEMOBJ;
896 *ppVirt = 0;
897 *pHCPhys = 0;
898 }
899}
900
901
902/**
903 * Worker function to free VT-x related structures.
904 *
905 * @returns IPRT status code.
906 * @param pVM The cross context VM structure.
907 */
908static void hmR0VmxStructsFree(PVM pVM)
909{
910 for (VMCPUID i = 0; i < pVM->cCpus; i++)
911 {
912 PVMCPU pVCpu = &pVM->aCpus[i];
913 AssertPtr(pVCpu);
914
915 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
916 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
917
918 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
919 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
920
921 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic, &pVCpu->hm.s.vmx.HCPhysVirtApic);
922 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
923 }
924
925 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
926#ifdef VBOX_WITH_CRASHDUMP_MAGIC
927 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
928#endif
929}
930
931
932/**
933 * Worker function to allocate VT-x related VM structures.
934 *
935 * @returns IPRT status code.
936 * @param pVM The cross context VM structure.
937 */
938static int hmR0VmxStructsAlloc(PVM pVM)
939{
940 /*
941 * Initialize members up-front so we can cleanup properly on allocation failure.
942 */
943#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
944 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
945 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
946 pVM->hm.s.vmx.HCPhys##a_Name = 0;
947
948#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
949 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
950 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
951 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
952
953#ifdef VBOX_WITH_CRASHDUMP_MAGIC
954 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
955#endif
956 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
957
958 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
959 for (VMCPUID i = 0; i < pVM->cCpus; i++)
960 {
961 PVMCPU pVCpu = &pVM->aCpus[i];
962 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
963 VMXLOCAL_INIT_VMCPU_MEMOBJ(VirtApic, pb);
964 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
965 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
966 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
967 }
968#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
969#undef VMXLOCAL_INIT_VM_MEMOBJ
970
971 /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
972 AssertReturnStmt(MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.Msrs.u64BasicInfo) <= PAGE_SIZE,
973 (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
974 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
975
976 /*
977 * Allocate all the VT-x structures.
978 */
979 int rc = VINF_SUCCESS;
980#ifdef VBOX_WITH_CRASHDUMP_MAGIC
981 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
982 if (RT_FAILURE(rc))
983 goto cleanup;
984 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
985 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
986#endif
987
988 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
989 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
990 {
991 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
992 &pVM->hm.s.vmx.HCPhysApicAccess);
993 if (RT_FAILURE(rc))
994 goto cleanup;
995 }
996
997 /*
998 * Initialize per-VCPU VT-x structures.
999 */
1000 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1001 {
1002 PVMCPU pVCpu = &pVM->aCpus[i];
1003 AssertPtr(pVCpu);
1004
1005 /* Allocate the VM control structure (VMCS). */
1006 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
1007 if (RT_FAILURE(rc))
1008 goto cleanup;
1009
1010 /* Allocate the Virtual-APIC page for transparent TPR accesses. */
1011 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
1012 {
1013 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
1014 &pVCpu->hm.s.vmx.HCPhysVirtApic);
1015 if (RT_FAILURE(rc))
1016 goto cleanup;
1017 }
1018
1019 /*
1020 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
1021 * transparent accesses of specific MSRs.
1022 *
1023 * If the condition for enabling MSR bitmaps changes here, don't forget to
1024 * update HMAreMsrBitmapsAvailable().
1025 */
1026 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1027 {
1028 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
1029 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1030 if (RT_FAILURE(rc))
1031 goto cleanup;
1032 ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
1033 }
1034
1035 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
1036 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
1037 if (RT_FAILURE(rc))
1038 goto cleanup;
1039
1040 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1041 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
1042 if (RT_FAILURE(rc))
1043 goto cleanup;
1044 }
1045
1046 return VINF_SUCCESS;
1047
1048cleanup:
1049 hmR0VmxStructsFree(pVM);
1050 return rc;
1051}
1052
1053
1054/**
1055 * Does global VT-x initialization (called during module initialization).
1056 *
1057 * @returns VBox status code.
1058 */
1059VMMR0DECL(int) VMXR0GlobalInit(void)
1060{
1061#ifdef HMVMX_USE_FUNCTION_TABLE
1062 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
1063# ifdef VBOX_STRICT
1064 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
1065 Assert(g_apfnVMExitHandlers[i]);
1066# endif
1067#endif
1068 return VINF_SUCCESS;
1069}
1070
1071
1072/**
1073 * Does global VT-x termination (called during module termination).
1074 */
1075VMMR0DECL(void) VMXR0GlobalTerm()
1076{
1077 /* Nothing to do currently. */
1078}
1079
1080
1081/**
1082 * Sets up and activates VT-x on the current CPU.
1083 *
1084 * @returns VBox status code.
1085 * @param pCpu Pointer to the global CPU info struct.
1086 * @param pVM The cross context VM structure. Can be
1087 * NULL after a host resume operation.
1088 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
1089 * fEnabledByHost is @c true).
1090 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
1091 * @a fEnabledByHost is @c true).
1092 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
1093 * enable VT-x on the host.
1094 * @param pvMsrs Opaque pointer to VMXMSRS struct.
1095 */
1096VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
1097 void *pvMsrs)
1098{
1099 Assert(pCpu);
1100 Assert(pvMsrs);
1101 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1102
1103 /* Enable VT-x if it's not already enabled by the host. */
1104 if (!fEnabledByHost)
1105 {
1106 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
1107 if (RT_FAILURE(rc))
1108 return rc;
1109 }
1110
1111 /*
1112 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been using EPTPs) so
1113 * we don't retain any stale guest-physical mappings which won't get invalidated when flushing by VPID.
1114 */
1115 PVMXMSRS pMsrs = (PVMXMSRS)pvMsrs;
1116 if (pMsrs->u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1117 {
1118 hmR0VmxFlushEpt(NULL /* pVCpu */, VMXFLUSHEPT_ALL_CONTEXTS);
1119 pCpu->fFlushAsidBeforeUse = false;
1120 }
1121 else
1122 pCpu->fFlushAsidBeforeUse = true;
1123
1124 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
1125 ++pCpu->cTlbFlushes;
1126
1127 return VINF_SUCCESS;
1128}
1129
1130
1131/**
1132 * Deactivates VT-x on the current CPU.
1133 *
1134 * @returns VBox status code.
1135 * @param pCpu Pointer to the global CPU info struct.
1136 * @param pvCpuPage Pointer to the VMXON region.
1137 * @param HCPhysCpuPage Physical address of the VMXON region.
1138 *
1139 * @remarks This function should never be called when SUPR0EnableVTx() or
1140 * similar was used to enable VT-x on the host.
1141 */
1142VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
1143{
1144 NOREF(pCpu);
1145 NOREF(pvCpuPage);
1146 NOREF(HCPhysCpuPage);
1147
1148 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1149 return hmR0VmxLeaveRootMode();
1150}
1151
1152
1153/**
1154 * Sets the permission bits for the specified MSR in the MSR bitmap.
1155 *
1156 * @param pVCpu The cross context virtual CPU structure.
1157 * @param uMsr The MSR value.
1158 * @param enmRead Whether reading this MSR causes a VM-exit.
1159 * @param enmWrite Whether writing this MSR causes a VM-exit.
1160 */
1161static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
1162{
1163 int32_t iBit;
1164 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1165
1166 /*
1167 * Layout:
1168 * 0x000 - 0x3ff - Low MSR read bits
1169 * 0x400 - 0x7ff - High MSR read bits
1170 * 0x800 - 0xbff - Low MSR write bits
1171 * 0xc00 - 0xfff - High MSR write bits
1172 */
1173 if (uMsr <= 0x00001FFF)
1174 iBit = uMsr;
1175 else if (uMsr - UINT32_C(0xC0000000) <= UINT32_C(0x00001FFF))
1176 {
1177 iBit = uMsr - UINT32_C(0xC0000000);
1178 pbMsrBitmap += 0x400;
1179 }
1180 else
1181 AssertMsgFailedReturnVoid(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1182
1183 Assert(iBit <= 0x1fff);
1184 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1185 ASMBitSet(pbMsrBitmap, iBit);
1186 else
1187 ASMBitClear(pbMsrBitmap, iBit);
1188
1189 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1190 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1191 else
1192 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1193}
1194
1195
1196#ifdef VBOX_STRICT
1197/**
1198 * Gets the permission bits for the specified MSR in the MSR bitmap.
1199 *
1200 * @returns VBox status code.
1201 * @retval VINF_SUCCESS if the specified MSR is found.
1202 * @retval VERR_NOT_FOUND if the specified MSR is not found.
1203 * @retval VERR_NOT_SUPPORTED if VT-x doesn't allow the MSR.
1204 *
1205 * @param pVCpu The cross context virtual CPU structure.
1206 * @param uMsr The MSR.
1207 * @param penmRead Where to store the read permissions.
1208 * @param penmWrite Where to store the write permissions.
1209 */
1210static int hmR0VmxGetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, PVMXMSREXITREAD penmRead, PVMXMSREXITWRITE penmWrite)
1211{
1212 AssertPtrReturn(penmRead, VERR_INVALID_PARAMETER);
1213 AssertPtrReturn(penmWrite, VERR_INVALID_PARAMETER);
1214 int32_t iBit;
1215 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1216
1217 /* See hmR0VmxSetMsrPermission() for the layout. */
1218 if (uMsr <= 0x00001FFF)
1219 iBit = uMsr;
1220 else if ( uMsr >= 0xC0000000
1221 && uMsr <= 0xC0001FFF)
1222 {
1223 iBit = (uMsr - 0xC0000000);
1224 pbMsrBitmap += 0x400;
1225 }
1226 else
1227 AssertMsgFailedReturn(("hmR0VmxGetMsrPermission: Invalid MSR %#RX32\n", uMsr), VERR_NOT_SUPPORTED);
1228
1229 Assert(iBit <= 0x1fff);
1230 if (ASMBitTest(pbMsrBitmap, iBit))
1231 *penmRead = VMXMSREXIT_INTERCEPT_READ;
1232 else
1233 *penmRead = VMXMSREXIT_PASSTHRU_READ;
1234
1235 if (ASMBitTest(pbMsrBitmap + 0x800, iBit))
1236 *penmWrite = VMXMSREXIT_INTERCEPT_WRITE;
1237 else
1238 *penmWrite = VMXMSREXIT_PASSTHRU_WRITE;
1239 return VINF_SUCCESS;
1240}
1241#endif /* VBOX_STRICT */
1242
1243
1244/**
1245 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1246 * area.
1247 *
1248 * @returns VBox status code.
1249 * @param pVCpu The cross context virtual CPU structure.
1250 * @param cMsrs The number of MSRs.
1251 */
1252DECLINLINE(int) hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
1253{
1254 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1255 uint32_t const cMaxSupportedMsrs = MSR_IA32_VMX_MISC_MAX_MSR(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc);
1256 if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
1257 {
1258 LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1259 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1260 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1261 }
1262
1263 /* Update number of guest MSRs to load/store across the world-switch. */
1264 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
1265 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
1266
1267 /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
1268 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
1269 AssertRCReturn(rc, rc);
1270
1271 /* Update the VCPU's copy of the MSR count. */
1272 pVCpu->hm.s.vmx.cMsrs = cMsrs;
1273
1274 return VINF_SUCCESS;
1275}
1276
1277
1278/**
1279 * Adds a new (or updates the value of an existing) guest/host MSR
1280 * pair to be swapped during the world-switch as part of the
1281 * auto-load/store MSR area in the VMCS.
1282 *
1283 * @returns VBox status code.
1284 * @param pVCpu The cross context virtual CPU structure.
1285 * @param uMsr The MSR.
1286 * @param uGuestMsrValue Value of the guest MSR.
1287 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1288 * necessary.
1289 * @param pfAddedAndUpdated Where to store whether the MSR was added -and-
1290 * its value was updated. Optional, can be NULL.
1291 */
1292static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr,
1293 bool *pfAddedAndUpdated)
1294{
1295 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1296 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1297 uint32_t i;
1298 for (i = 0; i < cMsrs; i++)
1299 {
1300 if (pGuestMsr->u32Msr == uMsr)
1301 break;
1302 pGuestMsr++;
1303 }
1304
1305 bool fAdded = false;
1306 if (i == cMsrs)
1307 {
1308 ++cMsrs;
1309 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1310 AssertMsgRCReturn(rc, ("hmR0VmxAddAutoLoadStoreMsr: Insufficient space to add MSR %u\n", uMsr), rc);
1311
1312 /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
1313 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1314 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1315
1316 fAdded = true;
1317 }
1318
1319 /* Update the MSR values in the auto-load/store MSR area. */
1320 pGuestMsr->u32Msr = uMsr;
1321 pGuestMsr->u64Value = uGuestMsrValue;
1322
1323 /* Create/update the MSR slot in the host MSR area. */
1324 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1325 pHostMsr += i;
1326 pHostMsr->u32Msr = uMsr;
1327
1328 /*
1329 * Update the host MSR only when requested by the caller AND when we're
1330 * adding it to the auto-load/store area. Otherwise, it would have been
1331 * updated by hmR0VmxSaveHostMsrs(). We do this for performance reasons.
1332 */
1333 bool fUpdatedMsrValue = false;
1334 if ( fAdded
1335 && fUpdateHostMsr)
1336 {
1337 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1338 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1339 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1340 fUpdatedMsrValue = true;
1341 }
1342
1343 if (pfAddedAndUpdated)
1344 *pfAddedAndUpdated = fUpdatedMsrValue;
1345 return VINF_SUCCESS;
1346}
1347
1348
1349/**
1350 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1351 * auto-load/store MSR area in the VMCS.
1352 *
1353 * @returns VBox status code.
1354 * @param pVCpu The cross context virtual CPU structure.
1355 * @param uMsr The MSR.
1356 */
1357static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
1358{
1359 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1360 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1361 for (uint32_t i = 0; i < cMsrs; i++)
1362 {
1363 /* Find the MSR. */
1364 if (pGuestMsr->u32Msr == uMsr)
1365 {
1366 /* If it's the last MSR, simply reduce the count. */
1367 if (i == cMsrs - 1)
1368 {
1369 --cMsrs;
1370 break;
1371 }
1372
1373 /* Remove it by swapping the last MSR in place of it, and reducing the count. */
1374 PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1375 pLastGuestMsr += cMsrs - 1;
1376 pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
1377 pGuestMsr->u64Value = pLastGuestMsr->u64Value;
1378
1379 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1380 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1381 pLastHostMsr += cMsrs - 1;
1382 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1383 pHostMsr->u64Value = pLastHostMsr->u64Value;
1384 --cMsrs;
1385 break;
1386 }
1387 pGuestMsr++;
1388 }
1389
1390 /* Update the VMCS if the count changed (meaning the MSR was found). */
1391 if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
1392 {
1393 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1394 AssertRCReturn(rc, rc);
1395
1396 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1397 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1398 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
1399
1400 Log4(("Removed MSR %#RX32 new cMsrs=%u\n", uMsr, pVCpu->hm.s.vmx.cMsrs));
1401 return VINF_SUCCESS;
1402 }
1403
1404 return VERR_NOT_FOUND;
1405}
1406
1407
1408/**
1409 * Checks if the specified guest MSR is part of the auto-load/store area in
1410 * the VMCS.
1411 *
1412 * @returns true if found, false otherwise.
1413 * @param pVCpu The cross context virtual CPU structure.
1414 * @param uMsr The MSR to find.
1415 */
1416static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1417{
1418 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1419 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1420
1421 for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
1422 {
1423 if (pGuestMsr->u32Msr == uMsr)
1424 return true;
1425 }
1426 return false;
1427}
1428
1429
1430/**
1431 * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
1432 *
1433 * @param pVCpu The cross context virtual CPU structure.
1434 *
1435 * @remarks No-long-jump zone!!!
1436 */
1437static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
1438{
1439 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1440 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1441 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1442 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1443
1444 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1445 {
1446 AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
1447
1448 /*
1449 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1450 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1451 */
1452 if (pHostMsr->u32Msr == MSR_K6_EFER)
1453 pHostMsr->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostEfer;
1454 else
1455 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1456 }
1457
1458 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
1459}
1460
1461
1462/**
1463 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1464 * perform lazy restoration of the host MSRs while leaving VT-x.
1465 *
1466 * @param pVCpu The cross context virtual CPU structure.
1467 *
1468 * @remarks No-long-jump zone!!!
1469 */
1470static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1471{
1472 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1473
1474 /*
1475 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
1476 */
1477 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
1478 {
1479 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
1480#if HC_ARCH_BITS == 64
1481 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1482 {
1483 pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
1484 pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
1485 pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
1486 pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1487 }
1488#endif
1489 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1490 }
1491}
1492
1493
1494/**
1495 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1496 * lazily while leaving VT-x.
1497 *
1498 * @returns true if it does, false otherwise.
1499 * @param pVCpu The cross context virtual CPU structure.
1500 * @param uMsr The MSR to check.
1501 */
1502static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1503{
1504 NOREF(pVCpu);
1505#if HC_ARCH_BITS == 64
1506 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1507 {
1508 switch (uMsr)
1509 {
1510 case MSR_K8_LSTAR:
1511 case MSR_K6_STAR:
1512 case MSR_K8_SF_MASK:
1513 case MSR_K8_KERNEL_GS_BASE:
1514 return true;
1515 }
1516 }
1517#else
1518 RT_NOREF(pVCpu, uMsr);
1519#endif
1520 return false;
1521}
1522
1523
1524/**
1525 * Saves a set of guest MSRs back into the guest-CPU context.
1526 *
1527 * @param pVCpu The cross context virtual CPU structure.
1528 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1529 * out-of-sync. Make sure to update the required fields
1530 * before using them.
1531 *
1532 * @remarks No-long-jump zone!!!
1533 */
1534static void hmR0VmxLazySaveGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1535{
1536 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1537 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1538
1539 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1540 {
1541 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1542#if HC_ARCH_BITS == 64
1543 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1544 {
1545 pMixedCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
1546 pMixedCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
1547 pMixedCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
1548 pMixedCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1549 }
1550#else
1551 NOREF(pMixedCtx);
1552#endif
1553 }
1554}
1555
1556
1557/**
1558 * Loads a set of guests MSRs to allow read/passthru to the guest.
1559 *
1560 * The name of this function is slightly confusing. This function does NOT
1561 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1562 * common prefix for functions dealing with "lazy restoration" of the shared
1563 * MSRs.
1564 *
1565 * @param pVCpu The cross context virtual CPU structure.
1566 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1567 * out-of-sync. Make sure to update the required fields
1568 * before using them.
1569 *
1570 * @remarks No-long-jump zone!!!
1571 */
1572static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1573{
1574 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1575 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1576
1577#define VMXLOCAL_LAZY_LOAD_GUEST_MSR(uMsr, a_GuestMsr, a_HostMsr) \
1578 do { \
1579 if (pMixedCtx->msr##a_GuestMsr != pVCpu->hm.s.vmx.u64Host##a_HostMsr##Msr) \
1580 ASMWrMsr(uMsr, pMixedCtx->msr##a_GuestMsr); \
1581 else \
1582 Assert(ASMRdMsr(uMsr) == pVCpu->hm.s.vmx.u64Host##a_HostMsr##Msr); \
1583 } while (0)
1584
1585 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1586 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
1587 {
1588#if HC_ARCH_BITS == 64
1589 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1590 {
1591 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K8_LSTAR, LSTAR, LStar);
1592 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K6_STAR, STAR, Star);
1593 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K8_SF_MASK, SFMASK, SFMask);
1594 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K8_KERNEL_GS_BASE, KERNELGSBASE, KernelGSBase);
1595 }
1596#else
1597 RT_NOREF(pMixedCtx);
1598#endif
1599 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
1600 }
1601
1602#undef VMXLOCAL_LAZY_LOAD_GUEST_MSR
1603}
1604
1605
1606/**
1607 * Performs lazy restoration of the set of host MSRs if they were previously
1608 * loaded with guest MSR values.
1609 *
1610 * @param pVCpu The cross context virtual CPU structure.
1611 *
1612 * @remarks No-long-jump zone!!!
1613 * @remarks The guest MSRs should have been saved back into the guest-CPU
1614 * context by hmR0VmxSaveGuestLazyMsrs()!!!
1615 */
1616static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
1617{
1618 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1619 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1620
1621 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1622 {
1623 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1624#if HC_ARCH_BITS == 64
1625 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1626 {
1627 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
1628 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
1629 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
1630 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
1631 }
1632#endif
1633 }
1634 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
1635}
1636
1637
1638/**
1639 * Verifies that our cached values of the VMCS controls are all
1640 * consistent with what's actually present in the VMCS.
1641 *
1642 * @returns VBox status code.
1643 * @param pVCpu The cross context virtual CPU structure.
1644 */
1645static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu)
1646{
1647 uint32_t u32Val;
1648 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
1649 AssertRCReturn(rc, rc);
1650 AssertMsgReturn(pVCpu->hm.s.vmx.u32EntryCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32EntryCtls, u32Val),
1651 VERR_VMX_ENTRY_CTLS_CACHE_INVALID);
1652
1653 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
1654 AssertRCReturn(rc, rc);
1655 AssertMsgReturn(pVCpu->hm.s.vmx.u32ExitCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ExitCtls, u32Val),
1656 VERR_VMX_EXIT_CTLS_CACHE_INVALID);
1657
1658 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
1659 AssertRCReturn(rc, rc);
1660 AssertMsgReturn(pVCpu->hm.s.vmx.u32PinCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32PinCtls, u32Val),
1661 VERR_VMX_PIN_EXEC_CTLS_CACHE_INVALID);
1662
1663 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
1664 AssertRCReturn(rc, rc);
1665 AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls, u32Val),
1666 VERR_VMX_PROC_EXEC_CTLS_CACHE_INVALID);
1667
1668 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1669 {
1670 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
1671 AssertRCReturn(rc, rc);
1672 AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls2 == u32Val,
1673 ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls2, u32Val),
1674 VERR_VMX_PROC_EXEC2_CTLS_CACHE_INVALID);
1675 }
1676
1677 return VINF_SUCCESS;
1678}
1679
1680
1681#ifdef VBOX_STRICT
1682/**
1683 * Verifies that our cached host EFER value has not changed
1684 * since we cached it.
1685 *
1686 * @param pVCpu The cross context virtual CPU structure.
1687 */
1688static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu)
1689{
1690 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1691
1692 if (pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
1693 {
1694 uint64_t u64Val;
1695 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &u64Val);
1696 AssertRC(rc);
1697
1698 uint64_t u64HostEferMsr = ASMRdMsr(MSR_K6_EFER);
1699 AssertMsgReturnVoid(u64HostEferMsr == u64Val, ("u64HostEferMsr=%#RX64 u64Val=%#RX64\n", u64HostEferMsr, u64Val));
1700 }
1701}
1702
1703
1704/**
1705 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
1706 * VMCS are correct.
1707 *
1708 * @param pVCpu The cross context virtual CPU structure.
1709 */
1710static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
1711{
1712 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1713
1714 /* Verify MSR counts in the VMCS are what we think it should be. */
1715 uint32_t cMsrs;
1716 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1717 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1718
1719 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
1720 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1721
1722 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1723 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1724
1725 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1726 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1727 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1728 {
1729 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
1730 AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32 cMsrs=%u\n", pHostMsr->u32Msr,
1731 pGuestMsr->u32Msr, cMsrs));
1732
1733 uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
1734 AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
1735 pHostMsr->u32Msr, pHostMsr->u64Value, u64Msr, cMsrs));
1736
1737 /* Verify that the permissions are as expected in the MSR bitmap. */
1738 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1739 {
1740 VMXMSREXITREAD enmRead;
1741 VMXMSREXITWRITE enmWrite;
1742 rc = hmR0VmxGetMsrPermission(pVCpu, pGuestMsr->u32Msr, &enmRead, &enmWrite);
1743 AssertMsgReturnVoid(rc == VINF_SUCCESS, ("hmR0VmxGetMsrPermission! failed. rc=%Rrc\n", rc));
1744 if (pGuestMsr->u32Msr == MSR_K6_EFER)
1745 {
1746 AssertMsgReturnVoid(enmRead == VMXMSREXIT_INTERCEPT_READ, ("Passthru read for EFER!?\n"));
1747 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_INTERCEPT_WRITE, ("Passthru write for EFER!?\n"));
1748 }
1749 else
1750 {
1751 AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 cMsrs=%u No passthru read!\n",
1752 pGuestMsr->u32Msr, cMsrs));
1753 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 cMsrs=%u No passthru write!\n",
1754 pGuestMsr->u32Msr, cMsrs));
1755 }
1756 }
1757 }
1758}
1759#endif /* VBOX_STRICT */
1760
1761
1762/**
1763 * Flushes the TLB using EPT.
1764 *
1765 * @returns VBox status code.
1766 * @param pVCpu The cross context virtual CPU structure of the calling
1767 * EMT. Can be NULL depending on @a enmFlush.
1768 * @param enmFlush Type of flush.
1769 *
1770 * @remarks Caller is responsible for making sure this function is called only
1771 * when NestedPaging is supported and providing @a enmFlush that is
1772 * supported by the CPU.
1773 * @remarks Can be called with interrupts disabled.
1774 */
1775static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush)
1776{
1777 uint64_t au64Descriptor[2];
1778 if (enmFlush == VMXFLUSHEPT_ALL_CONTEXTS)
1779 au64Descriptor[0] = 0;
1780 else
1781 {
1782 Assert(pVCpu);
1783 au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1784 }
1785 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1786
1787 int rc = VMXR0InvEPT(enmFlush, &au64Descriptor[0]);
1788 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0,
1789 rc));
1790 if ( RT_SUCCESS(rc)
1791 && pVCpu)
1792 {
1793 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1794 }
1795}
1796
1797
1798/**
1799 * Flushes the TLB using VPID.
1800 *
1801 * @returns VBox status code.
1802 * @param pVM The cross context VM structure.
1803 * @param pVCpu The cross context virtual CPU structure of the calling
1804 * EMT. Can be NULL depending on @a enmFlush.
1805 * @param enmFlush Type of flush.
1806 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1807 * on @a enmFlush).
1808 *
1809 * @remarks Can be called with interrupts disabled.
1810 */
1811static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr)
1812{
1813 NOREF(pVM);
1814 AssertPtr(pVM);
1815 Assert(pVM->hm.s.vmx.fVpid);
1816
1817 uint64_t au64Descriptor[2];
1818 if (enmFlush == VMXFLUSHVPID_ALL_CONTEXTS)
1819 {
1820 au64Descriptor[0] = 0;
1821 au64Descriptor[1] = 0;
1822 }
1823 else
1824 {
1825 AssertPtr(pVCpu);
1826 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1827 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1828 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1829 au64Descriptor[1] = GCPtr;
1830 }
1831
1832 int rc = VMXR0InvVPID(enmFlush, &au64Descriptor[0]); NOREF(rc);
1833 AssertMsg(rc == VINF_SUCCESS,
1834 ("VMXR0InvVPID %#x %u %RGv failed with %d\n", enmFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1835 if ( RT_SUCCESS(rc)
1836 && pVCpu)
1837 {
1838 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1839 }
1840}
1841
1842
1843/**
1844 * Invalidates a guest page by guest virtual address. Only relevant for
1845 * EPT/VPID, otherwise there is nothing really to invalidate.
1846 *
1847 * @returns VBox status code.
1848 * @param pVM The cross context VM structure.
1849 * @param pVCpu The cross context virtual CPU structure.
1850 * @param GCVirt Guest virtual address of the page to invalidate.
1851 */
1852VMMR0DECL(int) VMXR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
1853{
1854 AssertPtr(pVM);
1855 AssertPtr(pVCpu);
1856 LogFlowFunc(("pVM=%p pVCpu=%p GCVirt=%RGv\n", pVM, pVCpu, GCVirt));
1857
1858 bool fFlushPending = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
1859 if (!fFlushPending)
1860 {
1861 /*
1862 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for the EPT case
1863 * See @bugref{6043} and @bugref{6177}.
1864 *
1865 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*() as this
1866 * function maybe called in a loop with individual addresses.
1867 */
1868 if (pVM->hm.s.vmx.fVpid)
1869 {
1870 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1871 {
1872 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_INDIV_ADDR, GCVirt);
1873 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1874 }
1875 else
1876 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1877 }
1878 else if (pVM->hm.s.fNestedPaging)
1879 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1880 }
1881
1882 return VINF_SUCCESS;
1883}
1884
1885
1886/**
1887 * Invalidates a guest page by physical address. Only relevant for EPT/VPID,
1888 * otherwise there is nothing really to invalidate.
1889 *
1890 * @returns VBox status code.
1891 * @param pVM The cross context VM structure.
1892 * @param pVCpu The cross context virtual CPU structure.
1893 * @param GCPhys Guest physical address of the page to invalidate.
1894 */
1895VMMR0DECL(int) VMXR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
1896{
1897 NOREF(pVM); NOREF(GCPhys);
1898 LogFlowFunc(("%RGp\n", GCPhys));
1899
1900 /*
1901 * We cannot flush a page by guest-physical address. invvpid takes only a linear address while invept only flushes
1902 * by EPT not individual addresses. We update the force flag here and flush before the next VM-entry in hmR0VmxFlushTLB*().
1903 * This function might be called in a loop. This should cause a flush-by-EPT if EPT is in use. See @bugref{6568}.
1904 */
1905 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1906 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgPhys);
1907 return VINF_SUCCESS;
1908}
1909
1910
1911/**
1912 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1913 * case where neither EPT nor VPID is supported by the CPU.
1914 *
1915 * @param pVM The cross context VM structure.
1916 * @param pVCpu The cross context virtual CPU structure.
1917 * @param pCpu Pointer to the global HM struct.
1918 *
1919 * @remarks Called with interrupts disabled.
1920 */
1921static void hmR0VmxFlushTaggedTlbNone(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1922{
1923 AssertPtr(pVCpu);
1924 AssertPtr(pCpu);
1925 NOREF(pVM);
1926
1927 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1928
1929 Assert(pCpu->idCpu != NIL_RTCPUID);
1930 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1931 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1932 pVCpu->hm.s.fForceTLBFlush = false;
1933 return;
1934}
1935
1936
1937/**
1938 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1939 *
1940 * @param pVM The cross context VM structure.
1941 * @param pVCpu The cross context virtual CPU structure.
1942 * @param pCpu Pointer to the global HM CPU struct.
1943 * @remarks All references to "ASID" in this function pertains to "VPID" in
1944 * Intel's nomenclature. The reason is, to avoid confusion in compare
1945 * statements since the host-CPU copies are named "ASID".
1946 *
1947 * @remarks Called with interrupts disabled.
1948 */
1949static void hmR0VmxFlushTaggedTlbBoth(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1950{
1951#ifdef VBOX_WITH_STATISTICS
1952 bool fTlbFlushed = false;
1953# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
1954# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
1955 if (!fTlbFlushed) \
1956 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
1957 } while (0)
1958#else
1959# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
1960# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
1961#endif
1962
1963 AssertPtr(pVM);
1964 AssertPtr(pCpu);
1965 AssertPtr(pVCpu);
1966 Assert(pCpu->idCpu != NIL_RTCPUID);
1967
1968 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1969 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1970 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1971
1972 /*
1973 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
1974 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
1975 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
1976 */
1977 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1978 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1979 {
1980 ++pCpu->uCurrentAsid;
1981 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1982 {
1983 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
1984 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1985 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1986 }
1987
1988 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
1989 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1990 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1991
1992 /*
1993 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
1994 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
1995 */
1996 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1997 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1998 HMVMX_SET_TAGGED_TLB_FLUSHED();
1999 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH); /* Already flushed-by-EPT, skip doing it again below. */
2000 }
2001
2002 /* Check for explicit TLB flushes. */
2003 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2004 {
2005 /*
2006 * Changes to the EPT paging structure by VMM requires flushing by EPT as the CPU creates
2007 * guest-physical (only EPT-tagged) mappings while traversing the EPT tables when EPT is in use.
2008 * Flushing by VPID will only flush linear (only VPID-tagged) and combined (EPT+VPID tagged) mappings
2009 * but not guest-physical mappings.
2010 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information". See @bugref{6568}.
2011 */
2012 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2013 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2014 HMVMX_SET_TAGGED_TLB_FLUSHED();
2015 }
2016
2017 pVCpu->hm.s.fForceTLBFlush = false;
2018 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
2019
2020 Assert(pVCpu->hm.s.idLastCpu == pCpu->idCpu);
2021 Assert(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes);
2022 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2023 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2024 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2025 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2026 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2027 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2028 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2029
2030 /* Update VMCS with the VPID. */
2031 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2032 AssertRC(rc);
2033
2034#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2035}
2036
2037
2038/**
2039 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2040 *
2041 * @returns VBox status code.
2042 * @param pVM The cross context VM structure.
2043 * @param pVCpu The cross context virtual CPU structure.
2044 * @param pCpu Pointer to the global HM CPU struct.
2045 *
2046 * @remarks Called with interrupts disabled.
2047 */
2048static void hmR0VmxFlushTaggedTlbEpt(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2049{
2050 AssertPtr(pVM);
2051 AssertPtr(pVCpu);
2052 AssertPtr(pCpu);
2053 Assert(pCpu->idCpu != NIL_RTCPUID);
2054 AssertMsg(pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with NestedPaging disabled."));
2055 AssertMsg(!pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID enabled."));
2056
2057 /*
2058 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2059 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2060 */
2061 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2062 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2063 {
2064 pVCpu->hm.s.fForceTLBFlush = true;
2065 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2066 }
2067
2068 /* Check for explicit TLB flushes. */
2069 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2070 {
2071 pVCpu->hm.s.fForceTLBFlush = true;
2072 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2073 }
2074
2075 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2076 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2077
2078 if (pVCpu->hm.s.fForceTLBFlush)
2079 {
2080 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2081 pVCpu->hm.s.fForceTLBFlush = false;
2082 }
2083}
2084
2085
2086/**
2087 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2088 *
2089 * @returns VBox status code.
2090 * @param pVM The cross context VM structure.
2091 * @param pVCpu The cross context virtual CPU structure.
2092 * @param pCpu Pointer to the global HM CPU struct.
2093 *
2094 * @remarks Called with interrupts disabled.
2095 */
2096static void hmR0VmxFlushTaggedTlbVpid(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2097{
2098 AssertPtr(pVM);
2099 AssertPtr(pVCpu);
2100 AssertPtr(pCpu);
2101 Assert(pCpu->idCpu != NIL_RTCPUID);
2102 AssertMsg(pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked with VPID disabled."));
2103 AssertMsg(!pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging enabled"));
2104
2105 /*
2106 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
2107 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
2108 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
2109 */
2110 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2111 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2112 {
2113 pVCpu->hm.s.fForceTLBFlush = true;
2114 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2115 }
2116
2117 /* Check for explicit TLB flushes. */
2118 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2119 {
2120 /*
2121 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see hmR0VmxSetupTaggedTlb())
2122 * we would need to explicitly flush in this case (add an fExplicitFlush = true here and change the
2123 * pCpu->fFlushAsidBeforeUse check below to include fExplicitFlush's too) - an obscure corner case.
2124 */
2125 pVCpu->hm.s.fForceTLBFlush = true;
2126 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2127 }
2128
2129 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2130 if (pVCpu->hm.s.fForceTLBFlush)
2131 {
2132 ++pCpu->uCurrentAsid;
2133 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2134 {
2135 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2136 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2137 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2138 }
2139
2140 pVCpu->hm.s.fForceTLBFlush = false;
2141 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2142 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2143 if (pCpu->fFlushAsidBeforeUse)
2144 {
2145 if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT)
2146 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2147 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_ALL_CONTEXTS)
2148 {
2149 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2150 pCpu->fFlushAsidBeforeUse = false;
2151 }
2152 else
2153 {
2154 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2155 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2156 }
2157 }
2158 }
2159
2160 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2161 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2162 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2163 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2164 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2165 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2166 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2167
2168 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2169 AssertRC(rc);
2170}
2171
2172
2173/**
2174 * Flushes the guest TLB entry based on CPU capabilities.
2175 *
2176 * @param pVCpu The cross context virtual CPU structure.
2177 * @param pCpu Pointer to the global HM CPU struct.
2178 */
2179DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2180{
2181#ifdef HMVMX_ALWAYS_FLUSH_TLB
2182 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2183#endif
2184 PVM pVM = pVCpu->CTX_SUFF(pVM);
2185 switch (pVM->hm.s.vmx.uFlushTaggedTlb)
2186 {
2187 case HMVMX_FLUSH_TAGGED_TLB_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVM, pVCpu, pCpu); break;
2188 case HMVMX_FLUSH_TAGGED_TLB_EPT: hmR0VmxFlushTaggedTlbEpt(pVM, pVCpu, pCpu); break;
2189 case HMVMX_FLUSH_TAGGED_TLB_VPID: hmR0VmxFlushTaggedTlbVpid(pVM, pVCpu, pCpu); break;
2190 case HMVMX_FLUSH_TAGGED_TLB_NONE: hmR0VmxFlushTaggedTlbNone(pVM, pVCpu, pCpu); break;
2191 default:
2192 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2193 break;
2194 }
2195
2196 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2197}
2198
2199
2200/**
2201 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2202 * TLB entries from the host TLB before VM-entry.
2203 *
2204 * @returns VBox status code.
2205 * @param pVM The cross context VM structure.
2206 */
2207static int hmR0VmxSetupTaggedTlb(PVM pVM)
2208{
2209 /*
2210 * Determine optimal flush type for Nested Paging.
2211 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
2212 * guest execution (see hmR3InitFinalizeR0()).
2213 */
2214 if (pVM->hm.s.fNestedPaging)
2215 {
2216 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2217 {
2218 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2219 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_SINGLE_CONTEXT;
2220 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2221 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_ALL_CONTEXTS;
2222 else
2223 {
2224 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2225 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2226 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
2227 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2228 }
2229
2230 /* Make sure the write-back cacheable memory type for EPT is supported. */
2231 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
2232 {
2233 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2234 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
2235 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2236 }
2237
2238 /* EPT requires a page-walk length of 4. */
2239 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
2240 {
2241 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2242 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
2243 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2244 }
2245 }
2246 else
2247 {
2248 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2249 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2250 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
2251 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2252 }
2253 }
2254
2255 /*
2256 * Determine optimal flush type for VPID.
2257 */
2258 if (pVM->hm.s.vmx.fVpid)
2259 {
2260 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2261 {
2262 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2263 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_SINGLE_CONTEXT;
2264 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2265 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_ALL_CONTEXTS;
2266 else
2267 {
2268 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2269 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2270 LogRel(("hmR0VmxSetupTaggedTlb: Only INDIV_ADDR supported. Ignoring VPID.\n"));
2271 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2272 LogRel(("hmR0VmxSetupTaggedTlb: Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2273 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
2274 pVM->hm.s.vmx.fVpid = false;
2275 }
2276 }
2277 else
2278 {
2279 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2280 Log4(("hmR0VmxSetupTaggedTlb: VPID supported without INVEPT support. Ignoring VPID.\n"));
2281 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
2282 pVM->hm.s.vmx.fVpid = false;
2283 }
2284 }
2285
2286 /*
2287 * Setup the handler for flushing tagged-TLBs.
2288 */
2289 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2290 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT_VPID;
2291 else if (pVM->hm.s.fNestedPaging)
2292 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT;
2293 else if (pVM->hm.s.vmx.fVpid)
2294 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_VPID;
2295 else
2296 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_NONE;
2297 return VINF_SUCCESS;
2298}
2299
2300
2301/**
2302 * Sets up pin-based VM-execution controls in the VMCS.
2303 *
2304 * @returns VBox status code.
2305 * @param pVM The cross context VM structure.
2306 * @param pVCpu The cross context virtual CPU structure.
2307 */
2308static int hmR0VmxSetupPinCtls(PVM pVM, PVMCPU pVCpu)
2309{
2310 AssertPtr(pVM);
2311 AssertPtr(pVCpu);
2312
2313 uint32_t val = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0; /* Bits set here must always be set. */
2314 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2315
2316 val |= VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2317 | VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2318
2319 if (pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
2320 val |= VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2321
2322 /* Enable the VMX preemption timer. */
2323 if (pVM->hm.s.vmx.fUsePreemptTimer)
2324 {
2325 Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
2326 val |= VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER;
2327 }
2328
2329#if 0
2330 /* Enable posted-interrupt processing. */
2331 if (pVM->hm.s.fPostedIntrs)
2332 {
2333 Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR);
2334 Assert(pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT);
2335 val |= VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR;
2336 }
2337#endif
2338
2339 if ((val & zap) != val)
2340 {
2341 LogRel(("hmR0VmxSetupPinCtls: Invalid pin-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2342 pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0, val, zap));
2343 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2344 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2345 }
2346
2347 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, val);
2348 AssertRCReturn(rc, rc);
2349
2350 pVCpu->hm.s.vmx.u32PinCtls = val;
2351 return rc;
2352}
2353
2354
2355/**
2356 * Sets up processor-based VM-execution controls in the VMCS.
2357 *
2358 * @returns VBox status code.
2359 * @param pVM The cross context VM structure.
2360 * @param pVCpu The cross context virtual CPU structure.
2361 */
2362static int hmR0VmxSetupProcCtls(PVM pVM, PVMCPU pVCpu)
2363{
2364 AssertPtr(pVM);
2365 AssertPtr(pVCpu);
2366
2367 int rc = VERR_INTERNAL_ERROR_5;
2368 uint32_t val = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
2369 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2370
2371 val |= VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT /* HLT causes a VM-exit. */
2372 | VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2373 | VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2374 | VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2375 | VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2376 | VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2377 | VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2378
2379 /* We toggle VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2380 if ( !(pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT)
2381 || (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT))
2382 {
2383 LogRel(("hmR0VmxSetupProcCtls: Unsupported VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT combo!"));
2384 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2385 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2386 }
2387
2388 /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
2389 if (!pVM->hm.s.fNestedPaging)
2390 {
2391 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
2392 val |= VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT
2393 | VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
2394 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
2395 }
2396
2397 /* Use TPR shadowing if supported by the CPU. */
2398 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
2399 {
2400 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2401 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2402 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
2403 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
2404 AssertRCReturn(rc, rc);
2405
2406 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2407 /* CR8 writes cause a VM-exit based on TPR threshold. */
2408 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT));
2409 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT));
2410 }
2411 else
2412 {
2413 /*
2414 * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
2415 * Set this control only for 64-bit guests.
2416 */
2417 if (pVM->hm.s.fAllow64BitGuests)
2418 {
2419 val |= VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
2420 | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
2421 }
2422 }
2423
2424 /* Use MSR-bitmaps if supported by the CPU. */
2425 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
2426 {
2427 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS;
2428
2429 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2430 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2431 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2432 AssertRCReturn(rc, rc);
2433
2434 /*
2435 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
2436 * automatically using dedicated fields in the VMCS.
2437 */
2438 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2439 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2440 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2441 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2442 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2443
2444#if HC_ARCH_BITS == 64
2445 /*
2446 * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
2447 */
2448 if (pVM->hm.s.fAllow64BitGuests)
2449 {
2450 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2451 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2452 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2453 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2454 }
2455#endif
2456 /* Though MSR_IA32_PERF_GLOBAL_CTRL is saved/restored lazily, we want intercept reads/write to it for now. */
2457 }
2458
2459 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2460 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
2461 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
2462
2463 if ((val & zap) != val)
2464 {
2465 LogRel(("hmR0VmxSetupProcCtls: Invalid processor-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2466 pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0, val, zap));
2467 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2468 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2469 }
2470
2471 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, val);
2472 AssertRCReturn(rc, rc);
2473
2474 pVCpu->hm.s.vmx.u32ProcCtls = val;
2475
2476 /*
2477 * Secondary processor-based VM-execution controls.
2478 */
2479 if (RT_LIKELY(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL))
2480 {
2481 val = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0; /* Bits set here must be set in the VMCS. */
2482 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2483
2484 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT)
2485 val |= VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT; /* WBINVD causes a VM-exit. */
2486
2487 if (pVM->hm.s.fNestedPaging)
2488 val |= VMX_VMCS_CTRL_PROC_EXEC2_EPT; /* Enable EPT. */
2489 else
2490 {
2491 /*
2492 * Without Nested Paging, INVPCID should cause a VM-exit. Enabling this bit causes the CPU to refer to
2493 * VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT when INVPCID is executed by the guest.
2494 * See Intel spec. 25.4 "Changes to instruction behaviour in VMX non-root operation".
2495 */
2496 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_INVPCID)
2497 val |= VMX_VMCS_CTRL_PROC_EXEC2_INVPCID;
2498 }
2499
2500 if (pVM->hm.s.vmx.fVpid)
2501 val |= VMX_VMCS_CTRL_PROC_EXEC2_VPID; /* Enable VPID. */
2502
2503 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2504 val |= VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST; /* Enable Unrestricted Execution. */
2505
2506#if 0
2507 if (pVM->hm.s.fVirtApicRegs)
2508 {
2509 Assert(pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT);
2510 val |= VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT; /* Enable APIC-register virtualization. */
2511
2512 Assert(pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY);
2513 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY; /* Enable virtual-interrupt delivery. */
2514 }
2515#endif
2516
2517 /* Enable Virtual-APIC page accesses if supported by the CPU. This is essentially where the TPR shadow resides. */
2518 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2519 * done dynamically. */
2520 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
2521 {
2522 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
2523 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2524 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC; /* Virtualize APIC accesses. */
2525 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
2526 AssertRCReturn(rc, rc);
2527 }
2528
2529 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
2530 val |= VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP; /* Enable RDTSCP support. */
2531
2532 if ( pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT
2533 && pVM->hm.s.vmx.cPleGapTicks
2534 && pVM->hm.s.vmx.cPleWindowTicks)
2535 {
2536 val |= VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT; /* Enable pause-loop exiting. */
2537
2538 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
2539 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
2540 AssertRCReturn(rc, rc);
2541 }
2542
2543 if ((val & zap) != val)
2544 {
2545 LogRel(("hmR0VmxSetupProcCtls: Invalid secondary processor-based VM-execution controls combo! "
2546 "cpu=%#RX64 val=%#RX64 zap=%#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0, val, zap));
2547 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2548 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2549 }
2550
2551 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, val);
2552 AssertRCReturn(rc, rc);
2553
2554 pVCpu->hm.s.vmx.u32ProcCtls2 = val;
2555 }
2556 else if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
2557 {
2558 LogRel(("hmR0VmxSetupProcCtls: Unrestricted Guest set as true when secondary processor-based VM-execution controls not "
2559 "available\n"));
2560 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
2561 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2562 }
2563
2564 return VINF_SUCCESS;
2565}
2566
2567
2568/**
2569 * Sets up miscellaneous (everything other than Pin & Processor-based
2570 * VM-execution) control fields in the VMCS.
2571 *
2572 * @returns VBox status code.
2573 * @param pVM The cross context VM structure.
