VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllThrdFuncs.cpp

Last change on this file was 104419, checked in by vboxsync, 4 weeks ago

VMM/IEM: Convert near return (retn) and relative/indirect call instructions to special IEM MC statements in order to be able to recompile them, bugref:10376

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 45.1 KB
Line 
1/* $Id: IEMAllThrdFuncs.cpp 104419 2024-04-24 14:32:29Z vboxsync $ */
2/** @file
3 * IEM - Instruction Decoding and Emulation, Threaded Functions.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#ifndef LOG_GROUP /* defined when included by tstIEMCheckMc.cpp */
33# define LOG_GROUP LOG_GROUP_IEM
34#endif
35#define VMCPU_INCL_CPUM_GST_CTX
36#define IEM_WITH_OPAQUE_DECODER_STATE
37#include <VBox/vmm/iem.h>
38#include <VBox/vmm/cpum.h>
39#include <VBox/vmm/apic.h>
40#include <VBox/vmm/pdm.h>
41#include <VBox/vmm/pgm.h>
42#include <VBox/vmm/iom.h>
43#include <VBox/vmm/em.h>
44#include <VBox/vmm/hm.h>
45#include <VBox/vmm/nem.h>
46#include <VBox/vmm/gim.h>
47#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
48# include <VBox/vmm/em.h>
49# include <VBox/vmm/hm_svm.h>
50#endif
51#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
52# include <VBox/vmm/hmvmxinline.h>
53#endif
54#include <VBox/vmm/tm.h>
55#include <VBox/vmm/dbgf.h>
56#include <VBox/vmm/dbgftrace.h>
57#include "IEMInternal.h"
58#include <VBox/vmm/vmcc.h>
59#include <VBox/log.h>
60#include <VBox/err.h>
61#include <VBox/param.h>
62#include <VBox/dis.h>
63#include <VBox/disopcode-x86-amd64.h>
64#include <iprt/asm-math.h>
65#include <iprt/assert.h>
66#include <iprt/string.h>
67#include <iprt/x86.h>
68
69#include "IEMInline.h"
70#include "IEMMc.h"
71
72#include "IEMThreadedFunctions.h"
73
74
75/*********************************************************************************************************************************
76* Defined Constants And Macros *
77*********************************************************************************************************************************/
78
79/** Variant of IEM_MC_ADVANCE_RIP_AND_FINISH with instruction length as param
80 * and only used when we're in 16-bit code on a pre-386 CPU. */
81#define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC16(a_cbInstr, a_rcNormal) \
82 return iemRegAddToIp16AndFinishingNoFlags(pVCpu, a_cbInstr, a_rcNormal)
83
84/** Variant of IEM_MC_ADVANCE_RIP_AND_FINISH with instruction length as param
85 * and used for 16-bit and 32-bit code on 386 and later CPUs. */
86#define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC32(a_cbInstr, a_rcNormal) \
87 return iemRegAddToEip32AndFinishingNoFlags(pVCpu, a_cbInstr, a_rcNormal)
88
89/** Variant of IEM_MC_ADVANCE_RIP_AND_FINISH with instruction length as param
90 * and only used when we're in 64-bit code. */
91#define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC64(a_cbInstr, a_rcNormal) \
92 return iemRegAddToRip64AndFinishingNoFlags(pVCpu, a_cbInstr, a_rcNormal)
93
94
95/** Variant of IEM_MC_ADVANCE_RIP_AND_FINISH with instruction length as param
96 * and only used when we're in 16-bit code on a pre-386 CPU and we need to
97 * check and clear flags. */
98#define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_cbInstr, a_rcNormal) \
99 return iemRegAddToIp16AndFinishingClearingRF(pVCpu, a_cbInstr, a_rcNormal)
100
101/** Variant of IEM_MC_ADVANCE_RIP_AND_FINISH with instruction length as param
102 * and used for 16-bit and 32-bit code on 386 and later CPUs and we need to
103 * check and clear flags. */
104#define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_cbInstr, a_rcNormal) \
105 return iemRegAddToEip32AndFinishingClearingRF(pVCpu, a_cbInstr, a_rcNormal)
106
107/** Variant of IEM_MC_ADVANCE_RIP_AND_FINISH with instruction length as param
108 * and only used when we're in 64-bit code and we need to check and clear
109 * flags. */
110#define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_cbInstr, a_rcNormal) \
111 return iemRegAddToRip64AndFinishingClearingRF(pVCpu, a_cbInstr, a_rcNormal)
112
113#undef IEM_MC_ADVANCE_RIP_AND_FINISH
114
115
116/** Variant of IEM_MC_REL_JMP_S8_AND_FINISH with instruction length as extra
117 * parameter, for use in 16-bit code on a pre-386 CPU. */
118#define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC16(a_i8, a_cbInstr, a_rcNormal) \
119 return iemRegIp16RelativeJumpS8AndFinishNoFlags(pVCpu, a_cbInstr, (a_i8), a_rcNormal)
120
121/** Variant of IEM_MC_REL_JMP_S8_AND_FINISH with instruction length and operand
122 * size as extra parameters, for use in 16-bit and 32-bit code on 386 and
123 * later CPUs. */
124#define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC32(a_i8, a_cbInstr, a_enmEffOpSize, a_rcNormal) \
125 return iemRegEip32RelativeJumpS8AndFinishNoFlags(pVCpu, a_cbInstr, (a_i8), a_enmEffOpSize, a_rcNormal)
126
127/** Variant of IEM_MC_REL_JMP_S8_AND_FINISH with instruction length and operand
128 * size as extra parameters, for use in 64-bit code. */
129#define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC64(a_i8, a_cbInstr, a_enmEffOpSize, a_rcNormal) \
130 return iemRegRip64RelativeJumpS8AndFinishNoFlags(pVCpu, a_cbInstr, (a_i8), a_enmEffOpSize, a_rcNormal)
131
132
