1 | /* $Id: IEMAllThrdRecompiler.cpp 100734 2023-07-29 02:04:22Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - Instruction Decoding and Threaded Recompilation.
|
---|
4 | *
|
---|
5 | * Logging group IEM_RE_THREADED assignments:
|
---|
6 | * - Level 1 (Log) : Errors, exceptions, interrupts and such major events. [same as IEM]
|
---|
7 | * - Flow (LogFlow) :
|
---|
8 | * - Level 2 (Log2) : Basic instruction execution state info. [same as IEM]
|
---|
9 | * - Level 3 (Log3) : More detailed execution state info. [same as IEM]
|
---|
10 | * - Level 4 (Log4) : Decoding mnemonics w/ EIP. [same as IEM]
|
---|
11 | * - Level 5 (Log5) : Decoding details. [same as IEM]
|
---|
12 | * - Level 6 (Log6) :
|
---|
13 | * - Level 7 (Log7) : TB obsoletion.
|
---|
14 | * - Level 8 (Log8) : TB compilation.
|
---|
15 | * - Level 9 (Log9) : TB exec.
|
---|
16 | * - Level 10 (Log10): TB block lookup.
|
---|
17 | * - Level 11 (Log11): TB block lookup details.
|
---|
18 | * - Level 12 (Log12): TB insertion.
|
---|
19 | */
|
---|
20 |
|
---|
21 | /*
|
---|
22 | * Copyright (C) 2011-2023 Oracle and/or its affiliates.
|
---|
23 | *
|
---|
24 | * This file is part of VirtualBox base platform packages, as
|
---|
25 | * available from https://www.virtualbox.org.
|
---|
26 | *
|
---|
27 | * This program is free software; you can redistribute it and/or
|
---|
28 | * modify it under the terms of the GNU General Public License
|
---|
29 | * as published by the Free Software Foundation, in version 3 of the
|
---|
30 | * License.
|
---|
31 | *
|
---|
32 | * This program is distributed in the hope that it will be useful, but
|
---|
33 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
34 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
35 | * General Public License for more details.
|
---|
36 | *
|
---|
37 | * You should have received a copy of the GNU General Public License
|
---|
38 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
39 | *
|
---|
40 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
41 | */
|
---|
42 |
|
---|
43 |
|
---|
44 | /*********************************************************************************************************************************
|
---|
45 | * Header Files *
|
---|
46 | *********************************************************************************************************************************/
|
---|
47 | #ifndef LOG_GROUP /* defined when included by tstIEMCheckMc.cpp */
|
---|
48 | # define LOG_GROUP LOG_GROUP_IEM_RE_THREADED
|
---|
49 | #endif
|
---|
50 | #define IEM_WITH_CODE_TLB_AND_OPCODE_BUF /* A bit hackish, but its all in IEMInline.h. */
|
---|
51 | #define VMCPU_INCL_CPUM_GST_CTX
|
---|
52 | #include <VBox/vmm/iem.h>
|
---|
53 | #include <VBox/vmm/cpum.h>
|
---|
54 | #include <VBox/vmm/apic.h>
|
---|
55 | #include <VBox/vmm/pdm.h>
|
---|
56 | #include <VBox/vmm/pgm.h>
|
---|
57 | #include <VBox/vmm/iom.h>
|
---|
58 | #include <VBox/vmm/em.h>
|
---|
59 | #include <VBox/vmm/hm.h>
|
---|
60 | #include <VBox/vmm/nem.h>
|
---|
61 | #include <VBox/vmm/gim.h>
|
---|
62 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
63 | # include <VBox/vmm/em.h>
|
---|
64 | # include <VBox/vmm/hm_svm.h>
|
---|
65 | #endif
|
---|
66 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
67 | # include <VBox/vmm/hmvmxinline.h>
|
---|
68 | #endif
|
---|
69 | #include <VBox/vmm/tm.h>
|
---|
70 | #include <VBox/vmm/dbgf.h>
|
---|
71 | #include <VBox/vmm/dbgftrace.h>
|
---|
72 | #ifndef TST_IEM_CHECK_MC
|
---|
73 | # include "IEMInternal.h"
|
---|
74 | #endif
|
---|
75 | #include <VBox/vmm/vmcc.h>
|
---|
76 | #include <VBox/log.h>
|
---|
77 | #include <VBox/err.h>
|
---|
78 | #include <VBox/param.h>
|
---|
79 | #include <VBox/dis.h>
|
---|
80 | #include <VBox/disopcode-x86-amd64.h>
|
---|
81 | #include <iprt/asm-math.h>
|
---|
82 | #include <iprt/assert.h>
|
---|
83 | #include <iprt/mem.h>
|
---|
84 | #include <iprt/string.h>
|
---|
85 | #include <iprt/x86.h>
|
---|
86 |
|
---|
87 | #ifndef TST_IEM_CHECK_MC
|
---|
88 | # include "IEMInline.h"
|
---|
89 | # include "IEMOpHlp.h"
|
---|
90 | # include "IEMMc.h"
|
---|
91 | #endif
|
---|
92 |
|
---|
93 | #include "IEMThreadedFunctions.h"
|
---|
94 |
|
---|
95 |
|
---|
96 | /*
|
---|
97 | * Narrow down configs here to avoid wasting time on unused configs here.
|
---|
98 | */
|
---|
99 |
|
---|
100 | #ifndef IEM_WITH_CODE_TLB
|
---|
101 | # error The code TLB must be enabled for the recompiler.
|
---|
102 | #endif
|
---|
103 |
|
---|
104 | #ifndef IEM_WITH_DATA_TLB
|
---|
105 | # error The data TLB must be enabled for the recompiler.
|
---|
106 | #endif
|
---|
107 |
|
---|
108 | #ifndef IEM_WITH_SETJMP
|
---|
109 | # error The setjmp approach must be enabled for the recompiler.
|
---|
110 | #endif
|
---|
111 |
|
---|
112 |
|
---|
113 | /*********************************************************************************************************************************
|
---|
114 | * Internal Functions *
|
---|
115 | *********************************************************************************************************************************/
|
---|
116 | static bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb);
|
---|
117 | static VBOXSTRICTRC iemThreadedTbExec(PVMCPUCC pVCpu, PIEMTB pTb);
|
---|
118 |
|
---|
119 |
|
---|
120 | /*********************************************************************************************************************************
|
---|
121 | * Defined Constants And Macros *
|
---|
122 | *********************************************************************************************************************************/
|
---|
123 | #define g_apfnOneByteMap g_apfnIemThreadedRecompilerOneByteMap
|
---|
124 |
|
---|
125 |
|
---|
126 | /*
|
---|
127 | * Override IEM_MC_CALC_RM_EFF_ADDR to use iemOpHlpCalcRmEffAddrJmpEx and produce uEffAddrInfo.
|
---|
128 | */
|
---|
129 | #undef IEM_MC_CALC_RM_EFF_ADDR
|
---|
130 | #ifndef IEM_WITH_SETJMP
|
---|
131 | # define IEM_MC_CALC_RM_EFF_ADDR(a_GCPtrEff, a_bRm, a_cbImmAndRspOffset) \
|
---|
132 | uint64_t uEffAddrInfo; \
|
---|
133 | IEM_MC_RETURN_ON_FAILURE(iemOpHlpCalcRmEffAddrJmpEx(pVCpu, (a_bRm), (a_cbImmAndRspOffset), &(a_GCPtrEff), &uEffAddrInfo))
|
---|
134 | #else
|
---|
135 | # define IEM_MC_CALC_RM_EFF_ADDR(a_GCPtrEff, a_bRm, a_cbImmAndRspOffset) \
|
---|
136 | uint64_t uEffAddrInfo; \
|
---|
137 | ((a_GCPtrEff) = iemOpHlpCalcRmEffAddrJmpEx(pVCpu, (a_bRm), (a_cbImmAndRspOffset), &uEffAddrInfo))
|
---|
138 | #endif
|
---|
139 |
|
---|
140 | /*
|
---|
141 | * Likewise override IEM_OPCODE_SKIP_RM_EFF_ADDR_BYTES so we fetch all the opcodes.
|
---|
142 | */
|
---|
143 | #undef IEM_OPCODE_SKIP_RM_EFF_ADDR_BYTES
|
---|
144 | #define IEM_OPCODE_SKIP_RM_EFF_ADDR_BYTES(a_bRm) do { \
|
---|
145 | uint64_t uEffAddrInfo; \
|
---|
146 | (void)iemOpHlpCalcRmEffAddrJmpEx(pVCpu, bRm, 0, &uEffAddrInfo); \
|
---|
147 | } while (0)
|
---|
148 |
|
---|
149 | /*
|
---|
150 | * Override the IEM_MC_REL_JMP_S*_AND_FINISH macros to check for zero byte jumps.
|
---|
151 | */
|
---|
152 | #undef IEM_MC_REL_JMP_S8_AND_FINISH
|
---|
153 | #define IEM_MC_REL_JMP_S8_AND_FINISH(a_i8) do { \
|
---|
154 | Assert(pVCpu->iem.s.fTbBranched != 0); \
|
---|
155 | if ((a_i8) == 0) \
|
---|
156 | pVCpu->iem.s.fTbBranched |= IEMBRANCHED_F_ZERO; \
|
---|
157 | return iemRegRipRelativeJumpS8AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i8), pVCpu->iem.s.enmEffOpSize); \
|
---|
158 | } while (0)
|
---|
159 |
|
---|
160 | #undef IEM_MC_REL_JMP_S16_AND_FINISH
|
---|
161 | #define IEM_MC_REL_JMP_S16_AND_FINISH(a_i16) do { \
|
---|
162 | Assert(pVCpu->iem.s.fTbBranched != 0); \
|
---|
163 | if ((a_i16) == 0) \
|
---|
164 | pVCpu->iem.s.fTbBranched |= IEMBRANCHED_F_ZERO; \
|
---|
165 | return iemRegRipRelativeJumpS16AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i16)); \
|
---|
166 | } while (0)
|
---|
167 |
|
---|
168 | #undef IEM_MC_REL_JMP_S32_AND_FINISH
|
---|
169 | #define IEM_MC_REL_JMP_S32_AND_FINISH(a_i32) do { \
|
---|
170 | Assert(pVCpu->iem.s.fTbBranched != 0); \
|
---|
171 | if ((a_i32) == 0) \
|
---|
172 | pVCpu->iem.s.fTbBranched |= IEMBRANCHED_F_ZERO; \
|
---|
173 | return iemRegRipRelativeJumpS32AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i32), pVCpu->iem.s.enmEffOpSize); \
|
---|
174 | } while (0)
|
---|
175 |
|
---|
176 |
|
---|
177 | /*
|
---|
178 | * Emit call macros.