2574 * @param pVCpu The cross context virtual CPU structure.
2575 */
2576static int hmR0VmxSetupMiscCtls(PVM pVM, PVMCPU pVCpu)
2577{
2578 NOREF(pVM);
2579 AssertPtr(pVM);
2580 AssertPtr(pVCpu);
2581
2582 int rc = VERR_GENERAL_FAILURE;
2583
2584 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2585#if 0
2586 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxLoadGuestCR3AndCR4())*/
2587 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0);
2588 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0);
2589
2590 /*
2591 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
2592 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
2593 * We thus use the exception bitmap to control it rather than use both.
2594 */
2595 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0);
2596 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0);
2597
2598 /** @todo Explore possibility of using IO-bitmaps. */
2599 /* All IO & IOIO instructions cause VM-exits. */
2600 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0);
2601 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0);
2602
2603 /* Initialize the MSR-bitmap area. */
2604 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
2605 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
2606 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
2607 AssertRCReturn(rc, rc);
2608#endif
2609
2610 /* Setup MSR auto-load/store area. */
2611 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
2612 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
2613 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2614 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2615 AssertRCReturn(rc, rc);
2616
2617 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
2618 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
2619 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
2620 AssertRCReturn(rc, rc);
2621
2622 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
2623 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
2624 AssertRCReturn(rc, rc);
2625
2626 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2627#if 0
2628 /* Setup debug controls */
2629 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0); /** @todo We don't support IA32_DEBUGCTL MSR. Should we? */
2630 rc |= VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
2631 AssertRCReturn(rc, rc);
2632#endif
2633
2634 return rc;
2635}
2636
2637
2638/**
2639 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2640 *
2641 * @returns VBox status code.
2642 * @param pVM The cross context VM structure.
2643 * @param pVCpu The cross context virtual CPU structure.
2644 */
2645static int hmR0VmxInitXcptBitmap(PVM pVM, PVMCPU pVCpu)
2646{
2647 AssertPtr(pVM);
2648 AssertPtr(pVCpu);
2649
2650 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
2651
2652 uint32_t u32XcptBitmap = pVCpu->hm.s.fGIMTrapXcptUD ? RT_BIT(X86_XCPT_UD) : 0;
2653
2654 /* Must always intercept #AC to prevent the guest from hanging the CPU. */
2655 u32XcptBitmap |= RT_BIT_32(X86_XCPT_AC);
2656
2657 /* Because we need to maintain the DR6 state even when intercepting DRx reads
2658 and writes, and because recursive #DBs can cause the CPU hang, we must always
2659 intercept #DB. */
2660 u32XcptBitmap |= RT_BIT_32(X86_XCPT_DB);
2661
2662 /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
2663 if (!pVM->hm.s.fNestedPaging)
2664 u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
2665
2666 pVCpu->hm.s.vmx.u32XcptBitmap = u32XcptBitmap;
2667 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
2668 AssertRCReturn(rc, rc);
2669 return rc;
2670}
2671
2672
2673/**
2674 * Sets up the initial guest-state mask. The guest-state mask is consulted
2675 * before reading guest-state fields from the VMCS as VMREADs can be expensive
2676 * for the nested virtualization case (as it would cause a VM-exit).
2677 *
2678 * @param pVCpu The cross context virtual CPU structure.
2679 */
2680static int hmR0VmxInitUpdatedGuestStateMask(PVMCPU pVCpu)
2681{
2682 /* Initially the guest-state is up-to-date as there is nothing in the VMCS. */
2683 HMVMXCPU_GST_RESET_TO(pVCpu, HMVMX_UPDATED_GUEST_ALL);
2684 return VINF_SUCCESS;
2685}
2686
2687
2688/**
2689 * Does per-VM VT-x initialization.
2690 *
2691 * @returns VBox status code.
2692 * @param pVM The cross context VM structure.
2693 */
2694VMMR0DECL(int) VMXR0InitVM(PVM pVM)
2695{
2696 LogFlowFunc(("pVM=%p\n", pVM));
2697
2698 int rc = hmR0VmxStructsAlloc(pVM);
2699 if (RT_FAILURE(rc))
2700 {
2701 LogRel(("VMXR0InitVM: hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
2702 return rc;
2703 }
2704
2705 return VINF_SUCCESS;
2706}
2707
2708
2709/**
2710 * Does per-VM VT-x termination.
2711 *
2712 * @returns VBox status code.
2713 * @param pVM The cross context VM structure.
2714 */
2715VMMR0DECL(int) VMXR0TermVM(PVM pVM)
2716{
2717 LogFlowFunc(("pVM=%p\n", pVM));
2718
2719#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2720 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
2721 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
2722#endif
2723 hmR0VmxStructsFree(pVM);
2724 return VINF_SUCCESS;
2725}
2726
2727
2728/**
2729 * Sets up the VM for execution under VT-x.
2730 * This function is only called once per-VM during initialization.
2731 *
2732 * @returns VBox status code.
2733 * @param pVM The cross context VM structure.
2734 */
2735VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
2736{
2737 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
2738 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2739
2740 LogFlowFunc(("pVM=%p\n", pVM));
2741
2742 /*
2743 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be allocated.
2744 * We no longer support the highly unlikely case of UnrestrictedGuest without pRealModeTSS. See hmR3InitFinalizeR0Intel().
2745 */
2746 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
2747 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
2748 || !pVM->hm.s.vmx.pRealModeTSS))
2749 {
2750 LogRel(("VMXR0SetupVM: Invalid real-on-v86 state.\n"));
2751 return VERR_INTERNAL_ERROR;
2752 }
2753
2754 /* Initialize these always, see hmR3InitFinalizeR0().*/
2755 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NONE;
2756 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NONE;
2757
2758 /* Setup the tagged-TLB flush handlers. */
2759 int rc = hmR0VmxSetupTaggedTlb(pVM);
2760 if (RT_FAILURE(rc))
2761 {
2762 LogRel(("VMXR0SetupVM: hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
2763 return rc;
2764 }
2765
2766 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
2767 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
2768#if HC_ARCH_BITS == 64
2769 if ( (pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1 & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
2770 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
2771 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR))
2772 {
2773 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
2774 }
2775#endif
2776
2777 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
2778 RTCCUINTREG uHostCR4 = ASMGetCR4();
2779 if (RT_UNLIKELY(!(uHostCR4 & X86_CR4_VMXE)))
2780 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
2781
2782 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2783 {
2784 PVMCPU pVCpu = &pVM->aCpus[i];
2785 AssertPtr(pVCpu);
2786 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
2787
2788 /* Log the VCPU pointers, useful for debugging SMP VMs. */
2789 Log4(("VMXR0SetupVM: pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
2790
2791 /* Initialize the VM-exit history array with end-of-array markers (UINT16_MAX). */
2792 Assert(!pVCpu->hm.s.idxExitHistoryFree);
2793 HMCPU_EXIT_HISTORY_RESET(pVCpu);
2794
2795 /* Set revision dword at the beginning of the VMCS structure. */
2796 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
2797
2798 /* Initialize our VMCS region in memory, set the VMCS launch state to "clear". */
2799 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2800 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2801 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2802
2803 /* Load this VMCS as the current VMCS. */
2804 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2805 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2806 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2807
2808 rc = hmR0VmxSetupPinCtls(pVM, pVCpu);
2809 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2810 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2811
2812 rc = hmR0VmxSetupProcCtls(pVM, pVCpu);
2813 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2814 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2815
2816 rc = hmR0VmxSetupMiscCtls(pVM, pVCpu);
2817 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2818 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2819
2820 rc = hmR0VmxInitXcptBitmap(pVM, pVCpu);
2821 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2822 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2823
2824 rc = hmR0VmxInitUpdatedGuestStateMask(pVCpu);
2825 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitUpdatedGuestStateMask failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2826 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2827
2828#if HC_ARCH_BITS == 32
2829 rc = hmR0VmxInitVmcsReadCache(pVM, pVCpu);
2830 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2831 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2832#endif
2833
2834 /* Re-sync the CPU's internal data into our VMCS memory region & reset the launch state to "clear". */
2835 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2836 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2837 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2838
2839 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
2840
2841 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc);
2842 }
2843
2844 return VINF_SUCCESS;
2845}
2846
2847
2848/**
2849 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2850 * the VMCS.
2851 *
2852 * @returns VBox status code.
2853 * @param pVM The cross context VM structure.
2854 * @param pVCpu The cross context virtual CPU structure.
2855 */
2856DECLINLINE(int) hmR0VmxSaveHostControlRegs(PVM pVM, PVMCPU pVCpu)
2857{
2858 NOREF(pVM); NOREF(pVCpu);
2859
2860 RTCCUINTREG uReg = ASMGetCR0();
2861 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2862 AssertRCReturn(rc, rc);
2863
2864 uReg = ASMGetCR3();
2865 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2866 AssertRCReturn(rc, rc);
2867
2868 uReg = ASMGetCR4();
2869 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2870 AssertRCReturn(rc, rc);
2871 return rc;
2872}
2873
2874
2875#if HC_ARCH_BITS == 64
2876/**
2877 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
2878 * requirements. See hmR0VmxSaveHostSegmentRegs().
2879 */
2880# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
2881 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
2882 { \
2883 bool fValidSelector = true; \
2884 if ((selValue) & X86_SEL_LDT) \
2885 { \
2886 uint32_t uAttr = ASMGetSegAttr((selValue)); \
2887 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
2888 } \
2889 if (fValidSelector) \
2890 { \
2891 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
2892 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
2893 } \
2894 (selValue) = 0; \
2895 }
2896#endif
2897
2898
2899/**
2900 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2901 * the host-state area in the VMCS.
2902 *
2903 * @returns VBox status code.
2904 * @param pVM The cross context VM structure.
2905 * @param pVCpu The cross context virtual CPU structure.
2906 */
2907DECLINLINE(int) hmR0VmxSaveHostSegmentRegs(PVM pVM, PVMCPU pVCpu)
2908{
2909 int rc = VERR_INTERNAL_ERROR_5;
2910
2911#if HC_ARCH_BITS == 64
2912 /*
2913 * If we've executed guest code using VT-x, the host-state bits will be messed up. We
2914 * should -not- save the messed up state without restoring the original host-state. See @bugref{7240}.
2915 *
2916 * This apparently can happen (most likely the FPU changes), deal with it rather than asserting.
2917 * Was observed booting Solaris10u10 32-bit guest.
2918 */
2919 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
2920 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
2921 {
2922 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
2923 pVCpu->idCpu));
2924 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
2925 }
2926 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
2927#else
2928 RT_NOREF(pVCpu);
2929#endif
2930
2931 /*
2932 * Host DS, ES, FS and GS segment registers.
2933 */
2934#if HC_ARCH_BITS == 64
2935 RTSEL uSelDS = ASMGetDS();
2936 RTSEL uSelES = ASMGetES();
2937 RTSEL uSelFS = ASMGetFS();
2938 RTSEL uSelGS = ASMGetGS();
2939#else
2940 RTSEL uSelDS = 0;
2941 RTSEL uSelES = 0;
2942 RTSEL uSelFS = 0;
2943 RTSEL uSelGS = 0;
2944#endif
2945
2946 /*
2947 * Host CS and SS segment registers.
2948 */
2949 RTSEL uSelCS = ASMGetCS();
2950 RTSEL uSelSS = ASMGetSS();
2951
2952 /*
2953 * Host TR segment register.
2954 */
2955 RTSEL uSelTR = ASMGetTR();
2956
2957#if HC_ARCH_BITS == 64
2958 /*
2959 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to gain VM-entry and restore them
2960 * before we get preempted. See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
2961 */
2962 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
2963 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
2964 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
2965 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
2966# undef VMXLOCAL_ADJUST_HOST_SEG
2967#endif
2968
2969 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2970 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2971 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2972 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2973 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2974 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2975 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2976 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
2977 Assert(uSelCS);
2978 Assert(uSelTR);
2979
2980 /* Assertion is right but we would not have updated u32ExitCtls yet. */
2981#if 0
2982 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE))
2983 Assert(uSelSS != 0);
2984#endif
2985
2986 /* Write these host selector fields into the host-state area in the VMCS. */
2987 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
2988 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
2989#if HC_ARCH_BITS == 64
2990 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
2991 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
2992 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
2993 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
2994#else
2995 NOREF(uSelDS);
2996 NOREF(uSelES);
2997 NOREF(uSelFS);
2998 NOREF(uSelGS);
2999#endif
3000 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
3001 AssertRCReturn(rc, rc);
3002
3003 /*
3004 * Host GDTR and IDTR.
3005 */
3006 RTGDTR Gdtr;
3007 RTIDTR Idtr;
3008 RT_ZERO(Gdtr);
3009 RT_ZERO(Idtr);
3010 ASMGetGDTR(&Gdtr);
3011 ASMGetIDTR(&Idtr);
3012 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
3013 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
3014 AssertRCReturn(rc, rc);
3015
3016#if HC_ARCH_BITS == 64
3017 /*
3018 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps them to the
3019 * maximum limit (0xffff) on every VM-exit.
3020 */
3021 if (Gdtr.cbGdt != 0xffff)
3022 {
3023 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
3024 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
3025 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3026 }
3027
3028 /*
3029 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT"
3030 * and Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit as 0xfff, VT-x
3031 * bloating the limit to 0xffff shouldn't cause any different CPU behavior. However, several hosts either insists
3032 * on 0xfff being the limit (Windows Patch Guard) or uses the limit for other purposes (darwin puts the CPU ID in there
3033 * but botches sidt alignment in at least one consumer). So, we're only allowing IDTR.LIMIT to be left at 0xffff on
3034 * hosts where we are pretty sure it won't cause trouble.
3035 */
3036# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
3037 if (Idtr.cbIdt < 0x0fff)
3038# else
3039 if (Idtr.cbIdt != 0xffff)
3040# endif
3041 {
3042 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
3043 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
3044 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
3045 }
3046#endif
3047
3048 /*
3049 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI and RPL bits
3050 * is effectively what the CPU does for "scaling by 8". TI is always 0 and RPL should be too in most cases.
3051 */
3052 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
3053 ("hmR0VmxSaveHostSegmentRegs: TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt),
3054 VERR_VMX_INVALID_HOST_STATE);
3055
3056 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
3057#if HC_ARCH_BITS == 64
3058 uintptr_t uTRBase = X86DESC64_BASE(pDesc);
3059
3060 /*
3061 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on all VM-exits.
3062 * The type is the same for 64-bit busy TSS[1]. The limit needs manual restoration if the host has something else.
3063 * Task switching is not supported in 64-bit mode[2], but the limit still matters as IOPM is supported in 64-bit mode.
3064 * Restoring the limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
3065 *
3066 * [1] See Intel spec. 3.5 "System Descriptor Types".
3067 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
3068 */
3069 Assert(pDesc->System.u4Type == 11);
3070 if ( pDesc->System.u16LimitLow != 0x67
3071 || pDesc->System.u4LimitHigh)
3072 {
3073 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
3074 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
3075 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
3076 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
3077 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
3078
3079 /* Store the GDTR here as we need it while restoring TR. */
3080 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3081 }
3082#else
3083 NOREF(pVM);
3084 uintptr_t uTRBase = X86DESC_BASE(pDesc);
3085#endif
3086 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
3087 AssertRCReturn(rc, rc);
3088
3089 /*
3090 * Host FS base and GS base.
3091 */
3092#if HC_ARCH_BITS == 64
3093 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
3094 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
3095 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
3096 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
3097 AssertRCReturn(rc, rc);
3098
3099 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
3100 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
3101 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
3102 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
3103 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
3104#endif
3105 return rc;
3106}
3107
3108
3109/**
3110 * Saves certain host MSRs in the VM-Exit MSR-load area and some in the
3111 * host-state area of the VMCS. Theses MSRs will be automatically restored on
3112 * the host after every successful VM-exit.
3113 *
3114 * @returns VBox status code.
3115 * @param pVM The cross context VM structure.
3116 * @param pVCpu The cross context virtual CPU structure.
3117 *
3118 * @remarks No-long-jump zone!!!
3119 */
3120DECLINLINE(int) hmR0VmxSaveHostMsrs(PVM pVM, PVMCPU pVCpu)
3121{
3122 NOREF(pVM);
3123
3124 AssertPtr(pVCpu);
3125 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
3126
3127 /*
3128 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
3129 * rather than swapping them on every VM-entry.
3130 */
3131 hmR0VmxLazySaveHostMsrs(pVCpu);
3132
3133 /*
3134 * Host Sysenter MSRs.
3135 */
3136 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
3137#if HC_ARCH_BITS == 32
3138 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3139 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3140#else
3141 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3142 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3143#endif
3144 AssertRCReturn(rc, rc);
3145
3146 /*
3147 * Host EFER MSR.
3148 * If the CPU supports the newer VMCS controls for managing EFER, use it.
3149 * Otherwise it's done as part of auto-load/store MSR area in the VMCS, see hmR0VmxLoadGuestMsrs().
3150 */
3151 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
3152 {
3153 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostEfer);
3154 AssertRCReturn(rc, rc);
3155 }
3156
3157 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
3158 * hmR0VmxLoadGuestExitCtls() !! */
3159
3160 return rc;
3161}
3162
3163
3164/**
3165 * Figures out if we need to swap the EFER MSR which is particularly expensive.
3166 *
3167 * We check all relevant bits. For now, that's everything besides LMA/LME, as
3168 * these two bits are handled by VM-entry, see hmR0VmxLoadGuestExitCtls() and
3169 * hmR0VMxLoadGuestEntryCtls().
3170 *
3171 * @returns true if we need to load guest EFER, false otherwise.
3172 * @param pVCpu The cross context virtual CPU structure.
3173 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3174 * out-of-sync. Make sure to update the required fields
3175 * before using them.
3176 *
3177 * @remarks Requires EFER, CR4.
3178 * @remarks No-long-jump zone!!!
3179 */
3180static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3181{
3182#ifdef HMVMX_ALWAYS_SWAP_EFER
3183 return true;
3184#endif
3185
3186#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
3187 /* For 32-bit hosts running 64-bit guests, we always swap EFER in the world-switcher. Nothing to do here. */
3188 if (CPUMIsGuestInLongMode(pVCpu))
3189 return false;
3190#endif
3191
3192 PVM pVM = pVCpu->CTX_SUFF(pVM);
3193 uint64_t u64HostEfer = pVM->hm.s.vmx.u64HostEfer;
3194 uint64_t u64GuestEfer = pMixedCtx->msrEFER;
3195
3196 /*
3197 * For 64-bit guests, if EFER.SCE bit differs, we need to swap to ensure that the
3198 * guest's SYSCALL behaviour isn't screwed. See @bugref{7386}.
3199 */
3200 if ( CPUMIsGuestInLongMode(pVCpu)
3201 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
3202 {
3203 return true;
3204 }
3205
3206 /*
3207 * If the guest uses PAE and EFER.NXE bit differs, we need to swap EFER as it
3208 * affects guest paging. 64-bit paging implies CR4.PAE as well.
3209 * See Intel spec. 4.5 "IA-32e Paging" and Intel spec. 4.1.1 "Three Paging Modes".
3210 */
3211 if ( (pMixedCtx->cr4 & X86_CR4_PAE)
3212 && (pMixedCtx->cr0 & X86_CR0_PG)
3213 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
3214 {
3215 /* Assert that host is PAE capable. */
3216 Assert(pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_NX);
3217 return true;
3218 }
3219
3220 /** @todo Check the latest Intel spec. for any other bits,
3221 * like SMEP/SMAP? */
3222 return false;
3223}
3224
3225
3226/**
3227 * Sets up VM-entry controls in the VMCS. These controls can affect things done
3228 * on VM-exit; e.g. "load debug controls", see Intel spec. 24.8.1 "VM-entry
3229 * controls".
3230 *
3231 * @returns VBox status code.
3232 * @param pVCpu The cross context virtual CPU structure.
3233 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3234 * out-of-sync. Make sure to update the required fields
3235 * before using them.
3236 *
3237 * @remarks Requires EFER.
3238 * @remarks No-long-jump zone!!!
3239 */
3240DECLINLINE(int) hmR0VmxLoadGuestEntryCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3241{
3242 int rc = VINF_SUCCESS;
3243 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS))
3244 {
3245 PVM pVM = pVCpu->CTX_SUFF(pVM);
3246 uint32_t val = pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0; /* Bits set here must be set in the VMCS. */
3247 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3248
3249 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
3250 val |= VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG;
3251
3252 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
3253 if (CPUMIsGuestInLongModeEx(pMixedCtx))
3254 {
3255 val |= VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST;
3256 Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST\n", pVCpu->idCpu));
3257 }
3258 else
3259 Assert(!(val & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST));
3260
3261 /* If the CPU supports the newer VMCS controls for managing guest/host EFER, use it. */
3262 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3263 && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
3264 {
3265 val |= VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR;
3266 Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR\n", pVCpu->idCpu));
3267 }
3268
3269 /*
3270 * The following should -not- be set (since we're not in SMM mode):
3271 * - VMX_VMCS_CTRL_ENTRY_ENTRY_SMM
3272 * - VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON
3273 */
3274
3275 /** @todo VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR,
3276 * VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR. */
3277
3278 if ((val & zap) != val)
3279 {
3280 LogRel(("hmR0VmxLoadGuestEntryCtls: Invalid VM-entry controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3281 pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0, val, zap));
3282 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
3283 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3284 }
3285
3286 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, val);
3287 AssertRCReturn(rc, rc);
3288
3289 pVCpu->hm.s.vmx.u32EntryCtls = val;
3290 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS);
3291 }
3292 return rc;
3293}
3294
3295
3296/**
3297 * Sets up the VM-exit controls in the VMCS.
3298 *
3299 * @returns VBox status code.
3300 * @param pVCpu The cross context virtual CPU structure.
3301 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3302 * out-of-sync. Make sure to update the required fields
3303 * before using them.
3304 *
3305 * @remarks Requires EFER.
3306 */
3307DECLINLINE(int) hmR0VmxLoadGuestExitCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3308{
3309 NOREF(pMixedCtx);
3310
3311 int rc = VINF_SUCCESS;
3312 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_EXIT_CTLS))
3313 {
3314 PVM pVM = pVCpu->CTX_SUFF(pVM);
3315 uint32_t val = pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0; /* Bits set here must be set in the VMCS. */
3316 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3317
3318 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
3319 val |= VMX_VMCS_CTRL_EXIT_SAVE_DEBUG;
3320
3321 /*
3322 * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
3323 * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in hmR0VmxSaveHostMsrs().
3324 */
3325#if HC_ARCH_BITS == 64
3326 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3327 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
3328#else
3329 Assert( pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64
3330 || pVCpu->hm.s.vmx.pfnStartVM == VMXR0StartVM32);
3331 /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
3332 if (pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64)
3333 {
3334 /* The switcher returns to long mode, EFER is managed by the switcher. */
3335 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3336 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
3337 }
3338 else
3339 Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE));
3340#endif
3341
3342 /* If the newer VMCS fields for managing EFER exists, use it. */
3343 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3344 && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
3345 {
3346 val |= VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR
3347 | VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR;
3348 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR, VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR\n", pVCpu->idCpu));
3349 }
3350
3351 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
3352 Assert(!(val & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT));
3353
3354 /** @todo VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR,
3355 * VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR,
3356 * VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR. */
3357
3358 if ( pVM->hm.s.vmx.fUsePreemptTimer
3359 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER))
3360 val |= VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER;
3361
3362 if ((val & zap) != val)
3363 {
3364 LogRel(("hmR0VmxSetupProcCtls: Invalid VM-exit controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3365 pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0, val, zap));
3366 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
3367 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3368 }
3369
3370 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, val);
3371 AssertRCReturn(rc, rc);
3372
3373 pVCpu->hm.s.vmx.u32ExitCtls = val;
3374 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_EXIT_CTLS);
3375 }
3376 return rc;
3377}
3378
3379
3380/**
3381 * Sets the TPR threshold in the VMCS.
3382 *
3383 * @returns VBox status code.
3384 * @param pVCpu The cross context virtual CPU structure.
3385 * @param u32TprThreshold The TPR threshold (task-priority class only).
3386 */
3387DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, uint32_t u32TprThreshold)
3388{
3389 Assert(!(u32TprThreshold & 0xfffffff0)); /* Bits 31:4 MBZ. */
3390 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW); RT_NOREF_PV(pVCpu);
3391 return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
3392}
3393
3394
3395/**
3396 * Loads the guest APIC and related state.
3397 *
3398 * @returns VBox status code.
3399 * @param pVCpu The cross context virtual CPU structure.
3400 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3401 * out-of-sync. Make sure to update the required fields
3402 * before using them.
3403 */
3404DECLINLINE(int) hmR0VmxLoadGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3405{
3406 NOREF(pMixedCtx);
3407
3408 int rc = VINF_SUCCESS;
3409 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE))
3410 {
3411 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
3412 && APICIsEnabled(pVCpu))
3413 {
3414 /* Setup TPR shadowing. Also setup TPR patching for 32-bit guests. */
3415 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
3416 {
3417 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
3418
3419 bool fPendingIntr = false;
3420 uint8_t u8Tpr = 0;
3421 uint8_t u8PendingIntr = 0;
3422 rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
3423 AssertRCReturn(rc, rc);
3424
3425 /*
3426 * If there are external interrupts pending but masked by the TPR value, instruct VT-x to cause a VM-exit when
3427 * the guest lowers its TPR below the highest-priority pending interrupt and we can deliver the interrupt.
3428 * If there are no external interrupts pending, set threshold to 0 to not cause a VM-exit. We will eventually deliver
3429 * the interrupt when we VM-exit for other reasons.
3430 */
3431 pVCpu->hm.s.vmx.pbVirtApic[0x80] = u8Tpr; /* Offset 0x80 is TPR in the APIC MMIO range. */
3432 uint32_t u32TprThreshold = 0;
3433 if (fPendingIntr)
3434 {
3435 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
3436 const uint8_t u8PendingPriority = (u8PendingIntr >> 4) & 0xf;
3437 const uint8_t u8TprPriority = (u8Tpr >> 4) & 0xf;
3438 if (u8PendingPriority <= u8TprPriority)
3439 u32TprThreshold = u8PendingPriority;
3440 else
3441 u32TprThreshold = u8TprPriority; /* Required for Vista 64-bit guest, see @bugref{6398}. */
3442 }
3443
3444 rc = hmR0VmxApicSetTprThreshold(pVCpu, u32TprThreshold);
3445 AssertRCReturn(rc, rc);
3446 }
3447
3448#ifndef IEM_VERIFICATION_MODE_FULL
3449 /* Setup the Virtualized APIC accesses. */
3450 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
3451 {
3452 uint64_t u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
3453 if (u64MsrApicBase != pVCpu->hm.s.vmx.u64MsrApicBase)
3454 {
3455 PVM pVM = pVCpu->CTX_SUFF(pVM);
3456 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
3457 RTGCPHYS GCPhysApicBase;
3458 GCPhysApicBase = u64MsrApicBase;
3459 GCPhysApicBase &= PAGE_BASE_GC_MASK;
3460
3461 /* Unalias any existing mapping. */
3462 rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
3463 AssertRCReturn(rc, rc);
3464
3465 /* Map the HC APIC-access page into the GC space, this also updates the shadow page tables if necessary. */
3466 Log4(("Mapped HC APIC-access page into GC: GCPhysApicBase=%#RGp\n", GCPhysApicBase));
3467 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
3468 AssertRCReturn(rc, rc);
3469
3470 /* Update VMX's cache of the APIC base. */
3471 pVCpu->hm.s.vmx.u64MsrApicBase = u64MsrApicBase;
3472 }
3473 }
3474#endif /* !IEM_VERIFICATION_MODE_FULL */
3475 }
3476 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
3477 }
3478
3479 return rc;
3480}
3481
3482
3483/**
3484 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
3485 *
3486 * @returns Guest's interruptibility-state.
3487 * @param pVCpu The cross context virtual CPU structure.
3488 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3489 * out-of-sync. Make sure to update the required fields
3490 * before using them.
3491 *
3492 * @remarks No-long-jump zone!!!
3493 */
3494DECLINLINE(uint32_t) hmR0VmxGetGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3495{
3496 /*
3497 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
3498 */
3499 uint32_t uIntrState = 0;
3500 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3501 {
3502 /* If inhibition is active, RIP & RFLAGS should've been accessed (i.e. read previously from the VMCS or from ring-3). */
3503 AssertMsg(HMVMXCPU_GST_IS_SET(pVCpu, HMVMX_UPDATED_GUEST_RIP | HMVMX_UPDATED_GUEST_RFLAGS),
3504 ("%#x\n", HMVMXCPU_GST_VALUE(pVCpu)));
3505 if (pMixedCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
3506 {
3507 if (pMixedCtx->eflags.Bits.u1IF)
3508 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
3509 else
3510 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS;
3511 }
3512 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3513 {
3514 /*
3515 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
3516 * VT-x, the flag's condition to be cleared is met and thus the cleared state is correct.
3517 */
3518 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3519 }
3520 }
3521
3522 /*
3523 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
3524 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
3525 * setting this would block host-NMIs and IRET will not clear the blocking.
3526 *
3527 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
3528 */
3529 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
3530 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
3531 {
3532 uIntrState |= VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI;
3533 }
3534
3535 return uIntrState;
3536}
3537
3538
3539/**
3540 * Loads the guest's interruptibility-state into the guest-state area in the
3541 * VMCS.
3542 *
3543 * @returns VBox status code.
3544 * @param pVCpu The cross context virtual CPU structure.
3545 * @param uIntrState The interruptibility-state to set.
3546 */
3547static int hmR0VmxLoadGuestIntrState(PVMCPU pVCpu, uint32_t uIntrState)
3548{
3549 NOREF(pVCpu);
3550 AssertMsg(!(uIntrState & 0xfffffff0), ("%#x\n", uIntrState)); /* Bits 31:4 MBZ. */
3551 Assert((uIntrState & 0x3) != 0x3); /* Block-by-STI and MOV SS cannot be simultaneously set. */
3552 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, uIntrState);
3553 AssertRC(rc);
3554 return rc;
3555}
3556
3557
3558/**
3559 * Loads the exception intercepts required for guest execution in the VMCS.
3560 *
3561 * @returns VBox status code.
3562 * @param pVCpu The cross context virtual CPU structure.
3563 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3564 * out-of-sync. Make sure to update the required fields
3565 * before using them.
3566 */
3567static int hmR0VmxLoadGuestXcptIntercepts(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3568{
3569 NOREF(pMixedCtx);
3570 int rc = VINF_SUCCESS;
3571 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
3572 {
3573 /* The remaining exception intercepts are handled elsewhere, e.g. in hmR0VmxLoadSharedCR0(). */
3574 if (pVCpu->hm.s.fGIMTrapXcptUD)
3575 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_UD);
3576#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3577 else
3578 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_UD);
3579#endif
3580
3581 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_AC));
3582 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
3583
3584 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
3585 AssertRCReturn(rc, rc);
3586
3587 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
3588 Log4(("Load[%RU32]: VMX_VMCS32_CTRL_EXCEPTION_BITMAP=%#RX64 fContextUseFlags=%#RX32\n", pVCpu->idCpu,
3589 pVCpu->hm.s.vmx.u32XcptBitmap, HMCPU_CF_VALUE(pVCpu)));
3590 }
3591 return rc;
3592}
3593
3594
3595/**
3596 * Loads the guest's RIP into the guest-state area in the VMCS.
3597 *
3598 * @returns VBox status code.
3599 * @param pVCpu The cross context virtual CPU structure.
3600 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3601 * out-of-sync. Make sure to update the required fields
3602 * before using them.
3603 *
3604 * @remarks No-long-jump zone!!!
3605 */
3606static int hmR0VmxLoadGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3607{
3608 int rc = VINF_SUCCESS;
3609 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RIP))
3610 {
3611 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pMixedCtx->rip);
3612 AssertRCReturn(rc, rc);
3613
3614 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP);
3615 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RIP=%#RX64 fContextUseFlags=%#RX32\n", pVCpu->idCpu, pMixedCtx->rip,
3616 HMCPU_CF_VALUE(pVCpu)));
3617 }
3618 return rc;
3619}
3620
3621
3622/**
3623 * Loads the guest's RSP into the guest-state area in the VMCS.
3624 *
3625 * @returns VBox status code.
3626 * @param pVCpu The cross context virtual CPU structure.
3627 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3628 * out-of-sync. Make sure to update the required fields
3629 * before using them.
3630 *
3631 * @remarks No-long-jump zone!!!
3632 */
3633static int hmR0VmxLoadGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3634{
3635 int rc = VINF_SUCCESS;
3636 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RSP))
3637 {
3638 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pMixedCtx->rsp);
3639 AssertRCReturn(rc, rc);
3640
3641 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RSP);
3642 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RSP=%#RX64\n", pVCpu->idCpu, pMixedCtx->rsp));
3643 }
3644 return rc;
3645}
3646
3647
3648/**
3649 * Loads the guest's RFLAGS into the guest-state area in the VMCS.
3650 *
3651 * @returns VBox status code.
3652 * @param pVCpu The cross context virtual CPU structure.
3653 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3654 * out-of-sync. Make sure to update the required fields
3655 * before using them.
3656 *
3657 * @remarks No-long-jump zone!!!
3658 */
3659static int hmR0VmxLoadGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3660{
3661 int rc = VINF_SUCCESS;
3662 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
3663 {
3664 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
3665 Let us assert it as such and use 32-bit VMWRITE. */
3666 Assert(!(pMixedCtx->rflags.u64 >> 32));
3667 X86EFLAGS Eflags = pMixedCtx->eflags;
3668 /** @todo r=bird: There shall be no need to OR in X86_EFL_1 here, nor
3669 * shall there be any reason for clearing bits 63:22, 15, 5 and 3.
3670 * These will never be cleared/set, unless some other part of the VMM
3671 * code is buggy - in which case we're better of finding and fixing
3672 * those bugs than hiding them. */
3673 Assert(Eflags.u32 & X86_EFL_RA1_MASK);
3674 Assert(!(Eflags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
3675 Eflags.u32 &= VMX_EFLAGS_RESERVED_0; /* Bits 22-31, 15, 5 & 3 MBZ. */
3676 Eflags.u32 |= VMX_EFLAGS_RESERVED_1; /* Bit 1 MB1. */
3677
3678 /*
3679 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so we can restore them on VM-exit.
3680 * Modify the real-mode guest's eflags so that VT-x can run the real-mode guest code under Virtual 8086 mode.
3681 */
3682 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3683 {
3684 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3685 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3686 pVCpu->hm.s.vmx.RealMode.Eflags.u32 = Eflags.u32; /* Save the original eflags of the real-mode guest. */
3687 Eflags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
3688 Eflags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
3689 }
3690
3691 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, Eflags.u32);
3692 AssertRCReturn(rc, rc);
3693
3694 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RFLAGS);
3695 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RFLAGS=%#RX32\n", pVCpu->idCpu, Eflags.u32));
3696 }
3697 return rc;
3698}
3699
3700
3701/**
3702 * Loads the guest RIP, RSP and RFLAGS into the guest-state area in the VMCS.
3703 *
3704 * @returns VBox status code.
3705 * @param pVCpu The cross context virtual CPU structure.
3706 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3707 * out-of-sync. Make sure to update the required fields
3708 * before using them.
3709 *
3710 * @remarks No-long-jump zone!!!
3711 */
3712DECLINLINE(int) hmR0VmxLoadGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3713{
3714 int rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
3715 rc |= hmR0VmxLoadGuestRsp(pVCpu, pMixedCtx);
3716 rc |= hmR0VmxLoadGuestRflags(pVCpu, pMixedCtx);
3717 AssertRCReturn(rc, rc);
3718 return rc;
3719}
3720
3721
3722/**
3723 * Loads the guest CR0 control register into the guest-state area in the VMCS.
3724 * CR0 is partially shared with the host and we have to consider the FPU bits.
3725 *
3726 * @returns VBox status code.
3727 * @param pVCpu The cross context virtual CPU structure.
3728 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3729 * out-of-sync. Make sure to update the required fields
3730 * before using them.
3731 *
3732 * @remarks No-long-jump zone!!!
3733 */
3734static int hmR0VmxLoadSharedCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3735{
3736 /*
3737 * Guest CR0.
3738 * Guest FPU.
3739 */
3740 int rc = VINF_SUCCESS;
3741 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
3742 {
3743 Assert(!(pMixedCtx->cr0 >> 32));
3744 uint32_t u32GuestCR0 = pMixedCtx->cr0;
3745 PVM pVM = pVCpu->CTX_SUFF(pVM);
3746
3747 /* The guest's view (read access) of its CR0 is unblemished. */
3748 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32GuestCR0);
3749 AssertRCReturn(rc, rc);
3750 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR0));
3751
3752 /* Setup VT-x's view of the guest CR0. */
3753 /* Minimize VM-exits due to CR3 changes when we have NestedPaging. */
3754 if (pVM->hm.s.fNestedPaging)
3755 {
3756 if (CPUMIsGuestPagingEnabledEx(pMixedCtx))
3757 {
3758 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
3759 pVCpu->hm.s.vmx.u32ProcCtls &= ~( VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3760 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
3761 }
3762 else
3763 {
3764 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
3765 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3766 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3767 }
3768
3769 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
3770 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3771 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3772
3773 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
3774 AssertRCReturn(rc, rc);
3775 }
3776 else
3777 u32GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
3778
3779 /*
3780 * Guest FPU bits.
3781 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be set on the first
3782 * CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
3783 */
3784 u32GuestCR0 |= X86_CR0_NE;
3785 bool fInterceptNM = false;
3786 if (CPUMIsGuestFPUStateActive(pVCpu))
3787 {
3788 fInterceptNM = false; /* Guest FPU active, no need to VM-exit on #NM. */
3789 /* The guest should still get #NM exceptions when it expects it to, so we should not clear TS & MP bits here.
3790 We're only concerned about -us- not intercepting #NMs when the guest-FPU is active. Not the guest itself! */
3791 }
3792 else
3793 {
3794 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
3795 u32GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
3796 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
3797 }
3798
3799 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
3800 bool fInterceptMF = false;
3801 if (!(pMixedCtx->cr0 & X86_CR0_NE))
3802 fInterceptMF = true;
3803
3804 /* Finally, intercept all exceptions as we cannot directly inject them in real-mode, see hmR0VmxInjectEventVmcs(). */
3805 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3806 {
3807 Assert(PDMVmmDevHeapIsEnabled(pVM));
3808 Assert(pVM->hm.s.vmx.pRealModeTSS);
3809 pVCpu->hm.s.vmx.u32XcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
3810 fInterceptNM = true;
3811 fInterceptMF = true;
3812 }
3813 else
3814 {
3815 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
3816 pVCpu->hm.s.vmx.u32XcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
3817 }
3818 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
3819
3820 if (fInterceptNM)
3821 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_NM);
3822 else
3823 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_NM);
3824
3825 if (fInterceptMF)
3826 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_MF);
3827 else
3828 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_MF);
3829
3830 /* Additional intercepts for debugging, define these yourself explicitly. */
3831#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3832 pVCpu->hm.s.vmx.u32XcptBitmap |= 0
3833 | RT_BIT(X86_XCPT_BP)
3834 | RT_BIT(X86_XCPT_DE)
3835 | RT_BIT(X86_XCPT_NM)
3836 | RT_BIT(X86_XCPT_TS)
3837 | RT_BIT(X86_XCPT_UD)
3838 | RT_BIT(X86_XCPT_NP)
3839 | RT_BIT(X86_XCPT_SS)
3840 | RT_BIT(X86_XCPT_GP)
3841 | RT_BIT(X86_XCPT_PF)
3842 | RT_BIT(X86_XCPT_MF)
3843 ;
3844#elif defined(HMVMX_ALWAYS_TRAP_PF)
3845 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
3846#endif
3847
3848 Assert(pVM->hm.s.fNestedPaging || (pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT(X86_XCPT_PF)));
3849
3850 /* Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW). */
3851 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3852 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3853 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
3854 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
3855 else
3856 Assert((uSetCR0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
3857
3858 u32GuestCR0 |= uSetCR0;
3859 u32GuestCR0 &= uZapCR0;
3860 u32GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
3861
3862 /* Write VT-x's view of the guest CR0 into the VMCS. */
3863 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCR0);
3864 AssertRCReturn(rc, rc);
3865 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR0=%#RX32 (uSetCR0=%#RX32 uZapCR0=%#RX32)\n", pVCpu->idCpu, u32GuestCR0, uSetCR0,
3866 uZapCR0));
3867
3868 /*
3869 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
3870 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
3871 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
3872 */
3873 uint32_t u32CR0Mask = 0;
3874 u32CR0Mask = X86_CR0_PE
3875 | X86_CR0_NE
3876 | X86_CR0_WP
3877 | X86_CR0_PG
3878 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
3879 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
3880 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
3881
3882 /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
3883 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
3884 * and @bugref{6944}. */
3885#if 0
3886 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3887 u32CR0Mask &= ~X86_CR0_PE;
3888#endif
3889 if (pVM->hm.s.fNestedPaging)
3890 u32CR0Mask &= ~X86_CR0_WP;
3891
3892 /* If the guest FPU state is active, don't need to VM-exit on writes to FPU related bits in CR0. */
3893 if (fInterceptNM)
3894 {
3895 u32CR0Mask |= X86_CR0_TS
3896 | X86_CR0_MP;
3897 }
3898
3899 /* Write the CR0 mask into the VMCS and update the VCPU's copy of the current CR0 mask. */
3900 pVCpu->hm.s.vmx.u32CR0Mask = u32CR0Mask;
3901 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32CR0Mask);
3902 AssertRCReturn(rc, rc);
3903 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_MASK=%#RX32\n", pVCpu->idCpu, u32CR0Mask));
3904
3905 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
3906 }
3907 return rc;
3908}
3909
3910
3911/**
3912 * Loads the guest control registers (CR3, CR4) into the guest-state area
3913 * in the VMCS.
3914 *
3915 * @returns VBox strict status code.
3916 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
3917 * without unrestricted guest access and the VMMDev is not presently
3918 * mapped (e.g. EFI32).
3919 *
3920 * @param pVCpu The cross context virtual CPU structure.
3921 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3922 * out-of-sync. Make sure to update the required fields
3923 * before using them.
3924 *
3925 * @remarks No-long-jump zone!!!
3926 */
3927static VBOXSTRICTRC hmR0VmxLoadGuestCR3AndCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3928{
3929 int rc = VINF_SUCCESS;
3930 PVM pVM = pVCpu->CTX_SUFF(pVM);
3931
3932 /*
3933 * Guest CR2.
3934 * It's always loaded in the assembler code. Nothing to do here.
3935 */
3936
3937 /*
3938 * Guest CR3.
3939 */
3940 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
3941 {
3942 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
3943 if (pVM->hm.s.fNestedPaging)
3944 {
3945 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
3946
3947 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
3948 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
3949 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
3950 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
3951
3952 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
3953 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
3954 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
3955
3956 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
3957 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
3958 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
3959 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3960 AssertMsg( !((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
3961 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
3962 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3963
3964 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
3965 AssertRCReturn(rc, rc);
3966 Log4(("Load[%RU32]: VMX_VMCS64_CTRL_EPTP_FULL=%#RX64\n", pVCpu->idCpu, pVCpu->hm.s.vmx.HCPhysEPTP));
3967
3968 if ( pVM->hm.s.vmx.fUnrestrictedGuest
3969 || CPUMIsGuestPagingEnabledEx(pMixedCtx))
3970 {
3971 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
3972 if (CPUMIsGuestInPAEModeEx(pMixedCtx))
3973 {
3974 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
3975 AssertRCReturn(rc, rc);
3976 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
3977 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
3978 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
3979 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
3980 AssertRCReturn(rc, rc);
3981 }
3982
3983 /* The guest's view of its CR3 is unblemished with Nested Paging when the guest is using paging or we
3984 have Unrestricted Execution to handle the guest when it's not using paging. */
3985 GCPhysGuestCR3 = pMixedCtx->cr3;
3986 }
3987 else
3988 {
3989 /*
3990 * The guest is not using paging, but the CPU (VT-x) has to. While the guest thinks it accesses physical memory
3991 * directly, we use our identity-mapped page table to map guest-linear to guest-physical addresses.
3992 * EPT takes care of translating it to host-physical addresses.
3993 */
3994 RTGCPHYS GCPhys;
3995 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
3996
3997 /* We obtain it here every time as the guest could have relocated this PCI region. */
3998 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
3999 if (RT_SUCCESS(rc))
4000 { /* likely */ }
4001 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
4002 {
4003 Log4(("Load[%RU32]: VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n", pVCpu->idCpu));
4004 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
4005 }
4006 else
4007 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
4008
4009 GCPhysGuestCR3 = GCPhys;
4010 }
4011
4012 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RGp (GstN)\n", pVCpu->idCpu, GCPhysGuestCR3));
4013 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
4014 }
4015 else
4016 {
4017 /* Non-nested paging case, just use the hypervisor's CR3. */
4018 RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
4019
4020 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RHv (HstN)\n", pVCpu->idCpu, HCPhysGuestCR3));
4021 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
4022 }
4023 AssertRCReturn(rc, rc);
4024
4025 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
4026 }
4027
4028 /*
4029 * Guest CR4.