133/** Variant of IEM_MC_REL_JMP_S8_AND_FINISH with instruction length as extra
134 * parameter, for use in 16-bit code on a pre-386 CPU and we need to check and
135 * clear flags. */
136#define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_i8, a_cbInstr, a_rcNormal) \
137 return iemRegIp16RelativeJumpS8AndFinishClearingRF(pVCpu, a_cbInstr, (a_i8), a_rcNormal)
138
139/** Variant of IEM_MC_REL_JMP_S8_AND_FINISH with instruction length and operand
140 * size as extra parameters, for use in 16-bit and 32-bit code on 386 and
141 * later CPUs and we need to check and clear flags. */
142#define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_i8, a_cbInstr, a_enmEffOpSize, a_rcNormal) \
143 return iemRegEip32RelativeJumpS8AndFinishClearingRF(pVCpu, a_cbInstr, (a_i8), a_enmEffOpSize, a_rcNormal)
144
145/** Variant of IEM_MC_REL_JMP_S8_AND_FINISH with instruction length and operand
146 * size as extra parameters, for use in 64-bit code and we need to check and
147 * clear flags. */
148#define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_i8, a_cbInstr, a_enmEffOpSize, a_rcNormal) \
149 return iemRegRip64RelativeJumpS8AndFinishClearingRF(pVCpu, a_cbInstr, (a_i8), a_enmEffOpSize, a_rcNormal)
150
151#undef IEM_MC_REL_JMP_S8_AND_FINISH
152
153
154/** Variant of IEM_MC_REL_JMP_S16_AND_FINISH with instruction length as
155 * param, for use in 16-bit code on a pre-386 CPU. */
156#define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC16(a_i16, a_cbInstr, a_rcNormal) \
157 return iemRegEip32RelativeJumpS16AndFinishNoFlags(pVCpu, a_cbInstr, (a_i16), a_rcNormal)
158
159/** Variant of IEM_MC_REL_JMP_S16_AND_FINISH with instruction length as
160 * param, for use in 16-bit and 32-bit code on 386 and later CPUs. */
161#define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC32(a_i16, a_cbInstr, a_rcNormal) \
162 return iemRegEip32RelativeJumpS16AndFinishNoFlags(pVCpu, a_cbInstr, (a_i16), a_rcNormal)
163
164/** Variant of IEM_MC_REL_JMP_S16_AND_FINISH with instruction length as
165 * param, for use in 64-bit code. */
166#define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC64(a_i16, a_cbInstr, a_rcNormal) \
167 return iemRegRip64RelativeJumpS16AndFinishNoFlags(pVCpu, a_cbInstr, (a_i16), a_rcNormal)
168
169
170/** Variant of IEM_MC_REL_JMP_S16_AND_FINISH with instruction length as
171 * param, for use in 16-bit code on a pre-386 CPU and we need to check and
172 * clear flags. */
173#define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_i16, a_cbInstr, a_rcNormal) \
174 return iemRegEip32RelativeJumpS16AndFinishClearingRF(pVCpu, a_cbInstr, (a_i16), a_rcNormal)
175
176/** Variant of IEM_MC_REL_JMP_S16_AND_FINISH with instruction length as
177 * param, for use in 16-bit and 32-bit code on 386 and later CPUs and we need
178 * to check and clear flags. */
179#define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_i16, a_cbInstr, a_rcNormal) \
180 return iemRegEip32RelativeJumpS16AndFinishClearingRF(pVCpu, a_cbInstr, (a_i16), a_rcNormal)
181
182/** Variant of IEM_MC_REL_JMP_S16_AND_FINISH with instruction length as
183 * param, for use in 64-bit code and we need to check and clear flags. */
184#define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_i16, a_cbInstr, a_rcNormal) \
185 return iemRegRip64RelativeJumpS16AndFinishClearingRF(pVCpu, a_cbInstr, (a_i16), a_rcNormal)
186
187#undef IEM_MC_REL_JMP_S16_AND_FINISH
188
189
190/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as
191 * an extra parameter - dummy for pre-386 variations not eliminated by the
192 * python script. */
193#define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC16(a_i32, a_cbInstr, a_rcNormal) \
194 do { RT_NOREF(pVCpu, a_i32, a_cbInstr, a_rcNormal); AssertFailedReturn(VERR_IEM_IPE_9); } while (0)
195
196/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as
197 * an extra parameter, for use in 16-bit and 32-bit code on 386+. */
198#define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC32(a_i32, a_cbInstr, a_rcNormal) \
199 return iemRegEip32RelativeJumpS32AndFinishNoFlags(pVCpu, a_cbInstr, (a_i32), a_rcNormal)
200
201/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as
202 * an extra parameter, for use in 64-bit code. */
203#define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC64(a_i32, a_cbInstr, a_rcNormal) \
204 return iemRegRip64RelativeJumpS32AndFinishNoFlags(pVCpu, a_cbInstr, (a_i32), a_rcNormal)
205
206
207/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as
208 * an extra parameter - dummy for pre-386 variations not eliminated by the
209 * python script. */
210#define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_i32, a_cbInstr, a_rcNormal) \
211 do { RT_NOREF(pVCpu, a_i32, a_cbInstr, a_rcNormal); AssertFailedReturn(VERR_IEM_IPE_9); } while (0)
212
213/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as
214 * an extra parameter, for use in 16-bit and 32-bit code on 386+ and we need
215 * to check and clear flags. */
216#define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_i32, a_cbInstr, a_rcNormal) \
217 return iemRegEip32RelativeJumpS32AndFinishClearingRF(pVCpu, a_cbInstr, (a_i32), a_rcNormal)
218
219/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as
220 * an extra parameter, for use in 64-bit code and we need to check and clear