|
---|
179 | */
|
---|
180 | #define IEM_MC2_BEGIN_EMIT_CALLS() \
|
---|
181 | { \
|
---|
182 | PIEMTB const pTb = pVCpu->iem.s.pCurTbR3; \
|
---|
183 | uint8_t const cbInstrMc2 = IEM_GET_INSTR_LEN(pVCpu); \
|
---|
184 | AssertMsg(pVCpu->iem.s.offOpcode == cbInstrMc2, \
|
---|
185 | ("%u vs %u (%04x:%08RX64)\n", pVCpu->iem.s.offOpcode, cbInstrMc2, \
|
---|
186 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip)); \
|
---|
187 | \
|
---|
188 | /* No page crossing, right? */ \
|
---|
189 | uint16_t const offOpcodeMc2 = pTb->cbOpcodes; \
|
---|
190 | uint8_t const idxRangeMc2 = pTb->cRanges - 1; \
|
---|
191 | if ( !pVCpu->iem.s.fTbCrossedPage \
|
---|
192 | && !pVCpu->iem.s.fTbCheckOpcodes \
|
---|
193 | && !pVCpu->iem.s.fTbBranched \
|
---|
194 | && !(pTb->fFlags & IEMTB_F_CS_LIM_CHECKS)) \
|
---|
195 | { \
|
---|
196 | /** @todo Custom copy function, given range is 1 thru 15 bytes. */ \
|
---|
197 | memcpy(&pTb->pabOpcodes[offOpcodeMc2], pVCpu->iem.s.abOpcode, pVCpu->iem.s.offOpcode); \
|
---|
198 | pTb->cbOpcodes = offOpcodeMc2 + pVCpu->iem.s.offOpcode; \
|
---|
199 | pTb->aRanges[idxRangeMc2].cbOpcodes += cbInstrMc2; \
|
---|
200 | Assert(pTb->cbOpcodes <= pTb->cbOpcodesAllocated); \
|
---|
201 | } \
|
---|
202 | else if (iemThreadedCompileBeginEmitCallsComplications(pVCpu, pTb)) \
|
---|
203 | { /* likely */ } \
|
---|
204 | else \
|
---|
205 | return VINF_IEM_RECOMPILE_END_TB; \
|
---|
206 | \
|
---|
207 | do { } while (0)
|
---|
208 | #define IEM_MC2_EMIT_CALL_0(a_enmFunction) do { \
|
---|
209 | IEMTHREADEDFUNCS const enmFunctionCheck = a_enmFunction; RT_NOREF(enmFunctionCheck); \
|
---|
210 | \
|
---|
211 | PIEMTHRDEDCALLENTRY const pCall = &pTb->Thrd.paCalls[pTb->Thrd.cCalls++]; \
|
---|
212 | pCall->enmFunction = a_enmFunction; \
|
---|
213 | pCall->offOpcode = offOpcodeMc2; \
|
---|
214 | pCall->cbOpcode = cbInstrMc2; \
|
---|
215 | pCall->idxRange = idxRangeMc2; \
|
---|
216 | pCall->auParams[0] = 0; \
|
---|
217 | pCall->auParams[1] = 0; \
|
---|
218 | pCall->auParams[2] = 0; \
|
---|
219 | } while (0)
|
---|
220 | #define IEM_MC2_EMIT_CALL_1(a_enmFunction, a_uArg0) do { \
|
---|
221 | IEMTHREADEDFUNCS const enmFunctionCheck = a_enmFunction; RT_NOREF(enmFunctionCheck); \
|
---|
222 | uint64_t const uArg0Check = (a_uArg0); RT_NOREF(uArg0Check); \
|
---|
223 | \
|
---|
224 | PIEMTHRDEDCALLENTRY const pCall = &pTb->Thrd.paCalls[pTb->Thrd.cCalls++]; \
|
---|
225 | pCall->enmFunction = a_enmFunction; \
|
---|
226 | pCall->offOpcode = offOpcodeMc2; \
|
---|
227 | pCall->cbOpcode = cbInstrMc2; \
|
---|
228 | pCall->idxRange = idxRangeMc2; \
|
---|
229 | pCall->auParams[0] = a_uArg0; \
|
---|
230 | pCall->auParams[1] = 0; \
|
---|
231 | pCall->auParams[2] = 0; \
|
---|
232 | } while (0)
|
---|
233 | #define IEM_MC2_EMIT_CALL_2(a_enmFunction, a_uArg0, a_uArg1) do { \
|
---|
234 | IEMTHREADEDFUNCS const enmFunctionCheck = a_enmFunction; RT_NOREF(enmFunctionCheck); \
|
---|
235 | uint64_t const uArg0Check = (a_uArg0); RT_NOREF(uArg0Check); \
|
---|
236 | uint64_t const uArg1Check = (a_uArg1); RT_NOREF(uArg1Check); \
|
---|
237 | \
|
---|
238 | PIEMTHRDEDCALLENTRY const pCall = &pTb->Thrd.paCalls[pTb->Thrd.cCalls++]; \
|
---|
239 | pCall->enmFunction = a_enmFunction; \
|
---|
240 | pCall->offOpcode = offOpcodeMc2; \
|
---|
241 | pCall->cbOpcode = cbInstrMc2; \
|
---|
242 | pCall->idxRange = idxRangeMc2; \
|
---|
243 | pCall->auParams[0] = a_uArg0; \
|
---|
244 | pCall->auParams[1] = a_uArg1; \
|
---|
245 | pCall->auParams[2] = 0; \
|
---|
246 | } while (0)
|
---|
247 | #define IEM_MC2_EMIT_CALL_3(a_enmFunction, a_uArg0, a_uArg1, a_uArg2) do { \
|
---|
248 | IEMTHREADEDFUNCS const enmFunctionCheck = a_enmFunction; RT_NOREF(enmFunctionCheck); \
|
---|
249 | uint64_t const uArg0Check = (a_uArg0); RT_NOREF(uArg0Check); \
|
---|
250 | uint64_t const uArg1Check = (a_uArg1); RT_NOREF(uArg1Check); \
|
---|
251 | uint64_t const uArg2Check = (a_uArg2); RT_NOREF(uArg2Check); \
|
---|
252 | \
|
---|
253 | PIEMTHRDEDCALLENTRY const pCall = &pTb->Thrd.paCalls[pTb->Thrd.cCalls++]; \
|
---|
254 | pCall->enmFunction = a_enmFunction; \
|
---|
255 | pCall->offOpcode = offOpcodeMc2; \
|
---|
256 | pCall->cbOpcode = cbInstrMc2; \
|
---|
257 | pCall->idxRange = idxRangeMc2; \
|
---|
258 | pCall->auParams[0] = a_uArg0; \
|
---|
259 | pCall->auParams[1] = a_uArg1; \
|
---|
260 | pCall->auParams[2] = a_uArg2; \
|
---|
261 | } while (0)
|
---|
262 | #define IEM_MC2_END_EMIT_CALLS(a_fCImplFlags) \
|
---|
263 | Assert(pTb->cInstructions <= pTb->Thrd.cCalls); \
|
---|
264 | if (pTb->cInstructions < 255) \
|
---|
265 | pTb->cInstructions++; \
|
---|
266 | uint32_t const fCImplFlagsMc2 = (a_fCImplFlags); \
|
---|
267 | RT_NOREF(fCImplFlagsMc2); \
|
---|
268 | } while (0)
|
---|
269 |
|
---|
270 |
|
---|
271 | /*
|
---|
272 | * IEM_MC_DEFER_TO_CIMPL_0 is easily wrapped up.
|
---|
273 | *
|
---|
274 | * Doing so will also take care of IEMOP_RAISE_DIVIDE_ERROR, IEMOP_RAISE_INVALID_LOCK_PREFIX,
|
---|
275 | * IEMOP_RAISE_INVALID_OPCODE and their users.
|
---|
276 | */
|
---|
277 | #undef IEM_MC_DEFER_TO_CIMPL_0_RET
|
---|
278 | #define IEM_MC_DEFER_TO_CIMPL_0_RET(a_fFlags, a_pfnCImpl) \
|
---|
279 | return iemThreadedRecompilerMcDeferToCImpl0(pVCpu, a_fFlags, a_pfnCImpl)
|
---|
280 |
|
---|
281 | DECLINLINE(VBOXSTRICTRC) iemThreadedRecompilerMcDeferToCImpl0(PVMCPUCC pVCpu, uint32_t fFlags, PFNIEMCIMPL0 pfnCImpl)
|
---|
282 | {
|
---|
283 | Log8(("CImpl0: %04x:%08RX64 LB %#x: %#x %p\n",
|
---|
284 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, IEM_GET_INSTR_LEN(pVCpu), fFlags, pfnCImpl));
|
---|
285 |
|
---|
286 | IEM_MC2_BEGIN_EMIT_CALLS();
|
---|
287 | IEM_MC2_EMIT_CALL_2(kIemThreadedFunc_DeferToCImpl0, (uintptr_t)pfnCImpl, IEM_GET_INSTR_LEN(pVCpu));
|
---|
288 | IEM_MC2_END_EMIT_CALLS(fFlags);
|
---|
289 |
|
---|
290 | /* We have to repeat work normally done by kdCImplFlags and
|
---|
291 | ThreadedFunctionVariation.emitThreadedCallStmts here. */
|
---|
292 | if (fFlags & (IEM_CIMPL_F_END_TB | IEM_CIMPL_F_MODE | IEM_CIMPL_F_VMEXIT | IEM_CIMPL_F_BRANCH_FAR | IEM_CIMPL_F_REP))
|
---|
293 | pVCpu->iem.s.fEndTb = true;
|
---|
294 |
|
---|
295 | AssertCompile(IEM_CIMPL_F_BRANCH_DIRECT == IEMBRANCHED_F_DIRECT);
|
---|
296 | AssertCompile(IEM_CIMPL_F_BRANCH_INDIRECT == IEMBRANCHED_F_INDIRECT);
|
---|
297 | AssertCompile(IEM_CIMPL_F_BRANCH_RELATIVE == IEMBRANCHED_F_RELATIVE);
|
---|
298 | AssertCompile(IEM_CIMPL_F_BRANCH_CONDITIONAL == IEMBRANCHED_F_CONDITIONAL);
|
---|
299 | AssertCompile(IEM_CIMPL_F_BRANCH_FAR == IEMBRANCHED_F_FAR);
|
---|
300 | if (fFlags & IEM_CIMPL_F_BRANCH_ANY)
|
---|
301 | pVCpu->iem.s.fTbBranched = fFlags & (IEM_CIMPL_F_BRANCH_ANY | IEM_CIMPL_F_BRANCH_FAR | IEM_CIMPL_F_BRANCH_CONDITIONAL);
|
---|
302 |
|
---|
303 | return pfnCImpl(pVCpu, IEM_GET_INSTR_LEN(pVCpu));
|
---|
304 | }
|
---|
305 |
|
---|
306 | /**
|
---|
307 | * Calculates the effective address of a ModR/M memory operand, extended version
|
---|
308 | * for use in the recompilers.
|
---|
309 | *
|
---|
310 | * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR.
|
---|
311 | *
|
---|
312 | * May longjmp on internal error.
|
---|
313 | *
|
---|
314 | * @return The effective address.
|
---|
315 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
316 | * @param bRm The ModRM byte.
|
---|
317 | * @param cbImmAndRspOffset - First byte: The size of any immediate
|
---|
318 | * following the effective address opcode bytes
|
---|
319 | * (only for RIP relative addressing).
|
---|
320 | * - Second byte: RSP displacement (for POP [ESP]).
|
---|
321 | * @param puInfo Extra info: 32-bit displacement (bits 31:0) and
|
---|
322 | * SIB byte (bits 39:32).
|
---|
323 | *
|
---|
324 | * @note This must be defined in a source file with matching
|
---|
325 | * IEM_WITH_CODE_TLB_AND_OPCODE_BUF define till the define is made default
|
---|
326 | * or implemented differently...