4030 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
4031 */
4032 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
4033 {
4034 Assert(!(pMixedCtx->cr4 >> 32));
4035 uint32_t u32GuestCR4 = pMixedCtx->cr4;
4036
4037 /* The guest's view of its CR4 is unblemished. */
4038 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32GuestCR4);
4039 AssertRCReturn(rc, rc);
4040 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR4_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR4));
4041
4042 /* Setup VT-x's view of the guest CR4. */
4043 /*
4044 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software interrupts to the 8086 program
4045 * interrupt handler. Clear the VME bit (the interrupt redirection bitmap is already all 0, see hmR3InitFinalizeR0())
4046 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
4047 */
4048 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4049 {
4050 Assert(pVM->hm.s.vmx.pRealModeTSS);
4051 Assert(PDMVmmDevHeapIsEnabled(pVM));
4052 u32GuestCR4 &= ~X86_CR4_VME;
4053 }
4054
4055 if (pVM->hm.s.fNestedPaging)
4056 {
4057 if ( !CPUMIsGuestPagingEnabledEx(pMixedCtx)
4058 && !pVM->hm.s.vmx.fUnrestrictedGuest)
4059 {
4060 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
4061 u32GuestCR4 |= X86_CR4_PSE;
4062 /* Our identity mapping is a 32-bit page directory. */
4063 u32GuestCR4 &= ~X86_CR4_PAE;
4064 }
4065 /* else use guest CR4.*/
4066 }
4067 else
4068 {
4069 /*
4070 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
4071 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
4072 */
4073 switch (pVCpu->hm.s.enmShadowMode)
4074 {
4075 case PGMMODE_REAL: /* Real-mode. */
4076 case PGMMODE_PROTECTED: /* Protected mode without paging. */
4077 case PGMMODE_32_BIT: /* 32-bit paging. */
4078 {
4079 u32GuestCR4 &= ~X86_CR4_PAE;
4080 break;
4081 }
4082
4083 case PGMMODE_PAE: /* PAE paging. */
4084 case PGMMODE_PAE_NX: /* PAE paging with NX. */
4085 {
4086 u32GuestCR4 |= X86_CR4_PAE;
4087 break;
4088 }
4089
4090 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
4091 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
4092#ifdef VBOX_ENABLE_64_BITS_GUESTS
4093 break;
4094#endif
4095 default:
4096 AssertFailed();
4097 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4098 }
4099 }
4100
4101 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
4102 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4103 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4104 u32GuestCR4 |= uSetCR4;
4105 u32GuestCR4 &= uZapCR4;
4106
4107 /* Write VT-x's view of the guest CR4 into the VMCS. */
4108 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR4=%#RX32 (Set=%#RX32 Zap=%#RX32)\n", pVCpu->idCpu, u32GuestCR4, uSetCR4, uZapCR4));
4109 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCR4);
4110 AssertRCReturn(rc, rc);
4111
4112 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them, that would cause a VM-exit. */
4113 uint32_t u32CR4Mask = X86_CR4_VME
4114 | X86_CR4_PAE
4115 | X86_CR4_PGE
4116 | X86_CR4_PSE
4117 | X86_CR4_VMXE;
4118 if (pVM->cpum.ro.HostFeatures.fXSaveRstor)
4119 u32CR4Mask |= X86_CR4_OSXSAVE;
4120 pVCpu->hm.s.vmx.u32CR4Mask = u32CR4Mask;
4121 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32CR4Mask);
4122 AssertRCReturn(rc, rc);
4123
4124 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
4125 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pMixedCtx->cr4 & X86_CR4_OSXSAVE) && pMixedCtx->aXcr[0] != ASMGetXcr0();
4126
4127 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
4128 }
4129 return rc;
4130}
4131
4132
4133/**
4134 * Loads the guest debug registers into the guest-state area in the VMCS.
4135 *
4136 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
4137 *
4138 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
4139 *
4140 * @returns VBox status code.
4141 * @param pVCpu The cross context virtual CPU structure.
4142 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4143 * out-of-sync. Make sure to update the required fields
4144 * before using them.
4145 *
4146 * @remarks No-long-jump zone!!!
4147 */
4148static int hmR0VmxLoadSharedDebugState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4149{
4150 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
4151 return VINF_SUCCESS;
4152
4153#ifdef VBOX_STRICT
4154 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
4155 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
4156 {
4157 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
4158 Assert((pMixedCtx->dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0); /* Bits 63:32, 15, 14, 12, 11 are reserved. */
4159 Assert((pMixedCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); /* Bit 10 is reserved (RA1). */
4160 }
4161#endif
4162
4163 int rc;
4164 PVM pVM = pVCpu->CTX_SUFF(pVM);
4165 bool fSteppingDB = false;
4166 bool fInterceptMovDRx = false;
4167 if (pVCpu->hm.s.fSingleInstruction)
4168 {
4169 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
4170 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG)
4171 {
4172 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
4173 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
4174 AssertRCReturn(rc, rc);
4175 Assert(fSteppingDB == false);
4176 }
4177 else
4178 {
4179 pMixedCtx->eflags.u32 |= X86_EFL_TF;
4180 pVCpu->hm.s.fClearTrapFlag = true;
4181 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
4182 fSteppingDB = true;
4183 }
4184 }
4185
4186 if ( fSteppingDB
4187 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
4188 {
4189 /*
4190 * Use the combined guest and host DRx values found in the hypervisor
4191 * register set because the debugger has breakpoints active or someone
4192 * is single stepping on the host side without a monitor trap flag.
4193 *
4194 * Note! DBGF expects a clean DR6 state before executing guest code.
4195 */
4196#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4197 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
4198 && !CPUMIsHyperDebugStateActivePending(pVCpu))
4199 {
4200 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4201 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
4202 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
4203 }
4204 else
4205#endif
4206 if (!CPUMIsHyperDebugStateActive(pVCpu))
4207 {
4208 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4209 Assert(CPUMIsHyperDebugStateActive(pVCpu));
4210 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
4211 }
4212
4213 /* Update DR7. (The other DRx values are handled by CPUM one way or the other.) */
4214 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)CPUMGetHyperDR7(pVCpu));
4215 AssertRCReturn(rc, rc);
4216
4217 pVCpu->hm.s.fUsingHyperDR7 = true;
4218 fInterceptMovDRx = true;
4219 }
4220 else
4221 {
4222 /*
4223 * If the guest has enabled debug registers, we need to load them prior to
4224 * executing guest code so they'll trigger at the right time.
4225 */
4226 if (pMixedCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
4227 {
4228#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4229 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
4230 && !CPUMIsGuestDebugStateActivePending(pVCpu))
4231 {
4232 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4233 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
4234 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
4235 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4236 }
4237 else
4238#endif
4239 if (!CPUMIsGuestDebugStateActive(pVCpu))
4240 {
4241 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4242 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4243 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
4244 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4245 }
4246 Assert(!fInterceptMovDRx);
4247 }
4248 /*
4249 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
4250 * must intercept #DB in order to maintain a correct DR6 guest value, and
4251 * because we need to intercept it to prevent nested #DBs from hanging the
4252 * CPU, we end up always having to intercept it. See hmR0VmxInitXcptBitmap.
4253 */
4254#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4255 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
4256 && !CPUMIsGuestDebugStateActive(pVCpu))
4257#else
4258 else if (!CPUMIsGuestDebugStateActive(pVCpu))
4259#endif
4260 {
4261 fInterceptMovDRx = true;
4262 }
4263
4264 /* Update guest DR7. */
4265 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, pMixedCtx->dr[7]);
4266 AssertRCReturn(rc, rc);
4267
4268 pVCpu->hm.s.fUsingHyperDR7 = false;
4269 }
4270
4271 /*
4272 * Update the processor-based VM-execution controls regarding intercepting MOV DRx instructions.
4273 */
4274 if (fInterceptMovDRx)
4275 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
4276 else
4277 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
4278 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
4279 AssertRCReturn(rc, rc);
4280
4281 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
4282 return VINF_SUCCESS;
4283}
4284
4285
4286#ifdef VBOX_STRICT
4287/**
4288 * Strict function to validate segment registers.
4289 *
4290 * @remarks ASSUMES CR0 is up to date.
4291 */
4292static void hmR0VmxValidateSegmentRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4293{
4294 /* Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". */
4295 /* NOTE: The reason we check for attribute value 0 and not just the unusable bit here is because hmR0VmxWriteSegmentReg()
4296 * only updates the VMCS' copy of the value with the unusable bit and doesn't change the guest-context value. */
4297 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
4298 && ( !CPUMIsGuestInRealModeEx(pCtx)
4299 && !CPUMIsGuestInV86ModeEx(pCtx)))
4300 {
4301 /* Protected mode checks */
4302 /* CS */
4303 Assert(pCtx->cs.Attr.n.u1Present);
4304 Assert(!(pCtx->cs.Attr.u & 0xf00));
4305 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
4306 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
4307 || !(pCtx->cs.Attr.n.u1Granularity));
4308 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
4309 || (pCtx->cs.Attr.n.u1Granularity));
4310 /* CS cannot be loaded with NULL in protected mode. */
4311 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
4312 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
4313 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
4314 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
4315 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
4316 else
4317 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
4318 /* SS */
4319 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4320 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
4321 if ( !(pCtx->cr0 & X86_CR0_PE)
4322 || pCtx->cs.Attr.n.u4Type == 3)
4323 {
4324 Assert(!pCtx->ss.Attr.n.u2Dpl);
4325 }
4326 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
4327 {
4328 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4329 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
4330 Assert(pCtx->ss.Attr.n.u1Present);
4331 Assert(!(pCtx->ss.Attr.u & 0xf00));
4332 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
4333 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
4334 || !(pCtx->ss.Attr.n.u1Granularity));
4335 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
4336 || (pCtx->ss.Attr.n.u1Granularity));
4337 }
4338 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
4339 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
4340 {
4341 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4342 Assert(pCtx->ds.Attr.n.u1Present);
4343 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
4344 Assert(!(pCtx->ds.Attr.u & 0xf00));
4345 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
4346 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
4347 || !(pCtx->ds.Attr.n.u1Granularity));
4348 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
4349 || (pCtx->ds.Attr.n.u1Granularity));
4350 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4351 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
4352 }
4353 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
4354 {
4355 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4356 Assert(pCtx->es.Attr.n.u1Present);
4357 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
4358 Assert(!(pCtx->es.Attr.u & 0xf00));
4359 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
4360 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
4361 || !(pCtx->es.Attr.n.u1Granularity));
4362 Assert( !(pCtx->es.u32Limit & 0xfff00000)
4363 || (pCtx->es.Attr.n.u1Granularity));
4364 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4365 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
4366 }
4367 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
4368 {
4369 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4370 Assert(pCtx->fs.Attr.n.u1Present);
4371 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
4372 Assert(!(pCtx->fs.Attr.u & 0xf00));
4373 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
4374 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
4375 || !(pCtx->fs.Attr.n.u1Granularity));
4376 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
4377 || (pCtx->fs.Attr.n.u1Granularity));
4378 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4379 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4380 }
4381 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
4382 {
4383 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4384 Assert(pCtx->gs.Attr.n.u1Present);
4385 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
4386 Assert(!(pCtx->gs.Attr.u & 0xf00));
4387 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
4388 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
4389 || !(pCtx->gs.Attr.n.u1Granularity));
4390 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
4391 || (pCtx->gs.Attr.n.u1Granularity));
4392 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4393 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4394 }
4395 /* 64-bit capable CPUs. */
4396# if HC_ARCH_BITS == 64
4397 Assert(!(pCtx->cs.u64Base >> 32));
4398 Assert(!pCtx->ss.Attr.u || !(pCtx->ss.u64Base >> 32));
4399 Assert(!pCtx->ds.Attr.u || !(pCtx->ds.u64Base >> 32));
4400 Assert(!pCtx->es.Attr.u || !(pCtx->es.u64Base >> 32));
4401# endif
4402 }
4403 else if ( CPUMIsGuestInV86ModeEx(pCtx)
4404 || ( CPUMIsGuestInRealModeEx(pCtx)
4405 && !pVM->hm.s.vmx.fUnrestrictedGuest))
4406 {
4407 /* Real and v86 mode checks. */
4408 /* hmR0VmxWriteSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
4409 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
4410 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4411 {
4412 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
4413 }
4414 else
4415 {
4416 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
4417 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
4418 }
4419
4420 /* CS */
4421 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
4422 Assert(pCtx->cs.u32Limit == 0xffff);
4423 Assert(u32CSAttr == 0xf3);
4424 /* SS */
4425 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
4426 Assert(pCtx->ss.u32Limit == 0xffff);
4427 Assert(u32SSAttr == 0xf3);
4428 /* DS */
4429 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
4430 Assert(pCtx->ds.u32Limit == 0xffff);
4431 Assert(u32DSAttr == 0xf3);
4432 /* ES */
4433 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
4434 Assert(pCtx->es.u32Limit == 0xffff);
4435 Assert(u32ESAttr == 0xf3);
4436 /* FS */
4437 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
4438 Assert(pCtx->fs.u32Limit == 0xffff);
4439 Assert(u32FSAttr == 0xf3);
4440 /* GS */
4441 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
4442 Assert(pCtx->gs.u32Limit == 0xffff);
4443 Assert(u32GSAttr == 0xf3);
4444 /* 64-bit capable CPUs. */
4445# if HC_ARCH_BITS == 64
4446 Assert(!(pCtx->cs.u64Base >> 32));
4447 Assert(!u32SSAttr || !(pCtx->ss.u64Base >> 32));
4448 Assert(!u32DSAttr || !(pCtx->ds.u64Base >> 32));
4449 Assert(!u32ESAttr || !(pCtx->es.u64Base >> 32));
4450# endif
4451 }
4452}
4453#endif /* VBOX_STRICT */
4454
4455
4456/**
4457 * Writes a guest segment register into the guest-state area in the VMCS.
4458 *
4459 * @returns VBox status code.
4460 * @param pVCpu The cross context virtual CPU structure.
4461 * @param idxSel Index of the selector in the VMCS.
4462 * @param idxLimit Index of the segment limit in the VMCS.
4463 * @param idxBase Index of the segment base in the VMCS.
4464 * @param idxAccess Index of the access rights of the segment in the VMCS.
4465 * @param pSelReg Pointer to the segment selector.
4466 *
4467 * @remarks No-long-jump zone!!!
4468 */
4469static int hmR0VmxWriteSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase,
4470 uint32_t idxAccess, PCPUMSELREG pSelReg)
4471{
4472 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
4473 rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
4474 rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
4475 AssertRCReturn(rc, rc);
4476
4477 uint32_t u32Access = pSelReg->Attr.u;
4478 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4479 {
4480 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
4481 u32Access = 0xf3;
4482 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4483 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4484 }
4485 else
4486 {
4487 /*
4488 * The way to differentiate between whether this is really a null selector or was just a selector loaded with 0 in
4489 * real-mode is using the segment attributes. A selector loaded in real-mode with the value 0 is valid and usable in
4490 * protected-mode and we should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures NULL selectors
4491 * loaded in protected-mode have their attribute as 0.
4492 */
4493 if (!u32Access)
4494 u32Access = X86DESCATTR_UNUSABLE;
4495 }
4496
4497 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
4498 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
4499 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
4500
4501 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
4502 AssertRCReturn(rc, rc);
4503 return rc;
4504}
4505
4506
4507/**
4508 * Loads the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
4509 * into the guest-state area in the VMCS.
4510 *
4511 * @returns VBox status code.
4512 * @param pVCpu The cross context virtual CPU structure.
4513 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4514 * out-of-sync. Make sure to update the required fields
4515 * before using them.
4516 *
4517 * @remarks ASSUMES pMixedCtx->cr0 is up to date (strict builds validation).
4518 * @remarks No-long-jump zone!!!
4519 */
4520static int hmR0VmxLoadGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4521{
4522 int rc = VERR_INTERNAL_ERROR_5;
4523 PVM pVM = pVCpu->CTX_SUFF(pVM);
4524
4525 /*
4526 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
4527 */
4528 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
4529 {
4530 /* Save the segment attributes for real-on-v86 mode hack, so we can restore them on VM-exit. */
4531 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4532 {
4533 pVCpu->hm.s.vmx.RealMode.AttrCS.u = pMixedCtx->cs.Attr.u;
4534 pVCpu->hm.s.vmx.RealMode.AttrSS.u = pMixedCtx->ss.Attr.u;
4535 pVCpu->hm.s.vmx.RealMode.AttrDS.u = pMixedCtx->ds.Attr.u;
4536 pVCpu->hm.s.vmx.RealMode.AttrES.u = pMixedCtx->es.Attr.u;
4537 pVCpu->hm.s.vmx.RealMode.AttrFS.u = pMixedCtx->fs.Attr.u;
4538 pVCpu->hm.s.vmx.RealMode.AttrGS.u = pMixedCtx->gs.Attr.u;
4539 }
4540
4541#ifdef VBOX_WITH_REM
4542 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
4543 {
4544 Assert(pVM->hm.s.vmx.pRealModeTSS);
4545 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
4546 if ( pVCpu->hm.s.vmx.fWasInRealMode
4547 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
4548 {
4549 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
4550 in real-mode (e.g. OpenBSD 4.0) */
4551 REMFlushTBs(pVM);
4552 Log4(("Load[%RU32]: Switch to protected mode detected!\n", pVCpu->idCpu));
4553 pVCpu->hm.s.vmx.fWasInRealMode = false;
4554 }
4555 }
4556#endif
4557 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_CS_SEL, VMX_VMCS32_GUEST_CS_LIMIT, VMX_VMCS_GUEST_CS_BASE,
4558 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS, &pMixedCtx->cs);
4559 AssertRCReturn(rc, rc);
4560 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_SS_SEL, VMX_VMCS32_GUEST_SS_LIMIT, VMX_VMCS_GUEST_SS_BASE,
4561 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS, &pMixedCtx->ss);
4562 AssertRCReturn(rc, rc);
4563 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_DS_SEL, VMX_VMCS32_GUEST_DS_LIMIT, VMX_VMCS_GUEST_DS_BASE,
4564 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS, &pMixedCtx->ds);
4565 AssertRCReturn(rc, rc);
4566 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_ES_SEL, VMX_VMCS32_GUEST_ES_LIMIT, VMX_VMCS_GUEST_ES_BASE,
4567 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, &pMixedCtx->es);
4568 AssertRCReturn(rc, rc);
4569 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FS_SEL, VMX_VMCS32_GUEST_FS_LIMIT, VMX_VMCS_GUEST_FS_BASE,
4570 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS, &pMixedCtx->fs);
4571 AssertRCReturn(rc, rc);
4572 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_GS_SEL, VMX_VMCS32_GUEST_GS_LIMIT, VMX_VMCS_GUEST_GS_BASE,
4573 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS, &pMixedCtx->gs);
4574 AssertRCReturn(rc, rc);
4575
4576#ifdef VBOX_STRICT
4577 /* Validate. */
4578 hmR0VmxValidateSegmentRegs(pVM, pVCpu, pMixedCtx);
4579#endif
4580
4581 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
4582 Log4(("Load[%RU32]: CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pVCpu->idCpu, pMixedCtx->cs.Sel,
4583 pMixedCtx->cs.u64Base, pMixedCtx->cs.u32Limit, pMixedCtx->cs.Attr.u));
4584 }
4585
4586 /*
4587 * Guest TR.
4588 */
4589 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
4590 {
4591 /*
4592 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is achieved
4593 * using the interrupt redirection bitmap (all bits cleared to let the guest handle INT-n's) in the TSS.
4594 * See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
4595 */
4596 uint16_t u16Sel = 0;
4597 uint32_t u32Limit = 0;
4598 uint64_t u64Base = 0;
4599 uint32_t u32AccessRights = 0;
4600
4601 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4602 {
4603 u16Sel = pMixedCtx->tr.Sel;
4604 u32Limit = pMixedCtx->tr.u32Limit;
4605 u64Base = pMixedCtx->tr.u64Base;
4606 u32AccessRights = pMixedCtx->tr.Attr.u;
4607 }
4608 else
4609 {
4610 Assert(pVM->hm.s.vmx.pRealModeTSS);
4611 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMR3CanExecuteGuest() -XXX- what about inner loop changes? */
4612
4613 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
4614 RTGCPHYS GCPhys;
4615 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
4616 AssertRCReturn(rc, rc);
4617
4618 X86DESCATTR DescAttr;
4619 DescAttr.u = 0;
4620 DescAttr.n.u1Present = 1;
4621 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
4622
4623 u16Sel = 0;
4624 u32Limit = HM_VTX_TSS_SIZE;
4625 u64Base = GCPhys; /* in real-mode phys = virt. */
4626 u32AccessRights = DescAttr.u;
4627 }
4628
4629 /* Validate. */
4630 Assert(!(u16Sel & RT_BIT(2)));
4631 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
4632 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
4633 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
4634 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
4635 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
4636 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
4637 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
4638 Assert( (u32Limit & 0xfff) == 0xfff
4639 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
4640 Assert( !(pMixedCtx->tr.u32Limit & 0xfff00000)
4641 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
4642
4643 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
4644 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
4645 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
4646 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
4647 AssertRCReturn(rc, rc);
4648
4649 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
4650 Log4(("Load[%RU32]: VMX_VMCS_GUEST_TR_BASE=%#RX64\n", pVCpu->idCpu, u64Base));
4651 }
4652
4653 /*
4654 * Guest GDTR.
4655 */
4656 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
4657 {
4658 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pMixedCtx->gdtr.cbGdt);
4659 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pMixedCtx->gdtr.pGdt);
4660 AssertRCReturn(rc, rc);
4661
4662 /* Validate. */
4663 Assert(!(pMixedCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4664
4665 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
4666 Log4(("Load[%RU32]: VMX_VMCS_GUEST_GDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->gdtr.pGdt));
4667 }
4668
4669 /*
4670 * Guest LDTR.
4671 */
4672 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
4673 {
4674 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
4675 uint32_t u32Access = 0;
4676 if (!pMixedCtx->ldtr.Attr.u)
4677 u32Access = X86DESCATTR_UNUSABLE;
4678 else
4679 u32Access = pMixedCtx->ldtr.Attr.u;
4680
4681 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pMixedCtx->ldtr.Sel);
4682 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pMixedCtx->ldtr.u32Limit);
4683 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pMixedCtx->ldtr.u64Base);
4684 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
4685 AssertRCReturn(rc, rc);
4686
4687 /* Validate. */
4688 if (!(u32Access & X86DESCATTR_UNUSABLE))
4689 {
4690 Assert(!(pMixedCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
4691 Assert(pMixedCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
4692 Assert(!pMixedCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
4693 Assert(pMixedCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
4694 Assert(!pMixedCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
4695 Assert(!(pMixedCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
4696 Assert( (pMixedCtx->ldtr.u32Limit & 0xfff) == 0xfff
4697 || !pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
4698 Assert( !(pMixedCtx->ldtr.u32Limit & 0xfff00000)
4699 || pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
4700 }
4701
4702 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
4703 Log4(("Load[%RU32]: VMX_VMCS_GUEST_LDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->ldtr.u64Base));
4704 }
4705
4706 /*
4707 * Guest IDTR.
4708 */
4709 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
4710 {
4711 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pMixedCtx->idtr.cbIdt);
4712 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pMixedCtx->idtr.pIdt);
4713 AssertRCReturn(rc, rc);
4714
4715 /* Validate. */
4716 Assert(!(pMixedCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4717
4718 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
4719 Log4(("Load[%RU32]: VMX_VMCS_GUEST_IDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->idtr.pIdt));
4720 }
4721
4722 return VINF_SUCCESS;
4723}
4724
4725
4726/**
4727 * Loads certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
4728 * areas.
4729 *
4730 * These MSRs will automatically be loaded to the host CPU on every successful
4731 * VM-entry and stored from the host CPU on every successful VM-exit. This also
4732 * creates/updates MSR slots for the host MSRs. The actual host MSR values are
4733 * -not- updated here for performance reasons. See hmR0VmxSaveHostMsrs().
4734 *
4735 * Also loads the sysenter MSRs into the guest-state area in the VMCS.
4736 *
4737 * @returns VBox status code.
4738 * @param pVCpu The cross context virtual CPU structure.
4739 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4740 * out-of-sync. Make sure to update the required fields
4741 * before using them.
4742 *
4743 * @remarks No-long-jump zone!!!
4744 */
4745static int hmR0VmxLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4746{
4747 AssertPtr(pVCpu);
4748 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
4749
4750 /*
4751 * MSRs that we use the auto-load/store MSR area in the VMCS.
4752 */
4753 PVM pVM = pVCpu->CTX_SUFF(pVM);
4754 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS))
4755 {
4756 /* For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs(). */
4757#if HC_ARCH_BITS == 32
4758 if (pVM->hm.s.fAllow64BitGuests)
4759 {
4760 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pMixedCtx->msrLSTAR, false, NULL);
4761 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pMixedCtx->msrSTAR, false, NULL);
4762 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pMixedCtx->msrSFMASK, false, NULL);
4763 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE, false, NULL);
4764 AssertRCReturn(rc, rc);
4765# ifdef LOG_ENABLED
4766 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
4767 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
4768 {
4769 Log4(("Load[%RU32]: MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", pVCpu->idCpu, i, pMsr->u32Msr,
4770 pMsr->u64Value));
4771 }
4772# endif
4773 }
4774#endif
4775 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
4776 }
4777
4778 /*
4779 * Guest Sysenter MSRs.
4780 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
4781 * VM-exits on WRMSRs for these MSRs.
4782 */
4783 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR))
4784 {
4785 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pMixedCtx->SysEnter.cs); AssertRCReturn(rc, rc);
4786 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR);
4787 }
4788
4789 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR))
4790 {
4791 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pMixedCtx->SysEnter.eip); AssertRCReturn(rc, rc);
4792 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
4793 }
4794
4795 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR))
4796 {
4797 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pMixedCtx->SysEnter.esp); AssertRCReturn(rc, rc);
4798 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
4799 }
4800
4801 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_EFER_MSR))
4802 {
4803 if (hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
4804 {
4805 /*
4806 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
4807 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
4808 */
4809 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4810 {
4811 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pMixedCtx->msrEFER);
4812 AssertRCReturn(rc,rc);
4813 Log4(("Load[%RU32]: VMX_VMCS64_GUEST_EFER_FULL=%#RX64\n", pVCpu->idCpu, pMixedCtx->msrEFER));
4814 }
4815 else
4816 {
4817 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_EFER, pMixedCtx->msrEFER, false /* fUpdateHostMsr */,
4818 NULL /* pfAddedAndUpdated */);
4819 AssertRCReturn(rc, rc);
4820
4821 /* We need to intercept reads too, see @bugref{7386#c16}. */
4822 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
4823 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_EFER, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
4824 Log4(("Load[%RU32]: MSR[--]: u32Msr=%#RX32 u64Value=%#RX64 cMsrs=%u\n", pVCpu->idCpu, MSR_K6_EFER,
4825 pMixedCtx->msrEFER, pVCpu->hm.s.vmx.cMsrs));
4826 }
4827 }
4828 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
4829 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K6_EFER);
4830 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
4831 }
4832
4833 return VINF_SUCCESS;
4834}
4835
4836
4837/**
4838 * Loads the guest activity state into the guest-state area in the VMCS.
4839 *
4840 * @returns VBox status code.
4841 * @param pVCpu The cross context virtual CPU structure.
4842 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4843 * out-of-sync. Make sure to update the required fields
4844 * before using them.
4845 *
4846 * @remarks No-long-jump zone!!!
4847 */
4848static int hmR0VmxLoadGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4849{
4850 NOREF(pMixedCtx);
4851 /** @todo See if we can make use of other states, e.g.
4852 * VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN or HLT. */
4853 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE))
4854 {
4855 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, VMX_VMCS_GUEST_ACTIVITY_ACTIVE);
4856 AssertRCReturn(rc, rc);
4857
4858 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE);
4859 }
4860 return VINF_SUCCESS;
4861}
4862
4863
4864#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
4865/**
4866 * Check if guest state allows safe use of 32-bit switcher again.
4867 *
4868 * Segment bases and protected mode structures must be 32-bit addressable
4869 * because the 32-bit switcher will ignore high dword when writing these VMCS
4870 * fields. See @bugref{8432} for details.
4871 *
4872 * @returns true if safe, false if must continue to use the 64-bit switcher.
4873 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4874 * out-of-sync. Make sure to update the required fields
4875 * before using them.
4876 *
4877 * @remarks No-long-jump zone!!!
4878 */
4879static bool hmR0VmxIs32BitSwitcherSafe(PCPUMCTX pMixedCtx)
4880{
4881 if (pMixedCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000))
4882 return false;
4883 if (pMixedCtx->idtr.pIdt & UINT64_C(0xffffffff00000000))
4884 return false;
4885 if (pMixedCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000))
4886 return false;
4887 if (pMixedCtx->tr.u64Base & UINT64_C(0xffffffff00000000))
4888 return false;
4889 if (pMixedCtx->es.u64Base & UINT64_C(0xffffffff00000000))
4890 return false;
4891 if (pMixedCtx->cs.u64Base & UINT64_C(0xffffffff00000000))
4892 return false;
4893 if (pMixedCtx->ss.u64Base & UINT64_C(0xffffffff00000000))
4894 return false;
4895 if (pMixedCtx->ds.u64Base & UINT64_C(0xffffffff00000000))
4896 return false;
4897 if (pMixedCtx->fs.u64Base & UINT64_C(0xffffffff00000000))
4898 return false;
4899 if (pMixedCtx->gs.u64Base & UINT64_C(0xffffffff00000000))
4900 return false;
4901 /* All good, bases are 32-bit. */
4902 return true;
4903}
4904#endif
4905
4906
4907/**
4908 * Sets up the appropriate function to run guest code.
4909 *
4910 * @returns VBox status code.
4911 * @param pVCpu The cross context virtual CPU structure.
4912 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4913 * out-of-sync. Make sure to update the required fields
4914 * before using them.
4915 *
4916 * @remarks No-long-jump zone!!!
4917 */
4918static int hmR0VmxSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4919{
4920 if (CPUMIsGuestInLongModeEx(pMixedCtx))
4921 {
4922#ifndef VBOX_ENABLE_64_BITS_GUESTS
4923 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4924#endif
4925 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4926#if HC_ARCH_BITS == 32
4927 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
4928 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
4929 {
4930 if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4931 {
4932 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4933 AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
4934 | HM_CHANGED_VMX_ENTRY_CTLS
4935 | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
4936 }
4937 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
4938
4939 /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
4940 the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
4941 pVCpu->hm.s.vmx.fSwitchedTo64on32 = true;
4942 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 64-bit switcher\n", pVCpu->idCpu));
4943 }
4944#else
4945 /* 64-bit host. */
4946 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
4947#endif
4948 }
4949 else
4950 {
4951 /* Guest is not in long mode, use the 32-bit handler. */
4952#if HC_ARCH_BITS == 32
4953 if ( pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32
4954 && !pVCpu->hm.s.vmx.fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
4955 && pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4956 {
4957 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4958 AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
4959 | HM_CHANGED_VMX_ENTRY_CTLS
4960 | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
4961 }
4962# ifdef VBOX_ENABLE_64_BITS_GUESTS
4963 /*
4964 * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel design, see @bugref{8432#c7}.
4965 * If real-on-v86 mode is active, clear the 64-bit switcher flag because now we know the guest is in a sane
4966 * state where it's safe to use the 32-bit switcher. Otherwise check the guest state if it's safe to use
4967 * the much faster 32-bit switcher again.
4968 */
4969 if (!pVCpu->hm.s.vmx.fSwitchedTo64on32)
4970 {
4971 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
4972 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 32-bit switcher\n", pVCpu->idCpu));
4973 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4974 }
4975 else
4976 {
4977 Assert(pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64);
4978 if ( pVCpu->hm.s.vmx.RealMode.fRealOnV86Active
4979 || hmR0VmxIs32BitSwitcherSafe(pMixedCtx))
4980 {
4981 pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
4982 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4983 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR
4984 | HM_CHANGED_VMX_ENTRY_CTLS
4985 | HM_CHANGED_VMX_EXIT_CTLS
4986 | HM_CHANGED_HOST_CONTEXT);
4987 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 32-bit switcher (safe)\n", pVCpu->idCpu));
4988 }
4989 }
4990# else
4991 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4992# endif
4993#else
4994 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4995#endif
4996 }
4997 Assert(pVCpu->hm.s.vmx.pfnStartVM);
4998 return VINF_SUCCESS;
4999}
5000
5001
5002/**
5003 * Wrapper for running the guest code in VT-x.
5004 *
5005 * @returns VBox status code, no informational status codes.
5006 * @param pVM The cross context VM structure.
5007 * @param pVCpu The cross context virtual CPU structure.
5008 * @param pCtx Pointer to the guest-CPU context.
5009 *
5010 * @remarks No-long-jump zone!!!
5011 */
5012DECLINLINE(int) hmR0VmxRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
5013{
5014 /*
5015 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
5016 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
5017 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
5018 */
5019 bool const fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
5020 /** @todo Add stats for resume vs launch. */
5021#ifdef VBOX_WITH_KERNEL_USING_XMM
5022 int rc = HMR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
5023#else
5024 int rc = pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
5025#endif
5026 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
5027 return rc;
5028}
5029
5030
5031/**
5032 * Reports world-switch error and dumps some useful debug info.
5033 *
5034 * @param pVM The cross context VM structure.
5035 * @param pVCpu The cross context virtual CPU structure.
5036 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
5037 * @param pCtx Pointer to the guest-CPU context.
5038 * @param pVmxTransient Pointer to the VMX transient structure (only
5039 * exitReason updated).
5040 */
5041static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx, PVMXTRANSIENT pVmxTransient)
5042{
5043 Assert(pVM);
5044 Assert(pVCpu);
5045 Assert(pCtx);
5046 Assert(pVmxTransient);
5047 HMVMX_ASSERT_PREEMPT_SAFE();
5048
5049 Log4(("VM-entry failure: %Rrc\n", rcVMRun));
5050 switch (rcVMRun)
5051 {
5052 case VERR_VMX_INVALID_VMXON_PTR:
5053 AssertFailed();
5054 break;
5055 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
5056 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
5057 {
5058 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
5059 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
5060 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
5061 AssertRC(rc);
5062
5063 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
5064 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
5065 Cannot do it here as we may have been long preempted. */
5066
5067#ifdef VBOX_STRICT
5068 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
5069 pVmxTransient->uExitReason));
5070 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQualification));
5071 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
5072 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
5073 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
5074 else
5075 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
5076 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
5077 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
5078
5079 /* VMX control bits. */
5080 uint32_t u32Val;
5081 uint64_t u64Val;
5082 RTHCUINTREG uHCReg;
5083 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
5084 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
5085 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
5086 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
5087 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
5088 {
5089 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
5090 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
5091 }
5092 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
5093 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
5094 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
5095 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
5096 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
5097 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
5098 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
5099 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
5100 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
5101 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
5102 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
5103 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
5104 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
5105 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
5106 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
5107 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
5108 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5109 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
5110 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5111 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
5112 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
5113 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
5114 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
5115 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
5116 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
5117 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
5118 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
5119 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
5120 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
5121 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5122 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
5123 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
5124 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
5125 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5126 if (pVM->hm.s.fNestedPaging)
5127 {
5128 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
5129 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
5130 }
5131
5132 /* Guest bits. */
5133 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
5134 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pCtx->rip, u64Val));
5135 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
5136 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pCtx->rsp, u64Val));
5137 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
5138 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pCtx->eflags.u32, u32Val));
5139 if (pVM->hm.s.vmx.fVpid)
5140 {
5141 rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
5142 Log4(("VMX_VMCS16_VPID %u\n", u32Val));
5143 }
5144
5145 /* Host bits. */
5146 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
5147 Log4(("Host CR0 %#RHr\n", uHCReg));
5148 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
5149 Log4(("Host CR3 %#RHr\n", uHCReg));
5150 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
5151 Log4(("Host CR4 %#RHr\n", uHCReg));
5152
5153 RTGDTR HostGdtr;
5154 PCX86DESCHC pDesc;
5155 ASMGetGDTR(&HostGdtr);
5156 rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
5157 Log4(("Host CS %#08x\n", u32Val));
5158 if (u32Val < HostGdtr.cbGdt)
5159 {
5160 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5161 HMR0DumpDescriptor(pDesc, u32Val, "CS: ");
5162 }
5163
5164 rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
5165 Log4(("Host DS %#08x\n", u32Val));
5166 if (u32Val < HostGdtr.cbGdt)
5167 {
5168 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5169 HMR0DumpDescriptor(pDesc, u32Val, "DS: ");
5170 }
5171
5172 rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
5173 Log4(("Host ES %#08x\n", u32Val));
5174 if (u32Val < HostGdtr.cbGdt)
5175 {
5176 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5177 HMR0DumpDescriptor(pDesc, u32Val, "ES: ");
5178 }
5179
5180 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
5181 Log4(("Host FS %#08x\n", u32Val));
5182 if (u32Val < HostGdtr.cbGdt)
5183 {
5184 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5185 HMR0DumpDescriptor(pDesc, u32Val, "FS: ");
5186 }
5187
5188 rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
5189 Log4(("Host GS %#08x\n", u32Val));
5190 if (u32Val < HostGdtr.cbGdt)
5191 {
5192 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5193 HMR0DumpDescriptor(pDesc, u32Val, "GS: ");
5194 }
5195
5196 rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
5197 Log4(("Host SS %#08x\n", u32Val));
5198 if (u32Val < HostGdtr.cbGdt)
5199 {
5200 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5201 HMR0DumpDescriptor(pDesc, u32Val, "SS: ");
5202 }
5203
5204 rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
5205 Log4(("Host TR %#08x\n", u32Val));
5206 if (u32Val < HostGdtr.cbGdt)
5207 {
5208 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5209 HMR0DumpDescriptor(pDesc, u32Val, "TR: ");
5210 }
5211
5212 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
5213 Log4(("Host TR Base %#RHv\n", uHCReg));
5214 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
5215 Log4(("Host GDTR Base %#RHv\n", uHCReg));
5216 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
5217 Log4(("Host IDTR Base %#RHv\n", uHCReg));
5218 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
5219 Log4(("Host SYSENTER CS %#08x\n", u32Val));
5220 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
5221 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
5222 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
5223 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
5224 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
5225 Log4(("Host RSP %#RHv\n", uHCReg));
5226 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
5227 Log4(("Host RIP %#RHv\n", uHCReg));
5228# if HC_ARCH_BITS == 64
5229 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
5230 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
5231 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
5232 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
5233 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
5234 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
5235# endif
5236#endif /* VBOX_STRICT */
5237 break;
5238 }
5239
5240 default:
5241 /* Impossible */
5242 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
5243 break;
5244 }
5245 NOREF(pVM); NOREF(pCtx);
5246}
5247
5248
5249#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
5250#ifndef VMX_USE_CACHED_VMCS_ACCESSES
5251# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
5252#endif
5253#ifdef VBOX_STRICT
5254static bool hmR0VmxIsValidWriteField(uint32_t idxField)
5255{
5256 switch (idxField)
5257 {
5258 case VMX_VMCS_GUEST_RIP:
5259 case VMX_VMCS_GUEST_RSP:
5260 case VMX_VMCS_GUEST_SYSENTER_EIP:
5261 case VMX_VMCS_GUEST_SYSENTER_ESP:
5262 case VMX_VMCS_GUEST_GDTR_BASE:
5263 case VMX_VMCS_GUEST_IDTR_BASE:
5264 case VMX_VMCS_GUEST_CS_BASE:
5265 case VMX_VMCS_GUEST_DS_BASE:
5266 case VMX_VMCS_GUEST_ES_BASE:
5267 case VMX_VMCS_GUEST_FS_BASE:
5268 case VMX_VMCS_GUEST_GS_BASE:
5269 case VMX_VMCS_GUEST_SS_BASE:
5270 case VMX_VMCS_GUEST_LDTR_BASE:
5271 case VMX_VMCS_GUEST_TR_BASE:
5272 case VMX_VMCS_GUEST_CR3:
5273 return true;
5274 }
5275 return false;
5276}
5277
5278static bool hmR0VmxIsValidReadField(uint32_t idxField)
5279{
5280 switch (idxField)
5281 {
5282 /* Read-only fields. */
5283 case VMX_VMCS_RO_EXIT_QUALIFICATION:
5284 return true;
5285 }
5286 /* Remaining readable fields should also be writable. */
5287 return hmR0VmxIsValidWriteField(idxField);
5288}
5289#endif /* VBOX_STRICT */
5290
5291
5292/**
5293 * Executes the specified handler in 64-bit mode.
5294 *
5295 * @returns VBox status code (no informational status codes).
5296 * @param pVM The cross context VM structure.
5297 * @param pVCpu The cross context virtual CPU structure.
5298 * @param pCtx Pointer to the guest CPU context.
5299 * @param enmOp The operation to perform.
5300 * @param cParams Number of parameters.
5301 * @param paParam Array of 32-bit parameters.
5302 */
5303VMMR0DECL(int) VMXR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp,
5304 uint32_t cParams, uint32_t *paParam)
5305{
5306 NOREF(pCtx);
5307
5308 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
5309 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
5310 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
5311 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
5312
5313#ifdef VBOX_STRICT
5314 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
5315 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
5316
5317 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
5318 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
5319#endif
5320
5321 /* Disable interrupts. */
5322 RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
5323
5324#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
5325 RTCPUID idHostCpu = RTMpCpuId();
5326 CPUMR0SetLApic(pVCpu, idHostCpu);
5327#endif
5328
5329 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
5330 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5331
5332 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
5333 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5334 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
5335
5336 /* Leave VMX Root Mode. */
5337 VMXDisable();
5338
5339 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5340
5341 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
5342 CPUMSetHyperEIP(pVCpu, enmOp);
5343 for (int i = (int)cParams - 1; i >= 0; i--)
5344 CPUMPushHyper(pVCpu, paParam[i]);
5345
5346 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
5347
5348 /* Call the switcher. */
5349 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
5350 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
5351
5352 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
5353 /* Make sure the VMX instructions don't cause #UD faults. */
5354 SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
5355
5356 /* Re-enter VMX Root Mode */
5357 int rc2 = VMXEnable(HCPhysCpuPage);
5358 if (RT_FAILURE(rc2))
5359 {
5360 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5361 ASMSetFlags(fOldEFlags);
5362 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
5363 return rc2;
5364 }
5365
5366 rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5367 AssertRC(rc2);
5368 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
5369 Assert(!(ASMGetFlags() & X86_EFL_IF));
5370 ASMSetFlags(fOldEFlags);
5371 return rc;
5372}
5373
5374
5375/**
5376 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
5377 * supporting 64-bit guests.
5378 *
5379 * @returns VBox status code.
5380 * @param fResume Whether to VMLAUNCH or VMRESUME.
5381 * @param pCtx Pointer to the guest-CPU context.
5382 * @param pCache Pointer to the VMCS cache.
5383 * @param pVM The cross context VM structure.
5384 * @param pVCpu The cross context virtual CPU structure.
5385 */
5386DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
5387{
5388 NOREF(fResume);
5389
5390 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
5391 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5392
5393#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5394 pCache->uPos = 1;
5395 pCache->interPD = PGMGetInterPaeCR3(pVM);
5396 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
5397#endif
5398
5399#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5400 pCache->TestIn.HCPhysCpuPage = 0;
5401 pCache->TestIn.HCPhysVmcs = 0;
5402 pCache->TestIn.pCache = 0;
5403 pCache->TestOut.HCPhysVmcs = 0;
5404 pCache->TestOut.pCache = 0;
5405 pCache->TestOut.pCtx = 0;
5406 pCache->TestOut.eflags = 0;
5407#else
5408 NOREF(pCache);
5409#endif
5410
5411 uint32_t aParam[10];
5412 aParam[0] = (uint32_t)(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
5413 aParam[1] = (uint32_t)(HCPhysCpuPage >> 32); /* Param 1: VMXON physical address - Hi. */
5414 aParam[2] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
5415 aParam[3] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs >> 32); /* Param 2: VMCS physical address - Hi. */
5416 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
5417 aParam[5] = 0;
5418 aParam[6] = VM_RC_ADDR(pVM, pVM);
5419 aParam[7] = 0;
5420 aParam[8] = VM_RC_ADDR(pVM, pVCpu);
5421 aParam[9] = 0;
5422
5423#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5424 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
5425 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
5426#endif
5427 int rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
5428
5429#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5430 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
5431 Assert(pCtx->dr[4] == 10);
5432 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
5433#endif
5434
5435#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5436 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
5437 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5438 pVCpu->hm.s.vmx.HCPhysVmcs));
5439 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5440 pCache->TestOut.HCPhysVmcs));
5441 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
5442 pCache->TestOut.pCache));
5443 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
5444 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
5445 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
5446 pCache->TestOut.pCtx));
5447 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
5448#endif
5449 return rc;
5450}
5451
5452
5453/**
5454 * Initialize the VMCS-Read cache.
5455 *
5456 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
5457 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
5458 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
5459 * (those that have a 32-bit FULL & HIGH part).
5460 *
5461 * @returns VBox status code.
5462 * @param pVM The cross context VM structure.
5463 * @param pVCpu The cross context virtual CPU structure.
5464 */
5465static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu)
5466{
5467#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
5468{ \
5469 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
5470 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
5471 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
5472 ++cReadFields; \
5473}
5474
5475 AssertPtr(pVM);
5476 AssertPtr(pVCpu);
5477 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5478 uint32_t cReadFields = 0;
5479
5480 /*
5481 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
5482 * and serve to indicate exceptions to the rules.
5483 */
5484
5485 /* Guest-natural selector base fields. */
5486#if 0
5487 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
5488 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
5489 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
5490#endif
5491 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
5492 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
5493 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
5494 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
5495 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
5496 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
5497 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
5498 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
5499 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
5500 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
5501 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
5502 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
5503#if 0
5504 /* Unused natural width guest-state fields. */
5505 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS);
5506 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
5507#endif
5508 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
5509 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
5510
5511 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for these 64-bit fields (using "FULL" and "HIGH" fields). */
5512#if 0
5513 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
5514 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
5515 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
5516 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
5517 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
5518 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
5519 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
5520 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
5521 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
5522#endif
5523
5524 /* Natural width guest-state fields. */
5525 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
5526#if 0
5527 /* Currently unused field. */
5528 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR);
5529#endif
5530
5531 if (pVM->hm.s.fNestedPaging)
5532 {
5533 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
5534 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
5535 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
5536 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
5537 }
5538 else
5539 {
5540 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
5541 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
5542 }
5543
5544#undef VMXLOCAL_INIT_READ_CACHE_FIELD
5545 return VINF_SUCCESS;
5546}
5547
5548
5549/**
5550 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
5551 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
5552 * darwin, running 64-bit guests).
5553 *
5554 * @returns VBox status code.
5555 * @param pVCpu The cross context virtual CPU structure.
5556 * @param idxField The VMCS field encoding.
5557 * @param u64Val 16, 32 or 64-bit value.