221 * flags. */
222#define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_i32, a_cbInstr, a_rcNormal) \
223 return iemRegRip64RelativeJumpS32AndFinishClearingRF(pVCpu, a_cbInstr, (a_i32), a_rcNormal)
224
225#undef IEM_MC_REL_JMP_S32_AND_FINISH
226
227
228
229/** Variant of IEM_MC_SET_RIP_U16_AND_FINISH for pre-386 targets. */
230#define IEM_MC_SET_RIP_U16_AND_FINISH_THREADED_PC16(a_u16NewIP) \
231 return iemRegRipJumpU16AndFinishNoFlags((pVCpu), (a_u16NewIP))
232
233/** Variant of IEM_MC_SET_RIP_U16_AND_FINISH for 386+ targets. */
234#define IEM_MC_SET_RIP_U16_AND_FINISH_THREADED_PC32(a_u16NewIP) \
235 return iemRegRipJumpU16AndFinishNoFlags((pVCpu), (a_u16NewIP))
236
237/** Variant of IEM_MC_SET_RIP_U16_AND_FINISH for use in 64-bit code. */
238#define IEM_MC_SET_RIP_U16_AND_FINISH_THREADED_PC64(a_u16NewIP) \
239 return iemRegRipJumpU16AndFinishNoFlags((pVCpu), (a_u16NewIP))
240
241/** Variant of IEM_MC_SET_RIP_U16_AND_FINISH for pre-386 targets that checks and
242 * clears flags. */
243#define IEM_MC_SET_RIP_U16_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_u16NewIP) \
244 return iemRegRipJumpU16AndFinishClearingRF((pVCpu), (a_u16NewIP), 0 /* cbInstr - not used */)
245
246/** Variant of IEM_MC_SET_RIP_U16_AND_FINISH for 386+ targets that checks and
247 * clears flags. */
248#define IEM_MC_SET_RIP_U16_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_u16NewIP) \
249 return iemRegRipJumpU16AndFinishClearingRF((pVCpu), (a_u16NewIP), 0 /* cbInstr - not used */)
250
251/** Variant of IEM_MC_SET_RIP_U16_AND_FINISH for use in 64-bit code that checks and
252 * clears flags. */
253#define IEM_MC_SET_RIP_U16_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_u16NewIP) \
254 return iemRegRipJumpU16AndFinishClearingRF((pVCpu), (a_u16NewIP), 0 /* cbInstr - not used */)
255
256#undef IEM_MC_SET_RIP_U16_AND_FINISH
257
258
259/** Variant of IEM_MC_SET_RIP_U32_AND_FINISH for 386+ targets. */
260#define IEM_MC_SET_RIP_U32_AND_FINISH_THREADED_PC32(a_u32NewEIP) \
261 return iemRegRipJumpU32AndFinishNoFlags((pVCpu), (a_u32NewEIP))
262
263/** Variant of IEM_MC_SET_RIP_U32_AND_FINISH for use in 64-bit code. */
264#define IEM_MC_SET_RIP_U32_AND_FINISH_THREADED_PC64(a_u32NewEIP) \
265 return iemRegRipJumpU32AndFinishNoFlags((pVCpu), (a_u32NewEIP))
266
267/** Variant of IEM_MC_SET_RIP_U32_AND_FINISH for 386+ targets that checks and
268 * clears flags. */
269#define IEM_MC_SET_RIP_U32_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_u32NewEIP) \
270 return iemRegRipJumpU32AndFinishClearingRF((pVCpu), (a_u32NewEIP), 0 /* cbInstr - not used */)
271
272/** Variant of IEM_MC_SET_RIP_U32_AND_FINISH for use in 64-bit code that checks
273 * and clears flags. */
274#define IEM_MC_SET_RIP_U32_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_u32NewEIP) \
275 return iemRegRipJumpU32AndFinishClearingRF((pVCpu), (a_u32NewEIP), 0 /* cbInstr - not used */)
276
277#undef IEM_MC_SET_RIP_U32_AND_FINISH
278
279
280/** Variant of IEM_MC_SET_RIP_U64_AND_FINISH for use in 64-bit code. */
281#define IEM_MC_SET_RIP_U64_AND_FINISH_THREADED_PC64(a_u32NewEIP) \
282 return iemRegRipJumpU64AndFinishNoFlags((pVCpu), (a_u32NewEIP))
283
284/** Variant of IEM_MC_SET_RIP_U64_AND_FINISH for use in 64-bit code that checks
285 * and clears flags. */
286#define IEM_MC_SET_RIP_U64_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_u32NewEIP) \
287 return iemRegRipJumpU64AndFinishClearingRF((pVCpu), (a_u32NewEIP), 0 /* cbInstr - not used */)
288
289#undef IEM_MC_SET_RIP_U64_AND_FINISH
290
291
292/** Variant of IEM_MC_REL_CALL_S16_AND_FINISH with instruction length as
293 * param, for use in 16-bit code on a pre-386 CPU. */
294#define IEM_MC_REL_CALL_S16_AND_FINISH_THREADED_PC16(a_i16, a_cbInstr) \
295 return iemRegRipRelativeCallS16AndFinishNoFlags(pVCpu, a_cbInstr, (a_i16))
296
297/** Variant of IEM_MC_REL_CALL_S16_AND_FINISH with instruction length as
298 * param, for use in 16-bit and 32-bit code on 386 and later CPUs. */
299#define IEM_MC_REL_CALL_S16_AND_FINISH_THREADED_PC32(a_i16, a_cbInstr) \
300 return iemRegRipRelativeCallS16AndFinishNoFlags(pVCpu, a_cbInstr, (a_i16))
301
302/** Variant of IEM_MC_REL_CALL_S16_AND_FINISH with instruction length as
303 * param, for use in 64-bit code. */
304#define IEM_MC_REL_CALL_S16_AND_FINISH_THREADED_PC64(a_i16, a_cbInstr) \
305 return iemRegRipRelativeCallS16AndFinishNoFlags(pVCpu, a_cbInstr, (a_i16))
306
307
308/** Variant of IEM_MC_REL_CALL_S16_AND_FINISH with instruction length as
309 * param, for use in 16-bit code on a pre-386 CPU and we need to check and
310 * clear flags. */
311#define IEM_MC_REL_CALL_S16_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_i16, a_cbInstr) \
312 return iemRegRipRelativeCallS16AndFinishClearingRF(pVCpu, a_cbInstr, (a_i16))
313
314/** Variant of IEM_MC_REL_CALL_S16_AND_FINISH with instruction length as
315 * param, for use in 16-bit and 32-bit code on 386 and later CPUs and we need
316 * to check and clear flags. */
317#define IEM_MC_REL_CALL_S16_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_i16, a_cbInstr) \
318 return iemRegRipRelativeCallS16AndFinishClearingRF(pVCpu, a_cbInstr, (a_i16))
319
320/** Variant of IEM_MC_REL_CALL_S16_AND_FINISH with instruction length as