|
---|
327 | */
|
---|
328 | RTGCPTR iemOpHlpCalcRmEffAddrJmpEx(PVMCPUCC pVCpu, uint8_t bRm, uint32_t cbImmAndRspOffset, uint64_t *puInfo) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
329 | {
|
---|
330 | Log5(("iemOpHlpCalcRmEffAddrJmp: bRm=%#x\n", bRm));
|
---|
331 | # define SET_SS_DEF() \
|
---|
332 | do \
|
---|
333 | { \
|
---|
334 | if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SEG_MASK)) \
|
---|
335 | pVCpu->iem.s.iEffSeg = X86_SREG_SS; \
|
---|
336 | } while (0)
|
---|
337 |
|
---|
338 | if (!IEM_IS_64BIT_CODE(pVCpu))
|
---|
339 | {
|
---|
340 | /** @todo Check the effective address size crap! */
|
---|
341 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
|
---|
342 | {
|
---|
343 | uint16_t u16EffAddr;
|
---|
344 |
|
---|
345 | /* Handle the disp16 form with no registers first. */
|
---|
346 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
347 | {
|
---|
348 | IEM_OPCODE_GET_NEXT_U16(&u16EffAddr);
|
---|
349 | *puInfo = u16EffAddr;
|
---|
350 | }
|
---|
351 | else
|
---|
352 | {
|
---|
353 | /* Get the displacment. */
|
---|
354 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
355 | {
|
---|
356 | case 0: u16EffAddr = 0; break;
|
---|
357 | case 1: IEM_OPCODE_GET_NEXT_S8_SX_U16(&u16EffAddr); break;
|
---|
358 | case 2: IEM_OPCODE_GET_NEXT_U16(&u16EffAddr); break;
|
---|
359 | default: AssertFailedStmt(IEM_DO_LONGJMP(pVCpu, VERR_IEM_IPE_1)); /* (caller checked for these) */
|
---|
360 | }
|
---|
361 | *puInfo = u16EffAddr;
|
---|
362 |
|
---|
363 | /* Add the base and index registers to the disp. */
|
---|
364 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
365 | {
|
---|
366 | case 0: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.si; break;
|
---|
367 | case 1: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.di; break;
|
---|
368 | case 2: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.si; SET_SS_DEF(); break;
|
---|
369 | case 3: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.di; SET_SS_DEF(); break;
|
---|
370 | case 4: u16EffAddr += pVCpu->cpum.GstCtx.si; break;
|
---|
371 | case 5: u16EffAddr += pVCpu->cpum.GstCtx.di; break;
|
---|
372 | case 6: u16EffAddr += pVCpu->cpum.GstCtx.bp; SET_SS_DEF(); break;
|
---|
373 | case 7: u16EffAddr += pVCpu->cpum.GstCtx.bx; break;
|
---|
374 | }
|
---|
375 | }
|
---|
376 |
|
---|
377 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#06RX16 uInfo=%#RX64\n", u16EffAddr, *puInfo));
|
---|
378 | return u16EffAddr;
|
---|
379 | }
|
---|
380 |
|
---|
381 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
382 | uint32_t u32EffAddr;
|
---|
383 | uint64_t uInfo;
|
---|
384 |
|
---|
385 | /* Handle the disp32 form with no registers first. */
|
---|
386 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
387 | {
|
---|
388 | IEM_OPCODE_GET_NEXT_U32(&u32EffAddr);
|
---|
389 | uInfo = u32EffAddr;
|
---|
390 | }
|
---|
391 | else
|
---|
392 | {
|
---|
393 | /* Get the register (or SIB) value. */
|
---|
394 | uInfo = 0;
|
---|
395 | switch ((bRm & X86_MODRM_RM_MASK))
|
---|
396 | {
|
---|
397 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
398 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
399 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
400 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
401 | case 4: /* SIB */
|
---|
402 | {
|
---|
403 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
404 | uInfo = (uint64_t)bSib << 32;
|
---|
405 |
|
---|
406 | /* Get the index and scale it. */
|
---|
407 | switch ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
|
---|
408 | {
|
---|
409 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
410 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
411 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
412 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
413 | case 4: u32EffAddr = 0; /*none */ break;
|
---|
414 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
|
---|
415 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
416 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
417 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
418 | }
|
---|
419 | u32EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
420 |
|
---|
421 | /* add base */
|
---|
422 | switch (bSib & X86_SIB_BASE_MASK)
|
---|
423 | {
|
---|
424 | case 0: u32EffAddr += pVCpu->cpum.GstCtx.eax; break;
|
---|
425 | case 1: u32EffAddr += pVCpu->cpum.GstCtx.ecx; break;
|
---|
426 | case 2: u32EffAddr += pVCpu->cpum.GstCtx.edx; break;
|
---|
427 | case 3: u32EffAddr += pVCpu->cpum.GstCtx.ebx; break;
|
---|
428 | case 4: u32EffAddr += pVCpu->cpum.GstCtx.esp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
429 | case 5:
|
---|
430 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
431 | {
|
---|
432 | u32EffAddr += pVCpu->cpum.GstCtx.ebp;
|
---|
433 | SET_SS_DEF();
|
---|
434 | }
|
---|
435 | else
|
---|
436 | {
|
---|
437 | uint32_t u32Disp;
|
---|
438 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
439 | u32EffAddr += u32Disp;
|
---|
440 | uInfo |= u32Disp;
|
---|
441 | }
|
---|
442 | break;
|
---|
443 | case 6: u32EffAddr += pVCpu->cpum.GstCtx.esi; break;
|
---|
444 | case 7: u32EffAddr += pVCpu->cpum.GstCtx.edi; break;
|
---|
445 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
446 | }
|
---|
447 | break;
|
---|
448 | }
|
---|
449 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; SET_SS_DEF(); break;
|
---|
450 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
451 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
452 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
453 | }
|
---|
454 |
|
---|
455 | /* Get and add the displacement. */
|
---|
456 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
457 | {
|
---|
458 | case 0:
|
---|
459 | break;
|
---|
460 | case 1:
|
---|
461 | {
|
---|
462 | int8_t i8Disp; IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
463 | u32EffAddr += i8Disp;
|
---|
464 | uInfo |= (uint32_t)(int32_t)i8Disp;
|
---|
465 | break;
|
---|
466 | }
|
---|
467 | case 2:
|
---|
468 | {
|
---|
469 | uint32_t u32Disp; IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
470 | u32EffAddr += u32Disp;
|
---|
471 | uInfo |= u32Disp;
|
---|
472 | break;
|
---|
473 | }
|
---|
474 | default:
|
---|
475 | AssertFailedStmt(IEM_DO_LONGJMP(pVCpu, VERR_IEM_IPE_2)); /* (caller checked for these) */
|
---|
476 | }
|
---|
477 | }
|
---|
478 |
|
---|
479 | *puInfo = uInfo;
|
---|
480 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RX32 uInfo=%#RX64\n", u32EffAddr, uInfo));
|
---|
481 | return u32EffAddr;
|
---|
482 | }
|
---|
483 |
|
---|
484 | uint64_t u64EffAddr;
|
---|
485 | uint64_t uInfo;
|
---|
486 |
|
---|
487 | /* Handle the rip+disp32 form with no registers first. */
|
---|
488 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
489 | {
|
---|
490 | IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64EffAddr);
|
---|
491 | uInfo = (uint32_t)u64EffAddr;
|
---|
492 | u64EffAddr += pVCpu->cpum.GstCtx.rip + IEM_GET_INSTR_LEN(pVCpu) + (cbImmAndRspOffset & UINT32_C(0xff));
|
---|
493 | }
|
---|
494 | else
|
---|
495 | {
|
---|
496 | /* Get the register (or SIB) value. */
|
---|
497 | uInfo = 0;
|
---|
498 | switch ((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB)
|
---|
499 | {
|
---|
500 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
501 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
502 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
503 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
504 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; SET_SS_DEF(); break;
|
---|
505 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
506 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
507 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
508 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
509 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
510 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
511 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
512 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
513 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
514 | /* SIB */
|
---|
515 | case 4:
|
---|
516 | case 12:
|
---|
517 | {
|
---|
518 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
519 | uInfo = (uint64_t)bSib << 32;
|
---|
520 |
|
---|
521 | /* Get the index and scale it. */
|
---|
522 | switch (((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex)
|
---|
523 | {
|
---|
524 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
525 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
526 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
527 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
528 | case 4: u64EffAddr = 0; /*none */ break;
|
---|
529 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
|
---|
530 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
531 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
532 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
533 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
534 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
535 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
536 | case 12: u64EffAddr = pVCpu->cpum.GstCtx.r12; break;
|
---|
537 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
538 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
539 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
540 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
541 | }
|
---|
542 | u64EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
543 |
|
---|
544 | /* add base */
|
---|
545 | switch ((bSib & X86_SIB_BASE_MASK) | pVCpu->iem.s.uRexB)
|
---|
546 | {
|
---|
547 | case 0: u64EffAddr += pVCpu->cpum.GstCtx.rax; break;
|
---|
548 | case 1: u64EffAddr += pVCpu->cpum.GstCtx.rcx; break;
|
---|
549 | case 2: u64EffAddr += pVCpu->cpum.GstCtx.rdx; break;
|
---|
550 | case 3: u64EffAddr += pVCpu->cpum.GstCtx.rbx; break;
|
---|
551 | case 4: u64EffAddr += pVCpu->cpum.GstCtx.rsp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
552 | case 6: u64EffAddr += pVCpu->cpum.GstCtx.rsi; break;
|
---|
553 | case 7: u64EffAddr += pVCpu->cpum.GstCtx.rdi; break;
|
---|
554 | case 8: u64EffAddr += pVCpu->cpum.GstCtx.r8; break;
|
---|
555 | case 9: u64EffAddr += pVCpu->cpum.GstCtx.r9; break;
|
---|
556 | case 10: u64EffAddr += pVCpu->cpum.GstCtx.r10; break;
|
---|
557 | case 11: u64EffAddr += pVCpu->cpum.GstCtx.r11; break;
|
---|
558 | case 12: u64EffAddr += pVCpu->cpum.GstCtx.r12; break;
|
---|
559 | case 14: u64EffAddr += pVCpu->cpum.GstCtx.r14; break;
|
---|
560 | case 15: u64EffAddr += pVCpu->cpum.GstCtx.r15; break;
|
---|
561 | /* complicated encodings */
|
---|
562 | case 5:
|
---|
563 | case 13:
|
---|
564 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
565 | {
|
---|
566 | if (!pVCpu->iem.s.uRexB)
|
---|
567 | {
|
---|
568 | u64EffAddr += pVCpu->cpum.GstCtx.rbp;
|
---|
569 | SET_SS_DEF();
|
---|
570 | }
|
---|
571 | else
|
---|
572 | u64EffAddr += pVCpu->cpum.GstCtx.r13;
|
---|
573 | }
|
---|
574 | else
|
---|
575 | {
|
---|
576 | uint32_t u32Disp;
|
---|
577 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
578 | u64EffAddr += (int32_t)u32Disp;
|
---|
579 | uInfo |= u32Disp;
|
---|
580 | }
|
---|
581 | break;
|
---|
582 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
583 | }
|
---|
584 | break;
|
---|
585 | }
|
---|
586 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
587 | }
|
---|
588 |
|
---|
589 | /* Get and add the displacement. */
|
---|
590 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
591 | {
|
---|
592 | case 0:
|
---|
593 | break;
|
---|
594 | case 1:
|
---|
595 | {
|
---|
596 | int8_t i8Disp;
|
---|
597 | IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
598 | u64EffAddr += i8Disp;
|
---|
599 | uInfo |= (uint32_t)(int32_t)i8Disp;
|
---|
600 | break;
|
---|
601 | }
|
---|
602 | case 2:
|
---|
603 | {
|
---|
604 | uint32_t u32Disp;
|
---|
605 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
606 | u64EffAddr += (int32_t)u32Disp;
|
---|
607 | uInfo |= u32Disp;
|
---|
608 | break;
|
---|
609 | }
|
---|
610 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX); /* (caller checked for these) */
|
---|
611 | }
|
---|
612 |
|
---|
613 | }
|
---|
614 |
|
---|
615 | *puInfo = uInfo;
|
---|
616 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
|
---|
617 | {
|
---|
618 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RGv uInfo=%#RX64\n", u64EffAddr, uInfo));
|
---|
619 | return u64EffAddr;
|
---|
620 | }
|
---|
621 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
622 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RGv uInfo=%#RX64\n", u64EffAddr & UINT32_MAX, uInfo));
|
---|
623 | return u64EffAddr & UINT32_MAX;
|
---|
624 | }
|
---|
625 |
|
---|
626 |
|
---|
627 | /**
|
---|
628 | * Helper for indicating that we've branched.
|
---|
629 | */
|
---|
630 | DECL_FORCE_INLINE(void) iemThreadedSetBranched(PVMCPUCC pVCpu, uint8_t fTbBranched)
|
---|
631 | {
|
---|
632 | pVCpu->iem.s.fTbBranched = fTbBranched;
|
---|
633 | pVCpu->iem.s.GCPhysTbBranchSrcBuf = pVCpu->iem.s.GCPhysInstrBuf;
|
---|
634 | pVCpu->iem.s.GCVirtTbBranchSrcBuf = pVCpu->iem.s.uInstrBufPc;
|
---|
635 | }
|
---|
636 |
|
---|
637 |
|
---|
638 | /*
|
---|
639 | * Include the "annotated" IEMAllInst*.cpp.h files.
|
---|
640 | */
|
---|
641 | #include "IEMThreadedInstructions.cpp.h"
|
---|
642 |
|
---|
643 | /*
|
---|
644 | * Translation block management.
|
---|
645 | */
|
---|
646 | typedef struct IEMTBCACHE
|
---|
647 | {
|
---|
648 | uint32_t cHash;
|
---|
649 | uint32_t uHashMask;
|
---|
650 | PIEMTB apHash[_64K];
|
---|
651 | } IEMTBCACHE;
|
---|
652 |
|
---|
653 | static IEMTBCACHE g_TbCache = { _64K, 0xffff, }; /**< Quick and dirty. */
|
---|
654 |
|
---|
655 | #define IEMTBCACHE_HASH(a_paCache, a_fTbFlags, a_GCPhysPc) \
|
---|
656 | ( ((uint32_t)(a_GCPhysPc) ^ (a_fTbFlags)) & (a_paCache)->uHashMask)
|
---|
657 |
|
---|
658 |
|
---|
659 | /**
|
---|
660 | * Allocate a translation block for threadeded recompilation.
|
---|
661 | *
|
---|
662 | * @returns Pointer to the translation block on success, NULL on failure.
|
---|
663 | * @param pVM The cross context virtual machine structure.
|
---|
664 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
665 | * thread.
|
---|
666 | * @param GCPhysPc The physical address corresponding to RIP + CS.BASE.
|
---|
667 | * @param fExtraFlags Extra flags (IEMTB_F_XXX).