5558 */
5559VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5560{
5561 int rc;
5562 switch (idxField)
5563 {
5564 /*
5565 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
5566 */
5567 /* 64-bit Control fields. */
5568 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
5569 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
5570 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
5571 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
5572 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
5573 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
5574 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
5575 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
5576 case VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL:
5577 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
5578 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
5579 case VMX_VMCS64_CTRL_EPTP_FULL:
5580 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
5581 /* 64-bit Guest-state fields. */
5582 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
5583 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
5584 case VMX_VMCS64_GUEST_PAT_FULL:
5585 case VMX_VMCS64_GUEST_EFER_FULL:
5586 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
5587 case VMX_VMCS64_GUEST_PDPTE0_FULL:
5588 case VMX_VMCS64_GUEST_PDPTE1_FULL:
5589 case VMX_VMCS64_GUEST_PDPTE2_FULL:
5590 case VMX_VMCS64_GUEST_PDPTE3_FULL:
5591 /* 64-bit Host-state fields. */
5592 case VMX_VMCS64_HOST_PAT_FULL:
5593 case VMX_VMCS64_HOST_EFER_FULL:
5594 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
5595 {
5596 rc = VMXWriteVmcs32(idxField, u64Val);
5597 rc |= VMXWriteVmcs32(idxField + 1, (uint32_t)(u64Val >> 32));
5598 break;
5599 }
5600
5601 /*
5602 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
5603 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
5604 */
5605 /* Natural-width Guest-state fields. */
5606 case VMX_VMCS_GUEST_CR3:
5607 case VMX_VMCS_GUEST_ES_BASE:
5608 case VMX_VMCS_GUEST_CS_BASE:
5609 case VMX_VMCS_GUEST_SS_BASE:
5610 case VMX_VMCS_GUEST_DS_BASE:
5611 case VMX_VMCS_GUEST_FS_BASE:
5612 case VMX_VMCS_GUEST_GS_BASE:
5613 case VMX_VMCS_GUEST_LDTR_BASE:
5614 case VMX_VMCS_GUEST_TR_BASE:
5615 case VMX_VMCS_GUEST_GDTR_BASE:
5616 case VMX_VMCS_GUEST_IDTR_BASE:
5617 case VMX_VMCS_GUEST_RSP:
5618 case VMX_VMCS_GUEST_RIP:
5619 case VMX_VMCS_GUEST_SYSENTER_ESP:
5620 case VMX_VMCS_GUEST_SYSENTER_EIP:
5621 {
5622 if (!(u64Val >> 32))
5623 {
5624 /* If this field is 64-bit, VT-x will zero out the top bits. */
5625 rc = VMXWriteVmcs32(idxField, (uint32_t)u64Val);
5626 }
5627 else
5628 {
5629 /* Assert that only the 32->64 switcher case should ever come here. */
5630 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
5631 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
5632 }
5633 break;
5634 }
5635
5636 default:
5637 {
5638 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
5639 rc = VERR_INVALID_PARAMETER;
5640 break;
5641 }
5642 }
5643 AssertRCReturn(rc, rc);
5644 return rc;
5645}
5646
5647
5648/**
5649 * Queue up a VMWRITE by using the VMCS write cache.
5650 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
5651 *
5652 * @param pVCpu The cross context virtual CPU structure.
5653 * @param idxField The VMCS field encoding.
5654 * @param u64Val 16, 32 or 64-bit value.
5655 */
5656VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5657{
5658 AssertPtr(pVCpu);
5659 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5660
5661 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
5662 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
5663
5664 /* Make sure there are no duplicates. */
5665 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5666 {
5667 if (pCache->Write.aField[i] == idxField)
5668 {
5669 pCache->Write.aFieldVal[i] = u64Val;
5670 return VINF_SUCCESS;
5671 }
5672 }
5673
5674 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
5675 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
5676 pCache->Write.cValidEntries++;
5677 return VINF_SUCCESS;
5678}
5679#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
5680
5681
5682/**
5683 * Sets up the usage of TSC-offsetting and updates the VMCS.
5684 *
5685 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
5686 * VMX preemption timer.
5687 *
5688 * @returns VBox status code.
5689 * @param pVM The cross context VM structure.
5690 * @param pVCpu The cross context virtual CPU structure.
5691 *
5692 * @remarks No-long-jump zone!!!
5693 */
5694static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVM pVM, PVMCPU pVCpu)
5695{
5696 int rc;
5697 bool fOffsettedTsc;
5698 bool fParavirtTsc;
5699 if (pVM->hm.s.vmx.fUsePreemptTimer)
5700 {
5701 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset,
5702 &fOffsettedTsc, &fParavirtTsc);
5703
5704 /* Make sure the returned values have sane upper and lower boundaries. */
5705 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
5706 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
5707 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
5708 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
5709
5710 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
5711 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_PREEMPT_TIMER_VALUE, cPreemptionTickCount); AssertRC(rc);
5712 }
5713 else
5714 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset, &fParavirtTsc);
5715
5716 /** @todo later optimize this to be done elsewhere and not before every
5717 * VM-entry. */
5718 if (fParavirtTsc)
5719 {
5720 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
5721 information before every VM-entry, hence disable it for performance sake. */
5722#if 0
5723 rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
5724 AssertRC(rc);
5725#endif
5726 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
5727 }
5728
5729 if (fOffsettedTsc && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
5730 {
5731 /* Note: VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT takes precedence over TSC_OFFSET, applies to RDTSCP too. */
5732 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, pVCpu->hm.s.vmx.u64TSCOffset); AssertRC(rc);
5733
5734 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5735 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5736 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
5737 }
5738 else
5739 {
5740 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
5741 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5742 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5743 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
5744 }
5745}
5746
5747
5748/**
5749 * Determines if an exception is a contributory exception.
5750 *
5751 * Contributory exceptions are ones which can cause double-faults unless the
5752 * original exception was a benign exception. Page-fault is intentionally not
5753 * included here as it's a conditional contributory exception.
5754 *
5755 * @returns true if the exception is contributory, false otherwise.
5756 * @param uVector The exception vector.
5757 */
5758DECLINLINE(bool) hmR0VmxIsContributoryXcpt(const uint32_t uVector)
5759{
5760 switch (uVector)
5761 {
5762 case X86_XCPT_GP:
5763 case X86_XCPT_SS:
5764 case X86_XCPT_NP:
5765 case X86_XCPT_TS:
5766 case X86_XCPT_DE:
5767 return true;
5768 default:
5769 break;
5770 }
5771 return false;
5772}
5773
5774
5775/**
5776 * Sets an event as a pending event to be injected into the guest.
5777 *
5778 * @param pVCpu The cross context virtual CPU structure.
5779 * @param u32IntInfo The VM-entry interruption-information field.
5780 * @param cbInstr The VM-entry instruction length in bytes (for software
5781 * interrupts, exceptions and privileged software
5782 * exceptions).
5783 * @param u32ErrCode The VM-entry exception error code.
5784 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
5785 * page-fault.
5786 *
5787 * @remarks Statistics counter assumes this is a guest event being injected or
5788 * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
5789 * always incremented.
5790 */
5791DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
5792 RTGCUINTPTR GCPtrFaultAddress)
5793{
5794 Assert(!pVCpu->hm.s.Event.fPending);
5795 pVCpu->hm.s.Event.fPending = true;
5796 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
5797 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
5798 pVCpu->hm.s.Event.cbInstr = cbInstr;
5799 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
5800}
5801
5802
5803/**
5804 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
5805 *
5806 * @param pVCpu The cross context virtual CPU structure.
5807 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5808 * out-of-sync. Make sure to update the required fields
5809 * before using them.
5810 */
5811DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5812{
5813 NOREF(pMixedCtx);
5814 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
5815 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5816 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
5817 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5818}
5819
5820
5821/**
5822 * Handle a condition that occurred while delivering an event through the guest
5823 * IDT.
5824 *
5825 * @returns Strict VBox status code (i.e. informational status codes too).
5826 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
5827 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
5828 * to continue execution of the guest which will delivery the \#DF.
5829 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5830 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5831 *
5832 * @param pVCpu The cross context virtual CPU structure.
5833 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5834 * out-of-sync. Make sure to update the required fields
5835 * before using them.
5836 * @param pVmxTransient Pointer to the VMX transient structure.
5837 *
5838 * @remarks No-long-jump zone!!!
5839 */
5840static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
5841{
5842 uint32_t uExitVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
5843
5844 int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient); AssertRCReturn(rc2, rc2);
5845 rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient); AssertRCReturn(rc2, rc2);
5846
5847 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
5848 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
5849 {
5850 uint32_t uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
5851 uint32_t uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
5852
5853 typedef enum
5854 {
5855 VMXREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
5856 VMXREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
5857 VMXREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
5858 VMXREFLECTXCPT_HANG, /* Indicate bad VM trying to deadlock the CPU. */
5859 VMXREFLECTXCPT_NONE /* Nothing to reflect. */
5860 } VMXREFLECTXCPT;
5861
5862 /* See Intel spec. 30.7.1.1 "Reflecting Exceptions to Guest Software". */
5863 VMXREFLECTXCPT enmReflect = VMXREFLECTXCPT_NONE;
5864 if (VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
5865 {
5866 if (uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT)
5867 {
5868 enmReflect = VMXREFLECTXCPT_XCPT;
5869#ifdef VBOX_STRICT
5870 if ( hmR0VmxIsContributoryXcpt(uIdtVector)
5871 && uExitVector == X86_XCPT_PF)
5872 {
5873 Log4(("IDT: vcpu[%RU32] Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5874 }
5875#endif
5876 if ( uExitVector == X86_XCPT_PF
5877 && uIdtVector == X86_XCPT_PF)
5878 {
5879 pVmxTransient->fVectoringDoublePF = true;
5880 Log4(("IDT: vcpu[%RU32] Vectoring Double #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5881 }
5882 else if ( uExitVector == X86_XCPT_AC
5883 && uIdtVector == X86_XCPT_AC)
5884 {
5885 enmReflect = VMXREFLECTXCPT_HANG;
5886 Log4(("IDT: Nested #AC - Bad guest\n"));
5887 }
5888 else if ( (pVCpu->hm.s.vmx.u32XcptBitmap & HMVMX_CONTRIBUTORY_XCPT_MASK)
5889 && hmR0VmxIsContributoryXcpt(uExitVector)
5890 && ( hmR0VmxIsContributoryXcpt(uIdtVector)
5891 || uIdtVector == X86_XCPT_PF))
5892 {
5893 enmReflect = VMXREFLECTXCPT_DF;
5894 }
5895 else if (uIdtVector == X86_XCPT_DF)
5896 enmReflect = VMXREFLECTXCPT_TF;
5897 }
5898 else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
5899 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
5900 {
5901 /*
5902 * Ignore software interrupts (INT n), software exceptions (#BP, #OF) and
5903 * privileged software exception (#DB from ICEBP) as they reoccur when restarting the instruction.
5904 */
5905 enmReflect = VMXREFLECTXCPT_XCPT;
5906
5907 if (uExitVector == X86_XCPT_PF)
5908 {
5909 pVmxTransient->fVectoringPF = true;
5910 Log4(("IDT: vcpu[%RU32] Vectoring #PF due to Ext-Int/NMI. uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5911 }
5912 }
5913 }
5914 else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
5915 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
5916 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
5917 {
5918 /*
5919 * If event delivery caused an EPT violation/misconfig or APIC access VM-exit, then the VM-exit
5920 * interruption-information will not be valid as it's not an exception and we end up here. In such cases,
5921 * it is sufficient to reflect the original exception to the guest after handling the VM-exit.
5922 */
5923 enmReflect = VMXREFLECTXCPT_XCPT;
5924 }
5925
5926 /*
5927 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig etc.) occurred
5928 * while delivering the NMI, we need to clear the block-by-NMI field in the guest interruptibility-state before
5929 * re-delivering the NMI after handling the VM-exit. Otherwise the subsequent VM-entry would fail.
5930 *
5931 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
5932 */
5933 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
5934 && enmReflect == VMXREFLECTXCPT_XCPT
5935 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
5936 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
5937 {
5938 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5939 }
5940
5941 switch (enmReflect)
5942 {
5943 case VMXREFLECTXCPT_XCPT:
5944 {
5945 Assert( uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
5946 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
5947 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
5948
5949 uint32_t u32ErrCode = 0;
5950 if (VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo))
5951 {
5952 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
5953 AssertRCReturn(rc2, rc2);
5954 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
5955 }
5956
5957 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF. See hmR0VmxExitXcptPF(). */
5958 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5959 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
5960 0 /* cbInstr */, u32ErrCode, pMixedCtx->cr2);
5961 rcStrict = VINF_SUCCESS;
5962 Log4(("IDT: vcpu[%RU32] Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->idCpu,
5963 pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.u32ErrCode));
5964
5965 break;
5966 }
5967
5968 case VMXREFLECTXCPT_DF:
5969 {
5970 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5971 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
5972 rcStrict = VINF_HM_DOUBLE_FAULT;
5973 Log4(("IDT: vcpu[%RU32] Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->idCpu,
5974 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
5975
5976 break;
5977 }
5978
5979 case VMXREFLECTXCPT_TF:
5980 {
5981 rcStrict = VINF_EM_RESET;
5982 Log4(("IDT: vcpu[%RU32] Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", pVCpu->idCpu, uIdtVector,
5983 uExitVector));
5984 break;
5985 }
5986
5987 case VMXREFLECTXCPT_HANG:
5988 {
5989 rcStrict = VERR_EM_GUEST_CPU_HANG;
5990 break;
5991 }
5992
5993 default:
5994 Assert(rcStrict == VINF_SUCCESS);
5995 break;
5996 }
5997 }
5998 else if ( VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
5999 && VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
6000 && uExitVector != X86_XCPT_DF
6001 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
6002 {
6003 /*
6004 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
6005 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
6006 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
6007 */
6008 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6009 {
6010 Log4(("hmR0VmxCheckExitDueToEventDelivery: vcpu[%RU32] Setting VMCPU_FF_BLOCK_NMIS. Valid=%RTbool uExitReason=%u\n",
6011 pVCpu->idCpu, VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
6012 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6013 }
6014 }
6015
6016 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
6017 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
6018 return rcStrict;
6019}
6020
6021
6022/**
6023 * Saves the guest's CR0 register from the VMCS into the guest-CPU context.
6024 *
6025 * @returns VBox status code.
6026 * @param pVCpu The cross context virtual CPU structure.
6027 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6028 * out-of-sync. Make sure to update the required fields
6029 * before using them.
6030 *
6031 * @remarks No-long-jump zone!!!
6032 */
6033static int hmR0VmxSaveGuestCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6034{
6035 NOREF(pMixedCtx);
6036
6037 /*
6038 * While in the middle of saving guest-CR0, we could get preempted and re-invoked from the preemption hook,
6039 * see hmR0VmxLeave(). Safer to just make this code non-preemptible.
6040 */
6041 VMMRZCallRing3Disable(pVCpu);
6042 HM_DISABLE_PREEMPT();
6043
6044 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0))
6045 {
6046 uint32_t uVal = 0;
6047 uint32_t uShadow = 0;
6048 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &uVal);
6049 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uShadow);
6050 AssertRCReturn(rc, rc);
6051
6052 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR0Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR0Mask);
6053 CPUMSetGuestCR0(pVCpu, uVal);
6054 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0);
6055 }
6056
6057 HM_RESTORE_PREEMPT();
6058 VMMRZCallRing3Enable(pVCpu);
6059 return VINF_SUCCESS;
6060}
6061
6062
6063/**
6064 * Saves the guest's CR4 register from the VMCS into the guest-CPU context.
6065 *
6066 * @returns VBox status code.
6067 * @param pVCpu The cross context virtual CPU structure.
6068 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6069 * out-of-sync. Make sure to update the required fields
6070 * before using them.
6071 *
6072 * @remarks No-long-jump zone!!!
6073 */
6074static int hmR0VmxSaveGuestCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6075{
6076 NOREF(pMixedCtx);
6077
6078 int rc = VINF_SUCCESS;
6079 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4))
6080 {
6081 uint32_t uVal = 0;
6082 uint32_t uShadow = 0;
6083 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &uVal);
6084 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uShadow);
6085 AssertRCReturn(rc, rc);
6086
6087 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR4Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR4Mask);
6088 CPUMSetGuestCR4(pVCpu, uVal);
6089 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4);
6090 }
6091 return rc;
6092}
6093
6094
6095/**
6096 * Saves the guest's RIP register from the VMCS into the guest-CPU context.
6097 *
6098 * @returns VBox status code.
6099 * @param pVCpu The cross context virtual CPU structure.
6100 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6101 * out-of-sync. Make sure to update the required fields
6102 * before using them.
6103 *
6104 * @remarks No-long-jump zone!!!
6105 */
6106static int hmR0VmxSaveGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6107{
6108 int rc = VINF_SUCCESS;
6109 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP))
6110 {
6111 uint64_t u64Val = 0;
6112 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
6113 AssertRCReturn(rc, rc);
6114
6115 pMixedCtx->rip = u64Val;
6116 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP);
6117 }
6118 return rc;
6119}
6120
6121
6122/**
6123 * Saves the guest's RSP register from the VMCS into the guest-CPU context.
6124 *
6125 * @returns VBox status code.
6126 * @param pVCpu The cross context virtual CPU structure.
6127 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6128 * out-of-sync. Make sure to update the required fields
6129 * before using them.
6130 *
6131 * @remarks No-long-jump zone!!!
6132 */
6133static int hmR0VmxSaveGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6134{
6135 int rc = VINF_SUCCESS;
6136 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP))
6137 {
6138 uint64_t u64Val = 0;
6139 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
6140 AssertRCReturn(rc, rc);
6141
6142 pMixedCtx->rsp = u64Val;
6143 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP);
6144 }
6145 return rc;
6146}
6147
6148
6149/**
6150 * Saves the guest's RFLAGS from the VMCS into the guest-CPU context.
6151 *
6152 * @returns VBox status code.
6153 * @param pVCpu The cross context virtual CPU structure.
6154 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6155 * out-of-sync. Make sure to update the required fields
6156 * before using them.
6157 *
6158 * @remarks No-long-jump zone!!!
6159 */
6160static int hmR0VmxSaveGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6161{
6162 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS))
6163 {
6164 uint32_t uVal = 0;
6165 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &uVal);
6166 AssertRCReturn(rc, rc);
6167
6168 pMixedCtx->eflags.u32 = uVal;
6169 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active) /* Undo our real-on-v86-mode changes to eflags if necessary. */
6170 {
6171 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
6172 Log4(("Saving real-mode EFLAGS VT-x view=%#RX32\n", pMixedCtx->eflags.u32));
6173
6174 pMixedCtx->eflags.Bits.u1VM = 0;
6175 pMixedCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
6176 }
6177
6178 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS);
6179 }
6180 return VINF_SUCCESS;
6181}
6182
6183
6184/**
6185 * Wrapper for saving the guest's RIP, RSP and RFLAGS from the VMCS into the
6186 * guest-CPU context.
6187 */
6188DECLINLINE(int) hmR0VmxSaveGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6189{
6190 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6191 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
6192 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
6193 return rc;
6194}
6195
6196
6197/**
6198 * Saves the guest's interruptibility-state ("interrupt shadow" as AMD calls it)
6199 * from the guest-state area in the VMCS.
6200 *
6201 * @param pVCpu The cross context virtual CPU structure.
6202 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6203 * out-of-sync. Make sure to update the required fields
6204 * before using them.
6205 *
6206 * @remarks No-long-jump zone!!!
6207 */
6208static void hmR0VmxSaveGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6209{
6210 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE))
6211 {
6212 uint32_t uIntrState = 0;
6213 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
6214 AssertRC(rc);
6215
6216 if (!uIntrState)
6217 {
6218 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6219 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6220
6221 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6222 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6223 }
6224 else
6225 {
6226 if (uIntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
6227 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI))
6228 {
6229 rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6230 AssertRC(rc);
6231 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* for hmR0VmxGetGuestIntrState(). */
6232 AssertRC(rc);
6233
6234 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
6235 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
6236 }
6237 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6238 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6239
6240 if (uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI)
6241 {
6242 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6243 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6244 }
6245 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6246 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6247 }
6248
6249 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE);
6250 }
6251}
6252
6253
6254/**
6255 * Saves the guest's activity state.
6256 *
6257 * @returns VBox status code.
6258 * @param pVCpu The cross context virtual CPU structure.
6259 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6260 * out-of-sync. Make sure to update the required fields
6261 * before using them.
6262 *
6263 * @remarks No-long-jump zone!!!
6264 */
6265static int hmR0VmxSaveGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6266{
6267 NOREF(pMixedCtx);
6268 /* Nothing to do for now until we make use of different guest-CPU activity state. Just update the flag. */
6269 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_ACTIVITY_STATE);
6270 return VINF_SUCCESS;
6271}
6272
6273
6274/**
6275 * Saves the guest SYSENTER MSRs (SYSENTER_CS, SYSENTER_EIP, SYSENTER_ESP) from
6276 * the current VMCS into the guest-CPU context.
6277 *
6278 * @returns VBox status code.
6279 * @param pVCpu The cross context virtual CPU structure.
6280 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6281 * out-of-sync. Make sure to update the required fields
6282 * before using them.
6283 *
6284 * @remarks No-long-jump zone!!!
6285 */
6286static int hmR0VmxSaveGuestSysenterMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6287{
6288 int rc = VINF_SUCCESS;
6289 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR))
6290 {
6291 uint32_t u32Val = 0;
6292 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRCReturn(rc, rc);
6293 pMixedCtx->SysEnter.cs = u32Val;
6294 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR);
6295 }
6296
6297 uint64_t u64Val = 0;
6298 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR))
6299 {
6300 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &u64Val); AssertRCReturn(rc, rc);
6301 pMixedCtx->SysEnter.eip = u64Val;
6302 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR);
6303 }
6304 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR))
6305 {
6306 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &u64Val); AssertRCReturn(rc, rc);
6307 pMixedCtx->SysEnter.esp = u64Val;
6308 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR);
6309 }
6310 return rc;
6311}
6312
6313
6314/**
6315 * Saves the set of guest MSRs (that we restore lazily while leaving VT-x) from
6316 * the CPU back into the guest-CPU context.
6317 *
6318 * @returns VBox status code.
6319 * @param pVCpu The cross context virtual CPU structure.
6320 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6321 * out-of-sync. Make sure to update the required fields
6322 * before using them.
6323 *
6324 * @remarks No-long-jump zone!!!
6325 */
6326static int hmR0VmxSaveGuestLazyMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6327{
6328 /* Since this can be called from our preemption hook it's safer to make the guest-MSRs update non-preemptible. */
6329 VMMRZCallRing3Disable(pVCpu);
6330 HM_DISABLE_PREEMPT();
6331
6332 /* Doing the check here ensures we don't overwrite already-saved guest MSRs from a preemption hook. */
6333 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS))
6334 {
6335 hmR0VmxLazySaveGuestMsrs(pVCpu, pMixedCtx);
6336 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS);
6337 }
6338
6339 HM_RESTORE_PREEMPT();
6340 VMMRZCallRing3Enable(pVCpu);
6341
6342 return VINF_SUCCESS;
6343}
6344
6345
6346/**
6347 * Saves the auto load/store'd guest MSRs from the current VMCS into
6348 * the guest-CPU context.
6349 *
6350 * @returns VBox status code.
6351 * @param pVCpu The cross context virtual CPU structure.
6352 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6353 * out-of-sync. Make sure to update the required fields
6354 * before using them.
6355 *
6356 * @remarks No-long-jump zone!!!
6357 */
6358static int hmR0VmxSaveGuestAutoLoadStoreMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6359{
6360 if (HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS))
6361 return VINF_SUCCESS;
6362
6363 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
6364 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
6365 Log4(("hmR0VmxSaveGuestAutoLoadStoreMsrs: cMsrs=%u\n", cMsrs));
6366 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
6367 {
6368 switch (pMsr->u32Msr)
6369 {
6370 case MSR_K8_TSC_AUX: CPUMR0SetGuestTscAux(pVCpu, pMsr->u64Value); break;
6371 case MSR_K8_LSTAR: pMixedCtx->msrLSTAR = pMsr->u64Value; break;
6372 case MSR_K6_STAR: pMixedCtx->msrSTAR = pMsr->u64Value; break;
6373 case MSR_K8_SF_MASK: pMixedCtx->msrSFMASK = pMsr->u64Value; break;
6374 case MSR_K8_KERNEL_GS_BASE: pMixedCtx->msrKERNELGSBASE = pMsr->u64Value; break;
6375 case MSR_K6_EFER: /* Nothing to do here since we intercept writes, see hmR0VmxLoadGuestMsrs(). */
6376 break;
6377
6378 default:
6379 {
6380 AssertMsgFailed(("Unexpected MSR in auto-load/store area. uMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr, cMsrs));
6381 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
6382 return VERR_HM_UNEXPECTED_LD_ST_MSR;
6383 }
6384 }
6385 }
6386
6387 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS);
6388 return VINF_SUCCESS;
6389}
6390
6391
6392/**
6393 * Saves the guest control registers from the current VMCS into the guest-CPU
6394 * context.
6395 *
6396 * @returns VBox status code.
6397 * @param pVCpu The cross context virtual CPU structure.
6398 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6399 * out-of-sync. Make sure to update the required fields
6400 * before using them.
6401 *
6402 * @remarks No-long-jump zone!!!
6403 */
6404static int hmR0VmxSaveGuestControlRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6405{
6406 /* Guest CR0. Guest FPU. */
6407 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6408 AssertRCReturn(rc, rc);
6409
6410 /* Guest CR4. */
6411 rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
6412 AssertRCReturn(rc, rc);
6413
6414 /* Guest CR2 - updated always during the world-switch or in #PF. */
6415 /* Guest CR3. Only changes with Nested Paging. This must be done -after- saving CR0 and CR4 from the guest! */
6416 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3))
6417 {
6418 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
6419 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4));
6420
6421 PVM pVM = pVCpu->CTX_SUFF(pVM);
6422 if ( pVM->hm.s.vmx.fUnrestrictedGuest
6423 || ( pVM->hm.s.fNestedPaging
6424 && CPUMIsGuestPagingEnabledEx(pMixedCtx)))
6425 {
6426 uint64_t u64Val = 0;
6427 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
6428 if (pMixedCtx->cr3 != u64Val)
6429 {
6430 CPUMSetGuestCR3(pVCpu, u64Val);
6431 if (VMMRZCallRing3IsEnabled(pVCpu))
6432 {
6433 PGMUpdateCR3(pVCpu, u64Val);
6434 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6435 }
6436 else
6437 {
6438 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMUpdateCR3().*/
6439 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
6440 }
6441 }
6442
6443 /* If the guest is in PAE mode, sync back the PDPE's into the guest state. */
6444 if (CPUMIsGuestInPAEModeEx(pMixedCtx)) /* Reads CR0, CR4 and EFER MSR (EFER is always up-to-date). */
6445 {
6446 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
6447 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
6448 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
6449 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
6450 AssertRCReturn(rc, rc);
6451
6452 if (VMMRZCallRing3IsEnabled(pVCpu))
6453 {
6454 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6455 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6456 }
6457 else
6458 {
6459 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMGstUpdatePaePdpes(). */
6460 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
6461 }
6462 }
6463 }
6464
6465 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3);
6466 }
6467
6468 /*
6469 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
6470 * -> VMMRZCallRing3Disable() -> hmR0VmxSaveGuestState() -> Set VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
6471 * -> continue with VM-exit handling -> hmR0VmxSaveGuestControlRegs() and here we are.
6472 *
6473 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
6474 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
6475 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
6476 * -NOT- check if HMVMX_UPDATED_GUEST_CR3 is already set or not!
6477 *
6478 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
6479 */
6480 if (VMMRZCallRing3IsEnabled(pVCpu))
6481 {
6482 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6483 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
6484
6485 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6486 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6487
6488 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6489 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6490 }
6491
6492 return rc;
6493}
6494
6495
6496/**
6497 * Reads a guest segment register from the current VMCS into the guest-CPU
6498 * context.
6499 *
6500 * @returns VBox status code.
6501 * @param pVCpu The cross context virtual CPU structure.
6502 * @param idxSel Index of the selector in the VMCS.
6503 * @param idxLimit Index of the segment limit in the VMCS.
6504 * @param idxBase Index of the segment base in the VMCS.
6505 * @param idxAccess Index of the access rights of the segment in the VMCS.
6506 * @param pSelReg Pointer to the segment selector.
6507 *
6508 * @remarks No-long-jump zone!!!
6509 * @remarks Never call this function directly!!! Use the VMXLOCAL_READ_SEG()
6510 * macro as that takes care of whether to read from the VMCS cache or
6511 * not.
6512 */
6513DECLINLINE(int) hmR0VmxReadSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
6514 PCPUMSELREG pSelReg)
6515{
6516 NOREF(pVCpu);
6517
6518 uint32_t u32Val = 0;
6519 int rc = VMXReadVmcs32(idxSel, &u32Val);
6520 AssertRCReturn(rc, rc);
6521 pSelReg->Sel = (uint16_t)u32Val;
6522 pSelReg->ValidSel = (uint16_t)u32Val;
6523 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6524
6525 rc = VMXReadVmcs32(idxLimit, &u32Val);
6526 AssertRCReturn(rc, rc);
6527 pSelReg->u32Limit = u32Val;
6528
6529 uint64_t u64Val = 0;
6530 rc = VMXReadVmcsGstNByIdxVal(idxBase, &u64Val);
6531 AssertRCReturn(rc, rc);
6532 pSelReg->u64Base = u64Val;
6533
6534 rc = VMXReadVmcs32(idxAccess, &u32Val);
6535 AssertRCReturn(rc, rc);
6536 pSelReg->Attr.u = u32Val;
6537
6538 /*
6539 * If VT-x marks the segment as unusable, most other bits remain undefined:
6540 * - For CS the L, D and G bits have meaning.
6541 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
6542 * - For the remaining data segments no bits are defined.
6543 *
6544 * The present bit and the unusable bit has been observed to be set at the
6545 * same time (the selector was supposed to be invalid as we started executing
6546 * a V8086 interrupt in ring-0).
6547 *
6548 * What should be important for the rest of the VBox code, is that the P bit is
6549 * cleared. Some of the other VBox code recognizes the unusable bit, but
6550 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
6551 * safe side here, we'll strip off P and other bits we don't care about. If
6552 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
6553 *
6554 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
6555 */
6556 if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
6557 {
6558 Assert(idxSel != VMX_VMCS16_GUEST_TR_SEL); /* TR is the only selector that can never be unusable. */
6559
6560 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
6561 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
6562 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
6563
6564 Log4(("hmR0VmxReadSegmentReg: Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Val, pSelReg->Attr.u));
6565#ifdef DEBUG_bird
6566 AssertMsg((u32Val & ~X86DESCATTR_P) == pSelReg->Attr.u,
6567 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
6568 idxSel, u32Val, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
6569#endif
6570 }
6571 return VINF_SUCCESS;
6572}
6573
6574
6575#ifdef VMX_USE_CACHED_VMCS_ACCESSES
6576# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6577 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6578 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6579#else
6580# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6581 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6582 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6583#endif
6584
6585
6586/**
6587 * Saves the guest segment registers from the current VMCS into the guest-CPU
6588 * context.
6589 *
6590 * @returns VBox status code.
6591 * @param pVCpu The cross context virtual CPU structure.
6592 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6593 * out-of-sync. Make sure to update the required fields
6594 * before using them.
6595 *
6596 * @remarks No-long-jump zone!!!
6597 */
6598static int hmR0VmxSaveGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6599{
6600 /* Guest segment registers. */
6601 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS))
6602 {
6603 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6604 AssertRCReturn(rc, rc);
6605
6606 rc = VMXLOCAL_READ_SEG(CS, cs);
6607 rc |= VMXLOCAL_READ_SEG(SS, ss);
6608 rc |= VMXLOCAL_READ_SEG(DS, ds);
6609 rc |= VMXLOCAL_READ_SEG(ES, es);
6610 rc |= VMXLOCAL_READ_SEG(FS, fs);
6611 rc |= VMXLOCAL_READ_SEG(GS, gs);
6612 AssertRCReturn(rc, rc);
6613
6614 /* Restore segment attributes for real-on-v86 mode hack. */
6615 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6616 {
6617 pMixedCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
6618 pMixedCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
6619 pMixedCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
6620 pMixedCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
6621 pMixedCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
6622 pMixedCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
6623 }
6624 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS);
6625 }
6626
6627 return VINF_SUCCESS;
6628}
6629
6630
6631/**
6632 * Saves the guest descriptor table registers and task register from the current
6633 * VMCS into the guest-CPU context.
6634 *
6635 * @returns VBox status code.
6636 * @param pVCpu The cross context virtual CPU structure.
6637 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6638 * out-of-sync. Make sure to update the required fields
6639 * before using them.
6640 *
6641 * @remarks No-long-jump zone!!!
6642 */
6643static int hmR0VmxSaveGuestTableRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6644{
6645 int rc = VINF_SUCCESS;
6646
6647 /* Guest LDTR. */
6648 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR))
6649 {
6650 rc = VMXLOCAL_READ_SEG(LDTR, ldtr);
6651 AssertRCReturn(rc, rc);
6652 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR);
6653 }
6654
6655 /* Guest GDTR. */
6656 uint64_t u64Val = 0;
6657 uint32_t u32Val = 0;
6658 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR))
6659 {
6660 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
6661 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6662 pMixedCtx->gdtr.pGdt = u64Val;
6663 pMixedCtx->gdtr.cbGdt = u32Val;
6664 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR);
6665 }
6666
6667 /* Guest IDTR. */
6668 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR))
6669 {
6670 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
6671 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6672 pMixedCtx->idtr.pIdt = u64Val;
6673 pMixedCtx->idtr.cbIdt = u32Val;
6674 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR);
6675 }
6676
6677 /* Guest TR. */
6678 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR))
6679 {
6680 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6681 AssertRCReturn(rc, rc);
6682
6683 /* For real-mode emulation using virtual-8086 mode we have the fake TSS (pRealModeTSS) in TR, don't save the fake one. */
6684 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6685 {
6686 rc = VMXLOCAL_READ_SEG(TR, tr);
6687 AssertRCReturn(rc, rc);
6688 }
6689 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR);
6690 }
6691 return rc;
6692}
6693
6694#undef VMXLOCAL_READ_SEG
6695
6696
6697/**
6698 * Saves the guest debug-register DR7 from the current VMCS into the guest-CPU
6699 * context.
6700 *
6701 * @returns VBox status code.
6702 * @param pVCpu The cross context virtual CPU structure.
6703 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6704 * out-of-sync. Make sure to update the required fields
6705 * before using them.
6706 *
6707 * @remarks No-long-jump zone!!!
6708 */
6709static int hmR0VmxSaveGuestDR7(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6710{
6711 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DEBUG))
6712 {
6713 if (!pVCpu->hm.s.fUsingHyperDR7)
6714 {
6715 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
6716 uint32_t u32Val;
6717 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val); AssertRCReturn(rc, rc);
6718 pMixedCtx->dr[7] = u32Val;
6719 }
6720
6721 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DEBUG);
6722 }
6723 return VINF_SUCCESS;
6724}
6725
6726
6727/**
6728 * Saves the guest APIC state from the current VMCS into the guest-CPU context.
6729 *
6730 * @returns VBox status code.
6731 * @param pVCpu The cross context virtual CPU structure.
6732 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6733 * out-of-sync. Make sure to update the required fields
6734 * before using them.
6735 *
6736 * @remarks No-long-jump zone!!!
6737 */
6738static int hmR0VmxSaveGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6739{
6740 NOREF(pMixedCtx);
6741
6742 /* Updating TPR is already done in hmR0VmxPostRunGuest(). Just update the flag. */
6743 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_APIC_STATE);
6744 return VINF_SUCCESS;
6745}
6746
6747
6748/**
6749 * Saves the entire guest state from the currently active VMCS into the
6750 * guest-CPU context.
6751 *
6752 * This essentially VMREADs all guest-data.
6753 *
6754 * @returns VBox status code.
6755 * @param pVCpu The cross context virtual CPU structure.
6756 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6757 * out-of-sync. Make sure to update the required fields
6758 * before using them.
6759 */
6760static int hmR0VmxSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6761{
6762 Assert(pVCpu);
6763 Assert(pMixedCtx);
6764
6765 if (HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL)
6766 return VINF_SUCCESS;
6767
6768 /* Though we can longjmp to ring-3 due to log-flushes here and get recalled
6769 again on the ring-3 callback path, there is no real need to. */
6770 if (VMMRZCallRing3IsEnabled(pVCpu))
6771 VMMR0LogFlushDisable(pVCpu);
6772 else
6773 Assert(VMMR0IsLogFlushDisabled(pVCpu));
6774 Log4Func(("vcpu[%RU32]\n", pVCpu->idCpu));
6775
6776 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
6777 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestRipRspRflags failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6778
6779 rc = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6780 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestControlRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6781
6782 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
6783 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSegmentRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6784
6785 rc = hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
6786 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestTableRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6787
6788 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
6789 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestDR7 failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6790
6791 rc = hmR0VmxSaveGuestSysenterMsrs(pVCpu, pMixedCtx);
6792 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSysenterMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6793
6794 rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
6795 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestLazyMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6796
6797 rc = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
6798 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestAutoLoadStoreMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6799
6800 rc = hmR0VmxSaveGuestActivityState(pVCpu, pMixedCtx);
6801 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestActivityState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6802
6803 rc = hmR0VmxSaveGuestApicState(pVCpu, pMixedCtx);
6804 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestApicState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6805
6806 AssertMsg(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL,
6807 ("Missed guest state bits while saving state; missing %RX32 (got %RX32, want %RX32) - check log for any previous errors!\n",
6808 HMVMX_UPDATED_GUEST_ALL ^ HMVMXCPU_GST_VALUE(pVCpu), HMVMXCPU_GST_VALUE(pVCpu), HMVMX_UPDATED_GUEST_ALL));
6809
6810 if (VMMRZCallRing3IsEnabled(pVCpu))
6811 VMMR0LogFlushEnable(pVCpu);
6812
6813 return VINF_SUCCESS;
6814}
6815
6816
6817/**
6818 * Saves basic guest registers needed for IEM instruction execution.
6819 *
6820 * @returns VBox status code (OR-able).
6821 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
6822 * @param pMixedCtx Pointer to the CPU context of the guest.
6823 * @param fMemory Whether the instruction being executed operates on
6824 * memory or not. Only CR0 is synced up if clear.
6825 * @param fNeedRsp Need RSP (any instruction working on GPRs or stack).
6826 */
6827static int hmR0VmxSaveGuestRegsForIemExec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fMemory, bool fNeedRsp)
6828{
6829 /*
6830 * We assume all general purpose registers other than RSP are available.
6831 *
6832 * RIP is a must, as it will be incremented or otherwise changed.
6833 *
6834 * RFLAGS are always required to figure the CPL.
6835 *
6836 * RSP isn't always required, however it's a GPR, so frequently required.
6837 *
6838 * SS and CS are the only segment register needed if IEM doesn't do memory
6839 * access (CPL + 16/32/64-bit mode), but we can only get all segment registers.
6840 *
6841 * CR0 is always required by IEM for the CPL, while CR3 and CR4 will only
6842 * be required for memory accesses.
6843 *
6844 * Note! Before IEM dispatches an exception, it will call us to sync in everything.
6845 */
6846 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6847 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
6848 if (fNeedRsp)
6849 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
6850 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
6851 if (!fMemory)
6852 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6853 else
6854 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6855 AssertRCReturn(rc, rc);
6856 return rc;
6857}
6858
6859
6860/**
6861 * Ensures that we've got a complete basic guest-context.
6862 *
6863 * This excludes the FPU, SSE, AVX, and similar extended state. The interface
6864 * is for the interpreter.
6865 *
6866 * @returns VBox status code.
6867 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
6868 * @param pMixedCtx Pointer to the guest-CPU context which may have data
6869 * needing to be synced in.
6870 * @thread EMT(pVCpu)
6871 */
6872VMMR0_INT_DECL(int) HMR0EnsureCompleteBasicContext(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6873{
6874 /* Note! Since this is only applicable to VT-x, the implementation is placed
6875 in the VT-x part of the sources instead of the generic stuff. */
6876 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported)
6877 {
6878 /* For now, imply that the caller might change everything too. */
6879 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
6880 return hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
6881 }
6882 return VINF_SUCCESS;
6883}
6884
6885
6886/**
6887 * Check per-VM and per-VCPU force flag actions that require us to go back to
6888 * ring-3 for one reason or another.
6889 *
6890 * @returns Strict VBox status code (i.e. informational status codes too)
6891 * @retval VINF_SUCCESS if we don't have any actions that require going back to
6892 * ring-3.
6893 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
6894 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
6895 * interrupts)
6896 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
6897 * all EMTs to be in ring-3.
6898 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
6899 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
6900 * to the EM loop.
6901 *
6902 * @param pVM The cross context VM structure.
6903 * @param pVCpu The cross context virtual CPU structure.
6904 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6905 * out-of-sync. Make sure to update the required fields
6906 * before using them.
6907 * @param fStepping Running in hmR0VmxRunGuestCodeStep().
6908 */
6909static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping)
6910{
6911 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6912
6913 /*
6914 * Anything pending? Should be more likely than not if we're doing a good job.
6915 */
6916 if ( !fStepping
6917 ? !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_MASK)
6918 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
6919 : !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
6920 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
6921 return VINF_SUCCESS;
6922
6923 /* We need the control registers now, make sure the guest-CPU context is updated. */
6924 int rc3 = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6925 AssertRCReturn(rc3, rc3);
6926
6927 /* Pending HM CR3 sync. */
6928 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6929 {
6930 int rc2 = PGMUpdateCR3(pVCpu, pMixedCtx->cr3);
6931 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
6932 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
6933 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6934 }
6935
6936 /* Pending HM PAE PDPEs. */
6937 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6938 {
6939 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6940 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6941 }
6942
6943 /* Pending PGM C3 sync. */
6944 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
6945 {
6946 VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pMixedCtx->cr0, pMixedCtx->cr3, pMixedCtx->cr4,
6947 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
6948 if (rcStrict2 != VINF_SUCCESS)
6949 {
6950 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
6951 Log4(("hmR0VmxCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
6952 return rcStrict2;
6953 }
6954 }
6955
6956 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
6957 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
6958 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
6959 {
6960 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
6961 int rc2 = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
6962 Log4(("hmR0VmxCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
6963 return rc2;
6964 }
6965
6966 /* Pending VM request packets, such as hardware interrupts. */
6967 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
6968 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
6969 {
6970 Log4(("hmR0VmxCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
6971 return VINF_EM_PENDING_REQUEST;
6972 }
6973
6974 /* Pending PGM pool flushes. */
6975 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
6976 {
6977 Log4(("hmR0VmxCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
6978 return VINF_PGM_POOL_FLUSH_PENDING;
6979 }
6980
6981 /* Pending DMA requests. */
6982 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
6983 {
6984 Log4(("hmR0VmxCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
6985 return VINF_EM_RAW_TO_R3;
6986 }
6987
6988 return VINF_SUCCESS;
6989}
6990
6991
6992/**
6993 * Converts any TRPM trap into a pending HM event. This is typically used when
6994 * entering from ring-3 (not longjmp returns).
6995 *
6996 * @param pVCpu The cross context virtual CPU structure.
6997 */
6998static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
6999{
7000 Assert(TRPMHasTrap(pVCpu));
7001 Assert(!pVCpu->hm.s.Event.fPending);
7002
7003 uint8_t uVector;
7004 TRPMEVENT enmTrpmEvent;
7005 RTGCUINT uErrCode;
7006 RTGCUINTPTR GCPtrFaultAddress;
7007 uint8_t cbInstr;
7008
7009 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
7010 AssertRC(rc);
7011
7012 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
7013 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
7014 if (enmTrpmEvent == TRPM_TRAP)
7015 {
7016 switch (uVector)
7017 {
7018 case X86_XCPT_NMI:
7019 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7020 break;
7021
7022 case X86_XCPT_BP:
7023 case X86_XCPT_OF:
7024 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7025 break;
7026
7027 case X86_XCPT_PF:
7028 case X86_XCPT_DF:
7029 case X86_XCPT_TS:
7030 case X86_XCPT_NP:
7031 case X86_XCPT_SS:
7032 case X86_XCPT_GP:
7033 case X86_XCPT_AC:
7034 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7035 /* no break! */
7036 default:
7037 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7038 break;
7039 }
7040 }
7041 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
7042 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7043 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
7044 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7045 else
7046 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
7047
7048 rc = TRPMResetTrap(pVCpu);
7049 AssertRC(rc);
7050 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
7051 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
7052
7053 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
7054}
7055
7056
7057/**
7058 * Converts the pending HM event into a TRPM trap.
7059 *
7060 * @param pVCpu The cross context virtual CPU structure.
7061 */
7062static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
7063{
7064 Assert(pVCpu->hm.s.Event.fPending);
7065
7066 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7067 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
7068 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntInfo);
7069 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
7070
7071 /* If a trap was already pending, we did something wrong! */
7072 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
7073
7074 TRPMEVENT enmTrapType;
7075 switch (uVectorType)
7076 {
7077 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7078 enmTrapType = TRPM_HARDWARE_INT;
7079 break;
7080
7081 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7082 enmTrapType = TRPM_SOFTWARE_INT;
7083 break;
7084
7085 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7086 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
7087 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
7088 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7089 enmTrapType = TRPM_TRAP;
7090 break;
7091
7092 default:
7093 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
7094 enmTrapType = TRPM_32BIT_HACK;
7095 break;
7096 }
7097
7098 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
7099
7100 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7101 AssertRC(rc);
7102
7103 if (fErrorCodeValid)
7104 TRPMSetErrorCode(pVCpu, uErrorCode);
7105
7106 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
7107 && uVector == X86_XCPT_PF)
7108 {
7109 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
7110 }
7111 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7112 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
7113 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
7114 {
7115 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7116 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
7117 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
7118 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
7119 }
7120
7121 /* Clear any pending events from the VMCS. */
7122 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
7123 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0); AssertRC(rc);
7124
7125 /* We're now done converting the pending event. */
7126 pVCpu->hm.s.Event.fPending = false;
7127}
7128
7129
7130/**
7131 * Does the necessary state syncing before returning to ring-3 for any reason
7132 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
7133 *
7134 * @returns VBox status code.
7135 * @param pVCpu The cross context virtual CPU structure.
7136 * @param pMixedCtx Pointer to the guest-CPU context. The data may
7137 * be out-of-sync. Make sure to update the required
7138 * fields before using them.
7139 * @param fSaveGuestState Whether to save the guest state or not.
7140 *
7141 * @remarks No-long-jmp zone!!!
7142 */
7143static int hmR0VmxLeave(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fSaveGuestState)
7144{
7145 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7146 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7147
7148 RTCPUID idCpu = RTMpCpuId();
7149 Log4Func(("HostCpuId=%u\n", idCpu));
7150
7151 /*
7152 * !!! IMPORTANT !!!
7153 * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
7154 */
7155
7156 /* Save the guest state if necessary. */
7157 if ( fSaveGuestState
7158 && HMVMXCPU_GST_VALUE(pVCpu) != HMVMX_UPDATED_GUEST_ALL)
7159 {
7160 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
7161 AssertRCReturn(rc, rc);
7162 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
7163 }
7164
7165 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
7166 if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu))
7167 {
7168 if (fSaveGuestState)
7169 {
7170 /* We shouldn't reload CR0 without saving it first. */
7171 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7172 AssertRCReturn(rc, rc);
7173 }
7174 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
7175 }
7176
7177 /* Restore host debug registers if necessary and resync on next R0 reentry. */
7178#ifdef VBOX_STRICT
7179 if (CPUMIsHyperDebugStateActive(pVCpu))
7180 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
7181#endif
7182 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */))
7183 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
7184 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
7185 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
7186
7187#if HC_ARCH_BITS == 64
7188 /* Restore host-state bits that VT-x only restores partially. */
7189 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7190 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7191 {
7192 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
7193 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7194 }
7195 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7196#endif
7197
7198 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7199 if (pVCpu->hm.s.vmx.fLazyMsrs)
7200 {
7201 /* We shouldn't reload the guest MSRs without saving it first. */
7202 if (!fSaveGuestState)
7203 {
7204 int rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
7205 AssertRCReturn(rc, rc);
7206 }
7207 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS));
7208 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7209 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
7210 }
7211
7212 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7213 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7214
7215 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
7216 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
7217 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
7218 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
7219 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
7220 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
7221 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
7222 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7223
7224 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7225
7226 /** @todo This partially defeats the purpose of having preemption hooks.