321 * param, for use in 64-bit code and we need to check and clear flags. */
322#define IEM_MC_REL_CALL_S16_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_i16, a_cbInstr) \
323 return iemRegRipRelativeCallS16AndFinishClearingRF(pVCpu, a_cbInstr, (a_i16))
324
325#undef IEM_MC_REL_CALL_S16_AND_FINISH
326
327
328/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as
329 * an extra parameter - dummy for pre-386 variations not eliminated by the
330 * python script. */
331#define IEM_MC_REL_CALL_S32_AND_FINISH_THREADED_PC16(a_i32, a_cbInstr) \
332 do { RT_NOREF(pVCpu, a_i32, a_cbInstr); AssertFailedReturn(VERR_IEM_IPE_9); } while (0)
333
334/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as
335 * an extra parameter, for use in 16-bit and 32-bit code on 386+. */
336#define IEM_MC_REL_CALL_S32_AND_FINISH_THREADED_PC32(a_i32, a_cbInstr) \
337 return iemRegEip32RelativeCallS32AndFinishNoFlags(pVCpu, a_cbInstr, (a_i32))
338
339/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as
340 * an extra parameter, for use in 64-bit code on 386+. */
341#define IEM_MC_REL_CALL_S32_AND_FINISH_THREADED_PC64(a_i32, a_cbInstr) \
342 do { RT_NOREF(pVCpu, a_i32, a_cbInstr); AssertFailedReturn(VERR_IEM_IPE_9); } while (0)
343
344/** Variant of IEM_MC_REL_CALL_S32_AND_FINISH with instruction length as
345 * an extra parameter - dummy for pre-386 variations not eliminated by the
346 * python script. */
347#define IEM_MC_REL_CALL_S32_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_i32, a_cbInstr) \
348 do { RT_NOREF(pVCpu, a_i32, a_cbInstr); AssertFailedReturn(VERR_IEM_IPE_9); } while (0)
349
350/** Variant of IEM_MC_REL_CALL_S32_AND_FINISH with instruction length as
351 * an extra parameter, for use in 16-bit and 32-bit code on 386+ and we need
352 * to check and clear flags. */
353#define IEM_MC_REL_CALL_S32_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_i32, a_cbInstr) \
354 return iemRegEip32RelativeCallS32AndFinishClearingRF(pVCpu, a_cbInstr, (a_i32))
355
356/** Variant of IEM_MC_REL_CALL_S32_AND_FINISH with instruction length as
357 * an extra parameter, for use in 64-bit code on 386+ and we need
358 * to check and clear flags - dummy for variations not eliminated by the python script. */
359#define IEM_MC_REL_CALL_S32_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_i32, a_cbInstr) \
360 do { RT_NOREF(pVCpu, a_i32, a_cbInstr); AssertFailedReturn(VERR_IEM_IPE_9); } while (0)
361
362
363#undef IEM_MC_REL_CALL_S32_AND_FINISH
364
365
366/** Variant of IEM_MC_REL_CALL_S64_AND_FINISH with instruction length as
367 * an extra parameter, for use in 32-bit code. */
368#define IEM_MC_REL_CALL_S64_AND_FINISH_THREADED_PC32(a_i64, a_cbInstr) \
369 do { RT_NOREF(pVCpu, a_i64, a_cbInstr); AssertFailedReturn(VERR_IEM_IPE_9); } while (0)
370
371/** Variant of IEM_MC_REL_CALL_S64_AND_FINISH with instruction length as
372 * an extra parameter, for use in 64-bit code. */
373#define IEM_MC_REL_CALL_S64_AND_FINISH_THREADED_PC64(a_i64, a_cbInstr) \
374 return iemRegRip64RelativeCallS64AndFinishNoFlags(pVCpu, a_cbInstr, (a_i64))
375
376
377/** Variant of IEM_MC_REL_CALL_S64_AND_FINISH with instruction length as
378 * an extra parameter, for use in 16-bit and 32-bit code on 386+ and we need
379 * to check and clear flags - dummy for variations not eliminated by the python script. */
380#define IEM_MC_REL_CALL_S64_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_i64, a_cbInstr) \
381 do { RT_NOREF(pVCpu, a_i64, a_cbInstr); AssertFailedReturn(VERR_IEM_IPE_9); } while (0)
382
383/** Variant of IEM_MC_REL_CALL_S64_AND_FINISH with instruction length as
384 * an extra parameter, for use in 64-bit code and we need to check and clear
385 * flags. */
386#define IEM_MC_REL_CALL_S64_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_i64, a_cbInstr) \
387 return iemRegRip64RelativeCallS64AndFinishClearingRF(pVCpu, a_cbInstr, (a_i64))
388
389#undef IEM_MC_REL_CALL_S64_AND_FINISH
390
391
392/** Variant of IEM_MC_IND_CALL_U16_AND_FINISH for pre-386 targets. */
393#define IEM_MC_IND_CALL_U16_AND_FINISH_THREADED_PC16(a_u16NewIP, a_cbInstr) \
394 return iemRegIp16IndirectCallU16AndFinishNoFlags((pVCpu), a_cbInstr, (a_u16NewIP))
395
396/** Variant of IEM_MC_IND_CALL_U16_AND_FINISH for 386+ targets. */
397#define IEM_MC_IND_CALL_U16_AND_FINISH_THREADED_PC32(a_u16NewIP, a_cbInstr) \
398 return iemRegEip32IndirectCallU16AndFinishNoFlags((pVCpu), a_cbInstr, (a_u16NewIP))
399
400/** Variant of IEM_MC_IND_CALL_U16_AND_FINISH for use in 64-bit code. */
401#define IEM_MC_IND_CALL_U16_AND_FINISH_THREADED_PC64(a_u16NewIP, a_cbInstr) \
402 do { RT_NOREF(pVCpu, a_u16NewIP, a_cbInstr); AssertFailedReturn(VERR_IEM_IPE_9); } while (0)
403
404/** Variant of IEM_MC_IND_CALL_U16_AND_FINISH for pre-386 targets that checks and
405 * clears flags. */
406#define IEM_MC_IND_CALL_U16_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_u16NewIP, a_cbInstr) \
407 return iemRegIp16IndirectCallU16AndFinishClearingRF((pVCpu), a_cbInstr, (a_u16NewIP))
408
409/** Variant of IEM_MC_IND_CALL_U16_AND_FINISH for 386+ targets that checks and
410 * clears flags. */
411#define IEM_MC_IND_CALL_U16_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_u16NewIP, a_cbInstr) \
