/* $Id: PGMAllGst.h 41802 2012-06-17 17:01:56Z vboxsync $ */ /** @file * VBox - Page Manager, Guest Paging Template - All context code. */ /* * Copyright (C) 2006-2010 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /******************************************************************************* * Internal Functions * *******************************************************************************/ RT_C_DECLS_BEGIN #if PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64 static int PGM_GST_NAME(Walk)(PVMCPU pVCpu, RTGCPTR GCPtr, PGSTPTWALK pWalk); #endif PGM_GST_DECL(int, GetPage)(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys); PGM_GST_DECL(int, ModifyPage)(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask); PGM_GST_DECL(int, GetPDE)(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPDE); PGM_GST_DECL(bool, HandlerVirtualUpdate)(PVM pVM, uint32_t cr4); RT_C_DECLS_END #if PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64 DECLINLINE(int) PGM_GST_NAME(WalkReturnNotPresent)(PVMCPU pVCpu, PGSTPTWALK pWalk, int iLevel) { NOREF(iLevel); NOREF(pVCpu); pWalk->Core.fNotPresent = true; pWalk->Core.uLevel = (uint8_t)iLevel; return VERR_PAGE_TABLE_NOT_PRESENT; } DECLINLINE(int) PGM_GST_NAME(WalkReturnBadPhysAddr)(PVMCPU pVCpu, PGSTPTWALK pWalk, int rc, int iLevel) { AssertMsg(rc == VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS, ("%Rrc\n", rc)); NOREF(rc); NOREF(pVCpu); pWalk->Core.fBadPhysAddr = true; pWalk->Core.uLevel = (uint8_t)iLevel; return VERR_PAGE_TABLE_NOT_PRESENT; } DECLINLINE(int) PGM_GST_NAME(WalkReturnRsvdError)(PVMCPU pVCpu, PGSTPTWALK pWalk, int iLevel) { NOREF(pVCpu); pWalk->Core.fRsvdError = true; pWalk->Core.uLevel = (uint8_t)iLevel; return VERR_PAGE_TABLE_NOT_PRESENT; } /** * Performs a guest page table walk. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PAGE_TABLE_NOT_PRESENT on failure. Check pWalk for details. * * @param pVCpu The current CPU. * @param GCPtr The guest virtual address to walk by. * @param pWalk Where to return the walk result. This is always set. */ static int PGM_GST_NAME(Walk)(PVMCPU pVCpu, RTGCPTR GCPtr, PGSTPTWALK pWalk) { int rc; /* * Init the walking structure. */ RT_ZERO(*pWalk); pWalk->Core.GCPtr = GCPtr; # if PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE /* * Boundary check for PAE and 32-bit (prevents trouble further down). */ if (RT_UNLIKELY(GCPtr >= _4G)) return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 8); # endif { # if PGM_GST_TYPE == PGM_TYPE_AMD64 /* * The PMLE4. */ rc = pgmGstGetLongModePML4PtrEx(pVCpu, &pWalk->pPml4); if (RT_FAILURE(rc)) return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 4, rc); PX86PML4 register pPml4 = pWalk->pPml4; X86PML4E register Pml4e; PX86PML4E register pPml4e; pWalk->pPml4e = pPml4e = &pPml4->a[(GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK]; pWalk->Pml4e.u = Pml4e.u = pPml4e->u; if (!Pml4e.n.u1Present) return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 4); if (RT_UNLIKELY(!GST_IS_PML4E_VALID(pVCpu, Pml4e))) return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 4); /* * The PDPE. */ rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, Pml4e.u & X86_PML4E_PG_MASK, &pWalk->pPdpt); if (RT_FAILURE(rc)) return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 3, rc); # elif PGM_GST_TYPE == PGM_TYPE_PAE rc = pgmGstGetPaePDPTPtrEx(pVCpu, &pWalk->pPdpt); if (RT_FAILURE(rc)) return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 8, rc); # endif } { # if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE PX86PDPT register pPdpt = pWalk->pPdpt; PX86PDPE register pPdpe; X86PDPE register Pdpe; pWalk->pPdpe = pPdpe = &pPdpt->a[(GCPtr >> GST_PDPT_SHIFT) & GST_PDPT_MASK]; pWalk->Pdpe.u = Pdpe.u = pPdpe->u; if (!Pdpe.n.u1Present) return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 3); if (RT_UNLIKELY(!GST_IS_PDPE_VALID(pVCpu, Pdpe))) return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 3); /* * The PDE. */ rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, Pdpe.u & X86_PDPE_PG_MASK, &pWalk->pPd); if (RT_FAILURE(rc)) return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 2, rc); # elif PGM_GST_TYPE == PGM_TYPE_32BIT rc = pgmGstGet32bitPDPtrEx(pVCpu, &pWalk->pPd); if (RT_FAILURE(rc)) return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 8, rc); # endif } { PGSTPD register pPd = pWalk->pPd; PGSTPDE register pPde; GSTPDE Pde; pWalk->pPde = pPde = &pPd->a[(GCPtr >> GST_PD_SHIFT) & GST_PD_MASK]; pWalk->Pde.u = Pde.u = pPde->u; if (!Pde.n.u1Present) return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 2); if (Pde.n.u1Size && GST_IS_PSE_ACTIVE(pVCpu)) { if (RT_UNLIKELY(!GST_IS_BIG_PDE_VALID(pVCpu, Pde))) return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 2); pWalk->Core.GCPhys = GST_GET_BIG_PDE_GCPHYS(pVCpu->CTX_SUFF(pVM), Pde) | (GCPtr & GST_BIG_PAGE_OFFSET_MASK); PGM_A20_APPLY_TO_VAR(pVCpu, pWalk->Core.GCPhys); uint8_t fEffectiveXX = (uint8_t)pWalk->Pde.u # if PGM_GST_TYPE == PGM_TYPE_AMD64 & (uint8_t)pWalk->Pde.u & (uint8_t)pWalk->Pml4e.u # endif ; pWalk->Core.fEffectiveRW = !!(fEffectiveXX & X86_PTE_RW); pWalk->Core.fEffectiveUS = !!(fEffectiveXX & X86_PTE_US); # if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE pWalk->Core.fEffectiveNX = ( pWalk->Pde.n.u1NoExecute # if PGM_GST_TYPE == PGM_TYPE_AMD64 || pWalk->Pde.n.u1NoExecute || pWalk->Pml4e.n.u1NoExecute # endif ) && GST_IS_NX_ACTIVE(pVCpu); # else pWalk->Core.fEffectiveNX = false; # endif pWalk->Core.fBigPage = true; pWalk->Core.fSucceeded = true; return VINF_SUCCESS; } if (RT_UNLIKELY(!GST_IS_PDE_VALID(pVCpu, Pde))) return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 2); /* * The PTE. */ rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, GST_GET_PDE_GCPHYS(Pde), &pWalk->pPt); if (RT_FAILURE(rc)) return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 1, rc); } { PGSTPT register pPt = pWalk->pPt; PGSTPTE register pPte; GSTPTE register Pte; pWalk->pPte = pPte = &pPt->a[(GCPtr >> GST_PT_SHIFT) & GST_PT_MASK]; pWalk->Pte.u = Pte.u = pPte->u; if (!Pte.n.u1Present) return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 1); if (RT_UNLIKELY(!GST_IS_PTE_VALID(pVCpu, Pte))) return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 1); /* * We're done. */ pWalk->Core.GCPhys = GST_GET_PDE_GCPHYS(Pte) | (GCPtr & PAGE_OFFSET_MASK); uint8_t fEffectiveXX = (uint8_t)pWalk->Pte.u & (uint8_t)pWalk->Pde.u # if PGM_GST_TYPE == PGM_TYPE_AMD64 & (uint8_t)pWalk->Pde.u & (uint8_t)pWalk->Pml4e.u # endif ; pWalk->Core.fEffectiveRW = !!