7227 * The problem is, deregistering the hooks should be moved to a place that
7228 * lasts until the EMT is about to be destroyed not everytime while leaving HM
7229 * context.
7230 */
7231 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7232 {
7233 int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7234 AssertRCReturn(rc, rc);
7235
7236 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7237 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
7238 }
7239 Assert(!(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
7240 NOREF(idCpu);
7241
7242 return VINF_SUCCESS;
7243}
7244
7245
7246/**
7247 * Leaves the VT-x session.
7248 *
7249 * @returns VBox status code.
7250 * @param pVCpu The cross context virtual CPU structure.
7251 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7252 * out-of-sync. Make sure to update the required fields
7253 * before using them.
7254 *
7255 * @remarks No-long-jmp zone!!!
7256 */
7257DECLINLINE(int) hmR0VmxLeaveSession(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7258{
7259 HM_DISABLE_PREEMPT();
7260 HMVMX_ASSERT_CPU_SAFE();
7261 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7262 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7263
7264 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
7265 and done this from the VMXR0ThreadCtxCallback(). */
7266 if (!pVCpu->hm.s.fLeaveDone)
7267 {
7268 int rc2 = hmR0VmxLeave(pVCpu, pMixedCtx, true /* fSaveGuestState */);
7269 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
7270 pVCpu->hm.s.fLeaveDone = true;
7271 }
7272 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
7273
7274 /*
7275 * !!! IMPORTANT !!!
7276 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
7277 */
7278
7279 /* Deregister hook now that we've left HM context before re-enabling preemption. */
7280 /** @todo Deregistering here means we need to VMCLEAR always
7281 * (longjmp/exit-to-r3) in VT-x which is not efficient. */
7282 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7283 VMMR0ThreadCtxHookDisable(pVCpu);
7284
7285 /* Leave HM context. This takes care of local init (term). */
7286 int rc = HMR0LeaveCpu(pVCpu);
7287
7288 HM_RESTORE_PREEMPT();
7289 return rc;
7290}
7291
7292
7293/**
7294 * Does the necessary state syncing before doing a longjmp to ring-3.
7295 *
7296 * @returns VBox status code.
7297 * @param pVCpu The cross context virtual CPU structure.
7298 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7299 * out-of-sync. Make sure to update the required fields
7300 * before using them.
7301 *
7302 * @remarks No-long-jmp zone!!!
7303 */
7304DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7305{
7306 return hmR0VmxLeaveSession(pVCpu, pMixedCtx);
7307}
7308
7309
7310/**
7311 * Take necessary actions before going back to ring-3.
7312 *
7313 * An action requires us to go back to ring-3. This function does the necessary
7314 * steps before we can safely return to ring-3. This is not the same as longjmps
7315 * to ring-3, this is voluntary and prepares the guest so it may continue
7316 * executing outside HM (recompiler/IEM).
7317 *
7318 * @returns VBox status code.
7319 * @param pVM The cross context VM structure.
7320 * @param pVCpu The cross context virtual CPU structure.
7321 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7322 * out-of-sync. Make sure to update the required fields
7323 * before using them.
7324 * @param rcExit The reason for exiting to ring-3. Can be
7325 * VINF_VMM_UNKNOWN_RING3_CALL.
7326 */
7327static int hmR0VmxExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, VBOXSTRICTRC rcExit)
7328{
7329 Assert(pVM);
7330 Assert(pVCpu);
7331 Assert(pMixedCtx);
7332 HMVMX_ASSERT_PREEMPT_SAFE();
7333
7334 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
7335 {
7336 VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VMCSPhys);
7337 pVCpu->hm.s.vmx.LastError.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
7338 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
7339 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
7340 }
7341
7342 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
7343 VMMRZCallRing3Disable(pVCpu);
7344 Log4(("hmR0VmxExitToRing3: pVCpu=%p idCpu=%RU32 rcExit=%d\n", pVCpu, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcExit)));
7345
7346 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
7347 if (pVCpu->hm.s.Event.fPending)
7348 {
7349 hmR0VmxPendingEventToTrpmTrap(pVCpu);
7350 Assert(!pVCpu->hm.s.Event.fPending);
7351 }
7352
7353 /* Clear interrupt-window and NMI-window controls as we re-evaluate it when we return from ring-3. */
7354 hmR0VmxClearIntNmiWindowsVmcs(pVCpu);
7355
7356 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
7357 and if we're injecting an event we should have a TRPM trap pending. */
7358 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7359#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a tripple fault in progress. */
7360 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7361#endif
7362
7363 /* Save guest state and restore host state bits. */
7364 int rc = hmR0VmxLeaveSession(pVCpu, pMixedCtx);
7365 AssertRCReturn(rc, rc);
7366 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7367 /* Thread-context hooks are unregistered at this point!!! */
7368
7369 /* Sync recompiler state. */
7370 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
7371 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
7372 | CPUM_CHANGED_LDTR
7373 | CPUM_CHANGED_GDTR
7374 | CPUM_CHANGED_IDTR
7375 | CPUM_CHANGED_TR
7376 | CPUM_CHANGED_HIDDEN_SEL_REGS);
7377 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
7378 if ( pVM->hm.s.fNestedPaging
7379 && CPUMIsGuestPagingEnabledEx(pMixedCtx))
7380 {
7381 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
7382 }
7383
7384 Assert(!pVCpu->hm.s.fClearTrapFlag);
7385
7386 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
7387 if (rcExit != VINF_EM_RAW_INTERRUPT)
7388 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7389
7390 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
7391
7392 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
7393 VMMRZCallRing3RemoveNotification(pVCpu);
7394 VMMRZCallRing3Enable(pVCpu);
7395
7396 return rc;
7397}
7398
7399
7400/**
7401 * VMMRZCallRing3() callback wrapper which saves the guest state before we
7402 * longjump to ring-3 and possibly get preempted.
7403 *
7404 * @returns VBox status code.
7405 * @param pVCpu The cross context virtual CPU structure.
7406 * @param enmOperation The operation causing the ring-3 longjump.
7407 * @param pvUser Opaque pointer to the guest-CPU context. The data
7408 * may be out-of-sync. Make sure to update the required
7409 * fields before using them.
7410 */
7411static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
7412{
7413 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
7414 {
7415 /*
7416 * !!! IMPORTANT !!!
7417 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
7418 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
7419 */
7420 VMMRZCallRing3RemoveNotification(pVCpu);
7421 VMMRZCallRing3Disable(pVCpu);
7422 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
7423 RTThreadPreemptDisable(&PreemptState);
7424
7425 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7426 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7427
7428#if HC_ARCH_BITS == 64
7429 /* Restore host-state bits that VT-x only restores partially. */
7430 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7431 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7432 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7433 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7434#endif
7435 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7436 if (pVCpu->hm.s.vmx.fLazyMsrs)
7437 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7438
7439 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7440 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7441 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7442 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7443 {
7444 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7445 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7446 }
7447
7448 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7449 VMMR0ThreadCtxHookDisable(pVCpu);
7450 HMR0LeaveCpu(pVCpu);
7451 RTThreadPreemptRestore(&PreemptState);
7452 return VINF_SUCCESS;
7453 }
7454
7455 Assert(pVCpu);
7456 Assert(pvUser);
7457 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7458 HMVMX_ASSERT_PREEMPT_SAFE();
7459
7460 VMMRZCallRing3Disable(pVCpu);
7461 Assert(VMMR0IsLogFlushDisabled(pVCpu));
7462
7463 Log4(("hmR0VmxCallRing3Callback->hmR0VmxLongJmpToRing3 pVCpu=%p idCpu=%RU32 enmOperation=%d\n", pVCpu, pVCpu->idCpu,
7464 enmOperation));
7465
7466 int rc = hmR0VmxLongJmpToRing3(pVCpu, (PCPUMCTX)pvUser);
7467 AssertRCReturn(rc, rc);
7468
7469 VMMRZCallRing3Enable(pVCpu);
7470 return VINF_SUCCESS;
7471}
7472
7473
7474/**
7475 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7476 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7477 *
7478 * @param pVCpu The cross context virtual CPU structure.
7479 */
7480DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
7481{
7482 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
7483 {
7484 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
7485 {
7486 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7487 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7488 AssertRC(rc);
7489 Log4(("Setup interrupt-window exiting\n"));
7490 }
7491 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
7492}
7493
7494
7495/**
7496 * Clears the interrupt-window exiting control in the VMCS.
7497 *
7498 * @param pVCpu The cross context virtual CPU structure.
7499 */
7500DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMCPU pVCpu)
7501{
7502 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
7503 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7504 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7505 AssertRC(rc);
7506 Log4(("Cleared interrupt-window exiting\n"));
7507}
7508
7509
7510/**
7511 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7512 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7513 *
7514 * @param pVCpu The cross context virtual CPU structure.
7515 */
7516DECLINLINE(void) hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu)
7517{
7518 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
7519 {
7520 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
7521 {
7522 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
7523 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7524 AssertRC(rc);
7525 Log4(("Setup NMI-window exiting\n"));
7526 }
7527 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7528}
7529
7530
7531/**
7532 * Clears the NMI-window exiting control in the VMCS.
7533 *
7534 * @param pVCpu The cross context virtual CPU structure.
7535 */
7536DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMCPU pVCpu)
7537{
7538 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT);
7539 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
7540 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7541 AssertRC(rc);
7542 Log4(("Cleared NMI-window exiting\n"));
7543}
7544
7545
7546/**
7547 * Evaluates the event to be delivered to the guest and sets it as the pending
7548 * event.
7549 *
7550 * @returns The VT-x guest-interruptibility state.
7551 * @param pVCpu The cross context virtual CPU structure.
7552 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7553 * out-of-sync. Make sure to update the required fields
7554 * before using them.
7555 */
7556static uint32_t hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7557{
7558 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7559 uint32_t const uIntrState = hmR0VmxGetGuestIntrState(pVCpu, pMixedCtx);
7560 bool const fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7561 bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7562 bool const fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
7563
7564 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7565 Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7566 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7567 Assert(!TRPMHasTrap(pVCpu));
7568
7569 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7570 APICUpdatePendingInterrupts(pVCpu);
7571
7572 /*
7573 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
7574 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
7575 */
7576 /** @todo SMI. SMIs take priority over NMIs. */
7577 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
7578 {
7579 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
7580 if ( !pVCpu->hm.s.Event.fPending
7581 && !fBlockNmi
7582 && !fBlockSti
7583 && !fBlockMovSS)
7584 {
7585 Log4(("Pending NMI vcpu[%RU32]\n", pVCpu->idCpu));
7586 uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INTERRUPTION_INFO_VALID;
7587 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7588
7589 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7590 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
7591 }
7592 else
7593 hmR0VmxSetNmiWindowExitVmcs(pVCpu);
7594 }
7595 /*
7596 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
7597 * a valid interrupt we must- deliver the interrupt. We can no longer re-request it from the APIC.
7598 */
7599 else if ( VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
7600 && !pVCpu->hm.s.fSingleInstruction)
7601 {
7602 Assert(!DBGFIsStepping(pVCpu));
7603 int rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7604 AssertRC(rc);
7605 bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7606 if ( !pVCpu->hm.s.Event.fPending
7607 && !fBlockInt
7608 && !fBlockSti
7609 && !fBlockMovSS)
7610 {
7611 uint8_t u8Interrupt;
7612 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
7613 if (RT_SUCCESS(rc))
7614 {
7615 Log4(("Pending interrupt vcpu[%RU32] u8Interrupt=%#x \n", pVCpu->idCpu, u8Interrupt));
7616 uint32_t u32IntInfo = u8Interrupt | VMX_EXIT_INTERRUPTION_INFO_VALID;
7617 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7618
7619 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
7620 }
7621 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
7622 {
7623 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
7624 hmR0VmxApicSetTprThreshold(pVCpu, u8Interrupt >> 4);
7625 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
7626 }
7627 else
7628 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
7629 }
7630 else
7631 hmR0VmxSetIntWindowExitVmcs(pVCpu);
7632 }
7633
7634 return uIntrState;
7635}
7636
7637
7638/**
7639 * Sets a pending-debug exception to be delivered to the guest if the guest is
7640 * single-stepping in the VMCS.
7641 *
7642 * @param pVCpu The cross context virtual CPU structure.
7643 */
7644DECLINLINE(void) hmR0VmxSetPendingDebugXcptVmcs(PVMCPU pVCpu)
7645{
7646 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS)); NOREF(pVCpu);
7647 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, VMX_VMCS_GUEST_DEBUG_EXCEPTIONS_BS);
7648 AssertRC(rc);
7649}
7650
7651
7652/**
7653 * Injects any pending events into the guest if the guest is in a state to
7654 * receive them.
7655 *
7656 * @returns Strict VBox status code (i.e. informational status codes too).
7657 * @param pVCpu The cross context virtual CPU structure.
7658 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7659 * out-of-sync. Make sure to update the required fields
7660 * before using them.
7661 * @param uIntrState The VT-x guest-interruptibility state.
7662 * @param fStepping Running in hmR0VmxRunGuestCodeStep() and we should
7663 * return VINF_EM_DBG_STEPPED if the event was
7664 * dispatched directly.
7665 */
7666static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t uIntrState, bool fStepping)
7667{
7668 HMVMX_ASSERT_PREEMPT_SAFE();
7669 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7670
7671 bool fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7672 bool fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7673
7674 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7675 Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7676 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7677 Assert(!TRPMHasTrap(pVCpu));
7678
7679 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
7680 if (pVCpu->hm.s.Event.fPending)
7681 {
7682 /*
7683 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
7684 * pending even while injecting an event and in this case, we want a VM-exit as soon as
7685 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
7686 *
7687 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
7688 */
7689 uint32_t const uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7690#ifdef VBOX_STRICT
7691 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7692 {
7693 bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7694 Assert(!fBlockInt);
7695 Assert(!fBlockSti);
7696 Assert(!fBlockMovSS);
7697 }
7698 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
7699 {
7700 bool const fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
7701 Assert(!fBlockSti);
7702 Assert(!fBlockMovSS);
7703 Assert(!fBlockNmi);
7704 }
7705#endif
7706 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#x\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
7707 (uint8_t)uIntType));
7708 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
7709 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress,
7710 fStepping, &uIntrState);
7711 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
7712
7713 /* Update the interruptibility-state as it could have been changed by
7714 hmR0VmxInjectEventVmcs() (e.g. real-on-v86 guest injecting software interrupts) */
7715 fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7716 fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7717
7718 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7719 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
7720 else
7721 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
7722 }
7723
7724 /* Deliver pending debug exception if the guest is single-stepping. Evaluate and set the BS bit. */
7725 if ( fBlockSti
7726 || fBlockMovSS)
7727 {
7728 if (!pVCpu->hm.s.fSingleInstruction)
7729 {
7730 /*
7731 * The pending-debug exceptions field is cleared on all VM-exits except VMX_EXIT_TPR_BELOW_THRESHOLD,
7732 * VMX_EXIT_MTF, VMX_EXIT_APIC_WRITE and VMX_EXIT_VIRTUALIZED_EOI.
7733 * See Intel spec. 27.3.4 "Saving Non-Register State".
7734 */
7735 Assert(!DBGFIsStepping(pVCpu));
7736 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7737 AssertRCReturn(rc2, rc2);
7738 if (pMixedCtx->eflags.Bits.u1TF)
7739 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
7740 }
7741 else if (pMixedCtx->eflags.Bits.u1TF)
7742 {
7743 /*
7744 * We are single-stepping in the hypervisor debugger using EFLAGS.TF. Clear interrupt inhibition as setting the
7745 * BS bit would mean delivering a #DB to the guest upon VM-entry when it shouldn't be.
7746 */
7747 Assert(!(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG));
7748 uIntrState = 0;
7749 }
7750 }
7751
7752 /*
7753 * There's no need to clear the VM-entry interruption-information field here if we're not injecting anything.
7754 * VT-x clears the valid bit on every VM-exit. See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7755 */
7756 int rc2 = hmR0VmxLoadGuestIntrState(pVCpu, uIntrState);
7757 AssertRC(rc2);
7758
7759 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
7760 NOREF(fBlockMovSS); NOREF(fBlockSti);
7761 return rcStrict;
7762}
7763
7764
7765/**
7766 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
7767 *
7768 * @param pVCpu The cross context virtual CPU structure.
7769 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7770 * out-of-sync. Make sure to update the required fields
7771 * before using them.
7772 */
7773DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7774{
7775 NOREF(pMixedCtx);
7776 uint32_t u32IntInfo = X86_XCPT_UD | VMX_EXIT_INTERRUPTION_INFO_VALID;
7777 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7778}
7779
7780
7781/**
7782 * Injects a double-fault (\#DF) exception into the VM.
7783 *
7784 * @returns Strict VBox status code (i.e. informational status codes too).
7785 * @param pVCpu The cross context virtual CPU structure.
7786 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7787 * out-of-sync. Make sure to update the required fields
7788 * before using them.
7789 * @param fStepping Whether we're running in hmR0VmxRunGuestCodeStep()
7790 * and should return VINF_EM_DBG_STEPPED if the event
7791 * is injected directly (register modified by us, not
7792 * by hardware on VM-entry).
7793 * @param puIntrState Pointer to the current guest interruptibility-state.
7794 * This interruptibility-state will be updated if
7795 * necessary. This cannot not be NULL.
7796 */
7797DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping, uint32_t *puIntrState)
7798{
7799 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
7800 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7801 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7802 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */,
7803 fStepping, puIntrState);
7804}
7805
7806
7807/**
7808 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
7809 *
7810 * @param pVCpu The cross context virtual CPU structure.
7811 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7812 * out-of-sync. Make sure to update the required fields
7813 * before using them.
7814 */
7815DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7816{
7817 NOREF(pMixedCtx);
7818 uint32_t u32IntInfo = X86_XCPT_DB | VMX_EXIT_INTERRUPTION_INFO_VALID;
7819 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7820 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7821}
7822
7823
7824/**
7825 * Sets an overflow (\#OF) exception as pending-for-injection into the VM.
7826 *
7827 * @param pVCpu The cross context virtual CPU structure.
7828 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7829 * out-of-sync. Make sure to update the required fields
7830 * before using them.
7831 * @param cbInstr The value of RIP that is to be pushed on the guest
7832 * stack.
7833 */
7834DECLINLINE(void) hmR0VmxSetPendingXcptOF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
7835{
7836 NOREF(pMixedCtx);
7837 uint32_t u32IntInfo = X86_XCPT_OF | VMX_EXIT_INTERRUPTION_INFO_VALID;
7838 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7839 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7840}
7841
7842
7843/**
7844 * Injects a general-protection (\#GP) fault into the VM.
7845 *
7846 * @returns Strict VBox status code (i.e. informational status codes too).
7847 * @param pVCpu The cross context virtual CPU structure.
7848 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7849 * out-of-sync. Make sure to update the required fields
7850 * before using them.
7851 * @param fErrorCodeValid Whether the error code is valid (depends on the CPU
7852 * mode, i.e. in real-mode it's not valid).
7853 * @param u32ErrorCode The error code associated with the \#GP.
7854 * @param fStepping Whether we're running in
7855 * hmR0VmxRunGuestCodeStep() and should return
7856 * VINF_EM_DBG_STEPPED if the event is injected
7857 * directly (register modified by us, not by
7858 * hardware on VM-entry).
7859 * @param puIntrState Pointer to the current guest interruptibility-state.
7860 * This interruptibility-state will be updated if
7861 * necessary. This cannot not be NULL.
7862 */
7863DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fErrorCodeValid, uint32_t u32ErrorCode,
7864 bool fStepping, uint32_t *puIntrState)
7865{
7866 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
7867 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7868 if (fErrorCodeValid)
7869 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7870 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */,
7871 fStepping, puIntrState);
7872}
7873
7874
7875#if 0 /* unused */
7876/**
7877 * Sets a general-protection (\#GP) exception as pending-for-injection into the
7878 * VM.
7879 *
7880 * @param pVCpu The cross context virtual CPU structure.
7881 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7882 * out-of-sync. Make sure to update the required fields
7883 * before using them.
7884 * @param u32ErrorCode The error code associated with the \#GP.
7885 */
7886DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t u32ErrorCode)
7887{
7888 NOREF(pMixedCtx);
7889 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
7890 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7891 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7892 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */);
7893}
7894#endif /* unused */
7895
7896
7897/**
7898 * Sets a software interrupt (INTn) as pending-for-injection into the VM.
7899 *
7900 * @param pVCpu The cross context virtual CPU structure.
7901 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7902 * out-of-sync. Make sure to update the required fields
7903 * before using them.
7904 * @param uVector The software interrupt vector number.
7905 * @param cbInstr The value of RIP that is to be pushed on the guest
7906 * stack.
7907 */
7908DECLINLINE(void) hmR0VmxSetPendingIntN(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint16_t uVector, uint32_t cbInstr)
7909{
7910 NOREF(pMixedCtx);
7911 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
7912 if ( uVector == X86_XCPT_BP
7913 || uVector == X86_XCPT_OF)
7914 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7915 else
7916 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7917 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7918}
7919
7920
7921/**
7922 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
7923 * stack.
7924 *
7925 * @returns Strict VBox status code (i.e. informational status codes too).
7926 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
7927 * @param pVM The cross context VM structure.
7928 * @param pMixedCtx Pointer to the guest-CPU context.
7929 * @param uValue The value to push to the guest stack.
7930 */
7931DECLINLINE(VBOXSTRICTRC) hmR0VmxRealModeGuestStackPush(PVM pVM, PCPUMCTX pMixedCtx, uint16_t uValue)
7932{
7933 /*
7934 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
7935 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
7936 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
7937 */
7938 if (pMixedCtx->sp == 1)
7939 return VINF_EM_RESET;
7940 pMixedCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
7941 int rc = PGMPhysSimpleWriteGCPhys(pVM, pMixedCtx->ss.u64Base + pMixedCtx->sp, &uValue, sizeof(uint16_t));
7942 AssertRC(rc);
7943 return rc;
7944}
7945
7946
7947/**
7948 * Injects an event into the guest upon VM-entry by updating the relevant fields
7949 * in the VM-entry area in the VMCS.
7950 *
7951 * @returns Strict VBox status code (i.e. informational status codes too).
7952 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
7953 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
7954 *
7955 * @param pVCpu The cross context virtual CPU structure.
7956 * @param pMixedCtx Pointer to the guest-CPU context. The data may
7957 * be out-of-sync. Make sure to update the required
7958 * fields before using them.
7959 * @param u64IntInfo The VM-entry interruption-information field.
7960 * @param cbInstr The VM-entry instruction length in bytes (for
7961 * software interrupts, exceptions and privileged
7962 * software exceptions).
7963 * @param u32ErrCode The VM-entry exception error code.
7964 * @param GCPtrFaultAddress The page-fault address for \#PF exceptions.
7965 * @param puIntrState Pointer to the current guest interruptibility-state.
7966 * This interruptibility-state will be updated if
7967 * necessary. This cannot not be NULL.
7968 * @param fStepping Whether we're running in
7969 * hmR0VmxRunGuestCodeStep() and should return
7970 * VINF_EM_DBG_STEPPED if the event is injected
7971 * directly (register modified by us, not by
7972 * hardware on VM-entry).
7973 *
7974 * @remarks Requires CR0!
7975 * @remarks No-long-jump zone!!!
7976 */
7977static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
7978 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress, bool fStepping,
7979 uint32_t *puIntrState)
7980{
7981 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
7982 AssertMsg(u64IntInfo >> 32 == 0, ("%#RX64\n", u64IntInfo));
7983 Assert(puIntrState);
7984 uint32_t u32IntInfo = (uint32_t)u64IntInfo;
7985
7986 uint32_t const uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(u32IntInfo);
7987 uint32_t const uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo);
7988
7989#ifdef VBOX_STRICT
7990 /* Validate the error-code-valid bit for hardware exceptions. */
7991 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT)
7992 {
7993 switch (uVector)
7994 {
7995 case X86_XCPT_PF:
7996 case X86_XCPT_DF:
7997 case X86_XCPT_TS:
7998 case X86_XCPT_NP:
7999 case X86_XCPT_SS:
8000 case X86_XCPT_GP:
8001 case X86_XCPT_AC:
8002 AssertMsg(VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo),
8003 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
8004 /* fallthru */
8005 default:
8006 break;
8007 }
8008 }
8009#endif
8010
8011 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
8012 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
8013 || !(*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS));
8014
8015 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
8016
8017 /* We require CR0 to check if the guest is in real-mode. */
8018 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
8019 AssertRCReturn(rc, rc);
8020
8021 /*
8022 * Hardware interrupts & exceptions cannot be delivered through the software interrupt redirection bitmap to the real
8023 * mode task in virtual-8086 mode. We must jump to the interrupt handler in the (real-mode) guest.
8024 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode" for interrupt & exception classes.
8025 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
8026 */
8027 if (CPUMIsGuestInRealModeEx(pMixedCtx))
8028 {
8029 PVM pVM = pVCpu->CTX_SUFF(pVM);
8030 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
8031 {
8032 Assert(PDMVmmDevHeapIsEnabled(pVM));
8033 Assert(pVM->hm.s.vmx.pRealModeTSS);
8034
8035 /* We require RIP, RSP, RFLAGS, CS, IDTR. Save the required ones from the VMCS. */
8036 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
8037 rc |= hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
8038 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
8039 AssertRCReturn(rc, rc);
8040 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP));
8041
8042 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
8043 size_t const cbIdtEntry = sizeof(X86IDTR16);
8044 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pMixedCtx->idtr.cbIdt)
8045 {
8046 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
8047 if (uVector == X86_XCPT_DF)
8048 return VINF_EM_RESET;
8049
8050 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
8051 if (uVector == X86_XCPT_GP)
8052 return hmR0VmxInjectXcptDF(pVCpu, pMixedCtx, fStepping, puIntrState);
8053
8054 /* If we're injecting an interrupt/exception with no valid IDT entry, inject a general-protection fault. */
8055 /* No error codes for exceptions in real-mode. See Intel spec. 20.1.4 "Interrupt and Exception Handling" */
8056 return hmR0VmxInjectXcptGP(pVCpu, pMixedCtx, false /* fErrCodeValid */, 0 /* u32ErrCode */,
8057 fStepping, puIntrState);
8058 }
8059
8060 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
8061 uint16_t uGuestIp = pMixedCtx->ip;
8062 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT)
8063 {
8064 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
8065 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
8066 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
8067 }
8068 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT)
8069 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
8070
8071 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
8072 X86IDTR16 IdtEntry;
8073 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pMixedCtx->idtr.pIdt + uVector * cbIdtEntry;
8074 rc = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
8075 AssertRCReturn(rc, rc);
8076
8077 /* Construct the stack frame for the interrupt/exception handler. */
8078 VBOXSTRICTRC rcStrict;
8079 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->eflags.u32);
8080 if (rcStrict == VINF_SUCCESS)
8081 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->cs.Sel);
8082 if (rcStrict == VINF_SUCCESS)
8083 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, uGuestIp);
8084
8085 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
8086 if (rcStrict == VINF_SUCCESS)
8087 {
8088 pMixedCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
8089 pMixedCtx->rip = IdtEntry.offSel;
8090 pMixedCtx->cs.Sel = IdtEntry.uSel;
8091 pMixedCtx->cs.ValidSel = IdtEntry.uSel;
8092 pMixedCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
8093 if ( uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
8094 && uVector == X86_XCPT_PF)
8095 pMixedCtx->cr2 = GCPtrFaultAddress;
8096
8097 /* If any other guest-state bits are changed here, make sure to update
8098 hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
8099 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS
8100 | HM_CHANGED_GUEST_RIP
8101 | HM_CHANGED_GUEST_RFLAGS
8102 | HM_CHANGED_GUEST_RSP);
8103
8104 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
8105 if (*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
8106 {
8107 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
8108 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
8109 Log4(("Clearing inhibition due to STI.\n"));
8110 *puIntrState &= ~VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
8111 }
8112 Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
8113 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->eflags.u, pMixedCtx->cs.Sel, pMixedCtx->eip));
8114
8115 /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
8116 it, if we are returning to ring-3 before executing guest code. */
8117 pVCpu->hm.s.Event.fPending = false;
8118
8119 /* Make hmR0VmxPreRunGuest return if we're stepping since we've changed cs:rip. */
8120 if (fStepping)
8121 rcStrict = VINF_EM_DBG_STEPPED;
8122 }
8123 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8124 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8125 return rcStrict;
8126 }
8127
8128 /*
8129 * For unrestricted execution enabled CPUs running real-mode guests, we must not set the deliver-error-code bit.
8130 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
8131 */
8132 u32IntInfo &= ~VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
8133 }
8134
8135 /* Validate. */
8136 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
8137 Assert(!VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(u32IntInfo)); /* Bit 12 MBZ. */
8138 Assert(!(u32IntInfo & 0x7ffff000)); /* Bits 30:12 MBZ. */
8139
8140 /* Inject. */
8141 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
8142 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo))
8143 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
8144 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
8145
8146 if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
8147 && uVector == X86_XCPT_PF)
8148 pMixedCtx->cr2 = GCPtrFaultAddress;
8149
8150 Log4(("Injecting vcpu[%RU32] u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x pMixedCtx->uCR2=%#RX64\n", pVCpu->idCpu,
8151 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->cr2));
8152
8153 AssertRCReturn(rc, rc);
8154 return VINF_SUCCESS;
8155}
8156
8157
8158/**
8159 * Clears the interrupt-window exiting control in the VMCS and if necessary
8160 * clears the current event in the VMCS as well.
8161 *
8162 * @returns VBox status code.
8163 * @param pVCpu The cross context virtual CPU structure.
8164 *
8165 * @remarks Use this function only to clear events that have not yet been
8166 * delivered to the guest but are injected in the VMCS!
8167 * @remarks No-long-jump zone!!!
8168 */
8169static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu)
8170{
8171 Log4Func(("vcpu[%d]\n", pVCpu->idCpu));
8172
8173 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT)
8174 hmR0VmxClearIntWindowExitVmcs(pVCpu);
8175
8176 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)
8177 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
8178}
8179
8180
8181/**
8182 * Enters the VT-x session.
8183 *
8184 * @returns VBox status code.
8185 * @param pVM The cross context VM structure.
8186 * @param pVCpu The cross context virtual CPU structure.
8187 * @param pCpu Pointer to the CPU info struct.
8188 */
8189VMMR0DECL(int) VMXR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
8190{
8191 AssertPtr(pVM);
8192 AssertPtr(pVCpu);
8193 Assert(pVM->hm.s.vmx.fSupported);
8194 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8195 NOREF(pCpu); NOREF(pVM);
8196
8197 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8198 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
8199
8200#ifdef VBOX_STRICT
8201 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
8202 RTCCUINTREG uHostCR4 = ASMGetCR4();
8203 if (!(uHostCR4 & X86_CR4_VMXE))
8204 {
8205 LogRel(("VMXR0Enter: X86_CR4_VMXE bit in CR4 is not set!\n"));
8206 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8207 }
8208#endif
8209
8210 /*
8211 * Load the VCPU's VMCS as the current (and active) one.
8212 */
8213 Assert(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR);
8214 int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8215 if (RT_FAILURE(rc))
8216 return rc;
8217
8218 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8219 pVCpu->hm.s.fLeaveDone = false;
8220 Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8221
8222 return VINF_SUCCESS;
8223}
8224
8225
8226/**
8227 * The thread-context callback (only on platforms which support it).
8228 *
8229 * @param enmEvent The thread-context event.
8230 * @param pVCpu The cross context virtual CPU structure.
8231 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8232 * @thread EMT(pVCpu)
8233 */
8234VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8235{
8236 NOREF(fGlobalInit);
8237
8238 switch (enmEvent)
8239 {
8240 case RTTHREADCTXEVENT_OUT:
8241 {
8242 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8243 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8244 VMCPU_ASSERT_EMT(pVCpu);
8245
8246 PCPUMCTX pMixedCtx = CPUMQueryGuestCtxPtr(pVCpu);
8247
8248 /* No longjmps (logger flushes, locks) in this fragile context. */
8249 VMMRZCallRing3Disable(pVCpu);
8250 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8251
8252 /*
8253 * Restore host-state (FPU, debug etc.)
8254 */
8255 if (!pVCpu->hm.s.fLeaveDone)
8256 {
8257 /* Do -not- save guest-state here as we might already be in the middle of saving it (esp. bad if we are
8258 holding the PGM lock while saving the guest state (see hmR0VmxSaveGuestControlRegs()). */
8259 hmR0VmxLeave(pVCpu, pMixedCtx, false /* fSaveGuestState */);
8260 pVCpu->hm.s.fLeaveDone = true;
8261 }
8262
8263 /* Leave HM context, takes care of local init (term). */
8264 int rc = HMR0LeaveCpu(pVCpu);
8265 AssertRC(rc); NOREF(rc);
8266
8267 /* Restore longjmp state. */
8268 VMMRZCallRing3Enable(pVCpu);
8269 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
8270 break;
8271 }
8272
8273 case RTTHREADCTXEVENT_IN:
8274 {
8275 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8276 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8277 VMCPU_ASSERT_EMT(pVCpu);
8278
8279 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8280 VMMRZCallRing3Disable(pVCpu);
8281 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8282
8283 /* Initialize the bare minimum state required for HM. This takes care of
8284 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8285 int rc = HMR0EnterCpu(pVCpu);
8286 AssertRC(rc);
8287 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
8288
8289 /* Load the active VMCS as the current one. */
8290 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR)
8291 {
8292 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8293 AssertRC(rc); NOREF(rc);
8294 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8295 Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8296 }
8297 pVCpu->hm.s.fLeaveDone = false;
8298
8299 /* Restore longjmp state. */
8300 VMMRZCallRing3Enable(pVCpu);
8301 break;
8302 }
8303
8304 default:
8305 break;
8306 }
8307}
8308
8309
8310/**
8311 * Saves the host state in the VMCS host-state.
8312 * Sets up the VM-exit MSR-load area.
8313 *
8314 * The CPU state will be loaded from these fields on every successful VM-exit.
8315 *
8316 * @returns VBox status code.
8317 * @param pVM The cross context VM structure.
8318 * @param pVCpu The cross context virtual CPU structure.
8319 *
8320 * @remarks No-long-jump zone!!!
8321 */
8322static int hmR0VmxSaveHostState(PVM pVM, PVMCPU pVCpu)
8323{
8324 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8325
8326 int rc = VINF_SUCCESS;
8327 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
8328 {
8329 rc = hmR0VmxSaveHostControlRegs(pVM, pVCpu);
8330 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostControlRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8331
8332 rc = hmR0VmxSaveHostSegmentRegs(pVM, pVCpu);
8333 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostSegmentRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8334
8335 rc = hmR0VmxSaveHostMsrs(pVM, pVCpu);
8336 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostMsrs failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8337
8338 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
8339 }
8340 return rc;
8341}
8342
8343
8344/**
8345 * Saves the host state in the VMCS host-state.
8346 *
8347 * @returns VBox status code.
8348 * @param pVM The cross context VM structure.
8349 * @param pVCpu The cross context virtual CPU structure.
8350 *
8351 * @remarks No-long-jump zone!!!
8352 */
8353VMMR0DECL(int) VMXR0SaveHostState(PVM pVM, PVMCPU pVCpu)
8354{
8355 AssertPtr(pVM);
8356 AssertPtr(pVCpu);
8357
8358 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8359
8360 /* Save the host state here while entering HM context. When thread-context hooks are used, we might get preempted
8361 and have to resave the host state but most of the time we won't be, so do it here before we disable interrupts. */
8362 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8363 return hmR0VmxSaveHostState(pVM, pVCpu);
8364}
8365
8366
8367/**
8368 * Loads the guest state into the VMCS guest-state area.
8369 *
8370 * The will typically be done before VM-entry when the guest-CPU state and the
8371 * VMCS state may potentially be out of sync.
8372 *
8373 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
8374 * VM-entry controls.
8375 * Sets up the appropriate VMX non-root function to execute guest code based on
8376 * the guest CPU mode.
8377 *
8378 * @returns VBox strict status code.
8379 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8380 * without unrestricted guest access and the VMMDev is not presently
8381 * mapped (e.g. EFI32).
8382 *
8383 * @param pVM The cross context VM structure.
8384 * @param pVCpu The cross context virtual CPU structure.
8385 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8386 * out-of-sync. Make sure to update the required fields
8387 * before using them.
8388 *
8389 * @remarks No-long-jump zone!!! (Disables and enables long jmps for itself,
8390 * caller disables then again on successfull return. Confusing.)
8391 */
8392static VBOXSTRICTRC hmR0VmxLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8393{
8394 AssertPtr(pVM);
8395 AssertPtr(pVCpu);
8396 AssertPtr(pMixedCtx);
8397 HMVMX_ASSERT_PREEMPT_SAFE();
8398
8399 VMMRZCallRing3Disable(pVCpu);
8400 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8401
8402 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8403
8404 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
8405
8406 /* Determine real-on-v86 mode. */
8407 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
8408 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
8409 && CPUMIsGuestInRealModeEx(pMixedCtx))
8410 {
8411 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
8412 }
8413
8414 /*
8415 * Load the guest-state into the VMCS.
8416 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
8417 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
8418 */
8419 int rc = hmR0VmxSetupVMRunHandler(pVCpu, pMixedCtx);
8420 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8421
8422 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
8423 rc = hmR0VmxLoadGuestEntryCtls(pVCpu, pMixedCtx);
8424 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestEntryCtls! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8425
8426 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
8427 rc = hmR0VmxLoadGuestExitCtls(pVCpu, pMixedCtx);
8428 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupExitCtls failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8429
8430 rc = hmR0VmxLoadGuestActivityState(pVCpu, pMixedCtx);
8431 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestActivityState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8432
8433 VBOXSTRICTRC rcStrict = hmR0VmxLoadGuestCR3AndCR4(pVCpu, pMixedCtx);
8434 if (rcStrict == VINF_SUCCESS)
8435 { /* likely */ }
8436 else
8437 {
8438 VMMRZCallRing3Enable(pVCpu);
8439 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
8440 return rcStrict;
8441 }
8442
8443 /* Assumes pMixedCtx->cr0 is up-to-date (strict builds require CR0 for segment register validation checks). */
8444 rc = hmR0VmxLoadGuestSegmentRegs(pVCpu, pMixedCtx);
8445 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestSegmentRegs: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8446
8447 /* This needs to be done after hmR0VmxLoadGuestEntryCtls() and hmR0VmxLoadGuestExitCtls() as it may alter controls if we
8448 determine we don't have to swap EFER after all. */
8449 rc = hmR0VmxLoadGuestMsrs(pVCpu, pMixedCtx);
8450 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadSharedMsrs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8451
8452 rc = hmR0VmxLoadGuestApicState(pVCpu, pMixedCtx);
8453 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8454
8455 rc = hmR0VmxLoadGuestXcptIntercepts(pVCpu, pMixedCtx);
8456 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestXcptIntercepts! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8457
8458 /*
8459 * Loading Rflags here is fine, even though Rflags.TF might depend on guest debug state (which is not loaded here).
8460 * It is re-evaluated and updated if necessary in hmR0VmxLoadSharedState().
8461 */
8462 rc = hmR0VmxLoadGuestRipRspRflags(pVCpu, pMixedCtx);
8463 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestRipRspRflags! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8464
8465 /* Clear any unused and reserved bits. */
8466 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
8467
8468 VMMRZCallRing3Enable(pVCpu);
8469
8470 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
8471 return rc;
8472}
8473
8474
8475/**
8476 * Loads the state shared between the host and guest into the VMCS.
8477 *
8478 * @param pVM The cross context VM structure.
8479 * @param pVCpu The cross context virtual CPU structure.
8480 * @param pCtx Pointer to the guest-CPU context.
8481 *
8482 * @remarks No-long-jump zone!!!
8483 */
8484static void hmR0VmxLoadSharedState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8485{
8486 NOREF(pVM);
8487
8488 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8489 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8490
8491 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
8492 {
8493 int rc = hmR0VmxLoadSharedCR0(pVCpu, pCtx);
8494 AssertRC(rc);
8495 }
8496
8497 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
8498 {
8499 int rc = hmR0VmxLoadSharedDebugState(pVCpu, pCtx);
8500 AssertRC(rc);
8501
8502 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
8503 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
8504 {
8505 rc = hmR0VmxLoadGuestRflags(pVCpu, pCtx);
8506 AssertRC(rc);
8507 }
8508 }
8509
8510 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS))
8511 {
8512 hmR0VmxLazyLoadGuestMsrs(pVCpu, pCtx);
8513 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
8514 }
8515
8516 /* Loading CR0, debug state might have changed intercepts, update VMCS. */
8517 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
8518 {
8519 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_AC));
8520 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
8521 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
8522 AssertRC(rc);
8523 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
8524 }
8525
8526 AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
8527 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8528}
8529
8530
8531/**
8532 * Worker for loading the guest-state bits in the inner VT-x execution loop.
8533 *
8534 * @returns Strict VBox status code (i.e. informational status codes too).
8535 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8536 * without unrestricted guest access and the VMMDev is not presently
8537 * mapped (e.g. EFI32).
8538 *
8539 * @param pVM The cross context VM structure.
8540 * @param pVCpu The cross context virtual CPU structure.
8541 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8542 * out-of-sync. Make sure to update the required fields
8543 * before using them.
8544 */
8545static VBOXSTRICTRC hmR0VmxLoadGuestStateOptimal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8546{
8547 HMVMX_ASSERT_PREEMPT_SAFE();
8548
8549 Log5(("LoadFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8550#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
8551 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
8552#endif
8553
8554 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
8555 if (HMCPU_CF_IS_SET_ONLY(pVCpu, HM_CHANGED_GUEST_RIP))
8556 {
8557 rcStrict = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
8558 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8559 { /* likely */}
8560 else
8561 {
8562 AssertMsgFailedReturn(("hmR0VmxLoadGuestStateOptimal: hmR0VmxLoadGuestRip failed! rc=%Rrc\n",
8563 VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
8564 }
8565 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadMinimal);
8566 }
8567 else if (HMCPU_CF_VALUE(pVCpu))
8568 {
8569 rcStrict = hmR0VmxLoadGuestState(pVM, pVCpu, pMixedCtx);
8570 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8571 { /* likely */}
8572 else
8573 {
8574 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM,
8575 ("hmR0VmxLoadGuestStateOptimal: hmR0VmxLoadGuestState failed! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8576 return rcStrict;
8577 }
8578 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
8579 }
8580
8581 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
8582 AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
8583 || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
8584 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8585 return rcStrict;
8586}
8587
8588
8589/**
8590 * Does the preparations before executing guest code in VT-x.
8591 *
8592 * This may cause longjmps to ring-3 and may even result in rescheduling to the
8593 * recompiler/IEM. We must be cautious what we do here regarding committing
8594 * guest-state information into the VMCS assuming we assuredly execute the
8595 * guest in VT-x mode.
8596 *
8597 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
8598 * the common-state (TRPM/forceflags), we must undo those changes so that the
8599 * recompiler/IEM can (and should) use them when it resumes guest execution.
8600 * Otherwise such operations must be done when we can no longer exit to ring-3.
8601 *
8602 * @returns Strict VBox status code (i.e. informational status codes too).
8603 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
8604 * have been disabled.
8605 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
8606 * double-fault into the guest.
8607 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
8608 * dispatched directly.
8609 * @retval VINF_* scheduling changes, we have to go back to ring-3.
8610 *
8611 * @param pVM The cross context VM structure.
8612 * @param pVCpu The cross context virtual CPU structure.
8613 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8614 * out-of-sync. Make sure to update the required fields
8615 * before using them.
8616 * @param pVmxTransient Pointer to the VMX transient structure.
8617 * @param fStepping Set if called from hmR0VmxRunGuestCodeStep(). Makes
8618 * us ignore some of the reasons for returning to
8619 * ring-3, and return VINF_EM_DBG_STEPPED if event
8620 * dispatching took place.
8621 */
8622static VBOXSTRICTRC hmR0VmxPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, bool fStepping)
8623{
8624 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8625
8626#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
8627 PGMRZDynMapFlushAutoSet(pVCpu);
8628#endif
8629
8630 /* Check force flag actions that might require us to go back to ring-3. */
8631 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVM, pVCpu, pMixedCtx, fStepping);
8632 if (rcStrict == VINF_SUCCESS)
8633 { /* FFs doesn't get set all the time. */ }
8634 else
8635 return rcStrict;
8636
8637 if (TRPMHasTrap(pVCpu))
8638 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
8639 uint32_t uIntrState = hmR0VmxEvaluatePendingEvent(pVCpu, pMixedCtx);
8640
8641 /*
8642 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus needs to be done with
8643 * longjmps or interrupts + preemption enabled. Event injection might also result in triple-faulting the VM.
8644 */
8645 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, pMixedCtx, uIntrState, fStepping);
8646 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8647 { /* likely */ }
8648 else
8649 {
8650 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8651 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8652 return rcStrict;
8653 }
8654
8655 /*
8656 * Load the guest state bits, we can handle longjmps/getting preempted here.
8657 *
8658 * If we are injecting events to a real-on-v86 mode guest, we will have to update
8659 * RIP and some segment registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
8660 * Hence, this needs to be done -after- injection of events.
8661 */
8662 rcStrict = hmR0VmxLoadGuestStateOptimal(pVM, pVCpu, pMixedCtx);
8663 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8664 { /* likely */ }
8665 else
8666 return rcStrict;
8667
8668 /*
8669 * No longjmps to ring-3 from this point on!!!
8670 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
8671 * This also disables flushing of the R0-logger instance (if any).
8672 */
8673 VMMRZCallRing3Disable(pVCpu);
8674
8675 /*
8676 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
8677 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
8678 *
8679 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
8680 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
8681 *
8682 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
8683 * executing guest code.
8684 */
8685 pVmxTransient->fEFlags = ASMIntDisableFlags();
8686
8687 if ( ( !VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
8688 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
8689 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
8690 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
8691 {
8692 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
8693 {
8694 /* We've injected any pending events. This is really the point of no return (to ring-3). */
8695 pVCpu->hm.s.Event.fPending = false;
8696
8697 return VINF_SUCCESS;
8698 }
8699
8700 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
8701 rcStrict = VINF_EM_RAW_INTERRUPT;
8702 }
8703 else
8704 {
8705 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
8706 rcStrict = VINF_EM_RAW_TO_R3;
8707 }
8708
8709 ASMSetFlags(pVmxTransient->fEFlags);
8710 VMMRZCallRing3Enable(pVCpu);
8711
8712 return rcStrict;
8713}
8714
8715
8716/**
8717 * Prepares to run guest code in VT-x and we've committed to doing so. This
8718 * means there is no backing out to ring-3 or anywhere else at this
8719 * point.