412 return iemRegEip32IndirectCallU16AndFinishClearingRF((pVCpu), a_cbInstr, (a_u16NewIP))
413
414/** Variant of IEM_MC_IND_CALL_U16_AND_FINISH for use in 64-bit code that checks and
415 * clears flags. */
416#define IEM_MC_IND_CALL_U16_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_u16NewIP, a_cbInstr) \
417 do { RT_NOREF(pVCpu, a_u16NewIP, a_cbInstr); AssertFailedReturn(VERR_IEM_IPE_9); } while (0)
418
419#undef IEM_MC_IND_CALL_U16_AND_FINISH
420
421
422/** Variant of IEM_MC_IND_CALL_U32_AND_FINISH for 386+ targets. */
423#define IEM_MC_IND_CALL_U32_AND_FINISH_THREADED_PC32(a_u32NewEIP, a_cbInstr) \
424 return iemRegEip32IndirectCallU32AndFinishNoFlags((pVCpu), a_cbInstr, (a_u32NewEIP))
425
426/** Variant of IEM_MC_IND_CALL_U32_AND_FINISH for use in 64-bit code. */
427#define IEM_MC_IND_CALL_U32_AND_FINISH_THREADED_PC64(a_u32NewEIP, a_cbInstr) \
428 do { RT_NOREF(pVCpu, a_u32NewEIP, a_cbInstr); AssertFailedReturn(VERR_IEM_IPE_9); } while (0)
429
430/** Variant of IEM_MC_IND_CALL_U32_AND_FINISH for 386+ targets that checks and
431 * clears flags. */
432#define IEM_MC_IND_CALL_U32_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_u32NewEIP, a_cbInstr) \
433 return iemRegEip32IndirectCallU32AndFinishClearingRF((pVCpu), a_cbInstr, (a_u32NewEIP))
434
435/** Variant of IEM_MC_IND_CALL_U32_AND_FINISH for use in 64-bit code that checks
436 * and clears flags. */
437#define IEM_MC_IND_CALL_U32_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_u32NewEIP, a_cbInstr) \
438 do { RT_NOREF(pVCpu, a_u32NewEIP, a_cbInstr); AssertFailedReturn(VERR_IEM_IPE_9); } while (0)
439
440#undef IEM_MC_IND_CALL_U32_AND_FINISH
441
442
443/** Variant of IEM_MC_IND_CALL_U64_AND_FINISH for use in 64-bit code. */
444#define IEM_MC_IND_CALL_U64_AND_FINISH_THREADED_PC64(a_u32NewRIP, a_cbInstr) \
445 return iemRegRip64IndirectCallU64AndFinishNoFlags((pVCpu), a_cbInstr, (a_u32NewRIP))
446
447/** Variant of IEM_MC_IND_CALL_U64_AND_FINISH for use in 64-bit code that checks
448 * and clears flags. */
449#define IEM_MC_IND_CALL_U64_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_u32NewRIP, a_cbInstr) \
450 return iemRegRip64IndirectCallU64AndFinishClearingRF((pVCpu), a_cbInstr, (a_u32NewRIP))
451
452#undef IEM_MC_IND_CALL_U64_AND_FINISH
453
454
455/** Variant of IEM_MC_RETN_AND_FINISH for pre-386 targets. */
456#define IEM_MC_RETN_AND_FINISH_THREADED_PC16(a_u16Pop, a_cbInstr) \
457 return iemRegRipNearReturnAndFinishNoFlags((pVCpu), a_cbInstr, (a_u16Pop), IEMMODE_16BIT)
458
459/** Variant of IEM_MC_RETN_AND_FINISH for 386+ targets. */
460#define IEM_MC_RETN_AND_FINISH_THREADED_PC32(a_u16Pop, a_cbInstr, a_enmEffOpSize) \
461 return iemRegRipNearReturnAndFinishNoFlags((pVCpu), a_cbInstr, (a_u16Pop), (a_enmEffOpSize))
462
463/** Variant of IEM_MC_RETN_AND_FINISH for use in 64-bit code. */
464#define IEM_MC_RETN_AND_FINISH_THREADED_PC64(a_u16Pop, a_cbInstr, a_enmEffOpSize) \
465 return iemRegRipNearReturnAndFinishNoFlags((pVCpu), a_cbInstr, (a_u16Pop), (a_enmEffOpSize))
466
467/** Variant of IEM_MC_RETN_AND_FINISH for pre-386 targets that checks and
468 * clears flags. */
469#define IEM_MC_RETN_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_u16Pop, a_cbInstr) \
470 return iemRegRipNearReturnAndFinishClearingRF((pVCpu), a_cbInstr, (a_u16Pop), IEMMODE_16BIT)
471
472/** Variant of IEM_MC_RETN_AND_FINISH for 386+ targets that checks and
473 * clears flags. */
474#define IEM_MC_RETN_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_u16Pop, a_cbInstr, a_enmEffOpSize) \
475 return iemRegRipNearReturnAndFinishClearingRF((pVCpu), a_cbInstr, (a_u16Pop), (a_enmEffOpSize))
476
477/** Variant of IEM_MC_RETN_AND_FINISH for use in 64-bit code that checks and
478 * clears flags. */
479#define IEM_MC_RETN_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_u16Pop, a_cbInstr, a_enmEffOpSize) \
480 return iemRegRipNearReturnAndFinishClearingRF((pVCpu), a_cbInstr, (a_u16Pop), (a_enmEffOpSize))
481
482#undef IEM_MC_RETN_AND_FINISH
483
484
485/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters, 16-bit. */
486#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_16(a_GCPtrEff, a_bRm, a_u16Disp) \
487 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr16(pVCpu, a_bRm, a_u16Disp)
488
489/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters, 32-bit. */
490#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_32(a_GCPtrEff, a_bRm, a_uSibAndRspOffset, a_u32Disp) \
491 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr32(pVCpu, a_bRm, a_uSibAndRspOffset, a_u32Disp)
492
493/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters. */
494#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_64(a_GCPtrEff, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm) \
495 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr64(pVCpu, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm)
496
497/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters. */
498#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_64_FSGS(a_GCPtrEff, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm) \
499 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr64(pVCpu, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm)
500
501/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters.
502 * @todo How did that address prefix thing work for 64-bit code again? */
503#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_64_ADDR32(a_GCPtrEff, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm) \
504 (a_GCPtrEff) = (uint32_t)iemOpHlpCalcRmEffAddrThreadedAddr64(pVCpu, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm)
505
506#undef IEM_MC_CALC_RM_EFF_ADDR
507
508
509/** Variant of IEM_MC_CALL_CIMPL_1 with explicit instruction length parameter. */
510#define IEM_MC_CALL_CIMPL_1_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0) \
511 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0)
512#undef IEM_MC_CALL_CIMPL_1
513
514/** Variant of IEM_MC_CALL_CIMPL_2 with explicit instruction length parameter. */
515#define IEM_MC_CALL_CIMPL_2_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1) \
516 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1)
517#undef IEM_MC_CALL_CIMPL_2
518
519/** Variant of IEM_MC_CALL_CIMPL_3 with explicit instruction length parameter. */
520#define IEM_MC_CALL_CIMPL_3_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2) \
521 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2)
522#undef IEM_MC_CALL_CIMPL_3
523
524/** Variant of IEM_MC_CALL_CIMPL_4 with explicit instruction length parameter. */
525#define IEM_MC_CALL_CIMPL_4_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2, a3) \
526 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2, a3)
527#undef IEM_MC_CALL_CIMPL_4
528
529/** Variant of IEM_MC_CALL_CIMPL_5 with explicit instruction length parameter. */
530#define IEM_MC_CALL_CIMPL_5_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2, a3, a4) \
531 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2, a3, a4)
532#undef IEM_MC_CALL_CIMPL_5
533
534
535/** Variant of IEM_MC_DEFER_TO_CIMPL_0_RET with explicit instruction
536 * length parameter. */
537#define IEM_MC_DEFER_TO_CIMPL_0_RET_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl) \
538 return (a_pfnCImpl)(pVCpu, (a_cbInstr))
539#undef IEM_MC_DEFER_TO_CIMPL_0_RET
540
541/** Variant of IEM_MC_DEFER_TO_CIMPL_1_RET with explicit instruction
542 * length parameter. */
543#define IEM_MC_DEFER_TO_CIMPL_1_RET_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0) \
544 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0)
545#undef IEM_MC_DEFER_TO_CIMPL_1_RET
546
547/** Variant of IEM_MC_CALL_CIMPL_2 with explicit instruction length parameter. */
548#define IEM_MC_DEFER_TO_CIMPL_2_RET_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1) \
549 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1)
550#undef IEM_MC_DEFER_TO_CIMPL_2_RET
551
552/** Variant of IEM_MC_DEFER_TO_CIMPL_3 with explicit instruction length
553 * parameter. */
554#define IEM_MC_DEFER_TO_CIMPL_3_RET_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2) \
555 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2)
556#undef IEM_MC_DEFER_TO_CIMPL_3_RET
557
558/** Variant of IEM_MC_DEFER_TO_CIMPL_4 with explicit instruction length
559 * parameter. */
560#define IEM_MC_DEFER_TO_CIMPL_4_RET_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2, a3) \
561 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2, a3)
562#undef IEM_MC_DEFER_TO_CIMPL_4_RET
563
564/** Variant of IEM_MC_DEFER_TO_CIMPL_5 with explicit instruction length
565 * parameter. */
566#define IEM_MC_DEFER_TO_CIMPL_5_RET_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2, a3, a4) \
567 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2, a3, a4)
568#undef IEM_MC_DEFER_TO_CIMPL_5_RET
569
570
571/** Variant of IEM_MC_FETCH_GREG_U8 with extended (20) register index. */
572#define IEM_MC_FETCH_GREG_U8_THREADED(a_u8Dst, a_iGRegEx) \
573 (a_u8Dst) = iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
574
575/** Variant of IEM_MC_FETCH_GREG_U8_ZX_U16 with extended (20) register index. */
576#define IEM_MC_FETCH_GREG_U8_ZX_U16_THREADED(a_u16Dst, a_iGRegEx) \
577 (a_u16Dst) = iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
578
579/** Variant of IEM_MC_FETCH_GREG_U8_ZX_U32 with extended (20) register index. */
580#define IEM_MC_FETCH_GREG_U8_ZX_U32_THREADED(a_u32Dst, a_iGRegEx) \
581 (a_u32Dst) = iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
582
583/** Variant of IEM_MC_FETCH_GREG_U8_ZX_U64 with extended (20) register index. */
584#define IEM_MC_FETCH_GREG_U8_ZX_U64_THREADED(a_u64Dst, a_iGRegEx) \
585 (a_u64Dst) = iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
586
587/** Variant of IEM_MC_FETCH_GREG_U8_SX_U16 with extended (20) register index. */
588#define IEM_MC_FETCH_GREG_U8_SX_U16_THREADED(a_u16Dst, a_iGRegEx) \
589 (a_u16Dst) = (int8_t)iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
590
591/** Variant of IEM_MC_FETCH_GREG_U8_SX_U32 with extended (20) register index. */
592#define IEM_MC_FETCH_GREG_U8_SX_U32_THREADED(a_u32Dst, a_iGRegEx) \
593 (a_u32Dst) = (int8_t)iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
594#undef IEM_MC_FETCH_GREG_U8_SX_U32
595
596/** Variant of IEM_MC_FETCH_GREG_U8_SX_U64 with extended (20) register index. */
597#define IEM_MC_FETCH_GREG_U8_SX_U64_THREADED(a_u64Dst, a_iGRegEx) \
598 (a_u64Dst) = (int8_t)iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
599#undef IEM_MC_FETCH_GREG_U8_SX_U64
600
601/** Variant of IEM_MC_STORE_GREG_U8 with extended (20) register index. */
602#define IEM_MC_STORE_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
603 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) = (a_u8Value)
604#undef IEM_MC_STORE_GREG_U8
605
606/** Variant of IEM_MC_STORE_GREG_U8_CONST with extended (20) register index. */
607#define IEM_MC_STORE_GREG_U8_CONST_THREADED(a_iGRegEx, a_u8Value) \
608 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) = (a_u8Value)
609#undef IEM_MC_STORE_GREG_U8
610
611/** Variant of IEM_MC_REF_GREG_U8 with extended (20) register index. */
612#define IEM_MC_REF_GREG_U8_THREADED(a_pu8Dst, a_iGRegEx) \
613 (a_pu8Dst) = iemGRegRefU8Ex(pVCpu, (a_iGRegEx))
614#undef IEM_MC_REF_GREG_U8
615
616/** Variant of IEM_MC_REF_GREG_U8_CONST with extended (20) register index. */
617#define IEM_MC_REF_GREG_U8_CONST_THREADED(a_pu8Dst, a_iGRegEx) \
618 (a_pu8Dst) = iemGRegRefU8Ex(pVCpu, (a_iGRegEx))
619#undef IEM_MC_REF_GREG_U8
620
621/** Variant of IEM_MC_ADD_GREG_U8_TO_LOCAL with extended (20) register index. */
622#define IEM_MC_ADD_GREG_U8_TO_LOCAL_THREADED(a_u8Value, a_iGRegEx) \
623 do { (a_u8Value) += iemGRegFetchU8Ex(pVCpu, (a_iGRegEx)); } while (0)
624#undef IEM_MC_ADD_GREG_U8_TO_LOCAL
625
626/** Variant of IEM_MC_AND_GREG_U8 with extended (20) register index. */
627#define IEM_MC_AND_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
628 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) &= (a_u8Value)
629#undef IEM_MC_AND_GREG_U8
630
631/** Variant of IEM_MC_OR_GREG_U8 with extended (20) register index. */
632#define IEM_MC_OR_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
633 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) |= (a_u8Value)
634#undef IEM_MC_OR_GREG_U8
635
636
637/** For asserting that only declared output flags changed. */
638#ifndef VBOX_STRICT
639# define IEM_MC_ASSERT_EFLAGS(a_fEflInput, a_fEflOutput) ((void)0)
640#else
641# undef IEM_MC_REF_EFLAGS_EX
642# define IEM_MC_REF_EFLAGS_EX(a_pEFlags, a_fEflInput, a_fEflOutput) \
643 uint32_t const fEflAssert = pVCpu->cpum.GstCtx.eflags.uBoth; \
644 IEM_MC_REF_EFLAGS(a_pEFlags)
645# define IEM_MC_ASSERT_EFLAGS(a_fEflInput, a_fEflOutput) \
646 AssertMsg((pVCpu->cpum.GstCtx.eflags.uBoth & ~(a_fEflOutput)) == (fEflAssert & ~(a_fEflOutput)), \
647 ("now %#x (%#x), was %#x (%#x) - diff %#x; a_fEflOutput=%#x\n", \
648 (pVCpu->cpum.GstCtx.eflags.uBoth & ~(a_fEflOutput)), pVCpu->cpum.GstCtx.eflags.uBoth, \
649 (fEflAssert & ~(a_fEflOutput)), fEflAssert, \
650 (pVCpu->cpum.GstCtx.eflags.uBoth ^ fEflAssert) & ~(a_fEflOutput), a_fEflOutput))
651#endif
652
653
654
655/**
656 * Calculates the effective address of a ModR/M memory operand, 16-bit
657 * addressing variant.
658 *
659 * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR16.
660 *
661 * @returns The effective address.
662 * @param pVCpu The cross context virtual CPU structure of the calling thread.
663 * @param bRm The ModRM byte.
664 * @param u16Disp The displacement byte/word, if any.
665 * RIP relative addressing.
666 */
667static RTGCPTR iemOpHlpCalcRmEffAddrThreadedAddr16(PVMCPUCC pVCpu, uint8_t bRm, uint16_t u16Disp) RT_NOEXCEPT
668{
669 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr16: bRm=%#x u16Disp=%#x\n", bRm, u16Disp));
670 Assert(!IEM_IS_64BIT_CODE(pVCpu));
671
672 /* Handle the disp16 form with no registers first. */
673 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
674 {
675 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr16: EffAddr=%#010RGv\n", (RTGCPTR)u16Disp));
676 return u16Disp;
677 }
678
679 /* Get the displacment. */
680 /** @todo we can eliminate this step by making u16Disp have this value
681 * already! */
682 uint16_t u16EffAddr;
683 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
684 {
685 case 0: u16EffAddr = 0; break;
686 case 1: u16EffAddr = (int16_t)(int8_t)u16Disp; break;
687 case 2: u16EffAddr = u16Disp; break;
688 default: AssertFailedStmt(u16EffAddr = 0);
689 }
690
691 /* Add the base and index registers to the disp. */
692 switch (bRm & X86_MODRM_RM_MASK)
693 {
694 case 0: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.si; break;
695 case 1: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.di; break;
696 case 2: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.si; break;
697 case 3: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.di; break;
698 case 4: u16EffAddr += pVCpu->cpum.GstCtx.si; break;
699 case 5: u16EffAddr += pVCpu->cpum.GstCtx.di; break;
700 case 6: u16EffAddr += pVCpu->cpum.GstCtx.bp; break;
701 case 7: u16EffAddr += pVCpu->cpum.GstCtx.bx; break;
702 }
703
704 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr16: EffAddr=%#010RGv\n", (RTGCPTR)u16EffAddr));
705 return u16EffAddr;
706}
707
708
709/**
710 * Calculates the effective address of a ModR/M memory operand, 32-bit
711 * addressing variant.
712 *
713 * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR32 and
714 * IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR32FLAT.
715 *
716 * @returns The effective address.
717 * @param pVCpu The cross context virtual CPU structure of the
718 * calling thread.
719 * @param bRm The ModRM byte.
720 * @param uSibAndRspOffset Two parts:
721 * - The first 8 bits make up the SIB byte.
722 * - The next 8 bits are the fixed RSP/ESP offse
723 * in case of a pop [xSP].
724 * @param u32Disp The displacement byte/dword, if any.
725 */
726static RTGCPTR iemOpHlpCalcRmEffAddrThreadedAddr32(PVMCPUCC pVCpu, uint8_t bRm, uint32_t uSibAndRspOffset,
727 uint32_t u32Disp) RT_NOEXCEPT
728{
729 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr32: bRm=%#x uSibAndRspOffset=%#x u32Disp=%#x\n", bRm, uSibAndRspOffset, u32Disp));
730
731 /* Handle the disp32 form with no registers first. */
732 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
733 {
734 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr32: EffAddr=%#010RGv\n", (RTGCPTR)u32Disp));
735 return u32Disp;
736 }
737
738 /* Get the register (or SIB) value. */
739 uint32_t u32EffAddr;
740#ifdef _MSC_VER
741 u32EffAddr = 0;/* MSC uninitialized variable analysis is too simple, it seems. */
742#endif
743 switch (bRm & X86_MODRM_RM_MASK)
744 {
745 case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
746 case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
747 case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
748 case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
749 case 4: /* SIB */
750 {
751 /* Get the index and scale it. */
752 switch ((uSibAndRspOffset >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
753 {
754 case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
755 case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
756 case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
757 case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
758 case 4: u32EffAddr = 0; /*none */ break;
759 case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
760 case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
761 case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
762 }
763 u32EffAddr <<= (uSibAndRspOffset >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
764
765 /* add base */
766 switch (uSibAndRspOffset & X86_SIB_BASE_MASK)
767 {
768 case 0: u32EffAddr += pVCpu->cpum.GstCtx.eax; break;
769 case 1: u32EffAddr += pVCpu->cpum.GstCtx.ecx; break;
770 case 2: u32EffAddr += pVCpu->cpum.GstCtx.edx; break;
771 case 3: u32EffAddr += pVCpu->cpum.GstCtx.ebx; break;
772 case 4:
773 u32EffAddr += pVCpu->cpum.GstCtx.esp;
774 u32EffAddr += uSibAndRspOffset >> 8;
775 break;
776 case 5:
777 if ((bRm & X86_MODRM_MOD_MASK) != 0)
778 u32EffAddr += pVCpu->cpum.GstCtx.ebp;
779 else
780 u32EffAddr += u32Disp;
781 break;
782 case 6: u32EffAddr += pVCpu->cpum.GstCtx.esi; break;
783 case 7: u32EffAddr += pVCpu->cpum.GstCtx.edi; break;
784 }
785 break;
786 }
787 case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
788 case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
789 case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
790 }
791
792 /* Get and add the displacement. */
793 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
794 {
795 case 0: break;
796 case 1: u32EffAddr += (int8_t)u32Disp; break;
797 case 2: u32EffAddr += u32Disp; break;
798 default: AssertFailed();
799 }
800
801 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr32: EffAddr=%#010RGv\n", (RTGCPTR)u32EffAddr));
802 return u32EffAddr;
803}
804
805
806/**
807 * Calculates the effective address of a ModR/M memory operand.
808 *
809 * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR64.
810 *
811 * @returns The effective address.
812 * @param pVCpu The cross context virtual CPU structure of the
813 * calling thread.
814 * @param bRmEx The ModRM byte but with bit 3 set to REX.B and
815 * bit 4 to REX.X. The two bits are part of the
816 * REG sub-field, which isn't needed in this
817 * function.
818 * @param uSibAndRspOffset Two parts:
819 * - The first 8 bits make up the SIB byte.
820 * - The next 8 bits are the fixed RSP/ESP offset
821 * in case of a pop [xSP].
822 * @param u32Disp The displacement byte/word/dword, if any.
823 * @param cbInstr The size of the fully decoded instruction. Used
824 * for RIP relative addressing.
825 * @todo combine cbInstr and cbImm!
826 */
827static RTGCPTR iemOpHlpCalcRmEffAddrThreadedAddr64(PVMCPUCC pVCpu, uint8_t bRmEx, uint32_t uSibAndRspOffset,
828 uint32_t u32Disp, uint8_t cbInstr) RT_NOEXCEPT
829{
830 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr64: bRmEx=%#x\n", bRmEx));
831 Assert(IEM_IS_64BIT_CODE(pVCpu));
832
833 uint64_t u64EffAddr;
834
835 /* Handle the rip+disp32 form with no registers first. */
836 if ((bRmEx & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
837 {
838 u64EffAddr = (int32_t)u32Disp;
839 u64EffAddr += pVCpu->cpum.GstCtx.rip + cbInstr;
840 }
841 else
842 {
843 /* Get the register (or SIB) value. */
844#ifdef _MSC_VER
845 u64EffAddr = 0; /* MSC uninitialized variable analysis is too simple, it seems. */
846#endif
847 switch (bRmEx & (X86_MODRM_RM_MASK | 0x8)) /* bRmEx[bit 3] = REX.B */
848 {
849 default:
850 case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
851 case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
852 case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
853 case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
854 case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
855 case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
856 case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
857 case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
858 case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
859 case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
860 case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
861 case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
862 case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
863 case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
864 /* SIB */
865 case 4:
866 case 12:
867 {
868 /* Get the index and scale it. */
869 switch ( ((uSibAndRspOffset >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
870 | ((bRmEx & 0x10) >> 1)) /* bRmEx[bit 4] = REX.X */
871 {
872 case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
873 case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
874 case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
875 case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
876 case 4: u64EffAddr = 0; /*none */ break;
877 case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
878 case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
879 case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
880 case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
881 case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
882 case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
883 case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
884 case 12: u64EffAddr = pVCpu->cpum.GstCtx.r12; break;
885 case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
886 case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
887 case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
888 }
889 u64EffAddr <<= (uSibAndRspOffset >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
890
891 /* add base */
892 switch ((uSibAndRspOffset & X86_SIB_BASE_MASK) | (bRmEx & 0x8)) /* bRmEx[bit 3] = REX.B */
893 {
894 case 0: u64EffAddr += pVCpu->cpum.GstCtx.rax; break;
895 case 1: u64EffAddr += pVCpu->cpum.GstCtx.rcx; break;
896 case 2: u64EffAddr += pVCpu->cpum.GstCtx.rdx; break;
897 case 3: u64EffAddr += pVCpu->cpum.GstCtx.rbx; break;
898 case 4:
899 u64EffAddr += pVCpu->cpum.GstCtx.rsp;
900 u64EffAddr += uSibAndRspOffset >> 8;
901 break;
902 case 6: u64EffAddr += pVCpu->cpum.GstCtx.rsi; break;
903 case 7: u64EffAddr += pVCpu->cpum.GstCtx.rdi; break;
904 case 8: u64EffAddr += pVCpu->cpum.GstCtx.r8; break;
905 case 9: u64EffAddr += pVCpu->cpum.GstCtx.r9; break;
906 case 10: u64EffAddr += pVCpu->cpum.GstCtx.r10; break;
907 case 11: u64EffAddr += pVCpu->cpum.GstCtx.r11; break;
908 case 12: u64EffAddr += pVCpu->cpum.GstCtx.r12; break;
909 case 14: u64EffAddr += pVCpu->cpum.GstCtx.r14; break;
910 case 15: u64EffAddr += pVCpu->cpum.GstCtx.r15; break;
911 /* complicated encodings */
912 case 5:
913 if ((bRmEx & X86_MODRM_MOD_MASK) != 0)
914 u64EffAddr += pVCpu->cpum.GstCtx.rbp;
915 else
916 u64EffAddr += (int32_t)u32Disp;
917 break;
918 case 13:
919 if ((bRmEx & X86_MODRM_MOD_MASK) != 0)
920 u64EffAddr += pVCpu->cpum.GstCtx.r13;
921 else
922 u64EffAddr += (int32_t)u32Disp;
923 break;
924 }
925 break;
926 }
927 }
928
929 /* Get and add the displacement. */
930 switch ((bRmEx >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
931 {
932 case 0: break;
933 case 1: u64EffAddr += (int8_t)u32Disp; break;
934 case 2: u64EffAddr += (int32_t)u32Disp; break;
935 default: AssertFailed();
936 }
937 }
938
939 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr64: EffAddr=%#010RGv\n", u64EffAddr));
940 return u64EffAddr;
941}
942
943
944/*
945 * The threaded functions.
946 */
947#include "IEMThreadedFunctions.cpp.h"
948
Note: See TracBrowser for help on using the repository browser.

© 2023 Oracle
ContactPrivacy policyTerms of Use