(fEffectiveXX & X86_PTE_RW); pWalk->Core.fEffectiveUS = !!(fEffectiveXX & X86_PTE_US); # if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE pWalk->Core.fEffectiveNX = ( pWalk->Pte.n.u1NoExecute || pWalk->Pde.n.u1NoExecute # if PGM_GST_TYPE == PGM_TYPE_AMD64 || pWalk->Pde.n.u1NoExecute || pWalk->Pml4e.n.u1NoExecute # endif ) && GST_IS_NX_ACTIVE(pVCpu); # else pWalk->Core.fEffectiveNX = false; # endif pWalk->Core.fSucceeded = true; return VINF_SUCCESS; } } #endif /* 32BIT, PAE, AMD64 */ /** * Gets effective Guest OS page information. * * When GCPtr is in a big page, the function will return as if it was a normal * 4KB page. If the need for distinguishing between big and normal page becomes * necessary at a later point, a PGMGstGetPage Ex() will be created for that * purpose. * * @returns VBox status. * @param pVCpu Pointer to the VMCPU. * @param GCPtr Guest Context virtual address of the page. * @param pfFlags Where to store the flags. These are X86_PTE_*, even for big pages. * @param pGCPhys Where to store the GC physical address of the page. * This is page aligned! */ PGM_GST_DECL(int, GetPage)(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys) { #if PGM_GST_TYPE == PGM_TYPE_REAL \ || PGM_GST_TYPE == PGM_TYPE_PROT /* * Fake it. */ if (pfFlags) *pfFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US; if (pGCPhys) *pGCPhys = GCPtr & PAGE_BASE_GC_MASK; NOREF(pVCpu); return VINF_SUCCESS; #elif PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64 GSTPTWALK Walk; int rc = PGM_GST_NAME(Walk)(pVCpu, GCPtr, &Walk); if (RT_FAILURE(rc)) return rc; if (pGCPhys) *pGCPhys = Walk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK; if (pfFlags) { if (!Walk.Core.fBigPage) *pfFlags = (Walk.Pte.u & ~(GST_PTE_PG_MASK | X86_PTE_RW | X86_PTE_US)) /* NX not needed */ | (Walk.Core.fEffectiveRW ? X86_PTE_RW : 0) | (Walk.Core.fEffectiveUS ? X86_PTE_US : 0) # if PGM_WITH_NX(PGM_GST_TYPE, PGM_GST_TYPE) | (Walk.Core.fEffectiveNX ? X86_PTE_PAE_NX : 0) # endif ; else { *pfFlags = (Walk.Pde.u & ~(GST_PTE_PG_MASK | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PS)) /* NX not needed */ | ((Walk.Pde.u & X86_PDE4M_PAT) >> X86_PDE4M_PAT_SHIFT) | (Walk.Core.fEffectiveRW ? X86_PTE_RW : 0) | (Walk.Core.fEffectiveUS ? X86_PTE_US : 0) # if PGM_WITH_NX(PGM_GST_TYPE, PGM_GST_TYPE) | (Walk.Core.fEffectiveNX ? X86_PTE_PAE_NX : 0) # endif ; } } return VINF_SUCCESS; #else # error "shouldn't be here!" /* something else... */ return VERR_NOT_SUPPORTED; #endif } /** * Modify page flags for a range of pages in the guest's tables * * The existing flags are ANDed with the fMask and ORed with the fFlags. * * @returns VBox status code. * @param pVCpu Pointer to the VMCPU. * @param GCPtr Virtual address of the first page in the range. Page aligned! * @param cb Size (in bytes) of the page range to apply the modification to. Page aligned! * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course. * @param fMask The AND mask - page flags X86_PTE_*. */ PGM_GST_DECL(int, ModifyPage)(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask) { Assert((cb & PAGE_OFFSET_MASK) == 0); #if PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64 for (;;) { GSTPTWALK Walk; int rc = PGM_GST_NAME(Walk)(pVCpu, GCPtr, &Walk); if (RT_FAILURE(rc)) return rc; if (!Walk.Core.fBigPage) { /* * 4KB Page table, process * * Walk pages till we're done. */ unsigned iPTE = (GCPtr >> GST_PT_SHIFT) & GST_PT_MASK; while (iPTE < RT_ELEMENTS(Walk.pPt->a)) { GSTPTE Pte = Walk.pPt->a[iPTE]; Pte.u = (Pte.u & (fMask | X86_PTE_PAE_PG_MASK)) | (fFlags & ~GST_PTE_PG_MASK); Walk.pPt->a[iPTE] = Pte; /* next page */ cb -= PAGE_SIZE; if (!cb) return VINF_SUCCESS; GCPtr += PAGE_SIZE; iPTE++; } } else { /* * 2/4MB Page table */ GSTPDE PdeNew; # if PGM_GST_TYPE == PGM_TYPE_32BIT PdeNew.u = (Walk.Pde.u & (fMask | ((fMask & X86_PTE_PAT) << X86_PDE4M_PAT_SHIFT) | GST_PDE_BIG_PG_MASK | X86_PDE4M_PG_HIGH_MASK | X86_PDE4M_PS)) # else PdeNew.u = (Walk.Pde.u & (fMask | ((fMask & X86_PTE_PAT) << X86_PDE4M_PAT_SHIFT) | GST_PDE_BIG_PG_MASK | X86_PDE4M_PS)) # endif | (fFlags & ~GST_PTE_PG_MASK) | ((fFlags & X86_PTE_PAT) << X86_PDE4M_PAT_SHIFT); *Walk.pPde = PdeNew; /* advance */ const unsigned cbDone = GST_BIG_PAGE_SIZE - (GCPtr & GST_BIG_PAGE_OFFSET_MASK); if (cbDone >= cb) return VINF_SUCCESS; cb -= cbDone; GCPtr += cbDone; } } #else /* real / protected mode: ignore. */ NOREF(pVCpu); NOREF(GCPtr); NOREF(fFlags); NOREF(fMask); return VINF_SUCCESS; #endif } /** * Retrieve guest PDE information. * * @returns VBox status code. * @param pVCpu Pointer to the VMCPU. * @param GCPtr Guest context pointer. * @param pPDE Pointer to guest PDE structure. */ PGM_GST_DECL(int, GetPDE)(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPDE) { #if PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64 # if PGM_GST_TYPE != PGM_TYPE_AMD64 /* Boundary check. */ if (RT_UNLIKELY(GCPtr >= _4G)) return VERR_PAGE_TABLE_NOT_PRESENT; # endif # if PGM_GST_TYPE == PGM_TYPE_32BIT unsigned iPd = (GCPtr >> GST_PD_SHIFT) & GST_PD_MASK; PX86PD pPd = pgmGstGet32bitPDPtr(pVCpu); # elif PGM_GST_TYPE == PGM_TYPE_PAE unsigned iPd = 0; /* shut up gcc */ PCX86PDPAE pPd = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPd, NULL); # elif PGM_GST_TYPE == PGM_TYPE_AMD64 PX86PML4E pPml4eIgn; X86PDPE PdpeIgn; unsigned iPd = 0; /* shut up gcc */ PCX86PDPAE pPd = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eIgn, &PdpeIgn, &iPd); /* Note! We do not return an effective PDE here like we do for the PTE in GetPage method. */ # endif if (RT_LIKELY(pPd)) pPDE->u = (X86PGPAEUINT)pPd->a[iPd].u; else pPDE->u = 0; return VINF_SUCCESS; #else NOREF(pVCpu); NOREF(GCPtr); NOREF(pPDE); AssertFailed(); return VERR_NOT_IMPLEMENTED; #endif } #if PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64 /** * Updates one virtual handler range. * * @returns 0 * @param pNode Pointer to a PGMVIRTHANDLER. * @param pvUser Pointer to a PGMVHUARGS structure (see PGM.cpp). */ static DECLCALLBACK(int) PGM_GST_NAME(VirtHandlerUpdateOne)(PAVLROGCPTRNODECORE pNode, void *pvUser) { PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode; PPGMHVUSTATE pState = (PPGMHVUSTATE)pvUser; PVM pVM = pState->pVM; PVMCPU pVCpu = pState->pVCpu; Assert(pCur->enmType != PGMVIRTHANDLERTYPE_HYPERVISOR); # if PGM_GST_TYPE == PGM_TYPE_32BIT PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu); # endif RTGCPTR GCPtr = pCur->Core.Key; # if PGM_GST_TYPE != PGM_TYPE_AMD64 /* skip all stuff above 4GB if not AMD64 mode. */ if (RT_UNLIKELY(GCPtr >= _4G)) return 0; # endif unsigned offPage = GCPtr & PAGE_OFFSET_MASK; unsigned iPage = 0; while (iPage < pCur->cPages) { # if PGM_GST_TYPE == PGM_TYPE_32BIT X86PDE Pde = pPDSrc->a[GCPtr >> X86_PD_SHIFT]; # elif PGM_GST_TYPE == PGM_TYPE_PAE X86PDEPAE Pde = pgmGstGetPaePDE(pVCpu, GCPtr); # elif PGM_GST_TYPE == PGM_TYPE_AMD64 X86PDEPAE Pde = pgmGstGetLongModePDE(pVCpu, GCPtr); # endif # if PGM_GST_TYPE == PGM_TYPE_32BIT bool const fBigPage = Pde.b.u1Size && (pState->cr4 & X86_CR4_PSE); # else bool const fBigPage = Pde.b.u1Size; # endif if ( Pde.n.u1Present && ( !fBigPage ? GST_IS_PDE_VALID(pVCpu, Pde) : GST_IS_BIG_PDE_VALID(pVCpu, Pde)) ) { if (!fBigPage) { /* * Normal page table. */ PGSTPT pPT; int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(Pde), &pPT); if (RT_SUCCESS(rc)) { for (unsigned iPTE = (GCPtr >> GST_PT_SHIFT) & GST_PT_MASK; iPTE < RT_ELEMENTS(pPT->a) && iPage < pCur->cPages; iPTE++, iPage++, GCPtr += PAGE_SIZE, offPage = 0) { GSTPTE Pte = pPT->a[iPTE]; RTGCPHYS GCPhysNew; if (Pte.n.u1Present) GCPhysNew = PGM_A20_APPLY(pVCpu, (RTGCPHYS)(pPT->a[iPTE].u & GST_PTE_PG_MASK) + offPage); else GCPhysNew = NIL_RTGCPHYS; if (pCur->aPhysToVirt[iPage].Core.Key != GCPhysNew) { if (pCur->aPhysToVirt[iPage].Core.Key != NIL_RTGCPHYS) pgmHandlerVirtualClearPage(pVM, pCur, iPage); #ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL AssertReleaseMsg(!pCur->aPhysToVirt[iPage].offNextAlias, ("{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} GCPhysNew=%RGp\n", pCur->aPhysToVirt[iPage].Core.Key, pCur->aPhysToVirt[iPage].Core.KeyLast, pCur->aPhysToVirt[iPage].offVirtHandler, pCur->aPhysToVirt[iPage].offNextAlias, GCPhysNew)); #endif pCur->aPhysToVirt[iPage].Core.Key = GCPhysNew; pState->fTodo |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL; } } } else { /* not-present. */ offPage = 0; AssertRC(rc); for (unsigned iPTE = (GCPtr >> GST_PT_SHIFT) & GST_PT_MASK; iPTE < RT_ELEMENTS(pPT->a) && iPage < pCur->cPages; iPTE++, iPage++, GCPtr += PAGE_SIZE) { if (pCur->aPhysToVirt[iPage].Core.Key != NIL_RTGCPHYS) { pgmHandlerVirtualClearPage(pVM, pCur, iPage); #ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL AssertReleaseMsg(!pCur->aPhysToVirt[iPage].offNextAlias, ("{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n", pCur->aPhysToVirt[iPage].Core.Key, pCur->aPhysToVirt[iPage].Core.KeyLast, pCur->aPhysToVirt[iPage].offVirtHandler, pCur->aPhysToVirt[iPage].offNextAlias)); #endif pCur->aPhysToVirt[iPage].Core.Key = NIL_RTGCPHYS; pState->fTodo |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL; } } } } else { /* * 2/4MB page. */ RTGCPHYS GCPhys = (RTGCPHYS)GST_GET_PDE_GCPHYS(Pde); for (unsigned i4KB = (GCPtr >> GST_PT_SHIFT) & GST_PT_MASK; i4KB < PAGE_SIZE / sizeof(GSTPDE) && iPage < pCur->cPages; i4KB++, iPage++, GCPtr += PAGE_SIZE, offPage = 0) { RTGCPHYS GCPhysNew = PGM_A20_APPLY(pVCpu, GCPhys + (i4KB << PAGE_SHIFT) + offPage); if (pCur->aPhysToVirt[iPage].Core.Key != GCPhysNew) { if (pCur->aPhysToVirt[iPage].Core.Key != NIL_RTGCPHYS) pgmHandlerVirtualClearPage(pVM, pCur, iPage); #ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL AssertReleaseMsg(!pCur->aPhysToVirt[iPage].offNextAlias, ("{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} GCPhysNew=%RGp\n", pCur->aPhysToVirt[iPage].Core.Key, pCur->aPhysToVirt[iPage].Core.KeyLast, pCur->aPhysToVirt[iPage].offVirtHandler, pCur->aPhysToVirt[iPage].offNextAlias, GCPhysNew)); #endif pCur->aPhysToVirt[iPage].Core.Key = GCPhysNew; pState->fTodo |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL; } } } /* pde type */ } else { /* not-present / invalid. */ Log(("VirtHandler: Not present / invalid Pde=%RX64\n", (uint64_t)Pde.u)); for (unsigned cPages = (GST_PT_MASK + 1) - ((GCPtr >> GST_PT_SHIFT) & GST_PT_MASK); cPages && iPage < pCur->cPages; iPage++, GCPtr += PAGE_SIZE) { if (pCur->aPhysToVirt[iPage].Core.Key != NIL_RTGCPHYS) { pgmHandlerVirtualClearPage(pVM, pCur, iPage); pCur->aPhysToVirt[iPage].Core.Key = NIL_RTGCPHYS; pState->fTodo |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL; } } offPage = 0; } } /* for pages in virtual mapping. */ return 0; } #endif /* 32BIT, PAE and AMD64 */ /** * Updates the virtual page access handlers. * * @returns true if bits were flushed. * @returns false if bits weren't flushed. * @param pVM Pointer to the VM. * @param pPDSrc The page directory. * @param cr4 The cr4 register value. */ PGM_GST_DECL(bool, HandlerVirtualUpdate)(PVM pVM, uint32_t cr4) { #if PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64 /** @todo * In theory this is not sufficient: the guest can change a single page in a range with invlpg */ /* * Resolve any virtual address based access handlers to GC physical addresses. * This should be fairly quick. */ RTUINT fTodo = 0; pgmLock(pVM); STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3HandlerVirtualUpdate), a); for (VMCPUID i = 0; i < pVM->cCpus; i++) { PGMHVUSTATE State; PVMCPU pVCpu = &pVM->aCpus[i]; State.pVM = pVM; State.pVCpu = pVCpu; State.fTodo = pVCpu->pgm.s.fSyncFlags; State.cr4 = cr4; RTAvlroGCPtrDoWithAll(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, true, PGM_GST_NAME(VirtHandlerUpdateOne), &State); fTodo |= State.fTodo; } STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3HandlerVirtualUpdate), a); /* * Set / reset bits? */ if (fTodo & PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL) { STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3HandlerVirtualReset), b); Log(("HandlerVirtualUpdate: resets bits\n")); RTAvlroGCPtrDoWithAll(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, true, pgmHandlerVirtualResetOne, pVM); for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL; } STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3HandlerVirtualReset), b); } pgmUnlock(pVM); return !!(fTodo & PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL); #else /* real / protected */ NOREF(pVM); NOREF(cr4); return false; #endif }