|
---|
668 | */
|
---|
669 | static PIEMTB iemThreadedTbAlloc(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysPc, uint32_t fExtraFlags)
|
---|
670 | {
|
---|
671 | /*
|
---|
672 | * Just using the heap for now. Will make this more efficient and
|
---|
673 | * complicated later, don't worry. :-)
|
---|
674 | */
|
---|
675 | PIEMTB pTb = (PIEMTB)RTMemAlloc(sizeof(IEMTB));
|
---|
676 | if (pTb)
|
---|
677 | {
|
---|
678 | unsigned const cCalls = 128;
|
---|
679 | pTb->Thrd.paCalls = (PIEMTHRDEDCALLENTRY)RTMemAlloc(sizeof(IEMTHRDEDCALLENTRY) * cCalls);
|
---|
680 | if (pTb->Thrd.paCalls)
|
---|
681 | {
|
---|
682 | pTb->pabOpcodes = (uint8_t *)RTMemAlloc(cCalls * 16); /* This will be reallocated later. */
|
---|
683 | if (pTb->pabOpcodes)
|
---|
684 | {
|
---|
685 | pTb->Thrd.cAllocated = cCalls;
|
---|
686 | pTb->cbOpcodesAllocated = cCalls * 16;
|
---|
687 | pTb->Thrd.cCalls = 0;
|
---|
688 | pTb->cbOpcodes = 0;
|
---|
689 | pTb->pNext = NULL;
|
---|
690 | RTListInit(&pTb->LocalList);
|
---|
691 | pTb->GCPhysPc = GCPhysPc;
|
---|
692 | pTb->x86.fAttr = (uint16_t)pVCpu->cpum.GstCtx.cs.Attr.u;
|
---|
693 | pTb->fFlags = (pVCpu->iem.s.fExec & IEMTB_F_IEM_F_MASK) | fExtraFlags;
|
---|
694 | pTb->cInstructions = 0;
|
---|
695 |
|
---|
696 | /* Init the first opcode range. */
|
---|
697 | pTb->cRanges = 1;
|
---|
698 | pTb->aRanges[0].cbOpcodes = 0;
|
---|
699 | pTb->aRanges[0].offOpcodes = 0;
|
---|
700 | pTb->aRanges[0].offPhysPage = GCPhysPc & GUEST_PAGE_OFFSET_MASK;
|
---|
701 | pTb->aRanges[0].u2Unused = 0;
|
---|
702 | pTb->aRanges[0].idxPhysPage = 0;
|
---|
703 | pTb->aGCPhysPages[0] = NIL_RTGCPHYS;
|
---|
704 | pTb->aGCPhysPages[1] = NIL_RTGCPHYS;
|
---|
705 |
|
---|
706 | pVCpu->iem.s.cTbAllocs++;
|
---|
707 | return pTb;
|
---|
708 | }
|
---|
709 | RTMemFree(pTb->Thrd.paCalls);
|
---|
710 | }
|
---|
711 | RTMemFree(pTb);
|
---|
712 | }
|
---|
713 | RT_NOREF(pVM);
|
---|
714 | return NULL;
|
---|
715 | }
|
---|
716 |
|
---|
717 |
|
---|
718 | /**
|
---|
719 | * Frees pTb.
|
---|
720 | *
|
---|
721 | * @param pVM The cross context virtual machine structure.
|
---|
722 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
723 | * thread.
|
---|
724 | * @param pTb The translation block to free..
|
---|
725 | */
|
---|
726 | static void iemThreadedTbFree(PVMCC pVM, PVMCPUCC pVCpu, PIEMTB pTb)
|
---|
727 | {
|
---|
728 | RT_NOREF(pVM);
|
---|
729 | AssertPtr(pTb);
|
---|
730 |
|
---|
731 | AssertCompile(IEMTB_F_STATE_OBSOLETE == IEMTB_F_STATE_MASK);
|
---|
732 | pTb->fFlags |= IEMTB_F_STATE_OBSOLETE; /* works, both bits set */
|
---|
733 |
|
---|
734 | /* Unlink it from the hash table: */
|
---|
735 | uint32_t const idxHash = IEMTBCACHE_HASH(&g_TbCache, pTb->fFlags, pTb->GCPhysPc);
|
---|
736 | PIEMTB pTbCur = g_TbCache.apHash[idxHash];
|
---|
737 | if (pTbCur == pTb)
|
---|
738 | g_TbCache.apHash[idxHash] = pTb->pNext;
|
---|
739 | else
|
---|
740 | while (pTbCur)
|
---|
741 | {
|
---|
742 | PIEMTB const pNextTb = pTbCur->pNext;
|
---|
743 | if (pNextTb == pTb)
|
---|
744 | {
|
---|
745 | pTbCur->pNext = pTb->pNext;
|
---|
746 | break;
|
---|
747 | }
|
---|
748 | pTbCur = pNextTb;
|
---|
749 | }
|
---|
750 |
|
---|
751 | /* Free it. */
|
---|
752 | RTMemFree(pTb->Thrd.paCalls);
|
---|
753 | pTb->Thrd.paCalls = NULL;
|
---|
754 |
|
---|
755 | RTMemFree(pTb->pabOpcodes);
|
---|
756 | pTb->pabOpcodes = NULL;
|
---|
757 |
|
---|
758 | RTMemFree(pTb);
|
---|
759 | pVCpu->iem.s.cTbFrees++;
|
---|
760 | }
|
---|
761 |
|
---|
762 |
|
---|
763 | /**
|
---|
764 | * Called by opcode verifier functions when they detect a problem.
|
---|
765 | */
|
---|
766 | void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb)
|
---|
767 | {
|
---|
768 | iemThreadedTbFree(pVCpu->CTX_SUFF(pVM), pVCpu, pTb);
|
---|
769 | }
|
---|
770 |
|
---|
771 |
|
---|
772 | static PIEMTB iemThreadedTbLookup(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysPc, uint32_t fExtraFlags)
|
---|
773 | {
|
---|
774 | uint32_t const fFlags = (pVCpu->iem.s.fExec & IEMTB_F_IEM_F_MASK) | fExtraFlags | IEMTB_F_STATE_READY;
|
---|
775 | uint32_t const idxHash = IEMTBCACHE_HASH(&g_TbCache, fFlags, GCPhysPc);
|
---|
776 | Log10(("TB lookup: idxHash=%#x fFlags=%#x GCPhysPc=%RGp\n", idxHash, fFlags, GCPhysPc));
|
---|
777 | PIEMTB pTb = g_TbCache.apHash[idxHash];
|
---|
778 | while (pTb)
|
---|
779 | {
|
---|
780 | if (pTb->GCPhysPc == GCPhysPc)
|
---|
781 | {
|
---|
782 | if (pTb->fFlags == fFlags)
|
---|
783 | {
|
---|
784 | if (pTb->x86.fAttr == (uint16_t)pVCpu->cpum.GstCtx.cs.Attr.u)
|
---|
785 | {
|
---|
786 | #ifdef VBOX_WITH_STATISTICS
|
---|
787 | pVCpu->iem.s.cTbLookupHits++;
|
---|
788 | #endif
|
---|
789 | return pTb;
|
---|
790 | }
|
---|
791 | Log11(("TB miss: CS: %#x, wanted %#x\n", pTb->x86.fAttr, (uint16_t)pVCpu->cpum.GstCtx.cs.Attr.u));
|
---|
792 | }
|
---|
793 | else
|
---|
794 | Log11(("TB miss: fFlags: %#x, wanted %#x\n", pTb->fFlags, fFlags));
|
---|
795 | }
|
---|
796 | else
|
---|
797 | Log11(("TB miss: GCPhysPc: %#x, wanted %#x\n", pTb->GCPhysPc, GCPhysPc));
|
---|
798 |
|
---|
799 | pTb = pTb->pNext;
|
---|
800 | }
|
---|
801 | RT_NOREF(pVM);
|
---|
802 | pVCpu->iem.s.cTbLookupMisses++;
|
---|
803 | return pTb;
|
---|
804 | }
|
---|
805 |
|
---|
806 |
|
---|
807 | static void iemThreadedTbAdd(PVMCC pVM, PVMCPUCC pVCpu, PIEMTB pTb)
|
---|
808 | {
|
---|
809 | uint32_t const idxHash = IEMTBCACHE_HASH(&g_TbCache, pTb->fFlags, pTb->GCPhysPc);
|
---|
810 | pTb->pNext = g_TbCache.apHash[idxHash];
|
---|
811 | g_TbCache.apHash[idxHash] = pTb;
|
---|
812 | STAM_REL_PROFILE_ADD_PERIOD(&pVCpu->iem.s.StatTbThreadedInstr, pTb->cInstructions);
|
---|
813 | STAM_REL_PROFILE_ADD_PERIOD(&pVCpu->iem.s.StatTbThreadedCalls, pTb->Thrd.cCalls);
|
---|
814 | if (LogIs12Enabled())
|
---|
815 | {
|
---|
816 | Log12(("TB added: %p %RGp LB %#x fl=%#x idxHash=%#x cRanges=%u cInstr=%u cCalls=%u\n",
|
---|
817 | pTb, pTb->GCPhysPc, pTb->cbOpcodes, pTb->fFlags, idxHash, pTb->cRanges, pTb->cInstructions, pTb->Thrd.cCalls));
|
---|
818 | for (uint8_t idxRange = 0; idxRange < pTb->cRanges; idxRange++)
|
---|
819 | Log12((" range#%u: offPg=%#05x offOp=%#04x LB %#04x pg#%u=%RGp\n", idxRange, pTb->aRanges[idxRange].offPhysPage,
|
---|
820 | pTb->aRanges[idxRange].offOpcodes, pTb->aRanges[idxRange].cbOpcodes, pTb->aRanges[idxRange].idxPhysPage,
|
---|
821 | pTb->aRanges[idxRange].idxPhysPage == 0
|
---|
822 | ? pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK
|
---|
823 | : pTb->aGCPhysPages[pTb->aRanges[idxRange].idxPhysPage - 1]));
|
---|
824 | }
|
---|
825 | RT_NOREF(pVM);
|
---|
826 | }
|
---|
827 |
|
---|
828 |
|
---|
829 | /*
|
---|
830 | * Real code.
|
---|
831 | */
|
---|
832 |
|
---|
833 | #ifdef LOG_ENABLED
|
---|
834 | /**
|
---|
835 | * Logs the current instruction.
|
---|
836 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
837 | * @param pszFunction The IEM function doing the execution.
|
---|
838 | */
|
---|
839 | static void iemThreadedLogCurInstr(PVMCPUCC pVCpu, const char *pszFunction) RT_NOEXCEPT
|
---|
840 | {
|
---|
841 | # ifdef IN_RING3
|
---|
842 | if (LogIs2Enabled())
|
---|
843 | {
|
---|
844 | char szInstr[256];
|
---|
845 | uint32_t cbInstr = 0;
|
---|
846 | DBGFR3DisasInstrEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, 0, 0,
|
---|
847 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
848 | szInstr, sizeof(szInstr), &cbInstr);
|
---|
849 |
|
---|
850 | PCX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
851 | Log2(("**** %s fExec=%x pTb=%p\n"
|
---|
852 | " eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
|
---|
853 | " eip=%08x esp=%08x ebp=%08x iopl=%d tr=%04x\n"
|
---|
854 | " cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x efl=%08x\n"
|
---|
855 | " fsw=%04x fcw=%04x ftw=%02x mxcsr=%04x/%04x\n"
|
---|
856 | " %s\n"
|
---|
857 | , pszFunction, pVCpu->iem.s.fExec, pVCpu->iem.s.pCurTbR3,
|
---|
858 | pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ebx, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.esi, pVCpu->cpum.GstCtx.edi,
|
---|
859 | pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.esp, pVCpu->cpum.GstCtx.ebp, pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL, pVCpu->cpum.GstCtx.tr.Sel,
|
---|
860 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.ds.Sel, pVCpu->cpum.GstCtx.es.Sel,
|
---|
861 | pVCpu->cpum.GstCtx.fs.Sel, pVCpu->cpum.GstCtx.gs.Sel, pVCpu->cpum.GstCtx.eflags.u,
|
---|
862 | pFpuCtx->FSW, pFpuCtx->FCW, pFpuCtx->FTW, pFpuCtx->MXCSR, pFpuCtx->MXCSR_MASK,
|
---|
863 | szInstr));
|
---|
864 |
|
---|
865 | if (LogIs3Enabled())
|
---|
866 | DBGFR3InfoEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, "cpumguest", "verbose", NULL);
|
---|
867 | }
|
---|
868 | else
|
---|
869 | # endif
|
---|
870 | LogFlow(("%s: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x\n", pszFunction, pVCpu->cpum.GstCtx.cs.Sel,
|
---|
871 | pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp, pVCpu->cpum.GstCtx.eflags.u));
|
---|
872 | }
|
---|
873 | #endif /* LOG_ENABLED */
|
---|
874 |
|
---|
875 |
|
---|
876 | static VBOXSTRICTRC iemThreadedCompileLongJumped(PVMCC pVM, PVMCPUCC pVCpu, VBOXSTRICTRC rcStrict)
|
---|
877 | {
|
---|
878 | RT_NOREF(pVM, pVCpu);
|
---|
879 | return rcStrict;
|
---|
880 | }
|
---|
881 |
|
---|
882 |
|
---|
883 | /**
|
---|
884 | * Initializes the decoder state when compiling TBs.
|
---|
885 | *
|
---|
886 | * This presumes that fExec has already be initialized.
|
---|
887 | *
|
---|
888 | * This is very similar to iemInitDecoder() and iemReInitDecoder(), so may need
|
---|
889 | * to apply fixes to them as well.
|
---|
890 | *
|
---|
891 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
892 | * thread.
|
---|
893 | * @param fReInit Clear for the first call for a TB, set for subsequent calls
|
---|
894 | * from inside the compile loop where we can skip a couple of
|
---|
895 | * things.
|
---|
896 | */
|
---|
897 | DECL_FORCE_INLINE(void) iemThreadedCompileInitDecoder(PVMCPUCC pVCpu, bool const fReInit)
|
---|
898 | {
|
---|
899 | /* ASSUMES: That iemInitExec was already called and that anyone changing
|
---|
900 | CPU state affecting the fExec bits since then will have updated fExec! */
|
---|
901 | AssertMsg((pVCpu->iem.s.fExec & ~IEM_F_USER_OPTS) == iemCalcExecFlags(pVCpu),
|
---|
902 | ("fExec=%#x iemCalcExecModeFlags=%#x\n", pVCpu->iem.s.fExec, iemCalcExecFlags(pVCpu)));
|
---|
903 |
|
---|
904 | IEMMODE const enmMode = IEM_GET_CPU_MODE(pVCpu);
|
---|
905 |
|
---|
906 | /* Decoder state: */
|
---|
907 | pVCpu->iem.s.enmDefAddrMode = enmMode; /** @todo check if this is correct... */
|
---|
908 | pVCpu->iem.s.enmEffAddrMode = enmMode;
|
---|
909 | if (enmMode != IEMMODE_64BIT)
|
---|
910 | {
|
---|
911 | pVCpu->iem.s.enmDefOpSize = enmMode; /** @todo check if this is correct... */
|
---|
912 | pVCpu->iem.s.enmEffOpSize = enmMode;
|
---|
913 | }
|
---|
914 | else
|
---|
915 | {
|
---|
916 | pVCpu->iem.s.enmDefOpSize = IEMMODE_32BIT;
|
---|
917 | pVCpu->iem.s.enmEffOpSize = IEMMODE_32BIT;
|
---|
918 | }
|
---|
919 | pVCpu->iem.s.fPrefixes = 0;
|
---|
920 | pVCpu->iem.s.uRexReg = 0;
|
---|
921 | pVCpu->iem.s.uRexB = 0;
|
---|
922 | pVCpu->iem.s.uRexIndex = 0;
|
---|
923 | pVCpu->iem.s.idxPrefix = 0;
|
---|
924 | pVCpu->iem.s.uVex3rdReg = 0;
|
---|
925 | pVCpu->iem.s.uVexLength = 0;
|
---|
926 | pVCpu->iem.s.fEvexStuff = 0;
|
---|
927 | pVCpu->iem.s.iEffSeg = X86_SREG_DS;
|
---|
928 | pVCpu->iem.s.offModRm = 0;
|
---|
929 | pVCpu->iem.s.iNextMapping = 0;
|
---|
930 |
|
---|
931 | if (!fReInit)
|
---|
932 | {
|
---|
933 | pVCpu->iem.s.cActiveMappings = 0;
|
---|
934 | pVCpu->iem.s.rcPassUp = VINF_SUCCESS;
|
---|
935 | pVCpu->iem.s.fEndTb = false;
|
---|
936 | pVCpu->iem.s.fTbCheckOpcodes = false;
|
---|
937 | pVCpu->iem.s.fTbBranched = IEMBRANCHED_F_NO;
|
---|
938 | pVCpu->iem.s.fTbCrossedPage = false;
|
---|
939 | }
|
---|
940 | else
|
---|
941 | {
|
---|
942 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
943 | Assert(pVCpu->iem.s.rcPassUp == VINF_SUCCESS);
|
---|
944 | Assert(pVCpu->iem.s.fEndTb == false);
|
---|
945 | Assert(pVCpu->iem.s.fTbCrossedPage == false);
|
---|
946 | }
|
---|
947 |
|
---|
948 | #ifdef DBGFTRACE_ENABLED
|
---|
949 | switch (IEM_GET_CPU_MODE(pVCpu))
|
---|
950 | {
|
---|
951 | case IEMMODE_64BIT:
|
---|
952 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I64/%u %08llx", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.rip);
|
---|
953 | break;
|
---|
954 | case IEMMODE_32BIT:
|
---|
955 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I32/%u %04x:%08x", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip);
|
---|
956 | break;
|
---|
957 | case IEMMODE_16BIT:
|
---|
958 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I16/%u %04x:%04x", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip);
|
---|
959 | break;
|
---|
960 | }
|
---|
961 | #endif
|
---|
962 | }
|
---|
963 |
|
---|
964 |
|
---|
965 | /**
|
---|
966 | * Initializes the opcode fetcher when starting the compilation.
|
---|
967 | *
|
---|
968 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
969 | * thread.
|
---|
970 | */
|
---|
971 | DECL_FORCE_INLINE(void) iemThreadedCompileInitOpcodeFetching(PVMCPUCC pVCpu)
|
---|
972 | {
|
---|
973 | /* Almost everything is done by iemGetPcWithPhysAndCode() already. We just need to initialize the index into abOpcode. */
|
---|
974 | #ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
|
---|
975 | pVCpu->iem.s.offOpcode = 0;
|
---|
976 | #else
|
---|
977 | RT_NOREF(pVCpu);
|
---|
978 | #endif
|
---|
979 | }
|
---|
980 |
|
---|
981 |
|
---|
982 | /**
|
---|
983 | * Re-initializes the opcode fetcher between instructions while compiling.
|
---|
984 | *
|
---|
985 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
986 | * thread.
|
---|
987 | */
|
---|
988 | DECL_FORCE_INLINE(void) iemThreadedCompileReInitOpcodeFetching(PVMCPUCC pVCpu)
|
---|
989 | {
|
---|
990 | if (pVCpu->iem.s.pbInstrBuf)
|
---|
991 | {
|
---|
992 | uint64_t off = pVCpu->cpum.GstCtx.rip;
|
---|
993 | Assert(pVCpu->cpum.GstCtx.cs.u64Base == 0 || !IEM_IS_64BIT_CODE(pVCpu));
|
---|
994 | off += pVCpu->cpum.GstCtx.cs.u64Base;
|
---|
995 | off -= pVCpu->iem.s.uInstrBufPc;
|
---|
996 | if (off < pVCpu->iem.s.cbInstrBufTotal)
|
---|
997 | {
|
---|
998 | pVCpu->iem.s.offInstrNextByte = (uint32_t)off;
|
---|
999 | pVCpu->iem.s.offCurInstrStart = (uint16_t)off;
|
---|
1000 | if ((uint16_t)off + 15 <= pVCpu->iem.s.cbInstrBufTotal)
|
---|
1001 | pVCpu->iem.s.cbInstrBuf = (uint16_t)off + 15;
|
---|
1002 | else
|
---|
1003 | pVCpu->iem.s.cbInstrBuf = pVCpu->iem.s.cbInstrBufTotal;
|
---|
1004 | }
|
---|
1005 | else
|
---|
1006 | {
|
---|
1007 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
1008 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
1009 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
1010 | pVCpu->iem.s.cbInstrBuf = 0;
|
---|
1011 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
1012 | pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS;
|
---|
1013 | }
|
---|
1014 | }
|
---|
1015 | else
|
---|
1016 | {
|
---|
1017 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
1018 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
1019 | pVCpu->iem.s.cbInstrBuf = 0;
|
---|
1020 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
1021 | #ifdef VBOX_STRICT
|
---|
1022 | pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS;
|
---|
1023 | #endif
|
---|
1024 | }
|
---|
1025 | #ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
|
---|
1026 | pVCpu->iem.s.offOpcode = 0;
|
---|
1027 | #endif
|
---|
1028 | }
|
---|
1029 |
|
---|
1030 |
|
---|
1031 | DECLINLINE(void) iemThreadedCopyOpcodeBytesInline(PCVMCPUCC pVCpu, uint8_t *pbDst, uint8_t cbInstr)
|
---|
1032 | {
|
---|
1033 | switch (cbInstr)
|
---|
1034 | {
|
---|
1035 | default: AssertMsgFailed(("%#x\n", cbInstr)); RT_FALL_THROUGH();
|
---|
1036 | case 15: pbDst[14] = pVCpu->iem.s.abOpcode[14]; RT_FALL_THROUGH();
|
---|
1037 | case 14: pbDst[13] = pVCpu->iem.s.abOpcode[13]; RT_FALL_THROUGH();
|
---|
1038 | case 13: pbDst[12] = pVCpu->iem.s.abOpcode[12]; RT_FALL_THROUGH();
|
---|
1039 | case 12: pbDst[11] = pVCpu->iem.s.abOpcode[11]; RT_FALL_THROUGH();
|
---|
1040 | case 11: pbDst[10] = pVCpu->iem.s.abOpcode[10]; RT_FALL_THROUGH();
|
---|
1041 | case 10: pbDst[9] = pVCpu->iem.s.abOpcode[9]; RT_FALL_THROUGH();
|
---|
1042 | case 9: pbDst[8] = pVCpu->iem.s.abOpcode[8]; RT_FALL_THROUGH();
|
---|
1043 | case 8: pbDst[7] = pVCpu->iem.s.abOpcode[7]; RT_FALL_THROUGH();
|
---|
1044 | case 7: pbDst[6] = pVCpu->iem.s.abOpcode[6]; RT_FALL_THROUGH();
|
---|
1045 | case 6: pbDst[5] = pVCpu->iem.s.abOpcode[5]; RT_FALL_THROUGH();
|
---|
1046 | case 5: pbDst[4] = pVCpu->iem.s.abOpcode[4]; RT_FALL_THROUGH();
|
---|
1047 | case 4: pbDst[3] = pVCpu->iem.s.abOpcode[3]; RT_FALL_THROUGH();
|
---|
1048 | case 3: pbDst[2] = pVCpu->iem.s.abOpcode[2]; RT_FALL_THROUGH();
|
---|
1049 | case 2: pbDst[1] = pVCpu->iem.s.abOpcode[1]; RT_FALL_THROUGH();
|
---|
1050 | case 1: pbDst[0] = pVCpu->iem.s.abOpcode[0]; break;
|
---|
1051 | }
|
---|
1052 | }
|
---|
1053 |
|
---|
1054 |
|
---|
1055 | /**
|
---|
1056 | * Called by IEM_MC2_BEGIN_EMIT_CALLS() under one of these conditions:
|
---|
1057 | *
|
---|
1058 | * - CS LIM check required.
|
---|
1059 | * - Must recheck opcode bytes.
|
---|
1060 | * - Previous instruction branched.
|
---|
1061 | * - TLB load detected, probably due to page crossing.
|
---|
1062 | *
|
---|
1063 | * @returns true if everything went well, false if we're out of space in the TB
|
---|
1064 | * (e.g. opcode ranges).
|
---|
1065 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1066 | * thread.
|
---|
1067 | * @param pTb The translation block being compiled.
|
---|
1068 | */
|
---|
1069 | static bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb)
|
---|
1070 | {
|
---|
1071 | Assert((pVCpu->iem.s.GCPhysInstrBuf & GUEST_PAGE_OFFSET_MASK) == 0);
|
---|
1072 |
|
---|
1073 | /*
|
---|
1074 | * Prepare call now, even before we know if can accept the instruction in this TB.
|
---|
1075 | * This allows us amending parameters w/o making every case suffer.
|
---|
1076 | */
|
---|
1077 | uint8_t const cbInstr = IEM_GET_INSTR_LEN(pVCpu);
|
---|
1078 | uint16_t const offOpcode = pTb->cbOpcodes;
|
---|
1079 | uint8_t idxRange = pTb->cRanges - 1;
|
---|
1080 |
|
---|
1081 | PIEMTHRDEDCALLENTRY const pCall = &pTb->Thrd.paCalls[pTb->Thrd.cCalls];
|
---|
1082 | pCall->offOpcode = offOpcode;
|
---|
1083 | pCall->idxRange = idxRange;
|
---|
1084 | pCall->cbOpcode = cbInstr;
|
---|
1085 | pCall->auParams[0] = cbInstr;
|
---|
1086 | pCall->auParams[1] = idxRange;
|
---|
1087 | pCall->auParams[2] = offOpcode - pTb->aRanges[idxRange].offOpcodes;
|
---|
1088 |
|
---|
1089 | /** @todo check if we require IEMTB_F_CS_LIM_CHECKS for any new page we've
|
---|
1090 | * gotten onto. If we do, stop */
|
---|
1091 |
|
---|
1092 | /*
|
---|
1093 | * Case 1: We've branched (RIP changed).
|
---|
1094 | *
|
---|
1095 | * Sub-case 1a: Same page, no TLB load (fTbCrossedPage is false).
|
---|
1096 | * Req: 1 extra range, no extra phys.
|
---|
1097 | *
|
---|
1098 | * Sub-case 1b: Different page but no page boundrary crossing, so TLB load
|
---|
1099 | * necessary (fTbCrossedPage is true).
|
---|
1100 | * Req: 1 extra range, probably 1 extra phys page entry.
|
---|
1101 | *
|
---|
1102 | * Sub-case 1c: Different page, so TLB load necessary (fTbCrossedPage is true),
|
---|
1103 | * but in addition we cross into the following page and require
|
---|
1104 | * another TLB load.
|
---|
1105 | * Req: 2 extra ranges, probably 2 extra phys page entries.
|
---|
1106 | *
|
---|
1107 | * Sub-case 1d: Same page, so no initial TLB load necessary, but we cross into
|
---|
1108 | * the following page (thus fTbCrossedPage is true).
|
---|
1109 | * Req: 2 extra ranges, probably 1 extra phys page entry.
|
---|
1110 | *
|
---|
1111 | * Note! The setting fTbCrossedPage is done by the iemOpcodeFetchBytesJmp, but
|
---|
1112 | * it may trigger "spuriously" from the CPU point of view because of
|
---|
1113 | * physical page changes that'll invalid the physical TLB and trigger a
|
---|
1114 | * call to the function. In theory this be a big deal, just a bit
|
---|
1115 | * performance loss as we'll pick the LoadingTlb variants.
|
---|
1116 | *
|
---|
1117 | * Note! We do not currently optimize branching to the next instruction (sorry
|
---|
1118 | * 32-bit PIC code). We could maybe do that in the branching code that
|
---|
1119 | * sets (or not) fTbBranched.
|
---|
1120 | */
|
---|
1121 | /** @todo Optimize 'jmp .next_instr' and 'call .next_instr'. Seen the jmp
|
---|
1122 | * variant in win 3.1 code and the call variant in 32-bit linux PIC
|
---|
1123 | * code. This'll require filtering out far jmps and calls, as they
|
---|
1124 | * load CS which should technically be considered indirect since the
|
---|
1125 | * GDT/LDT entry's base address can be modified independently from
|
---|
1126 | * the code. */
|
---|
1127 | if (pVCpu->iem.s.fTbBranched != 0)
|
---|
1128 | {
|
---|
1129 | if ( !pVCpu->iem.s.fTbCrossedPage /* 1a */
|
---|
1130 | || pVCpu->iem.s.offCurInstrStart >= 0 /* 1b */ )
|
---|
1131 | {
|
---|
1132 | /* 1a + 1b - instruction fully within the branched to page. */
|
---|
1133 | Assert(pVCpu->iem.s.offCurInstrStart >= 0);
|
---|
1134 | Assert(pVCpu->iem.s.offCurInstrStart + cbInstr <= GUEST_PAGE_SIZE);
|
---|
1135 |
|
---|
1136 | if (!(pVCpu->iem.s.fTbBranched & IEMBRANCHED_F_ZERO))
|
---|
1137 | {
|
---|
1138 | /* Check that we've got a free range. */
|
---|
1139 | idxRange += 1;
|
---|
1140 | if (idxRange < RT_ELEMENTS(pTb->aRanges))
|
---|
1141 | { /* likely */ }
|
---|
1142 | else
|
---|
1143 | {
|
---|
1144 | Log8(("%04x:%08RX64: out of ranges after branch\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
1145 | return false;
|
---|
1146 | }
|
---|
1147 | pCall->idxRange = idxRange;
|
---|
1148 | pCall->auParams[1] = idxRange;
|
---|
1149 | pCall->auParams[2] = 0;
|
---|
1150 |
|
---|
1151 | /* Check that we've got a free page slot. */
|
---|
1152 | AssertCompile(RT_ELEMENTS(pTb->aGCPhysPages) == 2);
|
---|
1153 | RTGCPHYS const GCPhysNew = pVCpu->iem.s.GCPhysInstrBuf & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
|
---|
1154 | if ((pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK) == GCPhysNew)
|
---|
1155 | pTb->aRanges[idxRange].idxPhysPage = 0;
|
---|
1156 | else if ( pTb->aGCPhysPages[0] == NIL_RTGCPHYS
|
---|
1157 | || pTb->aGCPhysPages[0] == GCPhysNew)
|
---|
1158 | {
|
---|
1159 | pTb->aGCPhysPages[0] = GCPhysNew;
|
---|
1160 | pTb->aRanges[idxRange].idxPhysPage = 1;
|
---|
1161 | }
|
---|
1162 | else if ( pTb->aGCPhysPages[1] == NIL_RTGCPHYS
|
---|
1163 | || pTb->aGCPhysPages[1] == GCPhysNew)
|
---|
1164 | {
|
---|
1165 | pTb->aGCPhysPages[1] = GCPhysNew;
|
---|
1166 | pTb->aRanges[idxRange].idxPhysPage = 2;
|
---|
1167 | }
|
---|
1168 | else
|
---|
1169 | {
|
---|
1170 | Log8(("%04x:%08RX64: out of aGCPhysPages entires after branch\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
1171 | return false;
|
---|
1172 | }
|
---|
1173 |
|
---|
1174 | /* Finish setting up the new range. */
|
---|
1175 | pTb->aRanges[idxRange].offPhysPage = pVCpu->iem.s.offCurInstrStart;
|
---|
1176 | pTb->aRanges[idxRange].offOpcodes = offOpcode;
|
---|
1177 | pTb->aRanges[idxRange].cbOpcodes = cbInstr;
|
---|
1178 | pTb->aRanges[idxRange].u2Unused = 0;
|
---|
1179 | pTb->cRanges++;
|
---|
1180 | }
|
---|
1181 | else
|
---|
1182 | {
|
---|
1183 | Log8(("%04x:%08RX64: zero byte jump\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
1184 | pTb->aRanges[idxRange].cbOpcodes += cbInstr;
|
---|
1185 | }
|
---|
1186 |
|
---|
1187 | /* Determin which function we need to load & check.
|
---|
1188 | Note! For jumps to a new page, we'll set both fTbBranched and
|
---|
1189 | fTbCrossedPage to avoid unnecessary TLB work for intra
|
---|
1190 | page branching */
|
---|
1191 | if ( (pVCpu->iem.s.fTbBranched & (IEMBRANCHED_F_INDIRECT | IEMBRANCHED_F_FAR)) /* Far is basically indirect. */
|
---|
1192 | || pVCpu->iem.s.fTbCrossedPage)
|
---|
1193 | pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS
|
---|
1194 | ? kIemThreadedFunc_CheckCsLimAndOpcodesLoadingTlb
|
---|
1195 | : kIemThreadedFunc_CheckOpcodesLoadingTlb;
|
---|
1196 | else if (pVCpu->iem.s.fTbBranched & (IEMBRANCHED_F_CONDITIONAL | /* paranoia: */ IEMBRANCHED_F_DIRECT))
|
---|
1197 | pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS
|
---|
1198 | ? kIemThreadedFunc_CheckCsLimAndPcAndOpcodes
|
---|
1199 | : kIemThreadedFunc_CheckPcAndOpcodes;
|
---|
1200 | else
|
---|
1201 | {
|
---|
1202 | Assert(pVCpu->iem.s.fTbBranched & IEMBRANCHED_F_RELATIVE);
|
---|
1203 | pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS
|
---|
1204 | ? kIemThreadedFunc_CheckCsLimAndOpcodes
|
---|
1205 | : kIemThreadedFunc_CheckOpcodes;
|
---|
1206 | }
|
---|
1207 | }
|
---|
1208 | else
|
---|
1209 | {
|
---|
1210 | /* 1c + 1d - instruction crosses pages. */
|
---|
1211 | Assert(pVCpu->iem.s.offCurInstrStart < 0);
|
---|
1212 | Assert(pVCpu->iem.s.offCurInstrStart + cbInstr > 0);
|
---|
1213 |
|
---|
1214 | /* Lazy bird: Check that this isn't case 1c, since we've already
|
---|
1215 | load the first physical address. End the TB and
|
---|
1216 | make it a case 2b instead.
|
---|
1217 |
|
---|
1218 | Hmm. Too much bother to detect, so just do the same
|
---|
1219 | with case 1d as well. */
|
---|
1220 | #if 0 /** @todo get back to this later when we've got the actual branch code in
|
---|
1221 | * place. */
|
---|
1222 | uint8_t const cbStartPage = (uint8_t)-pVCpu->iem.s.offCurInstrStart;
|
---|
1223 |
|
---|
1224 | /* Check that we've got two free ranges. */
|
---|
1225 | if (idxRange + 2 < RT_ELEMENTS(pTb->aRanges))
|
---|
1226 | { /* likely */ }
|
---|
1227 | else
|
---|
1228 | return false;
|
---|
1229 | idxRange += 1;
|
---|
1230 | pCall->idxRange = idxRange;
|
---|
1231 | pCall->auParams[1] = idxRange;
|
---|
1232 | pCall->auParams[2] = 0;
|
---|
1233 |
|
---|
1234 | /* ... */
|
---|
1235 |
|
---|
1236 | #else
|
---|
1237 | Log8(("%04x:%08RX64: complicated post-branch condition, ending TB.\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
1238 | return false;
|
---|
1239 | #endif
|
---|
1240 | }
|
---|
1241 | }
|
---|
1242 |
|
---|
1243 | /*
|
---|
1244 | * Case 2: Page crossing.
|
---|
1245 | *
|
---|
1246 | * Sub-case 2a: The instruction starts on the first byte in the next page.
|
---|
1247 | *
|
---|
1248 | * Sub-case 2b: The instruction has opcode bytes in both the current and
|
---|
1249 | * following page.
|
---|
1250 | *
|
---|
1251 | * Both cases requires a new range table entry and probably a new physical
|
---|
1252 | * page entry. The difference is in which functions to emit and whether to
|
---|
1253 | * add bytes to the current range.
|
---|
1254 | */
|
---|
1255 | else if (pVCpu->iem.s.fTbCrossedPage)
|
---|
1256 | {
|
---|
1257 | /* Check that we've got a free range. */
|
---|
1258 | idxRange += 1;
|
---|
1259 | if (idxRange < RT_ELEMENTS(pTb->aRanges))
|
---|
1260 | { /* likely */ }
|
---|
1261 | else
|
---|
1262 | {
|
---|
1263 | Log8(("%04x:%08RX64: out of ranges while crossing page\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
1264 | return false;
|
---|
1265 | }
|
---|
1266 |
|
---|
1267 | /* Check that we've got a free page slot. */
|
---|
1268 | AssertCompile(RT_ELEMENTS(pTb->aGCPhysPages) == 2);
|
---|
1269 | RTGCPHYS const GCPhysNew = pVCpu->iem.s.GCPhysInstrBuf & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
|
---|
1270 | if ((pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK) == GCPhysNew)
|
---|
1271 | pTb->aRanges[idxRange].idxPhysPage = 0;
|
---|
1272 | else if ( pTb->aGCPhysPages[0] == NIL_RTGCPHYS
|
---|
1273 | || pTb->aGCPhysPages[0] == GCPhysNew)
|
---|
1274 | {
|
---|
1275 | pTb->aGCPhysPages[0] = GCPhysNew;
|
---|
1276 | pTb->aRanges[idxRange].idxPhysPage = 1;
|
---|
1277 | }
|
---|
1278 | else if ( pTb->aGCPhysPages[1] == NIL_RTGCPHYS
|
---|
1279 | || pTb->aGCPhysPages[1] == GCPhysNew)
|
---|
1280 | {
|
---|
1281 | pTb->aGCPhysPages[1] = GCPhysNew;
|
---|
1282 | pTb->aRanges[idxRange].idxPhysPage = 2;
|
---|
1283 | }
|
---|
1284 | else
|
---|
1285 | {
|
---|
1286 | Log8(("%04x:%08RX64: out of aGCPhysPages entires while crossing page\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
1287 | return false;
|
---|
1288 | }
|
---|
1289 |
|
---|
1290 | if (((pTb->aRanges[idxRange - 1].offPhysPage + pTb->aRanges[idxRange - 1].cbOpcodes) & GUEST_PAGE_OFFSET_MASK) == 0)
|
---|
1291 | {
|
---|
1292 | Assert(pVCpu->iem.s.offCurInstrStart == 0);
|
---|
1293 | pCall->idxRange = idxRange;
|
---|
1294 | pCall->auParams[1] = idxRange;
|
---|
1295 | pCall->auParams[2] = 0;
|
---|
1296 |
|
---|
1297 | /* Finish setting up the new range. */
|
---|
1298 | pTb->aRanges[idxRange].offPhysPage = pVCpu->iem.s.offCurInstrStart;
|
---|
1299 | pTb->aRanges[idxRange].offOpcodes = offOpcode;
|
---|
1300 | pTb->aRanges[idxRange].cbOpcodes = cbInstr;
|
---|
1301 | pTb->aRanges[idxRange].u2Unused = 0;
|
---|
1302 | pTb->cRanges++;
|
---|
1303 |
|
---|
1304 | /* Determin which function we need to load & check. */
|
---|
1305 | pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS
|
---|
1306 | ? kIemThreadedFunc_CheckCsLimAndOpcodesOnNewPageLoadingTlb
|
---|
1307 | : kIemThreadedFunc_CheckOpcodesOnNewPageLoadingTlb;
|
---|
1308 | }
|
---|
1309 | else
|
---|
1310 | {
|
---|
1311 | Assert(pVCpu->iem.s.offCurInstrStart < 0);
|
---|
1312 | Assert(pVCpu->iem.s.offCurInstrStart + cbInstr > 0);
|
---|
1313 | uint8_t const cbStartPage = (uint8_t)-pVCpu->iem.s.offCurInstrStart;
|
---|
1314 | pCall->auParams[0] |= (uint64_t)cbStartPage << 32;
|
---|
1315 |
|
---|
1316 | /* We've good. Split the instruction over the old and new range table entries. */
|
---|
1317 | pTb->aRanges[idxRange - 1].cbOpcodes += cbStartPage;
|
---|
1318 |
|
---|
1319 | pTb->aRanges[idxRange].offPhysPage = 0;
|
---|
1320 | pTb->aRanges[idxRange].offOpcodes = offOpcode + cbStartPage;
|
---|
1321 | pTb->aRanges[idxRange].cbOpcodes = cbInstr - cbStartPage;
|
---|
1322 | pTb->aRanges[idxRange].u2Unused = 0;
|
---|
1323 | pTb->cRanges++;
|
---|
1324 |
|
---|
1325 | /* Determin which function we need to load & check. */
|
---|
1326 | if (pVCpu->iem.s.fTbCheckOpcodes)
|
---|
1327 | pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS
|
---|
1328 | ? kIemThreadedFunc_CheckCsLimAndOpcodesAcrossPageLoadingTlb
|
---|
1329 | : kIemThreadedFunc_CheckOpcodesAcrossPageLoadingTlb;
|
---|
1330 | else
|
---|
1331 | pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS
|
---|
1332 | ? kIemThreadedFunc_CheckCsLimAndOpcodesOnNextPageLoadingTlb
|
---|
1333 | : kIemThreadedFunc_CheckOpcodesOnNextPageLoadingTlb;
|
---|
1334 | }
|
---|
1335 | }
|
---|
1336 |
|
---|
1337 | /*
|
---|
1338 | * Regular case: No new range required.
|
---|
1339 | */
|
---|
1340 | else
|
---|
1341 | {
|
---|
1342 | Assert(pVCpu->iem.s.fTbCheckOpcodes || (pTb->fFlags & IEMTB_F_CS_LIM_CHECKS));
|
---|
1343 | if (pVCpu->iem.s.fTbCheckOpcodes)
|
---|
1344 | pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS
|
---|
1345 | ? kIemThreadedFunc_CheckCsLimAndOpcodes
|
---|
1346 | : kIemThreadedFunc_CheckOpcodes;
|
---|
1347 | else
|
---|
1348 | pCall->enmFunction = kIemThreadedFunc_CheckCsLim;
|
---|
1349 |
|
---|
1350 | iemThreadedCopyOpcodeBytesInline(pVCpu, &pTb->pabOpcodes[offOpcode], cbInstr);
|
---|
1351 | pTb->cbOpcodes = offOpcode + cbInstr;
|
---|
1352 | pTb->aRanges[idxRange].cbOpcodes += cbInstr;
|
---|
1353 | Assert(pTb->cbOpcodes <= pTb->cbOpcodesAllocated);
|
---|
1354 | }
|
---|
1355 |
|
---|
1356 | /*
|
---|
1357 | * Commit the call.
|
---|
1358 | */
|
---|
1359 | pTb->Thrd.cCalls++;
|
---|
1360 |
|
---|
1361 | /*
|
---|
1362 | * Clear state.
|
---|
1363 | */
|
---|
1364 | pVCpu->iem.s.fTbBranched = IEMBRANCHED_F_NO;
|
---|
1365 | pVCpu->iem.s.fTbCrossedPage = false;
|
---|
1366 | pVCpu->iem.s.fTbCheckOpcodes = false;
|
---|
1367 |
|
---|
1368 | /*
|
---|
1369 | * Copy opcode bytes.
|
---|
1370 | */
|
---|
1371 | iemThreadedCopyOpcodeBytesInline(pVCpu, &pTb->pabOpcodes[offOpcode], cbInstr);
|
---|
1372 | pTb->cbOpcodes = offOpcode + cbInstr;
|
---|
1373 | Assert(pTb->cbOpcodes <= pTb->cbOpcodesAllocated);
|
---|
1374 |
|
---|
1375 | return true;
|
---|
1376 | }
|
---|
1377 |
|
---|
1378 |
|
---|
1379 |
|
---|
1380 | /**
|
---|
1381 | * Compiles a new TB and executes it.
|
---|
1382 | *
|
---|
1383 | * We combine compilation and execution here as it makes it simpler code flow
|
---|
1384 | * in the main loop and it allows interpreting while compiling if we want to
|
---|
1385 | * explore that option.
|
---|
1386 | *
|
---|
1387 | * @returns Strict VBox status code.
|
---|
1388 | * @param pVM The cross context virtual machine structure.
|
---|
1389 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1390 | * thread.
|
---|
1391 | * @param GCPhysPc The physical address corresponding to the current
|
---|
1392 | * RIP+CS.BASE.
|
---|
1393 | * @param fExtraFlags Extra translation block flags: IEMTB_F_TYPE_THREADED and
|
---|
1394 | * maybe IEMTB_F_RIP_CHECKS.
|
---|
1395 | */
|
---|
1396 | static VBOXSTRICTRC iemThreadedCompile(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysPc, uint32_t fExtraFlags)
|
---|
1397 | {
|
---|
1398 | /*
|
---|
1399 | * Allocate a new translation block.
|
---|
1400 | */
|
---|
1401 | PIEMTB pTb = iemThreadedTbAlloc(pVM, pVCpu, GCPhysPc, fExtraFlags | IEMTB_F_STATE_COMPILING);
|
---|
1402 | AssertReturn(pTb, VERR_IEM_TB_ALLOC_FAILED);
|
---|
1403 |
|
---|
1404 | /* Set the current TB so iemThreadedCompileLongJumped and the CIMPL
|
---|
1405 | functions may get at it. */
|
---|
1406 | pVCpu->iem.s.pCurTbR3 = pTb;
|
---|
1407 |
|
---|
1408 | /*
|
---|
1409 | * Now for the recomplication. (This mimicks IEMExecLots in many ways.)
|
---|
1410 | */
|
---|
1411 | iemThreadedCompileInitDecoder(pVCpu, false /*fReInit*/);
|
---|
1412 | iemThreadedCompileInitOpcodeFetching(pVCpu);
|
---|
1413 | VBOXSTRICTRC rcStrict;
|
---|
1414 | for (;;)
|
---|
1415 | {
|
---|
1416 | /* Process the next instruction. */
|
---|
1417 | #ifdef LOG_ENABLED
|
---|
1418 | iemThreadedLogCurInstr(pVCpu, "CC");
|
---|
1419 | uint16_t const uCsLog = pVCpu->cpum.GstCtx.cs.Sel;
|
---|
1420 | uint64_t const uRipLog = pVCpu->cpum.GstCtx.rip;
|
---|
1421 | #endif
|
---|
1422 | uint8_t b; IEM_OPCODE_GET_FIRST_U8(&b);
|
---|
1423 | uint16_t const cCallsPrev = pTb->Thrd.cCalls;
|
---|
1424 |
|
---|
1425 | rcStrict = FNIEMOP_CALL(g_apfnIemThreadedRecompilerOneByteMap[b]);
|
---|
1426 | if ( rcStrict == VINF_SUCCESS
|
---|
1427 | && pVCpu->iem.s.rcPassUp == VINF_SUCCESS
|
---|
1428 | && !pVCpu->iem.s.fEndTb)
|
---|
1429 | {
|
---|
1430 | Assert(pTb->Thrd.cCalls > cCallsPrev);
|
---|
1431 | Assert(cCallsPrev - pTb->Thrd.cCalls < 5);
|
---|
1432 |
|
---|
1433 | pVCpu->iem.s.cInstructions++;
|
---|
1434 | }
|
---|
1435 | else
|
---|
1436 | {
|
---|
1437 | Log8(("%04x:%08RX64: End TB - %u instr, %u calls, rc=%d\n",
|
---|
1438 | uCsLog, uRipLog, pTb->cInstructions, pTb->Thrd.cCalls, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1439 | if (rcStrict == VINF_IEM_RECOMPILE_END_TB)
|
---|
1440 | rcStrict = VINF_SUCCESS;
|
---|
1441 |
|
---|
1442 | if (pTb->Thrd.cCalls > 0)
|
---|
1443 | {
|
---|
1444 | if (cCallsPrev != pTb->Thrd.cCalls)
|
---|
1445 | pVCpu->iem.s.cInstructions++;
|
---|
1446 | break;
|
---|
1447 | }
|
---|
1448 |
|
---|
1449 | pVCpu->iem.s.pCurTbR3 = NULL;
|
---|
1450 | iemThreadedTbFree(pVM, pVCpu, pTb);
|
---|
1451 | return iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
1452 | }
|
---|
1453 |
|
---|
1454 | /* Still space in the TB? */
|
---|
1455 | if ( pTb->Thrd.cCalls + 5 < pTb->Thrd.cAllocated
|
---|
1456 | && pTb->cbOpcodes + 16 <= pTb->cbOpcodesAllocated)
|
---|
1457 | iemThreadedCompileInitDecoder(pVCpu, true /*fReInit*/);
|
---|
1458 | else
|
---|
1459 | {
|
---|
1460 | Log8(("%04x:%08RX64: End TB - %u instr, %u calls, %u opcode bytes - full\n",
|
---|
1461 | uCsLog, uRipLog, pTb->cInstructions, pTb->Thrd.cCalls, pTb->cbOpcodes));
|
---|
1462 | break;
|
---|
1463 | }
|
---|
1464 | iemThreadedCompileReInitOpcodeFetching(pVCpu);
|
---|
1465 | }
|
---|
1466 |
|
---|
1467 | /*
|
---|
1468 | * Complete the TB and link it.
|
---|
1469 | */
|
---|
1470 | pTb->fFlags = (pTb->fFlags & ~IEMTB_F_STATE_MASK) | IEMTB_F_STATE_READY;
|
---|
1471 | iemThreadedTbAdd(pVM, pVCpu, pTb);
|
---|
1472 |
|
---|
1473 | #ifdef IEM_COMPILE_ONLY_MODE
|
---|
1474 | /*
|
---|
1475 | * Execute the translation block.
|
---|
1476 | */
|
---|
1477 | #endif
|
---|
1478 |
|
---|
1479 | return iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
1480 | }
|
---|
1481 |
|
---|
1482 |
|
---|
1483 | /**
|
---|
1484 | * Executes a translation block.
|
---|
1485 | *
|
---|
1486 | * @returns Strict VBox status code.
|
---|
1487 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1488 | * thread.
|
---|
1489 | * @param pTb The translation block to execute.
|
---|
1490 | */
|
---|
1491 | static VBOXSTRICTRC iemThreadedTbExec(PVMCPUCC pVCpu, PIEMTB pTb)
|
---|
1492 | {
|
---|
1493 | /* Check the opcodes in the first page before starting execution. */
|
---|
1494 | Assert(!(pVCpu->iem.s.GCPhysInstrBuf & (RTGCPHYS)GUEST_PAGE_OFFSET_MASK));
|
---|
1495 | Assert(pTb->aRanges[0].cbOpcodes <= pVCpu->iem.s.cbInstrBufTotal - pVCpu->iem.s.offInstrNextByte);
|
---|
1496 | if (memcmp(pTb->pabOpcodes, &pVCpu->iem.s.pbInstrBuf[pTb->aRanges[0].offPhysPage], pTb->aRanges[0].cbOpcodes) == 0)
|
---|
1497 | { /* likely */ }
|
---|
1498 | else
|
---|
1499 | {
|
---|
1500 | Log7(("TB obsolete: %p GCPhys=%RGp\n", pTb, pTb->GCPhysPc));
|
---|
1501 | iemThreadedTbFree(pVCpu->pVMR3, pVCpu, pTb);
|
---|
1502 | return VINF_SUCCESS;
|
---|
1503 | }
|
---|
1504 |
|
---|
1505 | /* Set the current TB so CIMPL function may get at it. */
|
---|
1506 | pVCpu->iem.s.pCurTbR3 = pTb;
|
---|
1507 | pVCpu->iem.s.cTbExec++;
|
---|
1508 |
|
---|
1509 | /* The execution loop. */
|
---|
1510 | PCIEMTHRDEDCALLENTRY pCallEntry = pTb->Thrd.paCalls;
|
---|
1511 | uint32_t cCallsLeft = pTb->Thrd.cCalls;
|
---|
1512 | while (cCallsLeft-- > 0)
|
---|
1513 | {
|
---|
1514 | #ifdef LOG_ENABLED
|
---|
1515 | iemThreadedLogCurInstr(pVCpu, "EX");
|
---|
1516 | Log9(("%04x:%08RX64: #%d - %d %s\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
|
---|
1517 | pTb->Thrd.cCalls - cCallsLeft - 1, pCallEntry->enmFunction, g_apszIemThreadedFunctions[pCallEntry->enmFunction]));
|
---|
1518 | #endif
|
---|
1519 | VBOXSTRICTRC const rcStrict = g_apfnIemThreadedFunctions[pCallEntry->enmFunction](pVCpu,
|
---|
1520 | pCallEntry->auParams[0],
|
---|
1521 | pCallEntry->auParams[1],
|
---|
1522 | pCallEntry->auParams[2]);
|
---|
1523 |
|
---|
1524 | if (RT_LIKELY( rcStrict == VINF_SUCCESS
|
---|
1525 | && pVCpu->iem.s.rcPassUp == VINF_SUCCESS /** @todo this isn't great. */))
|
---|
1526 | pCallEntry++;
|
---|
1527 | else
|
---|
1528 | {
|
---|
1529 | pVCpu->iem.s.pCurTbR3 = NULL;
|
---|
1530 |
|
---|
1531 | /* Some status codes are just to get us out of this loop and
|
---|
1532 | continue in a different translation block. */
|
---|
1533 | if (rcStrict == VINF_IEM_REEXEC_MODE_CHANGED)
|
---|
1534 | return iemExecStatusCodeFiddling(pVCpu, VINF_SUCCESS);
|
---|
1535 | return iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
1536 | }
|
---|
1537 | }
|
---|
1538 |
|
---|
1539 | pVCpu->iem.s.pCurTbR3 = NULL;
|
---|
1540 | return VINF_SUCCESS;
|
---|
1541 | }
|
---|
1542 |
|
---|
1543 |
|
---|
1544 | /**
|
---|
1545 | * This is called when the PC doesn't match the current pbInstrBuf.
|
---|
1546 | *
|
---|
1547 | * Upon return, we're ready for opcode fetching. But please note that
|
---|
1548 | * pbInstrBuf can be NULL iff the memory doesn't have readable backing (i.e.
|
---|
1549 | * MMIO or unassigned).
|
---|
1550 | */
|
---|
1551 | static RTGCPHYS iemGetPcWithPhysAndCodeMissed(PVMCPUCC pVCpu)
|
---|
1552 | {
|
---|
1553 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
1554 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
1555 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
1556 | iemOpcodeFetchBytesJmp(pVCpu, 0, NULL);
|
---|
1557 | return pVCpu->iem.s.GCPhysInstrBuf + pVCpu->iem.s.offCurInstrStart;
|
---|
1558 | }
|
---|
1559 |
|
---|
1560 |
|
---|
1561 | /** @todo need private inline decl for throw/nothrow matching IEM_WITH_SETJMP? */
|
---|
1562 | DECL_FORCE_INLINE_THROW(RTGCPHYS) iemGetPcWithPhysAndCode(PVMCPUCC pVCpu)
|
---|
1563 | {
|
---|
1564 | /*
|
---|
1565 | * Set uCurTbStartPc to RIP and calc the effective PC.
|
---|
1566 | */
|
---|
1567 | uint64_t uPc = pVCpu->cpum.GstCtx.rip;
|
---|
1568 | pVCpu->iem.s.uCurTbStartPc = uPc;
|
---|
1569 | Assert(pVCpu->cpum.GstCtx.cs.u64Base == 0 || !IEM_IS_64BIT_CODE(pVCpu));
|
---|
1570 | uPc += pVCpu->cpum.GstCtx.cs.u64Base;
|
---|
1571 |
|
---|
1572 | /*
|
---|
1573 | * Advance within the current buffer (PAGE) when possible.
|
---|
1574 | */
|
---|
1575 | if (pVCpu->iem.s.pbInstrBuf)
|
---|
1576 | {
|
---|
1577 | uint64_t off = uPc - pVCpu->iem.s.uInstrBufPc;
|
---|
1578 | if (off < pVCpu->iem.s.cbInstrBufTotal)
|
---|
1579 | {
|
---|
1580 | pVCpu->iem.s.offInstrNextByte = (uint32_t)off;
|
---|
1581 | pVCpu->iem.s.offCurInstrStart = (uint16_t)off;
|
---|
1582 | if ((uint16_t)off + 15 <= pVCpu->iem.s.cbInstrBufTotal)
|
---|
1583 | pVCpu->iem.s.cbInstrBuf = (uint16_t)off + 15;
|
---|
1584 | else
|
---|
1585 | pVCpu->iem.s.cbInstrBuf = pVCpu->iem.s.cbInstrBufTotal;
|
---|
1586 |
|
---|
1587 | return pVCpu->iem.s.GCPhysInstrBuf + off;
|
---|
1588 | }
|
---|
1589 | }
|
---|
1590 | return iemGetPcWithPhysAndCodeMissed(pVCpu);
|
---|
1591 | }
|
---|
1592 |
|
---|
1593 |
|
---|
1594 | /**
|
---|
1595 | * Determines the extra IEMTB_F_XXX flags.
|
---|
1596 | *
|
---|
1597 | * @returns IEMTB_F_TYPE_THREADED and maybe IEMTB_F_RIP_CHECKS.
|
---|
1598 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1599 | * thread.
|
---|
1600 | */
|
---|
1601 | DECL_FORCE_INLINE(uint32_t) iemGetTbFlagsForCurrentPc(PVMCPUCC pVCpu)
|
---|
1602 | {
|
---|
1603 | /*
|
---|
1604 | * Return IEMTB_F_RIP_CHECKS if the current PC is invalid or if it is
|
---|
1605 | * likely to go invalid before the end of the translation block.
|
---|
1606 | */
|
---|
1607 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
1608 | return IEMTB_F_TYPE_THREADED;
|
---|
1609 |
|
---|
1610 | if (RT_LIKELY( pVCpu->cpum.GstCtx.eip < pVCpu->cpum.GstCtx.cs.u32Limit
|
---|
1611 | && pVCpu->cpum.GstCtx.eip - pVCpu->cpum.GstCtx.cs.u32Limit >= X86_PAGE_SIZE))
|
---|
1612 | return IEMTB_F_TYPE_THREADED;
|
---|
1613 |
|
---|
1614 | return IEMTB_F_TYPE_THREADED | IEMTB_F_CS_LIM_CHECKS;
|
---|
1615 | }
|
---|
1616 |
|
---|
1617 |
|
---|
1618 | VMMDECL(VBOXSTRICTRC) IEMExecRecompilerThreaded(PVMCC pVM, PVMCPUCC pVCpu)
|
---|
1619 | {
|
---|
1620 | /*
|
---|
1621 | * See if there is an interrupt pending in TRPM, inject it if we can.
|
---|
1622 | */
|
---|
1623 | if (!TRPMHasTrap(pVCpu))
|
---|
1624 | { /* likely */ }
|
---|
1625 | else
|
---|
1626 | {
|
---|
1627 | VBOXSTRICTRC rcStrict = iemExecInjectPendingTrap(pVCpu);
|
---|
1628 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
1629 | { /*likely */ }
|
---|
1630 | else
|
---|
1631 | return rcStrict;
|
---|
1632 | }
|
---|
1633 |
|
---|
1634 | /*
|
---|
1635 | * Init the execution environment.
|
---|
1636 | */
|
---|
1637 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
1638 |
|
---|
1639 | /*
|
---|
1640 | * Run-loop.
|
---|
1641 | *
|
---|
1642 | * If we're using setjmp/longjmp we combine all the catching here to avoid
|
---|
1643 | * having to call setjmp for each block we're executing.
|
---|
1644 | */
|
---|
1645 | for (;;)
|
---|
1646 | {
|
---|
1647 | PIEMTB pTb = NULL;
|
---|
1648 | VBOXSTRICTRC rcStrict;
|
---|
1649 | IEM_TRY_SETJMP(pVCpu, rcStrict)
|
---|
1650 | {
|
---|
1651 | uint32_t const cPollRate = 511; /* EM.cpp passes 4095 to IEMExecLots, so an eigth of that seems reasonable for now. */
|
---|
1652 | for (uint32_t iIterations = 0; ; iIterations++)
|
---|
1653 | {
|
---|
1654 | /* Translate PC to physical address, we'll need this for both lookup and compilation. */
|
---|
1655 | RTGCPHYS const GCPhysPc = iemGetPcWithPhysAndCode(pVCpu);
|
---|
1656 | uint32_t const fExtraFlags = iemGetTbFlagsForCurrentPc(pVCpu);
|
---|
1657 |
|
---|
1658 | pTb = iemThreadedTbLookup(pVM, pVCpu, GCPhysPc, fExtraFlags);
|
---|
1659 | if (pTb)
|
---|
1660 | rcStrict = iemThreadedTbExec(pVCpu, pTb);
|
---|
1661 | else
|
---|
1662 | rcStrict = iemThreadedCompile(pVM, pVCpu, GCPhysPc, fExtraFlags);
|
---|
1663 | if (rcStrict == VINF_SUCCESS)
|
---|
1664 | {
|
---|
1665 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
1666 |
|
---|
1667 | uint64_t fCpu = pVCpu->fLocalForcedActions;
|
---|
1668 | fCpu &= VMCPU_FF_ALL_MASK & ~( VMCPU_FF_PGM_SYNC_CR3
|
---|
1669 | | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
|
---|
1670 | | VMCPU_FF_TLB_FLUSH
|
---|
1671 | | VMCPU_FF_UNHALT );
|
---|
1672 | if (RT_LIKELY( ( !fCpu
|
---|
1673 | || ( !(fCpu & ~(VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
|
---|
1674 | && !pVCpu->cpum.GstCtx.rflags.Bits.u1IF) )
|
---|
1675 | && !VM_FF_IS_ANY_SET(pVM, VM_FF_ALL_MASK) ))
|
---|
1676 | {
|
---|
1677 | if (RT_LIKELY( (iIterations & cPollRate) != 0
|
---|
1678 | || !TMTimerPollBool(pVM, pVCpu)))
|
---|
1679 | {
|
---|
1680 |
|
---|
1681 | }
|
---|
1682 | else
|
---|
1683 | return VINF_SUCCESS;
|
---|
1684 | }
|
---|
1685 | else
|
---|
1686 | return VINF_SUCCESS;
|
---|
1687 | }
|
---|
1688 | else
|
---|
1689 | return rcStrict;
|
---|
1690 | }
|
---|
1691 | }
|
---|
1692 | IEM_CATCH_LONGJMP_BEGIN(pVCpu, rcStrict);
|
---|
1693 | {
|
---|
1694 | pVCpu->iem.s.cLongJumps++;
|
---|
1695 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
1696 | iemMemRollback(pVCpu);
|
---|
1697 |
|
---|
1698 | /* If pTb isn't NULL we're in iemThreadedTbExec. */
|
---|
1699 | if (!pTb)
|
---|
1700 | {
|
---|
1701 | /* If pCurTbR3 is NULL, we're in iemGetPcWithPhysAndCode.*/
|
---|
1702 | pTb = pVCpu->iem.s.pCurTbR3;
|
---|
1703 | if (pTb)
|
---|
1704 | {
|
---|
1705 | /* If the pCurTbR3 block is in compiling state, we're in iemThreadedCompile,
|
---|
1706 | otherwise it's iemThreadedTbExec inside iemThreadedCompile (compile option). */
|
---|
1707 | if ((pTb->fFlags & IEMTB_F_STATE_MASK) == IEMTB_F_STATE_COMPILING)
|
---|
1708 | return iemThreadedCompileLongJumped(pVM, pVCpu, rcStrict);
|
---|
1709 | }
|
---|
1710 | }
|
---|
1711 | return rcStrict;
|
---|
1712 | }
|
---|
1713 | IEM_CATCH_LONGJMP_END(pVCpu);
|
---|
1714 | }
|
---|
1715 | }
|
---|
1716 |
|
---|