1 | /* $Id: HMSVMR0.cpp 100357 2023-07-04 07:00:26Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * HM SVM (AMD-V) - Host Context Ring-0.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2013-2023 Oracle and/or its affiliates.
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox base platform packages, as
|
---|
10 | * available from https://www.virtualbox.org.
|
---|
11 | *
|
---|
12 | * This program is free software; you can redistribute it and/or
|
---|
13 | * modify it under the terms of the GNU General Public License
|
---|
14 | * as published by the Free Software Foundation, in version 3 of the
|
---|
15 | * License.
|
---|
16 | *
|
---|
17 | * This program is distributed in the hope that it will be useful, but
|
---|
18 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
20 | * General Public License for more details.
|
---|
21 | *
|
---|
22 | * You should have received a copy of the GNU General Public License
|
---|
23 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
24 | *
|
---|
25 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
26 | */
|
---|
27 |
|
---|
28 |
|
---|
29 | /*********************************************************************************************************************************
|
---|
30 | * Header Files *
|
---|
31 | *********************************************************************************************************************************/
|
---|
32 | #define LOG_GROUP LOG_GROUP_HM
|
---|
33 | #define VMCPU_INCL_CPUM_GST_CTX
|
---|
34 | #include <iprt/asm-amd64-x86.h>
|
---|
35 | #include <iprt/thread.h>
|
---|
36 |
|
---|
37 | #include <VBox/vmm/pdmapi.h>
|
---|
38 | #include <VBox/vmm/dbgf.h>
|
---|
39 | #include <VBox/vmm/iem.h>
|
---|
40 | #include <VBox/vmm/iom.h>
|
---|
41 | #include <VBox/vmm/tm.h>
|
---|
42 | #include <VBox/vmm/em.h>
|
---|
43 | #include <VBox/vmm/gcm.h>
|
---|
44 | #include <VBox/vmm/gim.h>
|
---|
45 | #include <VBox/vmm/apic.h>
|
---|
46 | #include "HMInternal.h"
|
---|
47 | #include <VBox/vmm/vmcc.h>
|
---|
48 | #include <VBox/err.h>
|
---|
49 | #include "HMSVMR0.h"
|
---|
50 | #include "dtrace/VBoxVMM.h"
|
---|
51 |
|
---|
52 | #ifdef DEBUG_ramshankar
|
---|
53 | # define HMSVM_SYNC_FULL_GUEST_STATE
|
---|
54 | # define HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
55 | # define HMSVM_ALWAYS_TRAP_PF
|
---|
56 | # define HMSVM_ALWAYS_TRAP_TASK_SWITCH
|
---|
57 | #endif
|
---|
58 |
|
---|
59 |
|
---|
60 | /*********************************************************************************************************************************
|
---|
61 | * Defined Constants And Macros *
|
---|
62 | *********************************************************************************************************************************/
|
---|
63 | #ifdef VBOX_WITH_STATISTICS
|
---|
64 | # define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
|
---|
65 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
|
---|
66 | if ((u64ExitCode) == SVM_EXIT_NPF) \
|
---|
67 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
|
---|
68 | else \
|
---|
69 | STAM_COUNTER_INC(&pVCpu->hm.s.aStatExitReason[(u64ExitCode) & MASK_EXITREASON_STAT]); \
|
---|
70 | } while (0)
|
---|
71 |
|
---|
72 | # define HMSVM_DEBUG_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
|
---|
73 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDebugExitAll); \
|
---|
74 | if ((u64ExitCode) == SVM_EXIT_NPF) \
|
---|
75 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
|
---|
76 | else \
|
---|
77 | STAM_COUNTER_INC(&pVCpu->hm.s.aStatExitReason[(u64ExitCode) & MASK_EXITREASON_STAT]); \
|
---|
78 | } while (0)
|
---|
79 |
|
---|
80 | # define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
|
---|
81 | STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitAll); \
|
---|
82 | if ((u64ExitCode) == SVM_EXIT_NPF) \
|
---|
83 | STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitReasonNpf); \
|
---|
84 | else \
|
---|
85 | STAM_COUNTER_INC(&pVCpu->hm.s.aStatNestedExitReason[(u64ExitCode) & MASK_EXITREASON_STAT]); \
|
---|
86 | } while (0)
|
---|
87 | #else
|
---|
88 | # define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
|
---|
89 | # define HMSVM_DEBUG_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
|
---|
90 | # define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
|
---|
91 | #endif /* !VBOX_WITH_STATISTICS */
|
---|
92 |
|
---|
93 | /** If we decide to use a function table approach this can be useful to
|
---|
94 | * switch to a "static DECLCALLBACK(int)". */
|
---|
95 | #define HMSVM_EXIT_DECL static VBOXSTRICTRC
|
---|
96 |
|
---|
97 | /**
|
---|
98 | * Subset of the guest-CPU state that is kept by SVM R0 code while executing the
|
---|
99 | * guest using hardware-assisted SVM.
|
---|
100 | *
|
---|
101 | * This excludes state like TSC AUX, GPRs (other than RSP, RAX) which are always
|
---|
102 | * are swapped and restored across the world-switch and also registers like
|
---|
103 | * EFER, PAT MSR etc. which cannot be modified by the guest without causing a
|
---|
104 | * \#VMEXIT.
|
---|
105 | */
|
---|
106 | #define HMSVM_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
|
---|
107 | | CPUMCTX_EXTRN_RFLAGS \
|
---|
108 | | CPUMCTX_EXTRN_RAX \
|
---|
109 | | CPUMCTX_EXTRN_RSP \
|
---|
110 | | CPUMCTX_EXTRN_SREG_MASK \
|
---|
111 | | CPUMCTX_EXTRN_CR0 \
|
---|
112 | | CPUMCTX_EXTRN_CR2 \
|
---|
113 | | CPUMCTX_EXTRN_CR3 \
|
---|
114 | | CPUMCTX_EXTRN_TABLE_MASK \
|
---|
115 | | CPUMCTX_EXTRN_DR6 \
|
---|
116 | | CPUMCTX_EXTRN_DR7 \
|
---|
117 | | CPUMCTX_EXTRN_KERNEL_GS_BASE \
|
---|
118 | | CPUMCTX_EXTRN_SYSCALL_MSRS \
|
---|
119 | | CPUMCTX_EXTRN_SYSENTER_MSRS \
|
---|
120 | | CPUMCTX_EXTRN_HWVIRT \
|
---|
121 | | CPUMCTX_EXTRN_INHIBIT_INT \
|
---|
122 | | CPUMCTX_EXTRN_HM_SVM_MASK)
|
---|
123 |
|
---|
124 | /**
|
---|
125 | * Subset of the guest-CPU state that is shared between the guest and host.
|
---|
126 | */
|
---|
127 | #define HMSVM_CPUMCTX_SHARED_STATE CPUMCTX_EXTRN_DR_MASK
|
---|
128 |
|
---|
129 | /** Macro for importing guest state from the VMCB back into CPUMCTX. */
|
---|
130 | #define HMSVM_CPUMCTX_IMPORT_STATE(a_pVCpu, a_fWhat) \
|
---|
131 | do { \
|
---|
132 | if ((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fWhat)) \
|
---|
133 | hmR0SvmImportGuestState((a_pVCpu), (a_fWhat)); \
|
---|
134 | } while (0)
|
---|
135 |
|
---|
136 | /** Assert that the required state bits are fetched. */
|
---|
137 | #define HMSVM_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
|
---|
138 | ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
|
---|
139 | (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
|
---|
140 |
|
---|
141 | /** Assert that preemption is disabled or covered by thread-context hooks. */
|
---|
142 | #define HMSVM_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
|
---|
143 | || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
144 |
|
---|
145 | /** Assert that we haven't migrated CPUs when thread-context hooks are not
|
---|
146 | * used. */
|
---|
147 | #define HMSVM_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
|
---|
148 | || (a_pVCpu)->hmr0.s.idEnteredCpu == RTMpCpuId(), \
|
---|
149 | ("Illegal migration! Entered on CPU %u Current %u\n", \
|
---|
150 | (a_pVCpu)->hmr0.s.idEnteredCpu, RTMpCpuId()));
|
---|
151 |
|
---|
152 | /** Assert that we're not executing a nested-guest. */
|
---|
153 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
154 | # define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) Assert(!CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
|
---|
155 | #else
|
---|
156 | # define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
|
---|
157 | #endif
|
---|
158 |
|
---|
159 | /** Assert that we're executing a nested-guest. */
|
---|
160 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
161 | # define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) Assert(CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
|
---|
162 | #else
|
---|
163 | # define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
|
---|
164 | #endif
|
---|
165 |
|
---|
166 | /** Macro for checking and returning from the using function for
|
---|
167 | * \#VMEXIT intercepts that maybe caused during delivering of another
|
---|
168 | * event in the guest. */
|
---|
169 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
170 | # define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
|
---|
171 | do \
|
---|
172 | { \
|
---|
173 | int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
|
---|
174 | if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
|
---|
175 | else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
|
---|
176 | else if ( rc == VINF_EM_RESET \
|
---|
177 | && CPUMIsGuestSvmCtrlInterceptSet((a_pVCpu), &(a_pVCpu)->cpum.GstCtx, SVM_CTRL_INTERCEPT_SHUTDOWN)) \
|
---|
178 | { \
|
---|
179 | HMSVM_CPUMCTX_IMPORT_STATE((a_pVCpu), HMSVM_CPUMCTX_EXTRN_ALL); \
|
---|
180 | return IEMExecSvmVmexit((a_pVCpu), SVM_EXIT_SHUTDOWN, 0, 0); \
|
---|
181 | } \
|
---|
182 | else \
|
---|
183 | return rc; \
|
---|
184 | } while (0)
|
---|
185 | #else
|
---|
186 | # define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
|
---|
187 | do \
|
---|
188 | { \
|
---|
189 | int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
|
---|
190 | if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
|
---|
191 | else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
|
---|
192 | else \
|
---|
193 | return rc; \
|
---|
194 | } while (0)
|
---|
195 | #endif
|
---|
196 |
|
---|
197 | /** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
|
---|
198 | * instruction that exited. */
|
---|
199 | #define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
|
---|
200 | do { \
|
---|
201 | if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
|
---|
202 | (a_rc) = VINF_EM_DBG_STEPPED; \
|
---|
203 | } while (0)
|
---|
204 |
|
---|
205 | /** Validate segment descriptor granularity bit. */
|
---|
206 | #ifdef VBOX_STRICT
|
---|
207 | # define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) \
|
---|
208 | AssertMsg( !(a_pCtx)->reg.Attr.n.u1Present \
|
---|
209 | || ( (a_pCtx)->reg.Attr.n.u1Granularity \
|
---|
210 | ? ((a_pCtx)->reg.u32Limit & 0xfff) == 0xfff \
|
---|
211 | : (a_pCtx)->reg.u32Limit <= UINT32_C(0xfffff)), \
|
---|
212 | ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", (a_pCtx)->reg.u32Limit, \
|
---|
213 | (a_pCtx)->reg.Attr.u, (a_pCtx)->reg.u64Base))
|
---|
214 | #else
|
---|
215 | # define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) do { } while (0)
|
---|
216 | #endif
|
---|
217 |
|
---|
218 | /**
|
---|
219 | * Exception bitmap mask for all contributory exceptions.
|
---|
220 | *
|
---|
221 | * Page fault is deliberately excluded here as it's conditional as to whether
|
---|
222 | * it's contributory or benign. Page faults are handled separately.
|
---|
223 | */
|
---|
224 | #define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
|
---|
225 | | RT_BIT(X86_XCPT_DE))
|
---|
226 |
|
---|
227 | /**
|
---|
228 | * Mandatory/unconditional guest control intercepts.
|
---|
229 | *
|
---|
230 | * SMIs can and do happen in normal operation. We need not intercept them
|
---|
231 | * while executing the guest (or nested-guest).
|
---|
232 | */
|
---|
233 | #define HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS ( SVM_CTRL_INTERCEPT_INTR \
|
---|
234 | | SVM_CTRL_INTERCEPT_NMI \
|
---|
235 | | SVM_CTRL_INTERCEPT_INIT \
|
---|
236 | | SVM_CTRL_INTERCEPT_RDPMC \
|
---|
237 | | SVM_CTRL_INTERCEPT_CPUID \
|
---|
238 | | SVM_CTRL_INTERCEPT_RSM \
|
---|
239 | | SVM_CTRL_INTERCEPT_HLT \
|
---|
240 | | SVM_CTRL_INTERCEPT_IOIO_PROT \
|
---|
241 | | SVM_CTRL_INTERCEPT_MSR_PROT \
|
---|
242 | | SVM_CTRL_INTERCEPT_INVLPGA \
|
---|
243 | | SVM_CTRL_INTERCEPT_SHUTDOWN \
|
---|
244 | | SVM_CTRL_INTERCEPT_FERR_FREEZE \
|
---|
245 | | SVM_CTRL_INTERCEPT_VMRUN \
|
---|
246 | | SVM_CTRL_INTERCEPT_SKINIT \
|
---|
247 | | SVM_CTRL_INTERCEPT_WBINVD \
|
---|
248 | | SVM_CTRL_INTERCEPT_MONITOR \
|
---|
249 | | SVM_CTRL_INTERCEPT_MWAIT \
|
---|
250 | | SVM_CTRL_INTERCEPT_CR0_SEL_WRITE \
|
---|
251 | | SVM_CTRL_INTERCEPT_XSETBV)
|
---|
252 |
|
---|
253 | /** @name VMCB Clean Bits.
|
---|
254 | *
|
---|
255 | * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
|
---|
256 | * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
|
---|
257 | * memory.
|
---|
258 | *
|
---|
259 | * @{ */
|
---|
260 | /** All intercepts vectors, TSC offset, PAUSE filter counter. */
|
---|
261 | #define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
|
---|
262 | /** I/O permission bitmap, MSR permission bitmap. */
|
---|
263 | #define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
|
---|
264 | /** ASID. */
|
---|
265 | #define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
|
---|
266 | /** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
|
---|
267 | V_INTR_VECTOR. */
|
---|
268 | #define HMSVM_VMCB_CLEAN_INT_CTRL RT_BIT(3)
|
---|
269 | /** Nested Paging: Nested CR3 (nCR3), PAT. */
|
---|
270 | #define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
|
---|
271 | /** Control registers (CR0, CR3, CR4, EFER). */
|
---|
272 | #define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
|
---|
273 | /** Debug registers (DR6, DR7). */
|
---|
274 | #define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
|
---|
275 | /** GDT, IDT limit and base. */
|
---|
276 | #define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
|
---|
277 | /** Segment register: CS, SS, DS, ES limit and base. */
|
---|
278 | #define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
|
---|
279 | /** CR2.*/
|
---|
280 | #define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
|
---|
281 | /** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
|
---|
282 | #define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
|
---|
283 | /** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
|
---|
284 | PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
|
---|
285 | #define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
|
---|
286 | /** Mask of all valid VMCB Clean bits. */
|
---|
287 | #define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
|
---|
288 | | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
|
---|
289 | | HMSVM_VMCB_CLEAN_ASID \
|
---|
290 | | HMSVM_VMCB_CLEAN_INT_CTRL \
|
---|
291 | | HMSVM_VMCB_CLEAN_NP \
|
---|
292 | | HMSVM_VMCB_CLEAN_CRX_EFER \
|
---|
293 | | HMSVM_VMCB_CLEAN_DRX \
|
---|
294 | | HMSVM_VMCB_CLEAN_DT \
|
---|
295 | | HMSVM_VMCB_CLEAN_SEG \
|
---|
296 | | HMSVM_VMCB_CLEAN_CR2 \
|
---|
297 | | HMSVM_VMCB_CLEAN_LBR \
|
---|
298 | | HMSVM_VMCB_CLEAN_AVIC)
|
---|
299 | /** @} */
|
---|
300 |
|
---|
301 | /**
|
---|
302 | * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
|
---|
303 | */
|
---|
304 | typedef enum SVMMSREXITREAD
|
---|
305 | {
|
---|
306 | /** Reading this MSR causes a \#VMEXIT. */
|
---|
307 | SVMMSREXIT_INTERCEPT_READ = 0xb,
|
---|
308 | /** Reading this MSR does not cause a \#VMEXIT. */
|
---|
309 | SVMMSREXIT_PASSTHRU_READ
|
---|
310 | } SVMMSREXITREAD;
|
---|
311 |
|
---|
312 | /**
|
---|
313 | * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
|
---|
314 | */
|
---|
315 | typedef enum SVMMSREXITWRITE
|
---|
316 | {
|
---|
317 | /** Writing to this MSR causes a \#VMEXIT. */
|
---|
318 | SVMMSREXIT_INTERCEPT_WRITE = 0xd,
|
---|
319 | /** Writing to this MSR does not cause a \#VMEXIT. */
|
---|
320 | SVMMSREXIT_PASSTHRU_WRITE
|
---|
321 | } SVMMSREXITWRITE;
|
---|
322 |
|
---|
323 | /**
|
---|
324 | * SVM \#VMEXIT handler.
|
---|
325 | *
|
---|
326 | * @returns Strict VBox status code.
|
---|
327 | * @param pVCpu The cross context virtual CPU structure.
|
---|
328 | * @param pSvmTransient Pointer to the SVM-transient structure.
|
---|
329 | */
|
---|
330 | typedef VBOXSTRICTRC FNSVMEXITHANDLER(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
|
---|
331 |
|
---|
332 |
|
---|
333 | /*********************************************************************************************************************************
|
---|
334 | * Internal Functions *
|
---|
335 | *********************************************************************************************************************************/
|
---|
336 | static void hmR0SvmPendingEventToTrpmTrap(PVMCPUCC pVCpu);
|
---|
337 | static void hmR0SvmLeave(PVMCPUCC pVCpu, bool fImportState);
|
---|
338 |
|
---|
339 |
|
---|
340 | /** @name \#VMEXIT handlers.
|
---|
341 | * @{
|
---|
342 | */
|
---|
343 | static FNSVMEXITHANDLER hmR0SvmExitIntr;
|
---|
344 | static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
|
---|
345 | static FNSVMEXITHANDLER hmR0SvmExitInvd;
|
---|
346 | static FNSVMEXITHANDLER hmR0SvmExitCpuid;
|
---|
347 | static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
|
---|
348 | static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
|
---|
349 | static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
|
---|
350 | static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
|
---|
351 | static FNSVMEXITHANDLER hmR0SvmExitHlt;
|
---|
352 | static FNSVMEXITHANDLER hmR0SvmExitMonitor;
|
---|
353 | static FNSVMEXITHANDLER hmR0SvmExitMwait;
|
---|
354 | static FNSVMEXITHANDLER hmR0SvmExitShutdown;
|
---|
355 | static FNSVMEXITHANDLER hmR0SvmExitUnexpected;
|
---|
356 | static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
|
---|
357 | static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
|
---|
358 | static FNSVMEXITHANDLER hmR0SvmExitMsr;
|
---|
359 | static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
|
---|
360 | static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
|
---|
361 | static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
|
---|
362 | static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
|
---|
363 | static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
|
---|
364 | static FNSVMEXITHANDLER hmR0SvmExitVIntr;
|
---|
365 | static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
|
---|
366 | static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
|
---|
367 | static FNSVMEXITHANDLER hmR0SvmExitPause;
|
---|
368 | static FNSVMEXITHANDLER hmR0SvmExitFerrFreeze;
|
---|
369 | static FNSVMEXITHANDLER hmR0SvmExitIret;
|
---|
370 | static FNSVMEXITHANDLER hmR0SvmExitXcptDE;
|
---|
371 | static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
|
---|
372 | static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
|
---|
373 | static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
|
---|
374 | static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
|
---|
375 | static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
|
---|
376 | static FNSVMEXITHANDLER hmR0SvmExitXcptBP;
|
---|
377 | static FNSVMEXITHANDLER hmR0SvmExitXcptGP;
|
---|
378 | static FNSVMEXITHANDLER hmR0SvmExitXcptGeneric;
|
---|
379 | static FNSVMEXITHANDLER hmR0SvmExitSwInt;
|
---|
380 | static FNSVMEXITHANDLER hmR0SvmExitTrRead;
|
---|
381 | static FNSVMEXITHANDLER hmR0SvmExitTrWrite;
|
---|
382 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
383 | static FNSVMEXITHANDLER hmR0SvmExitClgi;
|
---|
384 | static FNSVMEXITHANDLER hmR0SvmExitStgi;
|
---|
385 | static FNSVMEXITHANDLER hmR0SvmExitVmload;
|
---|
386 | static FNSVMEXITHANDLER hmR0SvmExitVmsave;
|
---|
387 | static FNSVMEXITHANDLER hmR0SvmExitInvlpga;
|
---|
388 | static FNSVMEXITHANDLER hmR0SvmExitVmrun;
|
---|
389 | static FNSVMEXITHANDLER hmR0SvmNestedExitXcptDB;
|
---|
390 | static FNSVMEXITHANDLER hmR0SvmNestedExitXcptBP;
|
---|
391 | #endif
|
---|
392 | /** @} */
|
---|
393 |
|
---|
394 | static VBOXSTRICTRC hmR0SvmHandleExit(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
|
---|
395 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
396 | static VBOXSTRICTRC hmR0SvmHandleExitNested(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
|
---|
397 | #endif
|
---|
398 | static VBOXSTRICTRC hmR0SvmRunGuestCodeDebug(PVMCPUCC pVCpu, uint32_t *pcLoops);
|
---|
399 |
|
---|
400 |
|
---|
401 | /*********************************************************************************************************************************
|
---|
402 | * Global Variables *
|
---|
403 | *********************************************************************************************************************************/
|
---|
404 | /** Ring-0 memory object for the IO bitmap. */
|
---|
405 | static RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
|
---|
406 | /** Physical address of the IO bitmap. */
|
---|
407 | static RTHCPHYS g_HCPhysIOBitmap;
|
---|
408 | /** Pointer to the IO bitmap. */
|
---|
409 | static R0PTRTYPE(void *) g_pvIOBitmap;
|
---|
410 |
|
---|
411 | #ifdef VBOX_STRICT
|
---|
412 | # define HMSVM_LOG_RBP_RSP RT_BIT_32(0)
|
---|
413 | # define HMSVM_LOG_CR_REGS RT_BIT_32(1)
|
---|
414 | # define HMSVM_LOG_CS RT_BIT_32(2)
|
---|
415 | # define HMSVM_LOG_SS RT_BIT_32(3)
|
---|
416 | # define HMSVM_LOG_FS RT_BIT_32(4)
|
---|
417 | # define HMSVM_LOG_GS RT_BIT_32(5)
|
---|
418 | # define HMSVM_LOG_LBR RT_BIT_32(6)
|
---|
419 | # define HMSVM_LOG_ALL ( HMSVM_LOG_RBP_RSP \
|
---|
420 | | HMSVM_LOG_CR_REGS \
|
---|
421 | | HMSVM_LOG_CS \
|
---|
422 | | HMSVM_LOG_SS \
|
---|
423 | | HMSVM_LOG_FS \
|
---|
424 | | HMSVM_LOG_GS \
|
---|
425 | | HMSVM_LOG_LBR)
|
---|
426 |
|
---|
427 | /**
|
---|
428 | * Dumps virtual CPU state and additional info. to the logger for diagnostics.
|
---|
429 | *
|
---|
430 | * @param pVCpu The cross context virtual CPU structure.
|
---|
431 | * @param pVmcb Pointer to the VM control block.
|
---|
432 | * @param pszPrefix Log prefix.
|
---|
433 | * @param fFlags Log flags, see HMSVM_LOG_XXX.
|
---|
434 | * @param uVerbose The verbosity level, currently unused.
|
---|
435 | */
|
---|
436 | static void hmR0SvmLogState(PVMCPUCC pVCpu, PCSVMVMCB pVmcb, const char *pszPrefix, uint32_t fFlags, uint8_t uVerbose)
|
---|
437 | {
|
---|
438 | RT_NOREF2(pVCpu, uVerbose);
|
---|
439 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
440 |
|
---|
441 | HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
|
---|
442 | Log4(("%s: cs:rip=%04x:%RX64 efl=%#RX64\n", pszPrefix, pCtx->cs.Sel, pCtx->rip, pCtx->rflags.u));
|
---|
443 |
|
---|
444 | if (fFlags & HMSVM_LOG_RBP_RSP)
|
---|
445 | {
|
---|
446 | HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RBP);
|
---|
447 | Log4(("%s: rsp=%#RX64 rbp=%#RX64\n", pszPrefix, pCtx->rsp, pCtx->rbp));
|
---|
448 | }
|
---|
449 |
|
---|
450 | if (fFlags & HMSVM_LOG_CR_REGS)
|
---|
451 | {
|
---|
452 | HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4);
|
---|
453 | Log4(("%s: cr0=%#RX64 cr3=%#RX64 cr4=%#RX64\n", pszPrefix, pCtx->cr0, pCtx->cr3, pCtx->cr4));
|
---|
454 | }
|
---|
455 |
|
---|
456 | if (fFlags & HMSVM_LOG_CS)
|
---|
457 | {
|
---|
458 | HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
|
---|
459 | Log4(("%s: cs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base,
|
---|
460 | pCtx->cs.u32Limit, pCtx->cs.Attr.u));
|
---|
461 | }
|
---|
462 | if (fFlags & HMSVM_LOG_SS)
|
---|
463 | {
|
---|
464 | HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
|
---|
465 | Log4(("%s: ss={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base,
|
---|
466 | pCtx->ss.u32Limit, pCtx->ss.Attr.u));
|
---|
467 | }
|
---|
468 | if (fFlags & HMSVM_LOG_FS)
|
---|
469 | {
|
---|
470 | HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
|
---|
471 | Log4(("%s: fs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base,
|
---|
472 | pCtx->fs.u32Limit, pCtx->fs.Attr.u));
|
---|
473 | }
|
---|
474 | if (fFlags & HMSVM_LOG_GS)
|
---|
475 | {
|
---|
476 | HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
|
---|
477 | Log4(("%s: gs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base,
|
---|
478 | pCtx->gs.u32Limit, pCtx->gs.Attr.u));
|
---|
479 | }
|
---|
480 |
|
---|
481 | PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
|
---|
482 | if (fFlags & HMSVM_LOG_LBR)
|
---|
483 | {
|
---|
484 | Log4(("%s: br_from=%#RX64 br_to=%#RX64 lastxcpt_from=%#RX64 lastxcpt_to=%#RX64\n", pszPrefix, pVmcbGuest->u64BR_FROM,
|
---|
485 | pVmcbGuest->u64BR_TO, pVmcbGuest->u64LASTEXCPFROM, pVmcbGuest->u64LASTEXCPTO));
|
---|
486 | }
|
---|
487 | NOREF(pszPrefix); NOREF(pVmcbGuest); NOREF(pCtx);
|
---|
488 | }
|
---|
489 | #endif /* VBOX_STRICT */
|
---|
490 |
|
---|
491 |
|
---|
492 | /**
|
---|
493 | * Sets up and activates AMD-V on the current CPU.
|
---|
494 | *
|
---|
495 | * @returns VBox status code.
|
---|
496 | * @param pHostCpu The HM physical-CPU structure.
|
---|
497 | * @param pVM The cross context VM structure. Can be
|
---|
498 | * NULL after a resume!
|
---|
499 | * @param pvCpuPage Pointer to the global CPU page.
|
---|
500 | * @param HCPhysCpuPage Physical address of the global CPU page.
|
---|
501 | * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
|
---|
502 | * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs (currently
|
---|
503 | * unused).
|
---|
504 | */
|
---|
505 | VMMR0DECL(int) SVMR0EnableCpu(PHMPHYSCPU pHostCpu, PVMCC pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
|
---|
506 | PCSUPHWVIRTMSRS pHwvirtMsrs)
|
---|
507 | {
|
---|
508 | Assert(!fEnabledByHost);
|
---|
509 | Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
|
---|
510 | Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
|
---|
511 | Assert(pvCpuPage); NOREF(pvCpuPage);
|
---|
512 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
513 |
|
---|
514 | RT_NOREF2(fEnabledByHost, pHwvirtMsrs);
|
---|
515 |
|
---|
516 | /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
|
---|
517 | RTCCUINTREG const fEFlags = ASMIntDisableFlags();
|
---|
518 |
|
---|
519 | /*
|
---|
520 | * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
|
---|
521 | */
|
---|
522 | uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
|
---|
523 | if (u64HostEfer & MSR_K6_EFER_SVME)
|
---|
524 | {
|
---|
525 | /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
|
---|
526 | if ( pVM
|
---|
527 | && pVM->hm.s.svm.fIgnoreInUseError)
|
---|
528 | pHostCpu->fIgnoreAMDVInUseError = true;
|
---|
529 |
|
---|
530 | if (!pHostCpu->fIgnoreAMDVInUseError)
|
---|
531 | {
|
---|
532 | ASMSetFlags(fEFlags);
|
---|
533 | return VERR_SVM_IN_USE;
|
---|
534 | }
|
---|
535 | }
|
---|
536 |
|
---|
537 | /* Turn on AMD-V in the EFER MSR. */
|
---|
538 | ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
|
---|
539 |
|
---|
540 | /* Write the physical page address where the CPU will store the host state while executing the VM. */
|
---|
541 | ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
|
---|
542 |
|
---|
543 | /* Restore interrupts. */
|
---|
544 | ASMSetFlags(fEFlags);
|
---|
545 |
|
---|
546 | /*
|
---|
547 | * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all
|
---|
548 | * non-zero ASIDs when enabling SVM. AMD doesn't have an SVM instruction to flush all
|
---|
549 | * ASIDs (flushing is done upon VMRUN). Therefore, flag that we need to flush the TLB
|
---|
550 | * entirely with before executing any guest code.
|
---|
551 | */
|
---|
552 | pHostCpu->fFlushAsidBeforeUse = true;
|
---|
553 |
|
---|
554 | /*
|
---|
555 | * Ensure each VCPU scheduled on this CPU gets a new ASID on resume. See @bugref{6255}.
|
---|
556 | */
|
---|
557 | ++pHostCpu->cTlbFlushes;
|
---|
558 |
|
---|
559 | return VINF_SUCCESS;
|
---|
560 | }
|
---|
561 |
|
---|
562 |
|
---|
563 | /**
|
---|
564 | * Deactivates AMD-V on the current CPU.
|
---|
565 | *
|
---|
566 | * @returns VBox status code.
|
---|
567 | * @param pHostCpu The HM physical-CPU structure.
|
---|
568 | * @param pvCpuPage Pointer to the global CPU page.
|
---|
569 | * @param HCPhysCpuPage Physical address of the global CPU page.
|
---|
570 | */
|
---|
571 | VMMR0DECL(int) SVMR0DisableCpu(PHMPHYSCPU pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
|
---|
572 | {
|
---|
573 | RT_NOREF1(pHostCpu);
|
---|
574 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
575 | AssertReturn( HCPhysCpuPage
|
---|
576 | && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
|
---|
577 | AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
|
---|
578 |
|
---|
579 | /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
|
---|
580 | RTCCUINTREG const fEFlags = ASMIntDisableFlags();
|
---|
581 |
|
---|
582 | /* Turn off AMD-V in the EFER MSR. */
|
---|
583 | uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
|
---|
584 | ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
|
---|
585 |
|
---|
586 | /* Invalidate host state physical address. */
|
---|
587 | ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
|
---|
588 |
|
---|
589 | /* Restore interrupts. */
|
---|
590 | ASMSetFlags(fEFlags);
|
---|
591 |
|
---|
592 | return VINF_SUCCESS;
|
---|
593 | }
|
---|
594 |
|
---|
595 |
|
---|
596 | /**
|
---|
597 | * Does global AMD-V initialization (called during module initialization).
|
---|
598 | *
|
---|
599 | * @returns VBox status code.
|
---|
600 | */
|
---|
601 | VMMR0DECL(int) SVMR0GlobalInit(void)
|
---|
602 | {
|
---|
603 | /*
|
---|
604 | * Allocate 12 KB (3 pages) for the IO bitmap. Since this is non-optional and we always
|
---|
605 | * intercept all IO accesses, it's done once globally here instead of per-VM.
|
---|
606 | */
|
---|
607 | Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
|
---|
608 | int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT,
|
---|
609 | NIL_RTHCPHYS /*PhysHighest*/, false /* fExecutable */);
|
---|
610 | if (RT_FAILURE(rc))
|
---|
611 | return rc;
|
---|
612 |
|
---|
613 | g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
|
---|
614 | g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
|
---|
615 |
|
---|
616 | /* Set all bits to intercept all IO accesses. */
|
---|
617 | ASMMemFill32(g_pvIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
|
---|
618 |
|
---|
619 | return VINF_SUCCESS;
|
---|
620 | }
|
---|
621 |
|
---|
622 |
|
---|
623 | /**
|
---|
624 | * Does global AMD-V termination (called during module termination).
|
---|
625 | */
|
---|
626 | VMMR0DECL(void) SVMR0GlobalTerm(void)
|
---|
627 | {
|
---|
628 | if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
|
---|
629 | {
|
---|
630 | RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
|
---|
631 | g_pvIOBitmap = NULL;
|
---|
632 | g_HCPhysIOBitmap = 0;
|
---|
633 | g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
|
---|
634 | }
|
---|
635 | }
|
---|
636 |
|
---|
637 |
|
---|
638 | /**
|
---|
639 | * Frees any allocated per-VCPU structures for a VM.
|
---|
640 | *
|
---|
641 | * @param pVM The cross context VM structure.
|
---|
642 | */
|
---|
643 | DECLINLINE(void) hmR0SvmFreeStructs(PVMCC pVM)
|
---|
644 | {
|
---|
645 | for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
|
---|
646 | {
|
---|
647 | PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
|
---|
648 | AssertPtr(pVCpu);
|
---|
649 |
|
---|
650 | if (pVCpu->hmr0.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
|
---|
651 | {
|
---|
652 | RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjVmcbHost, false);
|
---|
653 | pVCpu->hmr0.s.svm.HCPhysVmcbHost = 0;
|
---|
654 | pVCpu->hmr0.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
|
---|
655 | }
|
---|
656 |
|
---|
657 | if (pVCpu->hmr0.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
|
---|
658 | {
|
---|
659 | RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjVmcb, false);
|
---|
660 | pVCpu->hmr0.s.svm.pVmcb = NULL;
|
---|
661 | pVCpu->hmr0.s.svm.HCPhysVmcb = 0;
|
---|
662 | pVCpu->hmr0.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
|
---|
663 | }
|
---|
664 |
|
---|
665 | if (pVCpu->hmr0.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
|
---|
666 | {
|
---|
667 | RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjMsrBitmap, false);
|
---|
668 | pVCpu->hmr0.s.svm.pvMsrBitmap = NULL;
|
---|
669 | pVCpu->hmr0.s.svm.HCPhysMsrBitmap = 0;
|
---|
670 | pVCpu->hmr0.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
|
---|
671 | }
|
---|
672 | }
|
---|
673 | }
|
---|
674 |
|
---|
675 |
|
---|
676 | /**
|
---|
677 | * Sets pfnVMRun to the best suited variant.
|
---|
678 | *
|
---|
679 | * This must be called whenever anything changes relative to the SVMR0VMRun
|
---|
680 | * variant selection:
|
---|
681 | * - pVCpu->hm.s.fLoadSaveGuestXcr0
|
---|
682 | * - CPUMCTX_WSF_IBPB_ENTRY in pVCpu->cpum.GstCtx.fWorldSwitcher
|
---|
683 | * - CPUMCTX_WSF_IBPB_EXIT in pVCpu->cpum.GstCtx.fWorldSwitcher
|
---|
684 | * - Perhaps: CPUMIsGuestFPUStateActive() (windows only)
|
---|
685 | * - Perhaps: CPUMCTX.fXStateMask (windows only)
|
---|
686 | *
|
---|
687 | * We currently ASSUME that neither CPUMCTX_WSF_IBPB_ENTRY nor
|
---|
688 | * CPUMCTX_WSF_IBPB_EXIT cannot be changed at runtime.
|
---|
689 | */
|
---|
690 | static void hmR0SvmUpdateVmRunFunction(PVMCPUCC pVCpu)
|
---|
691 | {
|
---|
692 | static const struct CLANGWORKAROUND { PFNHMSVMVMRUN pfn; } s_aHmR0SvmVmRunFunctions[] =
|
---|
693 | {
|
---|
694 | { hmR0SvmVmRun_SansXcr0_SansIbpbEntry_SansIbpbExit },
|
---|
695 | { hmR0SvmVmRun_WithXcr0_SansIbpbEntry_SansIbpbExit },
|
---|
696 | { hmR0SvmVmRun_SansXcr0_WithIbpbEntry_SansIbpbExit },
|
---|
697 | { hmR0SvmVmRun_WithXcr0_WithIbpbEntry_SansIbpbExit },
|
---|
698 | { hmR0SvmVmRun_SansXcr0_SansIbpbEntry_WithIbpbExit },
|
---|
699 | { hmR0SvmVmRun_WithXcr0_SansIbpbEntry_WithIbpbExit },
|
---|
700 | { hmR0SvmVmRun_SansXcr0_WithIbpbEntry_WithIbpbExit },
|
---|
701 | { hmR0SvmVmRun_WithXcr0_WithIbpbEntry_WithIbpbExit },
|
---|
702 | };
|
---|
703 | uintptr_t const idx = (pVCpu->hmr0.s.fLoadSaveGuestXcr0 ? 1 : 0)
|
---|
704 | | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_ENTRY ? 2 : 0)
|
---|
705 | | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_EXIT ? 4 : 0);
|
---|
706 | PFNHMSVMVMRUN const pfnVMRun = s_aHmR0SvmVmRunFunctions[idx].pfn;
|
---|
707 | if (pVCpu->hmr0.s.svm.pfnVMRun != pfnVMRun)
|
---|
708 | pVCpu->hmr0.s.svm.pfnVMRun = pfnVMRun;
|
---|
709 | }
|
---|
710 |
|
---|
711 |
|
---|
712 | /**
|
---|
713 | * Selector FNHMSVMVMRUN implementation.
|
---|
714 | */
|
---|
715 | static DECLCALLBACK(int) hmR0SvmVMRunSelector(PVMCC pVM, PVMCPUCC pVCpu, RTHCPHYS HCPhysVMCB)
|
---|
716 | {
|
---|
717 | hmR0SvmUpdateVmRunFunction(pVCpu);
|
---|
718 | return pVCpu->hmr0.s.svm.pfnVMRun(pVM, pVCpu, HCPhysVMCB);
|
---|
719 | }
|
---|
720 |
|
---|
721 |
|
---|
722 | /**
|
---|
723 | * Does per-VM AMD-V initialization.
|
---|
724 | *
|
---|
725 | * @returns VBox status code.
|
---|
726 | * @param pVM The cross context VM structure.
|
---|
727 | */
|
---|
728 | VMMR0DECL(int) SVMR0InitVM(PVMCC pVM)
|
---|
729 | {
|
---|
730 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
731 |
|
---|
732 | /*
|
---|
733 | * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
|
---|
734 | */
|
---|
735 | uint32_t u32Family;
|
---|
736 | uint32_t u32Model;
|
---|
737 | uint32_t u32Stepping;
|
---|
738 | if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping))
|
---|
739 | {
|
---|
740 | Log4Func(("AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
|
---|
741 | pVM->hmr0.s.svm.fAlwaysFlushTLB = true;
|
---|
742 | }
|
---|
743 |
|
---|
744 | /*
|
---|
745 | * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
|
---|
746 | */
|
---|
747 | for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
|
---|
748 | {
|
---|
749 | PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
|
---|
750 | pVCpu->hmr0.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
|
---|
751 | pVCpu->hmr0.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
|
---|
752 | pVCpu->hmr0.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
|
---|
753 | }
|
---|
754 |
|
---|
755 | for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
|
---|
756 | {
|
---|
757 | PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
|
---|
758 |
|
---|
759 | /*
|
---|
760 | * Initialize the hardware-assisted SVM guest-execution handler.
|
---|
761 | * We now use a single handler for both 32-bit and 64-bit guests, see @bugref{6208#c73}.
|
---|
762 | */
|
---|
763 | pVCpu->hmr0.s.svm.pfnVMRun = hmR0SvmVMRunSelector;
|
---|
764 |
|
---|
765 | /*
|
---|
766 | * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
|
---|
767 | * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
|
---|
768 | */
|
---|
769 | rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjVmcbHost, SVM_VMCB_PAGES << HOST_PAGE_SHIFT,
|
---|
770 | NIL_RTHCPHYS /*PhysHighest*/, false /* fExecutable */);
|
---|
771 | if (RT_FAILURE(rc))
|
---|
772 | goto failure_cleanup;
|
---|
773 |
|
---|
774 | void *pvVmcbHost = RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjVmcbHost);
|
---|
775 | pVCpu->hmr0.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjVmcbHost, 0 /* iPage */);
|
---|
776 | RT_BZERO(pvVmcbHost, HOST_PAGE_SIZE);
|
---|
777 |
|
---|
778 | /*
|
---|
779 | * Allocate one page for the guest-state VMCB.
|
---|
780 | */
|
---|
781 | rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjVmcb, SVM_VMCB_PAGES << HOST_PAGE_SHIFT,
|
---|
782 | NIL_RTHCPHYS /*PhysHighest*/, false /* fExecutable */);
|
---|
783 | if (RT_FAILURE(rc))
|
---|
784 | goto failure_cleanup;
|
---|
785 |
|
---|
786 | pVCpu->hmr0.s.svm.pVmcb = (PSVMVMCB)RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjVmcb);
|
---|
787 | pVCpu->hmr0.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjVmcb, 0 /* iPage */);
|
---|
788 | RT_BZERO(pVCpu->hmr0.s.svm.pVmcb, HOST_PAGE_SIZE);
|
---|
789 |
|
---|
790 | /*
|
---|
791 | * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
|
---|
792 | * SVM to not require one.
|
---|
793 | */
|
---|
794 | rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjMsrBitmap, SVM_MSRPM_PAGES << HOST_PAGE_SHIFT,
|
---|
795 | NIL_RTHCPHYS /*PhysHighest*/, false /* fExecutable */);
|
---|
796 | if (RT_FAILURE(rc))
|
---|
797 | goto failure_cleanup;
|
---|
798 |
|
---|
799 | pVCpu->hmr0.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjMsrBitmap);
|
---|
800 | pVCpu->hmr0.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
|
---|
801 | /* Set all bits to intercept all MSR accesses (changed later on). */
|
---|
802 | ASMMemFill32(pVCpu->hmr0.s.svm.pvMsrBitmap, SVM_MSRPM_PAGES << HOST_PAGE_SHIFT, UINT32_C(0xffffffff));
|
---|
803 | }
|
---|
804 |
|
---|
805 | return VINF_SUCCESS;
|
---|
806 |
|
---|
807 | failure_cleanup:
|
---|
808 | hmR0SvmFreeStructs(pVM);
|
---|
809 | return rc;
|
---|
810 | }
|
---|
811 |
|
---|
812 |
|
---|
813 | /**
|
---|
814 | * Does per-VM AMD-V termination.
|
---|
815 | *
|
---|
816 | * @returns VBox status code.
|
---|
817 | * @param pVM The cross context VM structure.
|
---|
818 | */
|
---|
819 | VMMR0DECL(int) SVMR0TermVM(PVMCC pVM)
|
---|
820 | {
|
---|
821 | hmR0SvmFreeStructs(pVM);
|
---|
822 | return VINF_SUCCESS;
|
---|
823 | }
|
---|
824 |
|
---|
825 |
|
---|
826 | /**
|
---|
827 | * Returns whether the VMCB Clean Bits feature is supported.
|
---|
828 | *
|
---|
829 | * @returns @c true if supported, @c false otherwise.
|
---|
830 | * @param pVCpu The cross context virtual CPU structure.
|
---|
831 | * @param fIsNestedGuest Whether we are currently executing the nested-guest.
|
---|
832 | */
|
---|
833 | DECL_FORCE_INLINE(bool) hmR0SvmSupportsVmcbCleanBits(PVMCPUCC pVCpu, bool fIsNestedGuest)
|
---|
834 | {
|
---|
835 | PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
836 | bool const fHostVmcbCleanBits = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN);
|
---|
837 | if (!fIsNestedGuest)
|
---|
838 | return fHostVmcbCleanBits;
|
---|
839 | return fHostVmcbCleanBits && pVM->cpum.ro.GuestFeatures.fSvmVmcbClean;
|
---|
840 | }
|
---|
841 |
|
---|
842 |
|
---|
843 | /**
|
---|
844 | * Returns whether the decode assists feature is supported.
|
---|
845 | *
|
---|
846 | * @returns @c true if supported, @c false otherwise.
|
---|
847 | * @param pVCpu The cross context virtual CPU structure.
|
---|
848 | */
|
---|
849 | DECLINLINE(bool) hmR0SvmSupportsDecodeAssists(PVMCPUCC pVCpu)
|
---|
850 | {
|
---|
851 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
852 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
853 | if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
|
---|
854 | return (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS)
|
---|
855 | && pVM->cpum.ro.GuestFeatures.fSvmDecodeAssists;
|
---|
856 | #endif
|
---|
857 | return RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS);
|
---|
858 | }
|
---|
859 |
|
---|
860 |
|
---|
861 | /**
|
---|
862 | * Returns whether the NRIP_SAVE feature is supported.
|
---|
863 | *
|
---|
864 | * @returns @c true if supported, @c false otherwise.
|
---|
865 | * @param pVCpu The cross context virtual CPU structure.
|
---|
866 | */
|
---|
867 | DECLINLINE(bool) hmR0SvmSupportsNextRipSave(PVMCPUCC pVCpu)
|
---|
868 | {
|
---|
869 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
870 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
871 | if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
|
---|
872 | return (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
|
---|
873 | && pVM->cpum.ro.GuestFeatures.fSvmNextRipSave;
|
---|
874 | #endif
|
---|
875 | return RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
|
---|
876 | }
|
---|
877 |
|
---|
878 |
|
---|
879 | /**
|
---|
880 | * Sets the permission bits for the specified MSR in the MSRPM bitmap.
|
---|
881 | *
|
---|
882 | * @param pVCpu The cross context virtual CPU structure.
|
---|
883 | * @param pbMsrBitmap Pointer to the MSR bitmap.
|
---|
884 | * @param idMsr The MSR for which the permissions are being set.
|
---|
885 | * @param enmRead MSR read permissions.
|
---|
886 | * @param enmWrite MSR write permissions.
|
---|
887 | *
|
---|
888 | * @remarks This function does -not- clear the VMCB clean bits for MSRPM. The
|
---|
889 | * caller needs to take care of this.
|
---|
890 | */
|
---|
891 | static void hmR0SvmSetMsrPermission(PVMCPUCC pVCpu, uint8_t *pbMsrBitmap, uint32_t idMsr, SVMMSREXITREAD enmRead,
|
---|
892 | SVMMSREXITWRITE enmWrite)
|
---|
893 | {
|
---|
894 | bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx);
|
---|
895 | uint16_t offMsrpm;
|
---|
896 | uint8_t uMsrpmBit;
|
---|
897 | int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
|
---|
898 | AssertRC(rc);
|
---|
899 |
|
---|
900 | Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
|
---|
901 | Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
|
---|
902 |
|
---|
903 | pbMsrBitmap += offMsrpm;
|
---|
904 | if (enmRead == SVMMSREXIT_INTERCEPT_READ)
|
---|
905 | *pbMsrBitmap |= RT_BIT(uMsrpmBit);
|
---|
906 | else
|
---|
907 | {
|
---|
908 | if (!fInNestedGuestMode)
|
---|
909 | *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
|
---|
910 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
911 | else
|
---|
912 | {
|
---|
913 | /* Only clear the bit if the nested-guest is also not intercepting the MSR read.*/
|
---|
914 | if (!(pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[offMsrpm] & RT_BIT(uMsrpmBit)))
|
---|
915 | *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
|
---|
916 | else
|
---|
917 | Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit));
|
---|
918 | }
|
---|
919 | #endif
|
---|
920 | }
|
---|
921 |
|
---|
922 | if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
|
---|
923 | *pbMsrBitmap |= RT_BIT(uMsrpmBit + 1);
|
---|
924 | else
|
---|
925 | {
|
---|
926 | if (!fInNestedGuestMode)
|
---|
927 | *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
|
---|
928 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
929 | else
|
---|
930 | {
|
---|
931 | /* Only clear the bit if the nested-guest is also not intercepting the MSR write.*/
|
---|
932 | if (!(pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[offMsrpm] & RT_BIT(uMsrpmBit + 1)))
|
---|
933 | *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
|
---|
934 | else
|
---|
935 | Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
|
---|
936 | }
|
---|
937 | #endif
|
---|
938 | }
|
---|
939 | }
|
---|
940 |
|
---|
941 |
|
---|
942 | /**
|
---|
943 | * Sets up AMD-V for the specified VM.
|
---|
944 | * This function is only called once per-VM during initalization.
|
---|
945 | *
|
---|
946 | * @returns VBox status code.
|
---|
947 | * @param pVM The cross context VM structure.
|
---|
948 | */
|
---|
949 | VMMR0DECL(int) SVMR0SetupVM(PVMCC pVM)
|
---|
950 | {
|
---|
951 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
952 | AssertReturn(pVM, VERR_INVALID_PARAMETER);
|
---|
953 |
|
---|
954 | /*
|
---|
955 | * Validate and copy over some parameters.
|
---|
956 | */
|
---|
957 | AssertReturn(pVM->hm.s.svm.fSupported, VERR_INCOMPATIBLE_CONFIG);
|
---|
958 | bool const fNestedPaging = pVM->hm.s.fNestedPagingCfg;
|
---|
959 | AssertReturn(!fNestedPaging || (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING), VERR_INCOMPATIBLE_CONFIG);
|
---|
960 | pVM->hmr0.s.fNestedPaging = fNestedPaging;
|
---|
961 | pVM->hmr0.s.fAllow64BitGuests = pVM->hm.s.fAllow64BitGuestsCfg;
|
---|
962 |
|
---|
963 | /*
|
---|
964 | * Determin some configuration parameters.
|
---|
965 | */
|
---|
966 | bool const fPauseFilter = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
|
---|
967 | bool const fPauseFilterThreshold = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
|
---|
968 | bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter;
|
---|
969 |
|
---|
970 | bool const fLbrVirt = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT);
|
---|
971 | bool const fUseLbrVirt = fLbrVirt && pVM->hm.s.svm.fLbrVirt; /** @todo IEM implementation etc. */
|
---|
972 |
|
---|
973 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
974 | bool const fVirtVmsaveVmload = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD);
|
---|
975 | bool const fUseVirtVmsaveVmload = fVirtVmsaveVmload && pVM->hm.s.svm.fVirtVmsaveVmload && fNestedPaging;
|
---|
976 |
|
---|
977 | bool const fVGif = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VGIF);
|
---|
978 | bool const fUseVGif = fVGif && pVM->hm.s.svm.fVGif;
|
---|
979 | #endif
|
---|
980 |
|
---|
981 | PVMCPUCC pVCpu0 = VMCC_GET_CPU_0(pVM);
|
---|
982 | PSVMVMCB pVmcb0 = pVCpu0->hmr0.s.svm.pVmcb;
|
---|
983 | AssertMsgReturn(RT_VALID_PTR(pVmcb0), ("Invalid pVmcb (%p) for vcpu[0]\n", pVmcb0), VERR_SVM_INVALID_PVMCB);
|
---|
984 | PSVMVMCBCTRL pVmcbCtrl0 = &pVmcb0->ctrl;
|
---|
985 |
|
---|
986 | /* Always trap #AC for reasons of security. */
|
---|
987 | pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_AC);
|
---|
988 |
|
---|
989 | /* Always trap #DB for reasons of security. */
|
---|
990 | pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_DB);
|
---|
991 |
|
---|
992 | /* Trap exceptions unconditionally (debug purposes). */
|
---|
993 | #ifdef HMSVM_ALWAYS_TRAP_PF
|
---|
994 | pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_PF);
|
---|
995 | #endif
|
---|
996 | #ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
997 | /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
|
---|
998 | pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_BP)
|
---|
999 | | RT_BIT_32(X86_XCPT_DE)
|
---|
1000 | | RT_BIT_32(X86_XCPT_NM)
|
---|
1001 | | RT_BIT_32(X86_XCPT_UD)
|
---|
1002 | | RT_BIT_32(X86_XCPT_NP)
|
---|
1003 | | RT_BIT_32(X86_XCPT_SS)
|
---|
1004 | | RT_BIT_32(X86_XCPT_GP)
|
---|
1005 | | RT_BIT_32(X86_XCPT_PF)
|
---|
1006 | | RT_BIT_32(X86_XCPT_MF)
|
---|
1007 | ;
|
---|
1008 | #endif
|
---|
1009 |
|
---|
1010 | /* Apply the exceptions intercepts needed by the GIM provider. */
|
---|
1011 | if (pVCpu0->hm.s.fGIMTrapXcptUD || pVCpu0->hm.s.svm.fEmulateLongModeSysEnterExit)
|
---|
1012 | pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_UD);
|
---|
1013 |
|
---|
1014 | /* Apply the exceptions intercepts needed by the GCM fixers. */
|
---|
1015 | if (pVCpu0->hm.s.fGCMTrapXcptDE)
|
---|
1016 | pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_DE);
|
---|
1017 |
|
---|
1018 | /* The mesa 3d driver hack needs #GP. */
|
---|
1019 | if (pVCpu0->hm.s.fTrapXcptGpForLovelyMesaDrv)
|
---|
1020 | pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_GP);
|
---|
1021 |
|
---|
1022 | /* Set up unconditional intercepts and conditions. */
|
---|
1023 | pVmcbCtrl0->u64InterceptCtrl = HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS
|
---|
1024 | | SVM_CTRL_INTERCEPT_VMMCALL
|
---|
1025 | | SVM_CTRL_INTERCEPT_VMSAVE
|
---|
1026 | | SVM_CTRL_INTERCEPT_VMLOAD
|
---|
1027 | | SVM_CTRL_INTERCEPT_CLGI
|
---|
1028 | | SVM_CTRL_INTERCEPT_STGI;
|
---|
1029 |
|
---|
1030 | #ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
|
---|
1031 | pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH;
|
---|
1032 | #endif
|
---|
1033 |
|
---|
1034 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
1035 | if (pVCpu0->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvm)
|
---|
1036 | {
|
---|
1037 | /* Virtualized VMSAVE/VMLOAD. */
|
---|
1038 | if (fUseVirtVmsaveVmload)
|
---|
1039 | {
|
---|
1040 | pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload = 1;
|
---|
1041 | pVmcbCtrl0->u64InterceptCtrl &= ~( SVM_CTRL_INTERCEPT_VMSAVE
|
---|
1042 | | SVM_CTRL_INTERCEPT_VMLOAD);
|
---|
1043 | }
|
---|
1044 | else
|
---|
1045 | Assert(!pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload);
|
---|
1046 |
|
---|
1047 | /* Virtual GIF. */
|
---|
1048 | if (fUseVGif)
|
---|
1049 | {
|
---|
1050 | pVmcbCtrl0->IntCtrl.n.u1VGifEnable = 1;
|
---|
1051 | pVmcbCtrl0->u64InterceptCtrl &= ~( SVM_CTRL_INTERCEPT_CLGI
|
---|
1052 | | SVM_CTRL_INTERCEPT_STGI);
|
---|
1053 | }
|
---|
1054 | else
|
---|
1055 | Assert(!pVmcbCtrl0->IntCtrl.n.u1VGifEnable);
|
---|
1056 | }
|
---|
1057 | else
|
---|
1058 | #endif
|
---|
1059 | {
|
---|
1060 | Assert(!pVCpu0->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvm);
|
---|
1061 | Assert(!pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload);
|
---|
1062 | Assert(!pVmcbCtrl0->IntCtrl.n.u1VGifEnable);
|
---|
1063 | }
|
---|
1064 |
|
---|
1065 | /* CR4 writes must always be intercepted for tracking PGM mode changes and
|
---|
1066 | AVX (for XCR0 syncing during worlds switching). */
|
---|
1067 | pVmcbCtrl0->u16InterceptWrCRx = RT_BIT(4);
|
---|
1068 |
|
---|
1069 | /* Intercept all DRx reads and writes by default. Changed later on. */
|
---|
1070 | pVmcbCtrl0->u16InterceptRdDRx = 0xffff;
|
---|
1071 | pVmcbCtrl0->u16InterceptWrDRx = 0xffff;
|
---|
1072 |
|
---|
1073 | /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
|
---|
1074 | pVmcbCtrl0->IntCtrl.n.u1VIntrMasking = 1;
|
---|
1075 |
|
---|
1076 | /* Ignore the priority in the virtual TPR. This is necessary for delivering PIC style (ExtInt) interrupts
|
---|
1077 | and we currently deliver both PIC and APIC interrupts alike, see hmR0SvmEvaluatePendingEvent() */
|
---|
1078 | pVmcbCtrl0->IntCtrl.n.u1IgnoreTPR = 1;
|
---|
1079 |
|
---|
1080 | /* Set the IO permission bitmap physical addresses. */
|
---|
1081 | pVmcbCtrl0->u64IOPMPhysAddr = g_HCPhysIOBitmap;
|
---|
1082 |
|
---|
1083 | /* LBR virtualization. */
|
---|
1084 | pVmcbCtrl0->LbrVirt.n.u1LbrVirt = fUseLbrVirt;
|
---|
1085 |
|
---|
1086 | /* The host ASID MBZ, for the guest start with 1. */
|
---|
1087 | pVmcbCtrl0->TLBCtrl.n.u32ASID = 1;
|
---|
1088 |
|
---|
1089 | /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
|
---|
1090 | pVmcbCtrl0->NestedPagingCtrl.n.u1NestedPaging = fNestedPaging;
|
---|
1091 |
|
---|
1092 | /* Without Nested Paging, we need additionally intercepts. */
|
---|
1093 | if (!fNestedPaging)
|
---|
1094 | {
|
---|
1095 | /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
|
---|
1096 | pVmcbCtrl0->u16InterceptRdCRx |= RT_BIT(3);
|
---|
1097 | pVmcbCtrl0->u16InterceptWrCRx |= RT_BIT(3);
|
---|
1098 |
|
---|
1099 | /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
|
---|
1100 | pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG
|
---|
1101 | | SVM_CTRL_INTERCEPT_TASK_SWITCH;
|
---|
1102 |
|
---|
1103 | /* Page faults must be intercepted to implement shadow paging. */
|
---|
1104 | pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
|
---|
1105 | }
|
---|
1106 |
|
---|
1107 | /* Workaround for missing OS/2 TLB flush, see ticketref:20625. */
|
---|
1108 | if (pVM->hm.s.fMissingOS2TlbFlushWorkaround)
|
---|
1109 | pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TR_WRITES;
|
---|
1110 |
|
---|
1111 | /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
|
---|
1112 | if (fUsePauseFilter)
|
---|
1113 | {
|
---|
1114 | Assert(pVM->hm.s.svm.cPauseFilter > 0);
|
---|
1115 | pVmcbCtrl0->u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
|
---|
1116 | if (fPauseFilterThreshold)
|
---|
1117 | pVmcbCtrl0->u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
|
---|
1118 | pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_PAUSE;
|
---|
1119 | }
|
---|
1120 |
|
---|
1121 | /*
|
---|
1122 | * Setup the MSR permission bitmap.
|
---|
1123 | * The following MSRs are saved/restored automatically during the world-switch.
|
---|
1124 | * Don't intercept guest read/write accesses to these MSRs.
|
---|
1125 | */
|
---|
1126 | uint8_t *pbMsrBitmap0 = (uint8_t *)pVCpu0->hmr0.s.svm.pvMsrBitmap;
|
---|
1127 | hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1128 | hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1129 | hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1130 | hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1131 | hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1132 | hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1133 | hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1134 | if (!pVCpu0->hm.s.svm.fEmulateLongModeSysEnterExit)
|
---|
1135 | {
|
---|
1136 | hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1137 | hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1138 | hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1139 | }
|
---|
1140 | else
|
---|
1141 | {
|
---|
1142 | hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_CS, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
|
---|
1143 | hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
|
---|
1144 | hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
|
---|
1145 | }
|
---|
1146 | pVmcbCtrl0->u64MSRPMPhysAddr = pVCpu0->hmr0.s.svm.HCPhysMsrBitmap;
|
---|
1147 |
|
---|
1148 | /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
|
---|
1149 | Assert(pVmcbCtrl0->u32VmcbCleanBits == 0);
|
---|
1150 |
|
---|
1151 | for (VMCPUID idCpu = 1; idCpu < pVM->cCpus; idCpu++)
|
---|
1152 | {
|
---|
1153 | PVMCPUCC pVCpuCur = VMCC_GET_CPU(pVM, idCpu);
|
---|
1154 | PSVMVMCB pVmcbCur = pVCpuCur->hmr0.s.svm.pVmcb;
|
---|
1155 | AssertMsgReturn(RT_VALID_PTR(pVmcbCur), ("Invalid pVmcb (%p) for vcpu[%u]\n", pVmcbCur, idCpu), VERR_SVM_INVALID_PVMCB);
|
---|
1156 | PSVMVMCBCTRL pVmcbCtrlCur = &pVmcbCur->ctrl;
|
---|
1157 |
|
---|
1158 | /* Copy the VMCB control area. */
|
---|
1159 | memcpy(pVmcbCtrlCur, pVmcbCtrl0, sizeof(*pVmcbCtrlCur));
|
---|
1160 |
|
---|
1161 | /* Copy the MSR bitmap and setup the VCPU-specific host physical address. */
|
---|
1162 | uint8_t *pbMsrBitmapCur = (uint8_t *)pVCpuCur->hmr0.s.svm.pvMsrBitmap;
|
---|
1163 | memcpy(pbMsrBitmapCur, pbMsrBitmap0, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
|
---|
1164 | pVmcbCtrlCur->u64MSRPMPhysAddr = pVCpuCur->hmr0.s.svm.HCPhysMsrBitmap;
|
---|
1165 |
|
---|
1166 | /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
|
---|
1167 | Assert(pVmcbCtrlCur->u32VmcbCleanBits == 0);
|
---|
1168 |
|
---|
1169 | /* Verify our assumption that GIM providers trap #UD uniformly across VCPUs initially. */
|
---|
1170 | Assert(pVCpuCur->hm.s.fGIMTrapXcptUD == pVCpu0->hm.s.fGIMTrapXcptUD);
|
---|
1171 | /* Same for GCM, #DE trapping should be uniform across VCPUs. */
|
---|
1172 | Assert(pVCpuCur->hm.s.fGCMTrapXcptDE == pVCpu0->hm.s.fGCMTrapXcptDE);
|
---|
1173 | }
|
---|
1174 |
|
---|
1175 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
1176 | LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool fUseVGif=%RTbool fUseVirtVmsaveVmload=%RTbool\n", fUsePauseFilter,
|
---|
1177 | fUseLbrVirt, fUseVGif, fUseVirtVmsaveVmload));
|
---|
1178 | #else
|
---|
1179 | LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool\n", fUsePauseFilter, fUseLbrVirt));
|
---|
1180 | #endif
|
---|
1181 | return VINF_SUCCESS;
|
---|
1182 | }
|
---|
1183 |
|
---|
1184 |
|
---|
1185 | /**
|
---|
1186 | * Gets a pointer to the currently active guest (or nested-guest) VMCB.
|
---|
1187 | *
|
---|
1188 | * @returns Pointer to the current context VMCB.
|
---|
1189 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1190 | */
|
---|
1191 | DECLINLINE(PSVMVMCB) hmR0SvmGetCurrentVmcb(PVMCPUCC pVCpu)
|
---|
1192 | {
|
---|
1193 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
1194 | if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
|
---|
1195 | return &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb;
|
---|
1196 | #endif
|
---|
1197 | return pVCpu->hmr0.s.svm.pVmcb;
|
---|
1198 | }
|
---|
1199 |
|
---|
1200 |
|
---|
1201 | /**
|
---|
1202 | * Gets a pointer to the nested-guest VMCB cache.
|
---|
1203 | *
|
---|
1204 | * @returns Pointer to the nested-guest VMCB cache.
|
---|
1205 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1206 | */
|
---|
1207 | DECLINLINE(PSVMNESTEDVMCBCACHE) hmR0SvmGetNestedVmcbCache(PVMCPUCC pVCpu)
|
---|
1208 | {
|
---|
1209 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
1210 | Assert(pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
|
---|
1211 | return &pVCpu->hm.s.svm.NstGstVmcbCache;
|
---|
1212 | #else
|
---|
1213 | RT_NOREF(pVCpu);
|
---|
1214 | return NULL;
|
---|
1215 | #endif
|
---|
1216 | }
|
---|
1217 |
|
---|
1218 |
|
---|
1219 | /**
|
---|
1220 | * Invalidates a guest page by guest virtual address.
|
---|
1221 | *
|
---|
1222 | * @returns VBox status code.
|
---|
1223 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1224 | * @param GCVirt Guest virtual address of the page to invalidate.
|
---|
1225 | */
|
---|
1226 | VMMR0DECL(int) SVMR0InvalidatePage(PVMCPUCC pVCpu, RTGCPTR GCVirt)
|
---|
1227 | {
|
---|
1228 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
|
---|
1229 |
|
---|
1230 | bool const fFlushPending = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH) || pVCpu->CTX_SUFF(pVM)->hmr0.s.svm.fAlwaysFlushTLB;
|
---|
1231 |
|
---|
1232 | /* Skip it if a TLB flush is already pending. */
|
---|
1233 | if (!fFlushPending)
|
---|
1234 | {
|
---|
1235 | Log4Func(("%#RGv\n", GCVirt));
|
---|
1236 |
|
---|
1237 | PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
|
---|
1238 | AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
|
---|
1239 |
|
---|
1240 | SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
|
---|
1241 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
|
---|
1242 | }
|
---|
1243 | return VINF_SUCCESS;
|
---|
1244 | }
|
---|
1245 |
|
---|
1246 |
|
---|
1247 | /**
|
---|
1248 | * Flushes the appropriate tagged-TLB entries.
|
---|
1249 | *
|
---|
1250 | * @param pHostCpu The HM physical-CPU structure.
|
---|
1251 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1252 | * @param pVmcb Pointer to the VM control block.
|
---|
1253 | */
|
---|
1254 | static void hmR0SvmFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PSVMVMCB pVmcb)
|
---|
1255 | {
|
---|
1256 | /*
|
---|
1257 | * Force a TLB flush for the first world switch if the current CPU differs from the one
|
---|
1258 | * we ran on last. This can happen both for start & resume due to long jumps back to
|
---|
1259 | * ring-3.
|
---|
1260 | *
|
---|
1261 | * We also force a TLB flush every time when executing a nested-guest VCPU as there is no
|
---|
1262 | * correlation between it and the physical CPU.
|
---|
1263 | *
|
---|
1264 | * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while
|
---|
1265 | * flushing the TLB, so we cannot reuse the ASIDs without flushing.
|
---|
1266 | */
|
---|
1267 | bool fNewAsid = false;
|
---|
1268 | Assert(pHostCpu->idCpu != NIL_RTCPUID);
|
---|
1269 | if ( pVCpu->hmr0.s.idLastCpu != pHostCpu->idCpu
|
---|
1270 | || pVCpu->hmr0.s.cTlbFlushes != pHostCpu->cTlbFlushes
|
---|
1271 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
1272 | || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)
|
---|
1273 | #endif
|
---|
1274 | )
|
---|
1275 | {
|
---|
1276 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
|
---|
1277 | pVCpu->hmr0.s.fForceTLBFlush = true;
|
---|
1278 | fNewAsid = true;
|
---|
1279 | }
|
---|
1280 |
|
---|
1281 | /* Set TLB flush state as checked until we return from the world switch. */
|
---|
1282 | ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
|
---|
1283 |
|
---|
1284 | /* Check for explicit TLB flushes. */
|
---|
1285 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
|
---|
1286 | {
|
---|
1287 | pVCpu->hmr0.s.fForceTLBFlush = true;
|
---|
1288 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
|
---|
1289 | }
|
---|
1290 |
|
---|
1291 | /*
|
---|
1292 | * If the AMD CPU erratum 170, We need to flush the entire TLB for each world switch. Sad.
|
---|
1293 | * This Host CPU requirement takes precedence.
|
---|
1294 | */
|
---|
1295 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1296 | if (pVM->hmr0.s.svm.fAlwaysFlushTLB)
|
---|
1297 | {
|
---|
1298 | pHostCpu->uCurrentAsid = 1;
|
---|
1299 | pVCpu->hmr0.s.uCurrentAsid = 1;
|
---|
1300 | pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
|
---|
1301 | pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
|
---|
1302 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
1303 |
|
---|
1304 | /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
|
---|
1305 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
|
---|
1306 | }
|
---|
1307 | else
|
---|
1308 | {
|
---|
1309 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
|
---|
1310 | if (pVCpu->hmr0.s.fForceTLBFlush)
|
---|
1311 | {
|
---|
1312 | /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
|
---|
1313 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
|
---|
1314 |
|
---|
1315 | if (fNewAsid)
|
---|
1316 | {
|
---|
1317 | ++pHostCpu->uCurrentAsid;
|
---|
1318 |
|
---|
1319 | bool fHitASIDLimit = false;
|
---|
1320 | if (pHostCpu->uCurrentAsid >= g_uHmMaxAsid)
|
---|
1321 | {
|
---|
1322 | pHostCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
|
---|
1323 | pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new ASID. */
|
---|
1324 | fHitASIDLimit = true;
|
---|
1325 | }
|
---|
1326 |
|
---|
1327 | if ( fHitASIDLimit
|
---|
1328 | || pHostCpu->fFlushAsidBeforeUse)
|
---|
1329 | {
|
---|
1330 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
1331 | pHostCpu->fFlushAsidBeforeUse = false;
|
---|
1332 | }
|
---|
1333 |
|
---|
1334 | pVCpu->hmr0.s.uCurrentAsid = pHostCpu->uCurrentAsid;
|
---|
1335 | pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
|
---|
1336 | pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
|
---|
1337 | }
|
---|
1338 | else
|
---|
1339 | {
|
---|
1340 | if (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
|
---|
1341 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
|
---|
1342 | else
|
---|
1343 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
1344 | }
|
---|
1345 |
|
---|
1346 | pVCpu->hmr0.s.fForceTLBFlush = false;
|
---|
1347 | }
|
---|
1348 | }
|
---|
1349 |
|
---|
1350 | /* Update VMCB with the ASID. */
|
---|
1351 | if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hmr0.s.uCurrentAsid)
|
---|
1352 | {
|
---|
1353 | pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hmr0.s.uCurrentAsid;
|
---|
1354 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
|
---|
1355 | }
|
---|
1356 |
|
---|
1357 | AssertMsg(pVCpu->hmr0.s.idLastCpu == pHostCpu->idCpu,
|
---|
1358 | ("vcpu idLastCpu=%u hostcpu idCpu=%u\n", pVCpu->hmr0.s.idLastCpu, pHostCpu->idCpu));
|
---|
1359 | AssertMsg(pVCpu->hmr0.s.cTlbFlushes == pHostCpu->cTlbFlushes,
|
---|
1360 | ("Flush count mismatch for cpu %u (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hmr0.s.cTlbFlushes, pHostCpu->cTlbFlushes));
|
---|
1361 | AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < g_uHmMaxAsid,
|
---|
1362 | ("cpu%d uCurrentAsid = %x\n", pHostCpu->idCpu, pHostCpu->uCurrentAsid));
|
---|
1363 | AssertMsg(pVCpu->hmr0.s.uCurrentAsid >= 1 && pVCpu->hmr0.s.uCurrentAsid < g_uHmMaxAsid,
|
---|
1364 | ("cpu%d VM uCurrentAsid = %x\n", pHostCpu->idCpu, pVCpu->hmr0.s.uCurrentAsid));
|
---|
1365 |
|
---|
1366 | #ifdef VBOX_WITH_STATISTICS
|
---|
1367 | if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
|
---|
1368 | STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
|
---|
1369 | else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
|
---|
1370 | || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
|
---|
1371 | {
|
---|
1372 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
|
---|
1373 | }
|
---|
1374 | else
|
---|
1375 | {
|
---|
1376 | Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
|
---|
1377 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
|
---|
1378 | }
|
---|
1379 | #endif
|
---|
1380 | }
|
---|
1381 |
|
---|
1382 |
|
---|
1383 | /**
|
---|
1384 | * Sets an exception intercept in the specified VMCB.
|
---|
1385 | *
|
---|
1386 | * @param pVmcb Pointer to the VM control block.
|
---|
1387 | * @param uXcpt The exception (X86_XCPT_*).
|
---|
1388 | */
|
---|
1389 | DECLINLINE(void) hmR0SvmSetXcptIntercept(PSVMVMCB pVmcb, uint8_t uXcpt)
|
---|
1390 | {
|
---|
1391 | if (!(pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt)))
|
---|
1392 | {
|
---|
1393 | pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(uXcpt);
|
---|
1394 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1395 | }
|
---|
1396 | }
|
---|
1397 |
|
---|
1398 |
|
---|
1399 | /**
|
---|
1400 | * Clears an exception intercept in the specified VMCB.
|
---|
1401 | *
|
---|
1402 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1403 | * @param pVmcb Pointer to the VM control block.
|
---|
1404 | * @param uXcpt The exception (X86_XCPT_*).
|
---|
1405 | *
|
---|
1406 | * @remarks This takes into account if we're executing a nested-guest and only
|
---|
1407 | * removes the exception intercept if both the guest -and- nested-guest
|
---|
1408 | * are not intercepting it.
|
---|
1409 | */
|
---|
1410 | DECLINLINE(void) hmR0SvmClearXcptIntercept(PVMCPUCC pVCpu, PSVMVMCB pVmcb, uint8_t uXcpt)
|
---|
1411 | {
|
---|
1412 | Assert(uXcpt != X86_XCPT_DB);
|
---|
1413 | Assert(uXcpt != X86_XCPT_AC);
|
---|
1414 | Assert(uXcpt != X86_XCPT_GP);
|
---|
1415 | #ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
1416 | if (pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt))
|
---|
1417 | {
|
---|
1418 | bool fRemove = true;
|
---|
1419 | # ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
1420 | /* Only remove the intercept if the nested-guest is also not intercepting it! */
|
---|
1421 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
1422 | if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
1423 | {
|
---|
1424 | PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
|
---|
1425 | fRemove = !(pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(uXcpt));
|
---|
1426 | }
|
---|
1427 | # else
|
---|
1428 | RT_NOREF(pVCpu);
|
---|
1429 | # endif
|
---|
1430 | if (fRemove)
|
---|
1431 | {
|
---|
1432 | pVmcb->ctrl.u32InterceptXcpt &= ~RT_BIT(uXcpt);
|
---|
1433 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1434 | }
|
---|
1435 | }
|
---|
1436 | #else
|
---|
1437 | RT_NOREF3(pVCpu, pVmcb, uXcpt);
|
---|
1438 | #endif
|
---|
1439 | }
|
---|
1440 |
|
---|
1441 |
|
---|
1442 | /**
|
---|
1443 | * Sets a control intercept in the specified VMCB.
|
---|
1444 | *
|
---|
1445 | * @param pVmcb Pointer to the VM control block.
|
---|
1446 | * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
|
---|
1447 | */
|
---|
1448 | DECLINLINE(void) hmR0SvmSetCtrlIntercept(PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
|
---|
1449 | {
|
---|
1450 | if (!(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept))
|
---|
1451 | {
|
---|
1452 | pVmcb->ctrl.u64InterceptCtrl |= fCtrlIntercept;
|
---|
1453 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1454 | }
|
---|
1455 | }
|
---|
1456 |
|
---|
1457 |
|
---|
1458 | /**
|
---|
1459 | * Clears a control intercept in the specified VMCB.
|
---|
1460 | *
|
---|
1461 | * @returns @c true if the intercept is still set, @c false otherwise.
|
---|
1462 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1463 | * @param pVmcb Pointer to the VM control block.
|
---|
1464 | * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
|
---|
1465 | *
|
---|
1466 | * @remarks This takes into account if we're executing a nested-guest and only
|
---|
1467 | * removes the control intercept if both the guest -and- nested-guest
|
---|
1468 | * are not intercepting it.
|
---|
1469 | */
|
---|
1470 | static bool hmR0SvmClearCtrlIntercept(PVMCPUCC pVCpu, PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
|
---|
1471 | {
|
---|
1472 | if (pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept)
|
---|
1473 | {
|
---|
1474 | bool fRemove = true;
|
---|
1475 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
1476 | /* Only remove the control intercept if the nested-guest is also not intercepting it! */
|
---|
1477 | if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
|
---|
1478 | {
|
---|
1479 | PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
|
---|
1480 | fRemove = !(pVmcbNstGstCache->u64InterceptCtrl & fCtrlIntercept);
|
---|
1481 | }
|
---|
1482 | #else
|
---|
1483 | RT_NOREF(pVCpu);
|
---|
1484 | #endif
|
---|
1485 | if (fRemove)
|
---|
1486 | {
|
---|
1487 | pVmcb->ctrl.u64InterceptCtrl &= ~fCtrlIntercept;
|
---|
1488 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1489 | }
|
---|
1490 | }
|
---|
1491 |
|
---|
1492 | return RT_BOOL(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept);
|
---|
1493 | }
|
---|
1494 |
|
---|
1495 |
|
---|
1496 | /**
|
---|
1497 | * Exports the guest (or nested-guest) CR0 into the VMCB.
|
---|
1498 | *
|
---|
1499 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1500 | * @param pVmcb Pointer to the VM control block.
|
---|
1501 | *
|
---|
1502 | * @remarks This assumes we always pre-load the guest FPU.
|
---|
1503 | * @remarks No-long-jump zone!!!
|
---|
1504 | */
|
---|
1505 | static void hmR0SvmExportGuestCR0(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
|
---|
1506 | {
|
---|
1507 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1508 |
|
---|
1509 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
1510 | uint64_t const uGuestCr0 = pCtx->cr0;
|
---|
1511 | uint64_t uShadowCr0 = uGuestCr0;
|
---|
1512 |
|
---|
1513 | /* Always enable caching. */
|
---|
1514 | uShadowCr0 &= ~(X86_CR0_CD | X86_CR0_NW);
|
---|
1515 |
|
---|
1516 | /* When Nested Paging is not available use shadow page tables and intercept #PFs (latter done in SVMR0SetupVM()). */
|
---|
1517 | if (!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging)
|
---|
1518 | {
|
---|
1519 | uShadowCr0 |= X86_CR0_PG /* Use shadow page tables. */
|
---|
1520 | | X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
|
---|
1521 | }
|
---|
1522 |
|
---|
1523 | /*
|
---|
1524 | * Use the #MF style of legacy-FPU error reporting for now. Although AMD-V has MSRs that
|
---|
1525 | * lets us isolate the host from it, IEM/REM still needs work to emulate it properly,
|
---|
1526 | * see @bugref{7243#c103}.
|
---|
1527 | */
|
---|
1528 | if (!(uGuestCr0 & X86_CR0_NE))
|
---|
1529 | {
|
---|
1530 | uShadowCr0 |= X86_CR0_NE;
|
---|
1531 | hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_MF);
|
---|
1532 | }
|
---|
1533 | else
|
---|
1534 | hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_MF);
|
---|
1535 |
|
---|
1536 | /*
|
---|
1537 | * If the shadow and guest CR0 are identical we can avoid intercepting CR0 reads.
|
---|
1538 | *
|
---|
1539 | * CR0 writes still needs interception as PGM requires tracking paging mode changes,
|
---|
1540 | * see @bugref{6944}.
|
---|
1541 | *
|
---|
1542 | * We also don't ever want to honor weird things like cache disable from the guest.
|
---|
1543 | * However, we can avoid intercepting changes to the TS & MP bits by clearing the CR0
|
---|
1544 | * write intercept below and keeping SVM_CTRL_INTERCEPT_CR0_SEL_WRITE instead.
|
---|
1545 | */
|
---|
1546 | if (uShadowCr0 == uGuestCr0)
|
---|
1547 | {
|
---|
1548 | if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
1549 | {
|
---|
1550 | pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(0);
|
---|
1551 | pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(0);
|
---|
1552 | Assert(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_CR0_SEL_WRITE);
|
---|
1553 | }
|
---|
1554 | else
|
---|
1555 | {
|
---|
1556 | /* If the nested-hypervisor intercepts CR0 reads/writes, we need to continue intercepting them. */
|
---|
1557 | PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
|
---|
1558 | pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(0))
|
---|
1559 | | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(0));
|
---|
1560 | pVmcb->ctrl.u16InterceptWrCRx = (pVmcb->ctrl.u16InterceptWrCRx & ~RT_BIT(0))
|
---|
1561 | | (pVmcbNstGstCache->u16InterceptWrCRx & RT_BIT(0));
|
---|
1562 | }
|
---|
1563 | }
|
---|
1564 | else
|
---|
1565 | {
|
---|
1566 | pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(0);
|
---|
1567 | pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(0);
|
---|
1568 | }
|
---|
1569 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1570 |
|
---|
1571 | Assert(!RT_HI_U32(uShadowCr0));
|
---|
1572 | if (pVmcb->guest.u64CR0 != uShadowCr0)
|
---|
1573 | {
|
---|
1574 | pVmcb->guest.u64CR0 = uShadowCr0;
|
---|
1575 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
|
---|
1576 | }
|
---|
1577 | }
|
---|
1578 |
|
---|
1579 |
|
---|
1580 | /**
|
---|
1581 | * Exports the guest (or nested-guest) CR3 into the VMCB.
|
---|
1582 | *
|
---|
1583 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1584 | * @param pVmcb Pointer to the VM control block.
|
---|
1585 | *
|
---|
1586 | * @remarks No-long-jump zone!!!
|
---|
1587 | */
|
---|
1588 | static void hmR0SvmExportGuestCR3(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
|
---|
1589 | {
|
---|
1590 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1591 |
|
---|
1592 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1593 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
1594 | if (pVM->hmr0.s.fNestedPaging)
|
---|
1595 | {
|
---|
1596 | pVmcb->ctrl.u64NestedPagingCR3 = PGMGetHyperCR3(pVCpu);
|
---|
1597 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
|
---|
1598 | pVmcb->guest.u64CR3 = pCtx->cr3;
|
---|
1599 | Assert(pVmcb->ctrl.u64NestedPagingCR3);
|
---|
1600 | }
|
---|
1601 | else
|
---|
1602 | pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
|
---|
1603 |
|
---|
1604 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
|
---|
1605 | }
|
---|
1606 |
|
---|
1607 |
|
---|
1608 | /**
|
---|
1609 | * Exports the guest (or nested-guest) CR4 into the VMCB.
|
---|
1610 | *
|
---|
1611 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1612 | * @param pVmcb Pointer to the VM control block.
|
---|
1613 | *
|
---|
1614 | * @remarks No-long-jump zone!!!
|
---|
1615 | */
|
---|
1616 | static int hmR0SvmExportGuestCR4(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
|
---|
1617 | {
|
---|
1618 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1619 |
|
---|
1620 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
1621 | uint64_t uShadowCr4 = pCtx->cr4;
|
---|
1622 | if (!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging)
|
---|
1623 | {
|
---|
1624 | switch (pVCpu->hm.s.enmShadowMode)
|
---|
1625 | {
|
---|
1626 | case PGMMODE_REAL:
|
---|
1627 | case PGMMODE_PROTECTED: /* Protected mode, no paging. */
|
---|
1628 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
1629 |
|
---|
1630 | case PGMMODE_32_BIT: /* 32-bit paging. */
|
---|
1631 | uShadowCr4 &= ~X86_CR4_PAE;
|
---|
1632 | break;
|
---|
1633 |
|
---|
1634 | case PGMMODE_PAE: /* PAE paging. */
|
---|
1635 | case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
|
---|
1636 | /** Must use PAE paging as we could use physical memory > 4 GB */
|
---|
1637 | uShadowCr4 |= X86_CR4_PAE;
|
---|
1638 | break;
|
---|
1639 |
|
---|
1640 | case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
|
---|
1641 | case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
|
---|
1642 | #ifdef VBOX_WITH_64_BITS_GUESTS
|
---|
1643 | break;
|
---|
1644 | #else
|
---|
1645 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
1646 | #endif
|
---|
1647 |
|
---|
1648 | default: /* shut up gcc */
|
---|
1649 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
1650 | }
|
---|
1651 | }
|
---|
1652 |
|
---|
1653 | /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
|
---|
1654 | bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
|
---|
1655 | if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0)
|
---|
1656 | {
|
---|
1657 | pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0;
|
---|
1658 | hmR0SvmUpdateVmRunFunction(pVCpu);
|
---|
1659 | }
|
---|
1660 |
|
---|
1661 | /* Avoid intercepting CR4 reads if the guest and shadow CR4 values are identical. */
|
---|
1662 | if (uShadowCr4 == pCtx->cr4)
|
---|
1663 | {
|
---|
1664 | if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
1665 | pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(4);
|
---|
1666 | else
|
---|
1667 | {
|
---|
1668 | /* If the nested-hypervisor intercepts CR4 reads, we need to continue intercepting them. */
|
---|
1669 | PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
|
---|
1670 | pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(4))
|
---|
1671 | | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(4));
|
---|
1672 | }
|
---|
1673 | }
|
---|
1674 | else
|
---|
1675 | pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(4);
|
---|
1676 |
|
---|
1677 | /* CR4 writes are always intercepted (both guest, nested-guest) for tracking
|
---|
1678 | PGM mode changes and AVX (for XCR0 syncing during worlds switching). */
|
---|
1679 | Assert(pVmcb->ctrl.u16InterceptWrCRx & RT_BIT(4));
|
---|
1680 |
|
---|
1681 | /* Update VMCB with the shadow CR4 the appropriate VMCB clean bits. */
|
---|
1682 | Assert(!RT_HI_U32(uShadowCr4));
|
---|
1683 | pVmcb->guest.u64CR4 = uShadowCr4;
|
---|
1684 | pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_CRX_EFER | HMSVM_VMCB_CLEAN_INTERCEPTS);
|
---|
1685 |
|
---|
1686 | return VINF_SUCCESS;
|
---|
1687 | }
|
---|
1688 |
|
---|
1689 |
|
---|
1690 | /**
|
---|
1691 | * Exports the guest (or nested-guest) control registers into the VMCB.
|
---|
1692 | *
|
---|
1693 | * @returns VBox status code.
|
---|
1694 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1695 | * @param pVmcb Pointer to the VM control block.
|
---|
1696 | *
|
---|
1697 | * @remarks No-long-jump zone!!!
|
---|
1698 | */
|
---|
1699 | static int hmR0SvmExportGuestControlRegs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
|
---|
1700 | {
|
---|
1701 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1702 |
|
---|
1703 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR_MASK)
|
---|
1704 | {
|
---|
1705 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR0)
|
---|
1706 | hmR0SvmExportGuestCR0(pVCpu, pVmcb);
|
---|
1707 |
|
---|
1708 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR2)
|
---|
1709 | {
|
---|
1710 | pVmcb->guest.u64CR2 = pVCpu->cpum.GstCtx.cr2;
|
---|
1711 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
|
---|
1712 | }
|
---|
1713 |
|
---|
1714 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR3)
|
---|
1715 | hmR0SvmExportGuestCR3(pVCpu, pVmcb);
|
---|
1716 |
|
---|
1717 | /* CR4 re-loading is ASSUMED to be done everytime we get in from ring-3! (XCR0) */
|
---|
1718 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR4)
|
---|
1719 | {
|
---|
1720 | int rc = hmR0SvmExportGuestCR4(pVCpu, pVmcb);
|
---|
1721 | if (RT_FAILURE(rc))
|
---|
1722 | return rc;
|
---|
1723 | }
|
---|
1724 |
|
---|
1725 | pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_CR_MASK;
|
---|
1726 | }
|
---|
1727 | return VINF_SUCCESS;
|
---|
1728 | }
|
---|
1729 |
|
---|
1730 |
|
---|
1731 | /**
|
---|
1732 | * Exports the guest (or nested-guest) segment registers into the VMCB.
|
---|
1733 | *
|
---|
1734 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1735 | * @param pVmcb Pointer to the VM control block.
|
---|
1736 | *
|
---|
1737 | * @remarks No-long-jump zone!!!
|
---|
1738 | */
|
---|
1739 | static void hmR0SvmExportGuestSegmentRegs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
|
---|
1740 | {
|
---|
1741 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1742 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
1743 |
|
---|
1744 | /* Guest segment registers. */
|
---|
1745 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SREG_MASK)
|
---|
1746 | {
|
---|
1747 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CS)
|
---|
1748 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, CS, cs);
|
---|
1749 |
|
---|
1750 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SS)
|
---|
1751 | {
|
---|
1752 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, SS, ss);
|
---|
1753 | pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
|
---|
1754 | }
|
---|
1755 |
|
---|
1756 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DS)
|
---|
1757 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, DS, ds);
|
---|
1758 |
|
---|
1759 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_ES)
|
---|
1760 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, ES, es);
|
---|
1761 |
|
---|
1762 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_FS)
|
---|
1763 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs);
|
---|
1764 |
|
---|
1765 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GS)
|
---|
1766 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs);
|
---|
1767 |
|
---|
1768 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
|
---|
1769 | }
|
---|
1770 |
|
---|
1771 | /* Guest TR. */
|
---|
1772 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_TR)
|
---|
1773 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr);
|
---|
1774 |
|
---|
1775 | /* Guest LDTR. */
|
---|
1776 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_LDTR)
|
---|
1777 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
|
---|
1778 |
|
---|
1779 | /* Guest GDTR. */
|
---|
1780 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GDTR)
|
---|
1781 | {
|
---|
1782 | pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
|
---|
1783 | pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
|
---|
1784 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
|
---|
1785 | }
|
---|
1786 |
|
---|
1787 | /* Guest IDTR. */
|
---|
1788 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_IDTR)
|
---|
1789 | {
|
---|
1790 | pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
|
---|
1791 | pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
|
---|
1792 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
|
---|
1793 | }
|
---|
1794 |
|
---|
1795 | pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SREG_MASK
|
---|
1796 | | HM_CHANGED_GUEST_TABLE_MASK);
|
---|
1797 | }
|
---|
1798 |
|
---|
1799 |
|
---|
1800 | /**
|
---|
1801 | * Exports the guest (or nested-guest) MSRs into the VMCB.
|
---|
1802 | *
|
---|
1803 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1804 | * @param pVmcb Pointer to the VM control block.
|
---|
1805 | *
|
---|
1806 | * @remarks No-long-jump zone!!!
|
---|
1807 | */
|
---|
1808 | static void hmR0SvmExportGuestMsrs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
|
---|
1809 | {
|
---|
1810 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1811 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
1812 |
|
---|
1813 | /* Guest Sysenter MSRs. */
|
---|
1814 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
|
---|
1815 | {
|
---|
1816 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
|
---|
1817 | pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
|
---|
1818 |
|
---|
1819 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
|
---|
1820 | pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
|
---|
1821 |
|
---|
1822 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
|
---|
1823 | pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
|
---|
1824 | }
|
---|
1825 |
|
---|
1826 | /*
|
---|
1827 | * Guest EFER MSR.
|
---|
1828 | * AMD-V requires guest EFER.SVME to be set. Weird.
|
---|
1829 | * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
|
---|
1830 | */
|
---|
1831 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_EFER_MSR)
|
---|
1832 | {
|
---|
1833 | pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
|
---|
1834 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
|
---|
1835 | }
|
---|
1836 |
|
---|
1837 | /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit, otherwise SVM expects amd64 shadow paging. */
|
---|
1838 | if ( !CPUMIsGuestInLongModeEx(pCtx)
|
---|
1839 | && (pCtx->msrEFER & MSR_K6_EFER_LME))
|
---|
1840 | {
|
---|
1841 | pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
|
---|
1842 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
|
---|
1843 | }
|
---|
1844 |
|
---|
1845 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSCALL_MSRS)
|
---|
1846 | {
|
---|
1847 | pVmcb->guest.u64STAR = pCtx->msrSTAR;
|
---|
1848 | pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
|
---|
1849 | pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
|
---|
1850 | pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
|
---|
1851 | }
|
---|
1852 |
|
---|
1853 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_KERNEL_GS_BASE)
|
---|
1854 | pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
|
---|
1855 |
|
---|
1856 | pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SYSENTER_MSR_MASK
|
---|
1857 | | HM_CHANGED_GUEST_EFER_MSR
|
---|
1858 | | HM_CHANGED_GUEST_SYSCALL_MSRS
|
---|
1859 | | HM_CHANGED_GUEST_KERNEL_GS_BASE);
|
---|
1860 |
|
---|
1861 | /*
|
---|
1862 | * Setup the PAT MSR (applicable for Nested Paging only).
|
---|
1863 | *
|
---|
1864 | * The default value should be MSR_IA32_CR_PAT_INIT_VAL, but we treat all guest memory
|
---|
1865 | * as WB, so choose type 6 for all PAT slots, see @bugref{9634}.
|
---|
1866 | *
|
---|
1867 | * While guests can modify and see the modified values through the shadow values,
|
---|
1868 | * we shall not honor any guest modifications of this MSR to ensure caching is always
|
---|
1869 | * enabled similar to how we clear CR0.CD and NW bits.
|
---|
1870 | *
|
---|
1871 | * For nested-guests this needs to always be set as well, see @bugref{7243#c109}.
|
---|
1872 | */
|
---|
1873 | pVmcb->guest.u64PAT = UINT64_C(0x0006060606060606);
|
---|
1874 |
|
---|
1875 | /* Enable the last branch record bit if LBR virtualization is enabled. */
|
---|
1876 | if (pVmcb->ctrl.LbrVirt.n.u1LbrVirt)
|
---|
1877 | pVmcb->guest.u64DBGCTL = MSR_IA32_DEBUGCTL_LBR;
|
---|
1878 | }
|
---|
1879 |
|
---|
1880 |
|
---|
1881 | /**
|
---|
1882 | * Exports the guest (or nested-guest) debug state into the VMCB and programs
|
---|
1883 | * the necessary intercepts accordingly.
|
---|
1884 | *
|
---|
1885 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1886 | * @param pVmcb Pointer to the VM control block.
|
---|
1887 | *
|
---|
1888 | * @remarks No-long-jump zone!!!
|
---|
1889 | * @remarks Requires EFLAGS to be up-to-date in the VMCB!
|
---|
1890 | */
|
---|
1891 | static void hmR0SvmExportSharedDebugState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
|
---|
1892 | {
|
---|
1893 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
1894 |
|
---|
1895 | /** @todo Figure out stepping with nested-guest. */
|
---|
1896 | if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
1897 | {
|
---|
1898 | /*
|
---|
1899 | * We don't want to always intercept DRx read/writes for nested-guests as it causes
|
---|
1900 | * problems when the nested hypervisor isn't intercepting them, see @bugref{10080}.
|
---|
1901 | * Instead, they are strictly only requested when the nested hypervisor intercepts
|
---|
1902 | * them -- handled while merging VMCB controls.
|
---|
1903 | *
|
---|
1904 | * If neither the outer nor the nested-hypervisor is intercepting DRx read/writes,
|
---|
1905 | * then the nested-guest debug state should be actively loaded on the host so that
|
---|
1906 | * nested-guest reads/writes its own debug registers without causing VM-exits.
|
---|
1907 | */
|
---|
1908 | if ( ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
|
---|
1909 | || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
|
---|
1910 | && !CPUMIsGuestDebugStateActive(pVCpu))
|
---|
1911 | {
|
---|
1912 | CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
|
---|
1913 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
|
---|
1914 | Assert(!CPUMIsHyperDebugStateActive(pVCpu));
|
---|
1915 | Assert(CPUMIsGuestDebugStateActive(pVCpu));
|
---|
1916 | }
|
---|
1917 |
|
---|
1918 | pVmcb->guest.u64DR6 = pCtx->dr[6];
|
---|
1919 | pVmcb->guest.u64DR7 = pCtx->dr[7];
|
---|
1920 | return;
|
---|
1921 | }
|
---|
1922 |
|
---|
1923 | /*
|
---|
1924 | * Anyone single stepping on the host side? If so, we'll have to use the
|
---|
1925 | * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
|
---|
1926 | * the VMM level like the VT-x implementations does.
|
---|
1927 | */
|
---|
1928 | bool fInterceptMovDRx = false;
|
---|
1929 | bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
|
---|
1930 | if (fStepping)
|
---|
1931 | {
|
---|
1932 | pVCpu->hmr0.s.fClearTrapFlag = true;
|
---|
1933 | pVmcb->guest.u64RFlags |= X86_EFL_TF;
|
---|
1934 | fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
|
---|
1935 | }
|
---|
1936 |
|
---|
1937 | if ( fStepping
|
---|
1938 | || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
|
---|
1939 | {
|
---|
1940 | /*
|
---|
1941 | * Use the combined guest and host DRx values found in the hypervisor
|
---|
1942 | * register set because the debugger has breakpoints active or someone
|
---|
1943 | * is single stepping on the host side.
|
---|
1944 | *
|
---|
1945 | * Note! DBGF expects a clean DR6 state before executing guest code.
|
---|
1946 | */
|
---|
1947 | if (!CPUMIsHyperDebugStateActive(pVCpu))
|
---|
1948 | {
|
---|
1949 | CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
|
---|
1950 | Assert(!CPUMIsGuestDebugStateActive(pVCpu));
|
---|
1951 | Assert(CPUMIsHyperDebugStateActive(pVCpu));
|
---|
1952 | }
|
---|
1953 |
|
---|
1954 | /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
|
---|
1955 | if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
|
---|
1956 | || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
|
---|
1957 | {
|
---|
1958 | pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
|
---|
1959 | pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
|
---|
1960 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
|
---|
1961 | }
|
---|
1962 |
|
---|
1963 | /** @todo If we cared, we could optimize to allow the guest to read registers
|
---|
1964 | * with the same values. */
|
---|
1965 | fInterceptMovDRx = true;
|
---|
1966 | pVCpu->hmr0.s.fUsingHyperDR7 = true;
|
---|
1967 | Log5(("hmR0SvmExportSharedDebugState: Loaded hyper DRx\n"));
|
---|
1968 | }
|
---|
1969 | else
|
---|
1970 | {
|
---|
1971 | /*
|
---|
1972 | * Update DR6, DR7 with the guest values if necessary.
|
---|
1973 | */
|
---|
1974 | if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
|
---|
1975 | || pVmcb->guest.u64DR6 != pCtx->dr[6])
|
---|
1976 | {
|
---|
1977 | pVmcb->guest.u64DR7 = pCtx->dr[7];
|
---|
1978 | pVmcb->guest.u64DR6 = pCtx->dr[6];
|
---|
1979 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
|
---|
1980 | }
|
---|
1981 | pVCpu->hmr0.s.fUsingHyperDR7 = false;
|
---|
1982 |
|
---|
1983 | /*
|
---|
1984 | * If the guest has enabled debug registers, we need to load them prior to
|
---|
1985 | * executing guest code so they'll trigger at the right time.
|
---|
1986 | */
|
---|
1987 | if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
|
---|
1988 | {
|
---|
1989 | if (!CPUMIsGuestDebugStateActive(pVCpu))
|
---|
1990 | {
|
---|
1991 | CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
|
---|
1992 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
|
---|
1993 | Assert(!CPUMIsHyperDebugStateActive(pVCpu));
|
---|
1994 | Assert(CPUMIsGuestDebugStateActive(pVCpu));
|
---|
1995 | }
|
---|
1996 | Log5(("hmR0SvmExportSharedDebugState: Loaded guest DRx\n"));
|
---|
1997 | }
|
---|
1998 | /*
|
---|
1999 | * If no debugging enabled, we'll lazy load DR0-3. We don't need to
|
---|
2000 | * intercept #DB as DR6 is updated in the VMCB.
|
---|
2001 | *
|
---|
2002 | * Note! If we cared and dared, we could skip intercepting \#DB here.
|
---|
2003 | * However, \#DB shouldn't be performance critical, so we'll play safe
|
---|
2004 | * and keep the code similar to the VT-x code and always intercept it.
|
---|
2005 | */
|
---|
2006 | else if (!CPUMIsGuestDebugStateActive(pVCpu))
|
---|
2007 | fInterceptMovDRx = true;
|
---|
2008 | }
|
---|
2009 |
|
---|
2010 | Assert(pVmcb->ctrl.u32InterceptXcpt & RT_BIT_32(X86_XCPT_DB));
|
---|
2011 | if (fInterceptMovDRx)
|
---|
2012 | {
|
---|
2013 | if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
|
---|
2014 | || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
|
---|
2015 | {
|
---|
2016 | pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
|
---|
2017 | pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
|
---|
2018 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
2019 | }
|
---|
2020 | }
|
---|
2021 | else
|
---|
2022 | {
|
---|
2023 | if ( pVmcb->ctrl.u16InterceptRdDRx
|
---|
2024 | || pVmcb->ctrl.u16InterceptWrDRx)
|
---|
2025 | {
|
---|
2026 | pVmcb->ctrl.u16InterceptRdDRx = 0;
|
---|
2027 | pVmcb->ctrl.u16InterceptWrDRx = 0;
|
---|
2028 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
2029 | }
|
---|
2030 | }
|
---|
2031 | Log4Func(("DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
|
---|
2032 | }
|
---|
2033 |
|
---|
2034 | /**
|
---|
2035 | * Exports the hardware virtualization state into the nested-guest
|
---|
2036 | * VMCB.
|
---|
2037 | *
|
---|
2038 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2039 | * @param pVmcb Pointer to the VM control block.
|
---|
2040 | *
|
---|
2041 | * @remarks No-long-jump zone!!!
|
---|
2042 | */
|
---|
2043 | static void hmR0SvmExportGuestHwvirtState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
|
---|
2044 | {
|
---|
2045 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2046 |
|
---|
2047 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_HWVIRT)
|
---|
2048 | {
|
---|
2049 | if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
|
---|
2050 | {
|
---|
2051 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
2052 | PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2053 |
|
---|
2054 | HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx); /* Nested VGIF is not supported yet. */
|
---|
2055 | Assert(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VGIF); /* Physical hardware supports VGIF. */
|
---|
2056 | Assert(HMIsSvmVGifActive(pVM)); /* Outer VM has enabled VGIF. */
|
---|
2057 | NOREF(pVM);
|
---|
2058 |
|
---|
2059 | pVmcb->ctrl.IntCtrl.n.u1VGif = CPUMGetGuestGif(pCtx);
|
---|
2060 | }
|
---|
2061 |
|
---|
2062 | /*
|
---|
2063 | * Ensure the nested-guest pause-filter counters don't exceed the outer guest values esp.
|
---|
2064 | * since SVM doesn't have a preemption timer.
|
---|
2065 | *
|
---|
2066 | * We do this here rather than in hmR0SvmSetupVmcbNested() as we may have been executing the
|
---|
2067 | * nested-guest in IEM incl. PAUSE instructions which would update the pause-filter counters
|
---|
2068 | * and may continue execution in SVM R0 without a nested-guest #VMEXIT in between.
|
---|
2069 | */
|
---|
2070 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2071 | PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
|
---|
2072 | uint16_t const uGuestPauseFilterCount = pVM->hm.s.svm.cPauseFilter;
|
---|
2073 | uint16_t const uGuestPauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
|
---|
2074 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, &pVCpu->cpum.GstCtx, SVM_CTRL_INTERCEPT_PAUSE))
|
---|
2075 | {
|
---|
2076 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
2077 | pVmcbCtrl->u16PauseFilterCount = RT_MIN(pCtx->hwvirt.svm.cPauseFilter, uGuestPauseFilterCount);
|
---|
2078 | pVmcbCtrl->u16PauseFilterThreshold = RT_MIN(pCtx->hwvirt.svm.cPauseFilterThreshold, uGuestPauseFilterThreshold);
|
---|
2079 | }
|
---|
2080 | else
|
---|
2081 | {
|
---|
2082 | /** @todo r=ramshankar: We can turn these assignments into assertions. */
|
---|
2083 | pVmcbCtrl->u16PauseFilterCount = uGuestPauseFilterCount;
|
---|
2084 | pVmcbCtrl->u16PauseFilterThreshold = uGuestPauseFilterThreshold;
|
---|
2085 | }
|
---|
2086 | pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
2087 |
|
---|
2088 | pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_HWVIRT;
|
---|
2089 | }
|
---|
2090 | }
|
---|
2091 |
|
---|
2092 |
|
---|
2093 | /**
|
---|
2094 | * Exports the guest APIC TPR state into the VMCB.
|
---|
2095 | *
|
---|
2096 | * @returns VBox status code.
|
---|
2097 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2098 | * @param pVmcb Pointer to the VM control block.
|
---|
2099 | */
|
---|
2100 | static int hmR0SvmExportGuestApicTpr(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
|
---|
2101 | {
|
---|
2102 | HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
|
---|
2103 |
|
---|
2104 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
|
---|
2105 | {
|
---|
2106 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2107 | if ( PDMHasApic(pVM)
|
---|
2108 | && APICIsEnabled(pVCpu))
|
---|
2109 | {
|
---|
2110 | bool fPendingIntr;
|
---|
2111 | uint8_t u8Tpr;
|
---|
2112 | int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
|
---|
2113 | AssertRCReturn(rc, rc);
|
---|
2114 |
|
---|
2115 | /* Assume that we need to trap all TPR accesses and thus need not check on
|
---|
2116 | every #VMEXIT if we should update the TPR. */
|
---|
2117 | Assert(pVmcb->ctrl.IntCtrl.n.u1VIntrMasking);
|
---|
2118 | pVCpu->hmr0.s.svm.fSyncVTpr = false;
|
---|
2119 |
|
---|
2120 | if (!pVM->hm.s.fTprPatchingActive)
|
---|
2121 | {
|
---|
2122 | /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
|
---|
2123 | pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
|
---|
2124 |
|
---|
2125 | /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we
|
---|
2126 | can deliver the interrupt to the guest. */
|
---|
2127 | if (fPendingIntr)
|
---|
2128 | pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
|
---|
2129 | else
|
---|
2130 | {
|
---|
2131 | pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
|
---|
2132 | pVCpu->hmr0.s.svm.fSyncVTpr = true;
|
---|
2133 | }
|
---|
2134 |
|
---|
2135 | pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_INT_CTRL);
|
---|
2136 | }
|
---|
2137 | else
|
---|
2138 | {
|
---|
2139 | /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
|
---|
2140 | pVmcb->guest.u64LSTAR = u8Tpr;
|
---|
2141 | uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hmr0.s.svm.pvMsrBitmap;
|
---|
2142 |
|
---|
2143 | /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
|
---|
2144 | if (fPendingIntr)
|
---|
2145 | hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
|
---|
2146 | else
|
---|
2147 | {
|
---|
2148 | hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
2149 | pVCpu->hmr0.s.svm.fSyncVTpr = true;
|
---|
2150 | }
|
---|
2151 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
|
---|
2152 | }
|
---|
2153 | }
|
---|
2154 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
|
---|
2155 | }
|
---|
2156 | return VINF_SUCCESS;
|
---|
2157 | }
|
---|
2158 |
|
---|
2159 |
|
---|
2160 | /**
|
---|
2161 | * Sets up the exception interrupts required for guest execution in the VMCB.
|
---|
2162 | *
|
---|
2163 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2164 | * @param pVmcb Pointer to the VM control block.
|
---|
2165 | *
|
---|
2166 | * @remarks No-long-jump zone!!!
|
---|
2167 | */
|
---|
2168 | static void hmR0SvmExportGuestXcptIntercepts(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
|
---|
2169 | {
|
---|
2170 | HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
|
---|
2171 |
|
---|
2172 | /* If we modify intercepts from here, please check & adjust hmR0SvmMergeVmcbCtrlsNested() if required. */
|
---|
2173 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_SVM_XCPT_INTERCEPTS)
|
---|
2174 | {
|
---|
2175 | /* Trap #UD for GIM provider (e.g. for hypercalls). */
|
---|
2176 | if (pVCpu->hm.s.fGIMTrapXcptUD || pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit)
|
---|
2177 | hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_UD);
|
---|
2178 | else
|
---|
2179 | hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_UD);
|
---|
2180 |
|
---|
2181 | /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */
|
---|
2182 | if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
|
---|
2183 | hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_BP);
|
---|
2184 | else
|
---|
2185 | hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_BP);
|
---|
2186 |
|
---|
2187 | /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmExportGuestCR0(). */
|
---|
2188 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_SVM_XCPT_INTERCEPTS);
|
---|
2189 | }
|
---|
2190 | }
|
---|
2191 |
|
---|
2192 |
|
---|
2193 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
2194 | /**
|
---|
2195 | * Merges guest and nested-guest intercepts for executing the nested-guest using
|
---|
2196 | * hardware-assisted SVM.
|
---|
2197 | *
|
---|
2198 | * This merges the guest and nested-guest intercepts in a way that if the outer
|
---|
2199 | * guest intercept is set we need to intercept it in the nested-guest as
|
---|
2200 | * well.
|
---|
2201 | *
|
---|
2202 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2203 | * @param pVmcbNstGst Pointer to the nested-guest VM control block.
|
---|
2204 | */
|
---|
2205 | static void hmR0SvmMergeVmcbCtrlsNested(PVMCPUCC pVCpu)
|
---|
2206 | {
|
---|
2207 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2208 | PCSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
|
---|
2209 | PSVMVMCB pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb;
|
---|
2210 | PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
|
---|
2211 |
|
---|
2212 | /* Merge the guest's CR intercepts into the nested-guest VMCB. */
|
---|
2213 | pVmcbNstGstCtrl->u16InterceptRdCRx |= pVmcb->ctrl.u16InterceptRdCRx;
|
---|
2214 | pVmcbNstGstCtrl->u16InterceptWrCRx |= pVmcb->ctrl.u16InterceptWrCRx;
|
---|
2215 |
|
---|
2216 | /* Always intercept CR4 writes for tracking PGM mode changes and AVX (for
|
---|
2217 | XCR0 syncing during worlds switching). */
|
---|
2218 | pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(4);
|
---|
2219 |
|
---|
2220 | /* Without nested paging, intercept CR3 reads and writes as we load shadow page tables. */
|
---|
2221 | if (!pVM->hmr0.s.fNestedPaging)
|
---|
2222 | {
|
---|
2223 | pVmcbNstGstCtrl->u16InterceptRdCRx |= RT_BIT(3);
|
---|
2224 | pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(3);
|
---|
2225 | }
|
---|
2226 |
|
---|
2227 | /* Merge the guest's DR intercepts into the nested-guest VMCB. */
|
---|
2228 | pVmcbNstGstCtrl->u16InterceptRdDRx |= pVmcb->ctrl.u16InterceptRdDRx;
|
---|
2229 | pVmcbNstGstCtrl->u16InterceptWrDRx |= pVmcb->ctrl.u16InterceptWrDRx;
|
---|
2230 |
|
---|
2231 | /*
|
---|
2232 | * Merge the guest's exception intercepts into the nested-guest VMCB.
|
---|
2233 | *
|
---|
2234 | * - #UD: Exclude these as the outer guest's GIM hypercalls are not applicable
|
---|
2235 | * while executing the nested-guest.
|
---|
2236 | *
|
---|
2237 | * - #BP: Exclude breakpoints set by the VM debugger for the outer guest. This can
|
---|
2238 | * be tweaked later depending on how we wish to implement breakpoints.
|
---|
2239 | *
|
---|
2240 | * - #GP: Exclude these as it's the inner VMMs problem to get vmsvga 3d drivers
|
---|
2241 | * loaded into their guests, not ours.
|
---|
2242 | *
|
---|
2243 | * Warning!! This ASSUMES we only intercept \#UD for hypercall purposes and \#BP
|
---|
2244 | * for VM debugger breakpoints, see hmR0SvmExportGuestXcptIntercepts().
|
---|
2245 | */
|
---|
2246 | #ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
2247 | pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt
|
---|
2248 | & ~( RT_BIT(X86_XCPT_UD)
|
---|
2249 | | RT_BIT(X86_XCPT_BP)
|
---|
2250 | | (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv ? RT_BIT(X86_XCPT_GP) : 0));
|
---|
2251 | #else
|
---|
2252 | pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt;
|
---|
2253 | #endif
|
---|
2254 |
|
---|
2255 | /*
|
---|
2256 | * Adjust intercepts while executing the nested-guest that differ from the
|
---|
2257 | * outer guest intercepts.
|
---|
2258 | *
|
---|
2259 | * - VINTR: Exclude the outer guest intercept as we don't need to cause VINTR #VMEXITs
|
---|
2260 | * that belong to the nested-guest to the outer guest.
|
---|
2261 | *
|
---|
2262 | * - VMMCALL: Exclude the outer guest intercept as when it's also not intercepted by
|
---|
2263 | * the nested-guest, the physical CPU raises a \#UD exception as expected.
|
---|
2264 | */
|
---|
2265 | pVmcbNstGstCtrl->u64InterceptCtrl |= (pVmcb->ctrl.u64InterceptCtrl & ~( SVM_CTRL_INTERCEPT_VINTR
|
---|
2266 | | SVM_CTRL_INTERCEPT_VMMCALL))
|
---|
2267 | | HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS;
|
---|
2268 |
|
---|
2269 | Assert( (pVmcbNstGstCtrl->u64InterceptCtrl & HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS)
|
---|
2270 | == HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS);
|
---|
2271 |
|
---|
2272 | /* Finally, update the VMCB clean bits. */
|
---|
2273 | pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
2274 | }
|
---|
2275 | #endif
|
---|
2276 |
|
---|
2277 |
|
---|
2278 | /**
|
---|
2279 | * Enters the AMD-V session.
|
---|
2280 | *
|
---|
2281 | * @returns VBox status code.
|
---|
2282 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2283 | */
|
---|
2284 | VMMR0DECL(int) SVMR0Enter(PVMCPUCC pVCpu)
|
---|
2285 | {
|
---|
2286 | AssertPtr(pVCpu);
|
---|
2287 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
|
---|
2288 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2289 |
|
---|
2290 | LogFlowFunc(("pVCpu=%p\n", pVCpu));
|
---|
2291 | Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
|
---|
2292 | == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
|
---|
2293 |
|
---|
2294 | pVCpu->hmr0.s.fLeaveDone = false;
|
---|
2295 | return VINF_SUCCESS;
|
---|
2296 | }
|
---|
2297 |
|
---|
2298 |
|
---|
2299 | /**
|
---|
2300 | * Thread-context callback for AMD-V.
|
---|
2301 | *
|
---|
2302 | * This is used together with RTThreadCtxHookCreate() on platforms which
|
---|
2303 | * supports it, and directly from VMMR0EmtPrepareForBlocking() and
|
---|
2304 | * VMMR0EmtResumeAfterBlocking() on platforms which don't.
|
---|
2305 | *
|
---|
2306 | * @param enmEvent The thread-context event.
|
---|
2307 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2308 | * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
|
---|
2309 | * @thread EMT(pVCpu)
|
---|
2310 | */
|
---|
2311 | VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPUCC pVCpu, bool fGlobalInit)
|
---|
2312 | {
|
---|
2313 | NOREF(fGlobalInit);
|
---|
2314 |
|
---|
2315 | switch (enmEvent)
|
---|
2316 | {
|
---|
2317 | case RTTHREADCTXEVENT_OUT:
|
---|
2318 | {
|
---|
2319 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2320 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
2321 |
|
---|
2322 | /* No longjmps (log-flush, locks) in this fragile context. */
|
---|
2323 | VMMRZCallRing3Disable(pVCpu);
|
---|
2324 |
|
---|
2325 | if (!pVCpu->hmr0.s.fLeaveDone)
|
---|
2326 | {
|
---|
2327 | hmR0SvmLeave(pVCpu, false /* fImportState */);
|
---|
2328 | pVCpu->hmr0.s.fLeaveDone = true;
|
---|
2329 | }
|
---|
2330 |
|
---|
2331 | /* Leave HM context, takes care of local init (term). */
|
---|
2332 | int rc = HMR0LeaveCpu(pVCpu);
|
---|
2333 | AssertRC(rc); NOREF(rc);
|
---|
2334 |
|
---|
2335 | /* Restore longjmp state. */
|
---|
2336 | VMMRZCallRing3Enable(pVCpu);
|
---|
2337 | STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
|
---|
2338 | break;
|
---|
2339 | }
|
---|
2340 |
|
---|
2341 | case RTTHREADCTXEVENT_IN:
|
---|
2342 | {
|
---|
2343 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2344 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
2345 |
|
---|
2346 | /* No longjmps (log-flush, locks) in this fragile context. */
|
---|
2347 | VMMRZCallRing3Disable(pVCpu);
|
---|
2348 |
|
---|
2349 | /*
|
---|
2350 | * Initialize the bare minimum state required for HM. This takes care of
|
---|
2351 | * initializing AMD-V if necessary (onlined CPUs, local init etc.)
|
---|
2352 | */
|
---|
2353 | int rc = hmR0EnterCpu(pVCpu);
|
---|
2354 | AssertRC(rc); NOREF(rc);
|
---|
2355 | Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
|
---|
2356 | == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
|
---|
2357 |
|
---|
2358 | pVCpu->hmr0.s.fLeaveDone = false;
|
---|
2359 |
|
---|
2360 | /* Restore longjmp state. */
|
---|
2361 | VMMRZCallRing3Enable(pVCpu);
|
---|
2362 | break;
|
---|
2363 | }
|
---|
2364 |
|
---|
2365 | default:
|
---|
2366 | break;
|
---|
2367 | }
|
---|
2368 | }
|
---|
2369 |
|
---|
2370 |
|
---|
2371 | /**
|
---|
2372 | * Saves the host state.
|
---|
2373 | *
|
---|
2374 | * @returns VBox status code.
|
---|
2375 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2376 | *
|
---|
2377 | * @remarks No-long-jump zone!!!
|
---|
2378 | */
|
---|
2379 | VMMR0DECL(int) SVMR0ExportHostState(PVMCPUCC pVCpu)
|
---|
2380 | {
|
---|
2381 | NOREF(pVCpu);
|
---|
2382 |
|
---|
2383 | /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
|
---|
2384 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_HOST_CONTEXT);
|
---|
2385 | return VINF_SUCCESS;
|
---|
2386 | }
|
---|
2387 |
|
---|
2388 |
|
---|
2389 | /**
|
---|
2390 | * Exports the guest or nested-guest state from the virtual-CPU context into the
|
---|
2391 | * VMCB.
|
---|
2392 | *
|
---|
2393 | * Also sets up the appropriate VMRUN function to execute guest or nested-guest
|
---|
2394 | * code based on the virtual-CPU mode.
|
---|
2395 | *
|
---|
2396 | * @returns VBox status code.
|
---|
2397 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2398 | * @param pSvmTransient Pointer to the SVM-transient structure.
|
---|
2399 | *
|
---|
2400 | * @remarks No-long-jump zone!!!
|
---|
2401 | */
|
---|
2402 | static int hmR0SvmExportGuestState(PVMCPUCC pVCpu, PCSVMTRANSIENT pSvmTransient)
|
---|
2403 | {
|
---|
2404 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
|
---|
2405 |
|
---|
2406 | PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
|
---|
2407 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
2408 | Assert(pVmcb);
|
---|
2409 |
|
---|
2410 | pVmcb->guest.u64RIP = pCtx->rip;
|
---|
2411 | pVmcb->guest.u64RSP = pCtx->rsp;
|
---|
2412 | pVmcb->guest.u64RFlags = pCtx->eflags.u;
|
---|
2413 | pVmcb->guest.u64RAX = pCtx->rax;
|
---|
2414 |
|
---|
2415 | bool const fIsNestedGuest = pSvmTransient->fIsNestedGuest;
|
---|
2416 | RTCCUINTREG const fEFlags = ASMIntDisableFlags();
|
---|
2417 |
|
---|
2418 | int rc = hmR0SvmExportGuestControlRegs(pVCpu, pVmcb);
|
---|
2419 | AssertRCReturnStmt(rc, ASMSetFlags(fEFlags), rc);
|
---|
2420 | hmR0SvmExportGuestSegmentRegs(pVCpu, pVmcb);
|
---|
2421 | hmR0SvmExportGuestMsrs(pVCpu, pVmcb);
|
---|
2422 | hmR0SvmExportGuestHwvirtState(pVCpu, pVmcb);
|
---|
2423 |
|
---|
2424 | ASMSetFlags(fEFlags);
|
---|
2425 |
|
---|
2426 | if (!fIsNestedGuest)
|
---|
2427 | {
|
---|
2428 | /* hmR0SvmExportGuestApicTpr() must be called -after- hmR0SvmExportGuestMsrs() as we
|
---|
2429 | otherwise we would overwrite the LSTAR MSR that we use for TPR patching. */
|
---|
2430 | hmR0SvmExportGuestApicTpr(pVCpu, pVmcb);
|
---|
2431 | hmR0SvmExportGuestXcptIntercepts(pVCpu, pVmcb);
|
---|
2432 | }
|
---|
2433 |
|
---|
2434 | /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
|
---|
2435 | uint64_t fUnusedMask = HM_CHANGED_GUEST_RIP
|
---|
2436 | | HM_CHANGED_GUEST_RFLAGS
|
---|
2437 | | HM_CHANGED_GUEST_GPRS_MASK
|
---|
2438 | | HM_CHANGED_GUEST_X87
|
---|
2439 | | HM_CHANGED_GUEST_SSE_AVX
|
---|
2440 | | HM_CHANGED_GUEST_OTHER_XSAVE
|
---|
2441 | | HM_CHANGED_GUEST_XCRx
|
---|
2442 | | HM_CHANGED_GUEST_TSC_AUX
|
---|
2443 | | HM_CHANGED_GUEST_OTHER_MSRS;
|
---|
2444 | if (fIsNestedGuest)
|
---|
2445 | fUnusedMask |= HM_CHANGED_SVM_XCPT_INTERCEPTS
|
---|
2446 | | HM_CHANGED_GUEST_APIC_TPR;
|
---|
2447 |
|
---|
2448 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( fUnusedMask
|
---|
2449 | | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_SVM_MASK)));
|
---|
2450 |
|
---|
2451 | #ifdef VBOX_STRICT
|
---|
2452 | /*
|
---|
2453 | * All of the guest-CPU state and SVM keeper bits should be exported here by now,
|
---|
2454 | * except for the host-context and/or shared host-guest context bits.
|
---|
2455 | */
|
---|
2456 | uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
|
---|
2457 | AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)),
|
---|
2458 | ("fCtxChanged=%#RX64\n", fCtxChanged));
|
---|
2459 |
|
---|
2460 | /*
|
---|
2461 | * If we need to log state that isn't always imported, we'll need to import them here.
|
---|
2462 | * See hmR0SvmPostRunGuest() for which part of the state is imported uncondtionally.
|
---|
2463 | */
|
---|
2464 | hmR0SvmLogState(pVCpu, pVmcb, "hmR0SvmExportGuestState", 0 /* fFlags */, 0 /* uVerbose */);
|
---|
2465 | #endif
|
---|
2466 |
|
---|
2467 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
|
---|
2468 | return VINF_SUCCESS;
|
---|
2469 | }
|
---|
2470 |
|
---|
2471 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
2472 |
|
---|
2473 | /**
|
---|
2474 | * Merges the guest and nested-guest MSR permission bitmap.
|
---|
2475 | *
|
---|
2476 | * If the guest is intercepting an MSR we need to intercept it regardless of
|
---|
2477 | * whether the nested-guest is intercepting it or not.
|
---|
2478 | *
|
---|
2479 | * @param pHostCpu The HM physical-CPU structure.
|
---|
2480 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2481 | *
|
---|
2482 | * @remarks No-long-jmp zone!!!
|
---|
2483 | */
|
---|
2484 | DECLINLINE(void) hmR0SvmMergeMsrpmNested(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu)
|
---|
2485 | {
|
---|
2486 | uint64_t const *pu64GstMsrpm = (uint64_t const *)pVCpu->hmr0.s.svm.pvMsrBitmap;
|
---|
2487 | uint64_t const *pu64NstGstMsrpm = (uint64_t const *)&pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[0];
|
---|
2488 | uint64_t *pu64DstMsrpm = (uint64_t *)pHostCpu->n.svm.pvNstGstMsrpm;
|
---|
2489 |
|
---|
2490 | /* MSRPM bytes from offset 0x1800 are reserved, so we stop merging there. */
|
---|
2491 | uint32_t const offRsvdQwords = 0x1800 >> 3;
|
---|
2492 | for (uint32_t i = 0; i < offRsvdQwords; i++)
|
---|
2493 | pu64DstMsrpm[i] = pu64NstGstMsrpm[i] | pu64GstMsrpm[i];
|
---|
2494 | }
|
---|
2495 |
|
---|
2496 |
|
---|
2497 | /**
|
---|
2498 | * Caches the nested-guest VMCB fields before we modify them for execution using
|
---|
2499 | * hardware-assisted SVM.
|
---|
2500 | *
|
---|
2501 | * @returns true if the VMCB was previously already cached, false otherwise.
|
---|
2502 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2503 | *
|
---|
2504 | * @sa HMNotifySvmNstGstVmexit.
|
---|
2505 | */
|
---|
2506 | static bool hmR0SvmCacheVmcbNested(PVMCPUCC pVCpu)
|
---|
2507 | {
|
---|
2508 | /*
|
---|
2509 | * Cache the nested-guest programmed VMCB fields if we have not cached it yet.
|
---|
2510 | * Otherwise we risk re-caching the values we may have modified, see @bugref{7243#c44}.
|
---|
2511 | *
|
---|
2512 | * Nested-paging CR3 is not saved back into the VMCB on #VMEXIT, hence no need to
|
---|
2513 | * cache and restore it, see AMD spec. 15.25.4 "Nested Paging and VMRUN/#VMEXIT".
|
---|
2514 | */
|
---|
2515 | PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
|
---|
2516 | bool const fWasCached = pVmcbNstGstCache->fCacheValid;
|
---|
2517 | if (!fWasCached)
|
---|
2518 | {
|
---|
2519 | PCSVMVMCB pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb;
|
---|
2520 | PCSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
|
---|
2521 | pVmcbNstGstCache->u16InterceptRdCRx = pVmcbNstGstCtrl->u16InterceptRdCRx;
|
---|
2522 | pVmcbNstGstCache->u16InterceptWrCRx = pVmcbNstGstCtrl->u16InterceptWrCRx;
|
---|
2523 | pVmcbNstGstCache->u16InterceptRdDRx = pVmcbNstGstCtrl->u16InterceptRdDRx;
|
---|
2524 | pVmcbNstGstCache->u16InterceptWrDRx = pVmcbNstGstCtrl->u16InterceptWrDRx;
|
---|
2525 | pVmcbNstGstCache->u16PauseFilterThreshold = pVmcbNstGstCtrl->u16PauseFilterThreshold;
|
---|
2526 | pVmcbNstGstCache->u16PauseFilterCount = pVmcbNstGstCtrl->u16PauseFilterCount;
|
---|
2527 | pVmcbNstGstCache->u32InterceptXcpt = pVmcbNstGstCtrl->u32InterceptXcpt;
|
---|
2528 | pVmcbNstGstCache->u64InterceptCtrl = pVmcbNstGstCtrl->u64InterceptCtrl;
|
---|
2529 | pVmcbNstGstCache->u64TSCOffset = pVmcbNstGstCtrl->u64TSCOffset;
|
---|
2530 | pVmcbNstGstCache->fVIntrMasking = pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking;
|
---|
2531 | pVmcbNstGstCache->fNestedPaging = pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging;
|
---|
2532 | pVmcbNstGstCache->fLbrVirt = pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt;
|
---|
2533 | pVmcbNstGstCache->fCacheValid = true;
|
---|
2534 | Log4Func(("Cached VMCB fields\n"));
|
---|
2535 | }
|
---|
2536 |
|
---|
2537 | return fWasCached;
|
---|
2538 | }
|
---|
2539 |
|
---|
2540 |
|
---|
2541 | /**
|
---|
2542 | * Sets up the nested-guest VMCB for execution using hardware-assisted SVM.
|
---|
2543 | *
|
---|
2544 | * This is done the first time we enter nested-guest execution using SVM R0
|
---|
2545 | * until the nested-guest \#VMEXIT (not to be confused with physical CPU
|
---|
2546 | * \#VMEXITs which may or may not cause a corresponding nested-guest \#VMEXIT).
|
---|
2547 | *
|
---|
2548 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2549 | */
|
---|
2550 | static void hmR0SvmSetupVmcbNested(PVMCPUCC pVCpu)
|
---|
2551 | {
|
---|
2552 | PSVMVMCB pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb;
|
---|
2553 | PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
|
---|
2554 |
|
---|
2555 | HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
|
---|
2556 |
|
---|
2557 | /*
|
---|
2558 | * First cache the nested-guest VMCB fields we may potentially modify.