8720 *
8721 * @param pVM The cross context VM structure.
8722 * @param pVCpu The cross context virtual CPU structure.
8723 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8724 * out-of-sync. Make sure to update the required fields
8725 * before using them.
8726 * @param pVmxTransient Pointer to the VMX transient structure.
8727 *
8728 * @remarks Called with preemption disabled.
8729 * @remarks No-long-jump zone!!!
8730 */
8731static void hmR0VmxPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8732{
8733 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8734 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8735 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8736
8737 /*
8738 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
8739 */
8740 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8741 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
8742
8743#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
8744 if (!CPUMIsGuestFPUStateActive(pVCpu))
8745 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
8746 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
8747 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8748#endif
8749
8750 if ( pVCpu->hm.s.fPreloadGuestFpu
8751 && !CPUMIsGuestFPUStateActive(pVCpu))
8752 {
8753 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
8754 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
8755 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
8756 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8757 }
8758
8759 /*
8760 * Lazy-update of the host MSRs values in the auto-load/store MSR area.
8761 */
8762 if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
8763 && pVCpu->hm.s.vmx.cMsrs > 0)
8764 {
8765 hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
8766 }
8767
8768 /*
8769 * Load the host state bits as we may've been preempted (only happens when
8770 * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
8771 * Note that the 64-on-32 switcher saves the (64-bit) host state into the VMCS and
8772 * if we change the switcher back to 32-bit, we *must* save the 32-bit host state here.
8773 * See @bugref{8432}.
8774 */
8775 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
8776 {
8777 int rc = hmR0VmxSaveHostState(pVM, pVCpu);
8778 AssertRC(rc);
8779 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptSaveHostState);
8780 }
8781 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT));
8782
8783 /*
8784 * Load the state shared between host and guest (FPU, debug, lazy MSRs).
8785 */
8786 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
8787 hmR0VmxLoadSharedState(pVM, pVCpu, pMixedCtx);
8788 AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8789
8790 /* Store status of the shared guest-host state at the time of VM-entry. */
8791#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
8792 if (CPUMIsGuestInLongModeEx(pMixedCtx))
8793 {
8794 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
8795 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
8796 }
8797 else
8798#endif
8799 {
8800 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
8801 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
8802 }
8803 pVmxTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
8804
8805 /*
8806 * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
8807 */
8808 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
8809 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[0x80];
8810
8811 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
8812 RTCPUID idCurrentCpu = pCpu->idCpu;
8813 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
8814 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
8815 {
8816 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVM, pVCpu);
8817 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
8818 }
8819
8820 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
8821 hmR0VmxFlushTaggedTlb(pVCpu, pCpu); /* Invalidate the appropriate guest entries from the TLB. */
8822 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
8823 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
8824
8825 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
8826
8827 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
8828 to start executing. */
8829
8830 /*
8831 * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
8832 */
8833 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
8834 {
8835 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
8836 {
8837 bool fMsrUpdated;
8838 int rc2 = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
8839 AssertRC(rc2);
8840 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS));
8841
8842 rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, CPUMR0GetGuestTscAux(pVCpu), true /* fUpdateHostMsr */,
8843 &fMsrUpdated);
8844 AssertRC(rc2);
8845 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8846
8847 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8848 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8849 }
8850 else
8851 {
8852 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
8853 Assert(!pVCpu->hm.s.vmx.cMsrs || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8854 }
8855 }
8856
8857#ifdef VBOX_STRICT
8858 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
8859 hmR0VmxCheckHostEferMsr(pVCpu);
8860 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu));
8861#endif
8862#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
8863 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVM, pVCpu, pMixedCtx);
8864 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
8865 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
8866#endif
8867}
8868
8869
8870/**
8871 * Performs some essential restoration of state after running guest code in
8872 * VT-x.
8873 *
8874 * @param pVM The cross context VM structure.
8875 * @param pVCpu The cross context virtual CPU structure.
8876 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
8877 * out-of-sync. Make sure to update the required fields
8878 * before using them.
8879 * @param pVmxTransient Pointer to the VMX transient structure.
8880 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
8881 *
8882 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
8883 *
8884 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
8885 * unconditionally when it is safe to do so.
8886 */
8887static void hmR0VmxPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, int rcVMRun)
8888{
8889 NOREF(pVM);
8890
8891 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8892
8893 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
8894 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
8895 HMVMXCPU_GST_RESET_TO(pVCpu, 0); /* Exits/longjmps to ring-3 requires saving the guest state. */
8896 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
8897 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
8898 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
8899
8900 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
8901 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVCpu->hm.s.vmx.u64TSCOffset);
8902
8903 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
8904 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
8905 Assert(!ASMIntAreEnabled());
8906 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8907
8908#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
8909 if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVM, pVCpu))
8910 {
8911 hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
8912 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8913 }
8914#endif
8915
8916#if HC_ARCH_BITS == 64
8917 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
8918#endif
8919#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
8920 /* The 64-on-32 switcher maintains uVmcsState on its own and we need to leave it alone here. */
8921 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
8922 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8923#else
8924 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8925#endif
8926#ifdef VBOX_STRICT
8927 hmR0VmxCheckHostEferMsr(pVCpu); /* Verify that VMRUN/VMLAUNCH didn't modify host EFER. */
8928#endif
8929 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
8930 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
8931
8932 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
8933 uint32_t uExitReason;
8934 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
8935 rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
8936 AssertRC(rc);
8937 pVmxTransient->uExitReason = (uint16_t)VMX_EXIT_REASON_BASIC(uExitReason);
8938 pVmxTransient->fVMEntryFailed = VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uEntryIntInfo);
8939
8940 /* Update the VM-exit history array. */
8941 HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmxTransient->uExitReason);
8942
8943 /* If the VMLAUNCH/VMRESUME failed, we can bail out early. This does -not- cover VMX_EXIT_ERR_*. */
8944 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
8945 {
8946 Log4(("VM-entry failure: pVCpu=%p idCpu=%RU32 rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", pVCpu, pVCpu->idCpu, rcVMRun,
8947 pVmxTransient->fVMEntryFailed));
8948 return;
8949 }
8950
8951 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
8952 {
8953 /** @todo We can optimize this by only syncing with our force-flags when
8954 * really needed and keeping the VMCS state as it is for most
8955 * VM-exits. */
8956 /* Update the guest interruptibility-state from the VMCS. */
8957 hmR0VmxSaveGuestIntrState(pVCpu, pMixedCtx);
8958
8959#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
8960 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
8961 AssertRC(rc);
8962#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
8963 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
8964 AssertRC(rc);
8965#endif
8966
8967 /*
8968 * If the TPR was raised by the guest, it wouldn't cause a VM-exit immediately. Instead we sync the TPR lazily whenever
8969 * we eventually get a VM-exit for any reason.
8970 *
8971 * This maybe expensive as PDMApicSetTPR() can longjmp to ring-3 and which is why it's done here as it's easier and
8972 * no less efficient to deal with it here than making hmR0VmxSaveGuestState() cope with longjmps safely
8973 * (see VMCPU_FF_HM_UPDATE_CR3 handling).
8974 */
8975 /** @todo r=ramshankar: The 2nd para in the above comment is
8976 * outdated, we no longer longjmp to ring-3 on setting
8977 * the TPR, but regardless we can probably rework this
8978 * portion of the code a bit. */
8979 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
8980 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[0x80])
8981 {
8982 rc = APICSetTpr(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[0x80]);
8983 AssertRC(rc);
8984 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
8985 }
8986 }
8987}
8988
8989
8990/**
8991 * Runs the guest code using VT-x the normal way.
8992 *
8993 * @returns VBox status code.
8994 * @param pVM The cross context VM structure.
8995 * @param pVCpu The cross context virtual CPU structure.
8996 * @param pCtx Pointer to the guest-CPU context.
8997 *
8998 * @note Mostly the same as hmR0VmxRunGuestCodeStep().
8999 */
9000static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
9001{
9002 VMXTRANSIENT VmxTransient;
9003 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
9004 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
9005 uint32_t cLoops = 0;
9006
9007 for (;; cLoops++)
9008 {
9009 Assert(!HMR0SuspendPending());
9010 HMVMX_ASSERT_CPU_SAFE();
9011
9012 /* Preparatory work for running guest code, this may force us to return
9013 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
9014 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
9015 rcStrict = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, false /* fStepping */);
9016 if (rcStrict != VINF_SUCCESS)
9017 break;
9018
9019 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
9020 int rcRun = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
9021 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
9022
9023 /* Restore any residual host-state and save any bits shared between host
9024 and guest into the guest-CPU state. Re-enables interrupts! */
9025 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rcRun);
9026
9027 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
9028 if (RT_SUCCESS(rcRun))
9029 { /* very likely */ }
9030 else
9031 {
9032 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
9033 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rcRun, pCtx, &VmxTransient);
9034 return rcRun;
9035 }
9036
9037 /* Profile the VM-exit. */
9038 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
9039 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
9040 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
9041 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
9042 HMVMX_START_EXIT_DISPATCH_PROF();
9043
9044 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
9045
9046 /* Handle the VM-exit. */
9047#ifdef HMVMX_USE_FUNCTION_TABLE
9048 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, pCtx, &VmxTransient);
9049#else
9050 rcStrict = hmR0VmxHandleExit(pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason);
9051#endif
9052 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
9053 if (rcStrict == VINF_SUCCESS)
9054 {
9055 if (cLoops <= pVM->hm.s.cMaxResumeLoops)
9056 continue; /* likely */
9057 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
9058 rcStrict = VINF_EM_RAW_INTERRUPT;
9059 }
9060 break;
9061 }
9062
9063 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
9064 return rcStrict;
9065}
9066
9067
9068
9069/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
9070 * probes.
9071 *
9072 * The following few functions and associated structure contains the bloat
9073 * necessary for providing detailed debug events and dtrace probes as well as
9074 * reliable host side single stepping. This works on the principle of
9075 * "subclassing" the normal execution loop and workers. We replace the loop
9076 * method completely and override selected helpers to add necessary adjustments
9077 * to their core operation.
9078 *
9079 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
9080 * any performance for debug and analysis features.
9081 *
9082 * @{
9083 */
9084
9085typedef struct VMXRUNDBGSTATE
9086{
9087 /** The RIP we started executing at. This is for detecting that we stepped. */
9088 uint64_t uRipStart;
9089 /** The CS we started executing with. */
9090 uint16_t uCsStart;
9091
9092 /** Whether we've actually modified the 1st execution control field. */
9093 bool fModifiedProcCtls : 1;
9094 /** Whether we've actually modified the 2nd execution control field. */
9095 bool fModifiedProcCtls2 : 1;
9096 /** Whether we've actually modified the exception bitmap. */
9097 bool fModifiedXcptBitmap : 1;
9098
9099 /** We desire the modified the CR0 mask to be cleared. */
9100 bool fClearCr0Mask : 1;
9101 /** We desire the modified the CR4 mask to be cleared. */
9102 bool fClearCr4Mask : 1;
9103 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
9104 uint32_t fCpe1Extra;
9105 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
9106 uint32_t fCpe1Unwanted;
9107 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
9108 uint32_t fCpe2Extra;
9109 /** Extra stuff we need in */
9110 uint32_t bmXcptExtra;
9111 /** The sequence number of the Dtrace provider settings the state was
9112 * configured against. */
9113 uint32_t uDtraceSettingsSeqNo;
9114 /** Exits to check (one bit per exit). */
9115 uint32_t bmExitsToCheck[3];
9116
9117 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
9118 uint32_t fProcCtlsInitial;
9119 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
9120 uint32_t fProcCtls2Initial;
9121 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
9122 uint32_t bmXcptInitial;
9123} VMXRUNDBGSTATE;
9124AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
9125typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
9126
9127
9128/**
9129 * Initializes the VMXRUNDBGSTATE structure.
9130 *
9131 * @param pVCpu The cross context virtual CPU structure of the
9132 * calling EMT.
9133 * @param pCtx The CPU register context to go with @a pVCpu.
9134 * @param pDbgState The structure to initialize.
9135 */
9136DECLINLINE(void) hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PCCPUMCTX pCtx, PVMXRUNDBGSTATE pDbgState)
9137{
9138 pDbgState->uRipStart = pCtx->rip;
9139 pDbgState->uCsStart = pCtx->cs.Sel;
9140
9141 pDbgState->fModifiedProcCtls = false;
9142 pDbgState->fModifiedProcCtls2 = false;
9143 pDbgState->fModifiedXcptBitmap = false;
9144 pDbgState->fClearCr0Mask = false;
9145 pDbgState->fClearCr4Mask = false;
9146 pDbgState->fCpe1Extra = 0;
9147 pDbgState->fCpe1Unwanted = 0;
9148 pDbgState->fCpe2Extra = 0;
9149 pDbgState->bmXcptExtra = 0;
9150 pDbgState->fProcCtlsInitial = pVCpu->hm.s.vmx.u32ProcCtls;
9151 pDbgState->fProcCtls2Initial = pVCpu->hm.s.vmx.u32ProcCtls2;
9152 pDbgState->bmXcptInitial = pVCpu->hm.s.vmx.u32XcptBitmap;
9153}
9154
9155
9156/**
9157 * Updates the VMSC fields with changes requested by @a pDbgState.
9158 *
9159 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
9160 * immediately before executing guest code, i.e. when interrupts are disabled.
9161 * We don't check status codes here as we cannot easily assert or return in the
9162 * latter case.
9163 *
9164 * @param pVCpu The cross context virtual CPU structure.
9165 * @param pDbgState The debug state.
9166 */
9167DECLINLINE(void) hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9168{
9169 /*
9170 * Ensure desired flags in VMCS control fields are set.
9171 * (Ignoring write failure here, as we're committed and it's just debug extras.)
9172 *
9173 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
9174 * there should be no stale data in pCtx at this point.
9175 */
9176 if ( (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
9177 || (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Unwanted))
9178 {
9179 pVCpu->hm.s.vmx.u32ProcCtls |= pDbgState->fCpe1Extra;
9180 pVCpu->hm.s.vmx.u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
9181 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
9182 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls));
9183 pDbgState->fModifiedProcCtls = true;
9184 }
9185
9186 if ((pVCpu->hm.s.vmx.u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
9187 {
9188 pVCpu->hm.s.vmx.u32ProcCtls2 |= pDbgState->fCpe2Extra;
9189 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVCpu->hm.s.vmx.u32ProcCtls2);
9190 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2));
9191 pDbgState->fModifiedProcCtls2 = true;
9192 }
9193
9194 if ((pVCpu->hm.s.vmx.u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
9195 {
9196 pVCpu->hm.s.vmx.u32XcptBitmap |= pDbgState->bmXcptExtra;
9197 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
9198 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap));
9199 pDbgState->fModifiedXcptBitmap = true;
9200 }
9201
9202 if (pDbgState->fClearCr0Mask && pVCpu->hm.s.vmx.u32CR0Mask != 0)
9203 {
9204 pVCpu->hm.s.vmx.u32CR0Mask = 0;
9205 VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, 0);
9206 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS_CTRL_CR0_MASK: 0\n"));
9207 }
9208
9209 if (pDbgState->fClearCr4Mask && pVCpu->hm.s.vmx.u32CR4Mask != 0)
9210 {
9211 pVCpu->hm.s.vmx.u32CR4Mask = 0;
9212 VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, 0);
9213 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS_CTRL_CR4_MASK: 0\n"));
9214 }
9215}
9216
9217
9218DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, VBOXSTRICTRC rcStrict)
9219{
9220 /*
9221 * Restore exit control settings as we may not reenter this function the
9222 * next time around.
9223 */
9224 /* We reload the initial value, trigger what we can of recalculations the
9225 next time around. From the looks of things, that's all that's required atm. */
9226 if (pDbgState->fModifiedProcCtls)
9227 {
9228 if (!(pDbgState->fProcCtlsInitial & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
9229 pDbgState->fProcCtlsInitial |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
9230 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
9231 AssertRCReturn(rc2, rc2);
9232 pVCpu->hm.s.vmx.u32ProcCtls = pDbgState->fProcCtlsInitial;
9233 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0 | HM_CHANGED_GUEST_DEBUG);
9234 }
9235
9236 /* We're currently the only ones messing with this one, so just restore the
9237 cached value and reload the field. */
9238 if ( pDbgState->fModifiedProcCtls2
9239 && pVCpu->hm.s.vmx.u32ProcCtls2 != pDbgState->fProcCtls2Initial)
9240 {
9241 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
9242 AssertRCReturn(rc2, rc2);
9243 pVCpu->hm.s.vmx.u32ProcCtls2 = pDbgState->fProcCtls2Initial;
9244 }
9245
9246 /* If we've modified the exception bitmap, we restore it and trigger
9247 reloading and partial recalculation the next time around. */
9248 if (pDbgState->fModifiedXcptBitmap)
9249 {
9250 pVCpu->hm.s.vmx.u32XcptBitmap = pDbgState->bmXcptInitial;
9251 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS | HM_CHANGED_GUEST_CR0);
9252 }
9253
9254 /* We assume hmR0VmxLoadSharedCR0 will recalculate and load the CR0 mask. */
9255 if (pDbgState->fClearCr0Mask)
9256 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9257
9258 /* We assume hmR0VmxLoadGuestCR3AndCR4 will recalculate and load the CR4 mask. */
9259 if (pDbgState->fClearCr4Mask)
9260 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
9261
9262 return rcStrict;
9263}
9264
9265
9266/**
9267 * Configures VM-exit controls for current DBGF and DTrace settings.
9268 *
9269 * This updates @a pDbgState and the VMCS execution control fields to reflect
9270 * the necessary exits demanded by DBGF and DTrace.
9271 *
9272 * @param pVM The cross context VM structure.
9273 * @param pVCpu The cross context virtual CPU structure.
9274 * @param pCtx Pointer to the guest-CPU context.
9275 * @param pDbgState The debug state.
9276 * @param pVmxTransient Pointer to the VMX transient structure. May update
9277 * fUpdateTscOffsettingAndPreemptTimer.
9278 */
9279static void hmR0VmxPreRunGuestDebugStateUpdate(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx,
9280 PVMXRUNDBGSTATE pDbgState, PVMXTRANSIENT pVmxTransient)
9281{
9282 /*
9283 * Take down the dtrace serial number so we can spot changes.
9284 */
9285 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
9286 ASMCompilerBarrier();
9287
9288 /*
9289 * We'll rebuild most of the middle block of data members (holding the
9290 * current settings) as we go along here, so start by clearing it all.
9291 */
9292 pDbgState->bmXcptExtra = 0;
9293 pDbgState->fCpe1Extra = 0;
9294 pDbgState->fCpe1Unwanted = 0;
9295 pDbgState->fCpe2Extra = 0;
9296 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
9297 pDbgState->bmExitsToCheck[i] = 0;
9298
9299 /*
9300 * Software interrupts (INT XXh) - no idea how to trigger these...
9301 */
9302 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
9303 || VBOXVMM_INT_SOFTWARE_ENABLED())
9304 {
9305 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9306 }
9307
9308 /*
9309 * Exception bitmap and XCPT events+probes.
9310 */
9311 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
9312 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
9313 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
9314
9315 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
9316 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
9317 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9318 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
9319 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
9320 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
9321 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
9322 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
9323 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
9324 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
9325 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
9326 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
9327 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
9328 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
9329 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
9330 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
9331 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
9332 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
9333
9334 if (pDbgState->bmXcptExtra)
9335 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9336
9337 /*
9338 * Process events and probes for VM exits, making sure we get the wanted exits.
9339 *
9340 * Note! This is the reverse of waft hmR0VmxHandleExitDtraceEvents does.
9341 * So, when adding/changing/removing please don't forget to update it.
9342 *
9343 * Some of the macros are picking up local variables to save horizontal space,
9344 * (being able to see it in a table is the lesser evil here).
9345 */
9346#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
9347 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
9348 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
9349#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
9350 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9351 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9352 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9353 } else do { } while (0)
9354#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
9355 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9356 { \
9357 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
9358 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9359 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9360 } else do { } while (0)
9361#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
9362 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9363 { \
9364 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
9365 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9366 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9367 } else do { } while (0)
9368#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
9369 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9370 { \
9371 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
9372 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9373 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9374 } else do { } while (0)
9375
9376 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
9377 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
9378 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
9379 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
9380 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
9381
9382 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
9383 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
9384 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
9385 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
9386 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT); /* paranoia */
9387 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
9388 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
9389 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
9390 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
9391 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
9392 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT);
9393 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
9394 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
9395 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
9396 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
9397 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
9398 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
9399 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
9400 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
9401 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
9402 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
9403 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
9404 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
9405 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
9406 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
9407 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
9408 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
9409 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
9410 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
9411 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
9412 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
9413 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
9414 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
9415 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
9416 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
9417 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
9418
9419 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
9420 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9421 {
9422 int rc2 = hmR0VmxSaveGuestCR0(pVCpu, pCtx);
9423 rc2 |= hmR0VmxSaveGuestCR4(pVCpu, pCtx);
9424 rc2 |= hmR0VmxSaveGuestApicState(pVCpu, pCtx);
9425 AssertRC(rc2);
9426
9427#if 0 /** @todo fix me */
9428 pDbgState->fClearCr0Mask = true;
9429 pDbgState->fClearCr4Mask = true;
9430#endif
9431 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
9432 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT;
9433 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9434 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT;
9435 pDbgState->fCpe1Unwanted |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* risky? */
9436 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
9437 require clearing here and in the loop if we start using it. */
9438 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
9439 }
9440 else
9441 {
9442 if (pDbgState->fClearCr0Mask)
9443 {
9444 pDbgState->fClearCr0Mask = false;
9445 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9446 }
9447 if (pDbgState->fClearCr4Mask)
9448 {
9449 pDbgState->fClearCr4Mask = false;
9450 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
9451 }
9452 }
9453 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
9454 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
9455
9456 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
9457 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
9458 {
9459 /** @todo later, need to fix handler as it assumes this won't usually happen. */
9460 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
9461 }
9462 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
9463 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
9464
9465 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS); /* risky clearing this? */
9466 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
9467 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS);
9468 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
9469 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT); /* paranoia */
9470 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
9471 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT); /* paranoia */
9472 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
9473#if 0 /** @todo too slow, fix handler. */
9474 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT);
9475#endif
9476 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
9477
9478 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
9479 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
9480 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
9481 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
9482 {
9483 pDbgState->fCpe2Extra |= VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT;
9484 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XDTR_ACCESS);
9485 }
9486 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_XDTR_ACCESS);
9487 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_XDTR_ACCESS);
9488 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_XDTR_ACCESS);
9489 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_XDTR_ACCESS);
9490
9491 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
9492 || IS_EITHER_ENABLED(pVM, INSTR_STR)
9493 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
9494 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
9495 {
9496 pDbgState->fCpe2Extra |= VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT;
9497 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_TR_ACCESS);
9498 }
9499 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_TR_ACCESS);
9500 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_TR_ACCESS);
9501 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_TR_ACCESS);
9502 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_TR_ACCESS);
9503
9504 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
9505 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
9506 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
9507 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
9508 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
9509 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
9510 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT);
9511 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
9512 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
9513 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
9514 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT);
9515 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
9516 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
9517 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
9518 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
9519 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
9520 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_VMCS_CTRL_PROC_EXEC2_RDSEED_EXIT);
9521 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
9522 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
9523 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
9524 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
9525 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
9526
9527#undef IS_EITHER_ENABLED
9528#undef SET_ONLY_XBM_IF_EITHER_EN
9529#undef SET_CPE1_XBM_IF_EITHER_EN
9530#undef SET_CPEU_XBM_IF_EITHER_EN
9531#undef SET_CPE2_XBM_IF_EITHER_EN
9532
9533 /*
9534 * Sanitize the control stuff.
9535 */
9536 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1;
9537 if (pDbgState->fCpe2Extra)
9538 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
9539 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1;
9540 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0;
9541 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
9542 {
9543 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
9544 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9545 }
9546
9547 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
9548 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
9549 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
9550 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
9551}
9552
9553
9554/**
9555 * Fires off DBGF events and dtrace probes for an exit, when it's appropriate.
9556 *
9557 * The caller has checked exit against the VMXRUNDBGSTATE::bmExitsToCheck
9558 * bitmap. The caller has checked for NMIs already, so we don't have to do that
9559 * either.
9560 *
9561 * @returns Strict VBox status code (i.e. informational status codes too).
9562 * @param pVM The cross context VM structure.
9563 * @param pVCpu The cross context virtual CPU structure.
9564 * @param pMixedCtx Pointer to the guest-CPU context.
9565 * @param pVmxTransient Pointer to the VMX-transient structure.
9566 * @param uExitReason The VM-exit reason.
9567 *
9568 * @remarks The name of this function is displayed by dtrace, so keep it short
9569 * and to the point. No longer than 33 chars long, please.
9570 */
9571static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx,
9572 PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
9573{
9574 /*
9575 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
9576 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
9577 *
9578 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
9579 * does. Must add/change/remove both places. Same ordering, please.
9580 *
9581 * Added/removed events must also be reflected in the next section
9582 * where we dispatch dtrace events.
9583 */
9584 bool fDtrace1 = false;
9585 bool fDtrace2 = false;
9586 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
9587 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
9588 uint32_t uEventArg = 0;
9589#define SET_EXIT(a_EventSubName) \
9590 do { \
9591 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9592 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9593 } while (0)
9594#define SET_BOTH(a_EventSubName) \
9595 do { \
9596 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
9597 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9598 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
9599 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9600 } while (0)
9601 switch (uExitReason)
9602 {
9603 case VMX_EXIT_MTF:
9604 return hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient);
9605
9606 case VMX_EXIT_XCPT_OR_NMI:
9607 {
9608 uint8_t const idxVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
9609 switch (VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo))
9610 {
9611 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
9612 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT:
9613 case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT:
9614 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
9615 {
9616 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uExitIntInfo))
9617 {
9618 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
9619 uEventArg = pVmxTransient->uExitIntErrorCode;
9620 }
9621 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
9622 switch (enmEvent1)
9623 {
9624 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
9625 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
9626 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
9627 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
9628 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
9629 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
9630 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
9631 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
9632 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
9633 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
9634 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
9635 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
9636 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
9637 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
9638 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
9639 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
9640 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
9641 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
9642 default: break;
9643 }
9644 }
9645 else
9646 AssertFailed();
9647 break;
9648
9649 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT:
9650 uEventArg = idxVector;
9651 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
9652 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
9653 break;
9654 }
9655 break;
9656 }
9657
9658 case VMX_EXIT_TRIPLE_FAULT:
9659 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
9660 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
9661 break;
9662 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
9663 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
9664 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
9665 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
9666 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
9667
9668 /* Instruction specific VM-exits: */
9669 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
9670 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
9671 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
9672 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
9673 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
9674 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
9675 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
9676 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
9677 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
9678 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
9679 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
9680 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
9681 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
9682 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
9683 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
9684 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
9685 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
9686 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
9687 case VMX_EXIT_MOV_CRX:
9688 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9689/** @todo r=bird: I feel these macros aren't very descriptive and needs to be at least 30 chars longer! ;-)
9690* Sensible abbreviations strongly recommended here because even with 130 columns this stuff get too wide! */
9691 if ( VMX_EXIT_QUALIFICATION_CRX_ACCESS(pVmxTransient->uExitQualification)
9692 == VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ)
9693 SET_BOTH(CRX_READ);
9694 else
9695 SET_BOTH(CRX_WRITE);
9696 uEventArg = VMX_EXIT_QUALIFICATION_CRX_REGISTER(pVmxTransient->uExitQualification);
9697 break;
9698 case VMX_EXIT_MOV_DRX:
9699 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9700 if ( VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification)
9701 == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_READ)
9702 SET_BOTH(DRX_READ);
9703 else
9704 SET_BOTH(DRX_WRITE);
9705 uEventArg = VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification);
9706 break;
9707 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
9708 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
9709 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
9710 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
9711 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
9712 case VMX_EXIT_XDTR_ACCESS:
9713 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9714 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_XDTR_INSINFO_INSTR_ID))
9715 {
9716 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
9717 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
9718 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
9719 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
9720 }
9721 break;
9722
9723 case VMX_EXIT_TR_ACCESS:
9724 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9725 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_YYTR_INSINFO_INSTR_ID))
9726 {
9727 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
9728 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
9729 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
9730 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
9731 }
9732 break;
9733
9734 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
9735 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
9736 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
9737 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
9738 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
9739 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
9740 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
9741 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
9742 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
9743 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
9744 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
9745
9746 /* Events that aren't relevant at this point. */
9747 case VMX_EXIT_EXT_INT:
9748 case VMX_EXIT_INT_WINDOW:
9749 case VMX_EXIT_NMI_WINDOW:
9750 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9751 case VMX_EXIT_PREEMPT_TIMER:
9752 case VMX_EXIT_IO_INSTR:
9753 break;
9754
9755 /* Errors and unexpected events. */
9756 case VMX_EXIT_INIT_SIGNAL:
9757 case VMX_EXIT_SIPI:
9758 case VMX_EXIT_IO_SMI:
9759 case VMX_EXIT_SMI:
9760 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
9761 case VMX_EXIT_ERR_MSR_LOAD:
9762 case VMX_EXIT_ERR_MACHINE_CHECK:
9763 break;
9764
9765 default:
9766 AssertMsgFailed(("Unexpected exit=%#x\n", uExitReason));
9767 break;
9768 }
9769#undef SET_BOTH
9770#undef SET_EXIT
9771
9772 /*
9773 * Dtrace tracepoints go first. We do them here at once so we don't
9774 * have to copy the guest state saving and stuff a few dozen times.
9775 * Down side is that we've got to repeat the switch, though this time
9776 * we use enmEvent since the probes are a subset of what DBGF does.
9777 */
9778 if (fDtrace1 || fDtrace2)
9779 {
9780 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9781 hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
9782 switch (enmEvent1)
9783 {
9784 /** @todo consider which extra parameters would be helpful for each probe. */
9785 case DBGFEVENT_END: break;
9786 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pMixedCtx); break;
9787 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pMixedCtx, pMixedCtx->dr[6]); break;
9788 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pMixedCtx); break;
9789 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pMixedCtx); break;
9790 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pMixedCtx); break;
9791 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pMixedCtx); break;
9792 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pMixedCtx); break;
9793 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pMixedCtx); break;
9794 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pMixedCtx, uEventArg); break;
9795 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pMixedCtx, uEventArg); break;
9796 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pMixedCtx, uEventArg); break;
9797 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pMixedCtx, uEventArg); break;
9798 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pMixedCtx, uEventArg, pMixedCtx->cr2); break;
9799 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pMixedCtx); break;
9800 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pMixedCtx); break;
9801 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pMixedCtx); break;
9802 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pMixedCtx); break;
9803 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pMixedCtx, uEventArg); break;
9804 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9805 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pMixedCtx, pMixedCtx->eax, pMixedCtx->ecx); break;
9806 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pMixedCtx); break;
9807 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pMixedCtx); break;
9808 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pMixedCtx); break;
9809 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pMixedCtx); break;
9810 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pMixedCtx); break;
9811 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pMixedCtx); break;
9812 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pMixedCtx); break;
9813 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9814 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9815 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9816 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9817 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pMixedCtx, pMixedCtx->ecx); break;
9818 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pMixedCtx, pMixedCtx->ecx,
9819 RT_MAKE_U64(pMixedCtx->eax, pMixedCtx->edx)); break;
9820 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pMixedCtx); break;
9821 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pMixedCtx); break;
9822 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pMixedCtx); break;
9823 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pMixedCtx); break;
9824 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pMixedCtx); break;
9825 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pMixedCtx); break;
9826 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pMixedCtx); break;
9827 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pMixedCtx); break;
9828 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pMixedCtx); break;
9829 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pMixedCtx); break;
9830 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pMixedCtx); break;
9831 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pMixedCtx); break;
9832 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pMixedCtx); break;
9833 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pMixedCtx); break;
9834 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pMixedCtx); break;
9835 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pMixedCtx); break;
9836 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pMixedCtx); break;
9837 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pMixedCtx); break;
9838 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pMixedCtx); break;
9839 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pMixedCtx); break;
9840 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pMixedCtx); break;
9841 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pMixedCtx); break;
9842 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pMixedCtx); break;
9843 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pMixedCtx); break;
9844 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pMixedCtx); break;
9845 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pMixedCtx); break;
9846 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pMixedCtx); break;
9847 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pMixedCtx); break;
9848 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pMixedCtx); break;
9849 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pMixedCtx); break;
9850 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pMixedCtx); break;
9851 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pMixedCtx); break;
9852 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
9853 }
9854 switch (enmEvent2)
9855 {
9856 /** @todo consider which extra parameters would be helpful for each probe. */
9857 case DBGFEVENT_END: break;
9858 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pMixedCtx); break;
9859 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pMixedCtx, pMixedCtx->eax, pMixedCtx->ecx); break;
9860 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pMixedCtx); break;
9861 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pMixedCtx); break;
9862 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pMixedCtx); break;
9863 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pMixedCtx); break;
9864 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pMixedCtx); break;
9865 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pMixedCtx); break;
9866 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pMixedCtx); break;
9867 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9868 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9869 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9870 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9871 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pMixedCtx, pMixedCtx->ecx); break;
9872 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pMixedCtx, pMixedCtx->ecx,
9873 RT_MAKE_U64(pMixedCtx->eax, pMixedCtx->edx)); break;
9874 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pMixedCtx); break;
9875 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pMixedCtx); break;
9876 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pMixedCtx); break;
9877 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pMixedCtx); break;
9878 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pMixedCtx); break;
9879 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pMixedCtx); break;
9880 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pMixedCtx); break;
9881 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pMixedCtx); break;
9882 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pMixedCtx); break;
9883 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pMixedCtx); break;
9884 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pMixedCtx); break;
9885 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pMixedCtx); break;
9886 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pMixedCtx); break;
9887 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pMixedCtx); break;
9888 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pMixedCtx); break;
9889 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pMixedCtx); break;
9890 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pMixedCtx); break;
9891 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pMixedCtx); break;
9892 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pMixedCtx); break;
9893 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pMixedCtx); break;
9894 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pMixedCtx); break;
9895 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pMixedCtx); break;
9896 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pMixedCtx); break;
9897 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pMixedCtx); break;
9898 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pMixedCtx); break;
9899 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pMixedCtx); break;
9900 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pMixedCtx); break;
9901 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pMixedCtx); break;
9902 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pMixedCtx); break;
9903 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pMixedCtx); break;
9904 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pMixedCtx); break;
9905 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pMixedCtx); break;
9906 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pMixedCtx); break;
9907 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pMixedCtx); break;
9908 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pMixedCtx); break;
9909 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pMixedCtx); break;
9910 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
9911 }
9912 }
9913
9914 /*
9915 * Fire of the DBGF event, if enabled (our check here is just a quick one,
9916 * the DBGF call will do a full check).
9917 *
9918 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
9919 * Note! If we have to events, we prioritize the first, i.e. the instruction
9920 * one, in order to avoid event nesting.
9921 */
9922 if ( enmEvent1 != DBGFEVENT_END
9923 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
9924 {
9925 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArg(pVM, pVCpu, enmEvent1, uEventArg, DBGFEVENTCTX_HM);
9926 if (rcStrict != VINF_SUCCESS)
9927 return rcStrict;
9928 }
9929 else if ( enmEvent2 != DBGFEVENT_END
9930 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
9931 {
9932 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArg(pVM, pVCpu, enmEvent2, uEventArg, DBGFEVENTCTX_HM);
9933 if (rcStrict != VINF_SUCCESS)
9934 return rcStrict;
9935 }
9936
9937 return VINF_SUCCESS;
9938}
9939
9940
9941/**
9942 * Single-stepping VM-exit filtering.
9943 *
9944 * This is preprocessing the exits and deciding whether we've gotten far enough
9945 * to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit handling is
9946 * performed.
9947 *
9948 * @returns Strict VBox status code (i.e. informational status codes too).
9949 * @param pVM The cross context VM structure.
9950 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9951 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
9952 * out-of-sync. Make sure to update the required
9953 * fields before using them.
9954 * @param pVmxTransient Pointer to the VMX-transient structure.
9955 * @param uExitReason The VM-exit reason.
9956 * @param pDbgState The debug state.
9957 */
9958DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient,
9959 uint32_t uExitReason, PVMXRUNDBGSTATE pDbgState)
9960{
9961 /*
9962 * Expensive (saves context) generic dtrace exit probe.
9963 */
9964 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
9965 { /* more likely */ }
9966 else
9967 {
9968 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9969 hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
9970 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, pMixedCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQualification);
9971 }
9972
9973 /*
9974 * Check for host NMI, just to get that out of the way.
9975 */
9976 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
9977 { /* normally likely */ }
9978 else
9979 {
9980 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
9981 AssertRCReturn(rc2, rc2);
9982 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
9983 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
9984 return hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient);
9985 }
9986
9987 /*
9988 * Check for single stepping event if we're stepping.
9989 */
9990 if (pVCpu->hm.s.fSingleInstruction)
9991 {
9992 switch (uExitReason)
9993 {
9994 case VMX_EXIT_MTF:
9995 return hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient);
9996
9997 /* Various events: */
9998 case VMX_EXIT_XCPT_OR_NMI:
9999 case VMX_EXIT_EXT_INT:
10000 case VMX_EXIT_TRIPLE_FAULT:
10001 case VMX_EXIT_INT_WINDOW:
10002 case VMX_EXIT_NMI_WINDOW:
10003 case VMX_EXIT_TASK_SWITCH:
10004 case VMX_EXIT_TPR_BELOW_THRESHOLD:
10005 case VMX_EXIT_APIC_ACCESS:
10006 case VMX_EXIT_EPT_VIOLATION:
10007 case VMX_EXIT_EPT_MISCONFIG:
10008 case VMX_EXIT_PREEMPT_TIMER:
10009
10010 /* Instruction specific VM-exits: */
10011 case VMX_EXIT_CPUID:
10012 case VMX_EXIT_GETSEC:
10013 case VMX_EXIT_HLT:
10014 case VMX_EXIT_INVD:
10015 case VMX_EXIT_INVLPG:
10016 case VMX_EXIT_RDPMC:
10017 case VMX_EXIT_RDTSC:
10018 case VMX_EXIT_RSM:
10019 case VMX_EXIT_VMCALL:
10020 case VMX_EXIT_VMCLEAR:
10021 case VMX_EXIT_VMLAUNCH:
10022 case VMX_EXIT_VMPTRLD:
10023 case VMX_EXIT_VMPTRST:
10024 case VMX_EXIT_VMREAD:
10025 case VMX_EXIT_VMRESUME:
10026 case VMX_EXIT_VMWRITE:
10027 case VMX_EXIT_VMXOFF:
10028 case VMX_EXIT_VMXON:
10029 case VMX_EXIT_MOV_CRX:
10030 case VMX_EXIT_MOV_DRX:
10031 case VMX_EXIT_IO_INSTR:
10032 case VMX_EXIT_RDMSR:
10033 case VMX_EXIT_WRMSR:
10034 case VMX_EXIT_MWAIT:
10035 case VMX_EXIT_MONITOR:
10036 case VMX_EXIT_PAUSE:
10037 case VMX_EXIT_XDTR_ACCESS:
10038 case VMX_EXIT_TR_ACCESS:
10039 case VMX_EXIT_INVEPT:
10040 case VMX_EXIT_RDTSCP:
10041 case VMX_EXIT_INVVPID:
10042 case VMX_EXIT_WBINVD:
10043 case VMX_EXIT_XSETBV:
10044 case VMX_EXIT_RDRAND:
10045 case VMX_EXIT_INVPCID:
10046 case VMX_EXIT_VMFUNC:
10047 case VMX_EXIT_RDSEED:
10048 case VMX_EXIT_XSAVES:
10049 case VMX_EXIT_XRSTORS:
10050 {
10051 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
10052 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10053 AssertRCReturn(rc2, rc2);
10054 if ( pMixedCtx->rip != pDbgState->uRipStart
10055 || pMixedCtx->cs.Sel != pDbgState->uCsStart)
10056 return VINF_EM_DBG_STEPPED;
10057 break;
10058 }
10059
10060 /* Errors and unexpected events: */
10061 case VMX_EXIT_INIT_SIGNAL:
10062 case VMX_EXIT_SIPI:
10063 case VMX_EXIT_IO_SMI:
10064 case VMX_EXIT_SMI:
10065 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
10066 case VMX_EXIT_ERR_MSR_LOAD:
10067 case VMX_EXIT_ERR_MACHINE_CHECK:
10068 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
10069 break;
10070
10071 default:
10072 AssertMsgFailed(("Unexpected exit=%#x\n", uExitReason));
10073 break;
10074 }
10075 }
10076
10077 /*
10078 * Check for debugger event breakpoints and dtrace probes.
10079 */
10080 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
10081 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
10082 {
10083 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVM, pVCpu, pMixedCtx, pVmxTransient, uExitReason);
10084 if (rcStrict != VINF_SUCCESS)
10085 return rcStrict;
10086 }
10087
10088 /*
10089 * Normal processing.
10090 */
10091#ifdef HMVMX_USE_FUNCTION_TABLE
10092 return g_apfnVMExitHandlers[uExitReason](pVCpu, pMixedCtx, pVmxTransient);
10093#else
10094 return hmR0VmxHandleExit(pVCpu, pMixedCtx, pVmxTransient, uExitReason);
10095#endif
10096}
10097
10098
10099/**
10100 * Single steps guest code using VT-x.
10101 *
10102 * @returns Strict VBox status code (i.e. informational status codes too).
10103 * @param pVM The cross context VM structure.
10104 * @param pVCpu The cross context virtual CPU structure.
10105 * @param pCtx Pointer to the guest-CPU context.
10106 *
10107 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
10108 */
10109static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10110{
10111 VMXTRANSIENT VmxTransient;
10112 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
10113
10114 /* Set HMCPU indicators. */
10115 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
10116 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
10117 pVCpu->hm.s.fDebugWantRdTscExit = false;
10118 pVCpu->hm.s.fUsingDebugLoop = true;
10119
10120 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
10121 VMXRUNDBGSTATE DbgState;
10122 hmR0VmxRunDebugStateInit(pVCpu, pCtx, &DbgState);
10123 hmR0VmxPreRunGuestDebugStateUpdate(pVM, pVCpu, pCtx, &DbgState, &VmxTransient);
10124
10125 /*
10126 * The loop.
10127 */
10128 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10129 for (uint32_t cLoops = 0; ; cLoops++)
10130 {
10131 Assert(!HMR0SuspendPending());
10132 HMVMX_ASSERT_CPU_SAFE();
10133 bool fStepping = pVCpu->hm.s.fSingleInstruction;
10134
10135 /*
10136 * Preparatory work for running guest code, this may force us to return
10137 * to ring-3. This bugger disables interrupts on VINF_SUCCESS!
10138 */
10139 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10140 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Set up execute controls the next to can respond to. */
10141 rcStrict = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, fStepping);
10142 if (rcStrict != VINF_SUCCESS)
10143 break;
10144
10145 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
10146 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Override any obnoxious code in the above two calls. */
10147
10148 /*
10149 * Now we can run the guest code.
10150 */
10151 int rcRun = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
10152
10153 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
10154
10155 /*
10156 * Restore any residual host-state and save any bits shared between host
10157 * and guest into the guest-CPU state. Re-enables interrupts!
10158 */
10159 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rcRun);
10160
10161 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
10162 if (RT_SUCCESS(rcRun))
10163 { /* very likely */ }
10164 else
10165 {
10166 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
10167 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rcRun, pCtx, &VmxTransient);
10168 return rcRun;
10169 }
10170
10171 /* Profile the VM-exit. */
10172 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10173 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10174 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10175 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
10176 HMVMX_START_EXIT_DISPATCH_PROF();
10177
10178 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
10179
10180 /*
10181 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
10182 */
10183 rcStrict = hmR0VmxRunDebugHandleExit(pVM, pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason, &DbgState);
10184 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
10185 if (rcStrict != VINF_SUCCESS)
10186 break;
10187 if (cLoops > pVM->hm.s.cMaxResumeLoops)
10188 {
10189 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10190 rcStrict = VINF_EM_RAW_INTERRUPT;
10191 break;
10192 }
10193
10194 /*
10195 * Stepping: Did the RIP change, if so, consider it a single step.
10196 * Otherwise, make sure one of the TFs gets set.
10197 */
10198 if (fStepping)
10199 {
10200 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pCtx);
10201 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pCtx);
10202 AssertRCReturn(rc2, rc2);
10203 if ( pCtx->rip != DbgState.uRipStart
10204 || pCtx->cs.Sel != DbgState.uCsStart)
10205 {
10206 rcStrict = VINF_EM_DBG_STEPPED;
10207 break;
10208 }
10209 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
10210 }
10211
10212 /*
10213 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
10214 */
10215 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
10216 hmR0VmxPreRunGuestDebugStateUpdate(pVM, pVCpu, pCtx, &DbgState, &VmxTransient);
10217 }
10218
10219 /*
10220 * Clear the X86_EFL_TF if necessary.
10221 */
10222 if (pVCpu->hm.s.fClearTrapFlag)
10223 {
10224 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pCtx);
10225 AssertRCReturn(rc2, rc2);
10226 pVCpu->hm.s.fClearTrapFlag = false;
10227 pCtx->eflags.Bits.u1TF = 0;
10228 }
10229 /** @todo there seems to be issues with the resume flag when the monitor trap
10230 * flag is pending without being used. Seen early in bios init when
10231 * accessing APIC page in protected mode. */
10232
10233 /*
10234 * Restore VM-exit control settings as we may not reenter this function the
10235 * next time around.
10236 */
10237 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &DbgState, rcStrict);
10238
10239 /* Restore HMCPU indicators. */
10240 pVCpu->hm.s.fUsingDebugLoop = false;
10241 pVCpu->hm.s.fDebugWantRdTscExit = false;
10242 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
10243
10244 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10245 return rcStrict;
10246}
10247
10248
10249/** @} */
10250
10251
10252/**
10253 * Checks if any expensive dtrace probes are enabled and we should go to the
10254 * debug loop.
10255 *
10256 * @returns true if we should use debug loop, false if not.
10257 */
10258static bool hmR0VmxAnyExpensiveProbesEnabled(void)
10259{
10260 /* It's probably faster to OR the raw 32-bit counter variables together.
10261 Since the variables are in an array and the probes are next to one
10262 another (more or less), we have good locality. So, better read
10263 eight-nine cache lines ever time and only have one conditional, than
10264 128+ conditionals, right? */
10265 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
10266 | VBOXVMM_XCPT_DE_ENABLED_RAW()
10267 | VBOXVMM_XCPT_DB_ENABLED_RAW()
10268 | VBOXVMM_XCPT_BP_ENABLED_RAW()
10269 | VBOXVMM_XCPT_OF_ENABLED_RAW()
10270 | VBOXVMM_XCPT_BR_ENABLED_RAW()
10271 | VBOXVMM_XCPT_UD_ENABLED_RAW()
10272 | VBOXVMM_XCPT_NM_ENABLED_RAW()
10273 | VBOXVMM_XCPT_DF_ENABLED_RAW()
10274 | VBOXVMM_XCPT_TS_ENABLED_RAW()
10275 | VBOXVMM_XCPT_NP_ENABLED_RAW()
10276 | VBOXVMM_XCPT_SS_ENABLED_RAW()
10277 | VBOXVMM_XCPT_GP_ENABLED_RAW()
10278 | VBOXVMM_XCPT_PF_ENABLED_RAW()
10279 | VBOXVMM_XCPT_MF_ENABLED_RAW()
10280 | VBOXVMM_XCPT_AC_ENABLED_RAW()
10281 | VBOXVMM_XCPT_XF_ENABLED_RAW()
10282 | VBOXVMM_XCPT_VE_ENABLED_RAW()
10283 | VBOXVMM_XCPT_SX_ENABLED_RAW()
10284 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
10285 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
10286 ) != 0
10287 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
10288 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
10289 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
10290 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
10291 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
10292 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
10293 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
10294 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
10295 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
10296 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
10297 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
10298 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
10299 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
10300 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
10301 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
10302 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
10303 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
10304 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
10305 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
10306 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
10307 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
10308 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
10309 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
10310 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
10311 | VBOXVMM_INSTR_STR_ENABLED_RAW()
10312 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
10313 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
10314 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
10315 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
10316 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
10317 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
10318 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
10319 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
10320 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
10321 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
10322 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
10323 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
10324 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
10325 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
10326 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
10327 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
10328 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
10329 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
10330 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
10331 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
10332 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
10333 ) != 0
10334 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
10335 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
10336 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
10337 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
10338 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
10339 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
10340 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
10341 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
10342 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
10343 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
10344 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
10345 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
10346 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
10347 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
10348 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
10349 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
10350 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
10351 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
10352 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
10353 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
10354 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
10355 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
10356 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
10357 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
10358 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
10359 | VBOXVMM_EXIT_STR_ENABLED_RAW()
10360 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
10361 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
10362 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
10363 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
10364 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
10365 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
10366 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
10367 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
10368 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
10369 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
10370 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
10371 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
10372 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
10373 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
10374 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
10375 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
10376 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
10377 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
10378 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
10379 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
10380 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
10381 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
10382 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
10383 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
10384 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
10385 ) != 0;
10386}
10387
10388
10389/**
10390 * Runs the guest code using VT-x.
10391 *
10392 * @returns Strict VBox status code (i.e. informational status codes too).
10393 * @param pVM The cross context VM structure.
10394 * @param pVCpu The cross context virtual CPU structure.
10395 * @param pCtx Pointer to the guest-CPU context.
10396 */
10397VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10398{
10399 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10400 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
10401 HMVMX_ASSERT_PREEMPT_SAFE();
10402
10403 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
10404
10405 VBOXSTRICTRC rcStrict;
10406 if ( !pVCpu->hm.s.fUseDebugLoop
10407 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
10408 && !DBGFIsStepping(pVCpu) )
10409 rcStrict = hmR0VmxRunGuestCodeNormal(pVM, pVCpu, pCtx);
10410 else
10411 rcStrict = hmR0VmxRunGuestCodeDebug(pVM, pVCpu, pCtx);
10412
10413 if (rcStrict == VERR_EM_INTERPRETER)
10414 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
10415 else if (rcStrict == VINF_EM_RESET)
10416 rcStrict = VINF_EM_TRIPLE_FAULT;
10417
10418 int rc2 = hmR0VmxExitToRing3(pVM, pVCpu, pCtx, rcStrict);
10419 if (RT_FAILURE(rc2))
10420 {
10421 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
10422 rcStrict = rc2;
10423 }
10424 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
10425 return rcStrict;
10426}
10427
10428
10429#ifndef HMVMX_USE_FUNCTION_TABLE
10430DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
10431{
10432# ifdef DEBUG_ramshankar
10433# define RETURN_EXIT_CALL(a_CallExpr) \
10434 do { \
10435 int rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx); AssertRC(rc2); \
10436 VBOXSTRICTRC rcStrict = a_CallExpr; \
10437 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST); \
10438 return rcStrict; \
10439 } while (0)
10440# else
10441# define RETURN_EXIT_CALL(a_CallExpr) return a_CallExpr
10442# endif
10443 switch (rcReason)
10444 {
10445 case VMX_EXIT_EPT_MISCONFIG: RETURN_EXIT_CALL(hmR0VmxExitEptMisconfig(pVCpu, pMixedCtx, pVmxTransient));
10446 case VMX_EXIT_EPT_VIOLATION: RETURN_EXIT_CALL(hmR0VmxExitEptViolation(pVCpu, pMixedCtx, pVmxTransient));
10447 case VMX_EXIT_IO_INSTR: RETURN_EXIT_CALL(hmR0VmxExitIoInstr(pVCpu, pMixedCtx, pVmxTransient));
10448 case VMX_EXIT_CPUID: RETURN_EXIT_CALL(hmR0VmxExitCpuid(pVCpu, pMixedCtx, pVmxTransient));
10449 case VMX_EXIT_RDTSC: RETURN_EXIT_CALL(hmR0VmxExitRdtsc(pVCpu, pMixedCtx, pVmxTransient));
10450 case VMX_EXIT_RDTSCP: RETURN_EXIT_CALL(hmR0VmxExitRdtscp(pVCpu, pMixedCtx, pVmxTransient));
10451 case VMX_EXIT_APIC_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitApicAccess(pVCpu, pMixedCtx, pVmxTransient));
10452 case VMX_EXIT_XCPT_OR_NMI: RETURN_EXIT_CALL(hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient));
10453 case VMX_EXIT_MOV_CRX: RETURN_EXIT_CALL(hmR0VmxExitMovCRx(pVCpu, pMixedCtx, pVmxTransient));
10454 case VMX_EXIT_EXT_INT: RETURN_EXIT_CALL(hmR0VmxExitExtInt(pVCpu, pMixedCtx, pVmxTransient));
10455 case VMX_EXIT_INT_WINDOW: RETURN_EXIT_CALL(hmR0VmxExitIntWindow(pVCpu, pMixedCtx, pVmxTransient));
10456 case VMX_EXIT_MWAIT: RETURN_EXIT_CALL(hmR0VmxExitMwait(pVCpu, pMixedCtx, pVmxTransient));
10457 case VMX_EXIT_MONITOR: RETURN_EXIT_CALL(hmR0VmxExitMonitor(pVCpu, pMixedCtx, pVmxTransient));
10458 case VMX_EXIT_TASK_SWITCH: RETURN_EXIT_CALL(hmR0VmxExitTaskSwitch(pVCpu, pMixedCtx, pVmxTransient));
10459 case VMX_EXIT_PREEMPT_TIMER: RETURN_EXIT_CALL(hmR0VmxExitPreemptTimer(pVCpu, pMixedCtx, pVmxTransient));
10460 case VMX_EXIT_RDMSR: RETURN_EXIT_CALL(hmR0VmxExitRdmsr(pVCpu, pMixedCtx, pVmxTransient));
10461 case VMX_EXIT_WRMSR: RETURN_EXIT_CALL(hmR0VmxExitWrmsr(pVCpu, pMixedCtx, pVmxTransient));
10462 case VMX_EXIT_MOV_DRX: RETURN_EXIT_CALL(hmR0VmxExitMovDRx(pVCpu, pMixedCtx, pVmxTransient));
10463 case VMX_EXIT_TPR_BELOW_THRESHOLD: RETURN_EXIT_CALL(hmR0VmxExitTprBelowThreshold(pVCpu, pMixedCtx, pVmxTransient));
10464 case VMX_EXIT_HLT: RETURN_EXIT_CALL(hmR0VmxExitHlt(pVCpu, pMixedCtx, pVmxTransient));
10465 case VMX_EXIT_INVD: RETURN_EXIT_CALL(hmR0VmxExitInvd(pVCpu, pMixedCtx, pVmxTransient));
10466 case VMX_EXIT_INVLPG: RETURN_EXIT_CALL(hmR0VmxExitInvlpg(pVCpu, pMixedCtx, pVmxTransient));
10467 case VMX_EXIT_RSM: RETURN_EXIT_CALL(hmR0VmxExitRsm(pVCpu, pMixedCtx, pVmxTransient));
10468 case VMX_EXIT_MTF: RETURN_EXIT_CALL(hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient));
10469 case VMX_EXIT_PAUSE: RETURN_EXIT_CALL(hmR0VmxExitPause(pVCpu, pMixedCtx, pVmxTransient));
10470 case VMX_EXIT_XDTR_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient));
10471 case VMX_EXIT_TR_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient));
10472 case VMX_EXIT_WBINVD: RETURN_EXIT_CALL(hmR0VmxExitWbinvd(pVCpu, pMixedCtx, pVmxTransient));
10473 case VMX_EXIT_XSETBV: RETURN_EXIT_CALL(hmR0VmxExitXsetbv(pVCpu, pMixedCtx, pVmxTransient));
10474 case VMX_EXIT_RDRAND: RETURN_EXIT_CALL(hmR0VmxExitRdrand(pVCpu, pMixedCtx, pVmxTransient));
10475 case VMX_EXIT_INVPCID: RETURN_EXIT_CALL(hmR0VmxExitInvpcid(pVCpu, pMixedCtx, pVmxTransient));
10476 case VMX_EXIT_GETSEC: RETURN_EXIT_CALL(hmR0VmxExitGetsec(pVCpu, pMixedCtx, pVmxTransient));
10477 case VMX_EXIT_RDPMC: RETURN_EXIT_CALL(hmR0VmxExitRdpmc(pVCpu, pMixedCtx, pVmxTransient));
10478 case VMX_EXIT_VMCALL: RETURN_EXIT_CALL(hmR0VmxExitVmcall(pVCpu, pMixedCtx, pVmxTransient));
10479
10480 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pMixedCtx, pVmxTransient);
10481 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pMixedCtx, pVmxTransient);
10482 case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pMixedCtx, pVmxTransient);
10483 case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pMixedCtx, pVmxTransient);
10484 case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pMixedCtx, pVmxTransient);
10485 case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pMixedCtx, pVmxTransient);
10486 case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pMixedCtx, pVmxTransient);
10487 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pMixedCtx, pVmxTransient);
10488 case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pMixedCtx, pVmxTransient);
10489
10490 case VMX_EXIT_VMCLEAR:
10491 case VMX_EXIT_VMLAUNCH:
10492 case VMX_EXIT_VMPTRLD:
10493 case VMX_EXIT_VMPTRST:
10494 case VMX_EXIT_VMREAD:
10495 case VMX_EXIT_VMRESUME:
10496 case VMX_EXIT_VMWRITE:
10497 case VMX_EXIT_VMXOFF:
10498 case VMX_EXIT_VMXON:
10499 case VMX_EXIT_INVEPT:
10500 case VMX_EXIT_INVVPID:
10501 case VMX_EXIT_VMFUNC:
10502 case VMX_EXIT_XSAVES:
10503 case VMX_EXIT_XRSTORS:
10504 return hmR0VmxExitSetPendingXcptUD(pVCpu, pMixedCtx, pVmxTransient);
10505 case VMX_EXIT_RESERVED_60:
10506 case VMX_EXIT_RDSEED: /* only spurious exits, so undefined */
10507 case VMX_EXIT_RESERVED_62:
10508 default:
10509 return hmR0VmxExitErrUndefined(pVCpu, pMixedCtx, pVmxTransient);
10510 }
10511#undef RETURN_EXIT_CALL
10512}
10513#endif /* !HMVMX_USE_FUNCTION_TABLE */
10514
10515
10516#ifdef VBOX_STRICT
10517/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
10518# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
10519 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
10520
10521# define HMVMX_ASSERT_PREEMPT_CPUID() \
10522 do { \
10523 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
10524 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
10525 } while (0)
10526
10527# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
10528 do { \
10529 AssertPtr(pVCpu); \
10530 AssertPtr(pMixedCtx); \
10531 AssertPtr(pVmxTransient); \
10532 Assert(pVmxTransient->fVMEntryFailed == false); \
10533 Assert(ASMIntAreEnabled()); \
10534 HMVMX_ASSERT_PREEMPT_SAFE(); \
10535 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
10536 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", pVCpu->idCpu)); \
10537 HMVMX_ASSERT_PREEMPT_SAFE(); \
10538 if (VMMR0IsLogFlushDisabled(pVCpu)) \
10539 HMVMX_ASSERT_PREEMPT_CPUID(); \
10540 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10541 } while (0)
10542
10543# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() \
10544 do { \
10545 Log4Func(("\n")); \
10546 } while (0)
10547#else /* nonstrict builds: */
10548# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
10549 do { \
10550 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10551 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient); \
10552 } while (0)
10553# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() do { } while (0)
10554#endif
10555
10556
10557/**
10558 * Advances the guest RIP by the specified number of bytes.
10559 *
10560 * @param pVCpu The cross context virtual CPU structure.
10561 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
10562 * out-of-sync. Make sure to update the required fields
10563 * before using them.
10564 * @param cbInstr Number of bytes to advance the RIP by.
10565 *
10566 * @remarks No-long-jump zone!!!
10567 */
10568DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
10569{
10570 /* Advance the RIP. */
10571 pMixedCtx->rip += cbInstr;
10572 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
10573
10574 /* Update interrupt inhibition. */
10575 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
10576 && pMixedCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
10577 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
10578}
10579
10580
10581/**
10582 * Advances the guest RIP after reading it from the VMCS.
10583 *
10584 * @returns VBox status code, no informational status codes.
10585 * @param pVCpu The cross context virtual CPU structure.
10586 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
10587 * out-of-sync. Make sure to update the required fields
10588 * before using them.
10589 * @param pVmxTransient Pointer to the VMX transient structure.
10590 *
10591 * @remarks No-long-jump zone!!!
10592 */
10593static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10594{
10595 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10596 rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
10597 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
10598 AssertRCReturn(rc, rc);
10599
10600 hmR0VmxAdvanceGuestRipBy(pVCpu, pMixedCtx, pVmxTransient->cbInstr);
10601
10602 /*
10603 * Deliver a debug exception to the guest if it is single-stepping. Don't directly inject a #DB but use the
10604 * pending debug exception field as it takes care of priority of events.
10605 *
10606 * See Intel spec. 32.2.1 "Debug Exceptions".
10607 */
10608 if ( !pVCpu->hm.s.fSingleInstruction
10609 && pMixedCtx->eflags.Bits.u1TF)
10610 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
10611
10612 return VINF_SUCCESS;
10613}
10614
10615
10616/**
10617 * Tries to determine what part of the guest-state VT-x has deemed as invalid
10618 * and update error record fields accordingly.
10619 *
10620 * @return VMX_IGS_* return codes.
10621 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
10622 * wrong with the guest state.
10623 *
10624 * @param pVM The cross context VM structure.
10625 * @param pVCpu The cross context virtual CPU structure.
10626 * @param pCtx Pointer to the guest-CPU state.
10627 *
10628 * @remarks This function assumes our cache of the VMCS controls
10629 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
10630 */
10631static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10632{
10633#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
10634#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
10635 uError = (err); \
10636 break; \
10637 } else do { } while (0)
10638
10639 int rc;
10640 uint32_t uError = VMX_IGS_ERROR;
10641 uint32_t u32Val;
10642 bool fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
10643
10644 do
10645 {
10646 /*
10647 * CR0.
10648 */
10649 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10650 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10651 /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
10652 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
10653 if (fUnrestrictedGuest)
10654 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
10655
10656 uint32_t u32GuestCR0;
10657 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCR0);
10658 AssertRCBreak(rc);
10659 HMVMX_CHECK_BREAK((u32GuestCR0 & uSetCR0) == uSetCR0, VMX_IGS_CR0_FIXED1);
10660 HMVMX_CHECK_BREAK(!(u32GuestCR0 & ~uZapCR0), VMX_IGS_CR0_FIXED0);
10661 if ( !fUnrestrictedGuest
10662 && (u32GuestCR0 & X86_CR0_PG)
10663 && !(u32GuestCR0 & X86_CR0_PE))
10664 {
10665 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
10666 }
10667
10668 /*
10669 * CR4.
10670 */
10671 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10672 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10673
10674 uint32_t u32GuestCR4;
10675 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCR4);
10676 AssertRCBreak(rc);
10677 HMVMX_CHECK_BREAK((u32GuestCR4 & uSetCR4) == uSetCR4, VMX_IGS_CR4_FIXED1);
10678 HMVMX_CHECK_BREAK(!(u32GuestCR4 & ~uZapCR4), VMX_IGS_CR4_FIXED0);
10679
10680 /*
10681 * IA32_DEBUGCTL MSR.
10682 */
10683 uint64_t u64Val;
10684 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
10685 AssertRCBreak(rc);
10686 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
10687 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
10688 {
10689 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
10690 }
10691 uint64_t u64DebugCtlMsr = u64Val;
10692
10693#ifdef VBOX_STRICT
10694 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
10695 AssertRCBreak(rc);
10696 Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
10697#endif
10698 bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
10699
10700 /*
10701 * RIP and RFLAGS.
10702 */
10703 uint32_t u32Eflags;
10704#if HC_ARCH_BITS == 64
10705 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
10706 AssertRCBreak(rc);
10707 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
10708 if ( !fLongModeGuest
10709 || !pCtx->cs.Attr.n.u1Long)
10710 {
10711 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
10712 }
10713 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
10714 * must be identical if the "IA-32e mode guest" VM-entry
10715 * control is 1 and CS.L is 1. No check applies if the
10716 * CPU supports 64 linear-address bits. */
10717
10718 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
10719 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
10720 AssertRCBreak(rc);
10721 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
10722 VMX_IGS_RFLAGS_RESERVED);
10723 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10724 u32Eflags = u64Val;
10725#else
10726 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
10727 AssertRCBreak(rc);
10728 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
10729 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10730#endif
10731
10732 if ( fLongModeGuest
10733 || ( fUnrestrictedGuest
10734 && !(u32GuestCR0 & X86_CR0_PE)))
10735 {
10736 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
10737 }
10738
10739 uint32_t u32EntryInfo;
10740 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
10741 AssertRCBreak(rc);
10742 if ( VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
10743 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
10744 {
10745 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
10746 }
10747
10748 /*
10749 * 64-bit checks.
10750 */
10751#if HC_ARCH_BITS == 64
10752 if (fLongModeGuest)
10753 {
10754 HMVMX_CHECK_BREAK(u32GuestCR0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
10755 HMVMX_CHECK_BREAK(u32GuestCR4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
10756 }
10757
10758 if ( !fLongModeGuest
10759 && (u32GuestCR4 & X86_CR4_PCIDE))
10760 {
10761 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
10762 }
10763
10764 /** @todo CR3 field must be such that bits 63:52 and bits in the range
10765 * 51:32 beyond the processor's physical-address width are 0. */
10766
10767 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
10768 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
10769 {
10770 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
10771 }
10772
10773 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
10774 AssertRCBreak(rc);
10775 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
10776
10777 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
10778 AssertRCBreak(rc);
10779 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
10780#endif
10781
10782 /*
10783 * PERF_GLOBAL MSR.
10784 */
10785 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR)
10786 {
10787 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
10788 AssertRCBreak(rc);
10789 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
10790 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
10791 }
10792
10793 /*
10794 * PAT MSR.
10795 */
10796 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR)
10797 {
10798 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
10799 AssertRCBreak(rc);
10800 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
10801 for (unsigned i = 0; i < 8; i++)
10802 {
10803 uint8_t u8Val = (u64Val & 0xff);
10804 if ( u8Val != 0 /* UC */
10805 && u8Val != 1 /* WC */
10806 && u8Val != 4 /* WT */
10807 && u8Val != 5 /* WP */
10808 && u8Val != 6 /* WB */
10809 && u8Val != 7 /* UC- */)
10810 {
10811 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
10812 }
10813 u64Val >>= 8;
10814 }
10815 }
10816
10817 /*
10818 * EFER MSR.
10819 */
10820 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
10821 {
10822 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
10823 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
10824 AssertRCBreak(rc);
10825 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
10826 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
10827 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVCpu->hm.s.vmx.u32EntryCtls
10828 & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST),
10829 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
10830 HMVMX_CHECK_BREAK( fUnrestrictedGuest
10831 || !(u32GuestCR0 & X86_CR0_PG)
10832 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
10833 VMX_IGS_EFER_LMA_LME_MISMATCH);
10834 }
10835
10836 /*
10837 * Segment registers.
10838 */
10839 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10840 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
10841 if (!(u32Eflags & X86_EFL_VM))
10842 {
10843 /* CS */
10844 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
10845 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
10846 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
10847 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
10848 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10849 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
10850 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10851 /* CS cannot be loaded with NULL in protected mode. */
10852 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
10853 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
10854 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
10855 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
10856 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
10857 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
10858 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
10859 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
10860 else
10861 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
10862
10863 /* SS */
10864 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10865 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
10866 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
10867 if ( !(pCtx->cr0 & X86_CR0_PE)
10868 || pCtx->cs.Attr.n.u4Type == 3)
10869 {
10870 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
10871 }
10872 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
10873 {
10874 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
10875 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
10876 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
10877 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
10878 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
10879 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10880 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
10881 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10882 }
10883
10884 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
10885 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
10886 {
10887 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
10888 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
10889 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10890 || pCtx->ds.Attr.n.u4Type > 11
10891 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10892 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
10893 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
10894 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
10895 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10896 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
10897 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10898 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10899 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
10900 }
10901 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
10902 {
10903 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
10904 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
10905 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10906 || pCtx->es.Attr.n.u4Type > 11
10907 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10908 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
10909 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
10910 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
10911 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10912 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
10913 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10914 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10915 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
10916 }
10917 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
10918 {
10919 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
10920 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
10921 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10922 || pCtx->fs.Attr.n.u4Type > 11
10923 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
10924 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
10925 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
10926 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
10927 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10928 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
10929 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10930 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10931 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
10932 }
10933 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
10934 {
10935 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
10936 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
10937 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10938 || pCtx->gs.Attr.n.u4Type > 11
10939 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
10940 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
10941 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
10942 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
10943 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10944 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
10945 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10946 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10947 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
10948 }
10949 /* 64-bit capable CPUs. */
10950#if HC_ARCH_BITS == 64
10951 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10952 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10953 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10954 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10955 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10956 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
10957 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10958 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
10959 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10960 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
10961 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10962#endif
10963 }
10964 else
10965 {
10966 /* V86 mode checks. */
10967 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
10968 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
10969 {
10970 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
10971 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
10972 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
10973 }
10974 else
10975 {
10976 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
10977 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
10978 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
10979 }
10980
10981 /* CS */
10982 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
10983 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
10984 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
10985 /* SS */
10986 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
10987 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
10988 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
10989 /* DS */
10990 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
10991 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
10992 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
10993 /* ES */
10994 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
10995 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
10996 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
10997 /* FS */
10998 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
10999 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
11000 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
11001 /* GS */
11002 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
11003 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
11004 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
11005 /* 64-bit capable CPUs. */
11006#if HC_ARCH_BITS == 64
11007 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
11008 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
11009 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
11010 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
11011 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
11012 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
11013 VMX_IGS_LONGMODE_SS_BASE_INVALID);
11014 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
11015 VMX_IGS_LONGMODE_DS_BASE_INVALID);
11016 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
11017 VMX_IGS_LONGMODE_ES_BASE_INVALID);
11018#endif
11019 }
11020
11021 /*
11022 * TR.
11023 */
11024 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
11025 /* 64-bit capable CPUs. */
11026#if HC_ARCH_BITS == 64
11027 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
11028#endif
11029 if (fLongModeGuest)
11030 {
11031 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
11032 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
11033 }
11034 else
11035 {
11036 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
11037 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
11038 VMX_IGS_TR_ATTR_TYPE_INVALID);
11039 }
11040 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
11041 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
11042 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
11043 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
11044 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
11045 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
11046 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
11047 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
11048
11049 /*
11050 * GDTR and IDTR.
11051 */
11052#if HC_ARCH_BITS == 64
11053 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
11054 AssertRCBreak(rc);
11055 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
11056
11057 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
11058 AssertRCBreak(rc);
11059 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
11060#endif
11061
11062 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
11063 AssertRCBreak(rc);
11064 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
11065
11066 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
11067 AssertRCBreak(rc);
11068 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
11069
11070 /*
11071 * Guest Non-Register State.
11072 */
11073 /* Activity State. */
11074 uint32_t u32ActivityState;
11075 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
11076 AssertRCBreak(rc);
11077 HMVMX_CHECK_BREAK( !u32ActivityState
11078 || (u32ActivityState & MSR_IA32_VMX_MISC_ACTIVITY_STATES(pVM->hm.s.vmx.Msrs.u64Misc)),
11079 VMX_IGS_ACTIVITY_STATE_INVALID);
11080 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
11081 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
11082 uint32_t u32IntrState;
11083 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &u32IntrState);
11084 AssertRCBreak(rc);
11085 if ( u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
11086 || u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11087 {
11088 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
11089 }
11090
11091 /** @todo Activity state and injecting interrupts. Left as a todo since we
11092 * currently don't use activity states but ACTIVE. */
11093
11094 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
11095 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
11096
11097 /* Guest interruptibility-state. */
11098 HMVMX_CHECK_BREAK(!(u32IntrState & 0xfffffff0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
11099 HMVMX_CHECK_BREAK((u32IntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
11100 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS))
11101 != ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
11102 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11103 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
11104 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
11105 || !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
11106 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
11107 if (VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo))
11108 {
11109 if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
11110 {
11111 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11112 && !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11113 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
11114 }
11115 else if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11116 {
11117 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11118 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
11119 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
11120 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
11121 }
11122 }
11123 /** @todo Assumes the processor is not in SMM. */
11124 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
11125 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
11126 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
11127 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
11128 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
11129 if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
11130 && VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
11131 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11132 {
11133 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI),
11134 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
11135 }
11136
11137 /* Pending debug exceptions. */
11138#if HC_ARCH_BITS == 64
11139 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u64Val);
11140 AssertRCBreak(rc);
11141 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
11142 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
11143 u32Val = u64Val; /* For pending debug exceptions checks below. */
11144#else
11145 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u32Val);
11146 AssertRCBreak(rc);
11147 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
11148 HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
11149#endif
11150
11151 if ( (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11152 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS)
11153 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
11154 {
11155 if ( (u32Eflags & X86_EFL_TF)
11156 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11157 {
11158 /* Bit 14 is PendingDebug.BS. */
11159 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
11160 }
11161 if ( !(u32Eflags & X86_EFL_TF)
11162 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11163 {
11164 /* Bit 14 is PendingDebug.BS. */
11165 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
11166 }
11167 }
11168
11169 /* VMCS link pointer. */
11170 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
11171 AssertRCBreak(rc);
11172 if (u64Val != UINT64_C(0xffffffffffffffff))
11173 {
11174 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
11175 /** @todo Bits beyond the processor's physical-address width MBZ. */
11176 /** @todo 32-bit located in memory referenced by value of this field (as a
11177 * physical address) must contain the processor's VMCS revision ID. */
11178 /** @todo SMM checks. */
11179 }
11180
11181 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
11182 * not using Nested Paging? */
11183 if ( pVM->hm.s.fNestedPaging
11184 && !fLongModeGuest
11185 && CPUMIsGuestInPAEModeEx(pCtx))
11186 {
11187 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
11188 AssertRCBreak(rc);
11189 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11190
11191 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
11192 AssertRCBreak(rc);
11193 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11194
11195 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
11196 AssertRCBreak(rc);
11197 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11198
11199 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
11200 AssertRCBreak(rc);
11201 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11202 }
11203
11204 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
11205 if (uError == VMX_IGS_ERROR)
11206 uError = VMX_IGS_REASON_NOT_FOUND;
11207 } while (0);
11208
11209 pVCpu->hm.s.u32HMError = uError;
11210 return uError;
11211
11212#undef HMVMX_ERROR_BREAK
11213#undef HMVMX_CHECK_BREAK
11214}
11215
11216/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11217/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
11218/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11219
11220/** @name VM-exit handlers.
11221 * @{
11222 */
11223
11224/**
11225 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
11226 */
11227HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11228{
11229 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11230 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
11231 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
11232 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
11233 return VINF_SUCCESS;
11234 return VINF_EM_RAW_INTERRUPT;
11235}
11236
11237
11238/**
11239 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
11240 */
11241HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11242{
11243 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11244 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
11245
11246 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11247 AssertRCReturn(rc, rc);
11248
11249 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
11250 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT)
11251 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
11252 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
11253
11254 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11255 {
11256 /*
11257 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we injected it ourselves and
11258 * anything we inject is not going to cause a VM-exit directly for the event being injected.
11259 * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
11260 *
11261 * Dispatch the NMI to the host. See Intel spec. 27.5.5 "Updating Non-Register State".
11262 */
11263 VMXDispatchHostNmi();
11264 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
11265 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11266 return VINF_SUCCESS;
11267 }
11268
11269 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11270 VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
11271 if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
11272 { /* likely */ }
11273 else
11274 {
11275 if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
11276 rcStrictRc1 = VINF_SUCCESS;
11277 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11278 return rcStrictRc1;
11279 }
11280
11281 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
11282 uint32_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(uExitIntInfo);
11283 switch (uIntType)
11284 {
11285 case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
11286 Assert(uVector == X86_XCPT_DB);
11287 /* no break */
11288 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
11289 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT);
11290 /* no break */
11291 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
11292 {
11293 /*
11294 * If there's any exception caused as a result of event injection, go back to
11295 * the interpreter. The page-fault case is complicated and we manually handle
11296 * any currently pending event in hmR0VmxExitXcptPF. Nested #ACs are already
11297 * handled in hmR0VmxCheckExitDueToEventDelivery.
11298 */
11299 if (!pVCpu->hm.s.Event.fPending)
11300 { /* likely */ }
11301 else if ( uVector != X86_XCPT_PF
11302 && uVector != X86_XCPT_AC)
11303 {
11304 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
11305 rc = VERR_EM_INTERPRETER;
11306 break;
11307 }
11308
11309 switch (uVector)
11310 {
11311 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pMixedCtx, pVmxTransient); break;
11312 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pMixedCtx, pVmxTransient); break;
11313 case X86_XCPT_NM: rc = hmR0VmxExitXcptNM(pVCpu, pMixedCtx, pVmxTransient); break;
11314 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pMixedCtx, pVmxTransient); break;
11315 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pMixedCtx, pVmxTransient); break;
11316 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pMixedCtx, pVmxTransient); break;
11317 case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pMixedCtx, pVmxTransient); break;
11318
11319 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
11320 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11321 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
11322 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11323 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
11324 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11325 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
11326 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11327 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
11328 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11329 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
11330 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11331 default:
11332 {
11333 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11334 AssertRCReturn(rc, rc);
11335
11336 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
11337 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11338 {
11339 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
11340 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
11341 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
11342
11343 rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11344 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11345 AssertRCReturn(rc, rc);
11346 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
11347 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
11348 0 /* GCPtrFaultAddress */);
11349 AssertRCReturn(rc, rc);
11350 }
11351 else
11352 {
11353 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
11354 pVCpu->hm.s.u32HMError = uVector;
11355 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
11356 }
11357 break;
11358 }
11359 }
11360 break;
11361 }
11362
11363 default:
11364 {
11365 pVCpu->hm.s.u32HMError = uExitIntInfo;
11366 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
11367 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INTERRUPTION_INFO_TYPE(uExitIntInfo)));
11368 break;
11369 }
11370 }
11371 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11372 return rc;
11373}
11374
11375
11376/**
11377 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
11378 */
11379HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11380{
11381 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11382
11383 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
11384 hmR0VmxClearIntWindowExitVmcs(pVCpu);
11385
11386 /* Deliver the pending interrupts via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11387 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
11388 return VINF_SUCCESS;
11389}
11390
11391
11392/**
11393 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
11394 */
11395HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11396{
11397 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11398 if (RT_UNLIKELY(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)))
11399 {
11400 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
11401 HMVMX_RETURN_UNEXPECTED_EXIT();
11402 }
11403
11404 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS));
11405
11406 /*
11407 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
11408 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
11409 */
11410 uint32_t uIntrState = 0;
11411 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
11412 AssertRCReturn(rc, rc);
11413
11414 bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
11415 if ( fBlockSti
11416 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
11417 {
11418 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
11419 }
11420
11421 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
11422 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
11423
11424 /* Deliver the pending NMI via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11425 return VINF_SUCCESS;
11426}
11427
11428
11429/**
11430 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
11431 */
11432HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11433{
11434 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11435 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
11436 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11437}
11438
11439
11440/**
11441 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
11442 */
11443HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11444{
11445 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11446 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
11447 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11448}
11449
11450
11451/**
11452 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
11453 */
11454HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11455{
11456 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11457 PVM pVM = pVCpu->CTX_SUFF(pVM);
11458 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11459 if (RT_LIKELY(rc == VINF_SUCCESS))
11460 {
11461 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11462 Assert(pVmxTransient->cbInstr == 2);
11463 }
11464 else
11465 {
11466 AssertMsgFailed(("hmR0VmxExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
11467 rc = VERR_EM_INTERPRETER;
11468 }
11469 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
11470 return rc;
11471}
11472
11473
11474/**
11475 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
11476 */
11477HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11478{
11479 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11480 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11481 AssertRCReturn(rc, rc);
11482
11483 if (pMixedCtx->cr4 & X86_CR4_SMXE)
11484 return VINF_EM_RAW_EMULATE_INSTR;
11485
11486 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
11487 HMVMX_RETURN_UNEXPECTED_EXIT();
11488}
11489
11490
11491/**
11492 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
11493 */
11494HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11495{
11496 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11497 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11498 AssertRCReturn(rc, rc);
11499
11500 PVM pVM = pVCpu->CTX_SUFF(pVM);
11501 rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11502 if (RT_LIKELY(rc == VINF_SUCCESS))
11503 {
11504 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11505 Assert(pVmxTransient->cbInstr == 2);
11506 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
11507 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
11508 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11509 }
11510 else
11511 rc = VERR_EM_INTERPRETER;
11512 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
11513 return rc;
11514}
11515
11516
11517/**
11518 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
11519 */
11520HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11521{
11522 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11523 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11524 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx); /* For MSR_K8_TSC_AUX */
11525 AssertRCReturn(rc, rc);
11526
11527 PVM pVM = pVCpu->CTX_SUFF(pVM);
11528 rc = EMInterpretRdtscp(pVM, pVCpu, pMixedCtx);
11529 if (RT_SUCCESS(rc))
11530 {
11531 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11532 Assert(pVmxTransient->cbInstr == 3);
11533 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
11534 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
11535 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11536 }
11537 else
11538 {
11539 AssertMsgFailed(("hmR0VmxExitRdtscp: EMInterpretRdtscp failed with %Rrc\n", rc));
11540 rc = VERR_EM_INTERPRETER;
11541 }
11542 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
11543 return rc;
11544}
11545
11546
11547/**
11548 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
11549 */
11550HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11551{
11552 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11553 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11554 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11555 AssertRCReturn(rc, rc);
11556
11557 PVM pVM = pVCpu->CTX_SUFF(pVM);
11558 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11559 if (RT_LIKELY(rc == VINF_SUCCESS))
11560 {
11561 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11562 Assert(pVmxTransient->cbInstr == 2);
11563 }
11564 else
11565 {
11566 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
11567 rc = VERR_EM_INTERPRETER;
11568 }
11569 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
11570 return rc;
11571}
11572
11573
11574/**
11575 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
11576 */
11577HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11578{
11579 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11580 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmcall);
11581
11582 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
11583 if (pVCpu->hm.s.fHypercallsEnabled)
11584 {
11585#if 0
11586 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11587#else
11588 /* Aggressive state sync. for now. */
11589 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
11590 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* For long-mode checks in gimKvmHypercall(). */
11591 AssertRCReturn(rc, rc);
11592#endif
11593
11594 /* Perform the hypercall. */
11595 rcStrict = GIMHypercall(pVCpu, pMixedCtx);
11596 if (rcStrict == VINF_SUCCESS)
11597 {
11598 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11599 AssertRCReturn(rc, rc);
11600 }
11601 else
11602 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
11603 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
11604 || RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
11605
11606 /* If the hypercall changes anything other than guest's general-purpose registers,
11607 we would need to reload the guest changed bits here before VM-entry. */
11608 }
11609 else
11610 Log4(("hmR0VmxExitVmcall: Hypercalls not enabled\n"));
11611
11612 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
11613 if (RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)))
11614 {
11615 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
11616 rcStrict = VINF_SUCCESS;
11617 }
11618
11619 return rcStrict;
11620}
11621
11622
11623/**
11624 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
11625 */
11626HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11627{
11628 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11629 PVM pVM = pVCpu->CTX_SUFF(pVM);
11630 Assert(!pVM->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
11631
11632 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11633 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
11634 AssertRCReturn(rc, rc);
11635
11636 VBOXSTRICTRC rcStrict = EMInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), pVmxTransient->uExitQualification);
11637 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11638 rcStrict = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11639 else
11640 AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("hmR0VmxExitInvlpg: EMInterpretInvlpg %#RX64 failed with %Rrc\n",
11641 pVmxTransient->uExitQualification, VBOXSTRICTRC_VAL(rcStrict)));
11642 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
11643 return rcStrict;
11644}
11645
11646
11647/**
11648 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
11649 */
11650HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11651{
11652 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11653 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11654 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
11655 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11656 AssertRCReturn(rc, rc);
11657
11658 PVM pVM = pVCpu->CTX_SUFF(pVM);
11659 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11660 if (RT_LIKELY(rc == VINF_SUCCESS))
11661 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11662 else
11663 {
11664 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
11665 rc = VERR_EM_INTERPRETER;
11666 }
11667 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
11668 return rc;
11669}
11670
11671
11672/**
11673 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
11674 */
11675HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11676{
11677 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11678 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11679 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
11680 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11681 AssertRCReturn(rc, rc);
11682
11683 PVM pVM = pVCpu->CTX_SUFF(pVM);
11684 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11685 rc = VBOXSTRICTRC_VAL(rc2);
11686 if (RT_LIKELY( rc == VINF_SUCCESS
11687 || rc == VINF_EM_HALT))
11688 {
11689 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11690 AssertRCReturn(rc3, rc3);
11691
11692 if ( rc == VINF_EM_HALT
11693 && EMMonitorWaitShouldContinue(pVCpu, pMixedCtx))
11694 {
11695 rc = VINF_SUCCESS;
11696 }
11697 }
11698 else
11699 {
11700 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
11701 rc = VERR_EM_INTERPRETER;
11702 }
11703 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
11704 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
11705 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
11706 return rc;
11707}
11708
11709
11710/**
11711 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
11712 */
11713HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11714{
11715 /*
11716 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root mode. In theory, we should never
11717 * get this VM-exit. This can happen only if dual-monitor treatment of SMI and VMX is enabled, which can (only?) be done by
11718 * executing VMCALL in VMX root operation. If we get here, something funny is going on.
11719 * See Intel spec. "33.15.5 Enabling the Dual-Monitor Treatment".
11720 */
11721 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11722 AssertMsgFailed(("Unexpected RSM VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11723 HMVMX_RETURN_UNEXPECTED_EXIT();
11724}
11725
11726
11727/**
11728 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
11729 */
11730HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11731{
11732 /*
11733 * This can only happen if we support dual-monitor treatment of SMI, which can be activated by executing VMCALL in VMX
11734 * root operation. Only an STM (SMM transfer monitor) would get this VM-exit when we (the executive monitor) execute a VMCALL
11735 * in VMX root mode or receive an SMI. If we get here, something funny is going on.
11736 * See Intel spec. "33.15.6 Activating the Dual-Monitor Treatment" and Intel spec. 25.3 "Other Causes of VM-Exits"
11737 */
11738 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11739 AssertMsgFailed(("Unexpected SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11740 HMVMX_RETURN_UNEXPECTED_EXIT();
11741}
11742
11743
11744/**
11745 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
11746 */
11747HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11748{
11749 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
11750 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11751 AssertMsgFailed(("Unexpected IO SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11752 HMVMX_RETURN_UNEXPECTED_EXIT();
11753}
11754
11755
11756/**
11757 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
11758 */
11759HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11760{
11761 /*
11762 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used. We currently
11763 * don't make use of it (see hmR0VmxLoadGuestActivityState()) as our guests don't have direct access to the host LAPIC.
11764 * See Intel spec. 25.3 "Other Causes of VM-exits".
11765 */
11766 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11767 AssertMsgFailed(("Unexpected SIPI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11768 HMVMX_RETURN_UNEXPECTED_EXIT();
11769}
11770
11771
11772/**
11773 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
11774 * VM-exit.
11775 */
11776HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11777{
11778 /*
11779 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
11780 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
11781 *
11782 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
11783 * See Intel spec. "23.8 Restrictions on VMX operation".
11784 */
11785 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11786 return VINF_SUCCESS;
11787}
11788
11789
11790/**
11791 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
11792 * VM-exit.
11793 */
11794HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11795{
11796 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11797 return VINF_EM_RESET;
11798}
11799
11800
11801/**
11802 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
11803 */
11804HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11805{
11806 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11807 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
11808
11809 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11810 AssertRCReturn(rc, rc);
11811
11812 if (EMShouldContinueAfterHalt(pVCpu, pMixedCtx)) /* Requires eflags. */
11813 rc = VINF_SUCCESS;
11814 else
11815 rc = VINF_EM_HALT;
11816
11817 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
11818 if (rc != VINF_SUCCESS)
11819 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
11820 return rc;
11821}
11822
11823
11824/**
11825 * VM-exit handler for instructions that result in a \#UD exception delivered to
11826 * the guest.
11827 */
11828HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11829{
11830 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11831 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
11832 return VINF_SUCCESS;
11833}
11834
11835
11836/**
11837 * VM-exit handler for expiry of the VMX preemption timer.
11838 */
11839HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11840{
11841 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11842
11843 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
11844 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11845
11846 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
11847 PVM pVM = pVCpu->CTX_SUFF(pVM);
11848 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
11849 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
11850 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
11851}
11852
11853
11854/**
11855 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
11856 */
11857HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11858{
11859 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11860
11861 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11862 rc |= hmR0VmxSaveGuestRegsForIemExec(pVCpu, pMixedCtx, false /*fMemory*/, false /*fNeedRsp*/);
11863 rc |= hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11864 AssertRCReturn(rc, rc);
11865
11866 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
11867 HMCPU_CF_SET(pVCpu, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS : HM_CHANGED_ALL_GUEST);
11868
11869 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pMixedCtx->cr4 & X86_CR4_OSXSAVE) && pMixedCtx->aXcr[0] != ASMGetXcr0();
11870
11871 return rcStrict;
11872}
11873
11874
11875/**
11876 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
11877 */
11878HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11879{
11880 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11881
11882 /* The guest should not invalidate the host CPU's TLBs, fallback to interpreter. */
11883 /** @todo implement EMInterpretInvpcid() */
11884 return VERR_EM_INTERPRETER;
11885}
11886
11887
11888/**
11889 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
11890 * Error VM-exit.
11891 */
11892HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11893{
11894 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11895 AssertRCReturn(rc, rc);
11896
11897 rc = hmR0VmxCheckVmcsCtls(pVCpu);
11898 AssertRCReturn(rc, rc);
11899
11900 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
11901 NOREF(uInvalidReason);
11902
11903#ifdef VBOX_STRICT
11904 uint32_t uIntrState;
11905 RTHCUINTREG uHCReg;
11906 uint64_t u64Val;
11907 uint32_t u32Val;
11908
11909 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
11910 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
11911 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
11912 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
11913 AssertRCReturn(rc, rc);
11914
11915 Log4(("uInvalidReason %u\n", uInvalidReason));
11916 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
11917 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
11918 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
11919 Log4(("VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE %#RX32\n", uIntrState));
11920
11921 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
11922 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
11923 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
11924 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
11925 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
11926 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11927 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
11928 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
11929 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
11930 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11931 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
11932 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
11933#else
11934 NOREF(pVmxTransient);
11935#endif
11936
11937 HMDumpRegs(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
11938 return VERR_VMX_INVALID_GUEST_STATE;
11939}
11940
11941
11942/**
11943 * VM-exit handler for VM-entry failure due to an MSR-load
11944 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
11945 */
11946HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11947{
11948 NOREF(pVmxTransient);
11949 AssertMsgFailed(("Unexpected MSR-load exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
11950 HMVMX_RETURN_UNEXPECTED_EXIT();
11951}
11952
11953
11954/**
11955 * VM-exit handler for VM-entry failure due to a machine-check event
11956 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
11957 */
11958HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11959{
11960 NOREF(pVmxTransient);
11961 AssertMsgFailed(("Unexpected machine-check event exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
11962 HMVMX_RETURN_UNEXPECTED_EXIT();
11963}
11964
11965
11966/**
11967 * VM-exit handler for all undefined reasons. Should never ever happen.. in
11968 * theory.
11969 */
11970HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11971{
11972 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d. pVCpu=%p pMixedCtx=%p\n", pVmxTransient->uExitReason, pVCpu, pMixedCtx));
11973 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient);
11974 return VERR_VMX_UNDEFINED_EXIT_CODE;
11975}
11976
11977
11978/**
11979 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
11980 * (VMX_EXIT_XDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
11981 * Conditional VM-exit.
11982 */
11983HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11984{
11985 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11986
11987 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT. */
11988 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
11989 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT)
11990 return VERR_EM_INTERPRETER;
11991 AssertMsgFailed(("Unexpected XDTR access. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11992 HMVMX_RETURN_UNEXPECTED_EXIT();
11993}
11994
11995
11996/**
11997 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
11998 */
11999HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12000{
12001 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12002
12003 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT. */
12004 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdrand);
12005 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT)
12006 return VERR_EM_INTERPRETER;
12007 AssertMsgFailed(("Unexpected RDRAND exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12008 HMVMX_RETURN_UNEXPECTED_EXIT();
12009}
12010
12011
12012/**
12013 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
12014 */
12015HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12016{
12017 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12018
12019 /* EMInterpretRdmsr() requires CR0, Eflags and SS segment register. */
12020 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
12021 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
12022 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12023 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12024 {
12025 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
12026 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
12027 }
12028 AssertRCReturn(rc, rc);
12029 Log4(("ecx=%#RX32\n", pMixedCtx->ecx));
12030
12031#ifdef VBOX_STRICT
12032 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
12033 {
12034 if ( hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx)
12035 && pMixedCtx->ecx != MSR_K6_EFER)
12036 {
12037 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12038 pMixedCtx->ecx));
12039 HMVMX_RETURN_UNEXPECTED_EXIT();
12040 }
12041 if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12042 {
12043 VMXMSREXITREAD enmRead;
12044 VMXMSREXITWRITE enmWrite;
12045 int rc2 = hmR0VmxGetMsrPermission(pVCpu, pMixedCtx->ecx, &enmRead, &enmWrite);
12046 AssertRCReturn(rc2, rc2);
12047 if (enmRead == VMXMSREXIT_PASSTHRU_READ)
12048 {
12049 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
12050 HMVMX_RETURN_UNEXPECTED_EXIT();
12051 }
12052 }
12053 }
12054#endif
12055
12056 PVM pVM = pVCpu->CTX_SUFF(pVM);
12057 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
12058 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER,
12059 ("hmR0VmxExitRdmsr: failed, invalid error code %Rrc\n", rc));
12060 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
12061 if (RT_SUCCESS(rc))
12062 {
12063 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12064 Assert(pVmxTransient->cbInstr == 2);
12065 }
12066 return rc;
12067}
12068
12069
12070/**
12071 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
12072 */
12073HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12074{
12075 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12076 PVM pVM = pVCpu->CTX_SUFF(pVM);
12077 int rc = VINF_SUCCESS;
12078
12079 /* EMInterpretWrmsr() requires CR0, EFLAGS and SS segment register. */
12080 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
12081 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
12082 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12083 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12084 {
12085 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
12086 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
12087 }
12088 AssertRCReturn(rc, rc);
12089 Log4(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", pMixedCtx->ecx, pMixedCtx->edx, pMixedCtx->eax));
12090
12091 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
12092 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER, ("hmR0VmxExitWrmsr: failed, invalid error code %Rrc\n", rc));
12093 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
12094
12095 if (RT_SUCCESS(rc))
12096 {
12097 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12098
12099 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
12100 if ( pMixedCtx->ecx == MSR_IA32_APICBASE
12101 || ( pMixedCtx->ecx >= MSR_IA32_X2APIC_START
12102 && pMixedCtx->ecx <= MSR_IA32_X2APIC_END))
12103 {
12104 /* We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
12105 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before
12106 EMInterpretWrmsr() changes it. */
12107 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
12108 }
12109 else if (pMixedCtx->ecx == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
12110 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
12111 else if (pMixedCtx->ecx == MSR_K6_EFER)
12112 {
12113 /*
12114 * If the guest touches EFER we need to update the VM-Entry and VM-Exit controls as well,
12115 * even if it is -not- touching bits that cause paging mode changes (LMA/LME). We care about
12116 * the other bits as well, SCE and NXE. See @bugref{7368}.
12117 */
12118 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_CTLS | HM_CHANGED_VMX_EXIT_CTLS);
12119 }
12120
12121 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
12122 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12123 {
12124 switch (pMixedCtx->ecx)
12125 {
12126 case MSR_IA32_SYSENTER_CS: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
12127 case MSR_IA32_SYSENTER_EIP: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
12128 case MSR_IA32_SYSENTER_ESP: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
12129 case MSR_K8_FS_BASE: /* no break */
12130 case MSR_K8_GS_BASE: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS); break;
12131 case MSR_K6_EFER: /* already handled above */ break;
12132 default:
12133 {
12134 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
12135 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
12136 else if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12137 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
12138 break;
12139 }
12140 }
12141 }
12142#ifdef VBOX_STRICT
12143 else
12144 {
12145 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
12146 switch (pMixedCtx->ecx)
12147 {
12148 case MSR_IA32_SYSENTER_CS:
12149 case MSR_IA32_SYSENTER_EIP:
12150 case MSR_IA32_SYSENTER_ESP:
12151 case MSR_K8_FS_BASE:
12152 case MSR_K8_GS_BASE:
12153 {
12154 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", pMixedCtx->ecx));
12155 HMVMX_RETURN_UNEXPECTED_EXIT();
12156 }
12157
12158 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
12159 default:
12160 {
12161 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
12162 {
12163 /* EFER writes are always intercepted, see hmR0VmxLoadGuestMsrs(). */
12164 if (pMixedCtx->ecx != MSR_K6_EFER)
12165 {
12166 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12167 pMixedCtx->ecx));
12168 HMVMX_RETURN_UNEXPECTED_EXIT();
12169 }
12170 }
12171
12172 if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12173 {
12174 VMXMSREXITREAD enmRead;
12175 VMXMSREXITWRITE enmWrite;
12176 int rc2 = hmR0VmxGetMsrPermission(pVCpu, pMixedCtx->ecx, &enmRead, &enmWrite);
12177 AssertRCReturn(rc2, rc2);
12178 if (enmWrite == VMXMSREXIT_PASSTHRU_WRITE)
12179 {
12180 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
12181 HMVMX_RETURN_UNEXPECTED_EXIT();
12182 }
12183 }
12184 break;
12185 }
12186 }
12187 }
12188#endif /* VBOX_STRICT */
12189 }
12190 return rc;
12191}
12192
12193
12194/**
12195 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
12196 */
12197HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12198{
12199 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12200
12201 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
12202 return VINF_EM_RAW_INTERRUPT;
12203}
12204
12205
12206/**
12207 * VM-exit handler for when the TPR value is lowered below the specified
12208 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
12209 */
12210HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12211{
12212 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12213 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
12214
12215 /*
12216 * The TPR has already been updated, see hmR0VMXPostRunGuest(). RIP is also updated as part of the VM-exit by VT-x. Update
12217 * the threshold in the VMCS, deliver the pending interrupt via hmR0VmxPreRunGuest()->hmR0VmxInjectPendingEvent() and
12218 * resume guest execution.
12219 */
12220 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
12221 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
12222 return VINF_SUCCESS;
12223}
12224
12225
12226/**
12227 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
12228 * VM-exit.
12229 *
12230 * @retval VINF_SUCCESS when guest execution can continue.
12231 * @retval VINF_PGM_CHANGE_MODE when shadow paging mode changed, back to ring-3.
12232 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
12233 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
12234 * interpreter.
12235 */
12236HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12237{
12238 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12239 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
12240 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12241 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12242 AssertRCReturn(rc, rc);
12243
12244 RTGCUINTPTR const uExitQualification = pVmxTransient->uExitQualification;
12245 uint32_t const uAccessType = VMX_EXIT_QUALIFICATION_CRX_ACCESS(uExitQualification);
12246 PVM pVM = pVCpu->CTX_SUFF(pVM);
12247 VBOXSTRICTRC rcStrict;
12248 rc = hmR0VmxSaveGuestRegsForIemExec(pVCpu, pMixedCtx, false /*fMemory*/, true /*fNeedRsp*/);
12249 switch (uAccessType)
12250 {
12251 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE: /* MOV to CRx */
12252 {
12253 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12254 AssertRCReturn(rc, rc);
12255
12256 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr,
12257 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
12258 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification));
12259 AssertMsg( rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_PGM_CHANGE_MODE
12260 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12261 switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification))
12262 {
12263 case 0: /* CR0 */
12264 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
12265 Log4(("CRX CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr0));
12266 break;
12267 case 2: /* CR2 */
12268 /* Nothing to do here, CR2 it's not part of the VMCS. */
12269 break;
12270 case 3: /* CR3 */
12271 Assert(!pVM->hm.s.fNestedPaging || !CPUMIsGuestPagingEnabledEx(pMixedCtx) || pVCpu->hm.s.fUsingDebugLoop);
12272 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
12273 Log4(("CRX CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr3));
12274 break;
12275 case 4: /* CR4 */
12276 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
12277 Log4(("CRX CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n",
12278 VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
12279 break;
12280 case 8: /* CR8 */
12281 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
12282 /* CR8 contains the APIC TPR. Was updated by IEMExecDecodedMovCRxWrite(). */
12283 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
12284 break;
12285 default:
12286 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)));
12287 break;
12288 }
12289
12290 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
12291 break;
12292 }
12293
12294 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ: /* MOV from CRx */
12295 {
12296 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12297 AssertRCReturn(rc, rc);
12298
12299 Assert( !pVM->hm.s.fNestedPaging
12300 || !CPUMIsGuestPagingEnabledEx(pMixedCtx)
12301 || pVCpu->hm.s.fUsingDebugLoop
12302 || VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 3);
12303
12304 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
12305 Assert( VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 8
12306 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
12307
12308 rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr,
12309 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification),
12310 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification));
12311 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12312 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
12313 Log4(("CRX CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
12314 VBOXSTRICTRC_VAL(rcStrict)));
12315 break;
12316 }
12317
12318 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
12319 {
12320 AssertRCReturn(rc, rc);
12321 rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
12322 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12323 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
12324 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
12325 Log4(("CRX CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12326 break;
12327 }
12328
12329 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
12330 {
12331 AssertRCReturn(rc, rc);
12332 rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr,
12333 VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(uExitQualification));
12334 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_PGM_CHANGE_MODE,
12335 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12336 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
12337 Log4(("CRX LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12338 break;
12339 }
12340
12341 default:
12342 AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
12343 VERR_VMX_UNEXPECTED_EXCEPTION);
12344 }
12345
12346 HMCPU_CF_SET(pVCpu, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS : HM_CHANGED_ALL_GUEST);
12347 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
12348 NOREF(pVM);
12349 return rcStrict;
12350}
12351
12352
12353/**
12354 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
12355 * VM-exit.
12356 */
12357HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12358{
12359 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12360 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
12361
12362 int rc2 = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12363 rc2 |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12364 rc2 |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
12365 rc2 |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* Eflag checks in EMInterpretDisasCurrent(). */
12366 rc2 |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx); /* CR0 checks & PGM* in EMInterpretDisasCurrent(). */
12367 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* SELM checks in EMInterpretDisasCurrent(). */
12368 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
12369 AssertRCReturn(rc2, rc2);
12370
12371 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
12372 uint32_t uIOPort = VMX_EXIT_QUALIFICATION_IO_PORT(pVmxTransient->uExitQualification);
12373 uint8_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(pVmxTransient->uExitQualification);
12374 bool fIOWrite = ( VMX_EXIT_QUALIFICATION_IO_DIRECTION(pVmxTransient->uExitQualification)
12375 == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT);
12376 bool fIOString = VMX_EXIT_QUALIFICATION_IO_IS_STRING(pVmxTransient->uExitQualification);
12377 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
12378 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
12379 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
12380
12381 /* I/O operation lookup arrays. */
12382 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
12383 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving the result (in AL/AX/EAX). */
12384
12385 VBOXSTRICTRC rcStrict;
12386 uint32_t const cbValue = s_aIOSizes[uIOWidth];
12387 uint32_t const cbInstr = pVmxTransient->cbInstr;
12388 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
12389 PVM pVM = pVCpu->CTX_SUFF(pVM);
12390 if (fIOString)
12391 {
12392#ifdef VBOX_WITH_2ND_IEM_STEP /* This used to gurus with debian 32-bit guest without NP (on ATA reads).
12393 See @bugref{5752#c158}. Should work now. */
12394 /*
12395 * INS/OUTS - I/O String instruction.
12396 *
12397 * Use instruction-information if available, otherwise fall back on
12398 * interpreting the instruction.
12399 */
12400 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue,
12401 fIOWrite ? 'w' : 'r'));
12402 AssertReturn(pMixedCtx->dx == uIOPort, VERR_VMX_IPE_2);
12403 if (MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.Msrs.u64BasicInfo))
12404 {
12405 rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12406 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
12407 rc2 |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12408 AssertRCReturn(rc2, rc2);
12409 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
12410 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
12411 IEMMODE enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
12412 bool fRep = VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification);
12413 if (fIOWrite)
12414 {
12415 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
12416 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
12417 }
12418 else
12419 {
12420 /*
12421 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
12422 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
12423 * See Intel Instruction spec. for "INS".
12424 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
12425 */
12426 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
12427 }
12428 }
12429 else
12430 {
12431 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
12432 rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12433 AssertRCReturn(rc2, rc2);
12434 rcStrict = IEMExecOne(pVCpu);
12435 }
12436 /** @todo IEM needs to be setting these flags somehow. */
12437 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
12438 fUpdateRipAlready = true;
12439#else
12440 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
12441 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
12442 if (RT_SUCCESS(rcStrict))
12443 {
12444 if (fIOWrite)
12445 {
12446 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
12447 (DISCPUMODE)pDis->uAddrMode, cbValue);
12448 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
12449 }
12450 else
12451 {
12452 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
12453 (DISCPUMODE)pDis->uAddrMode, cbValue);
12454 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
12455 }
12456 }
12457 else
12458 {
12459 AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("rcStrict=%Rrc RIP=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict),
12460 pMixedCtx->rip));
12461 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
12462 }
12463#endif
12464 }
12465 else
12466 {
12467 /*
12468 * IN/OUT - I/O instruction.
12469 */
12470 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12471 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
12472 Assert(!VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification));
12473 if (fIOWrite)
12474 {
12475 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pMixedCtx->eax & uAndVal, cbValue);
12476 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
12477 }
12478 else
12479 {
12480 uint32_t u32Result = 0;
12481 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
12482 if (IOM_SUCCESS(rcStrict))
12483 {
12484 /* Save result of I/O IN instr. in AL/AX/EAX. */
12485 pMixedCtx->eax = (pMixedCtx->eax & ~uAndVal) | (u32Result & uAndVal);
12486 }
12487 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
12488 HMR0SavePendingIOPortRead(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbValue);
12489 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
12490 }
12491 }
12492
12493 if (IOM_SUCCESS(rcStrict))
12494 {
12495 if (!fUpdateRipAlready)
12496 {
12497 hmR0VmxAdvanceGuestRipBy(pVCpu, pMixedCtx, cbInstr);
12498 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
12499 }
12500
12501 /*
12502 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru while booting Fedora 17 64-bit guest.
12503 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
12504 */
12505 if (fIOString)
12506 {
12507 /** @todo Single-step for INS/OUTS with REP prefix? */
12508 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
12509 }
12510 else if ( !fDbgStepping
12511 && fGstStepping)
12512 {
12513 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
12514 }
12515
12516 /*
12517 * If any I/O breakpoints are armed, we need to check if one triggered
12518 * and take appropriate action.
12519 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
12520 */
12521 rc2 = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
12522 AssertRCReturn(rc2, rc2);
12523
12524 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
12525 * execution engines about whether hyper BPs and such are pending. */
12526 uint32_t const uDr7 = pMixedCtx->dr[7];
12527 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
12528 && X86_DR7_ANY_RW_IO(uDr7)
12529 && (pMixedCtx->cr4 & X86_CR4_DE))
12530 || DBGFBpIsHwIoArmed(pVM)))
12531 {
12532 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
12533
12534 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
12535 VMMRZCallRing3Disable(pVCpu);
12536 HM_DISABLE_PREEMPT();
12537
12538 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
12539
12540 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pMixedCtx, uIOPort, cbValue);
12541 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
12542 {
12543 /* Raise #DB. */
12544 if (fIsGuestDbgActive)
12545 ASMSetDR6(pMixedCtx->dr[6]);
12546 if (pMixedCtx->dr[7] != uDr7)
12547 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
12548
12549 hmR0VmxSetPendingXcptDB(pVCpu, pMixedCtx);
12550 }
12551 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
12552 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
12553 else if ( rcStrict2 != VINF_SUCCESS
12554 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
12555 rcStrict = rcStrict2;
12556 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
12557
12558 HM_RESTORE_PREEMPT();
12559 VMMRZCallRing3Enable(pVCpu);
12560 }
12561 }
12562
12563#ifdef VBOX_STRICT
12564 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
12565 Assert(!fIOWrite);
12566 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE)
12567 Assert(fIOWrite);
12568 else
12569 {
12570#if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
12571 * statuses, that the VMM device and some others may return. See
12572 * IOM_SUCCESS() for guidance. */
12573 AssertMsg( RT_FAILURE(rcStrict)
12574 || rcStrict == VINF_SUCCESS
12575 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
12576 || rcStrict == VINF_EM_DBG_BREAKPOINT
12577 || rcStrict == VINF_EM_RAW_GUEST_TRAP
12578 || rcStrict == VINF_EM_RAW_TO_R3
12579 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12580#endif
12581 }
12582#endif
12583
12584 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
12585 return rcStrict;
12586}
12587
12588
12589/**
12590 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
12591 * VM-exit.
12592 */
12593HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12594{
12595 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12596
12597 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
12598 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12599 AssertRCReturn(rc, rc);
12600 if (VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE_IDT)
12601 {
12602 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
12603 AssertRCReturn(rc, rc);
12604 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
12605 {
12606 uint32_t uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
12607
12608 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
12609 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo);
12610
12611 /* Save it as a pending event and it'll be converted to a TRPM event on the way out to ring-3. */
12612 Assert(!pVCpu->hm.s.Event.fPending);
12613 pVCpu->hm.s.Event.fPending = true;
12614 pVCpu->hm.s.Event.u64IntInfo = pVmxTransient->uIdtVectoringInfo;
12615 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
12616 AssertRCReturn(rc, rc);
12617 if (fErrorCodeValid)
12618 pVCpu->hm.s.Event.u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
12619 else
12620 pVCpu->hm.s.Event.u32ErrCode = 0;
12621 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
12622 && uVector == X86_XCPT_PF)
12623 {
12624 pVCpu->hm.s.Event.GCPtrFaultAddress = pMixedCtx->cr2;
12625 }
12626
12627 Log4(("Pending event on TaskSwitch uIntType=%#x uVector=%#x\n", uIntType, uVector));
12628 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12629 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12630 }
12631 }
12632
12633 /* Fall back to the interpreter to emulate the task-switch. */
12634 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12635 return VERR_EM_INTERPRETER;
12636}
12637
12638
12639/**
12640 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
12641 */
12642HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12643{
12644 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12645 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
12646 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
12647 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12648 AssertRCReturn(rc, rc);
12649 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
12650 return VINF_EM_DBG_STEPPED;
12651}
12652
12653
12654/**
12655 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
12656 */
12657HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12658{
12659 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12660
12661 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
12662
12663 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12664 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
12665 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12666 {
12667 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
12668 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12669 {
12670 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12671 return VERR_EM_INTERPRETER;
12672 }
12673 }
12674 else
12675 {
12676 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12677 rcStrict1 = VINF_SUCCESS;
12678 return rcStrict1;
12679 }
12680
12681#if 0
12682 /** @todo Investigate if IOMMMIOPhysHandler() requires a lot of state, for now
12683 * just sync the whole thing. */
12684 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12685#else
12686 /* Aggressive state sync. for now. */
12687 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
12688 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12689 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12690#endif
12691 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12692 AssertRCReturn(rc, rc);
12693
12694 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
12695 uint32_t uAccessType = VMX_EXIT_QUALIFICATION_APIC_ACCESS_TYPE(pVmxTransient->uExitQualification);
12696 VBOXSTRICTRC rcStrict2;
12697 switch (uAccessType)
12698 {
12699 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
12700 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
12701 {
12702 AssertMsg( !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
12703 || VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification) != 0x80,
12704 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
12705
12706 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64MsrApicBase; /* Always up-to-date, u64MsrApicBase is not part of the VMCS. */
12707 GCPhys &= PAGE_BASE_GC_MASK;
12708 GCPhys += VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification);
12709 PVM pVM = pVCpu->CTX_SUFF(pVM);
12710 Log4(("ApicAccess uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
12711 VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification)));
12712
12713 rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
12714 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
12715 CPUMCTX2CORE(pMixedCtx), GCPhys);
12716 Log4(("ApicAccess rcStrict2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
12717 if ( rcStrict2 == VINF_SUCCESS
12718 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12719 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12720 {
12721 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
12722 | HM_CHANGED_GUEST_RSP
12723 | HM_CHANGED_GUEST_RFLAGS
12724 | HM_CHANGED_VMX_GUEST_APIC_STATE);
12725 rcStrict2 = VINF_SUCCESS;
12726 }
12727 break;
12728 }
12729
12730 default:
12731 Log4(("ApicAccess uAccessType=%#x\n", uAccessType));
12732 rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
12733 break;
12734 }
12735
12736 if (rcStrict2 != VINF_SUCCESS)
12737 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
12738 return rcStrict2;
12739}
12740
12741
12742/**
12743 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
12744 * VM-exit.
12745 */
12746HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12747{
12748 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12749
12750 /* We should -not- get this VM-exit if the guest's debug registers were active. */
12751 if (pVmxTransient->fWasGuestDebugStateActive)
12752 {
12753 AssertMsgFailed(("Unexpected MOV DRx exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12754 HMVMX_RETURN_UNEXPECTED_EXIT();
12755 }
12756
12757 if ( !pVCpu->hm.s.fSingleInstruction
12758 && !pVmxTransient->fWasHyperDebugStateActive)
12759 {
12760 Assert(!DBGFIsStepping(pVCpu));
12761 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
12762
12763 /* Don't intercept MOV DRx any more. */
12764 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
12765 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12766 AssertRCReturn(rc, rc);
12767
12768 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
12769 VMMRZCallRing3Disable(pVCpu);
12770 HM_DISABLE_PREEMPT();
12771
12772 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
12773 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
12774 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
12775
12776 HM_RESTORE_PREEMPT();
12777 VMMRZCallRing3Enable(pVCpu);
12778
12779#ifdef VBOX_WITH_STATISTICS
12780 rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12781 AssertRCReturn(rc, rc);
12782 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
12783 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12784 else
12785 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12786#endif
12787 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
12788 return VINF_SUCCESS;
12789 }
12790
12791 /*
12792 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
12793 * Update the segment registers and DR7 from the CPU.
12794 */
12795 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12796 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12797 rc |= hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
12798 AssertRCReturn(rc, rc);
12799 Log4(("CS:RIP=%04x:%08RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
12800
12801 PVM pVM = pVCpu->CTX_SUFF(pVM);
12802 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
12803 {
12804 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
12805 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification),
12806 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification));
12807 if (RT_SUCCESS(rc))
12808 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
12809 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12810 }
12811 else
12812 {
12813 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
12814 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification),
12815 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification));
12816 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12817 }
12818
12819 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
12820 if (RT_SUCCESS(rc))
12821 {
12822 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12823 AssertRCReturn(rc2, rc2);
12824 return VINF_SUCCESS;
12825 }
12826 return rc;
12827}
12828
12829
12830/**
12831 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
12832 * Conditional VM-exit.
12833 */
12834HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12835{
12836 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12837 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12838
12839 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12840 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
12841 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12842 {
12843 /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
12844 injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
12845 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12846 {
12847 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12848 return VERR_EM_INTERPRETER;
12849 }
12850 }
12851 else
12852 {
12853 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12854 rcStrict1 = VINF_SUCCESS;
12855 return rcStrict1;
12856 }
12857
12858 RTGCPHYS GCPhys = 0;
12859 int rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
12860
12861#if 0
12862 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
12863#else
12864 /* Aggressive state sync. for now. */
12865 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
12866 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12867 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12868#endif
12869 AssertRCReturn(rc, rc);
12870
12871 /*
12872 * If we succeed, resume guest execution.
12873 * If we fail in interpreting the instruction because we couldn't get the guest physical address
12874 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
12875 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
12876 * weird case. See @bugref{6043}.
12877 */
12878 PVM pVM = pVCpu->CTX_SUFF(pVM);
12879 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pMixedCtx), GCPhys, UINT32_MAX);
12880 Log4(("EPT misconfig at %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pMixedCtx->rip, VBOXSTRICTRC_VAL(rcStrict2)));
12881 if ( rcStrict2 == VINF_SUCCESS
12882 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12883 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12884 {
12885 /* Successfully handled MMIO operation. */
12886 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
12887 | HM_CHANGED_GUEST_RSP
12888 | HM_CHANGED_GUEST_RFLAGS
12889 | HM_CHANGED_VMX_GUEST_APIC_STATE);
12890 return VINF_SUCCESS;
12891 }
12892 return rcStrict2;
12893}
12894
12895
12896/**
12897 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
12898 * VM-exit.
12899 */
12900HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12901{
12902 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12903 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12904
12905 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12906 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
12907 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12908 {
12909 /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
12910 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12911 Log4(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
12912 }
12913 else
12914 {
12915 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12916 rcStrict1 = VINF_SUCCESS;
12917 return rcStrict1;
12918 }
12919
12920 RTGCPHYS GCPhys = 0;
12921 int rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
12922 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12923#if 0
12924 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
12925#else
12926 /* Aggressive state sync. for now. */
12927 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
12928 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12929 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12930#endif
12931 AssertRCReturn(rc, rc);
12932
12933 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
12934 AssertMsg(((pVmxTransient->uExitQualification >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQualification));
12935
12936 RTGCUINT uErrorCode = 0;
12937 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_INSTR_FETCH)
12938 uErrorCode |= X86_TRAP_PF_ID;
12939 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_DATA_WRITE)
12940 uErrorCode |= X86_TRAP_PF_RW;
12941 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_ENTRY_PRESENT)
12942 uErrorCode |= X86_TRAP_PF_P;
12943
12944 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
12945
12946 Log4(("EPT violation %#x at %#RX64 ErrorCode %#x CS:RIP=%04x:%08RX64\n", pVmxTransient->uExitQualification, GCPhys,
12947 uErrorCode, pMixedCtx->cs.Sel, pMixedCtx->rip));
12948
12949 /* Handle the pagefault trap for the nested shadow table. */
12950 PVM pVM = pVCpu->CTX_SUFF(pVM);
12951 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pMixedCtx), GCPhys);
12952 TRPMResetTrap(pVCpu);
12953
12954 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
12955 if ( rcStrict2 == VINF_SUCCESS
12956 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12957 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12958 {
12959 /* Successfully synced our nested page tables. */
12960 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
12961 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
12962 | HM_CHANGED_GUEST_RSP
12963 | HM_CHANGED_GUEST_RFLAGS);
12964 return VINF_SUCCESS;
12965 }
12966
12967 Log4(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
12968 return rcStrict2;
12969}
12970
12971/** @} */
12972
12973/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12974/* -=-=-=-=-=-=-=-=-=- VM-exit Exception Handlers -=-=-=-=-=-=-=-=-=-=- */
12975/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12976
12977/** @name VM-exit exception handlers.
12978 * @{
12979 */
12980
12981/**
12982 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
12983 */
12984static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12985{
12986 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
12987 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
12988
12989 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
12990 AssertRCReturn(rc, rc);
12991
12992 if (!(pMixedCtx->cr0 & X86_CR0_NE))
12993 {
12994 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
12995 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
12996
12997 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
12998 * provides VM-exit instruction length. If this causes problem later,
12999 * disassemble the instruction like it's done on AMD-V. */
13000 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
13001 AssertRCReturn(rc2, rc2);
13002 return rc;
13003 }
13004
13005 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13006 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13007 return rc;
13008}
13009
13010
13011/**
13012 * VM-exit exception handler for \#BP (Breakpoint exception).
13013 */
13014static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13015{
13016 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13017 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
13018
13019 /** @todo Try optimize this by not saving the entire guest state unless
13020 * really needed. */
13021 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13022 AssertRCReturn(rc, rc);
13023
13024 PVM pVM = pVCpu->CTX_SUFF(pVM);
13025 rc = DBGFRZTrap03Handler(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
13026 if (rc == VINF_EM_RAW_GUEST_TRAP)
13027 {
13028 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13029 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13030 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13031 AssertRCReturn(rc, rc);
13032
13033 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13034 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13035 }
13036
13037 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
13038 return rc;
13039}
13040
13041
13042/**
13043 * VM-exit exception handler for \#AC (alignment check exception).
13044 */
13045static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13046{
13047 RT_NOREF_PV(pMixedCtx);
13048 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13049
13050 /*
13051 * Re-inject it. We'll detect any nesting before getting here.
13052 */
13053 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13054 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13055 AssertRCReturn(rc, rc);
13056 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
13057
13058 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13059 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13060 return VINF_SUCCESS;
13061}
13062
13063
13064/**
13065 * VM-exit exception handler for \#DB (Debug exception).
13066 */
13067static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13068{
13069 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13070 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
13071 Log6(("XcptDB\n"));
13072
13073 /*
13074 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
13075 * for processing.
13076 */
13077 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13078 AssertRCReturn(rc, rc);
13079
13080 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
13081 uint64_t uDR6 = X86_DR6_INIT_VAL;
13082 uDR6 |= ( pVmxTransient->uExitQualification
13083 & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
13084
13085 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pMixedCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
13086 if (rc == VINF_EM_RAW_GUEST_TRAP)
13087 {
13088 /*
13089 * The exception was for the guest. Update DR6, DR7.GD and
13090 * IA32_DEBUGCTL.LBR before forwarding it.
13091 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
13092 */
13093 VMMRZCallRing3Disable(pVCpu);
13094 HM_DISABLE_PREEMPT();
13095
13096 pMixedCtx->dr[6] &= ~X86_DR6_B_MASK;
13097 pMixedCtx->dr[6] |= uDR6;
13098 if (CPUMIsGuestDebugStateActive(pVCpu))
13099 ASMSetDR6(pMixedCtx->dr[6]);
13100
13101 HM_RESTORE_PREEMPT();
13102 VMMRZCallRing3Enable(pVCpu);
13103
13104 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
13105 AssertRCReturn(rc, rc);
13106
13107 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
13108 pMixedCtx->dr[7] &= ~X86_DR7_GD;
13109
13110 /* Paranoia. */
13111 pMixedCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
13112 pMixedCtx->dr[7] |= X86_DR7_RA1_MASK;
13113
13114 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pMixedCtx->dr[7]);
13115 AssertRCReturn(rc, rc);
13116
13117 /*
13118 * Raise #DB in the guest.
13119 *
13120 * It is important to reflect what the VM-exit gave us (preserving the interruption-type) rather than use
13121 * hmR0VmxSetPendingXcptDB() as the #DB could've been raised while executing ICEBP and not the 'normal' #DB.
13122 * Thus it -may- trigger different handling in the CPU (like skipped DPL checks). See @bugref{6398}.
13123 *
13124 * Since ICEBP isn't documented on Intel, see AMD spec. 15.20 "Event Injection".
13125 */
13126 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13127 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13128 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13129 AssertRCReturn(rc, rc);
13130 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13131 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13132 return VINF_SUCCESS;
13133 }
13134
13135 /*
13136 * Not a guest trap, must be a hypervisor related debug event then.
13137 * Update DR6 in case someone is interested in it.
13138 */
13139 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
13140 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
13141 CPUMSetHyperDR6(pVCpu, uDR6);
13142
13143 return rc;
13144}
13145
13146
13147/**
13148 * VM-exit exception handler for \#NM (Device-not-available exception: floating
13149 * point exception).
13150 */
13151static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13152{
13153 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13154
13155 /* We require CR0 and EFER. EFER is always up-to-date. */
13156 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
13157 AssertRCReturn(rc, rc);
13158
13159 /* We're playing with the host CPU state here, have to disable preemption or longjmp. */
13160 VMMRZCallRing3Disable(pVCpu);
13161 HM_DISABLE_PREEMPT();
13162
13163 /* If the guest FPU was active at the time of the #NM exit, then it's a guest fault. */
13164 if (pVmxTransient->fWasGuestFPUStateActive)
13165 {
13166 rc = VINF_EM_RAW_GUEST_TRAP;
13167 Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
13168 }
13169 else
13170 {
13171#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13172 Assert(!pVmxTransient->fWasGuestFPUStateActive || pVCpu->hm.s.fUsingDebugLoop);
13173#endif
13174 rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu);
13175 Assert( rc == VINF_EM_RAW_GUEST_TRAP
13176 || ((rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED) && CPUMIsGuestFPUStateActive(pVCpu)));
13177 if (rc == VINF_CPUM_HOST_CR0_MODIFIED)
13178 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
13179 }
13180
13181 HM_RESTORE_PREEMPT();
13182 VMMRZCallRing3Enable(pVCpu);
13183
13184 if (rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED)
13185 {
13186 /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
13187 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
13188 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
13189 pVCpu->hm.s.fPreloadGuestFpu = true;
13190 }
13191 else
13192 {
13193 /* Forward #NM to the guest. */
13194 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
13195 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13196 AssertRCReturn(rc, rc);
13197 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13198 pVmxTransient->cbInstr, 0 /* error code */, 0 /* GCPtrFaultAddress */);
13199 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
13200 }
13201
13202 return VINF_SUCCESS;
13203}
13204
13205
13206/**
13207 * VM-exit exception handler for \#GP (General-protection exception).
13208 *
13209 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
13210 */
13211static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13212{
13213 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13214 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
13215
13216 int rc;
13217 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
13218 { /* likely */ }
13219 else
13220 {
13221#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13222 Assert(pVCpu->hm.s.fUsingDebugLoop);
13223#endif
13224 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
13225 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13226 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13227 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13228 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13229 AssertRCReturn(rc, rc);
13230 Log4(("#GP Gst: CS:RIP %04x:%08RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u TR=%#04x\n", pMixedCtx->cs.Sel, pMixedCtx->rip,
13231 pVmxTransient->uExitIntErrorCode, pMixedCtx->cr0, CPUMGetGuestCPL(pVCpu), pMixedCtx->tr.Sel));
13232 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13233 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13234 return rc;
13235 }
13236
13237 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
13238 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
13239
13240 /* EMInterpretDisasCurrent() requires a lot of the state, save the entire state. */
13241 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13242 AssertRCReturn(rc, rc);
13243
13244 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
13245 uint32_t cbOp = 0;
13246 PVM pVM = pVCpu->CTX_SUFF(pVM);
13247 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
13248 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
13249 if (RT_SUCCESS(rc))
13250 {
13251 rc = VINF_SUCCESS;
13252 Assert(cbOp == pDis->cbInstr);
13253 Log4(("#GP Disas OpCode=%u CS:EIP %04x:%04RX64\n", pDis->pCurInstr->uOpcode, pMixedCtx->cs.Sel, pMixedCtx->rip));
13254 switch (pDis->pCurInstr->uOpcode)
13255 {
13256 case OP_CLI:
13257 {
13258 pMixedCtx->eflags.Bits.u1IF = 0;
13259 pMixedCtx->eflags.Bits.u1RF = 0;
13260 pMixedCtx->rip += pDis->cbInstr;
13261 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13262 if ( !fDbgStepping
13263 && pMixedCtx->eflags.Bits.u1TF)
13264 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13265 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCli);
13266 break;
13267 }
13268
13269 case OP_STI:
13270 {
13271 bool fOldIF = pMixedCtx->eflags.Bits.u1IF;
13272 pMixedCtx->eflags.Bits.u1IF = 1;
13273 pMixedCtx->eflags.Bits.u1RF = 0;
13274 pMixedCtx->rip += pDis->cbInstr;
13275 if (!fOldIF)
13276 {
13277 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
13278 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
13279 }
13280 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13281 if ( !fDbgStepping
13282 && pMixedCtx->eflags.Bits.u1TF)
13283 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13284 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitSti);
13285 break;
13286 }
13287
13288 case OP_HLT:
13289 {
13290 rc = VINF_EM_HALT;
13291 pMixedCtx->rip += pDis->cbInstr;
13292 pMixedCtx->eflags.Bits.u1RF = 0;
13293 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13294 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
13295 break;
13296 }
13297
13298 case OP_POPF:
13299 {
13300 Log4(("POPF CS:EIP %04x:%04RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
13301 uint32_t cbParm;
13302 uint32_t uMask;
13303 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
13304 if (pDis->fPrefix & DISPREFIX_OPSIZE)
13305 {
13306 cbParm = 4;
13307 uMask = 0xffffffff;
13308 }
13309 else
13310 {
13311 cbParm = 2;
13312 uMask = 0xffff;
13313 }
13314
13315 /* Get the stack pointer & pop the contents of the stack onto Eflags. */
13316 RTGCPTR GCPtrStack = 0;
13317 X86EFLAGS Eflags;
13318 Eflags.u32 = 0;
13319 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
13320 &GCPtrStack);
13321 if (RT_SUCCESS(rc))
13322 {
13323 Assert(sizeof(Eflags.u32) >= cbParm);
13324 rc = VBOXSTRICTRC_TODO(PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u32, cbParm, PGMACCESSORIGIN_HM));
13325 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); /** @todo allow strict return codes here */
13326 }
13327 if (RT_FAILURE(rc))
13328 {
13329 rc = VERR_EM_INTERPRETER;
13330 break;
13331 }
13332 Log4(("POPF %#x -> %#RX64 mask=%#x RIP=%#RX64\n", Eflags.u, pMixedCtx->rsp, uMask, pMixedCtx->rip));
13333 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ~((X86_EFL_POPF_BITS & uMask) | X86_EFL_RF))
13334 | (Eflags.u32 & X86_EFL_POPF_BITS & uMask);
13335 pMixedCtx->esp += cbParm;
13336 pMixedCtx->esp &= uMask;
13337 pMixedCtx->rip += pDis->cbInstr;
13338 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13339 | HM_CHANGED_GUEST_RSP
13340 | HM_CHANGED_GUEST_RFLAGS);
13341 /* Generate a pending-debug exception when the guest stepping over POPF regardless of how
13342 POPF restores EFLAGS.TF. */
13343 if ( !fDbgStepping
13344 && fGstStepping)
13345 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13346 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPopf);
13347 break;
13348 }
13349
13350 case OP_PUSHF:
13351 {
13352 uint32_t cbParm;
13353 uint32_t uMask;
13354 if (pDis->fPrefix & DISPREFIX_OPSIZE)
13355 {
13356 cbParm = 4;
13357 uMask = 0xffffffff;
13358 }
13359 else
13360 {
13361 cbParm = 2;
13362 uMask = 0xffff;
13363 }
13364
13365 /* Get the stack pointer & push the contents of eflags onto the stack. */
13366 RTGCPTR GCPtrStack = 0;
13367 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), (pMixedCtx->esp - cbParm) & uMask,
13368 SELMTOFLAT_FLAGS_CPL0, &GCPtrStack);
13369 if (RT_FAILURE(rc))
13370 {
13371 rc = VERR_EM_INTERPRETER;
13372 break;
13373 }
13374 X86EFLAGS Eflags = pMixedCtx->eflags;
13375 /* The RF & VM bits are cleared on image stored on stack; see Intel Instruction reference for PUSHF. */
13376 Eflags.Bits.u1RF = 0;
13377 Eflags.Bits.u1VM = 0;
13378
13379 rc = VBOXSTRICTRC_TODO(PGMPhysWrite(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u, cbParm, PGMACCESSORIGIN_HM));
13380 if (RT_UNLIKELY(rc != VINF_SUCCESS))
13381 {
13382 AssertMsgFailed(("%Rrc\n", rc)); /** @todo allow strict return codes here */
13383 rc = VERR_EM_INTERPRETER;
13384 break;
13385 }
13386 Log4(("PUSHF %#x -> %#RGv\n", Eflags.u, GCPtrStack));
13387 pMixedCtx->esp -= cbParm;
13388 pMixedCtx->esp &= uMask;
13389 pMixedCtx->rip += pDis->cbInstr;
13390 pMixedCtx->eflags.Bits.u1RF = 0;
13391 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13392 | HM_CHANGED_GUEST_RSP
13393 | HM_CHANGED_GUEST_RFLAGS);
13394 if ( !fDbgStepping
13395 && pMixedCtx->eflags.Bits.u1TF)
13396 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13397 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPushf);
13398 break;
13399 }
13400
13401 case OP_IRET:
13402 {
13403 /** @todo Handle 32-bit operand sizes and check stack limits. See Intel
13404 * instruction reference. */
13405 RTGCPTR GCPtrStack = 0;
13406 uint32_t uMask = 0xffff;
13407 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
13408 uint16_t aIretFrame[3];
13409 if (pDis->fPrefix & (DISPREFIX_OPSIZE | DISPREFIX_ADDRSIZE))
13410 {
13411 rc = VERR_EM_INTERPRETER;
13412 break;
13413 }
13414 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
13415 &GCPtrStack);
13416 if (RT_SUCCESS(rc))
13417 {
13418 rc = VBOXSTRICTRC_TODO(PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &aIretFrame[0], sizeof(aIretFrame),
13419 PGMACCESSORIGIN_HM));
13420 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); /** @todo allow strict return codes here */
13421 }
13422 if (RT_FAILURE(rc))
13423 {
13424 rc = VERR_EM_INTERPRETER;
13425 break;
13426 }
13427 pMixedCtx->eip = 0;
13428 pMixedCtx->ip = aIretFrame[0];
13429 pMixedCtx->cs.Sel = aIretFrame[1];
13430 pMixedCtx->cs.ValidSel = aIretFrame[1];
13431 pMixedCtx->cs.u64Base = (uint64_t)pMixedCtx->cs.Sel << 4;
13432 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF))
13433 | (aIretFrame[2] & X86_EFL_POPF_BITS & uMask);
13434 pMixedCtx->sp += sizeof(aIretFrame);
13435 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13436 | HM_CHANGED_GUEST_SEGMENT_REGS
13437 | HM_CHANGED_GUEST_RSP
13438 | HM_CHANGED_GUEST_RFLAGS);
13439 /* Generate a pending-debug exception when stepping over IRET regardless of how IRET modifies EFLAGS.TF. */
13440 if ( !fDbgStepping
13441 && fGstStepping)
13442 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13443 Log4(("IRET %#RX32 to %04x:%04x\n", GCPtrStack, pMixedCtx->cs.Sel, pMixedCtx->ip));
13444 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIret);
13445 break;
13446 }
13447
13448 case OP_INT:
13449 {
13450 uint16_t uVector = pDis->Param1.uValue & 0xff;
13451 hmR0VmxSetPendingIntN(pVCpu, pMixedCtx, uVector, pDis->cbInstr);
13452 /* INT clears EFLAGS.TF, we must not set any pending debug exceptions here. */
13453 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
13454 break;
13455 }
13456
13457 case OP_INTO:
13458 {
13459 if (pMixedCtx->eflags.Bits.u1OF)
13460 {
13461 hmR0VmxSetPendingXcptOF(pVCpu, pMixedCtx, pDis->cbInstr);
13462 /* INTO clears EFLAGS.TF, we must not set any pending debug exceptions here. */
13463 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
13464 }
13465 else
13466 {
13467 pMixedCtx->eflags.Bits.u1RF = 0;
13468 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
13469 }
13470 break;
13471 }
13472
13473 default:
13474 {
13475 pMixedCtx->eflags.Bits.u1RF = 0; /* This is correct most of the time... */
13476 VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, CPUMCTX2CORE(pMixedCtx), 0 /* pvFault */,
13477 EMCODETYPE_SUPERVISOR);
13478 rc = VBOXSTRICTRC_VAL(rc2);
13479 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
13480 /** @todo We have to set pending-debug exceptions here when the guest is
13481 * single-stepping depending on the instruction that was interpreted. */
13482 Log4(("#GP rc=%Rrc\n", rc));
13483 break;
13484 }
13485 }
13486 }
13487 else
13488 rc = VERR_EM_INTERPRETER;
13489
13490 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_HALT,
13491 ("#GP Unexpected rc=%Rrc\n", rc));
13492 return rc;
13493}
13494
13495
13496/**
13497 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
13498 * the exception reported in the VMX transient structure back into the VM.
13499 *
13500 * @remarks Requires uExitIntInfo in the VMX transient structure to be
13501 * up-to-date.
13502 */
13503static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13504{
13505 RT_NOREF_PV(pMixedCtx);
13506 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13507#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13508 Assert(pVCpu->hm.s.fUsingDebugLoop);
13509#endif
13510
13511 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
13512 hmR0VmxCheckExitDueToEventDelivery(). */
13513 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13514 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13515 AssertRCReturn(rc, rc);
13516 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
13517
13518#ifdef DEBUG_ramshankar
13519 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
13520 uint8_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
13521 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
13522#endif
13523
13524 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13525 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13526 return VINF_SUCCESS;
13527}
13528
13529
13530/**
13531 * VM-exit exception handler for \#PF (Page-fault exception).
13532 */
13533static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13534{
13535 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13536 PVM pVM = pVCpu->CTX_SUFF(pVM);
13537 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13538 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13539 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13540 AssertRCReturn(rc, rc);
13541
13542 if (!pVM->hm.s.fNestedPaging)
13543 { /* likely */ }
13544 else
13545 {
13546#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
13547 Assert(pVCpu->hm.s.fUsingDebugLoop);
13548#endif
13549 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
13550 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
13551 {
13552 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
13553 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13554 0 /* cbInstr */, pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQualification);
13555 }
13556 else
13557 {
13558 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13559 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
13560 Log4(("Pending #DF due to vectoring #PF. NP\n"));
13561 }
13562 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13563 return rc;
13564 }
13565
13566 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
13567 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
13568 if (pVmxTransient->fVectoringPF)
13569 {
13570 Assert(pVCpu->hm.s.Event.fPending);
13571 return VINF_EM_RAW_INJECT_TRPM_EVENT;
13572 }
13573
13574 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13575 AssertRCReturn(rc, rc);
13576
13577 Log4(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQualification,
13578 pMixedCtx->cs.Sel, pMixedCtx->rip, pVmxTransient->uExitIntErrorCode, pMixedCtx->cr3));
13579
13580 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQualification, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
13581 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pMixedCtx),
13582 (RTGCPTR)pVmxTransient->uExitQualification);
13583
13584 Log4(("#PF: rc=%Rrc\n", rc));
13585 if (rc == VINF_SUCCESS)
13586 {
13587#if 0
13588 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
13589 /** @todo this isn't quite right, what if guest does lgdt with some MMIO
13590 * memory? We don't update the whole state here... */
13591 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13592 | HM_CHANGED_GUEST_RSP
13593 | HM_CHANGED_GUEST_RFLAGS
13594 | HM_CHANGED_VMX_GUEST_APIC_STATE);
13595#else
13596 /*
13597 * This is typically a shadow page table sync or a MMIO instruction. But we may have
13598 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
13599 */
13600 /** @todo take advantage of CPUM changed flags instead of brute forcing. */
13601 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
13602#endif
13603 TRPMResetTrap(pVCpu);
13604 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
13605 return rc;
13606 }
13607
13608 if (rc == VINF_EM_RAW_GUEST_TRAP)
13609 {
13610 if (!pVmxTransient->fVectoringDoublePF)
13611 {
13612 /* It's a guest page fault and needs to be reflected to the guest. */
13613 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
13614 TRPMResetTrap(pVCpu);
13615 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
13616 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
13617 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13618 0 /* cbInstr */, uGstErrorCode, pVmxTransient->uExitQualification);
13619 }
13620 else
13621 {
13622 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13623 TRPMResetTrap(pVCpu);
13624 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
13625 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
13626 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
13627 }
13628
13629 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13630 return VINF_SUCCESS;
13631 }
13632
13633 TRPMResetTrap(pVCpu);
13634 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
13635 return rc;
13636}
13637
13638/** @} */
13639
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette