VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp

Last change on this file was 107854, checked in by vboxsync, 6 days ago

x86.h,VMM: More AMD CPUID bits; addressed some old todos related to these; fixed bugs in svn & vmx world switcher (sanity checks, ++). jiraref:VBP-947 bugref:10738

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 381.5 KB
Line 
1/* $Id: HMSVMR0.cpp 107854 2025-01-18 23:59:26Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_HM
33#define VMCPU_INCL_CPUM_GST_CTX
34#include <iprt/asm-amd64-x86.h>
35#include <iprt/thread.h>
36
37#include <VBox/vmm/pdmapi.h>
38#include <VBox/vmm/dbgf.h>
39#include <VBox/vmm/iem.h>
40#include <VBox/vmm/iom.h>
41#include <VBox/vmm/tm.h>
42#include <VBox/vmm/em.h>
43#include <VBox/vmm/gcm.h>
44#include <VBox/vmm/gim.h>
45#include <VBox/vmm/pdmapic.h>
46#include "HMInternal.h"
47#include <VBox/vmm/vmcc.h>
48#include <VBox/err.h>
49#include "HMSVMR0.h"
50#include "dtrace/VBoxVMM.h"
51
52#ifdef DEBUG_ramshankar
53# define HMSVM_SYNC_FULL_GUEST_STATE
54# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
55# define HMSVM_ALWAYS_TRAP_PF
56# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
57#endif
58
59
60/*********************************************************************************************************************************
61* Defined Constants And Macros *
62*********************************************************************************************************************************/
63#ifdef VBOX_WITH_STATISTICS
64# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
65 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
66 if ((u64ExitCode) == SVM_EXIT_NPF) \
67 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
68 else \
69 STAM_COUNTER_INC(&pVCpu->hm.s.aStatExitReason[(u64ExitCode) & MASK_EXITREASON_STAT]); \
70 } while (0)
71
72# define HMSVM_DEBUG_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
73 STAM_COUNTER_INC(&pVCpu->hm.s.StatDebugExitAll); \
74 if ((u64ExitCode) == SVM_EXIT_NPF) \
75 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
76 else \
77 STAM_COUNTER_INC(&pVCpu->hm.s.aStatExitReason[(u64ExitCode) & MASK_EXITREASON_STAT]); \
78 } while (0)
79
80# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
81 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitAll); \
82 if ((u64ExitCode) == SVM_EXIT_NPF) \
83 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitReasonNpf); \
84 else \
85 STAM_COUNTER_INC(&pVCpu->hm.s.aStatNestedExitReason[(u64ExitCode) & MASK_EXITREASON_STAT]); \
86 } while (0)
87#else
88# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
89# define HMSVM_DEBUG_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
90# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
91#endif /* !VBOX_WITH_STATISTICS */
92
93/** If we decide to use a function table approach this can be useful to
94 * switch to a "static DECLCALLBACK(int)". */
95#define HMSVM_EXIT_DECL static VBOXSTRICTRC
96
97/**
98 * Subset of the guest-CPU state that is kept by SVM R0 code while executing the
99 * guest using hardware-assisted SVM.
100 *
101 * This excludes state like TSC AUX, GPRs (other than RSP, RAX) which are always
102 * are swapped and restored across the world-switch and also registers like
103 * EFER, PAT MSR etc. which cannot be modified by the guest without causing a
104 * \#VMEXIT.
105 */
106#define HMSVM_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
107 | CPUMCTX_EXTRN_RFLAGS \
108 | CPUMCTX_EXTRN_RAX \
109 | CPUMCTX_EXTRN_RSP \
110 | CPUMCTX_EXTRN_SREG_MASK \
111 | CPUMCTX_EXTRN_CR0 \
112 | CPUMCTX_EXTRN_CR2 \
113 | CPUMCTX_EXTRN_CR3 \
114 | CPUMCTX_EXTRN_TABLE_MASK \
115 | CPUMCTX_EXTRN_DR6 \
116 | CPUMCTX_EXTRN_DR7 \
117 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
118 | CPUMCTX_EXTRN_SYSCALL_MSRS \
119 | CPUMCTX_EXTRN_SYSENTER_MSRS \
120 | CPUMCTX_EXTRN_HWVIRT \
121 | CPUMCTX_EXTRN_INHIBIT_INT \
122 | CPUMCTX_EXTRN_HM_SVM_MASK)
123
124/**
125 * Subset of the guest-CPU state that is shared between the guest and host.
126 */
127#define HMSVM_CPUMCTX_SHARED_STATE CPUMCTX_EXTRN_DR_MASK
128
129/** Macro for importing guest state from the VMCB back into CPUMCTX. */
130#define HMSVM_CPUMCTX_IMPORT_STATE(a_pVCpu, a_fWhat) \
131 do { \
132 if ((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fWhat)) \
133 hmR0SvmImportGuestState((a_pVCpu), (a_fWhat)); \
134 } while (0)
135
136/** Assert that the required state bits are fetched. */
137#define HMSVM_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
138 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
139 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
140
141/** Assert that preemption is disabled or covered by thread-context hooks. */
142#define HMSVM_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
143 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
144
145/** Assert that we haven't migrated CPUs when thread-context hooks are not
146 * used. */
147#define HMSVM_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
148 || (a_pVCpu)->hmr0.s.idEnteredCpu == RTMpCpuId(), \
149 ("Illegal migration! Entered on CPU %u Current %u\n", \
150 (a_pVCpu)->hmr0.s.idEnteredCpu, RTMpCpuId()));
151
152/** Assert that we're not executing a nested-guest. */
153#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
154# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) Assert(!CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
155#else
156# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
157#endif
158
159/** Assert that we're executing a nested-guest. */
160#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
161# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) Assert(CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
162#else
163# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
164#endif
165
166/** Macro for checking and returning from the using function for
167 * \#VMEXIT intercepts that maybe caused during delivering of another
168 * event in the guest. */
169#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
170# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
171 do \
172 { \
173 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
174 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
175 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
176 else if ( rc == VINF_EM_RESET \
177 && CPUMIsGuestSvmCtrlInterceptSet((a_pVCpu), &(a_pVCpu)->cpum.GstCtx, SVM_CTRL_INTERCEPT_SHUTDOWN)) \
178 { \
179 HMSVM_CPUMCTX_IMPORT_STATE((a_pVCpu), HMSVM_CPUMCTX_EXTRN_ALL); \
180 return IEMExecSvmVmexit((a_pVCpu), SVM_EXIT_SHUTDOWN, 0, 0); \
181 } \
182 else \
183 return rc; \
184 } while (0)
185#else
186# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
187 do \
188 { \
189 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
190 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
191 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
192 else \
193 return rc; \
194 } while (0)
195#endif
196
197/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
198 * instruction that exited. */
199#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
200 do { \
201 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
202 (a_rc) = VINF_EM_DBG_STEPPED; \
203 } while (0)
204
205/** Validate segment descriptor granularity bit. */
206#ifdef VBOX_STRICT
207# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) \
208 AssertMsg( !(a_pCtx)->reg.Attr.n.u1Present \
209 || ( (a_pCtx)->reg.Attr.n.u1Granularity \
210 ? ((a_pCtx)->reg.u32Limit & 0xfff) == 0xfff \
211 : (a_pCtx)->reg.u32Limit <= UINT32_C(0xfffff)), \
212 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", (a_pCtx)->reg.u32Limit, \
213 (a_pCtx)->reg.Attr.u, (a_pCtx)->reg.u64Base))
214#else
215# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) do { } while (0)
216#endif
217
218/**
219 * Exception bitmap mask for all contributory exceptions.
220 *
221 * Page fault is deliberately excluded here as it's conditional as to whether
222 * it's contributory or benign. Page faults are handled separately.
223 */
224#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
225 | RT_BIT(X86_XCPT_DE))
226
227/**
228 * Mandatory/unconditional guest control intercepts.
229 *
230 * SMIs can and do happen in normal operation. We need not intercept them
231 * while executing the guest (or nested-guest).
232 */
233#define HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS ( SVM_CTRL_INTERCEPT_INTR \
234 | SVM_CTRL_INTERCEPT_NMI \
235 | SVM_CTRL_INTERCEPT_INIT \
236 | SVM_CTRL_INTERCEPT_RDPMC \
237 | SVM_CTRL_INTERCEPT_CPUID \
238 | SVM_CTRL_INTERCEPT_RSM \
239 | SVM_CTRL_INTERCEPT_HLT \
240 | SVM_CTRL_INTERCEPT_IOIO_PROT \
241 | SVM_CTRL_INTERCEPT_MSR_PROT \
242 | SVM_CTRL_INTERCEPT_INVLPGA \
243 | SVM_CTRL_INTERCEPT_SHUTDOWN \
244 | SVM_CTRL_INTERCEPT_FERR_FREEZE \
245 | SVM_CTRL_INTERCEPT_VMRUN \
246 | SVM_CTRL_INTERCEPT_SKINIT \
247 | SVM_CTRL_INTERCEPT_WBINVD \
248 | SVM_CTRL_INTERCEPT_MONITOR \
249 | SVM_CTRL_INTERCEPT_MWAIT \
250 | SVM_CTRL_INTERCEPT_CR0_SEL_WRITE \
251 | SVM_CTRL_INTERCEPT_XSETBV)
252
253/** @name VMCB Clean Bits.
254 *
255 * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
256 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
257 * memory.
258 *
259 * @{ */
260/** All intercepts vectors, TSC offset, PAUSE filter counter. */
261#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
262/** I/O permission bitmap, MSR permission bitmap. */
263#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
264/** ASID. */
265#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
266/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
267V_INTR_VECTOR. */
268#define HMSVM_VMCB_CLEAN_INT_CTRL RT_BIT(3)
269/** Nested Paging: Nested CR3 (nCR3), PAT. */
270#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
271/** Control registers (CR0, CR3, CR4, EFER). */
272#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
273/** Debug registers (DR6, DR7). */
274#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
275/** GDT, IDT limit and base. */
276#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
277/** Segment register: CS, SS, DS, ES limit and base. */
278#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
279/** CR2.*/
280#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
281/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
282#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
283/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
284PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
285#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
286/** Mask of all valid VMCB Clean bits. */
287#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
288 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
289 | HMSVM_VMCB_CLEAN_ASID \
290 | HMSVM_VMCB_CLEAN_INT_CTRL \
291 | HMSVM_VMCB_CLEAN_NP \
292 | HMSVM_VMCB_CLEAN_CRX_EFER \
293 | HMSVM_VMCB_CLEAN_DRX \
294 | HMSVM_VMCB_CLEAN_DT \
295 | HMSVM_VMCB_CLEAN_SEG \
296 | HMSVM_VMCB_CLEAN_CR2 \
297 | HMSVM_VMCB_CLEAN_LBR \
298 | HMSVM_VMCB_CLEAN_AVIC)
299/** @} */
300
301/**
302 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
303 */
304typedef enum SVMMSREXITREAD
305{
306 /** Reading this MSR causes a \#VMEXIT. */
307 SVMMSREXIT_INTERCEPT_READ = 0xb,
308 /** Reading this MSR does not cause a \#VMEXIT. */
309 SVMMSREXIT_PASSTHRU_READ
310} SVMMSREXITREAD;
311
312/**
313 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
314 */
315typedef enum SVMMSREXITWRITE
316{
317 /** Writing to this MSR causes a \#VMEXIT. */
318 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
319 /** Writing to this MSR does not cause a \#VMEXIT. */
320 SVMMSREXIT_PASSTHRU_WRITE
321} SVMMSREXITWRITE;
322
323/**
324 * SVM \#VMEXIT handler.
325 *
326 * @returns Strict VBox status code.
327 * @param pVCpu The cross context virtual CPU structure.
328 * @param pSvmTransient Pointer to the SVM-transient structure.
329 */
330typedef VBOXSTRICTRC FNSVMEXITHANDLER(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
331
332
333/*********************************************************************************************************************************
334* Internal Functions *
335*********************************************************************************************************************************/
336static void hmR0SvmPendingEventToTrpmTrap(PVMCPUCC pVCpu);
337static void hmR0SvmLeave(PVMCPUCC pVCpu, bool fImportState);
338
339
340/** @name \#VMEXIT handlers.
341 * @{
342 */
343static FNSVMEXITHANDLER hmR0SvmExitIntr;
344static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
345static FNSVMEXITHANDLER hmR0SvmExitInvd;
346static FNSVMEXITHANDLER hmR0SvmExitCpuid;
347static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
348static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
349static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
350static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
351static FNSVMEXITHANDLER hmR0SvmExitHlt;
352static FNSVMEXITHANDLER hmR0SvmExitMonitor;
353static FNSVMEXITHANDLER hmR0SvmExitMwait;
354static FNSVMEXITHANDLER hmR0SvmExitShutdown;
355static FNSVMEXITHANDLER hmR0SvmExitUnexpected;
356static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
357static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
358static FNSVMEXITHANDLER hmR0SvmExitMsr;
359static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
360static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
361static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
362static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
363static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
364static FNSVMEXITHANDLER hmR0SvmExitVIntr;
365static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
366static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
367static FNSVMEXITHANDLER hmR0SvmExitPause;
368static FNSVMEXITHANDLER hmR0SvmExitFerrFreeze;
369static FNSVMEXITHANDLER hmR0SvmExitIret;
370static FNSVMEXITHANDLER hmR0SvmExitXcptDE;
371static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
372static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
373static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
374static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
375static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
376static FNSVMEXITHANDLER hmR0SvmExitXcptBP;
377static FNSVMEXITHANDLER hmR0SvmExitXcptGP;
378static FNSVMEXITHANDLER hmR0SvmExitXcptGeneric;
379static FNSVMEXITHANDLER hmR0SvmExitSwInt;
380static FNSVMEXITHANDLER hmR0SvmExitTrRead;
381static FNSVMEXITHANDLER hmR0SvmExitTrWrite;
382#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
383static FNSVMEXITHANDLER hmR0SvmExitClgi;
384static FNSVMEXITHANDLER hmR0SvmExitStgi;
385static FNSVMEXITHANDLER hmR0SvmExitVmload;
386static FNSVMEXITHANDLER hmR0SvmExitVmsave;
387static FNSVMEXITHANDLER hmR0SvmExitInvlpga;
388static FNSVMEXITHANDLER hmR0SvmExitVmrun;
389static FNSVMEXITHANDLER hmR0SvmNestedExitXcptDB;
390static FNSVMEXITHANDLER hmR0SvmNestedExitXcptBP;
391#endif
392/** @} */
393
394static VBOXSTRICTRC hmR0SvmHandleExit(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
395#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
396static VBOXSTRICTRC hmR0SvmHandleExitNested(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
397#endif
398static VBOXSTRICTRC hmR0SvmRunGuestCodeDebug(PVMCPUCC pVCpu, uint32_t *pcLoops);
399
400
401/*********************************************************************************************************************************
402* Global Variables *
403*********************************************************************************************************************************/
404/** Ring-0 memory object for the IO bitmap. */
405static RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
406/** Physical address of the IO bitmap. */
407static RTHCPHYS g_HCPhysIOBitmap;
408/** Pointer to the IO bitmap. */
409static R0PTRTYPE(void *) g_pvIOBitmap;
410
411#ifdef VBOX_STRICT
412# define HMSVM_LOG_RBP_RSP RT_BIT_32(0)
413# define HMSVM_LOG_CR_REGS RT_BIT_32(1)
414# define HMSVM_LOG_CS RT_BIT_32(2)
415# define HMSVM_LOG_SS RT_BIT_32(3)
416# define HMSVM_LOG_FS RT_BIT_32(4)
417# define HMSVM_LOG_GS RT_BIT_32(5)
418# define HMSVM_LOG_LBR RT_BIT_32(6)
419# define HMSVM_LOG_ALL ( HMSVM_LOG_RBP_RSP \
420 | HMSVM_LOG_CR_REGS \
421 | HMSVM_LOG_CS \
422 | HMSVM_LOG_SS \
423 | HMSVM_LOG_FS \
424 | HMSVM_LOG_GS \
425 | HMSVM_LOG_LBR)
426
427/**
428 * Dumps virtual CPU state and additional info. to the logger for diagnostics.
429 *
430 * @param pVCpu The cross context virtual CPU structure.
431 * @param pVmcb Pointer to the VM control block.
432 * @param pszPrefix Log prefix.
433 * @param fFlags Log flags, see HMSVM_LOG_XXX.
434 * @param uVerbose The verbosity level, currently unused.
435 */
436static void hmR0SvmLogState(PVMCPUCC pVCpu, PCSVMVMCB pVmcb, const char *pszPrefix, uint32_t fFlags, uint8_t uVerbose)
437{
438 RT_NOREF2(pVCpu, uVerbose);
439 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
440
441 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
442 Log4(("%s: cs:rip=%04x:%RX64 efl=%#RX64\n", pszPrefix, pCtx->cs.Sel, pCtx->rip, pCtx->rflags.u));
443
444 if (fFlags & HMSVM_LOG_RBP_RSP)
445 {
446 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RBP);
447 Log4(("%s: rsp=%#RX64 rbp=%#RX64\n", pszPrefix, pCtx->rsp, pCtx->rbp));
448 }
449
450 if (fFlags & HMSVM_LOG_CR_REGS)
451 {
452 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4);
453 Log4(("%s: cr0=%#RX64 cr3=%#RX64 cr4=%#RX64\n", pszPrefix, pCtx->cr0, pCtx->cr3, pCtx->cr4));
454 }
455
456 if (fFlags & HMSVM_LOG_CS)
457 {
458 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
459 Log4(("%s: cs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base,
460 pCtx->cs.u32Limit, pCtx->cs.Attr.u));
461 }
462 if (fFlags & HMSVM_LOG_SS)
463 {
464 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
465 Log4(("%s: ss={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base,
466 pCtx->ss.u32Limit, pCtx->ss.Attr.u));
467 }
468 if (fFlags & HMSVM_LOG_FS)
469 {
470 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
471 Log4(("%s: fs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base,
472 pCtx->fs.u32Limit, pCtx->fs.Attr.u));
473 }
474 if (fFlags & HMSVM_LOG_GS)
475 {
476 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
477 Log4(("%s: gs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base,
478 pCtx->gs.u32Limit, pCtx->gs.Attr.u));
479 }
480
481 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
482 if (fFlags & HMSVM_LOG_LBR)
483 {
484 Log4(("%s: br_from=%#RX64 br_to=%#RX64 lastxcpt_from=%#RX64 lastxcpt_to=%#RX64\n", pszPrefix, pVmcbGuest->u64BR_FROM,
485 pVmcbGuest->u64BR_TO, pVmcbGuest->u64LASTEXCPFROM, pVmcbGuest->u64LASTEXCPTO));
486 }
487 NOREF(pszPrefix); NOREF(pVmcbGuest); NOREF(pCtx);
488}
489#endif /* VBOX_STRICT */
490
491
492/**
493 * Sets up and activates AMD-V on the current CPU.
494 *
495 * @returns VBox status code.
496 * @param pHostCpu The HM physical-CPU structure.
497 * @param pVM The cross context VM structure. Can be
498 * NULL after a resume!
499 * @param pvCpuPage Pointer to the global CPU page.
500 * @param HCPhysCpuPage Physical address of the global CPU page.
501 * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
502 * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs (currently
503 * unused).
504 */
505VMMR0DECL(int) SVMR0EnableCpu(PHMPHYSCPU pHostCpu, PVMCC pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
506 PCSUPHWVIRTMSRS pHwvirtMsrs)
507{
508 Assert(!fEnabledByHost);
509 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
510 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
511 Assert(pvCpuPage); NOREF(pvCpuPage);
512 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
513
514 RT_NOREF2(fEnabledByHost, pHwvirtMsrs);
515
516 /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
517 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
518
519 /*
520 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
521 */
522 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
523 if (u64HostEfer & MSR_K6_EFER_SVME)
524 {
525 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
526 if ( pVM
527 && pVM->hm.s.svm.fIgnoreInUseError)
528 pHostCpu->fIgnoreAMDVInUseError = true;
529
530 if (!pHostCpu->fIgnoreAMDVInUseError)
531 {
532 ASMSetFlags(fEFlags);
533 return VERR_SVM_IN_USE;
534 }
535 }
536
537 /* Turn on AMD-V in the EFER MSR. */
538 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
539
540 /* Write the physical page address where the CPU will store the host state while executing the VM. */
541 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
542
543 /* Restore interrupts. */
544 ASMSetFlags(fEFlags);
545
546 /*
547 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all
548 * non-zero ASIDs when enabling SVM. AMD doesn't have an SVM instruction to flush all
549 * ASIDs (flushing is done upon VMRUN). Therefore, flag that we need to flush the TLB
550 * entirely with before executing any guest code.
551 */
552 pHostCpu->fFlushAsidBeforeUse = true;
553
554 /*
555 * Ensure each VCPU scheduled on this CPU gets a new ASID on resume. See @bugref{6255}.
556 */
557 ++pHostCpu->cTlbFlushes;
558
559 return VINF_SUCCESS;
560}
561
562
563/**
564 * Deactivates AMD-V on the current CPU.
565 *
566 * @returns VBox status code.
567 * @param pHostCpu The HM physical-CPU structure.
568 * @param pvCpuPage Pointer to the global CPU page.
569 * @param HCPhysCpuPage Physical address of the global CPU page.
570 */
571VMMR0DECL(int) SVMR0DisableCpu(PHMPHYSCPU pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
572{
573 RT_NOREF1(pHostCpu);
574 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
575 AssertReturn( HCPhysCpuPage
576 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
577 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
578
579 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
580 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
581
582 /* Turn off AMD-V in the EFER MSR. */
583 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
584 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
585
586 /* Invalidate host state physical address. */
587 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
588
589 /* Restore interrupts. */
590 ASMSetFlags(fEFlags);
591
592 return VINF_SUCCESS;
593}
594
595
596/**
597 * Does global AMD-V initialization (called during module initialization).
598 *
599 * @returns VBox status code.
600 */
601VMMR0DECL(int) SVMR0GlobalInit(void)
602{
603 /*
604 * Allocate 12 KB (3 pages) for the IO bitmap. Since this is non-optional and we always
605 * intercept all IO accesses, it's done once globally here instead of per-VM.
606 */
607 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
608 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT,
609 NIL_RTHCPHYS /*PhysHighest*/, false /* fExecutable */);
610 if (RT_FAILURE(rc))
611 return rc;
612
613 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
614 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
615
616 /* Set all bits to intercept all IO accesses. */
617 ASMMemFill32(g_pvIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
618
619 return VINF_SUCCESS;
620}
621
622
623/**
624 * Does global AMD-V termination (called during module termination).
625 */
626VMMR0DECL(void) SVMR0GlobalTerm(void)
627{
628 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
629 {
630 RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
631 g_pvIOBitmap = NULL;
632 g_HCPhysIOBitmap = 0;
633 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
634 }
635}
636
637
638/**
639 * Frees any allocated per-VCPU structures for a VM.