|
---|
2559 | */
|
---|
2560 | bool const fVmcbCached = hmR0SvmCacheVmcbNested(pVCpu);
|
---|
2561 | if (!fVmcbCached)
|
---|
2562 | {
|
---|
2563 | /*
|
---|
2564 | * The IOPM of the nested-guest can be ignored because the the guest always
|
---|
2565 | * intercepts all IO port accesses. Thus, we'll swap to the guest IOPM rather
|
---|
2566 | * than the nested-guest IOPM and swap the field back on the #VMEXIT.
|
---|
2567 | */
|
---|
2568 | pVmcbNstGstCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
|
---|
2569 |
|
---|
2570 | /*
|
---|
2571 | * Use the same nested-paging as the outer guest. We can't dynamically switch off
|
---|
2572 | * nested-paging suddenly while executing a VM (see assertion at the end of
|
---|
2573 | * Trap0eHandler() in PGMAllBth.h).
|
---|
2574 | */
|
---|
2575 | pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging = pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging;
|
---|
2576 |
|
---|
2577 | /* Always enable V_INTR_MASKING as we do not want to allow access to the physical APIC TPR. */
|
---|
2578 | pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking = 1;
|
---|
2579 |
|
---|
2580 | /*
|
---|
2581 | * Turn off TPR syncing on #VMEXIT for nested-guests as CR8 intercepts are subject
|
---|
2582 | * to the nested-guest intercepts and we always run with V_INTR_MASKING.
|
---|
2583 | */
|
---|
2584 | pVCpu->hmr0.s.svm.fSyncVTpr = false;
|
---|
2585 |
|
---|
2586 | # ifdef DEBUG_ramshankar
|
---|
2587 | /* For debugging purposes - copy the LBR info. from outer guest VMCB. */
|
---|
2588 | pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt = pVmcb->ctrl.LbrVirt.n.u1LbrVirt;
|
---|
2589 | # endif
|
---|
2590 |
|
---|
2591 | /*
|
---|
2592 | * If we don't expose Virtualized-VMSAVE/VMLOAD feature to the outer guest, we
|
---|
2593 | * need to intercept VMSAVE/VMLOAD instructions executed by the nested-guest.
|
---|
2594 | */
|
---|
2595 | if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
|
---|
2596 | pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
|
---|
2597 | | SVM_CTRL_INTERCEPT_VMLOAD;
|
---|
2598 |
|
---|
2599 | /*
|
---|
2600 | * If we don't expose Virtual GIF feature to the outer guest, we need to intercept
|
---|
2601 | * CLGI/STGI instructions executed by the nested-guest.
|
---|
2602 | */
|
---|
2603 | if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVGif)
|
---|
2604 | pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
|
---|
2605 | | SVM_CTRL_INTERCEPT_STGI;
|
---|
2606 |
|
---|
2607 | /* Merge the guest and nested-guest intercepts. */
|
---|
2608 | hmR0SvmMergeVmcbCtrlsNested(pVCpu);
|
---|
2609 |
|
---|
2610 | /* Update the VMCB clean bits. */
|
---|
2611 | pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
2612 | }
|
---|
2613 | else
|
---|
2614 | {
|
---|
2615 | Assert(!pVCpu->hmr0.s.svm.fSyncVTpr);
|
---|
2616 | Assert(pVmcbNstGstCtrl->u64IOPMPhysAddr == g_HCPhysIOBitmap);
|
---|
2617 | Assert(RT_BOOL(pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging) == pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
|
---|
2618 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPagingCfg == pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
|
---|
2619 | }
|
---|
2620 | }
|
---|
2621 |
|
---|
2622 | #endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
|
---|
2623 |
|
---|
2624 | /**
|
---|
2625 | * Exports the state shared between the host and guest (or nested-guest) into
|
---|
2626 | * the VMCB.
|
---|
2627 | *
|
---|
2628 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2629 | * @param pVmcb Pointer to the VM control block.
|
---|
2630 | *
|
---|
2631 | * @remarks No-long-jump zone!!!
|
---|
2632 | */
|
---|
2633 | static void hmR0SvmExportSharedState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
|
---|
2634 | {
|
---|
2635 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2636 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
2637 |
|
---|
2638 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
|
---|
2639 | hmR0SvmExportSharedDebugState(pVCpu, pVmcb);
|
---|
2640 |
|
---|
2641 | pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
|
---|
2642 | AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE),
|
---|
2643 | ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
|
---|
2644 | }
|
---|
2645 |
|
---|
2646 |
|
---|
2647 | /**
|
---|
2648 | * Worker for SVMR0ImportStateOnDemand.
|
---|
2649 | *
|
---|
2650 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2651 | * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
|
---|
2652 | */
|
---|
2653 | static void hmR0SvmImportGuestState(PVMCPUCC pVCpu, uint64_t fWhat)
|
---|
2654 | {
|
---|
2655 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
|
---|
2656 |
|
---|
2657 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
2658 | PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
|
---|
2659 | PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
|
---|
2660 | PCSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
|
---|
2661 |
|
---|
2662 | /*
|
---|
2663 | * We disable interrupts to make the updating of the state and in particular
|
---|
2664 | * the fExtrn modification atomic wrt to preemption hooks.
|
---|
2665 | */
|
---|
2666 | RTCCUINTREG const fEFlags = ASMIntDisableFlags();
|
---|
2667 |
|
---|
2668 | fWhat &= pCtx->fExtrn;
|
---|
2669 | if (fWhat)
|
---|
2670 | {
|
---|
2671 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
2672 | if (fWhat & CPUMCTX_EXTRN_HWVIRT)
|
---|
2673 | {
|
---|
2674 | if (pVmcbCtrl->IntCtrl.n.u1VGifEnable)
|
---|
2675 | {
|
---|
2676 | Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); /* We don't yet support passing VGIF feature to the guest. */
|
---|
2677 | Assert(HMIsSvmVGifActive(pVCpu->CTX_SUFF(pVM))); /* VM has configured it. */
|
---|
2678 | CPUMSetGuestGif(pCtx, pVmcbCtrl->IntCtrl.n.u1VGif);
|
---|
2679 | }
|
---|
2680 | }
|
---|
2681 |
|
---|
2682 | if (fWhat & CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ)
|
---|
2683 | {
|
---|
2684 | if ( !pVmcbCtrl->IntCtrl.n.u1VIrqPending
|
---|
2685 | && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
|
---|
2686 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
|
---|
2687 | }
|
---|
2688 | #endif
|
---|
2689 |
|
---|
2690 | if (fWhat & CPUMCTX_EXTRN_INHIBIT_INT)
|
---|
2691 | CPUMUpdateInterruptShadowEx(pCtx, pVmcbCtrl->IntShadow.n.u1IntShadow, pVmcbGuest->u64RIP);
|
---|
2692 |
|
---|
2693 | if (fWhat & CPUMCTX_EXTRN_RIP)
|
---|
2694 | pCtx->rip = pVmcbGuest->u64RIP;
|
---|
2695 |
|
---|
2696 | if (fWhat & CPUMCTX_EXTRN_RFLAGS)
|
---|
2697 | {
|
---|
2698 | pCtx->eflags.u = pVmcbGuest->u64RFlags;
|
---|
2699 | if (pVCpu->hmr0.s.fClearTrapFlag)
|
---|
2700 | {
|
---|
2701 | pVCpu->hmr0.s.fClearTrapFlag = false;
|
---|
2702 | pCtx->eflags.Bits.u1TF = 0;
|
---|
2703 | }
|
---|
2704 | }
|
---|
2705 |
|
---|
2706 | if (fWhat & CPUMCTX_EXTRN_RSP)
|
---|
2707 | pCtx->rsp = pVmcbGuest->u64RSP;
|
---|
2708 |
|
---|
2709 | if (fWhat & CPUMCTX_EXTRN_RAX)
|
---|
2710 | pCtx->rax = pVmcbGuest->u64RAX;
|
---|
2711 |
|
---|
2712 | if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
|
---|
2713 | {
|
---|
2714 | if (fWhat & CPUMCTX_EXTRN_CS)
|
---|
2715 | {
|
---|
2716 | HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, CS, cs);
|
---|
2717 | /* Correct the CS granularity bit. Haven't seen it being wrong in any other register (yet). */
|
---|
2718 | /** @todo SELM might need to be fixed as it too should not care about the
|
---|
2719 | * granularity bit. See @bugref{6785}. */
|
---|
2720 | if ( !pCtx->cs.Attr.n.u1Granularity
|
---|
2721 | && pCtx->cs.Attr.n.u1Present
|
---|
2722 | && pCtx->cs.u32Limit > UINT32_C(0xfffff))
|
---|
2723 | {
|
---|
2724 | Assert((pCtx->cs.u32Limit & 0xfff) == 0xfff);
|
---|
2725 | pCtx->cs.Attr.n.u1Granularity = 1;
|
---|
2726 | }
|
---|
2727 | HMSVM_ASSERT_SEG_GRANULARITY(pCtx, cs);
|
---|
2728 | }
|
---|
2729 | if (fWhat & CPUMCTX_EXTRN_SS)
|
---|
2730 | {
|
---|
2731 | HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, SS, ss);
|
---|
2732 | HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ss);
|
---|
2733 | /*
|
---|
2734 | * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the
|
---|
2735 | * VMCB and uses that and thus it's possible that when the CPL changes during
|
---|
2736 | * guest execution that the SS DPL isn't updated by AMD-V. Observed on some
|
---|
2737 | * AMD Fusion CPUs with 64-bit guests.
|
---|
2738 | *
|
---|
2739 | * See AMD spec. 15.5.1 "Basic operation".
|
---|
2740 | */
|
---|
2741 | Assert(!(pVmcbGuest->u8CPL & ~0x3));
|
---|
2742 | uint8_t const uCpl = pVmcbGuest->u8CPL;
|
---|
2743 | if (pCtx->ss.Attr.n.u2Dpl != uCpl)
|
---|
2744 | pCtx->ss.Attr.n.u2Dpl = uCpl & 0x3;
|
---|
2745 | }
|
---|
2746 | if (fWhat & CPUMCTX_EXTRN_DS)
|
---|
2747 | {
|
---|
2748 | HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, DS, ds);
|
---|
2749 | HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ds);
|
---|
2750 | }
|
---|
2751 | if (fWhat & CPUMCTX_EXTRN_ES)
|
---|
2752 | {
|
---|
2753 | HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, ES, es);
|
---|
2754 | HMSVM_ASSERT_SEG_GRANULARITY(pCtx, es);
|
---|
2755 | }
|
---|
2756 | if (fWhat & CPUMCTX_EXTRN_FS)
|
---|
2757 | {
|
---|
2758 | HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, FS, fs);
|
---|
2759 | HMSVM_ASSERT_SEG_GRANULARITY(pCtx, fs);
|
---|
2760 | }
|
---|
2761 | if (fWhat & CPUMCTX_EXTRN_GS)
|
---|
2762 | {
|
---|
2763 | HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, GS, gs);
|
---|
2764 | HMSVM_ASSERT_SEG_GRANULARITY(pCtx, gs);
|
---|
2765 | }
|
---|
2766 | }
|
---|
2767 |
|
---|
2768 | if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
|
---|
2769 | {
|
---|
2770 | if (fWhat & CPUMCTX_EXTRN_TR)
|
---|
2771 | {
|
---|
2772 | /*
|
---|
2773 | * Fixup TR attributes so it's compatible with Intel. Important when saved-states
|
---|
2774 | * are used between Intel and AMD, see @bugref{6208#c39}.
|
---|
2775 | * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
|
---|
2776 | */
|
---|
2777 | HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, TR, tr);
|
---|
2778 | if (pCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
|
---|
2779 | {
|
---|
2780 | if ( pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
|
---|
2781 | || CPUMIsGuestInLongModeEx(pCtx))
|
---|
2782 | pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
|
---|
2783 | else if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
|
---|
2784 | pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
|
---|
2785 | }
|
---|
2786 | }
|
---|
2787 |
|
---|
2788 | if (fWhat & CPUMCTX_EXTRN_LDTR)
|
---|
2789 | HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, LDTR, ldtr);
|
---|
2790 |
|
---|
2791 | if (fWhat & CPUMCTX_EXTRN_GDTR)
|
---|
2792 | {
|
---|
2793 | pCtx->gdtr.cbGdt = pVmcbGuest->GDTR.u32Limit;
|
---|
2794 | pCtx->gdtr.pGdt = pVmcbGuest->GDTR.u64Base;
|
---|
2795 | }
|
---|
2796 |
|
---|
2797 | if (fWhat & CPUMCTX_EXTRN_IDTR)
|
---|
2798 | {
|
---|
2799 | pCtx->idtr.cbIdt = pVmcbGuest->IDTR.u32Limit;
|
---|
2800 | pCtx->idtr.pIdt = pVmcbGuest->IDTR.u64Base;
|
---|
2801 | }
|
---|
2802 | }
|
---|
2803 |
|
---|
2804 | if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
|
---|
2805 | {
|
---|
2806 | pCtx->msrSTAR = pVmcbGuest->u64STAR;
|
---|
2807 | pCtx->msrLSTAR = pVmcbGuest->u64LSTAR;
|
---|
2808 | pCtx->msrCSTAR = pVmcbGuest->u64CSTAR;
|
---|
2809 | pCtx->msrSFMASK = pVmcbGuest->u64SFMASK;
|
---|
2810 | }
|
---|
2811 |
|
---|
2812 | if ( (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
|
---|
2813 | && !pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit /* Intercepted. AMD-V would clear the high 32 bits of EIP & ESP. */)
|
---|
2814 | {
|
---|
2815 | pCtx->SysEnter.cs = pVmcbGuest->u64SysEnterCS;
|
---|
2816 | pCtx->SysEnter.eip = pVmcbGuest->u64SysEnterEIP;
|
---|
2817 | pCtx->SysEnter.esp = pVmcbGuest->u64SysEnterESP;
|
---|
2818 | }
|
---|
2819 |
|
---|
2820 | if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
|
---|
2821 | pCtx->msrKERNELGSBASE = pVmcbGuest->u64KernelGSBase;
|
---|
2822 |
|
---|
2823 | if (fWhat & CPUMCTX_EXTRN_DR_MASK)
|
---|
2824 | {
|
---|
2825 | if (fWhat & CPUMCTX_EXTRN_DR6)
|
---|
2826 | {
|
---|
2827 | if (!pVCpu->hmr0.s.fUsingHyperDR7)
|
---|
2828 | pCtx->dr[6] = pVmcbGuest->u64DR6;
|
---|
2829 | else
|
---|
2830 | CPUMSetHyperDR6(pVCpu, pVmcbGuest->u64DR6);
|
---|
2831 | }
|
---|
2832 |
|
---|
2833 | if (fWhat & CPUMCTX_EXTRN_DR7)
|
---|
2834 | {
|
---|
2835 | if (!pVCpu->hmr0.s.fUsingHyperDR7)
|
---|
2836 | pCtx->dr[7] = pVmcbGuest->u64DR7;
|
---|
2837 | else
|
---|
2838 | Assert(pVmcbGuest->u64DR7 == CPUMGetHyperDR7(pVCpu));
|
---|
2839 | }
|
---|
2840 | }
|
---|
2841 |
|
---|
2842 | if (fWhat & CPUMCTX_EXTRN_CR_MASK)
|
---|
2843 | {
|
---|
2844 | if (fWhat & CPUMCTX_EXTRN_CR0)
|
---|
2845 | {
|
---|
2846 | /* We intercept changes to all CR0 bits except maybe TS & MP bits. */
|
---|
2847 | uint64_t const uCr0 = (pCtx->cr0 & ~(X86_CR0_TS | X86_CR0_MP))
|
---|
2848 | | (pVmcbGuest->u64CR0 & (X86_CR0_TS | X86_CR0_MP));
|
---|
2849 | VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
|
---|
2850 | CPUMSetGuestCR0(pVCpu, uCr0);
|
---|
2851 | VMMRZCallRing3Enable(pVCpu);
|
---|
2852 | }
|
---|
2853 |
|
---|
2854 | if (fWhat & CPUMCTX_EXTRN_CR2)
|
---|
2855 | pCtx->cr2 = pVmcbGuest->u64CR2;
|
---|
2856 |
|
---|
2857 | if (fWhat & CPUMCTX_EXTRN_CR3)
|
---|
2858 | {
|
---|
2859 | if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
|
---|
2860 | && pCtx->cr3 != pVmcbGuest->u64CR3)
|
---|
2861 | {
|
---|
2862 | CPUMSetGuestCR3(pVCpu, pVmcbGuest->u64CR3);
|
---|
2863 | VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
|
---|
2864 | }
|
---|
2865 | }
|
---|
2866 |
|
---|
2867 | /* Changes to CR4 are always intercepted. */
|
---|
2868 | }
|
---|
2869 |
|
---|
2870 | /* Update fExtrn. */
|
---|
2871 | pCtx->fExtrn &= ~fWhat;
|
---|
2872 |
|
---|
2873 | /* If everything has been imported, clear the HM keeper bit. */
|
---|
2874 | if (!(pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL))
|
---|
2875 | {
|
---|
2876 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
|
---|
2877 | Assert(!pCtx->fExtrn);
|
---|
2878 | }
|
---|
2879 | }
|
---|
2880 | else
|
---|
2881 | Assert(!pCtx->fExtrn || (pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
|
---|
2882 |
|
---|
2883 | ASMSetFlags(fEFlags);
|
---|
2884 |
|
---|
2885 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
|
---|
2886 |
|
---|
2887 | /*
|
---|
2888 | * Honor any pending CR3 updates.
|
---|
2889 | *
|
---|
2890 | * Consider this scenario: #VMEXIT -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp
|
---|
2891 | * -> SVMR0CallRing3Callback() -> VMMRZCallRing3Disable() -> hmR0SvmImportGuestState()
|
---|
2892 | * -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp -> continue with #VMEXIT
|
---|
2893 | * handling -> hmR0SvmImportGuestState() and here we are.
|
---|
2894 | *
|
---|
2895 | * The reason for such complicated handling is because VM-exits that call into PGM expect
|
---|
2896 | * CR3 to be up-to-date and thus any CR3-saves -before- the VM-exit (longjmp) would've
|
---|
2897 | * postponed the CR3 update via the force-flag and cleared CR3 from fExtrn. Any SVM R0
|
---|
2898 | * VM-exit handler that requests CR3 to be saved will end up here and we call PGMUpdateCR3().
|
---|
2899 | *
|
---|
2900 | * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again,
|
---|
2901 | * and does not process force-flag like regular exits to ring-3 either, we cover for it here.
|
---|
2902 | */
|
---|
2903 | if ( VMMRZCallRing3IsEnabled(pVCpu)
|
---|
2904 | && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
|
---|
2905 | {
|
---|
2906 | AssertMsg(pCtx->cr3 == pVmcbGuest->u64CR3, ("cr3=%#RX64 vmcb_cr3=%#RX64\n", pCtx->cr3, pVmcbGuest->u64CR3));
|
---|
2907 | PGMUpdateCR3(pVCpu, pCtx->cr3);
|
---|
2908 | }
|
---|
2909 | }
|
---|
2910 |
|
---|
2911 |
|
---|
2912 | /**
|
---|
2913 | * Saves the guest (or nested-guest) state from the VMCB into the guest-CPU
|
---|
2914 | * context.
|
---|
2915 | *
|
---|
2916 | * Currently there is no residual state left in the CPU that is not updated in the
|
---|
2917 | * VMCB.
|
---|
2918 | *
|
---|
2919 | * @returns VBox status code.
|
---|
2920 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2921 | * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
|
---|
2922 | */
|
---|
2923 | VMMR0DECL(int) SVMR0ImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
|
---|
2924 | {
|
---|
2925 | hmR0SvmImportGuestState(pVCpu, fWhat);
|
---|
2926 | return VINF_SUCCESS;
|
---|
2927 | }
|
---|
2928 |
|
---|
2929 |
|
---|
2930 | /**
|
---|
2931 | * Gets SVM \#VMEXIT auxiliary information.
|
---|
2932 | *
|
---|
2933 | * @returns VBox status code.
|
---|
2934 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2935 | * @param pSvmExitAux Where to store the auxiliary info.
|
---|
2936 | */
|
---|
2937 | VMMR0DECL(int) SVMR0GetExitAuxInfo(PVMCPUCC pVCpu, PSVMEXITAUX pSvmExitAux)
|
---|
2938 | {
|
---|
2939 | PCSVMTRANSIENT pSvmTransient = pVCpu->hmr0.s.svm.pSvmTransient;
|
---|
2940 | if (RT_LIKELY(pSvmTransient))
|
---|
2941 | {
|
---|
2942 | PCSVMVMCB pVmcb = pSvmTransient->pVmcb;
|
---|
2943 | if (RT_LIKELY(pVmcb))
|
---|
2944 | {
|
---|
2945 | pSvmExitAux->u64ExitCode = pVmcb->ctrl.u64ExitCode;
|
---|
2946 | pSvmExitAux->u64ExitInfo1 = pVmcb->ctrl.u64ExitInfo1;
|
---|
2947 | pSvmExitAux->u64ExitInfo2 = pVmcb->ctrl.u64ExitInfo2;
|
---|
2948 | pSvmExitAux->ExitIntInfo = pVmcb->ctrl.ExitIntInfo;
|
---|
2949 | return VINF_SUCCESS;
|
---|
2950 | }
|
---|
2951 | return VERR_SVM_IPE_5;
|
---|
2952 | }
|
---|
2953 | return VERR_NOT_AVAILABLE;
|
---|
2954 | }
|
---|
2955 |
|
---|
2956 |
|
---|
2957 | /**
|
---|
2958 | * Does the necessary state syncing before returning to ring-3 for any reason
|
---|
2959 | * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
|
---|
2960 | *
|
---|
2961 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2962 | * @param fImportState Whether to import the guest state from the VMCB back
|
---|
2963 | * to the guest-CPU context.
|
---|
2964 | *
|
---|
2965 | * @remarks No-long-jmp zone!!!
|
---|
2966 | */
|
---|
2967 | static void hmR0SvmLeave(PVMCPUCC pVCpu, bool fImportState)
|
---|
2968 | {
|
---|
2969 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2970 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
2971 |
|
---|
2972 | /*
|
---|
2973 | * !!! IMPORTANT !!!
|
---|
2974 | * If you modify code here, make sure to check whether SVMR0CallRing3Callback() needs to be updated too.
|
---|
2975 | */
|
---|
2976 |
|
---|
2977 | /* Save the guest state if necessary. */
|
---|
2978 | if (fImportState)
|
---|
2979 | hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
|
---|
2980 |
|
---|
2981 | /* Restore host FPU state if necessary and resync on next R0 reentry. */
|
---|
2982 | CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
|
---|
2983 | Assert(!CPUMIsGuestFPUStateActive(pVCpu));
|
---|
2984 |
|
---|
2985 | /*
|
---|
2986 | * Restore host debug registers if necessary and resync on next R0 reentry.
|
---|
2987 | */
|
---|
2988 | #ifdef VBOX_STRICT
|
---|
2989 | if (CPUMIsHyperDebugStateActive(pVCpu))
|
---|
2990 | {
|
---|
2991 | PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb; /** @todo nested-guest. */
|
---|
2992 | Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
|
---|
2993 | Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
|
---|
2994 | }
|
---|
2995 | #endif
|
---|
2996 | CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
|
---|
2997 | Assert(!CPUMIsHyperDebugStateActive(pVCpu));
|
---|
2998 | Assert(!CPUMIsGuestDebugStateActive(pVCpu));
|
---|
2999 |
|
---|
3000 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
|
---|
3001 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
|
---|
3002 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
|
---|
3003 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
|
---|
3004 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
|
---|
3005 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitVmentry);
|
---|
3006 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
|
---|
3007 |
|
---|
3008 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
|
---|
3009 | }
|
---|
3010 |
|
---|
3011 |
|
---|
3012 | /**
|
---|
3013 | * Leaves the AMD-V session.
|
---|
3014 | *
|
---|
3015 | * Only used while returning to ring-3 either due to longjump or exits to
|
---|
3016 | * ring-3.
|
---|
3017 | *
|
---|
3018 | * @returns VBox status code.
|
---|
3019 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3020 | */
|
---|
3021 | static int hmR0SvmLeaveSession(PVMCPUCC pVCpu)
|
---|
3022 | {
|
---|
3023 | HM_DISABLE_PREEMPT(pVCpu);
|
---|
3024 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
3025 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
3026 |
|
---|
3027 | /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
|
---|
3028 | and done this from the SVMR0ThreadCtxCallback(). */
|
---|
3029 | if (!pVCpu->hmr0.s.fLeaveDone)
|
---|
3030 | {
|
---|
3031 | hmR0SvmLeave(pVCpu, true /* fImportState */);
|
---|
3032 | pVCpu->hmr0.s.fLeaveDone = true;
|
---|
3033 | }
|
---|
3034 |
|
---|
3035 | /*
|
---|
3036 | * !!! IMPORTANT !!!
|
---|
3037 | * If you modify code here, make sure to check whether SVMR0CallRing3Callback() needs to be updated too.
|
---|
3038 | */
|
---|
3039 |
|
---|
3040 | /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
|
---|
3041 | /* Deregister hook now that we've left HM context before re-enabling preemption. */
|
---|
3042 | VMMR0ThreadCtxHookDisable(pVCpu);
|
---|
3043 |
|
---|
3044 | /* Leave HM context. This takes care of local init (term). */
|
---|
3045 | int rc = HMR0LeaveCpu(pVCpu);
|
---|
3046 |
|
---|
3047 | HM_RESTORE_PREEMPT();
|
---|
3048 | return rc;
|
---|
3049 | }
|
---|
3050 |
|
---|
3051 |
|
---|
3052 | /**
|
---|
3053 | * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
|
---|
3054 | * any remaining host state) before we go back to ring-3 due to an assertion.
|
---|
3055 | *
|
---|
3056 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3057 | */
|
---|
3058 | VMMR0DECL(int) SVMR0AssertionCallback(PVMCPUCC pVCpu)
|
---|
3059 | {
|
---|
3060 | /*
|
---|
3061 | * !!! IMPORTANT !!!
|
---|
3062 | * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
|
---|
3063 | * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
|
---|
3064 | */
|
---|
3065 | VMMR0AssertionRemoveNotification(pVCpu);
|
---|
3066 | VMMRZCallRing3Disable(pVCpu);
|
---|
3067 | HM_DISABLE_PREEMPT(pVCpu);
|
---|
3068 |
|
---|
3069 | /* Import the entire guest state. */
|
---|
3070 | hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
|
---|
3071 |
|
---|
3072 | /* Restore host FPU state if necessary and resync on next R0 reentry. */
|
---|
3073 | CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
|
---|
3074 |
|
---|
3075 | /* Restore host debug registers if necessary and resync on next R0 reentry. */
|
---|
3076 | CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
|
---|
3077 |
|
---|
3078 | /* Deregister the hook now that we've left HM context before re-enabling preemption. */
|
---|
3079 | /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
|
---|
3080 | VMMR0ThreadCtxHookDisable(pVCpu);
|
---|
3081 |
|
---|
3082 | /* Leave HM context. This takes care of local init (term). */
|
---|
3083 | HMR0LeaveCpu(pVCpu);
|
---|
3084 |
|
---|
3085 | HM_RESTORE_PREEMPT();
|
---|
3086 | return VINF_SUCCESS;
|
---|
3087 | }
|
---|
3088 |
|
---|
3089 |
|
---|
3090 | /**
|
---|
3091 | * Take necessary actions before going back to ring-3.
|
---|
3092 | *
|
---|
3093 | * An action requires us to go back to ring-3. This function does the necessary
|
---|
3094 | * steps before we can safely return to ring-3. This is not the same as longjmps
|
---|
3095 | * to ring-3, this is voluntary.
|
---|
3096 | *
|
---|
3097 | * @returns Strict VBox status code.
|
---|
3098 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3099 | * @param rcExit The reason for exiting to ring-3. Can be
|
---|
3100 | * VINF_VMM_UNKNOWN_RING3_CALL.
|
---|
3101 | */
|
---|
3102 | static VBOXSTRICTRC hmR0SvmExitToRing3(PVMCPUCC pVCpu, VBOXSTRICTRC rcExit)
|
---|
3103 | {
|
---|
3104 | Assert(pVCpu);
|
---|
3105 | HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
|
---|
3106 |
|
---|
3107 | /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
|
---|
3108 | VMMRZCallRing3Disable(pVCpu);
|
---|
3109 | Log4Func(("rcExit=%d LocalFF=%#RX64 GlobalFF=%#RX32\n", VBOXSTRICTRC_VAL(rcExit), (uint64_t)pVCpu->fLocalForcedActions,
|
---|
3110 | pVCpu->CTX_SUFF(pVM)->fGlobalForcedActions));
|
---|
3111 |
|
---|
3112 | /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
|
---|
3113 | if (pVCpu->hm.s.Event.fPending)
|
---|
3114 | {
|
---|
3115 | hmR0SvmPendingEventToTrpmTrap(pVCpu);
|
---|
3116 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
3117 | }
|
---|
3118 |
|
---|
3119 | /* Sync. the necessary state for going back to ring-3. */
|
---|
3120 | hmR0SvmLeaveSession(pVCpu);
|
---|
3121 | STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
|
---|
3122 |
|
---|
3123 | /* Thread-context hooks are unregistered at this point!!! */
|
---|
3124 | /* Ring-3 callback notifications are unregistered at this point!!! */
|
---|
3125 |
|
---|
3126 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
|
---|
3127 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
|
---|
3128 | | CPUM_CHANGED_LDTR
|
---|
3129 | | CPUM_CHANGED_GDTR
|
---|
3130 | | CPUM_CHANGED_IDTR
|
---|
3131 | | CPUM_CHANGED_TR
|
---|
3132 | | CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
3133 | if ( pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging
|
---|
3134 | && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
|
---|
3135 | {
|
---|
3136 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
|
---|
3137 | }
|
---|
3138 |
|
---|
3139 | /* Update the exit-to-ring 3 reason. */
|
---|
3140 | pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
|
---|
3141 |
|
---|
3142 | /* On our way back from ring-3, reload the guest-CPU state if it may change while in ring-3. */
|
---|
3143 | if ( rcExit != VINF_EM_RAW_INTERRUPT
|
---|
3144 | || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
|
---|
3145 | {
|
---|
3146 | Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
|
---|
3147 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
3148 | }
|
---|
3149 |
|
---|
3150 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
|
---|
3151 | VMMRZCallRing3Enable(pVCpu);
|
---|
3152 |
|
---|
3153 | /*
|
---|
3154 | * If we're emulating an instruction, we shouldn't have any TRPM traps pending
|
---|
3155 | * and if we're injecting an event we should have a TRPM trap pending.
|
---|
3156 | */
|
---|
3157 | AssertReturnStmt(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu),
|
---|
3158 | pVCpu->hm.s.u32HMError = VBOXSTRICTRC_VAL(rcExit),
|
---|
3159 | VERR_SVM_IPE_5);
|
---|
3160 | AssertReturnStmt(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu),
|
---|
3161 | pVCpu->hm.s.u32HMError = VBOXSTRICTRC_VAL(rcExit),
|
---|
3162 | VERR_SVM_IPE_4);
|
---|
3163 |
|
---|
3164 | return rcExit;
|
---|
3165 | }
|
---|
3166 |
|
---|
3167 |
|
---|
3168 | /**
|
---|
3169 | * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
|
---|
3170 | * intercepts.
|
---|
3171 | *
|
---|
3172 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3173 | * @param pVmcb Pointer to the VM control block.
|
---|
3174 | *
|
---|
3175 | * @remarks No-long-jump zone!!!
|
---|
3176 | */
|
---|
3177 | static void hmR0SvmUpdateTscOffsetting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
|
---|
3178 | {
|
---|
3179 | /*
|
---|
3180 | * Avoid intercepting RDTSC/RDTSCP if we determined the host TSC (++) is stable
|
---|
3181 | * and in case of a nested-guest, if the nested-VMCB specifies it is not intercepting
|
---|
3182 | * RDTSC/RDTSCP as well.
|
---|
3183 | */
|
---|
3184 | bool fParavirtTsc;
|
---|
3185 | uint64_t uTscOffset;
|
---|
3186 | bool const fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVCpu->CTX_SUFF(pVM), pVCpu, &uTscOffset, &fParavirtTsc);
|
---|
3187 |
|
---|
3188 | bool fIntercept;
|
---|
3189 | if (fCanUseRealTsc)
|
---|
3190 | fIntercept = hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
|
---|
3191 | else
|
---|
3192 | {
|
---|
3193 | hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
|
---|
3194 | fIntercept = true;
|
---|
3195 | }
|
---|
3196 |
|
---|
3197 | if (!fIntercept)
|
---|
3198 | {
|
---|
3199 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
3200 | /* Apply the nested-guest VMCB's TSC offset over the guest TSC offset. */
|
---|
3201 | if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
|
---|
3202 | uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset);
|
---|
3203 | #endif
|
---|
3204 |
|
---|
3205 | /* Update the TSC offset in the VMCB and the relevant clean bits. */
|
---|
3206 | pVmcb->ctrl.u64TSCOffset = uTscOffset;
|
---|
3207 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
3208 | }
|
---|
3209 |
|
---|
3210 | /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
|
---|
3211 | information before every VM-entry, hence we have nothing to do here at the moment. */
|
---|
3212 | if (fParavirtTsc)
|
---|
3213 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
|
---|
3214 | }
|
---|
3215 |
|
---|
3216 |
|
---|
3217 | /**
|
---|
3218 | * Sets an event as a pending event to be injected into the guest.
|
---|
3219 | *
|
---|
3220 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3221 | * @param pEvent Pointer to the SVM event.
|
---|
3222 | * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
|
---|
3223 | * page-fault.
|
---|
3224 | *
|
---|
3225 | * @remarks Statistics counter assumes this is a guest event being reflected to
|
---|
3226 | * the guest i.e. 'StatInjectPendingReflect' is incremented always.
|
---|
3227 | */
|
---|
3228 | DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPUCC pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
|
---|
3229 | {
|
---|
3230 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
3231 | Assert(pEvent->n.u1Valid);
|
---|
3232 |
|
---|
3233 | pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
|
---|
3234 | pVCpu->hm.s.Event.fPending = true;
|
---|
3235 | pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
|
---|
3236 |
|
---|
3237 | Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
|
---|
3238 | (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
|
---|
3239 | }
|
---|
3240 |
|
---|
3241 |
|
---|
3242 | /**
|
---|
3243 | * Sets an divide error (\#DE) exception as pending-for-injection into the VM.
|
---|
3244 | *
|
---|
3245 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3246 | */
|
---|
3247 | DECLINLINE(void) hmR0SvmSetPendingXcptDE(PVMCPUCC pVCpu)
|
---|
3248 | {
|
---|
3249 | SVMEVENT Event;
|
---|
3250 | Event.u = 0;
|
---|
3251 | Event.n.u1Valid = 1;
|
---|
3252 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
3253 | Event.n.u8Vector = X86_XCPT_DE;
|
---|
3254 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3255 | }
|
---|
3256 |
|
---|
3257 |
|
---|
3258 | /**
|
---|
3259 | * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
|
---|
3260 | *
|
---|
3261 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3262 | */
|
---|
3263 | DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPUCC pVCpu)
|
---|
3264 | {
|
---|
3265 | SVMEVENT Event;
|
---|
3266 | Event.u = 0;
|
---|
3267 | Event.n.u1Valid = 1;
|
---|
3268 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
3269 | Event.n.u8Vector = X86_XCPT_UD;
|
---|
3270 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3271 | }
|
---|
3272 |
|
---|
3273 |
|
---|
3274 | /**
|
---|
3275 | * Sets a debug (\#DB) exception as pending-for-injection into the VM.
|
---|
3276 | *
|
---|
3277 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3278 | */
|
---|
3279 | DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPUCC pVCpu)
|
---|
3280 | {
|
---|
3281 | SVMEVENT Event;
|
---|
3282 | Event.u = 0;
|
---|
3283 | Event.n.u1Valid = 1;
|
---|
3284 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
3285 | Event.n.u8Vector = X86_XCPT_DB;
|
---|
3286 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3287 | }
|
---|
3288 |
|
---|
3289 |
|
---|
3290 | /**
|
---|
3291 | * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
|
---|
3292 | *
|
---|
3293 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3294 | * @param u32ErrCode The error-code for the page-fault.
|
---|
3295 | * @param uFaultAddress The page fault address (CR2).
|
---|
3296 | *
|
---|
3297 | * @remarks This updates the guest CR2 with @a uFaultAddress!
|
---|
3298 | */
|
---|
3299 | DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPUCC pVCpu, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
|
---|
3300 | {
|
---|
3301 | SVMEVENT Event;
|
---|
3302 | Event.u = 0;
|
---|
3303 | Event.n.u1Valid = 1;
|
---|
3304 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
3305 | Event.n.u8Vector = X86_XCPT_PF;
|
---|
3306 | Event.n.u1ErrorCodeValid = 1;
|
---|
3307 | Event.n.u32ErrorCode = u32ErrCode;
|
---|
3308 |
|
---|
3309 | /* Update CR2 of the guest. */
|
---|
3310 | HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR2);
|
---|
3311 | if (pVCpu->cpum.GstCtx.cr2 != uFaultAddress)
|
---|
3312 | {
|
---|
3313 | pVCpu->cpum.GstCtx.cr2 = uFaultAddress;
|
---|
3314 | /* The VMCB clean bit for CR2 will be updated while re-loading the guest state. */
|
---|
3315 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
|
---|
3316 | }
|
---|
3317 |
|
---|
3318 | hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
|
---|
3319 | }
|
---|
3320 |
|
---|
3321 |
|
---|
3322 | /**
|
---|
3323 | * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
|
---|
3324 | *
|
---|
3325 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3326 | */
|
---|
3327 | DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPUCC pVCpu)
|
---|
3328 | {
|
---|
3329 | SVMEVENT Event;
|
---|
3330 | Event.u = 0;
|
---|
3331 | Event.n.u1Valid = 1;
|
---|
3332 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
3333 | Event.n.u8Vector = X86_XCPT_MF;
|
---|
3334 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3335 | }
|
---|
3336 |
|
---|
3337 |
|
---|
3338 | /**
|
---|
3339 | * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
|
---|
3340 | *
|
---|
3341 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3342 | */
|
---|
3343 | DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPUCC pVCpu)
|
---|
3344 | {
|
---|
3345 | SVMEVENT Event;
|
---|
3346 | Event.u = 0;
|
---|
3347 | Event.n.u1Valid = 1;
|
---|
3348 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
3349 | Event.n.u8Vector = X86_XCPT_DF;
|
---|
3350 | Event.n.u1ErrorCodeValid = 1;
|
---|
3351 | Event.n.u32ErrorCode = 0;
|
---|
3352 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3353 | }
|
---|
3354 |
|
---|
3355 |
|
---|
3356 | /**
|
---|
3357 | * Injects an event into the guest upon VMRUN by updating the relevant field
|
---|
3358 | * in the VMCB.
|
---|
3359 | *
|
---|
3360 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3361 | * @param pVmcb Pointer to the guest VM control block.
|
---|
3362 | * @param pEvent Pointer to the event.
|
---|
3363 | *
|
---|
3364 | * @remarks No-long-jump zone!!!
|
---|
3365 | * @remarks Requires CR0!
|
---|
3366 | */
|
---|
3367 | DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPUCC pVCpu, PSVMVMCB pVmcb, PSVMEVENT pEvent)
|
---|
3368 | {
|
---|
3369 | Assert(!pVmcb->ctrl.EventInject.n.u1Valid);
|
---|
3370 | pVmcb->ctrl.EventInject.u = pEvent->u;
|
---|
3371 | if ( pVmcb->ctrl.EventInject.n.u3Type == SVM_EVENT_EXCEPTION
|
---|
3372 | || pVmcb->ctrl.EventInject.n.u3Type == SVM_EVENT_NMI)
|
---|
3373 | {
|
---|
3374 | Assert(pEvent->n.u8Vector <= X86_XCPT_LAST);
|
---|
3375 | STAM_COUNTER_INC(&pVCpu->hm.s.aStatInjectedXcpts[pEvent->n.u8Vector]);
|
---|
3376 | }
|
---|
3377 | else
|
---|
3378 | STAM_COUNTER_INC(&pVCpu->hm.s.aStatInjectedIrqs[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
|
---|
3379 | RT_NOREF(pVCpu);
|
---|
3380 |
|
---|
3381 | Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
|
---|
3382 | (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
|
---|
3383 | }
|
---|
3384 |
|
---|
3385 |
|
---|
3386 |
|
---|
3387 | /**
|
---|
3388 | * Converts any TRPM trap into a pending HM event. This is typically used when
|
---|
3389 | * entering from ring-3 (not longjmp returns).
|
---|
3390 | *
|
---|
3391 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3392 | */
|
---|
3393 | static void hmR0SvmTrpmTrapToPendingEvent(PVMCPUCC pVCpu)
|
---|
3394 | {
|
---|
3395 | Assert(TRPMHasTrap(pVCpu));
|
---|
3396 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
3397 |
|
---|
3398 | uint8_t uVector;
|
---|
3399 | TRPMEVENT enmTrpmEvent;
|
---|
3400 | uint32_t uErrCode;
|
---|
3401 | RTGCUINTPTR GCPtrFaultAddress;
|
---|
3402 | uint8_t cbInstr;
|
---|
3403 |
|
---|
3404 | int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr, NULL /* pfIcebp */);
|
---|
3405 | AssertRC(rc);
|
---|
3406 |
|
---|
3407 | SVMEVENT Event;
|
---|
3408 | Event.u = 0;
|
---|
3409 | Event.n.u1Valid = 1;
|
---|
3410 | Event.n.u8Vector = uVector;
|
---|
3411 |
|
---|
3412 | /* Refer AMD spec. 15.20 "Event Injection" for the format. */
|
---|
3413 | if (enmTrpmEvent == TRPM_TRAP)
|
---|
3414 | {
|
---|
3415 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
3416 | switch (uVector)
|
---|
3417 | {
|
---|
3418 | case X86_XCPT_NMI:
|
---|
3419 | {
|
---|
3420 | Event.n.u3Type = SVM_EVENT_NMI;
|
---|
3421 | break;
|
---|
3422 | }
|
---|
3423 |
|
---|
3424 | case X86_XCPT_BP:
|
---|
3425 | case X86_XCPT_OF:
|
---|
3426 | AssertMsgFailed(("Invalid TRPM vector %d for event type %d\n", uVector, enmTrpmEvent));
|
---|
3427 | RT_FALL_THRU();
|
---|
3428 |
|
---|
3429 | case X86_XCPT_PF:
|
---|
3430 | case X86_XCPT_DF:
|
---|
3431 | case X86_XCPT_TS:
|
---|
3432 | case X86_XCPT_NP:
|
---|
3433 | case X86_XCPT_SS:
|
---|
3434 | case X86_XCPT_GP:
|
---|
3435 | case X86_XCPT_AC:
|
---|
3436 | {
|
---|
3437 | Event.n.u1ErrorCodeValid = 1;
|
---|
3438 | Event.n.u32ErrorCode = uErrCode;
|
---|
3439 | break;
|
---|
3440 | }
|
---|
3441 | }
|
---|
3442 | }
|
---|
3443 | else if (enmTrpmEvent == TRPM_HARDWARE_INT)
|
---|
3444 | Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
|
---|
3445 | else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
|
---|
3446 | Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
|
---|
3447 | else
|
---|
3448 | AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
|
---|
3449 |
|
---|
3450 | rc = TRPMResetTrap(pVCpu);
|
---|
3451 | AssertRC(rc);
|
---|
3452 |
|
---|
3453 | Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
|
---|
3454 | !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
|
---|
3455 |
|
---|
3456 | hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
|
---|
3457 | }
|
---|
3458 |
|
---|
3459 |
|
---|
3460 | /**
|
---|
3461 | * Converts any pending SVM event into a TRPM trap. Typically used when leaving
|
---|
3462 | * AMD-V to execute any instruction.
|
---|
3463 | *
|
---|
3464 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3465 | */
|
---|
3466 | static void hmR0SvmPendingEventToTrpmTrap(PVMCPUCC pVCpu)
|
---|
3467 | {
|
---|
3468 | Assert(pVCpu->hm.s.Event.fPending);
|
---|
3469 | Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
|
---|
3470 |
|
---|
3471 | SVMEVENT Event;
|
---|
3472 | Event.u = pVCpu->hm.s.Event.u64IntInfo;
|
---|
3473 |
|
---|
3474 | uint8_t uVector = Event.n.u8Vector;
|
---|
3475 | TRPMEVENT enmTrapType = HMSvmEventToTrpmEventType(&Event, uVector);
|
---|
3476 |
|
---|
3477 | Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, Event.n.u3Type));
|
---|
3478 |
|
---|
3479 | int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
|
---|
3480 | AssertRC(rc);
|
---|
3481 |
|
---|
3482 | if (Event.n.u1ErrorCodeValid)
|
---|
3483 | TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
|
---|
3484 |
|
---|
3485 | if ( enmTrapType == TRPM_TRAP
|
---|
3486 | && uVector == X86_XCPT_PF)
|
---|
3487 | {
|
---|
3488 | TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
|
---|
3489 | Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
|
---|
3490 | }
|
---|
3491 | else if (enmTrapType == TRPM_SOFTWARE_INT)
|
---|
3492 | TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
|
---|
3493 | pVCpu->hm.s.Event.fPending = false;
|
---|
3494 | }
|
---|
3495 |
|
---|
3496 |
|
---|
3497 | /**
|
---|
3498 | * Sets the virtual interrupt intercept control in the VMCB.
|
---|
3499 | *
|
---|
3500 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3501 | * @param pVmcb Pointer to the VM control block.
|
---|
3502 | */
|
---|
3503 | static void hmR0SvmSetIntWindowExiting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
|
---|
3504 | {
|
---|
3505 | HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); NOREF(pVCpu);
|
---|
3506 |
|
---|
3507 | /*
|
---|
3508 | * When AVIC isn't supported, set up an interrupt window to cause a #VMEXIT when the guest
|
---|
3509 | * is ready to accept interrupts. At #VMEXIT, we then get the interrupt from the APIC
|
---|
3510 | * (updating ISR at the right time) and inject the interrupt.
|
---|
3511 | *
|
---|
3512 | * With AVIC is supported, we could make use of the asynchronously delivery without
|
---|
3513 | * #VMEXIT and we would be passing the AVIC page to SVM.
|
---|
3514 | *
|
---|
3515 | * In AMD-V, an interrupt window is achieved using a combination of V_IRQ (an interrupt
|
---|
3516 | * is pending), V_IGN_TPR (ignore TPR priorities) and the VINTR intercept all being set.
|
---|
3517 | */
|
---|
3518 | Assert(pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR);
|
---|
3519 | pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 1;
|
---|
3520 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
|
---|
3521 | hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_VINTR);
|
---|
3522 | Log4(("Set VINTR intercept\n"));
|
---|
3523 | }
|
---|
3524 |
|
---|
3525 |
|
---|
3526 | /**
|
---|
3527 | * Clears the virtual interrupt intercept control in the VMCB as
|
---|
3528 | * we are figured the guest is unable process any interrupts
|
---|
3529 | * at this point of time.
|
---|
3530 | *
|
---|
3531 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3532 | * @param pVmcb Pointer to the VM control block.
|
---|
3533 | */
|
---|
3534 | static void hmR0SvmClearIntWindowExiting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
|
---|
3535 | {
|
---|
3536 | HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); NOREF(pVCpu);
|
---|
3537 |
|
---|
3538 | PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
|
---|
3539 | if ( pVmcbCtrl->IntCtrl.n.u1VIrqPending
|
---|
3540 | || (pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR))
|
---|
3541 | {
|
---|
3542 | pVmcbCtrl->IntCtrl.n.u1VIrqPending = 0;
|
---|
3543 | pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
|
---|
3544 | hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_VINTR);
|
---|
3545 | Log4(("Cleared VINTR intercept\n"));
|
---|
3546 | }
|
---|
3547 | }
|
---|
3548 |
|
---|
3549 |
|
---|
3550 | /**
|
---|
3551 | * Evaluates the event to be delivered to the guest and sets it as the pending
|
---|
3552 | * event.
|
---|
3553 | *
|
---|
3554 | * @returns Strict VBox status code.
|
---|
3555 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3556 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
3557 | */
|
---|
3558 | static VBOXSTRICTRC hmR0SvmEvaluatePendingEvent(PVMCPUCC pVCpu, PCSVMTRANSIENT pSvmTransient)
|
---|
3559 | {
|
---|
3560 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
3561 | HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT
|
---|
3562 | | CPUMCTX_EXTRN_RFLAGS
|
---|
3563 | | CPUMCTX_EXTRN_INHIBIT_INT
|
---|
3564 | | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ);
|
---|
3565 |
|
---|
3566 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
3567 | PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
|
---|
3568 | Assert(pVmcb);
|
---|
3569 |
|
---|
3570 | bool const fGif = CPUMGetGuestGif(pCtx);
|
---|
3571 | bool const fIntShadow = CPUMIsInInterruptShadowWithUpdate(pCtx);
|
---|
3572 | bool const fBlockNmi = CPUMAreInterruptsInhibitedByNmi(pCtx);
|
---|
3573 |
|
---|
3574 | Log4Func(("fGif=%RTbool fBlockNmi=%RTbool fIntShadow=%RTbool fIntPending=%RTbool fNmiPending=%RTbool\n",
|
---|
3575 | fGif, fBlockNmi, fIntShadow, VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
|
---|
3576 | VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
|
---|
3577 |
|
---|
3578 | /** @todo SMI. SMIs take priority over NMIs. */
|
---|
3579 |
|
---|
3580 | /*
|
---|
3581 | * Check if the guest or nested-guest can receive NMIs.
|
---|
3582 | * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
|
---|
3583 | * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
|
---|
3584 | */
|
---|
3585 | if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)
|
---|
3586 | && !fBlockNmi)
|
---|
3587 | {
|
---|
3588 | if ( fGif
|
---|
3589 | && !fIntShadow)
|
---|
3590 | {
|
---|
3591 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
3592 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_NMI))
|
---|
3593 | {
|
---|
3594 | Log4(("Intercepting NMI -> #VMEXIT\n"));
|
---|
3595 | HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
|
---|
3596 | return IEMExecSvmVmexit(pVCpu, SVM_EXIT_NMI, 0, 0);
|
---|
3597 | }
|
---|
3598 | #endif
|
---|
3599 | Log4(("Setting NMI pending for injection\n"));
|
---|
3600 | SVMEVENT Event;
|
---|
3601 | Event.u = 0;
|
---|
3602 | Event.n.u1Valid = 1;
|
---|
3603 | Event.n.u8Vector = X86_XCPT_NMI;
|
---|
3604 | Event.n.u3Type = SVM_EVENT_NMI;
|
---|
3605 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3606 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
|
---|
3607 | }
|
---|
3608 | else if (!fGif)
|
---|
3609 | hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
|
---|
3610 | else if (!pSvmTransient->fIsNestedGuest)
|
---|
3611 | hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
|
---|
3612 | /* else: for nested-guests, interrupt-window exiting will be picked up when merging VMCB controls. */
|
---|
3613 | }
|
---|
3614 | /*
|
---|
3615 | * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt()
|
---|
3616 | * returns a valid interrupt we -must- deliver the interrupt. We can no longer re-request
|
---|
3617 | * it from the APIC device.
|
---|
3618 | *
|
---|
3619 | * For nested-guests, physical interrupts always take priority over virtual interrupts.
|
---|
3620 | * We don't need to inject nested-guest virtual interrupts here, we can let the hardware
|
---|
3621 | * do that work when we execute nested-guest code esp. since all the required information
|
---|
3622 | * is in the VMCB, unlike physical interrupts where we need to fetch the interrupt from
|
---|
3623 | * the virtual interrupt controller.
|
---|
3624 | *
|
---|
3625 | * See AMD spec. 15.21.4 "Injecting Virtual (INTR) Interrupts".
|
---|
3626 | */
|
---|
3627 | else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
|
---|
3628 | && !pVCpu->hm.s.fSingleInstruction)
|
---|
3629 | {
|
---|
3630 | bool const fBlockInt = !pSvmTransient->fIsNestedGuest ? !(pCtx->eflags.u & X86_EFL_IF)
|
---|
3631 | : CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx);
|
---|
3632 | if ( fGif
|
---|
3633 | && !fBlockInt
|
---|
3634 | && !fIntShadow)
|
---|
3635 | {
|
---|
3636 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
3637 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INTR))
|
---|
3638 | {
|
---|
3639 | Log4(("Intercepting INTR -> #VMEXIT\n"));
|
---|
3640 | HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
|
---|
3641 | return IEMExecSvmVmexit(pVCpu, SVM_EXIT_INTR, 0, 0);
|
---|
3642 | }
|
---|
3643 | #endif
|
---|
3644 | uint8_t u8Interrupt;
|
---|
3645 | int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
|
---|
3646 | if (RT_SUCCESS(rc))
|
---|
3647 | {
|
---|
3648 | Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
|
---|
3649 | SVMEVENT Event;
|
---|
3650 | Event.u = 0;
|
---|
3651 | Event.n.u1Valid = 1;
|
---|
3652 | Event.n.u8Vector = u8Interrupt;
|
---|
3653 | Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
|
---|
3654 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3655 | }
|
---|
3656 | else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
|
---|
3657 | {
|
---|
3658 | /*
|
---|
3659 | * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
|
---|
3660 | * updated eventually when the TPR is written by the guest.
|
---|
3661 | */
|
---|
3662 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
|
---|
3663 | }
|
---|
3664 | else
|
---|
3665 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
|
---|
3666 | }
|
---|
3667 | else if (!fGif)
|
---|
3668 | hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
|
---|
3669 | else if (!pSvmTransient->fIsNestedGuest)
|
---|
3670 | hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
|
---|
3671 | /* else: for nested-guests, interrupt-window exiting will be picked up when merging VMCB controls. */
|
---|
3672 | }
|
---|
3673 |
|
---|
3674 | return VINF_SUCCESS;
|
---|
3675 | }
|
---|
3676 |
|
---|
3677 |
|
---|
3678 | /**
|
---|
3679 | * Injects any pending events into the guest (or nested-guest).
|
---|
3680 | *
|
---|
3681 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3682 | * @param pVmcb Pointer to the VM control block.
|
---|
3683 | *
|
---|
3684 | * @remarks Must only be called when we are guaranteed to enter
|
---|
3685 | * hardware-assisted SVM execution and not return to ring-3
|
---|
3686 | * prematurely.
|
---|
3687 | */
|
---|
3688 | static void hmR0SvmInjectPendingEvent(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
|
---|
3689 | {
|
---|
3690 | Assert(!TRPMHasTrap(pVCpu));
|
---|
3691 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
3692 |
|
---|
3693 | bool const fIntShadow = CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx);
|
---|
3694 | #ifdef VBOX_STRICT
|
---|
3695 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
3696 | bool const fGif = CPUMGetGuestGif(pCtx);
|
---|
3697 | bool fAllowInt = fGif;
|
---|
3698 | if (fGif)
|
---|
3699 | {
|
---|
3700 | /*
|
---|
3701 | * For nested-guests we have no way to determine if we're injecting a physical or
|
---|
3702 | * virtual interrupt at this point. Hence the partial verification below.
|
---|
3703 | */
|
---|
3704 | if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
3705 | fAllowInt = CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx) || CPUMIsGuestSvmVirtIntrEnabled(pVCpu, pCtx);
|
---|
3706 | else
|
---|
3707 | fAllowInt = RT_BOOL(pCtx->eflags.u & X86_EFL_IF);
|
---|
3708 | }
|
---|
3709 | #endif
|
---|
3710 |
|
---|
3711 | if (pVCpu->hm.s.Event.fPending)
|
---|
3712 | {
|
---|
3713 | SVMEVENT Event;
|
---|
3714 | Event.u = pVCpu->hm.s.Event.u64IntInfo;
|
---|
3715 | Assert(Event.n.u1Valid);
|
---|
3716 |
|
---|
3717 | /*
|
---|
3718 | * Validate event injection pre-conditions.
|
---|
3719 | */
|
---|
3720 | if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
|
---|
3721 | {
|
---|
3722 | Assert(fAllowInt);
|
---|
3723 | Assert(!fIntShadow);
|
---|
3724 | }
|
---|
3725 | else if (Event.n.u3Type == SVM_EVENT_NMI)
|
---|
3726 | {
|
---|
3727 | Assert(fGif);
|
---|
3728 | Assert(!fIntShadow);
|
---|
3729 | }
|
---|
3730 |
|
---|
3731 | /*
|
---|
3732 | * Before injecting an NMI we must set VMCPU_FF_BLOCK_NMIS to prevent nested NMIs. We
|
---|
3733 | * do this only when we are surely going to inject the NMI as otherwise if we return
|
---|
3734 | * to ring-3 prematurely we could leave NMIs blocked indefinitely upon re-entry into
|
---|
3735 | * SVM R0.
|
---|
3736 | *
|
---|
3737 | * With VT-x, this is handled by the Guest interruptibility information VMCS field
|
---|
3738 | * which will set the VMCS field after actually delivering the NMI which we read on
|
---|
3739 | * VM-exit to determine the state.
|
---|
3740 | */
|
---|
3741 | if ( Event.n.u3Type == SVM_EVENT_NMI
|
---|
3742 | && Event.n.u8Vector == X86_XCPT_NMI)
|
---|
3743 | CPUMSetInterruptInhibitingByNmi(&pVCpu->cpum.GstCtx);
|
---|
3744 |
|
---|
3745 | /*
|
---|
3746 | * Inject it (update VMCB for injection by the hardware).
|
---|
3747 | */
|
---|
3748 | Log4(("Injecting pending HM event\n"));
|
---|
3749 | hmR0SvmInjectEventVmcb(pVCpu, pVmcb, &Event);
|
---|
3750 | pVCpu->hm.s.Event.fPending = false;
|
---|
3751 |
|
---|
3752 | if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
|
---|
3753 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
|
---|
3754 | else
|
---|
3755 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
|
---|
3756 | }
|
---|
3757 | else
|
---|
3758 | Assert(pVmcb->ctrl.EventInject.n.u1Valid == 0);
|
---|
3759 |
|
---|
3760 | /*
|
---|
3761 | * We could have injected an NMI through IEM and continue guest execution using
|
---|
3762 | * hardware-assisted SVM. In which case, we would not have any events pending (above)
|
---|
3763 | * but we still need to intercept IRET in order to eventually clear NMI inhibition.
|
---|
3764 | */
|
---|
3765 | if (CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx))
|
---|
3766 | hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_IRET);
|
---|
3767 |
|
---|
3768 | /*
|
---|
3769 | * Update the guest interrupt shadow in the guest (or nested-guest) VMCB.
|
---|
3770 | *
|
---|
3771 | * For nested-guests: We need to update it too for the scenario where IEM executes
|
---|
3772 | * the nested-guest but execution later continues here with an interrupt shadow active.
|
---|
3773 | */
|
---|
3774 | pVmcb->ctrl.IntShadow.n.u1IntShadow = fIntShadow;
|
---|
3775 | }
|
---|
3776 |
|
---|
3777 |
|
---|
3778 | /**
|
---|
3779 | * Reports world-switch error and dumps some useful debug info.
|
---|
3780 | *
|
---|
3781 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3782 | * @param rcVMRun The return code from VMRUN (or
|
---|
3783 | * VERR_SVM_INVALID_GUEST_STATE for invalid
|
---|
3784 | * guest-state).
|
---|
3785 | */
|
---|
3786 | static void hmR0SvmReportWorldSwitchError(PVMCPUCC pVCpu, int rcVMRun)
|
---|
3787 | {
|
---|
3788 | HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
|
---|
3789 | HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
|
---|
3790 | HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
|
---|
3791 |
|
---|
3792 | if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
|
---|
3793 | {
|
---|
3794 | #ifdef VBOX_STRICT
|
---|
3795 | hmR0DumpRegs(pVCpu, HM_DUMP_REG_FLAGS_ALL);
|
---|
3796 | PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
|
---|
3797 | Log4(("ctrl.u32VmcbCleanBits %#RX32\n", pVmcb->ctrl.u32VmcbCleanBits));
|
---|
3798 | Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
|
---|
3799 | Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
|
---|
3800 | Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
|
---|
3801 | Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
|
---|
3802 | Log4(("ctrl.u32InterceptXcpt %#x\n", pVmcb->ctrl.u32InterceptXcpt));
|
---|
3803 | Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl));
|
---|
3804 | Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
|
---|
3805 | Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
|
---|
3806 | Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
|
---|
3807 |
|
---|
3808 | Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
|
---|
3809 | Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
|
---|
3810 | Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
|
---|
3811 |
|
---|
3812 | Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
|
---|
3813 | Log4(("ctrl.IntCtrl.u1VIrqPending %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqPending));
|
---|
3814 | Log4(("ctrl.IntCtrl.u1VGif %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGif));
|
---|
3815 | Log4(("ctrl.IntCtrl.u6Reserved0 %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
|
---|
3816 | Log4(("ctrl.IntCtrl.u4VIntrPrio %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIntrPrio));
|
---|
3817 | Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
|
---|
3818 | Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
|
---|
3819 | Log4(("ctrl.IntCtrl.u1VIntrMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIntrMasking));
|
---|
3820 | Log4(("ctrl.IntCtrl.u1VGifEnable %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGifEnable));
|
---|
3821 | Log4(("ctrl.IntCtrl.u5Reserved1 %#x\n", pVmcb->ctrl.IntCtrl.n.u5Reserved));
|
---|
3822 | Log4(("ctrl.IntCtrl.u8VIntrVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIntrVector));
|
---|
3823 | Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
|
---|
3824 |
|
---|
3825 | Log4(("ctrl.IntShadow.u1IntShadow %#x\n", pVmcb->ctrl.IntShadow.n.u1IntShadow));
|
---|
3826 | Log4(("ctrl.IntShadow.u1GuestIntMask %#x\n", pVmcb->ctrl.IntShadow.n.u1GuestIntMask));
|
---|
3827 | Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
|
---|
3828 | Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
|
---|
3829 | Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
|
---|
3830 | Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
|
---|
3831 | Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
|
---|
3832 | Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
|
---|
3833 | Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
|
---|
3834 | Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
|
---|
3835 | Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
|
---|
3836 | Log4(("ctrl.NestedPagingCtrl.u1NestedPaging %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1NestedPaging));
|
---|
3837 | Log4(("ctrl.NestedPagingCtrl.u1Sev %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1Sev));
|
---|
3838 | Log4(("ctrl.NestedPagingCtrl.u1SevEs %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1SevEs));
|
---|
3839 | Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
|
---|
3840 | Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
|
---|
3841 | Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
|
---|
3842 | Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
|
---|
3843 | Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
|
---|
3844 | Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
|
---|
3845 |
|
---|
3846 | Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
|
---|
3847 |
|
---|
3848 | Log4(("ctrl.LbrVirt.u1LbrVirt %#x\n", pVmcb->ctrl.LbrVirt.n.u1LbrVirt));
|
---|
3849 | Log4(("ctrl.LbrVirt.u1VirtVmsaveVmload %#x\n", pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload));
|
---|
3850 |
|
---|
3851 | Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
|
---|
3852 | Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
|
---|
3853 | Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
|
---|
3854 | Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
|
---|
3855 | Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
|
---|
3856 | Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
|
---|
3857 | Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
|
---|
3858 | Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
|
---|
3859 | Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
|
---|
3860 | Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
|
---|
3861 | Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
|
---|
3862 | Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
|
---|
3863 | Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
|
---|
3864 | Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
|
---|
3865 | Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
|
---|
3866 | Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
|
---|
3867 | Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
|
---|
3868 | Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
|
---|
3869 | Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
|
---|
3870 | Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
|
---|
3871 |
|
---|
3872 | Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
|
---|
3873 | Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
|
---|
3874 |
|
---|
3875 | Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
|
---|
3876 | Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
|
---|
3877 | Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
|
---|
3878 | Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
|
---|
3879 |
|
---|
3880 | Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
|
---|
3881 | Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
|
---|
3882 |
|
---|
3883 | Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
|
---|
3884 | Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
|
---|
3885 | Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
|
---|
3886 | Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
|
---|
3887 |
|
---|
3888 | Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
|
---|
3889 | Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
|
---|
3890 | Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
|
---|
3891 | Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
|
---|
3892 | Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
|
---|
3893 | Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
|
---|
3894 | Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
|
---|
3895 |
|
---|
3896 | Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
|
---|
3897 | Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
|
---|
3898 | Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
|
---|
3899 | Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
|
---|
3900 |
|
---|
3901 | Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
|
---|
3902 | Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
|
---|
3903 | Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
|
---|
3904 |
|
---|
3905 | Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
|
---|
3906 | Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
|
---|
3907 | Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
|
---|
3908 | Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
|
---|
3909 | Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
|
---|
3910 | Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
|
---|
3911 | Log4(("guest.u64PAT %#RX64\n", pVmcb->guest.u64PAT));
|
---|
3912 | Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
|
---|
3913 | Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
|
---|
3914 | Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
|
---|
3915 | Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
|
---|
3916 | Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
|
---|
3917 |
|
---|
3918 | NOREF(pVmcb);
|
---|
3919 | #endif /* VBOX_STRICT */
|
---|
3920 | }
|
---|
3921 | else
|
---|
3922 | Log4Func(("rcVMRun=%d\n", rcVMRun));
|
---|
3923 | }
|
---|
3924 |
|
---|
3925 |
|
---|
3926 | /**
|
---|
3927 | * Check per-VM and per-VCPU force flag actions that require us to go back to
|
---|
3928 | * ring-3 for one reason or another.
|
---|
3929 | *
|
---|
3930 | * @returns Strict VBox status code (information status code included).
|
---|
3931 | * @retval VINF_SUCCESS if we don't have any actions that require going back to
|
---|
3932 | * ring-3.
|
---|
3933 | * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
|
---|
3934 | * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
|
---|
3935 | * interrupts)
|
---|
3936 | * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
|
---|
3937 | * all EMTs to be in ring-3.
|
---|
3938 | * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
|
---|
3939 | * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
|
---|
3940 | * to the EM loop.
|
---|
3941 | *
|
---|
3942 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3943 | */
|
---|
3944 | static VBOXSTRICTRC hmR0SvmCheckForceFlags(PVMCPUCC pVCpu)
|
---|
3945 | {
|
---|
3946 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
3947 |
|
---|
3948 | /* Could happen as a result of longjump. */
|
---|
3949 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
|
---|
3950 | PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
|
---|
3951 |
|
---|
3952 | /* Update pending interrupts into the APIC's IRR. */
|
---|
3953 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
|
---|
3954 | APICUpdatePendingInterrupts(pVCpu);
|
---|
3955 |
|
---|
3956 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3957 | if ( VM_FF_IS_ANY_SET(pVM, !pVCpu->hm.s.fSingleInstruction
|
---|
3958 | ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
|
---|
3959 | || VMCPU_FF_IS_ANY_SET(pVCpu, !pVCpu->hm.s.fSingleInstruction
|
---|
3960 | ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
|
---|
3961 | {
|
---|
3962 | /* Pending PGM C3 sync. */
|
---|
3963 | if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
|
---|
3964 | {
|
---|
3965 | int rc = PGMSyncCR3(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4,
|
---|
3966 | VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
|
---|
3967 | if (rc != VINF_SUCCESS)
|
---|
3968 | {
|
---|
3969 | Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
|
---|
3970 | return rc;
|
---|
3971 | }
|
---|
3972 | }
|
---|
3973 |
|
---|
3974 | /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
|
---|
3975 | /* -XXX- what was that about single stepping? */
|
---|
3976 | if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
|
---|
3977 | || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
3978 | {
|
---|
3979 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
|
---|
3980 | int rc = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
|
---|
3981 | Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
|
---|
3982 | return rc;
|
---|
3983 | }
|
---|
3984 |
|
---|
3985 | /* Pending VM request packets, such as hardware interrupts. */
|
---|
3986 | if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
|
---|
3987 | || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
|
---|
3988 | {
|
---|
3989 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchVmReq);
|
---|
3990 | Log4Func(("Pending VM request forcing us back to ring-3\n"));
|
---|
3991 | return VINF_EM_PENDING_REQUEST;
|
---|
3992 | }
|
---|
3993 |
|
---|
3994 | /* Pending PGM pool flushes. */
|
---|
3995 | if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
|
---|
3996 | {
|
---|
3997 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPgmPoolFlush);
|
---|
3998 | Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
|
---|
3999 | return VINF_PGM_POOL_FLUSH_PENDING;
|
---|
4000 | }
|
---|
4001 |
|
---|
4002 | /* Pending DMA requests. */
|
---|
4003 | if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
|
---|
4004 | {
|
---|
4005 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchDma);
|
---|
4006 | Log4Func(("Pending DMA request forcing us back to ring-3\n"));
|
---|
4007 | return VINF_EM_RAW_TO_R3;
|
---|
4008 | }
|
---|
4009 | }
|
---|
4010 |
|
---|
4011 | return VINF_SUCCESS;
|
---|
4012 | }
|
---|
4013 |
|
---|
4014 |
|
---|
4015 | /**
|
---|
4016 | * Does the preparations before executing guest code in AMD-V.
|
---|
4017 | *
|
---|
4018 | * This may cause longjmps to ring-3 and may even result in rescheduling to the
|
---|
4019 | * recompiler. We must be cautious what we do here regarding committing
|
---|
4020 | * guest-state information into the VMCB assuming we assuredly execute the guest
|
---|
4021 | * in AMD-V. If we fall back to the recompiler after updating the VMCB and
|
---|
4022 | * clearing the common-state (TRPM/forceflags), we must undo those changes so
|
---|
4023 | * that the recompiler can (and should) use them when it resumes guest
|
---|
4024 | * execution. Otherwise such operations must be done when we can no longer
|
---|
4025 | * exit to ring-3.
|
---|
4026 | *
|
---|
4027 | * @returns Strict VBox status code (informational status codes included).
|
---|
4028 | * @retval VINF_SUCCESS if we can proceed with running the guest.
|
---|
4029 | * @retval VINF_* scheduling changes, we have to go back to ring-3.
|
---|
4030 | *
|
---|
4031 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4032 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
4033 | */
|
---|
4034 | static VBOXSTRICTRC hmR0SvmPreRunGuest(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
|
---|
4035 | {
|
---|
4036 | HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
|
---|
4037 |
|
---|
4038 | #ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
|
---|
4039 | if (pSvmTransient->fIsNestedGuest)
|
---|
4040 | {
|
---|
4041 | Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
|
---|
4042 | return VINF_EM_RESCHEDULE_REM;
|
---|
4043 | }
|
---|
4044 | #endif
|
---|
4045 |
|
---|
4046 | /* Check force flag actions that might require us to go back to ring-3. */
|
---|
4047 | VBOXSTRICTRC rc = hmR0SvmCheckForceFlags(pVCpu);
|
---|
4048 | if (rc != VINF_SUCCESS)
|
---|
4049 | return rc;
|
---|
4050 |
|
---|
4051 | if (TRPMHasTrap(pVCpu))
|
---|
4052 | hmR0SvmTrpmTrapToPendingEvent(pVCpu);
|
---|
4053 | else if (!pVCpu->hm.s.Event.fPending)
|
---|
4054 | {
|
---|
4055 | rc = hmR0SvmEvaluatePendingEvent(pVCpu, pSvmTransient);
|
---|
4056 | if ( rc != VINF_SUCCESS
|
---|
4057 | || pSvmTransient->fIsNestedGuest != CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
|
---|
4058 | {
|
---|
4059 | /* If a nested-guest VM-exit occurred, bail. */
|
---|
4060 | if (pSvmTransient->fIsNestedGuest)
|
---|
4061 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
|
---|
4062 | return rc;
|
---|
4063 | }
|
---|
4064 | }
|
---|
4065 |
|
---|
4066 | /*
|
---|
4067 | * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
|
---|
4068 | * Just do it in software, see @bugref{8411}.
|
---|
4069 | * NB: If we could continue a task switch exit we wouldn't need to do this.
|
---|
4070 | */
|
---|
4071 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4072 | if (RT_UNLIKELY( !g_fHmSvmFeatures
|
---|
4073 | && pVCpu->hm.s.Event.fPending
|
---|
4074 | && SVM_EVENT_GET_TYPE(pVCpu->hm.s.Event.u64IntInfo) == SVM_EVENT_NMI))
|
---|
4075 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
4076 |
|
---|
4077 | #ifdef HMSVM_SYNC_FULL_GUEST_STATE
|
---|
4078 | Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
|
---|
4079 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
4080 | #endif
|
---|
4081 |
|
---|
4082 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
4083 | /*
|
---|
4084 | * Set up the nested-guest VMCB for execution using hardware-assisted SVM.
|
---|
4085 | */
|
---|
4086 | if (pSvmTransient->fIsNestedGuest)
|
---|
4087 | hmR0SvmSetupVmcbNested(pVCpu);
|
---|
4088 | #endif
|
---|
4089 |
|
---|
4090 | /*
|
---|
4091 | * Export the guest state bits that are not shared with the host in any way as we can
|
---|
4092 | * longjmp or get preempted in the midst of exporting some of the state.
|
---|
4093 | */
|
---|
4094 | rc = hmR0SvmExportGuestState(pVCpu, pSvmTransient);
|
---|
4095 | AssertRCReturn(rc, rc);
|
---|
4096 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
|
---|
4097 |
|
---|
4098 | /* Ensure we've cached (and hopefully modified) the nested-guest VMCB for execution using hardware-assisted SVM. */
|
---|
4099 | Assert(!pSvmTransient->fIsNestedGuest || pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
|
---|
4100 |
|
---|
4101 | /*
|
---|
4102 | * If we're not intercepting TPR changes in the guest, save the guest TPR before the
|
---|
4103 | * world-switch so we can update it on the way back if the guest changed the TPR.
|
---|
4104 | */
|
---|
4105 | if (pVCpu->hmr0.s.svm.fSyncVTpr)
|
---|
4106 | {
|
---|
4107 | Assert(!pSvmTransient->fIsNestedGuest);
|
---|
4108 | PCSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
|
---|
4109 | if (pVM->hm.s.fTprPatchingActive)
|
---|
4110 | pSvmTransient->u8GuestTpr = pVmcb->guest.u64LSTAR;
|
---|
4111 | else
|
---|
4112 | pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
|
---|
4113 | }
|
---|
4114 |
|
---|
4115 | /*
|
---|
4116 | * No longjmps to ring-3 from this point on!!!
|
---|
4117 | *
|
---|
4118 | * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
|
---|
4119 | * better than a kernel panic. This also disables flushing of the R0-logger instance.
|
---|
4120 | */
|
---|
4121 | VMMRZCallRing3Disable(pVCpu);
|
---|
4122 |
|
---|
4123 | /*
|
---|
4124 | * We disable interrupts so that we don't miss any interrupts that would flag preemption
|
---|
4125 | * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
|
---|
4126 | * preemption disabled for a while. Since this is purly to aid the
|
---|
4127 | * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
|
---|
4128 | * disable interrupt on NT.
|
---|
4129 | *
|
---|
4130 | * We need to check for force-flags that could've possible been altered since we last
|
---|
4131 | * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
|
---|
4132 | * see @bugref{6398}).
|
---|
4133 | *
|
---|
4134 | * We also check a couple of other force-flags as a last opportunity to get the EMT back
|
---|
4135 | * to ring-3 before executing guest code.
|
---|
4136 | */
|
---|
4137 | pSvmTransient->fEFlags = ASMIntDisableFlags();
|
---|
4138 | if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
|
---|
4139 | || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
4140 | {
|
---|
4141 | ASMSetFlags(pSvmTransient->fEFlags);
|
---|
4142 | VMMRZCallRing3Enable(pVCpu);
|
---|
4143 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
|
---|
4144 | return VINF_EM_RAW_TO_R3;
|
---|
4145 | }
|
---|
4146 | if (RTThreadPreemptIsPending(NIL_RTTHREAD))
|
---|
4147 | {
|
---|
4148 | ASMSetFlags(pSvmTransient->fEFlags);
|
---|
4149 | VMMRZCallRing3Enable(pVCpu);
|
---|
4150 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
|
---|
4151 | return VINF_EM_RAW_INTERRUPT;
|
---|
4152 | }
|
---|
4153 |
|
---|
4154 | return VINF_SUCCESS;
|
---|
4155 | }
|
---|
4156 |
|
---|
4157 |
|
---|
4158 | /**
|
---|
4159 | * Prepares to run guest (or nested-guest) code in AMD-V and we've committed to
|
---|
4160 | * doing so.
|
---|
4161 | *
|
---|
4162 | * This means there is no backing out to ring-3 or anywhere else at this point.
|
---|
4163 | *
|
---|
4164 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4165 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
4166 | *
|
---|
4167 | * @remarks Called with preemption disabled.
|
---|
4168 | * @remarks No-long-jump zone!!!
|
---|
4169 | */
|
---|
4170 | static void hmR0SvmPreRunGuestCommitted(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
|
---|
4171 | {
|
---|
4172 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
4173 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
4174 |
|
---|
4175 | VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
|
---|
4176 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
|
---|
4177 |
|
---|
4178 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4179 | PSVMVMCB pVmcb = pSvmTransient->pVmcb;
|
---|
4180 |
|
---|
4181 | hmR0SvmInjectPendingEvent(pVCpu, pVmcb);
|
---|
4182 |
|
---|
4183 | if (!CPUMIsGuestFPUStateActive(pVCpu))
|
---|
4184 | {
|
---|
4185 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
|
---|
4186 | CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
|
---|
4187 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
|
---|
4188 | STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
|
---|
4189 | }
|
---|
4190 |
|
---|
4191 | /* Load the state shared between host and guest (FPU, debug). */
|
---|
4192 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)
|
---|
4193 | hmR0SvmExportSharedState(pVCpu, pVmcb);
|
---|
4194 |
|
---|
4195 | pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT; /* Preemption might set this, nothing to do on AMD-V. */
|
---|
4196 | AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
|
---|
4197 |
|
---|
4198 | PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
|
---|
4199 | RTCPUID const idHostCpu = pHostCpu->idCpu;
|
---|
4200 | bool const fMigratedHostCpu = idHostCpu != pVCpu->hmr0.s.idLastCpu;
|
---|
4201 |
|
---|
4202 | /* Setup TSC offsetting. */
|
---|
4203 | if ( pSvmTransient->fUpdateTscOffsetting
|
---|
4204 | || fMigratedHostCpu)
|
---|
4205 | {
|
---|
4206 | hmR0SvmUpdateTscOffsetting(pVCpu, pVmcb);
|
---|
4207 | pSvmTransient->fUpdateTscOffsetting = false;
|
---|
4208 | }
|
---|
4209 |
|
---|
4210 | /* Record statistics of how often we use TSC offsetting as opposed to intercepting RDTSC/P. */
|
---|
4211 | if (!(pVmcb->ctrl.u64InterceptCtrl & (SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP)))
|
---|
4212 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
|
---|
4213 | else
|
---|
4214 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
|
---|
4215 |
|
---|
4216 | /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
|
---|
4217 | if (fMigratedHostCpu)
|
---|
4218 | pVmcb->ctrl.u32VmcbCleanBits = 0;
|
---|
4219 |
|
---|
4220 | /* Store status of the shared guest-host state at the time of VMRUN. */
|
---|
4221 | pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
|
---|
4222 | pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
|
---|
4223 |
|
---|
4224 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
4225 | uint8_t *pbMsrBitmap;
|
---|
4226 | if (!pSvmTransient->fIsNestedGuest)
|
---|
4227 | pbMsrBitmap = (uint8_t *)pVCpu->hmr0.s.svm.pvMsrBitmap;
|
---|
4228 | else
|
---|
4229 | {
|
---|
4230 | /** @todo We could perhaps optimize this by monitoring if the guest modifies its
|
---|
4231 | * MSRPM and only perform this if it changed also use EVEX.POR when it
|
---|
4232 | * does. */
|
---|
4233 | hmR0SvmMergeMsrpmNested(pHostCpu, pVCpu);
|
---|
4234 |
|
---|
4235 | /* Update the nested-guest VMCB with the newly merged MSRPM (clean bits updated below). */
|
---|
4236 | pVmcb->ctrl.u64MSRPMPhysAddr = pHostCpu->n.svm.HCPhysNstGstMsrpm;
|
---|
4237 | pbMsrBitmap = (uint8_t *)pHostCpu->n.svm.pvNstGstMsrpm;
|
---|
4238 | }
|
---|
4239 | #else
|
---|
4240 | uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
|
---|
4241 | #endif
|
---|
4242 |
|
---|
4243 | ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
|
---|
4244 | /* Flush the appropriate tagged-TLB entries. */
|
---|
4245 | hmR0SvmFlushTaggedTlb(pHostCpu, pVCpu, pVmcb);
|
---|
4246 | Assert(pVCpu->hmr0.s.idLastCpu == idHostCpu);
|
---|
4247 |
|
---|
4248 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
|
---|
4249 |
|
---|
4250 | TMNotifyStartOfExecution(pVM, pVCpu); /* Finally, notify TM to resume its clocks as we're about
|
---|
4251 | to start executing. */
|
---|
4252 |
|
---|
4253 | /*
|
---|
4254 | * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that RDTSCPs
|
---|
4255 | * (that don't cause exits) reads the guest MSR, see @bugref{3324}.
|
---|
4256 | *
|
---|
4257 | * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
|
---|
4258 | */
|
---|
4259 | if ( g_CpumHostFeatures.s.fRdTscP
|
---|
4260 | && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
|
---|
4261 | {
|
---|
4262 | uint64_t const uGuestTscAux = CPUMGetGuestTscAux(pVCpu);
|
---|
4263 | pVCpu->hmr0.s.svm.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
|
---|
4264 | if (uGuestTscAux != pVCpu->hmr0.s.svm.u64HostTscAux)
|
---|
4265 | ASMWrMsr(MSR_K8_TSC_AUX, uGuestTscAux);
|
---|
4266 | hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
4267 | pSvmTransient->fRestoreTscAuxMsr = true;
|
---|
4268 | }
|
---|
4269 | else
|
---|
4270 | {
|
---|
4271 | hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
|
---|
4272 | pSvmTransient->fRestoreTscAuxMsr = false;
|
---|
4273 | }
|
---|
4274 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
|
---|
4275 |
|
---|
4276 | /*
|
---|
4277 | * If VMCB Clean bits isn't supported by the CPU or exposed to the guest in the nested
|
---|
4278 | * virtualization case, mark all state-bits as dirty indicating to the CPU to re-load
|
---|
4279 | * from the VMCB.
|
---|
4280 | */
|
---|
4281 | bool const fSupportsVmcbCleanBits = hmR0SvmSupportsVmcbCleanBits(pVCpu, pSvmTransient->fIsNestedGuest);
|
---|
4282 | if (!fSupportsVmcbCleanBits)
|
---|
4283 | pVmcb->ctrl.u32VmcbCleanBits = 0;
|
---|
4284 | }
|
---|
4285 |
|
---|
4286 |
|
---|
4287 | /**
|
---|
4288 | * Wrapper for running the guest (or nested-guest) code in AMD-V.
|
---|
4289 | *
|
---|
4290 | * @returns VBox strict status code.
|
---|
4291 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4292 | * @param HCPhysVmcb The host physical address of the VMCB.
|
---|
4293 | *
|
---|
4294 | * @remarks No-long-jump zone!!!
|
---|
4295 | */
|
---|
4296 | DECLINLINE(int) hmR0SvmRunGuest(PVMCPUCC pVCpu, RTHCPHYS HCPhysVmcb)
|
---|
4297 | {
|
---|
4298 | /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
|
---|
4299 | pVCpu->cpum.GstCtx.fExtrn |= HMSVM_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
|
---|
4300 | return pVCpu->hmr0.s.svm.pfnVMRun(pVCpu->CTX_SUFF(pVM), pVCpu, HCPhysVmcb);
|
---|
4301 | }
|
---|
4302 |
|
---|
4303 |
|
---|
4304 | /**
|
---|
4305 | * Performs some essential restoration of state after running guest (or
|
---|
4306 | * nested-guest) code in AMD-V.
|
---|
4307 | *
|
---|
4308 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4309 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
4310 | * @param rcVMRun Return code of VMRUN.
|
---|
4311 | *
|
---|
4312 | * @remarks Called with interrupts disabled.
|
---|
4313 | * @remarks No-long-jump zone!!! This function will however re-enable longjmps
|
---|
4314 | * unconditionally when it is safe to do so.
|
---|
4315 | */
|
---|
4316 | static void hmR0SvmPostRunGuest(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient, VBOXSTRICTRC rcVMRun)
|
---|
4317 | {
|
---|
4318 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
4319 |
|
---|
4320 | ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
|
---|
4321 | ASMAtomicIncU32(&pVCpu->hmr0.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
|
---|
4322 |
|
---|
4323 | PSVMVMCB pVmcb = pSvmTransient->pVmcb;
|
---|
4324 | PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
|
---|
4325 |
|
---|
4326 | /* TSC read must be done early for maximum accuracy. */
|
---|
4327 | if (!(pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
|
---|
4328 | {
|
---|
4329 | if (!pSvmTransient->fIsNestedGuest)
|
---|
4330 | TMCpuTickSetLastSeen(pVCpu, pVCpu->hmr0.s.uTscExit + pVmcbCtrl->u64TSCOffset);
|
---|
4331 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
4332 | else
|
---|
4333 | {
|
---|
4334 | /* The nested-guest VMCB TSC offset shall eventually be restored on #VMEXIT via HMNotifySvmNstGstVmexit(). */
|
---|
4335 | uint64_t const uGstTsc = CPUMRemoveNestedGuestTscOffset(pVCpu, pVCpu->hmr0.s.uTscExit + pVmcbCtrl->u64TSCOffset);
|
---|
4336 | TMCpuTickSetLastSeen(pVCpu, uGstTsc);
|
---|
4337 | }
|
---|
4338 | #endif
|
---|
4339 | }
|
---|
4340 |
|
---|
4341 | if (pSvmTransient->fRestoreTscAuxMsr)
|
---|
4342 | {
|
---|
4343 | uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
|
---|
4344 | CPUMSetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
|
---|
4345 | if (u64GuestTscAuxMsr != pVCpu->hmr0.s.svm.u64HostTscAux)
|
---|
4346 | ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hmr0.s.svm.u64HostTscAux);
|
---|
4347 | }
|
---|
4348 |
|
---|
4349 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
|
---|
4350 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4351 | TMNotifyEndOfExecution(pVM, pVCpu, pVCpu->hmr0.s.uTscExit); /* Notify TM that the guest is no longer running. */
|
---|
4352 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
|
---|
4353 |
|
---|
4354 | Assert(!(ASMGetFlags() & X86_EFL_IF));
|
---|
4355 | ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
|
---|
4356 | VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
|
---|
4357 |
|
---|
4358 | /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
|
---|
4359 | if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
|
---|
4360 | {
|
---|
4361 | Log4Func(("VMRUN failure: rcVMRun=%Rrc\n", VBOXSTRICTRC_VAL(rcVMRun)));
|
---|
4362 | return;
|
---|
4363 | }
|
---|
4364 |
|
---|
4365 | pSvmTransient->u64ExitCode = pVmcbCtrl->u64ExitCode; /* Save the #VMEXIT reason. */
|
---|
4366 | pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
|
---|
4367 | pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
|
---|
4368 | pVmcbCtrl->u32VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
|
---|
4369 |
|
---|
4370 | #ifdef HMSVM_SYNC_FULL_GUEST_STATE
|
---|
4371 | hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
|
---|
4372 | Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
|
---|
4373 | #else
|
---|
4374 | /*
|
---|
4375 | * Always import the following:
|
---|
4376 | *
|
---|
4377 | * - RIP for exit optimizations and evaluating event injection on re-entry.
|
---|
4378 | * - RFLAGS for evaluating event injection on VM re-entry and for exporting shared debug
|
---|
4379 | * state on preemption.
|
---|
4380 | * - Interrupt shadow, GIF for evaluating event injection on VM re-entry.
|
---|
4381 | * - CS for exit optimizations.
|
---|
4382 | * - RAX, RSP for simplifying assumptions on GPRs. All other GPRs are swapped by the
|
---|
4383 | * assembly switcher code.
|
---|
4384 | * - Shared state (only DR7 currently) for exporting shared debug state on preemption.
|
---|
4385 | */
|
---|
4386 | hmR0SvmImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP
|
---|
4387 | | CPUMCTX_EXTRN_RFLAGS
|
---|
4388 | | CPUMCTX_EXTRN_RAX
|
---|
4389 | | CPUMCTX_EXTRN_RSP
|
---|
4390 | | CPUMCTX_EXTRN_CS
|
---|
4391 | | CPUMCTX_EXTRN_HWVIRT
|
---|
4392 | | CPUMCTX_EXTRN_INHIBIT_INT
|
---|
4393 | | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ
|
---|
4394 | | HMSVM_CPUMCTX_SHARED_STATE);
|
---|
4395 | #endif
|
---|
4396 |
|
---|
4397 | if ( pSvmTransient->u64ExitCode != SVM_EXIT_INVALID
|
---|
4398 | && pVCpu->hmr0.s.svm.fSyncVTpr)
|
---|
4399 | {
|
---|
4400 | Assert(!pSvmTransient->fIsNestedGuest);
|
---|
4401 | /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
|
---|
4402 | if ( pVM->hm.s.fTprPatchingActive
|
---|
4403 | && (pVmcb->guest.u64LSTAR & 0xff) != pSvmTransient->u8GuestTpr)
|
---|
4404 | {
|
---|
4405 | int rc = APICSetTpr(pVCpu, pVmcb->guest.u64LSTAR & 0xff);
|
---|
4406 | AssertRC(rc);
|
---|
4407 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
|
---|
4408 | }
|
---|
4409 | /* Sync TPR when we aren't intercepting CR8 writes. */
|
---|
4410 | else if (pSvmTransient->u8GuestTpr != pVmcbCtrl->IntCtrl.n.u8VTPR)
|
---|
4411 | {
|
---|
4412 | int rc = APICSetTpr(pVCpu, pVmcbCtrl->IntCtrl.n.u8VTPR << 4);
|
---|
4413 | AssertRC(rc);
|
---|
4414 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
|
---|
4415 | }
|
---|
4416 | }
|
---|
4417 |
|
---|
4418 | #ifdef DEBUG_ramshankar
|
---|
4419 | if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
|
---|
4420 | {
|
---|
4421 | hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
|
---|
4422 | hmR0SvmLogState(pVCpu, pVmcb, pVCpu->cpum.GstCtx, "hmR0SvmPostRunGuestNested", HMSVM_LOG_ALL & ~HMSVM_LOG_LBR,
|
---|
4423 | 0 /* uVerbose */);
|
---|
4424 | }
|
---|
4425 | #endif
|
---|
4426 |
|
---|
4427 | HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
|
---|
4428 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_SVM, pSvmTransient->u64ExitCode & EMEXIT_F_TYPE_MASK),
|
---|
4429 | pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, pVCpu->hmr0.s.uTscExit);
|
---|
4430 | }
|
---|
4431 |
|
---|
4432 |
|
---|
4433 | /**
|
---|
4434 | * Runs the guest code using AMD-V.
|
---|
4435 | *
|
---|
4436 | * @returns Strict VBox status code.
|
---|
4437 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4438 | * @param pcLoops Pointer to the number of executed loops.
|
---|
4439 | */
|
---|
4440 | static VBOXSTRICTRC hmR0SvmRunGuestCodeNormal(PVMCPUCC pVCpu, uint32_t *pcLoops)
|
---|
4441 | {
|
---|
4442 | uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops;
|
---|
4443 | Assert(pcLoops);
|
---|
4444 | Assert(*pcLoops <= cMaxResumeLoops);
|
---|
4445 |
|
---|
4446 | SVMTRANSIENT SvmTransient;
|
---|
4447 | RT_ZERO(SvmTransient);
|
---|
4448 | SvmTransient.fUpdateTscOffsetting = true;
|
---|
4449 | SvmTransient.pVmcb = pVCpu->hmr0.s.svm.pVmcb;
|
---|
4450 |
|
---|
4451 | VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_5;
|
---|
4452 | for (;;)
|
---|
4453 | {
|
---|
4454 | Assert(!HMR0SuspendPending());
|
---|
4455 | HMSVM_ASSERT_CPU_SAFE(pVCpu);
|
---|
4456 |
|
---|
4457 | /* Preparatory work for running nested-guest code, this may force us to return to
|
---|
4458 | ring-3. This bugger disables interrupts on VINF_SUCCESS! */
|
---|
4459 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
|
---|
4460 | rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
|
---|
4461 | if (rc != VINF_SUCCESS)
|
---|
4462 | break;
|
---|
4463 |
|
---|
4464 | /*
|
---|
4465 | * No longjmps to ring-3 from this point on!!!
|
---|
4466 | *
|
---|
4467 | * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
|
---|
4468 | * better than a kernel panic. This also disables flushing of the R0-logger instance.
|
---|
4469 | */
|
---|
4470 | hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
|
---|
4471 | rc = hmR0SvmRunGuest(pVCpu, pVCpu->hmr0.s.svm.HCPhysVmcb);
|
---|
4472 |
|
---|
4473 | /* Restore any residual host-state and save any bits shared between host and guest
|
---|
4474 | into the guest-CPU state. Re-enables interrupts! */
|
---|
4475 | hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
|
---|
4476 |
|
---|
4477 | if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
|
---|
4478 | || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
|
---|
4479 | {
|
---|
4480 | if (rc == VINF_SUCCESS)
|
---|
4481 | rc = VERR_SVM_INVALID_GUEST_STATE;
|
---|
4482 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
|
---|
4483 | hmR0SvmReportWorldSwitchError(pVCpu, VBOXSTRICTRC_VAL(rc));
|
---|
4484 | break;
|
---|
4485 | }
|
---|
4486 |
|
---|
4487 | /* Handle the #VMEXIT. */
|
---|
4488 | HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
|
---|
4489 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
|
---|
4490 | VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, SvmTransient.u64ExitCode, pVCpu->hmr0.s.svm.pVmcb);
|
---|
4491 | rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
|
---|
4492 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
|
---|
4493 | if (rc != VINF_SUCCESS)
|
---|
4494 | break;
|
---|
4495 | if (++(*pcLoops) >= cMaxResumeLoops)
|
---|
4496 | {
|
---|
4497 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
|
---|
4498 | rc = VINF_EM_RAW_INTERRUPT;
|
---|
4499 | break;
|
---|
4500 | }
|
---|
4501 | }
|
---|
4502 |
|
---|
4503 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
|
---|
4504 | return rc;
|
---|
4505 | }
|
---|
4506 |
|
---|
4507 |
|
---|
4508 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
4509 | /**
|
---|
4510 | * Runs the nested-guest code using AMD-V.
|
---|
4511 | *
|
---|
4512 | * @returns Strict VBox status code.
|
---|
4513 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4514 | * @param pcLoops Pointer to the number of executed loops. If we're switching
|
---|
4515 | * from the guest-code execution loop to this nested-guest
|
---|
4516 | * execution loop pass the remainder value, else pass 0.
|
---|
4517 | */
|
---|
4518 | static VBOXSTRICTRC hmR0SvmRunGuestCodeNested(PVMCPUCC pVCpu, uint32_t *pcLoops)
|
---|
4519 | {
|
---|
4520 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
4521 | HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
|
---|
4522 | Assert(pcLoops);
|
---|
4523 | Assert(*pcLoops <= pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops);
|
---|
4524 | /** @todo r=bird: Sharing this with ring-3 isn't safe in the long run, I fear... */
|
---|
4525 | RTHCPHYS const HCPhysVmcb = GVMMR0ConvertGVMPtr2HCPhys(pVCpu->pGVM, &pCtx->hwvirt.svm.Vmcb);
|
---|
4526 |
|
---|
4527 | SVMTRANSIENT SvmTransient;
|
---|
4528 | RT_ZERO(SvmTransient);
|
---|
4529 | SvmTransient.fUpdateTscOffsetting = true;
|
---|
4530 | SvmTransient.pVmcb = &pCtx->hwvirt.svm.Vmcb;
|
---|
4531 | SvmTransient.fIsNestedGuest = true;
|
---|
4532 |
|
---|
4533 | /* Setup pointer so PGM/IEM can query #VMEXIT auxiliary info. on demand in ring-0. */
|
---|
4534 | pVCpu->hmr0.s.svm.pSvmTransient = &SvmTransient;
|
---|
4535 |
|
---|
4536 | VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_4;
|
---|
4537 | for (;;)
|
---|
4538 | {
|
---|
4539 | Assert(!HMR0SuspendPending());
|
---|
4540 | HMSVM_ASSERT_CPU_SAFE(pVCpu);
|
---|
4541 |
|
---|
4542 | /* Preparatory work for running nested-guest code, this may force us to return to
|
---|
4543 | ring-3. This bugger disables interrupts on VINF_SUCCESS! */
|
---|
4544 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
|
---|
4545 | rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
|
---|
4546 | if ( rc != VINF_SUCCESS
|
---|
4547 | || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
4548 | break;
|
---|
4549 |
|
---|
4550 | /*
|
---|
4551 | * No longjmps to ring-3 from this point on!!!
|
---|
4552 | *
|
---|
4553 | * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
|
---|
4554 | * better than a kernel panic. This also disables flushing of the R0-logger instance.
|
---|
4555 | */
|
---|
4556 | hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
|
---|
4557 |
|
---|
4558 | rc = hmR0SvmRunGuest(pVCpu, HCPhysVmcb);
|
---|
4559 |
|
---|
4560 | /* Restore any residual host-state and save any bits shared between host and guest
|
---|
4561 | into the guest-CPU state. Re-enables interrupts! */
|
---|
4562 | hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
|
---|
4563 |
|
---|
4564 | if (RT_LIKELY( rc == VINF_SUCCESS
|
---|
4565 | && SvmTransient.u64ExitCode != SVM_EXIT_INVALID))
|
---|
4566 | { /* extremely likely */ }
|
---|
4567 | else
|
---|
4568 | {
|
---|
4569 | /* VMRUN failed, shouldn't really happen, Guru. */
|
---|
4570 | if (rc != VINF_SUCCESS)
|
---|
4571 | break;
|
---|
4572 |
|
---|
4573 | /* Invalid nested-guest state. Cause a #VMEXIT but assert on strict builds. */
|
---|
4574 | HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
|
---|
4575 | AssertMsgFailed(("Invalid nested-guest state. rc=%Rrc u64ExitCode=%#RX64\n", rc, SvmTransient.u64ExitCode));
|
---|
4576 | rc = IEMExecSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0, 0);
|
---|
4577 | break;
|
---|
4578 | }
|
---|
4579 |
|
---|
4580 | /* Handle the #VMEXIT. */
|
---|
4581 | HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
|
---|
4582 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
|
---|
4583 | VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, &pCtx->hwvirt.svm.Vmcb);
|
---|
4584 | rc = hmR0SvmHandleExitNested(pVCpu, &SvmTransient);
|
---|
4585 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
|
---|
4586 | if (rc == VINF_SUCCESS)
|
---|
4587 | {
|
---|
4588 | if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
4589 | {
|
---|
4590 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
|
---|
4591 | rc = VINF_SVM_VMEXIT;
|
---|
4592 | }
|
---|
4593 | else
|
---|
4594 | {
|
---|
4595 | if (++(*pcLoops) <= pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops)
|
---|
4596 | continue;
|
---|
4597 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
|
---|
4598 | rc = VINF_EM_RAW_INTERRUPT;
|
---|
4599 | }
|
---|
4600 | }
|
---|
4601 | else
|
---|
4602 | Assert(rc != VINF_SVM_VMEXIT);
|
---|
4603 | break;
|
---|
4604 | /** @todo NSTSVM: handle single-stepping. */
|
---|
4605 | }
|
---|
4606 |
|
---|
4607 | /* Ensure #VMEXIT auxiliary info. is no longer available. */
|
---|
4608 | pVCpu->hmr0.s.svm.pSvmTransient = NULL;
|
---|
4609 |
|
---|
4610 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
|
---|
4611 | return rc;
|
---|
4612 | }
|
---|
4613 | #endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
|
---|
4614 |
|
---|
4615 |
|
---|
4616 | /**
|
---|
4617 | * Checks if any expensive dtrace probes are enabled and we should go to the
|
---|
4618 | * debug loop.
|
---|
4619 | *
|
---|
4620 | * @returns true if we should use debug loop, false if not.
|
---|
4621 | */
|
---|
4622 | static bool hmR0SvmAnyExpensiveProbesEnabled(void)
|
---|
4623 | {
|
---|
4624 | /* It's probably faster to OR the raw 32-bit counter variables together.
|
---|
4625 | Since the variables are in an array and the probes are next to one
|
---|
4626 | another (more or less), we have good locality. So, better read
|
---|
4627 | eight-nine cache lines ever time and only have one conditional, than
|
---|
4628 | 128+ conditionals, right? */
|
---|
4629 | return ( VBOXVMM_R0_HMSVM_VMEXIT_ENABLED_RAW() /* expensive too due to context */
|
---|
4630 | | VBOXVMM_XCPT_DE_ENABLED_RAW()
|
---|
4631 | | VBOXVMM_XCPT_DB_ENABLED_RAW()
|
---|
4632 | | VBOXVMM_XCPT_BP_ENABLED_RAW()
|
---|
4633 | | VBOXVMM_XCPT_OF_ENABLED_RAW()
|
---|
4634 | | VBOXVMM_XCPT_BR_ENABLED_RAW()
|
---|
4635 | | VBOXVMM_XCPT_UD_ENABLED_RAW()
|
---|
4636 | | VBOXVMM_XCPT_NM_ENABLED_RAW()
|
---|
4637 | | VBOXVMM_XCPT_DF_ENABLED_RAW()
|
---|
4638 | | VBOXVMM_XCPT_TS_ENABLED_RAW()
|
---|
4639 | | VBOXVMM_XCPT_NP_ENABLED_RAW()
|
---|
4640 | | VBOXVMM_XCPT_SS_ENABLED_RAW()
|
---|
4641 | | VBOXVMM_XCPT_GP_ENABLED_RAW()
|
---|
4642 | | VBOXVMM_XCPT_PF_ENABLED_RAW()
|
---|
4643 | | VBOXVMM_XCPT_MF_ENABLED_RAW()
|
---|
4644 | | VBOXVMM_XCPT_AC_ENABLED_RAW()
|
---|
4645 | | VBOXVMM_XCPT_XF_ENABLED_RAW()
|
---|
4646 | | VBOXVMM_XCPT_VE_ENABLED_RAW()
|
---|
4647 | | VBOXVMM_XCPT_SX_ENABLED_RAW()
|
---|
4648 | | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
|
---|
4649 | | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
|
---|
4650 | ) != 0
|
---|
4651 | || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
|
---|
4652 | | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
|
---|
4653 | | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
|
---|
4654 | | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
|
---|
4655 | | VBOXVMM_INSTR_INVD_ENABLED_RAW()
|
---|
4656 | | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
|
---|
4657 | | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
|
---|
4658 | | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
|
---|
4659 | | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
|
---|
4660 | | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
|
---|
4661 | | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
|
---|
4662 | | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
|
---|
4663 | | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
|
---|
4664 | | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
|
---|
4665 | | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
|
---|
4666 | | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
|
---|
4667 | | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
|
---|
4668 | | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
|
---|
4669 | | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
|
---|
4670 | | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
|
---|
4671 | | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
|
---|
4672 | | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
|
---|
4673 | | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
|
---|
4674 | | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
|
---|
4675 | | VBOXVMM_INSTR_STR_ENABLED_RAW()
|
---|
4676 | | VBOXVMM_INSTR_LTR_ENABLED_RAW()
|
---|
4677 | //| VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
|
---|
4678 | | VBOXVMM_INSTR_RSM_ENABLED_RAW()
|
---|
4679 | //| VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
|
---|
4680 | //| VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
|
---|
4681 | //| VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
|
---|
4682 | //| VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
|
---|
4683 | | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
|
---|
4684 | | VBOXVMM_INSTR_SVM_VMRUN_ENABLED_RAW()
|
---|
4685 | | VBOXVMM_INSTR_SVM_VMLOAD_ENABLED_RAW()
|
---|
4686 | | VBOXVMM_INSTR_SVM_VMSAVE_ENABLED_RAW()
|
---|
4687 | | VBOXVMM_INSTR_SVM_STGI_ENABLED_RAW()
|
---|
4688 | | VBOXVMM_INSTR_SVM_CLGI_ENABLED_RAW()
|
---|
4689 | ) != 0
|
---|
4690 | || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
|
---|
4691 | | VBOXVMM_EXIT_HALT_ENABLED_RAW()
|
---|
4692 | | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
|
---|
4693 | | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
|
---|
4694 | | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
|
---|
4695 | | VBOXVMM_EXIT_INVD_ENABLED_RAW()
|
---|
4696 | | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
|
---|
4697 | | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
|
---|
4698 | | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
|
---|
4699 | | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
|
---|
4700 | | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
|
---|
4701 | | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
|
---|
4702 | | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
|
---|
4703 | | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
|
---|
4704 | | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
|
---|
4705 | | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
|
---|
4706 | | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
|
---|
4707 | | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
|
---|
4708 | | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
|
---|
4709 | | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
|
---|
4710 | | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
|
---|
4711 | | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
|
---|
4712 | | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
|
---|
4713 | | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
|
---|
4714 | | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
|
---|
4715 | | VBOXVMM_EXIT_STR_ENABLED_RAW()
|
---|
4716 | | VBOXVMM_EXIT_LTR_ENABLED_RAW()
|
---|
4717 | //| VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
|
---|
4718 | | VBOXVMM_EXIT_RSM_ENABLED_RAW()
|
---|
4719 | //| VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
|
---|
4720 | //| VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
|
---|
4721 | //| VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
|
---|
4722 | //| VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
|
---|
4723 | | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
|
---|
4724 | | VBOXVMM_EXIT_SVM_VMRUN_ENABLED_RAW()
|
---|
4725 | | VBOXVMM_EXIT_SVM_VMLOAD_ENABLED_RAW()
|
---|
4726 | | VBOXVMM_EXIT_SVM_VMSAVE_ENABLED_RAW()
|
---|
4727 | | VBOXVMM_EXIT_SVM_STGI_ENABLED_RAW()
|
---|
4728 | | VBOXVMM_EXIT_SVM_CLGI_ENABLED_RAW()
|
---|
4729 | ) != 0;
|
---|
4730 | }
|
---|
4731 |
|
---|
4732 |
|
---|
4733 | /**
|
---|
4734 | * Runs the guest code using AMD-V.
|
---|
4735 | *
|
---|
4736 | * @returns Strict VBox status code.
|
---|
4737 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4738 | */
|
---|
4739 | VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVMCPUCC pVCpu)
|
---|
4740 | {
|
---|
4741 | AssertPtr(pVCpu);
|
---|
4742 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
4743 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
4744 | Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
|
---|
4745 | HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
|
---|
4746 |
|
---|
4747 | uint32_t cLoops = 0;
|
---|
4748 | VBOXSTRICTRC rc;
|
---|
4749 | for (;;)
|
---|
4750 | {
|
---|
4751 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
4752 | bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(pCtx);
|
---|
4753 | #else
|
---|
4754 | NOREF(pCtx);
|
---|
4755 | bool const fInNestedGuestMode = false;
|
---|
4756 | #endif
|
---|
4757 | if (!fInNestedGuestMode)
|
---|
4758 | {
|
---|
4759 | if ( !pVCpu->hm.s.fUseDebugLoop
|
---|
4760 | && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0SvmAnyExpensiveProbesEnabled())
|
---|
4761 | && !DBGFIsStepping(pVCpu)
|
---|
4762 | && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
|
---|
4763 | rc = hmR0SvmRunGuestCodeNormal(pVCpu, &cLoops);
|
---|
4764 | else
|
---|
4765 | rc = hmR0SvmRunGuestCodeDebug(pVCpu, &cLoops);
|
---|
4766 | }
|
---|
4767 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
4768 | else
|
---|
4769 | rc = hmR0SvmRunGuestCodeNested(pVCpu, &cLoops);
|
---|
4770 |
|
---|
4771 | if (rc == VINF_SVM_VMRUN)
|
---|
4772 | {
|
---|
4773 | Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
|
---|
4774 | continue;
|
---|
4775 | }
|
---|
4776 | if (rc == VINF_SVM_VMEXIT)
|
---|
4777 | {
|
---|
4778 | Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
|
---|
4779 | continue;
|
---|
4780 | }
|
---|
4781 | #endif
|
---|
4782 | break;
|
---|
4783 | }
|
---|
4784 |
|
---|
4785 | /* Fixup error codes. */
|
---|
4786 | if (rc == VERR_EM_INTERPRETER)
|
---|
4787 | rc = VINF_EM_RAW_EMULATE_INSTR;
|
---|
4788 | else if (rc == VINF_EM_RESET)
|
---|
4789 | rc = VINF_EM_TRIPLE_FAULT;
|
---|
4790 |
|
---|
4791 | /* Prepare to return to ring-3. This will remove longjmp notifications. */
|
---|
4792 | rc = hmR0SvmExitToRing3(pVCpu, rc);
|
---|
4793 | Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
|
---|
4794 | Assert(!VMMR0AssertionIsNotificationSet(pVCpu));
|
---|
4795 | return rc;
|
---|
4796 | }
|
---|
4797 |
|
---|
4798 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
4799 |
|
---|
4800 | /**
|
---|
4801 | * Determines whether the given I/O access should cause a nested-guest \#VMEXIT.
|
---|
4802 | *
|
---|
4803 | * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
|
---|
4804 | * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO.
|
---|
4805 | */
|
---|
4806 | static bool hmR0SvmIsIoInterceptSet(void *pvIoBitmap, PSVMIOIOEXITINFO pIoExitInfo)
|
---|
4807 | {
|
---|
4808 | const uint16_t u16Port = pIoExitInfo->n.u16Port;
|
---|
4809 | const SVMIOIOTYPE enmIoType = (SVMIOIOTYPE)pIoExitInfo->n.u1Type;
|
---|
4810 | const uint8_t cbReg = (pIoExitInfo->u >> SVM_IOIO_OP_SIZE_SHIFT) & 7;
|
---|
4811 | const uint8_t cAddrSizeBits = ((pIoExitInfo->u >> SVM_IOIO_ADDR_SIZE_SHIFT) & 7) << 4;
|
---|
4812 | const uint8_t iEffSeg = pIoExitInfo->n.u3Seg;
|
---|
4813 | const bool fRep = pIoExitInfo->n.u1Rep;
|
---|
4814 | const bool fStrIo = pIoExitInfo->n.u1Str;
|
---|
4815 |
|
---|
4816 | return CPUMIsSvmIoInterceptSet(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
|
---|
4817 | NULL /* pIoExitInfo */);
|
---|
4818 | }
|
---|
4819 |
|
---|
4820 |
|
---|
4821 | /**
|
---|
4822 | * Handles a nested-guest \#VMEXIT (for all EXITCODE values except
|
---|
4823 | * SVM_EXIT_INVALID).
|
---|
4824 | *
|
---|
4825 | * @returns VBox status code (informational status codes included).
|
---|
4826 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4827 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
4828 | */
|
---|
4829 | static VBOXSTRICTRC hmR0SvmHandleExitNested(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
|
---|
4830 | {
|
---|
4831 | HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
|
---|
4832 | Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
|
---|
4833 | Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
|
---|
4834 |
|
---|
4835 | /*
|
---|
4836 | * We import the complete state here because we use separate VMCBs for the guest and the
|
---|
4837 | * nested-guest, and the guest's VMCB is used after the #VMEXIT. We can only save/restore
|
---|
4838 | * the #VMEXIT specific state if we used the same VMCB for both guest and nested-guest.
|
---|
4839 | */
|
---|
4840 | #define NST_GST_VMEXIT_CALL_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
|
---|
4841 | do { \
|
---|
4842 | HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
|
---|
4843 | return IEMExecSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); \
|
---|
4844 | } while (0)
|
---|
4845 |
|
---|
4846 | /*
|
---|
4847 | * For all the #VMEXITs here we primarily figure out if the #VMEXIT is expected by the
|
---|
4848 | * nested-guest. If it isn't, it should be handled by the (outer) guest.
|
---|
4849 | */
|
---|
4850 | PSVMVMCB pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb;
|
---|
4851 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
4852 | PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
|
---|
4853 | uint64_t const uExitCode = pVmcbNstGstCtrl->u64ExitCode;
|
---|
4854 | uint64_t const uExitInfo1 = pVmcbNstGstCtrl->u64ExitInfo1;
|
---|
4855 | uint64_t const uExitInfo2 = pVmcbNstGstCtrl->u64ExitInfo2;
|
---|
4856 |
|
---|
4857 | Assert(uExitCode == pVmcbNstGstCtrl->u64ExitCode);
|
---|
4858 | switch (uExitCode)
|
---|
4859 | {
|
---|
4860 | case SVM_EXIT_CPUID:
|
---|
4861 | {
|
---|
4862 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CPUID))
|
---|
4863 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
4864 | return hmR0SvmExitCpuid(pVCpu, pSvmTransient);
|
---|
4865 | }
|
---|
4866 |
|
---|
4867 | case SVM_EXIT_RDTSC:
|
---|
4868 | {
|
---|
4869 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSC))
|
---|
4870 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
4871 | return hmR0SvmExitRdtsc(pVCpu, pSvmTransient);
|
---|
4872 | }
|
---|
4873 |
|
---|
4874 | case SVM_EXIT_RDTSCP:
|
---|
4875 | {
|
---|
4876 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSCP))
|
---|
4877 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
4878 | return hmR0SvmExitRdtscp(pVCpu, pSvmTransient);
|
---|
4879 | }
|
---|
4880 |
|
---|
4881 | case SVM_EXIT_MONITOR:
|
---|
4882 | {
|
---|
4883 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MONITOR))
|
---|
4884 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
4885 | return hmR0SvmExitMonitor(pVCpu, pSvmTransient);
|
---|
4886 | }
|
---|
4887 |
|
---|
4888 | case SVM_EXIT_MWAIT:
|
---|
4889 | {
|
---|
4890 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MWAIT))
|
---|
4891 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
4892 | return hmR0SvmExitMwait(pVCpu, pSvmTransient);
|
---|
4893 | }
|
---|
4894 |
|
---|
4895 | case SVM_EXIT_HLT:
|
---|
4896 | {
|
---|
4897 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_HLT))
|
---|
4898 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
4899 | return hmR0SvmExitHlt(pVCpu, pSvmTransient);
|
---|
4900 | }
|
---|
4901 |
|
---|
4902 | case SVM_EXIT_MSR:
|
---|
4903 | {
|
---|
4904 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MSR_PROT))
|
---|
4905 | {
|
---|
4906 | uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
|
---|
4907 | uint16_t offMsrpm;
|
---|
4908 | uint8_t uMsrpmBit;
|
---|
4909 | int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
|
---|
4910 | if (RT_SUCCESS(rc))
|
---|
4911 | {
|
---|
4912 | Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
|
---|
4913 | Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
|
---|
4914 |
|
---|
4915 | uint8_t const * const pbMsrBitmap = &pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[offMsrpm];
|
---|
4916 | bool const fInterceptRead = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit));
|
---|
4917 | bool const fInterceptWrite = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
|
---|
4918 |
|
---|
4919 | if ( (fInterceptWrite && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
|
---|
4920 | || (fInterceptRead && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_READ))
|
---|
4921 | {
|
---|
4922 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
4923 | }
|
---|
4924 | }
|
---|
4925 | else
|
---|
4926 | {
|
---|
4927 | /*
|
---|
4928 | * MSRs not covered by the MSRPM automatically cause an #VMEXIT.
|
---|
4929 | * See AMD-V spec. "15.11 MSR Intercepts".
|
---|
4930 | */
|
---|
4931 | Assert(rc == VERR_OUT_OF_RANGE);
|
---|
4932 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
4933 | }
|
---|
4934 | }
|
---|
4935 | return hmR0SvmExitMsr(pVCpu, pSvmTransient);
|
---|
4936 | }
|
---|
4937 |
|
---|
4938 | case SVM_EXIT_IOIO:
|
---|
4939 | {
|
---|
4940 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IOIO_PROT))
|
---|
4941 | {
|
---|
4942 | SVMIOIOEXITINFO IoExitInfo;
|
---|
4943 | IoExitInfo.u = pVmcbNstGst->ctrl.u64ExitInfo1;
|
---|
4944 | bool const fIntercept = hmR0SvmIsIoInterceptSet(pVCpu->cpum.GstCtx.hwvirt.svm.abIoBitmap, &IoExitInfo);
|
---|
4945 | if (fIntercept)
|
---|
4946 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
4947 | }
|
---|
4948 | return hmR0SvmExitIOInstr(pVCpu, pSvmTransient);
|
---|
4949 | }
|
---|
4950 |
|
---|
4951 | case SVM_EXIT_XCPT_PF:
|
---|
4952 | {
|
---|
4953 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4954 | if (pVM->hmr0.s.fNestedPaging)
|
---|
4955 | {
|
---|
4956 | uint32_t const u32ErrCode = pVmcbNstGstCtrl->u64ExitInfo1;
|
---|
4957 | uint64_t const uFaultAddress = pVmcbNstGstCtrl->u64ExitInfo2;
|
---|
4958 |
|
---|
4959 | /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
|
---|
4960 | if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_PF))
|
---|
4961 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, u32ErrCode, uFaultAddress);
|
---|
4962 |
|
---|
4963 | /* If the nested-guest is not intercepting #PFs, forward the #PF to the guest. */
|
---|
4964 | HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
|
---|
4965 | hmR0SvmSetPendingXcptPF(pVCpu, u32ErrCode, uFaultAddress);
|
---|
4966 | return VINF_SUCCESS;
|
---|
4967 | }
|
---|
4968 | return hmR0SvmExitXcptPF(pVCpu, pSvmTransient);
|
---|
4969 | }
|
---|
4970 |
|
---|
4971 | case SVM_EXIT_XCPT_UD:
|
---|
4972 | {
|
---|
4973 | if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_UD))
|
---|
4974 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
4975 | hmR0SvmSetPendingXcptUD(pVCpu);
|
---|
4976 | return VINF_SUCCESS;
|
---|
4977 | }
|
---|
4978 |
|
---|
4979 | case SVM_EXIT_XCPT_MF:
|
---|
4980 | {
|
---|
4981 | if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_MF))
|
---|
4982 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
4983 | return hmR0SvmExitXcptMF(pVCpu, pSvmTransient);
|
---|
4984 | }
|
---|
4985 |
|
---|
4986 | case SVM_EXIT_XCPT_DB:
|
---|
4987 | {
|
---|
4988 | if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_DB))
|
---|
4989 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
4990 | return hmR0SvmNestedExitXcptDB(pVCpu, pSvmTransient);
|
---|
4991 | }
|
---|
4992 |
|
---|
4993 | case SVM_EXIT_XCPT_AC:
|
---|
4994 | {
|
---|
4995 | if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_AC))
|
---|
4996 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
4997 | return hmR0SvmExitXcptAC(pVCpu, pSvmTransient);
|
---|
4998 | }
|
---|
4999 |
|
---|
5000 | case SVM_EXIT_XCPT_BP:
|
---|
5001 | {
|
---|
5002 | if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_BP))
|
---|
5003 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5004 | return hmR0SvmNestedExitXcptBP(pVCpu, pSvmTransient);
|
---|
5005 | }
|
---|
5006 |
|
---|
5007 | case SVM_EXIT_READ_CR0:
|
---|
5008 | case SVM_EXIT_READ_CR3:
|
---|
5009 | case SVM_EXIT_READ_CR4:
|
---|
5010 | {
|
---|
5011 | uint8_t const uCr = uExitCode - SVM_EXIT_READ_CR0;
|
---|
5012 | if (CPUMIsGuestSvmReadCRxInterceptSet(pVCpu, pCtx, uCr))
|
---|
5013 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5014 | return hmR0SvmExitReadCRx(pVCpu, pSvmTransient);
|
---|
5015 | }
|
---|
5016 |
|
---|
5017 | case SVM_EXIT_CR0_SEL_WRITE:
|
---|
5018 | {
|
---|
5019 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
|
---|
5020 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5021 | return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
|
---|
5022 | }
|
---|
5023 |
|
---|
5024 | case SVM_EXIT_WRITE_CR0:
|
---|
5025 | case SVM_EXIT_WRITE_CR3:
|
---|
5026 | case SVM_EXIT_WRITE_CR4:
|
---|
5027 | case SVM_EXIT_WRITE_CR8: /* CR8 writes would go to the V_TPR rather than here, since we run with V_INTR_MASKING. */
|
---|
5028 | {
|
---|
5029 | uint8_t const uCr = uExitCode - SVM_EXIT_WRITE_CR0;
|
---|
5030 | Log4Func(("Write CR%u: uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uCr, uExitInfo1, uExitInfo2));
|
---|
5031 |
|
---|
5032 | if (CPUMIsGuestSvmWriteCRxInterceptSet(pVCpu, pCtx, uCr))
|
---|
5033 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5034 | return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
|
---|
5035 | }
|
---|
5036 |
|
---|
5037 | case SVM_EXIT_PAUSE:
|
---|
5038 | {
|
---|
5039 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_PAUSE))
|
---|
5040 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5041 | return hmR0SvmExitPause(pVCpu, pSvmTransient);
|
---|
5042 | }
|
---|
5043 |
|
---|
5044 | case SVM_EXIT_VINTR:
|
---|
5045 | {
|
---|
5046 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VINTR))
|
---|
5047 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5048 | return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
|
---|
5049 | }
|
---|
5050 |
|
---|
5051 | case SVM_EXIT_INTR:
|
---|
5052 | case SVM_EXIT_NMI:
|
---|
5053 | case SVM_EXIT_SMI:
|
---|
5054 | case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
|
---|
5055 | {
|
---|
5056 | /*
|
---|
5057 | * We shouldn't direct physical interrupts, NMIs, SMIs to the nested-guest.
|
---|
5058 | *
|
---|
5059 | * Although we don't intercept SMIs, the nested-guest might. Therefore, we might
|
---|
5060 | * get an SMI #VMEXIT here so simply ignore rather than causing a corresponding
|
---|
5061 | * nested-guest #VMEXIT.
|
---|
5062 | *
|
---|
5063 | * We shall import the complete state here as we may cause #VMEXITs from ring-3
|
---|
5064 | * while trying to inject interrupts, see comment at the top of this function.
|
---|
5065 | */
|
---|
5066 | HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_ALL);
|
---|
5067 | return hmR0SvmExitIntr(pVCpu, pSvmTransient);
|
---|
5068 | }
|
---|
5069 |
|
---|
5070 | case SVM_EXIT_FERR_FREEZE:
|
---|
5071 | {
|
---|
5072 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_FERR_FREEZE))
|
---|
5073 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5074 | return hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient);
|
---|
5075 | }
|
---|
5076 |
|
---|
5077 | case SVM_EXIT_INVLPG:
|
---|
5078 | {
|
---|
5079 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPG))
|
---|
5080 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5081 | return hmR0SvmExitInvlpg(pVCpu, pSvmTransient);
|
---|
5082 | }
|
---|
5083 |
|
---|
5084 | case SVM_EXIT_WBINVD:
|
---|
5085 | {
|
---|
5086 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_WBINVD))
|
---|
5087 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5088 | return hmR0SvmExitWbinvd(pVCpu, pSvmTransient);
|
---|
5089 | }
|
---|
5090 |
|
---|
5091 | case SVM_EXIT_INVD:
|
---|
5092 | {
|
---|
5093 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVD))
|
---|
5094 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5095 | return hmR0SvmExitInvd(pVCpu, pSvmTransient);
|
---|
5096 | }
|
---|
5097 |
|
---|
5098 | case SVM_EXIT_RDPMC:
|
---|
5099 | {
|
---|
5100 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDPMC))
|
---|
5101 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5102 | return hmR0SvmExitRdpmc(pVCpu, pSvmTransient);
|
---|
5103 | }
|
---|
5104 |
|
---|
5105 | default:
|
---|
5106 | {
|
---|
5107 | switch (uExitCode)
|
---|
5108 | {
|
---|
5109 | case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
|
---|
5110 | case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
|
---|
5111 | case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
|
---|
5112 | case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
|
---|
5113 | {
|
---|
5114 | uint8_t const uDr = uExitCode - SVM_EXIT_READ_DR0;
|
---|
5115 | if (CPUMIsGuestSvmReadDRxInterceptSet(pVCpu, pCtx, uDr))
|
---|
5116 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5117 | return hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
|
---|
5118 | }
|
---|
5119 |
|
---|
5120 | case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
|
---|
5121 | case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
|
---|
5122 | case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
|
---|
5123 | case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
|
---|
5124 | {
|
---|
5125 | uint8_t const uDr = uExitCode - SVM_EXIT_WRITE_DR0;
|
---|
5126 | if (CPUMIsGuestSvmWriteDRxInterceptSet(pVCpu, pCtx, uDr))
|
---|
5127 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5128 | return hmR0SvmExitWriteDRx(pVCpu, pSvmTransient);
|
---|
5129 | }
|
---|
5130 |
|
---|
5131 | case SVM_EXIT_XCPT_DE:
|
---|
5132 | /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
|
---|
5133 | /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
|
---|
5134 | /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
|
---|
5135 | case SVM_EXIT_XCPT_OF:
|
---|
5136 | case SVM_EXIT_XCPT_BR:
|
---|
5137 | /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
|
---|
5138 | case SVM_EXIT_XCPT_NM:
|
---|
5139 | case SVM_EXIT_XCPT_DF:
|
---|
5140 | case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
|
---|
5141 | case SVM_EXIT_XCPT_TS:
|
---|
5142 | case SVM_EXIT_XCPT_NP:
|
---|
5143 | case SVM_EXIT_XCPT_SS:
|
---|
5144 | case SVM_EXIT_XCPT_GP:
|
---|
5145 | /* SVM_EXIT_XCPT_PF: */ /* Handled above. */
|
---|
5146 | case SVM_EXIT_XCPT_15: /* Reserved. */
|
---|
5147 | /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
|
---|
5148 | /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
|
---|
5149 | case SVM_EXIT_XCPT_MC:
|
---|
5150 | case SVM_EXIT_XCPT_XF:
|
---|
5151 | case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
|
---|
5152 | case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
|
---|
5153 | case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
|
---|
5154 | {
|
---|
5155 | uint8_t const uVector = uExitCode - SVM_EXIT_XCPT_0;
|
---|
5156 | if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, uVector))
|
---|
5157 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5158 | return hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient);
|
---|
5159 | }
|
---|
5160 |
|
---|
5161 | case SVM_EXIT_XSETBV:
|
---|
5162 | {
|
---|
5163 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_XSETBV))
|
---|
5164 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5165 | return hmR0SvmExitXsetbv(pVCpu, pSvmTransient);
|
---|
5166 | }
|
---|
5167 |
|
---|
5168 | case SVM_EXIT_TASK_SWITCH:
|
---|
5169 | {
|
---|
5170 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_TASK_SWITCH))
|
---|
5171 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5172 | return hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient);
|
---|
5173 | }
|
---|
5174 |
|
---|
5175 | case SVM_EXIT_IRET:
|
---|
5176 | {
|
---|
5177 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IRET))
|
---|
5178 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5179 | return hmR0SvmExitIret(pVCpu, pSvmTransient);
|
---|
5180 | }
|
---|
5181 |
|
---|
5182 | case SVM_EXIT_SHUTDOWN:
|
---|
5183 | {
|
---|
5184 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SHUTDOWN))
|
---|
5185 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5186 | return hmR0SvmExitShutdown(pVCpu, pSvmTransient);
|
---|
5187 | }
|
---|
5188 |
|
---|
5189 | case SVM_EXIT_VMMCALL:
|
---|
5190 | {
|
---|
5191 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMMCALL))
|
---|
5192 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5193 | return hmR0SvmExitVmmCall(pVCpu, pSvmTransient);
|
---|
5194 | }
|
---|
5195 |
|
---|
5196 | case SVM_EXIT_CLGI:
|
---|
5197 | {
|
---|
5198 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CLGI))
|
---|
5199 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5200 | return hmR0SvmExitClgi(pVCpu, pSvmTransient);
|
---|
5201 | }
|
---|
5202 |
|
---|
5203 | case SVM_EXIT_STGI:
|
---|
5204 | {
|
---|
5205 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_STGI))
|
---|
5206 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5207 | return hmR0SvmExitStgi(pVCpu, pSvmTransient);
|
---|
5208 | }
|
---|
5209 |
|
---|
5210 | case SVM_EXIT_VMLOAD:
|
---|
5211 | {
|
---|
5212 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMLOAD))
|
---|
5213 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5214 | return hmR0SvmExitVmload(pVCpu, pSvmTransient);
|
---|
5215 | }
|
---|
5216 |
|
---|
5217 | case SVM_EXIT_VMSAVE:
|
---|
5218 | {
|
---|
5219 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMSAVE))
|
---|
5220 | NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5221 | return hmR0SvmExitVmsave(pVCpu, pSvmTransient);
|
---|
5222 | }
|
---|
5223 |
|
---|
5224 | case SVM_EXIT_INVLPGA:
|
---|
5225 | {
|
---|
5226 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, |
---|