640 *
641 * @param pVM The cross context VM structure.
642 */
643DECLINLINE(void) hmR0SvmFreeStructs(PVMCC pVM)
644{
645 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
646 {
647 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
648 AssertPtr(pVCpu);
649
650 if (pVCpu->hmr0.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
651 {
652 RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjVmcbHost, false);
653 pVCpu->hmr0.s.svm.HCPhysVmcbHost = 0;
654 pVCpu->hmr0.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
655 }
656
657 if (pVCpu->hmr0.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
658 {
659 RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjVmcb, false);
660 pVCpu->hmr0.s.svm.pVmcb = NULL;
661 pVCpu->hmr0.s.svm.HCPhysVmcb = 0;
662 pVCpu->hmr0.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
663 }
664
665 if (pVCpu->hmr0.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
666 {
667 RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjMsrBitmap, false);
668 pVCpu->hmr0.s.svm.pvMsrBitmap = NULL;
669 pVCpu->hmr0.s.svm.HCPhysMsrBitmap = 0;
670 pVCpu->hmr0.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
671 }
672 }
673}
674
675
676/**
677 * Sets pfnVMRun to the best suited variant.
678 *
679 * This must be called whenever anything changes relative to the SVMR0VMRun
680 * variant selection:
681 * - pVCpu->hm.s.fLoadSaveGuestXcr0
682 * - CPUMCTX_WSF_IBPB_ENTRY in pVCpu->cpum.GstCtx.fWorldSwitcher
683 * - CPUMCTX_WSF_IBPB_EXIT in pVCpu->cpum.GstCtx.fWorldSwitcher
684 * - Perhaps: CPUMIsGuestFPUStateActive() (windows only)
685 * - Perhaps: CPUMCTX.fXStateMask (windows only)
686 *
687 * We currently ASSUME that neither CPUMCTX_WSF_IBPB_ENTRY nor
688 * CPUMCTX_WSF_IBPB_EXIT cannot be changed at runtime.
689 */
690static void hmR0SvmUpdateVmRunFunction(PVMCPUCC pVCpu)
691{
692 static const struct CLANGWORKAROUND { PFNHMSVMVMRUN pfn; } s_aHmR0SvmVmRunFunctions[] =
693 {
694 { hmR0SvmVmRun_SansXcr0_SansIbpbEntry_SansIbpbExit_SansSpecCtrl },
695 { hmR0SvmVmRun_WithXcr0_SansIbpbEntry_SansIbpbExit_SansSpecCtrl },
696 { hmR0SvmVmRun_SansXcr0_WithIbpbEntry_SansIbpbExit_SansSpecCtrl },
697 { hmR0SvmVmRun_WithXcr0_WithIbpbEntry_SansIbpbExit_SansSpecCtrl },
698 { hmR0SvmVmRun_SansXcr0_SansIbpbEntry_WithIbpbExit_SansSpecCtrl },
699 { hmR0SvmVmRun_WithXcr0_SansIbpbEntry_WithIbpbExit_SansSpecCtrl },
700 { hmR0SvmVmRun_SansXcr0_WithIbpbEntry_WithIbpbExit_SansSpecCtrl },
701 { hmR0SvmVmRun_WithXcr0_WithIbpbEntry_WithIbpbExit_SansSpecCtrl },
702 { hmR0SvmVmRun_SansXcr0_SansIbpbEntry_SansIbpbExit_WithSpecCtrl },
703 { hmR0SvmVmRun_WithXcr0_SansIbpbEntry_SansIbpbExit_WithSpecCtrl },
704 { hmR0SvmVmRun_SansXcr0_WithIbpbEntry_SansIbpbExit_WithSpecCtrl },
705 { hmR0SvmVmRun_WithXcr0_WithIbpbEntry_SansIbpbExit_WithSpecCtrl },
706 { hmR0SvmVmRun_SansXcr0_SansIbpbEntry_WithIbpbExit_WithSpecCtrl },
707 { hmR0SvmVmRun_WithXcr0_SansIbpbEntry_WithIbpbExit_WithSpecCtrl },
708 { hmR0SvmVmRun_SansXcr0_WithIbpbEntry_WithIbpbExit_WithSpecCtrl },
709 { hmR0SvmVmRun_WithXcr0_WithIbpbEntry_WithIbpbExit_WithSpecCtrl },
710 };
711 uintptr_t const idx = (pVCpu->hmr0.s.fLoadSaveGuestXcr0 ? 1 : 0)
712 | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_ENTRY ? 2 : 0)
713 | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_EXIT ? 4 : 0)
714 | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_SPEC_CTRL ? 8 : 0);
715 PFNHMSVMVMRUN const pfnVMRun = s_aHmR0SvmVmRunFunctions[idx].pfn;
716 if (pVCpu->hmr0.s.svm.pfnVMRun != pfnVMRun)
717 pVCpu->hmr0.s.svm.pfnVMRun = pfnVMRun;
718}
719
720
721/**
722 * Selector FNHMSVMVMRUN implementation.
723 */
724static DECLCALLBACK(int) hmR0SvmVMRunSelector(PVMCC pVM, PVMCPUCC pVCpu, RTHCPHYS HCPhysVMCB)
725{
726 hmR0SvmUpdateVmRunFunction(pVCpu);
727 return pVCpu->hmr0.s.svm.pfnVMRun(pVM, pVCpu, HCPhysVMCB);
728}
729
730
731/**
732 * Does per-VM AMD-V initialization.
733 *
734 * @returns VBox status code.
735 * @param pVM The cross context VM structure.
736 */
737VMMR0DECL(int) SVMR0InitVM(PVMCC pVM)
738{
739 int rc = VERR_INTERNAL_ERROR_5;
740
741 /*
742 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
743 */
744 uint32_t u32Family;
745 uint32_t u32Model;
746 uint32_t u32Stepping;
747 if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping))
748 {
749 Log4Func(("AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
750 pVM->hmr0.s.svm.fAlwaysFlushTLB = true;
751 }
752
753 /*
754 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
755 */
756 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
757 {
758 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
759 pVCpu->hmr0.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
760 pVCpu->hmr0.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
761 pVCpu->hmr0.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
762 }
763
764 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
765 {
766 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
767
768 /*
769 * Initialize the hardware-assisted SVM guest-execution handler.
770 * We now use a single handler for both 32-bit and 64-bit guests, see @bugref{6208#c73}.
771 */
772 pVCpu->hmr0.s.svm.pfnVMRun = hmR0SvmVMRunSelector;
773
774 /*
775 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
776 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
777 */
778 rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjVmcbHost, SVM_VMCB_PAGES << HOST_PAGE_SHIFT,
779 NIL_RTHCPHYS /*PhysHighest*/, false /* fExecutable */);
780 if (RT_FAILURE(rc))
781 goto failure_cleanup;
782
783 void *pvVmcbHost = RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjVmcbHost);
784 pVCpu->hmr0.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjVmcbHost, 0 /* iPage */);
785 RT_BZERO(pvVmcbHost, HOST_PAGE_SIZE);
786
787 /*
788 * Allocate one page for the guest-state VMCB.
789 */
790 rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjVmcb, SVM_VMCB_PAGES << HOST_PAGE_SHIFT,
791 NIL_RTHCPHYS /*PhysHighest*/, false /* fExecutable */);
792 if (RT_FAILURE(rc))
793 goto failure_cleanup;
794
795 pVCpu->hmr0.s.svm.pVmcb = (PSVMVMCB)RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjVmcb);
796 pVCpu->hmr0.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjVmcb, 0 /* iPage */);
797 RT_BZERO(pVCpu->hmr0.s.svm.pVmcb, HOST_PAGE_SIZE);
798
799 /*
800 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
801 * SVM to not require one.
802 */
803 rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjMsrBitmap, SVM_MSRPM_PAGES << HOST_PAGE_SHIFT,
804 NIL_RTHCPHYS /*PhysHighest*/, false /* fExecutable */);
805 if (RT_FAILURE(rc))
806 goto failure_cleanup;
807
808 pVCpu->hmr0.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjMsrBitmap);
809 pVCpu->hmr0.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
810 /* Set all bits to intercept all MSR accesses (changed later on). */
811 ASMMemFill32(pVCpu->hmr0.s.svm.pvMsrBitmap, SVM_MSRPM_PAGES << HOST_PAGE_SHIFT, UINT32_C(0xffffffff));
812 }
813
814 return VINF_SUCCESS;
815
816failure_cleanup:
817 hmR0SvmFreeStructs(pVM);
818 return rc;
819}
820
821
822/**
823 * Does per-VM AMD-V termination.
824 *
825 * @returns VBox status code.
826 * @param pVM The cross context VM structure.
827 */
828VMMR0DECL(int) SVMR0TermVM(PVMCC pVM)
829{
830 hmR0SvmFreeStructs(pVM);
831 return VINF_SUCCESS;
832}
833
834
835/**
836 * Returns whether the VMCB Clean Bits feature is supported.
837 *
838 * @returns @c true if supported, @c false otherwise.
839 * @param pVCpu The cross context virtual CPU structure.
840 * @param fIsNestedGuest Whether we are currently executing the nested-guest.
841 */
842DECL_FORCE_INLINE(bool) hmR0SvmSupportsVmcbCleanBits(PVMCPUCC pVCpu, bool fIsNestedGuest)
843{
844 PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
845 bool const fHostVmcbCleanBits = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN);
846 if (!fIsNestedGuest)
847 return fHostVmcbCleanBits;
848 return fHostVmcbCleanBits && pVM->cpum.ro.GuestFeatures.fSvmVmcbClean;
849}
850
851
852/**
853 * Returns whether the decode assists feature is supported.
854 *
855 * @returns @c true if supported, @c false otherwise.
856 * @param pVCpu The cross context virtual CPU structure.
857 */
858DECLINLINE(bool) hmR0SvmSupportsDecodeAssists(PVMCPUCC pVCpu)
859{
860 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
861#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
862 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
863 return (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS)
864 && pVM->cpum.ro.GuestFeatures.fSvmDecodeAssists;
865#endif
866 return RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS);
867}
868
869
870/**
871 * Returns whether the NRIP_SAVE feature is supported.
872 *
873 * @returns @c true if supported, @c false otherwise.
874 * @param pVCpu The cross context virtual CPU structure.
875 */
876DECLINLINE(bool) hmR0SvmSupportsNextRipSave(PVMCPUCC pVCpu)
877{
878 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
879#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
880 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
881 return (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
882 && pVM->cpum.ro.GuestFeatures.fSvmNextRipSave;
883#endif
884 return RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
885}
886
887
888/**
889 * Sets the permission bits for the specified MSR in the MSRPM bitmap.
890 *
891 * @param pVCpu The cross context virtual CPU structure.
892 * @param pbMsrBitmap Pointer to the MSR bitmap.
893 * @param idMsr The MSR for which the permissions are being set.
894 * @param enmRead MSR read permissions.
895 * @param enmWrite MSR write permissions.
896 *
897 * @remarks This function does -not- clear the VMCB clean bits for MSRPM. The
898 * caller needs to take care of this.
899 */
900static void hmR0SvmSetMsrPermission(PVMCPUCC pVCpu, uint8_t *pbMsrBitmap, uint32_t idMsr, SVMMSREXITREAD enmRead,
901 SVMMSREXITWRITE enmWrite)
902{
903 bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx);
904 uint16_t offMsrpm;
905 uint8_t uMsrpmBit;
906 int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
907 AssertRC(rc);
908
909 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
910 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
911
912 pbMsrBitmap += offMsrpm;
913 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
914 *pbMsrBitmap |= RT_BIT(uMsrpmBit);
915 else
916 {
917 if (!fInNestedGuestMode)
918 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
919#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
920 else
921 {
922 /* Only clear the bit if the nested-guest is also not intercepting the MSR read.*/
923 if (!(pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[offMsrpm] & RT_BIT(uMsrpmBit)))
924 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
925 else
926 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit));
927 }
928#endif
929 }
930
931 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
932 *pbMsrBitmap |= RT_BIT(uMsrpmBit + 1);
933 else
934 {
935 if (!fInNestedGuestMode)
936 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
937#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
938 else
939 {
940 /* Only clear the bit if the nested-guest is also not intercepting the MSR write.*/
941 if (!(pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[offMsrpm] & RT_BIT(uMsrpmBit + 1)))
942 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
943 else
944 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
945 }
946#endif
947 }
948}
949
950
951/**
952 * Sets up AMD-V for the specified VM.
953 * This function is only called once per-VM during initalization.
954 *
955 * @returns VBox status code.
956 * @param pVM The cross context VM structure.
957 */
958VMMR0DECL(int) SVMR0SetupVM(PVMCC pVM)
959{
960 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
961 AssertReturn(pVM, VERR_INVALID_PARAMETER);
962
963 /*
964 * Validate and copy over some parameters.
965 */
966 AssertReturn(pVM->hm.s.svm.fSupported, VERR_INCOMPATIBLE_CONFIG);
967 bool const fNestedPaging = pVM->hm.s.fNestedPagingCfg;
968 AssertReturn(!fNestedPaging || (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING), VERR_INCOMPATIBLE_CONFIG);
969 pVM->hmr0.s.fNestedPaging = fNestedPaging;
970 pVM->hmr0.s.fAllow64BitGuests = pVM->hm.s.fAllow64BitGuestsCfg;
971
972 /*
973 * Determin some configuration parameters.
974 */
975 bool const fPauseFilter = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
976 bool const fPauseFilterThreshold = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
977 bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter;
978
979 bool const fLbrVirt = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT);
980 bool const fUseLbrVirt = fLbrVirt && pVM->hm.s.svm.fLbrVirt; /** @todo IEM implementation etc. */
981
982#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
983 bool const fVirtVmsaveVmload = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD);
984 bool const fUseVirtVmsaveVmload = fVirtVmsaveVmload && pVM->hm.s.svm.fVirtVmsaveVmload && fNestedPaging;
985
986 bool const fVGif = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VGIF);
987 bool const fUseVGif = fVGif && pVM->hm.s.svm.fVGif;
988#endif
989
990 PVMCPUCC pVCpu0 = VMCC_GET_CPU_0(pVM);
991 PSVMVMCB pVmcb0 = pVCpu0->hmr0.s.svm.pVmcb;
992 AssertMsgReturn(RT_VALID_PTR(pVmcb0), ("Invalid pVmcb (%p) for vcpu[0]\n", pVmcb0), VERR_SVM_INVALID_PVMCB);
993 PSVMVMCBCTRL pVmcbCtrl0 = &pVmcb0->ctrl;
994
995 /* Always trap #AC for reasons of security. */
996 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_AC);
997
998 /* Always trap #DB for reasons of security. */
999 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_DB);
1000
1001 /* Trap exceptions unconditionally (debug purposes). */
1002#ifdef HMSVM_ALWAYS_TRAP_PF
1003 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_PF);
1004#endif
1005#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1006 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
1007 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_BP)
1008 | RT_BIT_32(X86_XCPT_DE)
1009 | RT_BIT_32(X86_XCPT_NM)
1010 | RT_BIT_32(X86_XCPT_UD)
1011 | RT_BIT_32(X86_XCPT_NP)
1012 | RT_BIT_32(X86_XCPT_SS)
1013 | RT_BIT_32(X86_XCPT_GP)
1014 | RT_BIT_32(X86_XCPT_PF)
1015 | RT_BIT_32(X86_XCPT_MF)
1016 ;
1017#endif
1018
1019 /* Apply the exceptions intercepts needed by the GIM provider. */
1020 if (pVCpu0->hm.s.fGIMTrapXcptUD || pVCpu0->hm.s.svm.fEmulateLongModeSysEnterExit)
1021 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_UD);
1022
1023 /* Apply the exceptions intercepts needed by the GCM fixers. */
1024 if (pVCpu0->hm.s.fGCMTrapXcptDE)
1025 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_DE);
1026
1027 /* The mesa 3d driver hack needs #GP. */
1028 if (pVCpu0->hm.s.fTrapXcptGpForLovelyMesaDrv)
1029 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_GP);
1030
1031 /* Set up unconditional intercepts and conditions. */
1032 pVmcbCtrl0->u64InterceptCtrl = HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS
1033 | SVM_CTRL_INTERCEPT_VMMCALL
1034 | SVM_CTRL_INTERCEPT_VMSAVE
1035 | SVM_CTRL_INTERCEPT_VMLOAD
1036 | SVM_CTRL_INTERCEPT_CLGI
1037 | SVM_CTRL_INTERCEPT_STGI;
1038
1039#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
1040 pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH;
1041#endif
1042
1043#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1044 if (pVCpu0->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvm)
1045 {
1046 /* Virtualized VMSAVE/VMLOAD. */
1047 if (fUseVirtVmsaveVmload)
1048 {
1049 pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload = 1;
1050 pVmcbCtrl0->u64InterceptCtrl &= ~( SVM_CTRL_INTERCEPT_VMSAVE
1051 | SVM_CTRL_INTERCEPT_VMLOAD);
1052 }
1053 else
1054 Assert(!pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload);
1055
1056 /* Virtual GIF. */
1057 if (fUseVGif)
1058 {
1059 pVmcbCtrl0->IntCtrl.n.u1VGifEnable = 1;
1060 pVmcbCtrl0->u64InterceptCtrl &= ~( SVM_CTRL_INTERCEPT_CLGI
1061 | SVM_CTRL_INTERCEPT_STGI);
1062 }
1063 else
1064 Assert(!pVmcbCtrl0->IntCtrl.n.u1VGifEnable);
1065 }
1066 else
1067#endif
1068 {
1069 Assert(!pVCpu0->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvm);
1070 Assert(!pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload);
1071 Assert(!pVmcbCtrl0->IntCtrl.n.u1VGifEnable);
1072 }
1073
1074 /* CR4 writes must always be intercepted for tracking PGM mode changes and
1075 AVX (for XCR0 syncing during worlds switching). */
1076 pVmcbCtrl0->u16InterceptWrCRx = RT_BIT(4);
1077
1078 /* Intercept all DRx reads and writes by default. Changed later on. */
1079 pVmcbCtrl0->u16InterceptRdDRx = 0xffff;
1080 pVmcbCtrl0->u16InterceptWrDRx = 0xffff;
1081
1082 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
1083 pVmcbCtrl0->IntCtrl.n.u1VIntrMasking = 1;
1084
1085 /* Ignore the priority in the virtual TPR. This is necessary for delivering PIC style (ExtInt) interrupts
1086 and we currently deliver both PIC and APIC interrupts alike, see hmR0SvmEvaluatePendingEvent() */
1087 pVmcbCtrl0->IntCtrl.n.u1IgnoreTPR = 1;
1088
1089 /* Set the IO permission bitmap physical addresses. */
1090 pVmcbCtrl0->u64IOPMPhysAddr = g_HCPhysIOBitmap;
1091
1092 /* LBR virtualization. */
1093 pVmcbCtrl0->LbrVirt.n.u1LbrVirt = fUseLbrVirt;
1094
1095 /* The host ASID MBZ, for the guest start with 1. */
1096 pVmcbCtrl0->TLBCtrl.n.u32ASID = 1;
1097
1098 /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
1099 pVmcbCtrl0->NestedPagingCtrl.n.u1NestedPaging = fNestedPaging;
1100
1101 /* Without Nested Paging, we need additionally intercepts. */
1102 if (!fNestedPaging)
1103 {
1104 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
1105 pVmcbCtrl0->u16InterceptRdCRx |= RT_BIT(3);
1106 pVmcbCtrl0->u16InterceptWrCRx |= RT_BIT(3);
1107
1108 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
1109 pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG
1110 | SVM_CTRL_INTERCEPT_TASK_SWITCH;
1111
1112 /* Page faults must be intercepted to implement shadow paging. */
1113 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
1114 }
1115
1116 /* Workaround for missing OS/2 TLB flush, see ticketref:20625. */
1117 if (pVM->hm.s.fMissingOS2TlbFlushWorkaround)
1118 pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TR_WRITES;
1119
1120 /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
1121 if (fUsePauseFilter)
1122 {
1123 Assert(pVM->hm.s.svm.cPauseFilter > 0);
1124 pVmcbCtrl0->u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
1125 if (fPauseFilterThreshold)
1126 pVmcbCtrl0->u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
1127 pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_PAUSE;
1128 }
1129
1130 /*
1131 * Setup the MSR permission bitmap.
1132 * The following MSRs are saved/restored automatically during the world-switch.
1133 * Don't intercept guest read/write accesses to these MSRs.
1134 */
1135 uint8_t *pbMsrBitmap0 = (uint8_t *)pVCpu0->hmr0.s.svm.pvMsrBitmap;
1136 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1137 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1138 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1139 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1140 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1141 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1142 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1143 if (!pVCpu0->hm.s.svm.fEmulateLongModeSysEnterExit)
1144 {
1145 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1146 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1147 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1148 }
1149 else
1150 {
1151 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_CS, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
1152 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
1153 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
1154 }
1155 pVmcbCtrl0->u64MSRPMPhysAddr = pVCpu0->hmr0.s.svm.HCPhysMsrBitmap;
1156
1157 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1158 Assert(pVmcbCtrl0->u32VmcbCleanBits == 0);
1159
1160 for (VMCPUID idCpu = 1; idCpu < pVM->cCpus; idCpu++)
1161 {
1162 PVMCPUCC pVCpuCur = VMCC_GET_CPU(pVM, idCpu);
1163 PSVMVMCB pVmcbCur = pVCpuCur->hmr0.s.svm.pVmcb;
1164 AssertMsgReturn(RT_VALID_PTR(pVmcbCur), ("Invalid pVmcb (%p) for vcpu[%u]\n", pVmcbCur, idCpu), VERR_SVM_INVALID_PVMCB);
1165 PSVMVMCBCTRL pVmcbCtrlCur = &pVmcbCur->ctrl;
1166
1167 /* Copy the VMCB control area. */
1168 memcpy(pVmcbCtrlCur, pVmcbCtrl0, sizeof(*pVmcbCtrlCur));
1169
1170 /* Copy the MSR bitmap and setup the VCPU-specific host physical address. */
1171 uint8_t *pbMsrBitmapCur = (uint8_t *)pVCpuCur->hmr0.s.svm.pvMsrBitmap;
1172 memcpy(pbMsrBitmapCur, pbMsrBitmap0, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1173 pVmcbCtrlCur->u64MSRPMPhysAddr = pVCpuCur->hmr0.s.svm.HCPhysMsrBitmap;
1174
1175 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1176 Assert(pVmcbCtrlCur->u32VmcbCleanBits == 0);
1177
1178 /* Verify our assumption that GIM providers trap #UD uniformly across VCPUs initially. */
1179 Assert(pVCpuCur->hm.s.fGIMTrapXcptUD == pVCpu0->hm.s.fGIMTrapXcptUD);
1180 /* Same for GCM, #DE trapping should be uniform across VCPUs. */
1181 Assert(pVCpuCur->hm.s.fGCMTrapXcptDE == pVCpu0->hm.s.fGCMTrapXcptDE);
1182 }
1183
1184#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1185 LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool fUseVGif=%RTbool fUseVirtVmsaveVmload=%RTbool\n", fUsePauseFilter,
1186 fUseLbrVirt, fUseVGif, fUseVirtVmsaveVmload));
1187#else
1188 LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool\n", fUsePauseFilter, fUseLbrVirt));
1189#endif
1190 return VINF_SUCCESS;
1191}
1192
1193
1194/**
1195 * Gets a pointer to the currently active guest (or nested-guest) VMCB.
1196 *
1197 * @returns Pointer to the current context VMCB.
1198 * @param pVCpu The cross context virtual CPU structure.
1199 */
1200DECLINLINE(PSVMVMCB) hmR0SvmGetCurrentVmcb(PVMCPUCC pVCpu)
1201{
1202#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1203 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1204 return &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb;
1205#endif
1206 return pVCpu->hmr0.s.svm.pVmcb;
1207}
1208
1209
1210/**
1211 * Gets a pointer to the nested-guest VMCB cache.
1212 *
1213 * @returns Pointer to the nested-guest VMCB cache.
1214 * @param pVCpu The cross context virtual CPU structure.
1215 */
1216DECLINLINE(PSVMNESTEDVMCBCACHE) hmR0SvmGetNestedVmcbCache(PVMCPUCC pVCpu)
1217{
1218#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1219 Assert(pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
1220 return &pVCpu->hm.s.svm.NstGstVmcbCache;
1221#else
1222 RT_NOREF(pVCpu);
1223 return NULL;
1224#endif
1225}
1226
1227
1228/**
1229 * Invalidates a guest page by guest virtual address.
1230 *
1231 * @returns VBox status code.
1232 * @param pVCpu The cross context virtual CPU structure.
1233 * @param GCVirt Guest virtual address of the page to invalidate.
1234 */
1235VMMR0DECL(int) SVMR0InvalidatePage(PVMCPUCC pVCpu, RTGCPTR GCVirt)
1236{
1237 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
1238
1239 bool const fFlushPending = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH) || pVCpu->CTX_SUFF(pVM)->hmr0.s.svm.fAlwaysFlushTLB;
1240
1241 /* Skip it if a TLB flush is already pending. */
1242 if (!fFlushPending)
1243 {
1244 Log4Func(("%#RGv\n", GCVirt));
1245
1246 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
1247 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
1248
1249 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
1250 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1251 }
1252 return VINF_SUCCESS;
1253}
1254
1255
1256/**
1257 * Flushes the appropriate tagged-TLB entries.
1258 *
1259 * @param pHostCpu The HM physical-CPU structure.
1260 * @param pVCpu The cross context virtual CPU structure.
1261 * @param pVmcb Pointer to the VM control block.
1262 */
1263static void hmR0SvmFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1264{
1265 /*
1266 * Force a TLB flush for the first world switch if the current CPU differs from the one
1267 * we ran on last. This can happen both for start & resume due to long jumps back to
1268 * ring-3.
1269 *
1270 * We also force a TLB flush every time when executing a nested-guest VCPU as there is no
1271 * correlation between it and the physical CPU.
1272 *
1273 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while
1274 * flushing the TLB, so we cannot reuse the ASIDs without flushing.
1275 */
1276 bool fNewAsid = false;
1277 Assert(pHostCpu->idCpu != NIL_RTCPUID);
1278 if ( pVCpu->hmr0.s.idLastCpu != pHostCpu->idCpu
1279 || pVCpu->hmr0.s.cTlbFlushes != pHostCpu->cTlbFlushes
1280#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1281 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)
1282#endif
1283 )
1284 {
1285 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1286 pVCpu->hmr0.s.fForceTLBFlush = true;
1287 fNewAsid = true;
1288 }
1289
1290 /* Set TLB flush state as checked until we return from the world switch. */
1291 ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
1292
1293 /* Check for explicit TLB flushes. */
1294 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1295 {
1296 pVCpu->hmr0.s.fForceTLBFlush = true;
1297 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1298 }
1299
1300 /*
1301 * If the AMD CPU erratum 170, We need to flush the entire TLB for each world switch. Sad.
1302 * This Host CPU requirement takes precedence.
1303 */
1304 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1305 if (pVM->hmr0.s.svm.fAlwaysFlushTLB)
1306 {
1307 pHostCpu->uCurrentAsid = 1;
1308 pVCpu->hmr0.s.uCurrentAsid = 1;
1309 pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1310 pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
1311 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1312
1313 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1314 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1315 }
1316 else
1317 {
1318 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
1319 if (pVCpu->hmr0.s.fForceTLBFlush)
1320 {
1321 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1322 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1323
1324 if (fNewAsid)
1325 {
1326 ++pHostCpu->uCurrentAsid;
1327
1328 bool fHitASIDLimit = false;
1329 if (pHostCpu->uCurrentAsid >= g_uHmMaxAsid)
1330 {
1331 pHostCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
1332 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new ASID. */
1333 fHitASIDLimit = true;
1334 }
1335
1336 if ( fHitASIDLimit
1337 || pHostCpu->fFlushAsidBeforeUse)
1338 {
1339 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1340 pHostCpu->fFlushAsidBeforeUse = false;
1341 }
1342
1343 pVCpu->hmr0.s.uCurrentAsid = pHostCpu->uCurrentAsid;
1344 pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
1345 pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1346 }
1347 else
1348 {
1349 if (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1350 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1351 else
1352 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1353 }
1354
1355 pVCpu->hmr0.s.fForceTLBFlush = false;
1356 }
1357 }
1358
1359 /* Update VMCB with the ASID. */
1360 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hmr0.s.uCurrentAsid)
1361 {
1362 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hmr0.s.uCurrentAsid;
1363 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
1364 }
1365
1366 AssertMsg(pVCpu->hmr0.s.idLastCpu == pHostCpu->idCpu,
1367 ("vcpu idLastCpu=%u hostcpu idCpu=%u\n", pVCpu->hmr0.s.idLastCpu, pHostCpu->idCpu));
1368 AssertMsg(pVCpu->hmr0.s.cTlbFlushes == pHostCpu->cTlbFlushes,
1369 ("Flush count mismatch for cpu %u (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hmr0.s.cTlbFlushes, pHostCpu->cTlbFlushes));
1370 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < g_uHmMaxAsid,
1371 ("cpu%d uCurrentAsid = %x\n", pHostCpu->idCpu, pHostCpu->uCurrentAsid));
1372 AssertMsg(pVCpu->hmr0.s.uCurrentAsid >= 1 && pVCpu->hmr0.s.uCurrentAsid < g_uHmMaxAsid,
1373 ("cpu%d VM uCurrentAsid = %x\n", pHostCpu->idCpu, pVCpu->hmr0.s.uCurrentAsid));
1374
1375#ifdef VBOX_WITH_STATISTICS
1376 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
1377 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1378 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
1379 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
1380 {
1381 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1382 }
1383 else
1384 {
1385 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
1386 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
1387 }
1388#endif
1389}
1390
1391
1392/**
1393 * Sets an exception intercept in the specified VMCB.
1394 *
1395 * @param pVmcb Pointer to the VM control block.
1396 * @param uXcpt The exception (X86_XCPT_*).
1397 */
1398DECLINLINE(void) hmR0SvmSetXcptIntercept(PSVMVMCB pVmcb, uint8_t uXcpt)
1399{
1400 if (!(pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt)))
1401 {
1402 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(uXcpt);
1403 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1404 }
1405}
1406
1407
1408/**
1409 * Clears an exception intercept in the specified VMCB.
1410 *
1411 * @param pVCpu The cross context virtual CPU structure.
1412 * @param pVmcb Pointer to the VM control block.
1413 * @param uXcpt The exception (X86_XCPT_*).
1414 *
1415 * @remarks This takes into account if we're executing a nested-guest and only
1416 * removes the exception intercept if both the guest -and- nested-guest
1417 * are not intercepting it.
1418 */
1419DECLINLINE(void) hmR0SvmClearXcptIntercept(PVMCPUCC pVCpu, PSVMVMCB pVmcb, uint8_t uXcpt)
1420{
1421 Assert(uXcpt != X86_XCPT_DB);
1422 Assert(uXcpt != X86_XCPT_AC);
1423 Assert(uXcpt != X86_XCPT_GP);
1424#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1425 if (pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt))
1426 {
1427 bool fRemove = true;
1428# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1429 /* Only remove the intercept if the nested-guest is also not intercepting it! */
1430 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1431 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1432 {
1433 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1434 fRemove = !(pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(uXcpt));
1435 }
1436# else
1437 RT_NOREF(pVCpu);
1438# endif
1439 if (fRemove)
1440 {
1441 pVmcb->ctrl.u32InterceptXcpt &= ~RT_BIT(uXcpt);
1442 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1443 }
1444 }
1445#else
1446 RT_NOREF3(pVCpu, pVmcb, uXcpt);
1447#endif
1448}
1449
1450
1451/**
1452 * Sets a control intercept in the specified VMCB.
1453 *
1454 * @param pVmcb Pointer to the VM control block.
1455 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1456 */
1457DECLINLINE(void) hmR0SvmSetCtrlIntercept(PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1458{
1459 if (!(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept))
1460 {
1461 pVmcb->ctrl.u64InterceptCtrl |= fCtrlIntercept;
1462 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1463 }
1464}
1465
1466
1467/**
1468 * Clears a control intercept in the specified VMCB.
1469 *
1470 * @returns @c true if the intercept is still set, @c false otherwise.
1471 * @param pVCpu The cross context virtual CPU structure.
1472 * @param pVmcb Pointer to the VM control block.
1473 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1474 *
1475 * @remarks This takes into account if we're executing a nested-guest and only
1476 * removes the control intercept if both the guest -and- nested-guest
1477 * are not intercepting it.
1478 */
1479static bool hmR0SvmClearCtrlIntercept(PVMCPUCC pVCpu, PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1480{
1481 if (pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept)
1482 {
1483 bool fRemove = true;
1484#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1485 /* Only remove the control intercept if the nested-guest is also not intercepting it! */
1486 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1487 {
1488 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1489 fRemove = !(pVmcbNstGstCache->u64InterceptCtrl & fCtrlIntercept);
1490 }
1491#else
1492 RT_NOREF(pVCpu);
1493#endif
1494 if (fRemove)
1495 {
1496 pVmcb->ctrl.u64InterceptCtrl &= ~fCtrlIntercept;
1497 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1498 }
1499 }
1500
1501 return RT_BOOL(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept);
1502}
1503
1504
1505/**
1506 * Exports the guest (or nested-guest) CR0 into the VMCB.
1507 *
1508 * @param pVCpu The cross context virtual CPU structure.
1509 * @param pVmcb Pointer to the VM control block.
1510 *
1511 * @remarks This assumes we always pre-load the guest FPU.
1512 * @remarks No-long-jump zone!!!
1513 */
1514static void hmR0SvmExportGuestCR0(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1515{
1516 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1517
1518 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1519 uint64_t const uGuestCr0 = pCtx->cr0;
1520 uint64_t uShadowCr0 = uGuestCr0;
1521
1522 /* Always enable caching. */
1523 uShadowCr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1524
1525 /* When Nested Paging is not available use shadow page tables and intercept #PFs (latter done in SVMR0SetupVM()). */
1526 if (!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging)
1527 {
1528 uShadowCr0 |= X86_CR0_PG /* Use shadow page tables. */
1529 | X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
1530 }
1531
1532 /*
1533 * Use the #MF style of legacy-FPU error reporting for now. Although AMD-V has MSRs that
1534 * lets us isolate the host from it, IEM/REM still needs work to emulate it properly,
1535 * see @bugref{7243#c103}.
1536 */
1537 if (!(uGuestCr0 & X86_CR0_NE))
1538 {
1539 uShadowCr0 |= X86_CR0_NE;
1540 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_MF);
1541 }
1542 else
1543 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_MF);
1544
1545 /*
1546 * If the shadow and guest CR0 are identical we can avoid intercepting CR0 reads.
1547 *
1548 * CR0 writes still needs interception as PGM requires tracking paging mode changes,
1549 * see @bugref{6944}.
1550 *
1551 * We also don't ever want to honor weird things like cache disable from the guest.
1552 * However, we can avoid intercepting changes to the TS & MP bits by clearing the CR0
1553 * write intercept below and keeping SVM_CTRL_INTERCEPT_CR0_SEL_WRITE instead.
1554 */
1555 if (uShadowCr0 == uGuestCr0)
1556 {
1557 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1558 {
1559 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(0);
1560 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(0);
1561 Assert(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_CR0_SEL_WRITE);
1562 }
1563 else
1564 {
1565 /* If the nested-hypervisor intercepts CR0 reads/writes, we need to continue intercepting them. */
1566 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1567 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(0))
1568 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(0));
1569 pVmcb->ctrl.u16InterceptWrCRx = (pVmcb->ctrl.u16InterceptWrCRx & ~RT_BIT(0))
1570 | (pVmcbNstGstCache->u16InterceptWrCRx & RT_BIT(0));
1571 }
1572 }
1573 else
1574 {
1575 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(0);
1576 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(0);
1577 }
1578 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1579
1580 Assert(!RT_HI_U32(uShadowCr0));
1581 if (pVmcb->guest.u64CR0 != uShadowCr0)
1582 {
1583 pVmcb->guest.u64CR0 = uShadowCr0;
1584 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1585 }
1586}
1587
1588
1589/**
1590 * Exports the guest (or nested-guest) CR3 into the VMCB.
1591 *
1592 * @param pVCpu The cross context virtual CPU structure.
1593 * @param pVmcb Pointer to the VM control block.
1594 *
1595 * @remarks No-long-jump zone!!!
1596 */
1597static void hmR0SvmExportGuestCR3(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1598{
1599 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1600
1601 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1602 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1603 if (pVM->hmr0.s.fNestedPaging)
1604 {
1605 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetHyperCR3(pVCpu);
1606 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1607 pVmcb->guest.u64CR3 = pCtx->cr3;
1608 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1609 }
1610 else
1611 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1612
1613 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1614}
1615
1616
1617/**
1618 * Exports the guest (or nested-guest) CR4 into the VMCB.
1619 *
1620 * @param pVCpu The cross context virtual CPU structure.
1621 * @param pVmcb Pointer to the VM control block.
1622 *
1623 * @remarks No-long-jump zone!!!
1624 */
1625static int hmR0SvmExportGuestCR4(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1626{
1627 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1628
1629 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1630 uint64_t uShadowCr4 = pCtx->cr4;
1631 if (!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging)
1632 {
1633 switch (pVCpu->hm.s.enmShadowMode)
1634 {
1635 case PGMMODE_REAL:
1636 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1637 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1638
1639 case PGMMODE_32_BIT: /* 32-bit paging. */
1640 uShadowCr4 &= ~X86_CR4_PAE;
1641 break;
1642
1643 case PGMMODE_PAE: /* PAE paging. */
1644 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1645 /** Must use PAE paging as we could use physical memory > 4 GB */
1646 uShadowCr4 |= X86_CR4_PAE;
1647 break;
1648
1649 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1650 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1651#ifdef VBOX_WITH_64_BITS_GUESTS
1652 break;
1653#else
1654 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1655#endif
1656
1657 default: /* shut up gcc */
1658 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1659 }
1660 }
1661
1662 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
1663 bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
1664 if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0)
1665 {
1666 pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0;
1667 hmR0SvmUpdateVmRunFunction(pVCpu);
1668 }
1669
1670 /* Avoid intercepting CR4 reads if the guest and shadow CR4 values are identical. */
1671 if (uShadowCr4 == pCtx->cr4)
1672 {
1673 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1674 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(4);
1675 else
1676 {
1677 /* If the nested-hypervisor intercepts CR4 reads, we need to continue intercepting them. */
1678 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1679 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(4))
1680 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(4));
1681 }
1682 }
1683 else
1684 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(4);
1685
1686 /* CR4 writes are always intercepted (both guest, nested-guest) for tracking
1687 PGM mode changes and AVX (for XCR0 syncing during worlds switching). */
1688 Assert(pVmcb->ctrl.u16InterceptWrCRx & RT_BIT(4));
1689
1690 /* Update VMCB with the shadow CR4 the appropriate VMCB clean bits. */
1691 Assert(!RT_HI_U32(uShadowCr4));
1692 pVmcb->guest.u64CR4 = uShadowCr4;
1693 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_CRX_EFER | HMSVM_VMCB_CLEAN_INTERCEPTS);
1694
1695 return VINF_SUCCESS;
1696}
1697
1698
1699/**
1700 * Exports the guest (or nested-guest) control registers into the VMCB.
1701 *
1702 * @returns VBox status code.
1703 * @param pVCpu The cross context virtual CPU structure.
1704 * @param pVmcb Pointer to the VM control block.
1705 *
1706 * @remarks No-long-jump zone!!!
1707 */
1708static int hmR0SvmExportGuestControlRegs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1709{
1710 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1711
1712 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR_MASK)
1713 {
1714 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR0)
1715 hmR0SvmExportGuestCR0(pVCpu, pVmcb);
1716
1717 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR2)
1718 {
1719 pVmcb->guest.u64CR2 = pVCpu->cpum.GstCtx.cr2;
1720 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1721 }
1722
1723 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR3)
1724 hmR0SvmExportGuestCR3(pVCpu, pVmcb);
1725
1726 /* CR4 re-loading is ASSUMED to be done everytime we get in from ring-3! (XCR0) */
1727 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR4)
1728 {
1729 int rc = hmR0SvmExportGuestCR4(pVCpu, pVmcb);
1730 if (RT_FAILURE(rc))
1731 return rc;
1732 }
1733
1734 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_CR_MASK;
1735 }
1736 return VINF_SUCCESS;
1737}
1738
1739
1740/**
1741 * Exports the guest (or nested-guest) segment registers into the VMCB.
1742 *
1743 * @param pVCpu The cross context virtual CPU structure.
1744 * @param pVmcb Pointer to the VM control block.
1745 *
1746 * @remarks No-long-jump zone!!!
1747 */
1748static void hmR0SvmExportGuestSegmentRegs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1749{
1750 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1751 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1752
1753 /* Guest segment registers. */
1754 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SREG_MASK)
1755 {
1756 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CS)
1757 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, CS, cs);
1758
1759 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SS)
1760 {
1761 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, SS, ss);
1762 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1763 }
1764
1765 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DS)
1766 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, DS, ds);
1767
1768 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_ES)
1769 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, ES, es);
1770
1771 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_FS)
1772 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs);
1773
1774 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GS)
1775 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs);
1776
1777 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1778 }
1779
1780 /* Guest TR. */
1781 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_TR)
1782 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr);
1783
1784 /* Guest LDTR. */
1785 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_LDTR)
1786 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
1787
1788 /* Guest GDTR. */
1789 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GDTR)
1790 {
1791 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1792 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1793 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1794 }
1795
1796 /* Guest IDTR. */
1797 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_IDTR)
1798 {
1799 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1800 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1801 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1802 }
1803
1804 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SREG_MASK
1805 | HM_CHANGED_GUEST_TABLE_MASK);
1806}
1807
1808
1809/**
1810 * Exports the guest (or nested-guest) MSRs into the VMCB.
1811 *
1812 * @param pVCpu The cross context virtual CPU structure.
1813 * @param pVmcb Pointer to the VM control block.
1814 *
1815 * @remarks No-long-jump zone!!!
1816 */
1817static void hmR0SvmExportGuestMsrs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1818{
1819 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1820 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1821
1822 /* Guest Sysenter MSRs. */
1823 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
1824 {
1825 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
1826 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1827
1828 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
1829 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1830
1831 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
1832 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1833 }
1834
1835 /*
1836 * Guest EFER MSR.
1837 * AMD-V requires guest EFER.SVME to be set. Weird.
1838 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1839 */
1840 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_EFER_MSR)
1841 {
1842 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1843 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1844 }
1845
1846 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit, otherwise SVM expects amd64 shadow paging. */
1847 if ( !CPUMIsGuestInLongModeEx(pCtx)
1848 && (pCtx->msrEFER & MSR_K6_EFER_LME))
1849 {
1850 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1851 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1852 }
1853
1854 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSCALL_MSRS)
1855 {
1856 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1857 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1858 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1859 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1860 }
1861
1862 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_KERNEL_GS_BASE)
1863 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1864
1865 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SYSENTER_MSR_MASK
1866 | HM_CHANGED_GUEST_EFER_MSR
1867 | HM_CHANGED_GUEST_SYSCALL_MSRS
1868 | HM_CHANGED_GUEST_KERNEL_GS_BASE);
1869
1870 /*
1871 * Setup the PAT MSR (applicable for Nested Paging only).
1872 *
1873 * The default value should be MSR_IA32_CR_PAT_INIT_VAL, but we treat all guest memory
1874 * as WB, so choose type 6 for all PAT slots, see @bugref{9634}.
1875 *
1876 * While guests can modify and see the modified values through the shadow values,
1877 * we shall not honor any guest modifications of this MSR to ensure caching is always
1878 * enabled similar to how we clear CR0.CD and NW bits.
1879 *
1880 * For nested-guests this needs to always be set as well, see @bugref{7243#c109}.
1881 */
1882 pVmcb->guest.u64PAT = UINT64_C(0x0006060606060606);
1883
1884 /* Enable the last branch record bit if LBR virtualization is enabled. */
1885 if (pVmcb->ctrl.LbrVirt.n.u1LbrVirt)
1886 pVmcb->guest.u64DBGCTL = MSR_IA32_DEBUGCTL_LBR;
1887}
1888
1889
1890/**
1891 * Exports the guest (or nested-guest) debug state into the VMCB and programs
1892 * the necessary intercepts accordingly.
1893 *
1894 * @param pVCpu The cross context virtual CPU structure.
1895 * @param pVmcb Pointer to the VM control block.
1896 *
1897 * @remarks No-long-jump zone!!!
1898 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1899 */
1900static void hmR0SvmExportSharedDebugState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1901{
1902 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1903
1904 /** @todo Figure out stepping with nested-guest. */
1905 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1906 {
1907 /*
1908 * We don't want to always intercept DRx read/writes for nested-guests as it causes
1909 * problems when the nested hypervisor isn't intercepting them, see @bugref{10080}.
1910 * Instead, they are strictly only requested when the nested hypervisor intercepts
1911 * them -- handled while merging VMCB controls.
1912 *
1913 * If neither the outer nor the nested-hypervisor is intercepting DRx read/writes,
1914 * then the nested-guest debug state should be actively loaded on the host so that
1915 * nested-guest reads/writes its own debug registers without causing VM-exits.
1916 */
1917 if ( ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
1918 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
1919 && !CPUMIsGuestDebugStateActive(pVCpu))
1920 {
1921 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
1922 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1923 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1924 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1925 }
1926
1927 pVmcb->guest.u64DR6 = pCtx->dr[6];
1928 pVmcb->guest.u64DR7 = pCtx->dr[7];
1929 return;
1930 }
1931
1932 /*
1933 * Anyone single stepping on the host side? If so, we'll have to use the
1934 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1935 * the VMM level like the VT-x implementations does.
1936 */
1937 bool fInterceptMovDRx = false;
1938 bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
1939 if (fStepping)
1940 {
1941 pVCpu->hmr0.s.fClearTrapFlag = true;
1942 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1943 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1944 }
1945
1946 if ( fStepping
1947 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1948 {
1949 /*
1950 * Use the combined guest and host DRx values found in the hypervisor
1951 * register set because the debugger has breakpoints active or someone
1952 * is single stepping on the host side.
1953 *
1954 * Note! DBGF expects a clean DR6 state before executing guest code.
1955 */
1956 if (!CPUMIsHyperDebugStateActive(pVCpu))
1957 {
1958 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1959 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1960 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1961 }
1962
1963 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1964 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1965 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
1966 {
1967 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1968 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1969 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1970 }
1971
1972 /** @todo If we cared, we could optimize to allow the guest to read registers
1973 * with the same values. */
1974 fInterceptMovDRx = true;
1975 pVCpu->hmr0.s.fUsingHyperDR7 = true;
1976 Log5(("hmR0SvmExportSharedDebugState: Loaded hyper DRx\n"));
1977 }
1978 else
1979 {
1980 /*
1981 * Update DR6, DR7 with the guest values if necessary.
1982 */
1983 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1984 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1985 {
1986 pVmcb->guest.u64DR7 = pCtx->dr[7];
1987 pVmcb->guest.u64DR6 = pCtx->dr[6];
1988 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1989 }
1990 pVCpu->hmr0.s.fUsingHyperDR7 = false;
1991
1992 /*
1993 * If the guest has enabled debug registers, we need to load them prior to
1994 * executing guest code so they'll trigger at the right time.
1995 */
1996 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1997 {
1998 if (!CPUMIsGuestDebugStateActive(pVCpu))
1999 {
2000 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
2001 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
2002 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
2003 Assert(CPUMIsGuestDebugStateActive(pVCpu));
2004 }
2005 Log5(("hmR0SvmExportSharedDebugState: Loaded guest DRx\n"));
2006 }
2007 /*
2008 * If no debugging enabled, we'll lazy load DR0-3. We don't need to
2009 * intercept #DB as DR6 is updated in the VMCB.
2010 *
2011 * Note! If we cared and dared, we could skip intercepting \#DB here.
2012 * However, \#DB shouldn't be performance critical, so we'll play safe
2013 * and keep the code similar to the VT-x code and always intercept it.
2014 */
2015 else if (!CPUMIsGuestDebugStateActive(pVCpu))
2016 fInterceptMovDRx = true;
2017 }
2018
2019 Assert(pVmcb->ctrl.u32InterceptXcpt & RT_BIT_32(X86_XCPT_DB));
2020 if (fInterceptMovDRx)
2021 {
2022 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
2023 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
2024 {
2025 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
2026 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
2027 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2028 }
2029 }
2030 else
2031 {
2032 if ( pVmcb->ctrl.u16InterceptRdDRx
2033 || pVmcb->ctrl.u16InterceptWrDRx)
2034 {
2035 pVmcb->ctrl.u16InterceptRdDRx = 0;
2036 pVmcb->ctrl.u16InterceptWrDRx = 0;
2037 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2038 }
2039 }
2040 Log4Func(("DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
2041}
2042
2043/**
2044 * Exports the hardware virtualization state into the nested-guest
2045 * VMCB.
2046 *
2047 * @param pVCpu The cross context virtual CPU structure.
2048 * @param pVmcb Pointer to the VM control block.
2049 *
2050 * @remarks No-long-jump zone!!!
2051 */
2052static void hmR0SvmExportGuestHwvirtState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2053{
2054 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2055
2056 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_HWVIRT)
2057 {
2058 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
2059 {
2060 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2061 PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
2062
2063 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx); /* Nested VGIF is not supported yet. */
2064 Assert(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VGIF); /* Physical hardware supports VGIF. */
2065 Assert(HMIsSvmVGifActive(pVM)); /* Outer VM has enabled VGIF. */
2066 NOREF(pVM);
2067
2068 pVmcb->ctrl.IntCtrl.n.u1VGif = CPUMGetGuestGif(pCtx);
2069 }
2070
2071 /*
2072 * Ensure the nested-guest pause-filter counters don't exceed the outer guest values esp.
2073 * since SVM doesn't have a preemption timer.
2074 *
2075 * We do this here rather than in hmR0SvmSetupVmcbNested() as we may have been executing the
2076 * nested-guest in IEM incl. PAUSE instructions which would update the pause-filter counters
2077 * and may continue execution in SVM R0 without a nested-guest #VMEXIT in between.
2078 */
2079 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2080 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
2081 uint16_t const uGuestPauseFilterCount = pVM->hm.s.svm.cPauseFilter;
2082 uint16_t const uGuestPauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
2083 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, &pVCpu->cpum.GstCtx, SVM_CTRL_INTERCEPT_PAUSE))
2084 {
2085 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2086 pVmcbCtrl->u16PauseFilterCount = RT_MIN(pCtx->hwvirt.svm.cPauseFilter, uGuestPauseFilterCount);
2087 pVmcbCtrl->u16PauseFilterThreshold = RT_MIN(pCtx->hwvirt.svm.cPauseFilterThreshold, uGuestPauseFilterThreshold);
2088 }
2089 else
2090 {
2091 /** @todo r=ramshankar: We can turn these assignments into assertions. */
2092 pVmcbCtrl->u16PauseFilterCount = uGuestPauseFilterCount;
2093 pVmcbCtrl->u16PauseFilterThreshold = uGuestPauseFilterThreshold;
2094 }
2095 pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2096
2097 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_HWVIRT;
2098 }
2099}
2100
2101
2102/**
2103 * Exports the guest APIC TPR state into the VMCB.
2104 *
2105 * @returns VBox status code.
2106 * @param pVCpu The cross context virtual CPU structure.
2107 * @param pVmcb Pointer to the VM control block.
2108 */
2109static int hmR0SvmExportGuestApicTpr(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2110{
2111 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
2112
2113 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
2114 {
2115 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2116 if ( PDMHasApic(pVM)
2117 && PDMApicIsEnabled(pVCpu))
2118 {
2119 bool fPendingIntr;
2120 uint8_t u8Tpr;
2121 int rc = PDMApicGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
2122 AssertRCReturn(rc, rc);
2123
2124 /* Assume that we need to trap all TPR accesses and thus need not check on
2125 every #VMEXIT if we should update the TPR. */
2126 Assert(pVmcb->ctrl.IntCtrl.n.u1VIntrMasking);
2127 pVCpu->hmr0.s.svm.fSyncVTpr = false;
2128
2129 if (!pVM->hm.s.fTprPatchingActive)
2130 {
2131 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
2132 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
2133
2134 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we
2135 can deliver the interrupt to the guest. */
2136 if (fPendingIntr)
2137 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
2138 else
2139 {
2140 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
2141 pVCpu->hmr0.s.svm.fSyncVTpr = true;
2142 }
2143
2144 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_INT_CTRL);
2145 }
2146 else
2147 {
2148 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
2149 pVmcb->guest.u64LSTAR = u8Tpr;
2150 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hmr0.s.svm.pvMsrBitmap;
2151
2152 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
2153 if (fPendingIntr)
2154 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
2155 else
2156 {
2157 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
2158 pVCpu->hmr0.s.svm.fSyncVTpr = true;
2159 }
2160 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
2161 }
2162 }
2163 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
2164 }
2165 return VINF_SUCCESS;
2166}
2167
2168
2169/**
2170 * Sets up the exception interrupts required for guest execution in the VMCB.
2171 *
2172 * @param pVCpu The cross context virtual CPU structure.
2173 * @param pVmcb Pointer to the VM control block.
2174 *
2175 * @remarks No-long-jump zone!!!
2176 */
2177static void hmR0SvmExportGuestXcptIntercepts(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2178{
2179 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
2180
2181 /* If we modify intercepts from here, please check & adjust hmR0SvmMergeVmcbCtrlsNested() if required. */
2182 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_SVM_XCPT_INTERCEPTS)
2183 {
2184 /* Trap #UD for GIM provider (e.g. for hypercalls). */
2185 if (pVCpu->hm.s.fGIMTrapXcptUD || pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit)
2186 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_UD);
2187 else
2188 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_UD);
2189
2190 /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */
2191 if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledSwBreakpoints)
2192 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_BP);
2193 else
2194 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_BP);
2195
2196 /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmExportGuestCR0(). */
2197 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_SVM_XCPT_INTERCEPTS);
2198 }
2199}
2200
2201
2202#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2203/**
2204 * Merges guest and nested-guest intercepts for executing the nested-guest using
2205 * hardware-assisted SVM.
2206 *
2207 * This merges the guest and nested-guest intercepts in a way that if the outer
2208 * guest intercept is set we need to intercept it in the nested-guest as
2209 * well.
2210 *
2211 * @param pVCpu The cross context virtual CPU structure.
2212 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
2213 */
2214static void hmR0SvmMergeVmcbCtrlsNested(PVMCPUCC pVCpu)
2215{
2216 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2217 PCSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
2218 PSVMVMCB pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb;
2219 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2220
2221 /* Merge the guest's CR intercepts into the nested-guest VMCB. */
2222 pVmcbNstGstCtrl->u16InterceptRdCRx |= pVmcb->ctrl.u16InterceptRdCRx;
2223 pVmcbNstGstCtrl->u16InterceptWrCRx |= pVmcb->ctrl.u16InterceptWrCRx;
2224
2225 /* Always intercept CR4 writes for tracking PGM mode changes and AVX (for
2226 XCR0 syncing during worlds switching). */
2227 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(4);
2228
2229 /* Without nested paging, intercept CR3 reads and writes as we load shadow page tables. */
2230 if (!pVM->hmr0.s.fNestedPaging)
2231 {
2232 pVmcbNstGstCtrl->u16InterceptRdCRx |= RT_BIT(3);
2233 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(3);
2234 }
2235
2236 /* Merge the guest's DR intercepts into the nested-guest VMCB. */
2237 pVmcbNstGstCtrl->u16InterceptRdDRx |= pVmcb->ctrl.u16InterceptRdDRx;
2238 pVmcbNstGstCtrl->u16InterceptWrDRx |= pVmcb->ctrl.u16InterceptWrDRx;
2239
2240 /*
2241 * Merge the guest's exception intercepts into the nested-guest VMCB.
2242 *
2243 * - #UD: Exclude these as the outer guest's GIM hypercalls are not applicable
2244 * while executing the nested-guest.
2245 *
2246 * - #BP: Exclude breakpoints set by the VM debugger for the outer guest. This can
2247 * be tweaked later depending on how we wish to implement breakpoints.
2248 *
2249 * - #GP: Exclude these as it's the inner VMMs problem to get vmsvga 3d drivers
2250 * loaded into their guests, not ours.
2251 *
2252 * Warning!! This ASSUMES we only intercept \#UD for hypercall purposes and \#BP
2253 * for VM debugger breakpoints, see hmR0SvmExportGuestXcptIntercepts().
2254 */
2255#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
2256 pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt
2257 & ~( RT_BIT(X86_XCPT_UD)
2258 | RT_BIT(X86_XCPT_BP)
2259 | (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv ? RT_BIT(X86_XCPT_GP) : 0));
2260#else
2261 pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt;
2262#endif
2263
2264 /*
2265 * Adjust intercepts while executing the nested-guest that differ from the
2266 * outer guest intercepts.
2267 *
2268 * - VINTR: Exclude the outer guest intercept as we don't need to cause VINTR #VMEXITs
2269 * that belong to the nested-guest to the outer guest.
2270 *
2271 * - VMMCALL: Exclude the outer guest intercept as when it's also not intercepted by
2272 * the nested-guest, the physical CPU raises a \#UD exception as expected.
2273 */
2274 pVmcbNstGstCtrl->u64InterceptCtrl |= (pVmcb->ctrl.u64InterceptCtrl & ~( SVM_CTRL_INTERCEPT_VINTR
2275 | SVM_CTRL_INTERCEPT_VMMCALL))
2276 | HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS;
2277
2278 Assert( (pVmcbNstGstCtrl->u64InterceptCtrl & HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS)
2279 == HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS);
2280
2281 /* Finally, update the VMCB clean bits. */
2282 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2283}
2284#endif
2285
2286
2287/**
2288 * Enters the AMD-V session.
2289 *
2290 * @returns VBox status code.
2291 * @param pVCpu The cross context virtual CPU structure.
2292 */
2293VMMR0DECL(int) SVMR0Enter(PVMCPUCC pVCpu)
2294{
2295 AssertPtr(pVCpu);
2296 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
2297 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2298
2299 LogFlowFunc(("pVCpu=%p\n", pVCpu));
2300 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2301 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2302
2303 pVCpu->hmr0.s.fLeaveDone = false;
2304 return VINF_SUCCESS;
2305}
2306
2307
2308/**
2309 * Thread-context callback for AMD-V.
2310 *
2311 * This is used together with RTThreadCtxHookCreate() on platforms which
2312 * supports it, and directly from VMMR0EmtPrepareForBlocking() and
2313 * VMMR0EmtResumeAfterBlocking() on platforms which don't.
2314 *
2315 * @param enmEvent The thread-context event.
2316 * @param pVCpu The cross context virtual CPU structure.
2317 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
2318 * @thread EMT(pVCpu)
2319 */
2320VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPUCC pVCpu, bool fGlobalInit)
2321{
2322 NOREF(fGlobalInit);
2323
2324 switch (enmEvent)
2325 {
2326 case RTTHREADCTXEVENT_OUT:
2327 {
2328 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2329 VMCPU_ASSERT_EMT(pVCpu);
2330
2331 /* No longjmps (log-flush, locks) in this fragile context. */
2332 VMMRZCallRing3Disable(pVCpu);
2333
2334 if (!pVCpu->hmr0.s.fLeaveDone)
2335 {
2336 hmR0SvmLeave(pVCpu, false /* fImportState */);
2337 pVCpu->hmr0.s.fLeaveDone = true;
2338 }
2339
2340 /* Leave HM context, takes care of local init (term). */
2341 int rc = HMR0LeaveCpu(pVCpu);
2342 AssertRC(rc); NOREF(rc);
2343
2344 /* Restore longjmp state. */
2345 VMMRZCallRing3Enable(pVCpu);
2346 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
2347 break;
2348 }
2349
2350 case RTTHREADCTXEVENT_IN:
2351 {
2352 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2353 VMCPU_ASSERT_EMT(pVCpu);
2354
2355 /* No longjmps (log-flush, locks) in this fragile context. */
2356 VMMRZCallRing3Disable(pVCpu);
2357
2358 /*
2359 * Initialize the bare minimum state required for HM. This takes care of
2360 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
2361 */
2362 int rc = hmR0EnterCpu(pVCpu);
2363 AssertRC(rc); NOREF(rc);
2364 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2365 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2366
2367 pVCpu->hmr0.s.fLeaveDone = false;
2368
2369 /* Restore longjmp state. */
2370 VMMRZCallRing3Enable(pVCpu);
2371 break;
2372 }
2373
2374 default:
2375 break;
2376 }
2377}
2378
2379
2380/**
2381 * Saves the host state.
2382 *
2383 * @returns VBox status code.
2384 * @param pVCpu The cross context virtual CPU structure.
2385 *
2386 * @remarks No-long-jump zone!!!
2387 */
2388VMMR0DECL(int) SVMR0ExportHostState(PVMCPUCC pVCpu)
2389{
2390 NOREF(pVCpu);
2391
2392 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
2393 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_HOST_CONTEXT);
2394 return VINF_SUCCESS;
2395}
2396
2397
2398/**
2399 * Exports the guest or nested-guest state from the virtual-CPU context into the
2400 * VMCB.
2401 *
2402 * Also sets up the appropriate VMRUN function to execute guest or nested-guest
2403 * code based on the virtual-CPU mode.
2404 *
2405 * @returns VBox status code.
2406 * @param pVCpu The cross context virtual CPU structure.
2407 * @param pSvmTransient Pointer to the SVM-transient structure.
2408 *
2409 * @remarks No-long-jump zone!!!
2410 */
2411static int hmR0SvmExportGuestState(PVMCPUCC pVCpu, PCSVMTRANSIENT pSvmTransient)
2412{
2413 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
2414
2415 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
2416 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2417 Assert(pVmcb);
2418
2419 pVmcb->guest.u64RIP = pCtx->rip;
2420 pVmcb->guest.u64RSP = pCtx->rsp;
2421 pVmcb->guest.u64RFlags = pCtx->eflags.u;
2422 pVmcb->guest.u64RAX = pCtx->rax;
2423
2424 bool const fIsNestedGuest = pSvmTransient->fIsNestedGuest;
2425 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2426
2427 int rc = hmR0SvmExportGuestControlRegs(pVCpu, pVmcb);
2428 AssertRCReturnStmt(rc, ASMSetFlags(fEFlags), rc);
2429 hmR0SvmExportGuestSegmentRegs(pVCpu, pVmcb);
2430 hmR0SvmExportGuestMsrs(pVCpu, pVmcb);
2431 hmR0SvmExportGuestHwvirtState(pVCpu, pVmcb);
2432
2433 ASMSetFlags(fEFlags);
2434
2435 if (!fIsNestedGuest)
2436 {
2437 /* hmR0SvmExportGuestApicTpr() must be called -after- hmR0SvmExportGuestMsrs() as we
2438 otherwise we would overwrite the LSTAR MSR that we use for TPR patching. */
2439 hmR0SvmExportGuestApicTpr(pVCpu, pVmcb);
2440 hmR0SvmExportGuestXcptIntercepts(pVCpu, pVmcb);
2441 }
2442
2443 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
2444 uint64_t fUnusedMask = HM_CHANGED_GUEST_RIP
2445 | HM_CHANGED_GUEST_RFLAGS
2446 | HM_CHANGED_GUEST_GPRS_MASK
2447 | HM_CHANGED_GUEST_X87
2448 | HM_CHANGED_GUEST_SSE_AVX
2449 | HM_CHANGED_GUEST_OTHER_XSAVE
2450 | HM_CHANGED_GUEST_XCRx
2451 | HM_CHANGED_GUEST_TSC_AUX
2452 | HM_CHANGED_GUEST_OTHER_MSRS;
2453 if (fIsNestedGuest)
2454 fUnusedMask |= HM_CHANGED_SVM_XCPT_INTERCEPTS
2455 | HM_CHANGED_GUEST_APIC_TPR;
2456
2457 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( fUnusedMask
2458 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_SVM_MASK)));
2459
2460#ifdef VBOX_STRICT
2461 /*
2462 * All of the guest-CPU state and SVM keeper bits should be exported here by now,
2463 * except for the host-context and/or shared host-guest context bits.
2464 */
2465 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
2466 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)),
2467 ("fCtxChanged=%#RX64\n", fCtxChanged));
2468
2469 /*
2470 * If we need to log state that isn't always imported, we'll need to import them here.
2471 * See hmR0SvmPostRunGuest() for which part of the state is imported uncondtionally.
2472 */
2473 hmR0SvmLogState(pVCpu, pVmcb, "hmR0SvmExportGuestState", 0 /* fFlags */, 0 /* uVerbose */);
2474#endif
2475
2476 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
2477 return VINF_SUCCESS;
2478}
2479
2480#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2481
2482/**
2483 * Merges the guest and nested-guest MSR permission bitmap.
2484 *
2485 * If the guest is intercepting an MSR we need to intercept it regardless of
2486 * whether the nested-guest is intercepting it or not.
2487 *
2488 * @param pHostCpu The HM physical-CPU structure.
2489 * @param pVCpu The cross context virtual CPU structure.
2490 *
2491 * @remarks No-long-jmp zone!!!
2492 */
2493DECLINLINE(void) hmR0SvmMergeMsrpmNested(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu)
2494{
2495 uint64_t const *pu64GstMsrpm = (uint64_t const *)pVCpu->hmr0.s.svm.pvMsrBitmap;
2496 uint64_t const *pu64NstGstMsrpm = (uint64_t const *)&pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[0];
2497 uint64_t *pu64DstMsrpm = (uint64_t *)pHostCpu->n.svm.pvNstGstMsrpm;
2498
2499 /* MSRPM bytes from offset 0x1800 are reserved, so we stop merging there. */
2500 uint32_t const offRsvdQwords = 0x1800 >> 3;
2501 for (uint32_t i = 0; i < offRsvdQwords; i++)
2502 pu64DstMsrpm[i] = pu64NstGstMsrpm[i] | pu64GstMsrpm[i];
2503}
2504
2505
2506/**
2507 * Caches the nested-guest VMCB fields before we modify them for execution using
2508 * hardware-assisted SVM.
2509 *
2510 * @returns true if the VMCB was previously already cached, false otherwise.
2511 * @param pVCpu The cross context virtual CPU structure.
2512 *
2513 * @sa HMNotifySvmNstGstVmexit.
2514 */
2515static bool hmR0SvmCacheVmcbNested(PVMCPUCC pVCpu)
2516{
2517 /*
2518 * Cache the nested-guest programmed VMCB fields if we have not cached it yet.
2519 * Otherwise we risk re-caching the values we may have modified, see @bugref{7243#c44}.
2520 *
2521 * Nested-paging CR3 is not saved back into the VMCB on #VMEXIT, hence no need to
2522 * cache and restore it, see AMD spec. 15.25.4 "Nested Paging and VMRUN/#VMEXIT".
2523 */
2524 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
2525 bool const fWasCached = pVmcbNstGstCache->fCacheValid;
2526 if (!fWasCached)
2527 {
2528 PCSVMVMCB pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb;
2529 PCSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2530 pVmcbNstGstCache->u16InterceptRdCRx = pVmcbNstGstCtrl->u16InterceptRdCRx;
2531 pVmcbNstGstCache->u16InterceptWrCRx = pVmcbNstGstCtrl->u16InterceptWrCRx;
2532 pVmcbNstGstCache->u16InterceptRdDRx = pVmcbNstGstCtrl->u16InterceptRdDRx;
2533 pVmcbNstGstCache->u16InterceptWrDRx = pVmcbNstGstCtrl->u16InterceptWrDRx;
2534 pVmcbNstGstCache->u16PauseFilterThreshold = pVmcbNstGstCtrl->u16PauseFilterThreshold;
2535 pVmcbNstGstCache->u16PauseFilterCount = pVmcbNstGstCtrl->u16PauseFilterCount;
2536 pVmcbNstGstCache->u32InterceptXcpt = pVmcbNstGstCtrl->u32InterceptXcpt;
2537 pVmcbNstGstCache->u64InterceptCtrl = pVmcbNstGstCtrl->u64InterceptCtrl;
2538 pVmcbNstGstCache->u64TSCOffset = pVmcbNstGstCtrl->u64TSCOffset;
2539 pVmcbNstGstCache->fVIntrMasking = pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking;
2540 pVmcbNstGstCache->fNestedPaging = pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging;
2541 pVmcbNstGstCache->fLbrVirt = pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt;
2542 pVmcbNstGstCache->fCacheValid = true;
2543 Log4Func(("Cached VMCB fields\n"));
2544 }
2545
2546 return fWasCached;
2547}
2548
2549
2550/**
2551 * Sets up the nested-guest VMCB for execution using hardware-assisted SVM.
2552 *
2553 * This is done the first time we enter nested-guest execution using SVM R0
2554 * until the nested-guest \#VMEXIT (not to be confused with physical CPU
2555 * \#VMEXITs which may or may not cause a corresponding nested-guest \#VMEXIT).
2556 *
2557 * @param pVCpu The cross context virtual CPU structure.
2558 */
2559static void hmR0SvmSetupVmcbNested(PVMCPUCC pVCpu)
2560{
2561 PSVMVMCB pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb;
2562 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2563
2564 HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
2565
2566 /*
2567 * First cache the nested-guest VMCB fields we may potentially modify.
2568 */
2569 bool const fVmcbCached = hmR0SvmCacheVmcbNested(pVCpu);
2570 if (!fVmcbCached)
2571 {
2572 /*
2573 * The IOPM of the nested-guest can be ignored because the the guest always
2574 * intercepts all IO port accesses. Thus, we'll swap to the guest IOPM rather
2575 * than the nested-guest IOPM and swap the field back on the #VMEXIT.
2576 */
2577 pVmcbNstGstCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
2578
2579 /*
2580 * Use the same nested-paging as the outer guest. We can't dynamically switch off
2581 * nested-paging suddenly while executing a VM (see assertion at the end of
2582 * Trap0eHandler() in PGMAllBth.h).
2583 */
2584 pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging = pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging;
2585
2586 /* Always enable V_INTR_MASKING as we do not want to allow access to the physical APIC TPR. */
2587 pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking = 1;
2588
2589 /*
2590 * Turn off TPR syncing on #VMEXIT for nested-guests as CR8 intercepts are subject
2591 * to the nested-guest intercepts and we always run with V_INTR_MASKING.
2592 */
2593 pVCpu->hmr0.s.svm.fSyncVTpr = false;
2594
2595# ifdef DEBUG_ramshankar
2596 /* For debugging purposes - copy the LBR info. from outer guest VMCB. */
2597 pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt = pVmcb->ctrl.LbrVirt.n.u1LbrVirt;
2598# endif
2599
2600 /*
2601 * If we don't expose Virtualized-VMSAVE/VMLOAD feature to the outer guest, we
2602 * need to intercept VMSAVE/VMLOAD instructions executed by the nested-guest.
2603 */
2604 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
2605 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
2606 | SVM_CTRL_INTERCEPT_VMLOAD;
2607
2608 /*
2609 * If we don't expose Virtual GIF feature to the outer guest, we need to intercept
2610 * CLGI/STGI instructions executed by the nested-guest.
2611 */
2612 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVGif)
2613 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
2614 | SVM_CTRL_INTERCEPT_STGI;
2615
2616 /* Merge the guest and nested-guest intercepts. */
2617 hmR0SvmMergeVmcbCtrlsNested(pVCpu);
2618
2619 /* Update the VMCB clean bits. */
2620 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2621 }
2622 else
2623 {
2624 Assert(!pVCpu->hmr0.s.svm.fSyncVTpr);
2625 Assert(pVmcbNstGstCtrl->u64IOPMPhysAddr == g_HCPhysIOBitmap);
2626 Assert(RT_BOOL(pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging) == pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
2627 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPagingCfg == pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
2628 }
2629}
2630
2631#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
2632
2633/**
2634 * Exports the state shared between the host and guest (or nested-guest) into
2635 * the VMCB.
2636 *
2637 * @param pVCpu The cross context virtual CPU structure.
2638 * @param pVmcb Pointer to the VM control block.
2639 *
2640 * @remarks No-long-jump zone!!!
2641 */
2642static void hmR0SvmExportSharedState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2643{
2644 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2645 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2646
2647 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
2648 hmR0SvmExportSharedDebugState(pVCpu, pVmcb);
2649
2650 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
2651 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE),
2652 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
2653}
2654
2655
2656/**
2657 * Worker for SVMR0ImportStateOnDemand.
2658 *
2659 * @param pVCpu The cross context virtual CPU structure.
2660 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
2661 */
2662static void hmR0SvmImportGuestState(PVMCPUCC pVCpu, uint64_t fWhat)
2663{
2664 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
2665
2666 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2667 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
2668 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
2669 PCSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
2670
2671 /*
2672 * We disable interrupts to make the updating of the state and in particular
2673 * the fExtrn modification atomic wrt to preemption hooks.
2674 */
2675 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2676
2677 fWhat &= pCtx->fExtrn;
2678 if (fWhat)
2679 {
2680#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2681 if (fWhat & CPUMCTX_EXTRN_HWVIRT)
2682 {
2683 if (pVmcbCtrl->IntCtrl.n.u1VGifEnable)
2684 {
2685 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); /* We don't yet support passing VGIF feature to the guest. */
2686 Assert(HMIsSvmVGifActive(pVCpu->CTX_SUFF(pVM))); /* VM has configured it. */
2687 CPUMSetGuestGif(pCtx, pVmcbCtrl->IntCtrl.n.u1VGif);
2688 }
2689 }
2690
2691 if (fWhat & CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ)
2692 {
2693 if ( !pVmcbCtrl->IntCtrl.n.u1VIrqPending
2694 && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
2695 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
2696 }
2697#endif
2698
2699 if (fWhat & CPUMCTX_EXTRN_INHIBIT_INT)
2700 CPUMUpdateInterruptShadowEx(pCtx, pVmcbCtrl->IntShadow.n.u1IntShadow, pVmcbGuest->u64RIP);
2701
2702 if (fWhat & CPUMCTX_EXTRN_RIP)
2703 pCtx->rip = pVmcbGuest->u64RIP;
2704
2705 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
2706 {
2707 pCtx->eflags.u = pVmcbGuest->u64RFlags;
2708 if (pVCpu->hmr0.s.fClearTrapFlag)
2709 {
2710 pVCpu->hmr0.s.fClearTrapFlag = false;
2711 pCtx->eflags.Bits.u1TF = 0;
2712 }
2713 }
2714
2715 if (fWhat & CPUMCTX_EXTRN_RSP)
2716 pCtx->rsp = pVmcbGuest->u64RSP;
2717
2718 if (fWhat & CPUMCTX_EXTRN_RAX)
2719 pCtx->rax = pVmcbGuest->u64RAX;
2720
2721 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
2722 {
2723 if (fWhat & CPUMCTX_EXTRN_CS)
2724 {
2725 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, CS, cs);
2726 /* Correct the CS granularity bit. Haven't seen it being wrong in any other register (yet). */
2727 /** @todo SELM might need to be fixed as it too should not care about the
2728 * granularity bit. See @bugref{6785}. */
2729 if ( !pCtx->cs.Attr.n.u1Granularity
2730 && pCtx->cs.Attr.n.u1Present
2731 && pCtx->cs.u32Limit > UINT32_C(0xfffff))
2732 {
2733 Assert((pCtx->cs.u32Limit & 0xfff) == 0xfff);
2734 pCtx->cs.Attr.n.u1Granularity = 1;
2735 }
2736 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, cs);
2737 }
2738 if (fWhat & CPUMCTX_EXTRN_SS)
2739 {
2740 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, SS, ss);
2741 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ss);
2742 /*
2743 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the
2744 * VMCB and uses that and thus it's possible that when the CPL changes during
2745 * guest execution that the SS DPL isn't updated by AMD-V. Observed on some
2746 * AMD Fusion CPUs with 64-bit guests.
2747 *
2748 * See AMD spec. 15.5.1 "Basic operation".
2749 */
2750 Assert(!(pVmcbGuest->u8CPL & ~0x3));
2751 uint8_t const uCpl = pVmcbGuest->u8CPL;
2752 if (pCtx->ss.Attr.n.u2Dpl != uCpl)
2753 pCtx->ss.Attr.n.u2Dpl = uCpl & 0x3;
2754 }
2755 if (fWhat & CPUMCTX_EXTRN_DS)
2756 {
2757 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, DS, ds);
2758 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ds);
2759 }
2760 if (fWhat & CPUMCTX_EXTRN_ES)
2761 {
2762 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, ES, es);
2763 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, es);
2764 }
2765 if (fWhat & CPUMCTX_EXTRN_FS)
2766 {
2767 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, FS, fs);
2768 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, fs);
2769 }
2770 if (fWhat & CPUMCTX_EXTRN_GS)
2771 {
2772 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, GS, gs);
2773 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, gs);
2774 }
2775 }
2776
2777 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
2778 {
2779 if (fWhat & CPUMCTX_EXTRN_TR)
2780 {
2781 /*
2782 * Fixup TR attributes so it's compatible with Intel. Important when saved-states
2783 * are used between Intel and AMD, see @bugref{6208#c39}.
2784 * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
2785 */
2786 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, TR, tr);
2787 if (pCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2788 {
2789 if ( pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
2790 || CPUMIsGuestInLongModeEx(pCtx))
2791 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
2792 else if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
2793 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
2794 }
2795 }
2796
2797 if (fWhat & CPUMCTX_EXTRN_LDTR)
2798 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, LDTR, ldtr);
2799
2800 if (fWhat & CPUMCTX_EXTRN_GDTR)
2801 {
2802 pCtx->gdtr.cbGdt = pVmcbGuest->GDTR.u32Limit;
2803 pCtx->gdtr.pGdt = pVmcbGuest->GDTR.u64Base;
2804 }
2805
2806 if (fWhat & CPUMCTX_EXTRN_IDTR)
2807 {
2808 pCtx->idtr.cbIdt = pVmcbGuest->IDTR.u32Limit;
2809 pCtx->idtr.pIdt = pVmcbGuest->IDTR.u64Base;
2810 }
2811 }
2812
2813 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
2814 {
2815 pCtx->msrSTAR = pVmcbGuest->u64STAR;
2816 pCtx->msrLSTAR = pVmcbGuest->u64LSTAR;
2817 pCtx->msrCSTAR = pVmcbGuest->u64CSTAR;
2818 pCtx->msrSFMASK = pVmcbGuest->u64SFMASK;
2819 }
2820
2821 if ( (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
2822 && !pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit /* Intercepted. AMD-V would clear the high 32 bits of EIP & ESP. */)
2823 {
2824 pCtx->SysEnter.cs = pVmcbGuest->u64SysEnterCS;
2825 pCtx->SysEnter.eip = pVmcbGuest->u64SysEnterEIP;
2826 pCtx->SysEnter.esp = pVmcbGuest->u64SysEnterESP;
2827 }
2828
2829 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
2830 pCtx->msrKERNELGSBASE = pVmcbGuest->u64KernelGSBase;
2831
2832 if (fWhat & CPUMCTX_EXTRN_DR_MASK)
2833 {
2834 if (fWhat & CPUMCTX_EXTRN_DR6)
2835 {
2836 if (!pVCpu->hmr0.s.fUsingHyperDR7)
2837 pCtx->dr[6] = pVmcbGuest->u64DR6;
2838 else
2839 CPUMSetHyperDR6(pVCpu, pVmcbGuest->u64DR6);
2840 }
2841
2842 if (fWhat & CPUMCTX_EXTRN_DR7)
2843 {
2844 if (!pVCpu->hmr0.s.fUsingHyperDR7)
2845 pCtx->dr[7] = pVmcbGuest->u64DR7;
2846 else
2847 Assert(pVmcbGuest->u64DR7 == CPUMGetHyperDR7(pVCpu));
2848 }
2849 }
2850
2851 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
2852 {
2853 if (fWhat & CPUMCTX_EXTRN_CR0)
2854 {
2855 /* We intercept changes to all CR0 bits except maybe TS & MP bits. */
2856 uint64_t const uCr0 = (pCtx->cr0 & ~(X86_CR0_TS | X86_CR0_MP))
2857 | (pVmcbGuest->u64CR0 & (X86_CR0_TS | X86_CR0_MP));
2858 VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
2859 CPUMSetGuestCR0(pVCpu, uCr0);
2860 VMMRZCallRing3Enable(pVCpu);
2861 }
2862
2863 if (fWhat & CPUMCTX_EXTRN_CR2)
2864 pCtx->cr2 = pVmcbGuest->u64CR2;
2865
2866 if (fWhat & CPUMCTX_EXTRN_CR3)
2867 {
2868 if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
2869 && pCtx->cr3 != pVmcbGuest->u64CR3)
2870 {
2871 CPUMSetGuestCR3(pVCpu, pVmcbGuest->u64CR3);
2872 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
2873 }
2874 }
2875
2876 /* Changes to CR4 are always intercepted. */
2877 }
2878
2879 /* Update fExtrn. */
2880 pCtx->fExtrn &= ~fWhat;
2881
2882 /* If everything has been imported, clear the HM keeper bit. */
2883 if (!(pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL))
2884 {
2885 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
2886 Assert(!pCtx->fExtrn);
2887 }
2888 }
2889 else
2890 Assert(!pCtx->fExtrn || (pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
2891
2892 ASMSetFlags(fEFlags);
2893
2894 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
2895
2896 /*
2897 * Honor any pending CR3 updates.
2898 *
2899 * Consider this scenario: #VMEXIT -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp
2900 * -> SVMR0CallRing3Callback() -> VMMRZCallRing3Disable() -> hmR0SvmImportGuestState()
2901 * -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp -> continue with #VMEXIT
2902 * handling -> hmR0SvmImportGuestState() and here we are.
2903 *
2904 * The reason for such complicated handling is because VM-exits that call into PGM expect
2905 * CR3 to be up-to-date and thus any CR3-saves -before- the VM-exit (longjmp) would've
2906 * postponed the CR3 update via the force-flag and cleared CR3 from fExtrn. Any SVM R0
2907 * VM-exit handler that requests CR3 to be saved will end up here and we call PGMUpdateCR3().
2908 *
2909 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again,
2910 * and does not process force-flag like regular exits to ring-3 either, we cover for it here.
2911 */
2912 if ( VMMRZCallRing3IsEnabled(pVCpu)
2913 && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
2914 {
2915 AssertMsg(pCtx->cr3 == pVmcbGuest->u64CR3, ("cr3=%#RX64 vmcb_cr3=%#RX64\n", pCtx->cr3, pVmcbGuest->u64CR3));
2916 PGMUpdateCR3(pVCpu, pCtx->cr3);
2917 }
2918}
2919
2920
2921/**
2922 * Saves the guest (or nested-guest) state from the VMCB into the guest-CPU
2923 * context.
2924 *
2925 * Currently there is no residual state left in the CPU that is not updated in the
2926 * VMCB.
2927 *
2928 * @returns VBox status code.
2929 * @param pVCpu The cross context virtual CPU structure.
2930 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
2931 */
2932VMMR0DECL(int) SVMR0ImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
2933{
2934 hmR0SvmImportGuestState(pVCpu, fWhat);
2935 return VINF_SUCCESS;
2936}
2937
2938
2939/**
2940 * Gets SVM \#VMEXIT auxiliary information.
2941 *
2942 * @returns VBox status code.
2943 * @param pVCpu The cross context virtual CPU structure.
2944 * @param pSvmExitAux Where to store the auxiliary info.
2945 */
2946VMMR0DECL(int) SVMR0GetExitAuxInfo(PVMCPUCC pVCpu, PSVMEXITAUX pSvmExitAux)
2947{
2948 PCSVMTRANSIENT pSvmTransient = pVCpu->hmr0.s.svm.pSvmTransient;
2949 if (RT_LIKELY(pSvmTransient))
2950 {
2951 PCSVMVMCB pVmcb = pSvmTransient->pVmcb;
2952 if (RT_LIKELY(pVmcb))
2953 {
2954 pSvmExitAux->u64ExitCode = pVmcb->ctrl.u64ExitCode;
2955 pSvmExitAux->u64ExitInfo1 = pVmcb->ctrl.u64ExitInfo1;
2956 pSvmExitAux->u64ExitInfo2 = pVmcb->ctrl.u64ExitInfo2;
2957 pSvmExitAux->ExitIntInfo = pVmcb->ctrl.ExitIntInfo;
2958 return VINF_SUCCESS;
2959 }
2960 return VERR_SVM_IPE_5;
2961 }
2962 return VERR_NOT_AVAILABLE;
2963}
2964
2965
2966/**
2967 * Does the necessary state syncing before returning to ring-3 for any reason
2968 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
2969 *
2970 * @param pVCpu The cross context virtual CPU structure.
2971 * @param fImportState Whether to import the guest state from the VMCB back
2972 * to the guest-CPU context.
2973 *
2974 * @remarks No-long-jmp zone!!!
2975 */
2976static void hmR0SvmLeave(PVMCPUCC pVCpu, bool fImportState)
2977{
2978 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2979 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2980
2981 /*
2982 * !!! IMPORTANT !!!
2983 * If you modify code here, make sure to check whether SVMR0CallRing3Callback() needs to be updated too.
2984 */
2985
2986 /* Save the guest state if necessary. */
2987 if (fImportState)
2988 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
2989
2990 /* Restore host FPU state if necessary and resync on next R0 reentry. */
2991 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
2992 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
2993
2994 /*
2995 * Restore host debug registers if necessary and resync on next R0 reentry.
2996 */
2997#ifdef VBOX_STRICT
2998 if (CPUMIsHyperDebugStateActive(pVCpu))
2999 {
3000 PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb; /** @todo nested-guest. */
3001 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
3002 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
3003 }
3004#endif
3005 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
3006 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
3007 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
3008
3009 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
3010 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
3011 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
3012 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
3013 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
3014 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitVmentry);
3015 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
3016
3017 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
3018}
3019
3020
3021/**
3022 * Leaves the AMD-V session.
3023 *
3024 * Only used while returning to ring-3 either due to longjump or exits to
3025 * ring-3.
3026 *
3027 * @returns VBox status code.
3028 * @param pVCpu The cross context virtual CPU structure.
3029 */
3030static int hmR0SvmLeaveSession(PVMCPUCC pVCpu)
3031{
3032 HM_DISABLE_PREEMPT(pVCpu);
3033 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3034 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3035
3036 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
3037 and done this from the SVMR0ThreadCtxCallback(). */
3038 if (!pVCpu->hmr0.s.fLeaveDone)
3039 {
3040 hmR0SvmLeave(pVCpu, true /* fImportState */);
3041 pVCpu->hmr0.s.fLeaveDone = true;
3042 }
3043
3044 /*
3045 * !!! IMPORTANT !!!
3046 * If you modify code here, make sure to check whether SVMR0CallRing3Callback() needs to be updated too.
3047 */
3048
3049 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3050 /* Deregister hook now that we've left HM context before re-enabling preemption. */
3051 VMMR0ThreadCtxHookDisable(pVCpu);
3052
3053 /* Leave HM context. This takes care of local init (term). */
3054 int rc = HMR0LeaveCpu(pVCpu);
3055
3056 HM_RESTORE_PREEMPT();
3057 return rc;
3058}
3059
3060
3061/**
3062 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
3063 * any remaining host state) before we go back to ring-3 due to an assertion.
3064 *
3065 * @param pVCpu The cross context virtual CPU structure.
3066 */
3067VMMR0DECL(int) SVMR0AssertionCallback(PVMCPUCC pVCpu)
3068{
3069 /*
3070 * !!! IMPORTANT !!!
3071 * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
3072 * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
3073 */
3074 VMMR0AssertionRemoveNotification(pVCpu);
3075 VMMRZCallRing3Disable(pVCpu);
3076 HM_DISABLE_PREEMPT(pVCpu);
3077
3078 /* Import the entire guest state. */
3079 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3080
3081 /* Restore host FPU state if necessary and resync on next R0 reentry. */
3082 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
3083
3084 /* Restore host debug registers if necessary and resync on next R0 reentry. */
3085 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
3086
3087 /* Deregister the hook now that we've left HM context before re-enabling preemption. */
3088 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3089 VMMR0ThreadCtxHookDisable(pVCpu);
3090
3091 /* Leave HM context. This takes care of local init (term). */
3092 HMR0LeaveCpu(pVCpu);
3093
3094 HM_RESTORE_PREEMPT();
3095 return VINF_SUCCESS;
3096}
3097
3098
3099/**
3100 * Take necessary actions before going back to ring-3.
3101 *
3102 * An action requires us to go back to ring-3. This function does the necessary
3103 * steps before we can safely return to ring-3. This is not the same as longjmps
3104 * to ring-3, this is voluntary.
3105 *
3106 * @returns Strict VBox status code.
3107 * @param pVCpu The cross context virtual CPU structure.
3108 * @param rcExit The reason for exiting to ring-3. Can be
3109 * VINF_VMM_UNKNOWN_RING3_CALL.
3110 */
3111static VBOXSTRICTRC hmR0SvmExitToRing3(PVMCPUCC pVCpu, VBOXSTRICTRC rcExit)
3112{
3113 Assert(pVCpu);
3114 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3115
3116 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
3117 VMMRZCallRing3Disable(pVCpu);
3118 Log4Func(("rcExit=%d LocalFF=%#RX64 GlobalFF=%#RX32\n", VBOXSTRICTRC_VAL(rcExit), (uint64_t)pVCpu->fLocalForcedActions,
3119 pVCpu->CTX_SUFF(pVM)->fGlobalForcedActions));
3120
3121 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
3122 if (pVCpu->hm.s.Event.fPending)
3123 {
3124 hmR0SvmPendingEventToTrpmTrap(pVCpu);
3125 Assert(!pVCpu->hm.s.Event.fPending);
3126 }
3127
3128 /* Sync. the necessary state for going back to ring-3. */
3129 hmR0SvmLeaveSession(pVCpu);
3130 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
3131
3132 /* Thread-context hooks are unregistered at this point!!! */
3133 /* Ring-3 callback notifications are unregistered at this point!!! */
3134
3135 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
3136 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
3137 | CPUM_CHANGED_LDTR
3138 | CPUM_CHANGED_GDTR
3139 | CPUM_CHANGED_IDTR
3140 | CPUM_CHANGED_TR
3141 | CPUM_CHANGED_HIDDEN_SEL_REGS);
3142 if ( pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging
3143 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
3144 {
3145 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
3146 }
3147
3148 /* Update the exit-to-ring 3 reason. */
3149 pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
3150
3151 /* On our way back from ring-3, reload the guest-CPU state if it may change while in ring-3. */
3152 if ( rcExit != VINF_EM_RAW_INTERRUPT
3153 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3154 {
3155 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
3156 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3157 }
3158
3159 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
3160 VMMRZCallRing3Enable(pVCpu);
3161
3162 /*
3163 * If we're emulating an instruction, we shouldn't have any TRPM traps pending
3164 * and if we're injecting an event we should have a TRPM trap pending.
3165 */
3166 AssertReturnStmt(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu),
3167 pVCpu->hm.s.u32HMError = VBOXSTRICTRC_VAL(rcExit),
3168 VERR_SVM_IPE_5);
3169 AssertReturnStmt(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu),
3170 pVCpu->hm.s.u32HMError = VBOXSTRICTRC_VAL(rcExit),
3171 VERR_SVM_IPE_4);
3172
3173 return rcExit;
3174}
3175
3176
3177/**
3178 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
3179 * intercepts.
3180 *
3181 * @param pVCpu The cross context virtual CPU structure.
3182 * @param pVmcb Pointer to the VM control block.
3183 *
3184 * @remarks No-long-jump zone!!!
3185 */
3186static void hmR0SvmUpdateTscOffsetting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3187{
3188 /*
3189 * Avoid intercepting RDTSC/RDTSCP if we determined the host TSC (++) is stable
3190 * and in case of a nested-guest, if the nested-VMCB specifies it is not intercepting
3191 * RDTSC/RDTSCP as well.
3192 */
3193 bool fParavirtTsc;
3194 uint64_t uTscOffset;
3195 bool const fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVCpu->CTX_SUFF(pVM), pVCpu, &uTscOffset, &fParavirtTsc);
3196
3197 bool fIntercept;
3198 if (fCanUseRealTsc)
3199 fIntercept = hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3200 else
3201 {
3202 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3203 fIntercept = true;
3204 }
3205
3206 if (!fIntercept)
3207 {
3208#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3209 /* Apply the nested-guest VMCB's TSC offset over the guest TSC offset. */
3210 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3211 uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset);
3212#endif
3213
3214 /* Update the TSC offset in the VMCB and the relevant clean bits. */
3215 pVmcb->ctrl.u64TSCOffset = uTscOffset;
3216 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
3217 }
3218
3219 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
3220 information before every VM-entry, hence we have nothing to do here at the moment. */
3221 if (fParavirtTsc)
3222 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
3223}
3224
3225
3226/**
3227 * Sets an event as a pending event to be injected into the guest.
3228 *
3229 * @param pVCpu The cross context virtual CPU structure.
3230 * @param pEvent Pointer to the SVM event.
3231 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
3232 * page-fault.
3233 *
3234 * @remarks Statistics counter assumes this is a guest event being reflected to
3235 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
3236 */
3237DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPUCC pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
3238{
3239 Assert(!pVCpu->hm.s.Event.fPending);
3240 Assert(pEvent->n.u1Valid);
3241
3242 pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
3243 pVCpu->hm.s.Event.fPending = true;
3244 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
3245
3246 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3247 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3248}
3249
3250
3251/**
3252 * Sets an divide error (\#DE) exception as pending-for-injection into the VM.
3253 *
3254 * @param pVCpu The cross context virtual CPU structure.
3255 */
3256DECLINLINE(void) hmR0SvmSetPendingXcptDE(PVMCPUCC pVCpu)
3257{
3258 SVMEVENT Event;
3259 Event.u = 0;
3260 Event.n.u1Valid = 1;
3261 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3262 Event.n.u8Vector = X86_XCPT_DE;
3263 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3264}
3265
3266
3267/**
3268 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
3269 *
3270 * @param pVCpu The cross context virtual CPU structure.
3271 */
3272DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPUCC pVCpu)
3273{
3274 SVMEVENT Event;
3275 Event.u = 0;
3276 Event.n.u1Valid = 1;
3277 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3278 Event.n.u8Vector = X86_XCPT_UD;
3279 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3280}
3281
3282
3283/**
3284 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
3285 *
3286 * @param pVCpu The cross context virtual CPU structure.
3287 */
3288DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPUCC pVCpu)
3289{
3290 SVMEVENT Event;
3291 Event.u = 0;
3292 Event.n.u1Valid = 1;
3293 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3294 Event.n.u8Vector = X86_XCPT_DB;
3295 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3296}
3297
3298
3299/**
3300 * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
3301 *
3302 * @param pVCpu The cross context virtual CPU structure.
3303 * @param u32ErrCode The error-code for the page-fault.
3304 * @param uFaultAddress The page fault address (CR2).
3305 *
3306 * @remarks This updates the guest CR2 with @a uFaultAddress!
3307 */
3308DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPUCC pVCpu, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3309{
3310 SVMEVENT Event;
3311 Event.u = 0;
3312 Event.n.u1Valid = 1;
3313 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3314 Event.n.u8Vector = X86_XCPT_PF;
3315 Event.n.u1ErrorCodeValid = 1;
3316 Event.n.u32ErrorCode = u32ErrCode;
3317
3318 /* Update CR2 of the guest. */
3319 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR2);
3320 if (pVCpu->cpum.GstCtx.cr2 != uFaultAddress)
3321 {
3322 pVCpu->cpum.GstCtx.cr2 = uFaultAddress;
3323 /* The VMCB clean bit for CR2 will be updated while re-loading the guest state. */
3324 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
3325 }
3326
3327 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3328}
3329
3330
3331/**
3332 * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
3333 *
3334 * @param pVCpu The cross context virtual CPU structure.
3335 */
3336DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPUCC pVCpu)
3337{
3338 SVMEVENT Event;
3339 Event.u = 0;
3340 Event.n.u1Valid = 1;
3341 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3342 Event.n.u8Vector = X86_XCPT_MF;
3343 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3344}
3345
3346
3347/**
3348 * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
3349 *
3350 * @param pVCpu The cross context virtual CPU structure.
3351 */
3352DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPUCC pVCpu)
3353{
3354 SVMEVENT Event;
3355 Event.u = 0;
3356 Event.n.u1Valid = 1;
3357 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3358 Event.n.u8Vector = X86_XCPT_DF;
3359 Event.n.u1ErrorCodeValid = 1;
3360 Event.n.u32ErrorCode = 0;
3361 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3362}
3363
3364
3365/**
3366 * Injects an event into the guest upon VMRUN by updating the relevant field
3367 * in the VMCB.
3368 *
3369 * @param pVCpu The cross context virtual CPU structure.
3370 * @param pVmcb Pointer to the guest VM control block.
3371 * @param pEvent Pointer to the event.
3372 *
3373 * @remarks No-long-jump zone!!!
3374 * @remarks Requires CR0!
3375 */
3376DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPUCC pVCpu, PSVMVMCB pVmcb, PSVMEVENT pEvent)
3377{
3378 Assert(!pVmcb->ctrl.EventInject.n.u1Valid);
3379 pVmcb->ctrl.EventInject.u = pEvent->u;
3380 if ( pVmcb->ctrl.EventInject.n.u3Type == SVM_EVENT_EXCEPTION
3381 || pVmcb->ctrl.EventInject.n.u3Type == SVM_EVENT_NMI)
3382 {
3383 Assert(pEvent->n.u8Vector <= X86_XCPT_LAST);
3384 STAM_COUNTER_INC(&pVCpu->hm.s.aStatInjectedXcpts[pEvent->n.u8Vector]);
3385 }
3386 else
3387 STAM_COUNTER_INC(&pVCpu->hm.s.aStatInjectedIrqs[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
3388 RT_NOREF(pVCpu);
3389
3390 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3391 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3392}
3393
3394
3395
3396/**
3397 * Converts any TRPM trap into a pending HM event. This is typically used when
3398 * entering from ring-3 (not longjmp returns).
3399 *
3400 * @param pVCpu The cross context virtual CPU structure.
3401 */
3402static void hmR0SvmTrpmTrapToPendingEvent(PVMCPUCC pVCpu)
3403{
3404 Assert(TRPMHasTrap(pVCpu));
3405 Assert(!pVCpu->hm.s.Event.fPending);
3406
3407 uint8_t uVector;
3408 TRPMEVENT enmTrpmEvent;
3409 uint32_t uErrCode;
3410 RTGCUINTPTR GCPtrFaultAddress;
3411 uint8_t cbInstr;
3412
3413 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr, NULL /* pfIcebp */);
3414 AssertRC(rc);
3415
3416 SVMEVENT Event;
3417 Event.u = 0;
3418 Event.n.u1Valid = 1;
3419 Event.n.u8Vector = uVector;
3420
3421 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
3422 if (enmTrpmEvent == TRPM_TRAP)
3423 {
3424 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3425 switch (uVector)
3426 {
3427 case X86_XCPT_BP:
3428 case X86_XCPT_OF:
3429 AssertMsgFailed(("Invalid TRPM vector %d for event type %d\n", uVector, enmTrpmEvent));
3430 RT_FALL_THRU();
3431
3432 case X86_XCPT_PF:
3433 case X86_XCPT_DF:
3434 case X86_XCPT_TS:
3435 case X86_XCPT_NP:
3436 case X86_XCPT_SS:
3437 case X86_XCPT_GP:
3438 case X86_XCPT_AC:
3439 {
3440 Event.n.u1ErrorCodeValid = 1;
3441 Event.n.u32ErrorCode = uErrCode;
3442 break;
3443 }
3444 }
3445 }
3446 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
3447 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3448 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
3449 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
3450 else if (enmTrpmEvent == TRPM_NMI)
3451 Event.n.u3Type = SVM_EVENT_NMI;
3452 else
3453 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
3454
3455 rc = TRPMResetTrap(pVCpu);
3456 AssertRC(rc);
3457
3458 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
3459 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
3460
3461 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
3462}
3463
3464
3465/**
3466 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
3467 * AMD-V to execute any instruction.
3468 *
3469 * @param pVCpu The cross context virtual CPU structure.
3470 */
3471static void hmR0SvmPendingEventToTrpmTrap(PVMCPUCC pVCpu)
3472{
3473 Assert(pVCpu->hm.s.Event.fPending);
3474 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
3475
3476 SVMEVENT Event;
3477 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3478
3479 uint8_t uVector = Event.n.u8Vector;
3480 TRPMEVENT enmTrapType = HMSvmEventToTrpmEventType(&Event, uVector);
3481
3482 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, Event.n.u3Type));
3483
3484 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
3485 AssertRC(rc);
3486
3487 if (Event.n.u1ErrorCodeValid)
3488 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
3489
3490 if ( enmTrapType == TRPM_TRAP
3491 && uVector == X86_XCPT_PF)
3492 {
3493 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
3494 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
3495 }
3496 else if (enmTrapType == TRPM_SOFTWARE_INT)
3497 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
3498 pVCpu->hm.s.Event.fPending = false;
3499}
3500
3501
3502/**
3503 * Sets the virtual interrupt intercept control in the VMCB.
3504 *
3505 * @param pVCpu The cross context virtual CPU structure.
3506 * @param pVmcb Pointer to the VM control block.
3507 */
3508static void hmR0SvmSetIntWindowExiting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3509{
3510 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); NOREF(pVCpu);
3511
3512 /*
3513 * When AVIC isn't supported, set up an interrupt window to cause a #VMEXIT when the guest
3514 * is ready to accept interrupts. At #VMEXIT, we then get the interrupt from the APIC
3515 * (updating ISR at the right time) and inject the interrupt.
3516 *
3517 * With AVIC is supported, we could make use of the asynchronously delivery without
3518 * #VMEXIT and we would be passing the AVIC page to SVM.
3519 *
3520 * In AMD-V, an interrupt window is achieved using a combination of V_IRQ (an interrupt
3521 * is pending), V_IGN_TPR (ignore TPR priorities) and the VINTR intercept all being set.
3522 */
3523 Assert(pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR);
3524 pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 1;
3525 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3526 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3527 Log4(("Set VINTR intercept\n"));
3528}
3529
3530
3531/**
3532 * Clears the virtual interrupt intercept control in the VMCB as
3533 * we are figured the guest is unable process any interrupts
3534 * at this point of time.
3535 *
3536 * @param pVCpu The cross context virtual CPU structure.
3537 * @param pVmcb Pointer to the VM control block.
3538 */
3539static void hmR0SvmClearIntWindowExiting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3540{
3541 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); NOREF(pVCpu);
3542
3543 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
3544 if ( pVmcbCtrl->IntCtrl.n.u1VIrqPending
3545 || (pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR))
3546 {
3547 pVmcbCtrl->IntCtrl.n.u1VIrqPending = 0;
3548 pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3549 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3550 Log4(("Cleared VINTR intercept\n"));
3551 }
3552}
3553
3554
3555/**
3556 * Evaluates the event to be delivered to the guest and sets it as the pending
3557 * event.
3558 *
3559 * @returns Strict VBox status code.
3560 * @param pVCpu The cross context virtual CPU structure.
3561 * @param pSvmTransient Pointer to the SVM transient structure.
3562 */
3563static VBOXSTRICTRC hmR0SvmEvaluatePendingEvent(PVMCPUCC pVCpu, PCSVMTRANSIENT pSvmTransient)
3564{
3565 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3566 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT
3567 | CPUMCTX_EXTRN_RFLAGS
3568 | CPUMCTX_EXTRN_INHIBIT_INT
3569 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ);
3570
3571 Assert(!pVCpu->hm.s.Event.fPending);
3572 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3573 Assert(pVmcb);
3574
3575 bool const fGif = CPUMGetGuestGif(pCtx);
3576 bool const fIntShadow = CPUMIsInInterruptShadowWithUpdate(pCtx);
3577 bool const fBlockNmi = CPUMAreInterruptsInhibitedByNmi(pCtx);
3578
3579 Log4Func(("fGif=%RTbool fBlockNmi=%RTbool fIntShadow=%RTbool fIntPending=%RTbool fNmiPending=%RTbool\n",
3580 fGif, fBlockNmi, fIntShadow, VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
3581 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
3582
3583 /** @todo SMI. SMIs take priority over NMIs. */
3584
3585 /*
3586 * Check if the guest or nested-guest can receive NMIs.
3587 * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
3588 * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
3589 */
3590 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)
3591 && !fBlockNmi)
3592 {
3593 if ( fGif
3594 && !fIntShadow)
3595 {
3596#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3597 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_NMI))
3598 {
3599 Log4(("Intercepting NMI -> #VMEXIT\n"));
3600 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3601 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_NMI, 0, 0);
3602 }
3603#endif
3604 Log4(("Setting NMI pending for injection\n"));
3605 SVMEVENT Event;
3606 Event.u = 0;
3607 Event.n.u1Valid = 1;
3608 Event.n.u8Vector = X86_XCPT_NMI;
3609 Event.n.u3Type = SVM_EVENT_NMI;
3610 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3611 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3612 }
3613 else if (!fGif)
3614 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3615 else if (!pSvmTransient->fIsNestedGuest)
3616 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3617 /* else: for nested-guests, interrupt-window exiting will be picked up when merging VMCB controls. */
3618 }
3619 /*
3620 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt()
3621 * returns a valid interrupt we -must- deliver the interrupt. We can no longer re-request
3622 * it from the APIC device.
3623 *
3624 * For nested-guests, physical interrupts always take priority over virtual interrupts.
3625 * We don't need to inject nested-guest virtual interrupts here, we can let the hardware
3626 * do that work when we execute nested-guest code esp. since all the required information
3627 * is in the VMCB, unlike physical interrupts where we need to fetch the interrupt from
3628 * the virtual interrupt controller.
3629 *
3630 * See AMD spec. 15.21.4 "Injecting Virtual (INTR) Interrupts".
3631 */
3632 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3633 && !pVCpu->hm.s.fSingleInstruction)
3634 {
3635 bool const fBlockInt = !pSvmTransient->fIsNestedGuest ? !(pCtx->eflags.u & X86_EFL_IF)
3636 : CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx);
3637 if ( fGif
3638 && !fBlockInt
3639 && !fIntShadow)
3640 {
3641#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3642 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INTR))
3643 {
3644 Log4(("Intercepting INTR -> #VMEXIT\n"));
3645 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3646 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_INTR, 0, 0);
3647 }
3648#endif
3649 uint8_t u8Interrupt;
3650 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3651 if (RT_SUCCESS(rc))
3652 {
3653 Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
3654 SVMEVENT Event;
3655 Event.u = 0;
3656 Event.n.u1Valid = 1;
3657 Event.n.u8Vector = u8Interrupt;
3658 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3659 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3660 }
3661 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3662 {
3663 /*
3664 * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
3665 * updated eventually when the TPR is written by the guest.
3666 */
3667 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3668 }
3669 else
3670 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3671 }
3672 else if (!fGif)
3673 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3674 else if (!pSvmTransient->fIsNestedGuest)
3675 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3676 /* else: for nested-guests, interrupt-window exiting will be picked up when merging VMCB controls. */
3677 }
3678
3679 return VINF_SUCCESS;
3680}
3681
3682
3683/**
3684 * Injects any pending events into the guest (or nested-guest).
3685 *
3686 * @param pVCpu The cross context virtual CPU structure.
3687 * @param pVmcb Pointer to the VM control block.
3688 *
3689 * @remarks Must only be called when we are guaranteed to enter
3690 * hardware-assisted SVM execution and not return to ring-3
3691 * prematurely.
3692 */
3693static void hmR0SvmInjectPendingEvent(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3694{
3695 Assert(!TRPMHasTrap(pVCpu));
3696 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3697
3698 bool const fIntShadow = CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx);
3699#ifdef VBOX_STRICT
3700 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3701 bool const fGif = CPUMGetGuestGif(pCtx);
3702 bool fAllowInt = fGif;
3703 if (fGif)
3704 {
3705 /*
3706 * For nested-guests we have no way to determine if we're injecting a physical or
3707 * virtual interrupt at this point. Hence the partial verification below.
3708 */
3709 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
3710 fAllowInt = CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx) || CPUMIsGuestSvmVirtIntrEnabled(pVCpu, pCtx);
3711 else
3712 fAllowInt = RT_BOOL(pCtx->eflags.u & X86_EFL_IF);
3713 }
3714#endif
3715
3716 if (pVCpu->hm.s.Event.fPending)
3717 {
3718 SVMEVENT Event;
3719 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3720 Assert(Event.n.u1Valid);
3721
3722 /*
3723 * Validate event injection pre-conditions.
3724 */
3725 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3726 {
3727 Assert(fAllowInt);
3728 Assert(!fIntShadow);
3729 }
3730 else if (Event.n.u3Type == SVM_EVENT_NMI)
3731 {
3732 Assert(fGif);
3733 Assert(!fIntShadow);
3734 }
3735
3736 /*
3737 * Before injecting an NMI we must set VMCPU_FF_BLOCK_NMIS to prevent nested NMIs. We
3738 * do this only when we are surely going to inject the NMI as otherwise if we return
3739 * to ring-3 prematurely we could leave NMIs blocked indefinitely upon re-entry into
3740 * SVM R0.
3741 *
3742 * With VT-x, this is handled by the Guest interruptibility information VMCS field
3743 * which will set the VMCS field after actually delivering the NMI which we read on
3744 * VM-exit to determine the state.
3745 */
3746 if ( Event.n.u3Type == SVM_EVENT_NMI
3747 && Event.n.u8Vector == X86_XCPT_NMI)
3748 CPUMSetInterruptInhibitingByNmi(&pVCpu->cpum.GstCtx);
3749
3750 /*
3751 * Inject it (update VMCB for injection by the hardware).
3752 */
3753 Log4(("Injecting pending HM event\n"));
3754 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, &Event);
3755 pVCpu->hm.s.Event.fPending = false;
3756
3757 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3758 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
3759 else
3760 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
3761 }
3762 else
3763 Assert(pVmcb->ctrl.EventInject.n.u1Valid == 0);
3764
3765 /*
3766 * We could have injected an NMI through IEM and continue guest execution using
3767 * hardware-assisted SVM. In which case, we would not have any events pending (above)
3768 * but we still need to intercept IRET in order to eventually clear NMI inhibition.
3769 */
3770 if (CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx))
3771 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_IRET);
3772
3773 /*
3774 * Update the guest interrupt shadow in the guest (or nested-guest) VMCB.
3775 *
3776 * For nested-guests: We need to update it too for the scenario where IEM executes
3777 * the nested-guest but execution later continues here with an interrupt shadow active.
3778 */
3779 pVmcb->ctrl.IntShadow.n.u1IntShadow = fIntShadow;
3780}
3781
3782
3783/**
3784 * Reports world-switch error and dumps some useful debug info.
3785 *
3786 * @param pVCpu The cross context virtual CPU structure.
3787 * @param rcVMRun The return code from VMRUN (or
3788 * VERR_SVM_INVALID_GUEST_STATE for invalid
3789 * guest-state).
3790 */
3791static void hmR0SvmReportWorldSwitchError(PVMCPUCC pVCpu, int rcVMRun)
3792{
3793 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3794 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
3795 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3796
3797 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
3798 {
3799#ifdef VBOX_STRICT
3800 hmR0DumpRegs(pVCpu, HM_DUMP_REG_FLAGS_ALL);
3801 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3802 Log4(("ctrl.u32VmcbCleanBits %#RX32\n", pVmcb->ctrl.u32VmcbCleanBits));
3803 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
3804 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
3805 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
3806 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
3807 Log4(("ctrl.u32InterceptXcpt %#x\n", pVmcb->ctrl.u32InterceptXcpt));
3808 Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl));
3809 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
3810 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
3811 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
3812
3813 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
3814 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
3815 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
3816
3817 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
3818 Log4(("ctrl.IntCtrl.u1VIrqPending %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqPending));
3819 Log4(("ctrl.IntCtrl.u1VGif %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGif));
3820 Log4(("ctrl.IntCtrl.u6Reserved0 %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
3821 Log4(("ctrl.IntCtrl.u4VIntrPrio %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIntrPrio));
3822 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
3823 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
3824 Log4(("ctrl.IntCtrl.u1VIntrMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIntrMasking));
3825 Log4(("ctrl.IntCtrl.u1VGifEnable %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGifEnable));
3826 Log4(("ctrl.IntCtrl.u5Reserved1 %#x\n", pVmcb->ctrl.IntCtrl.n.u5Reserved));
3827 Log4(("ctrl.IntCtrl.u8VIntrVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIntrVector));
3828 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
3829
3830 Log4(("ctrl.IntShadow.u1IntShadow %#x\n", pVmcb->ctrl.IntShadow.n.u1IntShadow));
3831 Log4(("ctrl.IntShadow.u1GuestIntMask %#x\n", pVmcb->ctrl.IntShadow.n.u1GuestIntMask));
3832 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
3833 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
3834 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
3835 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
3836 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
3837 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
3838 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
3839 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
3840 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
3841 Log4(("ctrl.NestedPagingCtrl.u1NestedPaging %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1NestedPaging));
3842 Log4(("ctrl.NestedPagingCtrl.u1Sev %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1Sev));
3843 Log4(("ctrl.NestedPagingCtrl.u1SevEs %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1SevEs));
3844 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
3845 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
3846 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
3847 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
3848 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
3849 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
3850
3851 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
3852
3853 Log4(("ctrl.LbrVirt.u1LbrVirt %#x\n", pVmcb->ctrl.LbrVirt.n.u1LbrVirt));
3854 Log4(("ctrl.LbrVirt.u1VirtVmsaveVmload %#x\n", pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload));
3855
3856 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
3857 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
3858 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
3859 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
3860 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
3861 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
3862 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
3863 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
3864 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
3865 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
3866 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
3867 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
3868 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
3869 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
3870 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
3871 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
3872 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
3873 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
3874 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
3875 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
3876
3877 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
3878 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
3879
3880 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
3881 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
3882 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
3883 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
3884
3885 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
3886 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
3887
3888 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
3889 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
3890 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
3891 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
3892
3893 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
3894 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
3895 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
3896 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
3897 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
3898 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
3899 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
3900
3901 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
3902 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
3903 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
3904 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
3905
3906 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
3907 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
3908 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
3909
3910 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
3911 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
3912 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
3913 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
3914 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
3915 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
3916 Log4(("guest.u64PAT %#RX64\n", pVmcb->guest.u64PAT));
3917 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
3918 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
3919 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
3920 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
3921 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
3922
3923 NOREF(pVmcb);
3924#endif /* VBOX_STRICT */
3925 }
3926 else
3927 Log4Func(("rcVMRun=%d\n", rcVMRun));
3928}
3929
3930
3931/**
3932 * Check per-VM and per-VCPU force flag actions that require us to go back to
3933 * ring-3 for one reason or another.
3934 *
3935 * @returns Strict VBox status code (information status code included).
3936 * @retval VINF_SUCCESS if we don't have any actions that require going back to
3937 * ring-3.
3938 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
3939 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
3940 * interrupts)
3941 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
3942 * all EMTs to be in ring-3.
3943 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
3944 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
3945 * to the EM loop.
3946 *
3947 * @param pVCpu The cross context virtual CPU structure.
3948 */
3949static VBOXSTRICTRC hmR0SvmCheckForceFlags(PVMCPUCC pVCpu)
3950{
3951 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3952
3953 /* Could happen as a result of longjump. */
3954 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
3955 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
3956
3957 /* Update pending interrupts into the APIC's IRR. */
3958 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
3959 PDMApicUpdatePendingInterrupts(pVCpu);
3960
3961 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3962 if ( VM_FF_IS_ANY_SET(pVM, !pVCpu->hm.s.fSingleInstruction
3963 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
3964 || VMCPU_FF_IS_ANY_SET(pVCpu, !pVCpu->hm.s.fSingleInstruction
3965 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
3966 {
3967 /* Pending PGM C3 sync. */
3968 if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
3969 {
3970 int rc = PGMSyncCR3(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4,
3971 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3972 if (rc != VINF_SUCCESS)
3973 {
3974 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
3975 return rc;
3976 }
3977 }
3978
3979 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
3980 /* -XXX- what was that about single stepping? */
3981 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
3982 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
3983 {
3984 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
3985 int rc = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
3986 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
3987 return rc;
3988 }
3989
3990 /* Pending VM request packets, such as hardware interrupts. */
3991 if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
3992 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
3993 {
3994 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchVmReq);
3995 Log4Func(("Pending VM request forcing us back to ring-3\n"));
3996 return VINF_EM_PENDING_REQUEST;
3997 }
3998
3999 /* Pending PGM pool flushes. */
4000 if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
4001 {
4002 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPgmPoolFlush);
4003 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
4004 return VINF_PGM_POOL_FLUSH_PENDING;
4005 }
4006
4007 /* Pending DMA requests. */
4008 if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
4009 {
4010 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchDma);
4011 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
4012 return VINF_EM_RAW_TO_R3;
4013 }
4014 }
4015
4016 return VINF_SUCCESS;
4017}
4018
4019
4020/**
4021 * Does the preparations before executing guest code in AMD-V.
4022 *
4023 * This may cause longjmps to ring-3 and may even result in rescheduling to the
4024 * recompiler. We must be cautious what we do here regarding committing
4025 * guest-state information into the VMCB assuming we assuredly execute the guest
4026 * in AMD-V. If we fall back to the recompiler after updating the VMCB and
4027 * clearing the common-state (TRPM/forceflags), we must undo those changes so
4028 * that the recompiler can (and should) use them when it resumes guest
4029 * execution. Otherwise such operations must be done when we can no longer
4030 * exit to ring-3.
4031 *
4032 * @returns Strict VBox status code (informational status codes included).
4033 * @retval VINF_SUCCESS if we can proceed with running the guest.
4034 * @retval VINF_* scheduling changes, we have to go back to ring-3.
4035 *
4036 * @param pVCpu The cross context virtual CPU structure.
4037 * @param pSvmTransient Pointer to the SVM transient structure.
4038 */
4039static VBOXSTRICTRC hmR0SvmPreRunGuest(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
4040{
4041 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4042
4043#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
4044 if (pSvmTransient->fIsNestedGuest)
4045 {
4046 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
4047 return VINF_EM_RESCHEDULE_REM;
4048 }
4049#endif
4050
4051 /* Check force flag actions that might require us to go back to ring-3. */
4052 VBOXSTRICTRC rc = hmR0SvmCheckForceFlags(pVCpu);
4053 if (rc != VINF_SUCCESS)
4054 return rc;
4055
4056 if (TRPMHasTrap(pVCpu))
4057 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
4058 else if (!pVCpu->hm.s.Event.fPending)
4059 {
4060 rc = hmR0SvmEvaluatePendingEvent(pVCpu, pSvmTransient);
4061 if ( rc != VINF_SUCCESS
4062 || pSvmTransient->fIsNestedGuest != CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
4063 {
4064 /* If a nested-guest VM-exit occurred, bail. */
4065 if (pSvmTransient->fIsNestedGuest)
4066 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
4067 return rc;
4068 }
4069 }
4070
4071 /*
4072 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
4073 * Just do it in software, see @bugref{8411}.
4074 * NB: If we could continue a task switch exit we wouldn't need to do this.
4075 */
4076 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4077 if (RT_UNLIKELY( !g_fHmSvmFeatures
4078 && pVCpu->hm.s.Event.fPending
4079 && SVM_EVENT_GET_TYPE(pVCpu->hm.s.Event.u64IntInfo) == SVM_EVENT_NMI))
4080 return VINF_EM_RAW_INJECT_TRPM_EVENT;
4081
4082#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4083 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4084 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4085#endif
4086
4087#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4088 /*
4089 * Set up the nested-guest VMCB for execution using hardware-assisted SVM.
4090 */
4091 if (pSvmTransient->fIsNestedGuest)
4092 hmR0SvmSetupVmcbNested(pVCpu);
4093#endif
4094
4095 /*
4096 * Export the guest state bits that are not shared with the host in any way as we can
4097 * longjmp or get preempted in the midst of exporting some of the state.
4098 */
4099 rc = hmR0SvmExportGuestState(pVCpu, pSvmTransient);
4100 AssertRCReturn(rc, rc);
4101 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
4102
4103 /* Ensure we've cached (and hopefully modified) the nested-guest VMCB for execution using hardware-assisted SVM. */
4104 Assert(!pSvmTransient->fIsNestedGuest || pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
4105
4106 /*
4107 * If we're not intercepting TPR changes in the guest, save the guest TPR before the
4108 * world-switch so we can update it on the way back if the guest changed the TPR.
4109 */
4110 if (pVCpu->hmr0.s.svm.fSyncVTpr)
4111 {
4112 Assert(!pSvmTransient->fIsNestedGuest);
4113 PCSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
4114 if (pVM->hm.s.fTprPatchingActive)
4115 pSvmTransient->u8GuestTpr = pVmcb->guest.u64LSTAR;
4116 else
4117 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
4118 }
4119
4120 /*
4121 * No longjmps to ring-3 from this point on!!!
4122 *
4123 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4124 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4125 */
4126 VMMRZCallRing3Disable(pVCpu);
4127
4128 /*
4129 * We disable interrupts so that we don't miss any interrupts that would flag preemption
4130 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
4131 * preemption disabled for a while. Since this is purly to aid the
4132 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
4133 * disable interrupt on NT.
4134 *
4135 * We need to check for force-flags that could've possible been altered since we last
4136 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
4137 * see @bugref{6398}).
4138 *
4139 * We also check a couple of other force-flags as a last opportunity to get the EMT back
4140 * to ring-3 before executing guest code.
4141 */
4142 pSvmTransient->fEFlags = ASMIntDisableFlags();
4143 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4144 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4145 {
4146 ASMSetFlags(pSvmTransient->fEFlags);
4147 VMMRZCallRing3Enable(pVCpu);
4148 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4149 return VINF_EM_RAW_TO_R3;
4150 }
4151 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
4152 {
4153 ASMSetFlags(pSvmTransient->fEFlags);
4154 VMMRZCallRing3Enable(pVCpu);
4155 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
4156 return VINF_EM_RAW_INTERRUPT;
4157 }
4158
4159 return VINF_SUCCESS;
4160}
4161
4162
4163/**
4164 * Prepares to run guest (or nested-guest) code in AMD-V and we've committed to
4165 * doing so.
4166 *
4167 * This means there is no backing out to ring-3 or anywhere else at this point.
4168 *
4169 * @param pVCpu The cross context virtual CPU structure.
4170 * @param pSvmTransient Pointer to the SVM transient structure.
4171 *
4172 * @remarks Called with preemption disabled.
4173 * @remarks No-long-jump zone!!!
4174 */
4175static void hmR0SvmPreRunGuestCommitted(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
4176{
4177 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4178 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4179
4180 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4181 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
4182
4183 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4184 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4185
4186 hmR0SvmInjectPendingEvent(pVCpu, pVmcb);
4187
4188 if (!CPUMIsGuestFPUStateActive(pVCpu))
4189 {
4190 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4191 CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
4192 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4193 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
4194 }
4195
4196 /* Load the state shared between host and guest (FPU, debug). */
4197 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)
4198 hmR0SvmExportSharedState(pVCpu, pVmcb);
4199
4200 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT; /* Preemption might set this, nothing to do on AMD-V. */
4201 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
4202
4203 PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
4204 RTCPUID const idHostCpu = pHostCpu->idCpu;
4205 bool const fMigratedHostCpu = idHostCpu != pVCpu->hmr0.s.idLastCpu;
4206
4207 /* Setup TSC offsetting. */
4208 if ( pSvmTransient->fUpdateTscOffsetting
4209 || fMigratedHostCpu)
4210 {
4211 hmR0SvmUpdateTscOffsetting(pVCpu, pVmcb);
4212 pSvmTransient->fUpdateTscOffsetting = false;
4213 }
4214
4215 /* Record statistics of how often we use TSC offsetting as opposed to intercepting RDTSC/P. */
4216 if (!(pVmcb->ctrl.u64InterceptCtrl & (SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP)))
4217 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
4218 else
4219 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
4220
4221 /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
4222 if (fMigratedHostCpu)
4223 pVmcb->ctrl.u32VmcbCleanBits = 0;
4224
4225 /* Store status of the shared guest-host state at the time of VMRUN. */
4226 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
4227 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
4228
4229#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4230 uint8_t *pbMsrBitmap;
4231 if (!pSvmTransient->fIsNestedGuest)
4232 pbMsrBitmap = (uint8_t *)pVCpu->hmr0.s.svm.pvMsrBitmap;
4233 else
4234 {
4235 /** @todo We could perhaps optimize this by monitoring if the guest modifies its
4236 * MSRPM and only perform this if it changed also use EVEX.POR when it
4237 * does. */
4238 hmR0SvmMergeMsrpmNested(pHostCpu, pVCpu);
4239
4240 /* Update the nested-guest VMCB with the newly merged MSRPM (clean bits updated below). */
4241 pVmcb->ctrl.u64MSRPMPhysAddr = pHostCpu->n.svm.HCPhysNstGstMsrpm;
4242 pbMsrBitmap = (uint8_t *)pHostCpu->n.svm.pvNstGstMsrpm;
4243 }
4244#else
4245 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4246#endif
4247
4248 ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
4249 /* Flush the appropriate tagged-TLB entries. */
4250 hmR0SvmFlushTaggedTlb(pHostCpu, pVCpu, pVmcb);
4251 Assert(pVCpu->hmr0.s.idLastCpu == idHostCpu);
4252
4253 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
4254
4255 TMNotifyStartOfExecution(pVM, pVCpu); /* Finally, notify TM to resume its clocks as we're about
4256 to start executing. */
4257
4258 /*
4259 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that RDTSCPs
4260 * (that don't cause exits) reads the guest MSR, see @bugref{3324}.
4261 *
4262 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
4263 */
4264 if ( g_CpumHostFeatures.s.fRdTscP
4265 && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
4266 {
4267 uint64_t const uGuestTscAux = CPUMGetGuestTscAux(pVCpu);
4268 pVCpu->hmr0.s.svm.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
4269 if (uGuestTscAux != pVCpu->hmr0.s.svm.u64HostTscAux)
4270 ASMWrMsr(MSR_K8_TSC_AUX, uGuestTscAux);
4271 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
4272 pSvmTransient->fRestoreTscAuxMsr = true;
4273 }
4274 else
4275 {
4276 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
4277 pSvmTransient->fRestoreTscAuxMsr = false;
4278 }
4279 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
4280
4281 /*
4282 * If VMCB Clean bits isn't supported by the CPU or exposed to the guest in the nested
4283 * virtualization case, mark all state-bits as dirty indicating to the CPU to re-load
4284 * from the VMCB.
4285 */
4286 bool const fSupportsVmcbCleanBits = hmR0SvmSupportsVmcbCleanBits(pVCpu, pSvmTransient->fIsNestedGuest);
4287 if (!fSupportsVmcbCleanBits)
4288 pVmcb->ctrl.u32VmcbCleanBits = 0;
4289}
4290
4291
4292/**
4293 * Wrapper for running the guest (or nested-guest) code in AMD-V.
4294 *
4295 * @returns VBox strict status code.
4296 * @param pVCpu The cross context virtual CPU structure.
4297 * @param HCPhysVmcb The host physical address of the VMCB.
4298 *
4299 * @remarks No-long-jump zone!!!
4300 */
4301DECLINLINE(int) hmR0SvmRunGuest(PVMCPUCC pVCpu, RTHCPHYS HCPhysVmcb)
4302{
4303 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
4304 pVCpu->cpum.GstCtx.fExtrn |= HMSVM_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
4305 return pVCpu->hmr0.s.svm.pfnVMRun(pVCpu->CTX_SUFF(pVM), pVCpu, HCPhysVmcb);
4306}
4307
4308
4309/**
4310 * Performs some essential restoration of state after running guest (or
4311 * nested-guest) code in AMD-V.
4312 *
4313 * @param pVCpu The cross context virtual CPU structure.
4314 * @param pSvmTransient Pointer to the SVM transient structure.
4315 * @param rcVMRun Return code of VMRUN.
4316 *
4317 * @remarks Called with interrupts disabled.
4318 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
4319 * unconditionally when it is safe to do so.
4320 */
4321static void hmR0SvmPostRunGuest(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient, VBOXSTRICTRC rcVMRun)
4322{
4323 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4324
4325 ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
4326 ASMAtomicIncU32(&pVCpu->hmr0.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
4327
4328 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4329 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
4330
4331 /* TSC read must be done early for maximum accuracy. */
4332 if (!(pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
4333 {
4334 if (!pSvmTransient->fIsNestedGuest)
4335 TMCpuTickSetLastSeen(pVCpu, pVCpu->hmr0.s.uTscExit + pVmcbCtrl->u64TSCOffset);
4336#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4337 else
4338 {
4339 /* The nested-guest VMCB TSC offset shall eventually be restored on #VMEXIT via HMNotifySvmNstGstVmexit(). */
4340 uint64_t const uGstTsc = CPUMRemoveNestedGuestTscOffset(pVCpu, pVCpu->hmr0.s.uTscExit + pVmcbCtrl->u64TSCOffset);
4341 TMCpuTickSetLastSeen(pVCpu, uGstTsc);
4342 }
4343#endif
4344 }
4345
4346 if (pSvmTransient->fRestoreTscAuxMsr)
4347 {
4348 uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
4349 CPUMSetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
4350 if (u64GuestTscAuxMsr != pVCpu->hmr0.s.svm.u64HostTscAux)
4351 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hmr0.s.svm.u64HostTscAux);
4352 }
4353
4354 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
4355 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4356 TMNotifyEndOfExecution(pVM, pVCpu, pVCpu->hmr0.s.uTscExit); /* Notify TM that the guest is no longer running. */
4357 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4358
4359 Assert(!(ASMGetFlags() & X86_EFL_IF));
4360 ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
4361 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
4362
4363 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
4364 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
4365 {
4366 Log4Func(("VMRUN failure: rcVMRun=%Rrc\n", VBOXSTRICTRC_VAL(rcVMRun)));
4367 return;
4368 }
4369
4370 pSvmTransient->u64ExitCode = pVmcbCtrl->u64ExitCode; /* Save the #VMEXIT reason. */
4371 pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
4372 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
4373 pVmcbCtrl->u32VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
4374
4375#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4376 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4377 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4378#else
4379 /*
4380 * Always import the following:
4381 *
4382 * - RIP for exit optimizations and evaluating event injection on re-entry.
4383 * - RFLAGS for evaluating event injection on VM re-entry and for exporting shared debug
4384 * state on preemption.
4385 * - Interrupt shadow, GIF for evaluating event injection on VM re-entry.
4386 * - CS for exit optimizations.
4387 * - RAX, RSP for simplifying assumptions on GPRs. All other GPRs are swapped by the
4388 * assembly switcher code.
4389 * - Shared state (only DR7 currently) for exporting shared debug state on preemption.
4390 */
4391 hmR0SvmImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP
4392 | CPUMCTX_EXTRN_RFLAGS
4393 | CPUMCTX_EXTRN_RAX
4394 | CPUMCTX_EXTRN_RSP
4395 | CPUMCTX_EXTRN_CS
4396 | CPUMCTX_EXTRN_HWVIRT
4397 | CPUMCTX_EXTRN_INHIBIT_INT
4398 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ
4399 | HMSVM_CPUMCTX_SHARED_STATE);
4400#endif
4401
4402 if ( pSvmTransient->u64ExitCode != SVM_EXIT_INVALID
4403 && pVCpu->hmr0.s.svm.fSyncVTpr)
4404 {
4405 Assert(!pSvmTransient->fIsNestedGuest);
4406 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
4407 if ( pVM->hm.s.fTprPatchingActive
4408 && (pVmcb->guest.u64LSTAR & 0xff) != pSvmTransient->u8GuestTpr)
4409 {
4410 int rc = PDMApicSetTpr(pVCpu, pVmcb->guest.u64LSTAR & 0xff);
4411 AssertRC(rc);
4412 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4413 }
4414 /* Sync TPR when we aren't intercepting CR8 writes. */
4415 else if (pSvmTransient->u8GuestTpr != pVmcbCtrl->IntCtrl.n.u8VTPR)
4416 {
4417 int rc = PDMApicSetTpr(pVCpu, pVmcbCtrl->IntCtrl.n.u8VTPR << 4);
4418 AssertRC(rc);
4419 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4420 }
4421 }
4422
4423#ifdef DEBUG_ramshankar
4424 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
4425 {
4426 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4427 hmR0SvmLogState(pVCpu, pVmcb, pVCpu->cpum.GstCtx, "hmR0SvmPostRunGuestNested", HMSVM_LOG_ALL & ~HMSVM_LOG_LBR,
4428 0 /* uVerbose */);
4429 }
4430#endif
4431
4432 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
4433 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_SVM, pSvmTransient->u64ExitCode & EMEXIT_F_TYPE_MASK),
4434 pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, pVCpu->hmr0.s.uTscExit);
4435}
4436
4437
4438/**
4439 * Runs the guest code using AMD-V.
4440 *
4441 * @returns Strict VBox status code.
4442 * @param pVCpu The cross context virtual CPU structure.
4443 * @param pcLoops Pointer to the number of executed loops.
4444 */
4445static VBOXSTRICTRC hmR0SvmRunGuestCodeNormal(PVMCPUCC pVCpu, uint32_t *pcLoops)
4446{
4447 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops;
4448 Assert(pcLoops);
4449 Assert(*pcLoops <= cMaxResumeLoops);
4450
4451 SVMTRANSIENT SvmTransient;
4452 RT_ZERO(SvmTransient);
4453 SvmTransient.fUpdateTscOffsetting = true;
4454 SvmTransient.pVmcb = pVCpu->hmr0.s.svm.pVmcb;
4455
4456 VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_5;
4457 for (;;)
4458 {
4459 Assert(!HMR0SuspendPending());
4460 HMSVM_ASSERT_CPU_SAFE(pVCpu);
4461
4462 /* Preparatory work for running nested-guest code, this may force us to return to
4463 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4464 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4465 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4466 if (rc != VINF_SUCCESS)
4467 break;
4468
4469 /*
4470 * No longjmps to ring-3 from this point on!!!
4471 *
4472 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4473 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4474 */
4475 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4476 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hmr0.s.svm.HCPhysVmcb);
4477
4478 /* Restore any residual host-state and save any bits shared between host and guest
4479 into the guest-CPU state. Re-enables interrupts! */
4480 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4481
4482 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4483 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4484 {
4485 if (rc == VINF_SUCCESS)
4486 rc = VERR_SVM_INVALID_GUEST_STATE;
4487 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4488 hmR0SvmReportWorldSwitchError(pVCpu, VBOXSTRICTRC_VAL(rc));
4489 break;
4490 }
4491
4492 /* Handle the #VMEXIT. */
4493 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4494 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4495 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, SvmTransient.u64ExitCode, pVCpu->hmr0.s.svm.pVmcb);
4496 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4497 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4498 if (rc != VINF_SUCCESS)
4499 break;
4500 if (++(*pcLoops) >= cMaxResumeLoops)
4501 {
4502 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4503 rc = VINF_EM_RAW_INTERRUPT;
4504 break;
4505 }
4506 }
4507
4508 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4509 return rc;
4510}
4511
4512
4513#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4514/**
4515 * Runs the nested-guest code using AMD-V.
4516 *
4517 * @returns Strict VBox status code.
4518 * @param pVCpu The cross context virtual CPU structure.
4519 * @param pcLoops Pointer to the number of executed loops. If we're switching
4520 * from the guest-code execution loop to this nested-guest
4521 * execution loop pass the remainder value, else pass 0.
4522 */
4523static VBOXSTRICTRC hmR0SvmRunGuestCodeNested(PVMCPUCC pVCpu, uint32_t *pcLoops)
4524{
4525 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4526 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4527 Assert(pcLoops);
4528 Assert(*pcLoops <= pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops);
4529 /** @todo r=bird: Sharing this with ring-3 isn't safe in the long run, I fear... */
4530 RTHCPHYS const HCPhysVmcb = GVMMR0ConvertGVMPtr2HCPhys(pVCpu->pGVM, &pCtx->hwvirt.svm.Vmcb);
4531
4532 SVMTRANSIENT SvmTransient;
4533 RT_ZERO(SvmTransient);
4534 SvmTransient.fUpdateTscOffsetting = true;
4535 SvmTransient.pVmcb = &pCtx->hwvirt.svm.Vmcb;
4536 SvmTransient.fIsNestedGuest = true;
4537
4538 /* Setup pointer so PGM/IEM can query #VMEXIT auxiliary info. on demand in ring-0. */
4539 pVCpu->hmr0.s.svm.pSvmTransient = &SvmTransient;
4540
4541 VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_4;
4542 for (;;)
4543 {
4544 Assert(!HMR0SuspendPending());
4545 HMSVM_ASSERT_CPU_SAFE(pVCpu);
4546
4547 /* Preparatory work for running nested-guest code, this may force us to return to
4548 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4549 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4550 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4551 if ( rc != VINF_SUCCESS
4552 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4553 break;
4554
4555 /*
4556 * No longjmps to ring-3 from this point on!!!
4557 *
4558 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4559 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4560 */
4561 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4562
4563 rc = hmR0SvmRunGuest(pVCpu, HCPhysVmcb);
4564
4565 /* Restore any residual host-state and save any bits shared between host and guest
4566 into the guest-CPU state. Re-enables interrupts! */
4567 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4568
4569 if (RT_LIKELY( rc == VINF_SUCCESS
4570 && SvmTransient.u64ExitCode != SVM_EXIT_INVALID))
4571 { /* extremely likely */ }
4572 else
4573 {
4574 /* VMRUN failed, shouldn't really happen, Guru. */
4575 if (rc != VINF_SUCCESS)
4576 break;
4577
4578 /* Invalid nested-guest state. Cause a #VMEXIT but assert on strict builds. */
4579 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4580 AssertMsgFailed(("Invalid nested-guest state. rc=%Rrc u64ExitCode=%#RX64\n", rc, SvmTransient.u64ExitCode));
4581 rc = IEMExecSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0, 0);
4582 break;
4583 }
4584
4585 /* Handle the #VMEXIT. */
4586 HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4587 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4588 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, &pCtx->hwvirt.svm.Vmcb);
4589 rc = hmR0SvmHandleExitNested(pVCpu, &SvmTransient);
4590 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4591 if (rc == VINF_SUCCESS)
4592 {
4593 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4594 {
4595 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
4596 rc = VINF_SVM_VMEXIT;
4597 }
4598 else
4599 {
4600 if (++(*pcLoops) <= pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops)
4601 continue;
4602 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4603 rc = VINF_EM_RAW_INTERRUPT;
4604 }
4605 }
4606 else
4607 Assert(rc != VINF_SVM_VMEXIT);
4608 break;
4609 /** @todo NSTSVM: handle single-stepping. */
4610 }
4611
4612 /* Ensure #VMEXIT auxiliary info. is no longer available. */
4613 pVCpu->hmr0.s.svm.pSvmTransient = NULL;
4614
4615 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4616 return rc;
4617}
4618#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
4619
4620
4621/**
4622 * Checks if any expensive dtrace probes are enabled and we should go to the
4623 * debug loop.
4624 *
4625 * @returns true if we should use debug loop, false if not.
4626 */
4627static bool hmR0SvmAnyExpensiveProbesEnabled(void)
4628{
4629 /* It's probably faster to OR the raw 32-bit counter variables together.
4630 Since the variables are in an array and the probes are next to one
4631 another (more or less), we have good locality. So, better read
4632 eight-nine cache lines ever time and only have one conditional, than
4633 128+ conditionals, right? */
4634 return ( VBOXVMM_R0_HMSVM_VMEXIT_ENABLED_RAW() /* expensive too due to context */
4635 | VBOXVMM_XCPT_DE_ENABLED_RAW()
4636 | VBOXVMM_XCPT_DB_ENABLED_RAW()
4637 | VBOXVMM_XCPT_BP_ENABLED_RAW()
4638 | VBOXVMM_XCPT_OF_ENABLED_RAW()
4639 | VBOXVMM_XCPT_BR_ENABLED_RAW()
4640 | VBOXVMM_XCPT_UD_ENABLED_RAW()
4641 | VBOXVMM_XCPT_NM_ENABLED_RAW()
4642 | VBOXVMM_XCPT_DF_ENABLED_RAW()
4643 | VBOXVMM_XCPT_TS_ENABLED_RAW()
4644 | VBOXVMM_XCPT_NP_ENABLED_RAW()
4645 | VBOXVMM_XCPT_SS_ENABLED_RAW()
4646 | VBOXVMM_XCPT_GP_ENABLED_RAW()
4647 | VBOXVMM_XCPT_PF_ENABLED_RAW()
4648 | VBOXVMM_XCPT_MF_ENABLED_RAW()
4649 | VBOXVMM_XCPT_AC_ENABLED_RAW()
4650 | VBOXVMM_XCPT_XF_ENABLED_RAW()
4651 | VBOXVMM_XCPT_VE_ENABLED_RAW()
4652 | VBOXVMM_XCPT_SX_ENABLED_RAW()
4653 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
4654 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
4655 ) != 0
4656 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
4657 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
4658 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
4659 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
4660 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
4661 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
4662 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
4663 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
4664 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
4665 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
4666 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
4667 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
4668 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
4669 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
4670 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
4671 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
4672 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
4673 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
4674 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
4675 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
4676 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
4677 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
4678 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
4679 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
4680 | VBOXVMM_INSTR_STR_ENABLED_RAW()
4681 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
4682 //| VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
4683 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
4684 //| VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
4685 //| VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
4686 //| VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
4687 //| VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
4688 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
4689 | VBOXVMM_INSTR_SVM_VMRUN_ENABLED_RAW()
4690 | VBOXVMM_INSTR_SVM_VMLOAD_ENABLED_RAW()
4691 | VBOXVMM_INSTR_SVM_VMSAVE_ENABLED_RAW()
4692 | VBOXVMM_INSTR_SVM_STGI_ENABLED_RAW()
4693 | VBOXVMM_INSTR_SVM_CLGI_ENABLED_RAW()
4694 ) != 0
4695 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
4696 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
4697 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
4698 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
4699 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
4700 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
4701 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
4702 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
4703 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
4704 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
4705 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
4706 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
4707 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
4708 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
4709 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
4710 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
4711 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
4712 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
4713 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
4714 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
4715 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
4716 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
4717 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
4718 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
4719 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
4720 | VBOXVMM_EXIT_STR_ENABLED_RAW()
4721 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
4722 //| VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
4723 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
4724 //| VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
4725 //| VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
4726 //| VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
4727 //| VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
4728 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
4729 | VBOXVMM_EXIT_SVM_VMRUN_ENABLED_RAW()
4730 | VBOXVMM_EXIT_SVM_VMLOAD_ENABLED_RAW()
4731 | VBOXVMM_EXIT_SVM_VMSAVE_ENABLED_RAW()
4732 | VBOXVMM_EXIT_SVM_STGI_ENABLED_RAW()
4733 | VBOXVMM_EXIT_SVM_CLGI_ENABLED_RAW()
4734 ) != 0;
4735}
4736
4737
4738/**
4739 * Runs the guest code using AMD-V.
4740 *
4741 * @returns Strict VBox status code.
4742 * @param pVCpu The cross context virtual CPU structure.
4743 */
4744VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVMCPUCC pVCpu)
4745{
4746 AssertPtr(pVCpu);
4747 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4748 Assert(VMMRZCallRing3IsEnabled(pVCpu));
4749 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
4750 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4751
4752 uint32_t cLoops = 0;
4753 VBOXSTRICTRC rc;
4754 for (;;)
4755 {
4756#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4757 bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(pCtx);
4758#else
4759 NOREF(pCtx);
4760 bool const fInNestedGuestMode = false;
4761#endif
4762 if (!fInNestedGuestMode)
4763 {
4764 if ( !pVCpu->hm.s.fUseDebugLoop
4765 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0SvmAnyExpensiveProbesEnabled())
4766 && !DBGFIsStepping(pVCpu)
4767 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledSwBreakpoints)
4768 rc = hmR0SvmRunGuestCodeNormal(pVCpu, &cLoops);
4769 else
4770 rc = hmR0SvmRunGuestCodeDebug(pVCpu, &cLoops);
4771 }
4772#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4773 else
4774 rc = hmR0SvmRunGuestCodeNested(pVCpu, &cLoops);
4775
4776 if (rc == VINF_SVM_VMRUN)
4777 {
4778 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
4779 continue;
4780 }
4781 if (rc == VINF_SVM_VMEXIT)
4782 {
4783 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
4784 continue;
4785 }
4786#endif
4787 break;
4788 }
4789
4790 /* Fixup error codes. */
4791 if (rc == VERR_EM_INTERPRETER)
4792 rc = VINF_EM_RAW_EMULATE_INSTR;
4793 else if (rc == VINF_EM_RESET)
4794 rc = VINF_EM_TRIPLE_FAULT;
4795
4796 /* Prepare to return to ring-3. This will remove longjmp notifications. */
4797 rc = hmR0SvmExitToRing3(pVCpu, rc);
4798 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
4799 Assert(!VMMR0AssertionIsNotificationSet(pVCpu));
4800 return rc;
4801}
4802
4803#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4804
4805/**
4806 * Determines whether the given I/O access should cause a nested-guest \#VMEXIT.
4807 *
4808 * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
4809 * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO.
4810 */
4811static bool hmR0SvmIsIoInterceptSet(void *pvIoBitmap, PSVMIOIOEXITINFO pIoExitInfo)
4812{
4813 const uint16_t u16Port = pIoExitInfo->n.u16Port;
4814 const SVMIOIOTYPE enmIoType = (SVMIOIOTYPE)pIoExitInfo->n.u1Type;
4815 const uint8_t cbReg = (pIoExitInfo->u >> SVM_IOIO_OP_SIZE_SHIFT) & 7;
4816 const uint8_t cAddrSizeBits = ((pIoExitInfo->u >> SVM_IOIO_ADDR_SIZE_SHIFT) & 7) << 4;
4817 const uint8_t iEffSeg = pIoExitInfo->n.u3Seg;
4818 const bool fRep = pIoExitInfo->n.u1Rep;
4819 const bool fStrIo = pIoExitInfo->n.u1Str;
4820
4821 return CPUMIsSvmIoInterceptSet(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
4822 NULL /* pIoExitInfo */);
4823}
4824
4825
4826/**
4827 * Handles a nested-guest \#VMEXIT (for all EXITCODE values except
4828 * SVM_EXIT_INVALID).
4829 *
4830 * @returns VBox status code (informational status codes included).
4831 * @param pVCpu The cross context virtual CPU structure.
4832 * @param pSvmTransient Pointer to the SVM transient structure.
4833 */
4834static VBOXSTRICTRC hmR0SvmHandleExitNested(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
4835{
4836 HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
4837 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
4838 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
4839
4840 /*
4841 * We import the complete state here because we use separate VMCBs for the guest and the
4842 * nested-guest, and the guest's VMCB is used after the #VMEXIT. We can only save/restore
4843 * the #VMEXIT specific state if we used the same VMCB for both guest and nested-guest.
4844 */
4845#define NST_GST_VMEXIT_CALL_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
4846 do { \
4847 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
4848 return IEMExecSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); \
4849 } while (0)
4850
4851 /*
4852 * For all the #VMEXITs here we primarily figure out if the #VMEXIT is expected by the
4853 * nested-guest. If it isn't, it should be handled by the (outer) guest.
4854 */
4855 PSVMVMCB pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb;
4856 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4857 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
4858 uint64_t const uExitCode = pVmcbNstGstCtrl->u64ExitCode;
4859 uint64_t const uExitInfo1 = pVmcbNstGstCtrl->u64ExitInfo1;
4860 uint64_t const uExitInfo2 = pVmcbNstGstCtrl->u64ExitInfo2;
4861
4862 Assert(uExitCode == pVmcbNstGstCtrl->u64ExitCode);
4863 switch (uExitCode)
4864 {
4865 case SVM_EXIT_CPUID:
4866 {
4867 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CPUID))
4868 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4869 return hmR0SvmExitCpuid(pVCpu, pSvmTransient);
4870 }
4871
4872 case SVM_EXIT_RDTSC:
4873 {
4874 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSC))
4875 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4876 return hmR0SvmExitRdtsc(pVCpu, pSvmTransient);
4877 }
4878
4879 case SVM_EXIT_RDTSCP:
4880 {
4881 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSCP))
4882 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4883 return hmR0SvmExitRdtscp(pVCpu, pSvmTransient);
4884 }
4885
4886 case SVM_EXIT_MONITOR:
4887 {
4888 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MONITOR))
4889 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4890 return hmR0SvmExitMonitor(pVCpu, pSvmTransient);
4891 }
4892
4893 case SVM_EXIT_MWAIT:
4894 {
4895 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MWAIT))
4896 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4897 return hmR0SvmExitMwait(pVCpu, pSvmTransient);
4898 }
4899
4900 case SVM_EXIT_HLT:
4901 {
4902 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_HLT))
4903 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4904 return hmR0SvmExitHlt(pVCpu, pSvmTransient);
4905 }
4906
4907 case SVM_EXIT_MSR:
4908 {
4909 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MSR_PROT))
4910 {
4911 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
4912 uint16_t offMsrpm;
4913 uint8_t uMsrpmBit;
4914 int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
4915 if (RT_SUCCESS(rc))
4916 {
4917 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
4918 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
4919
4920 uint8_t const * const pbMsrBitmap = &pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[offMsrpm];
4921 bool const fInterceptRead = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit));
4922 bool const fInterceptWrite = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
4923
4924 if ( (fInterceptWrite && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
4925 || (fInterceptRead && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_READ))
4926 {
4927 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4928 }
4929 }
4930 else
4931 {
4932 /*
4933 * MSRs not covered by the MSRPM automatically cause an #VMEXIT.
4934 * See AMD-V spec. "15.11 MSR Intercepts".
4935 */
4936 Assert(rc == VERR_OUT_OF_RANGE);
4937 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4938 }
4939 }
4940 return hmR0SvmExitMsr(pVCpu, pSvmTransient);
4941 }
4942
4943 case SVM_EXIT_IOIO:
4944 {
4945 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IOIO_PROT))
4946 {
4947 SVMIOIOEXITINFO IoExitInfo;
4948 IoExitInfo.u = pVmcbNstGst->ctrl.u64ExitInfo1;
4949 bool const fIntercept = hmR0SvmIsIoInterceptSet(pVCpu->cpum.GstCtx.hwvirt.svm.abIoBitmap, &IoExitInfo);
4950 if (fIntercept)
4951 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4952 }
4953 return hmR0SvmExitIOInstr(pVCpu, pSvmTransient);
4954 }
4955
4956 case SVM_EXIT_XCPT_PF:
4957 {
4958 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4959 if (pVM->hmr0.s.fNestedPaging)
4960 {
4961 uint32_t const u32ErrCode = pVmcbNstGstCtrl->u64ExitInfo1;
4962 uint64_t const uFaultAddress = pVmcbNstGstCtrl->u64ExitInfo2;
4963
4964 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
4965 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_PF))
4966 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, u32ErrCode, uFaultAddress);
4967
4968 /* If the nested-guest is not intercepting #PFs, forward the #PF to the guest. */
4969 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
4970 hmR0SvmSetPendingXcptPF(pVCpu, u32ErrCode, uFaultAddress);
4971 return VINF_SUCCESS;
4972 }
4973 return hmR0SvmExitXcptPF(pVCpu, pSvmTransient);
4974 }
4975
4976 case SVM_EXIT_XCPT_UD:
4977 {
4978 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_UD))
4979 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4980 hmR0SvmSetPendingXcptUD(pVCpu);
4981 return VINF_SUCCESS;
4982 }
4983
4984 case SVM_EXIT_XCPT_MF:
4985 {
4986 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_MF))
4987 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4988 return hmR0SvmExitXcptMF(pVCpu, pSvmTransient);
4989 }
4990
4991 case SVM_EXIT_XCPT_DB:
4992 {
4993 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_DB))
4994 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4995 return hmR0SvmNestedExitXcptDB(pVCpu, pSvmTransient);
4996 }
4997
4998 case SVM_EXIT_XCPT_AC:
4999 {
5000 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_AC))
5001 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5002 return hmR0SvmExitXcptAC(pVCpu, pSvmTransient);
5003 }
5004
5005 case SVM_EXIT_XCPT_BP:
5006 {
5007 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_BP))
5008 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5009 return hmR0SvmNestedExitXcptBP(pVCpu, pSvmTransient);
5010 }
5011
5012 case SVM_EXIT_READ_CR0:
5013 case SVM_EXIT_READ_CR3:
5014 case SVM_EXIT_READ_CR4:
5015 {
5016 uint8_t const uCr = uExitCode - SVM_EXIT_READ_CR0;
5017 if (CPUMIsGuestSvmReadCRxInterceptSet(pVCpu, pCtx, uCr))
5018 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5019 return hmR0SvmExitReadCRx(pVCpu, pSvmTransient);
5020 }
5021
5022 case SVM_EXIT_CR0_SEL_WRITE:
5023 {
5024 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
5025 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5026 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5027 }
5028
5029 case SVM_EXIT_WRITE_CR0:
5030 case SVM_EXIT_WRITE_CR3:
5031 case SVM_EXIT_WRITE_CR4:
5032 case SVM_EXIT_WRITE_CR8: /* CR8 writes would go to the V_TPR rather than here, since we run with V_INTR_MASKING. */
5033 {
5034 uint8_t const uCr = uExitCode - SVM_EXIT_WRITE_CR0;
5035 Log4Func(("Write CR%u: uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uCr, uExitInfo1, uExitInfo2));
5036
5037 if (CPUMIsGuestSvmWriteCRxInterceptSet(pVCpu, pCtx, uCr))
5038 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5039 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5040 }
5041
5042 case SVM_EXIT_PAUSE:
5043 {
5044 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_PAUSE))
5045 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5046 return hmR0SvmExitPause(pVCpu, pSvmTransient);
5047 }
5048
5049 case SVM_EXIT_VINTR:
5050 {
5051 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VINTR))
5052 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5053 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5054 }
5055
5056 case SVM_EXIT_INTR:
5057 case SVM_EXIT_NMI:
5058 case SVM_EXIT_SMI:
5059 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5060 {
5061 /*
5062 * We shouldn't direct physical interrupts, NMIs, SMIs to the nested-guest.
5063 *
5064 * Although we don't intercept SMIs, the nested-guest might. Therefore, we might
5065 * get an SMI #VMEXIT here so simply ignore rather than causing a corresponding
5066 * nested-guest #VMEXIT.
5067 *
5068 * We shall import the complete state here as we may cause #VMEXITs from ring-3
5069 * while trying to inject interrupts, see comment at the top of this function.
5070 */
5071 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_ALL);
5072 return hmR0SvmExitIntr(pVCpu, pSvmTransient);
5073 }
5074
5075 case SVM_EXIT_FERR_FREEZE:
5076 {
5077 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_FERR_FREEZE))
5078 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5079 return hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient);
5080 }
5081
5082 case SVM_EXIT_INVLPG:
5083 {
5084 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPG))
5085 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5086 return hmR0SvmExitInvlpg(pVCpu, pSvmTransient);
5087 }
5088
5089 case SVM_EXIT_WBINVD:
5090 {
5091 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_WBINVD))
5092 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5093 return hmR0SvmExitWbinvd(pVCpu, pSvmTransient);
5094 }
5095
5096 case SVM_EXIT_INVD:
5097 {
5098 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVD))
5099 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5100 return hmR0SvmExitInvd(pVCpu, pSvmTransient);
5101 }
5102
5103 case SVM_EXIT_RDPMC:
5104 {
5105 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDPMC))
5106 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5107 return hmR0SvmExitRdpmc(pVCpu, pSvmTransient);
5108 }
5109
5110 default:
5111 {
5112 switch (uExitCode)
5113 {
5114 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5115 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5116 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5117 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5118 {
5119 uint8_t const uDr = uExitCode - SVM_EXIT_READ_DR0;
5120 if (CPUMIsGuestSvmReadDRxInterceptSet(pVCpu, pCtx, uDr))
5121 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5122 return hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
5123 }
5124
5125 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5126 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5127 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5128 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5129 {
5130 uint8_t const uDr = uExitCode - SVM_EXIT_WRITE_DR0;
5131 if (CPUMIsGuestSvmWriteDRxInterceptSet(pVCpu, pCtx, uDr))
5132 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5133 return hmR0SvmExitWriteDRx(pVCpu, pSvmTransient);
5134 }
5135
5136 case SVM_EXIT_XCPT_DE:
5137 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5138 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5139 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5140 case SVM_EXIT_XCPT_OF:
5141 case SVM_EXIT_XCPT_BR:
5142 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5143 case SVM_EXIT_XCPT_NM:
5144 case SVM_EXIT_XCPT_DF:
5145 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5146 case SVM_EXIT_XCPT_TS:
5147 case SVM_EXIT_XCPT_NP:
5148 case SVM_EXIT_XCPT_SS:
5149 case SVM_EXIT_XCPT_GP:
5150 /* SVM_EXIT_XCPT_PF: */ /* Handled above. */
5151 case SVM_EXIT_XCPT_15: /* Reserved. */
5152 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5153 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5154 case SVM_EXIT_XCPT_MC:
5155 case SVM_EXIT_XCPT_XF:
5156 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5157 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5158 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5159 {
5160 uint8_t const uVector = uExitCode - SVM_EXIT_XCPT_0;
5161 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, uVector))
5162 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5163 return hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient);
5164 }
5165
5166 case SVM_EXIT_XSETBV:
5167 {
5168 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_XSETBV))
5169 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5170 return hmR0SvmExitXsetbv(pVCpu, pSvmTransient);
5171 }
5172
5173 case SVM_EXIT_TASK_SWITCH:
5174 {
5175 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_TASK_SWITCH))
5176 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5177 return hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient);
5178 }
5179
5180 case SVM_EXIT_IRET:
5181 {
5182 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IRET))
5183 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5184 return hmR0SvmExitIret(pVCpu, pSvmTransient);
5185 }
5186
5187 case SVM_EXIT_SHUTDOWN:
5188 {
5189 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SHUTDOWN))
5190 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5191 return hmR0SvmExitShutdown(pVCpu, pSvmTransient);
5192 }
5193
5194 case SVM_EXIT_VMMCALL:
5195 {
5196 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMMCALL))
5197 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5198 return hmR0SvmExitVmmCall(pVCpu, pSvmTransient);
5199 }
5200
5201 case SVM_EXIT_CLGI:
5202 {
5203 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CLGI))
5204 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5205 return hmR0SvmExitClgi(pVCpu, pSvmTransient);
5206 }
5207
5208 case SVM_EXIT_STGI:
5209 {
5210 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_STGI))
5211 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5212 return hmR0SvmExitStgi(pVCpu, pSvmTransient);
5213 }
5214
5215 case SVM_EXIT_VMLOAD:
5216 {
5217 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMLOAD))
5218 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5219 return hmR0SvmExitVmload(pVCpu, pSvmTransient);
5220 }
5221
5222 case SVM_EXIT_VMSAVE:
5223 {
5224 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMSAVE))