VirtualBox

source: vbox/trunk/src/VBox/VMM/VMM.cpp@ 28800

Last change on this file since 28800 was 28800, checked in by vboxsync, 14 years ago

Automated rebranding to Oracle copyright/license strings via filemuncher

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 81.1 KB
Line 
1/* $Id: VMM.cpp 28800 2010-04-27 08:22:32Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually.
27 *
28 * @see grp_vmm, grp_vm
29 *
30 *
31 * @section sec_vmmstate VMM State
32 *
33 * @image html VM_Statechart_Diagram.gif
34 *
35 * To be written.
36 *
37 *
38 * @subsection subsec_vmm_init VMM Initialization
39 *
40 * To be written.
41 *
42 *
43 * @subsection subsec_vmm_term VMM Termination
44 *
45 * To be written.
46 *
47 */
48
49/*******************************************************************************
50* Header Files *
51*******************************************************************************/
52#define LOG_GROUP LOG_GROUP_VMM
53#include <VBox/vmm.h>
54#include <VBox/vmapi.h>
55#include <VBox/pgm.h>
56#include <VBox/cfgm.h>
57#include <VBox/pdmqueue.h>
58#include <VBox/pdmcritsect.h>
59#include <VBox/pdmapi.h>
60#include <VBox/cpum.h>
61#include <VBox/mm.h>
62#include <VBox/iom.h>
63#include <VBox/trpm.h>
64#include <VBox/selm.h>
65#include <VBox/em.h>
66#include <VBox/sup.h>
67#include <VBox/dbgf.h>
68#include <VBox/csam.h>
69#include <VBox/patm.h>
70#include <VBox/rem.h>
71#include <VBox/ssm.h>
72#include <VBox/tm.h>
73#include "VMMInternal.h"
74#include "VMMSwitcher/VMMSwitcher.h"
75#include <VBox/vm.h>
76
77#include <VBox/err.h>
78#include <VBox/param.h>
79#include <VBox/version.h>
80#include <VBox/x86.h>
81#include <VBox/hwaccm.h>
82#include <iprt/assert.h>
83#include <iprt/alloc.h>
84#include <iprt/asm.h>
85#include <iprt/time.h>
86#include <iprt/semaphore.h>
87#include <iprt/stream.h>
88#include <iprt/string.h>
89#include <iprt/stdarg.h>
90#include <iprt/ctype.h>
91
92
93
94/*******************************************************************************
95* Defined Constants And Macros *
96*******************************************************************************/
97/** The saved state version. */
98#define VMM_SAVED_STATE_VERSION 4
99/** The saved state version used by v3.0 and earlier. (Teleportation) */
100#define VMM_SAVED_STATE_VERSION_3_0 3
101
102
103/*******************************************************************************
104* Internal Functions *
105*******************************************************************************/
106static int vmmR3InitStacks(PVM pVM);
107static int vmmR3InitLoggers(PVM pVM);
108static void vmmR3InitRegisterStats(PVM pVM);
109static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
110static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
111static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
112static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
113static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
114
115
116/**
117 * Initializes the VMM.
118 *
119 * @returns VBox status code.
120 * @param pVM The VM to operate on.
121 */
122VMMR3DECL(int) VMMR3Init(PVM pVM)
123{
124 LogFlow(("VMMR3Init\n"));
125
126 /*
127 * Assert alignment, sizes and order.
128 */
129 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
130 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
131 AssertCompile(sizeof(pVM->aCpus[0].vmm.s) <= sizeof(pVM->aCpus[0].vmm.padding));
132
133 /*
134 * Init basic VM VMM members.
135 */
136 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
137 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
138 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
139 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
140 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
141 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
142 int rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies);
143 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
144 pVM->vmm.s.cYieldEveryMillies = 23; /* Value arrived at after experimenting with the grub boot prompt. */
145 //pVM->vmm.s.cYieldEveryMillies = 8; //debugging
146 else
147 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
148
149 /*
150 * Initialize the VMM sync critical section and semaphores.
151 */
152 rc = RTCritSectInit(&pVM->vmm.s.CritSectSync);
153 AssertRCReturn(rc, rc);
154 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
155 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
156 return VERR_NO_MEMORY;
157 for (VMCPUID i = 0; i < pVM->cCpus; i++)
158 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
159 for (VMCPUID i = 0; i < pVM->cCpus; i++)
160 {
161 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
162 AssertRCReturn(rc, rc);
163 }
164 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
165 AssertRCReturn(rc, rc);
166 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
167 AssertRCReturn(rc, rc);
168 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
169 AssertRCReturn(rc, rc);
170 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
171 AssertRCReturn(rc, rc);
172
173 /* GC switchers are enabled by default. Turned off by HWACCM. */
174 pVM->vmm.s.fSwitcherDisabled = false;
175
176 /*
177 * Register the saved state data unit.
178 */
179 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
180 NULL, NULL, NULL,
181 NULL, vmmR3Save, NULL,
182 NULL, vmmR3Load, NULL);
183 if (RT_FAILURE(rc))
184 return rc;
185
186 /*
187 * Register the Ring-0 VM handle with the session for fast ioctl calls.
188 */
189 rc = SUPR3SetVMForFastIOCtl(pVM->pVMR0);
190 if (RT_FAILURE(rc))
191 return rc;
192
193 /*
194 * Init various sub-components.
195 */
196 rc = vmmR3SwitcherInit(pVM);
197 if (RT_SUCCESS(rc))
198 {
199 rc = vmmR3InitStacks(pVM);
200 if (RT_SUCCESS(rc))
201 {
202 rc = vmmR3InitLoggers(pVM);
203
204#ifdef VBOX_WITH_NMI
205 /*
206 * Allocate mapping for the host APIC.
207 */
208 if (RT_SUCCESS(rc))
209 {
210 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
211 AssertRC(rc);
212 }
213#endif
214 if (RT_SUCCESS(rc))
215 {
216 /*
217 * Debug info and statistics.
218 */
219 DBGFR3InfoRegisterInternal(pVM, "ff", "Displays the current Forced actions Flags.", vmmR3InfoFF);
220 vmmR3InitRegisterStats(pVM);
221
222 return VINF_SUCCESS;
223 }
224 }
225 /** @todo: Need failure cleanup. */
226
227 //more todo in here?
228 //if (RT_SUCCESS(rc))
229 //{
230 //}
231 //int rc2 = vmmR3TermCoreCode(pVM);
232 //AssertRC(rc2));
233 }
234
235 return rc;
236}
237
238
239/**
240 * Allocate & setup the VMM RC stack(s) (for EMTs).
241 *
242 * The stacks are also used for long jumps in Ring-0.
243 *
244 * @returns VBox status code.
245 * @param pVM Pointer to the shared VM structure.
246 *
247 * @remarks The optional guard page gets it protection setup up during R3 init
248 * completion because of init order issues.
249 */
250static int vmmR3InitStacks(PVM pVM)
251{
252 int rc = VINF_SUCCESS;
253#ifdef VMM_R0_SWITCH_STACK
254 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
255#else
256 uint32_t fFlags = 0;
257#endif
258
259 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
260 {
261 PVMCPU pVCpu = &pVM->aCpus[idCpu];
262
263#ifdef VBOX_STRICT_VMM_STACK
264 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
265#else
266 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
267#endif
268 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
269 if (RT_SUCCESS(rc))
270 {
271#ifdef VBOX_STRICT_VMM_STACK
272 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
273#endif
274#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
275 /* MMHyperR3ToR0 returns R3 when not doing hardware assisted virtualization. */
276 if (!VMMIsHwVirtExtForced(pVM))
277 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = NIL_RTR0PTR;
278 else
279#endif
280 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
281 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
282 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
283 AssertRelease(pVCpu->vmm.s.pbEMTStackRC);
284
285 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
286 }
287 }
288
289 return rc;
290}
291
292
293/**
294 * Initialize the loggers.
295 *
296 * @returns VBox status code.
297 * @param pVM Pointer to the shared VM structure.
298 */
299static int vmmR3InitLoggers(PVM pVM)
300{
301 int rc;
302
303 /*
304 * Allocate RC & R0 Logger instances (they are finalized in the relocator).
305 */
306#ifdef LOG_ENABLED
307 PRTLOGGER pLogger = RTLogDefaultInstance();
308 if (pLogger)
309 {
310 pVM->vmm.s.cbRCLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pLogger->cGroups]);
311 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCLoggerR3);
312 if (RT_FAILURE(rc))
313 return rc;
314 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
315
316# ifdef VBOX_WITH_R0_LOGGING
317 for (VMCPUID i = 0; i < pVM->cCpus; i++)
318 {
319 PVMCPU pVCpu = &pVM->aCpus[i];
320
321 rc = MMR3HyperAllocOnceNoRelEx(pVM, RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[pLogger->cGroups]),
322 0, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
323 (void **)&pVCpu->vmm.s.pR0LoggerR3);
324 if (RT_FAILURE(rc))
325 return rc;
326 pVCpu->vmm.s.pR0LoggerR3->pVM = pVM->pVMR0;
327 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
328 pVCpu->vmm.s.pR0LoggerR3->cbLogger = RT_OFFSETOF(RTLOGGER, afGroups[pLogger->cGroups]);
329 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
330 }
331# endif
332 }
333#endif /* LOG_ENABLED */
334
335#ifdef VBOX_WITH_RC_RELEASE_LOGGING
336 /*
337 * Allocate RC release logger instances (finalized in the relocator).
338 */
339 PRTLOGGER pRelLogger = RTLogRelDefaultInstance();
340 if (pRelLogger)
341 {
342 pVM->vmm.s.cbRCRelLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pRelLogger->cGroups]);
343 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCRelLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCRelLoggerR3);
344 if (RT_FAILURE(rc))
345 return rc;
346 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
347 }
348#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
349 return VINF_SUCCESS;
350}
351
352
353/**
354 * VMMR3Init worker that register the statistics with STAM.
355 *
356 * @param pVM The shared VM structure.
357 */
358static void vmmR3InitRegisterStats(PVM pVM)
359{
360 /*
361 * Statistics.
362 */
363 STAM_REG(pVM, &pVM->vmm.s.StatRunRC, STAMTYPE_COUNTER, "/VMM/RunRC", STAMUNIT_OCCURENCES, "Number of context switches.");
364 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
365 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
366 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
367 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
368 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
369 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
370 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
371 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
372 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
373 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOBlockEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/EmulateIOBlock", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_IO_BLOCK returns.");
374 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
375 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_READ returns.");
376 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_WRITE returns.");
377 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ returns.");
378 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_WRITE returns.");
379 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ_WRITE returns.");
380 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
381 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
382 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
383 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
384 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
385 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
386 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPDFault, STAMTYPE_COUNTER, "/VMM/RZRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns.");
387 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
388 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
389 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
390 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
391 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
392 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
393 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
394 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
395 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
396 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
397 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
398 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
399 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
400 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
401 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
402 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HWACCM_PATCH_TPR_INSTR returns.");
403 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
404 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
405 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMQueueFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMQueueFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_QUEUE_FLUSH calls.");
406 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
407 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
408 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
409 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
410 STAM_REG(pVM, &pVM->vmm.s.StatRZCallRemReplay, STAMTYPE_COUNTER, "/VMM/RZCallR3/REMReplay", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS calls.");
411 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
412 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
413 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
414
415#ifdef VBOX_WITH_STATISTICS
416 for (VMCPUID i = 0; i < pVM->cCpus; i++)
417 {
418 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
419 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
420 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
421 }
422#endif
423}
424
425
426/**
427 * Initializes the per-VCPU VMM.
428 *
429 * @returns VBox status code.
430 * @param pVM The VM to operate on.
431 */
432VMMR3DECL(int) VMMR3InitCPU(PVM pVM)
433{
434 LogFlow(("VMMR3InitCPU\n"));
435 return VINF_SUCCESS;
436}
437
438
439/**
440 * Ring-3 init finalizing.
441 *
442 * @returns VBox status code.
443 * @param pVM The VM handle.
444 */
445VMMR3DECL(int) VMMR3InitFinalize(PVM pVM)
446{
447 int rc;
448
449 /*
450 * Set page attributes to r/w for stack pages.
451 */
452 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
453 {
454 rc = PGMMapSetPage(pVM, pVM->aCpus[idCpu].vmm.s.pbEMTStackRC, VMM_STACK_SIZE,
455 X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
456 AssertRCReturn(rc, rc);
457 }
458
459 /*
460 * Create the EMT yield timer.
461 */
462 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
463 AssertRCReturn(rc, rc);
464
465 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
466 AssertRCReturn(rc, rc);
467
468#ifdef VBOX_WITH_NMI
469 /*
470 * Map the host APIC into GC - This is AMD/Intel + Host OS specific!
471 */
472 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
473 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
474 AssertRCReturn(rc, rc);
475#endif
476
477#ifdef VBOX_STRICT_VMM_STACK
478 /*
479 * Setup the stack guard pages: Two inaccessible pages at each sides of the
480 * stack to catch over/under-flows.
481 */
482 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
483 {
484 uint8_t *pbEMTStackR3 = pVM->aCpus[idCpu].vmm.s.pbEMTStackR3;
485
486 memset(pbEMTStackR3 - PAGE_SIZE, 0xcc, PAGE_SIZE);
487 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, true /*fSet*/);
488
489 memset(pbEMTStackR3 + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
490 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, true /*fSet*/);
491 }
492 pVM->vmm.s.fStackGuardsStationed = true;
493#endif
494
495 return VINF_SUCCESS;
496}
497
498
499/**
500 * Initializes the R0 VMM.
501 *
502 * @returns VBox status code.
503 * @param pVM The VM to operate on.
504 */
505VMMR3DECL(int) VMMR3InitR0(PVM pVM)
506{
507 int rc;
508 PVMCPU pVCpu = VMMGetCpu(pVM);
509 Assert(pVCpu && pVCpu->idCpu == 0);
510
511#ifdef LOG_ENABLED
512 /*
513 * Initialize the ring-0 logger if we haven't done so yet.
514 */
515 if ( pVCpu->vmm.s.pR0LoggerR3
516 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
517 {
518 rc = VMMR3UpdateLoggers(pVM);
519 if (RT_FAILURE(rc))
520 return rc;
521 }
522#endif
523
524 /*
525 * Call Ring-0 entry with init code.
526 */
527 for (;;)
528 {
529#ifdef NO_SUPCALLR0VMM
530 //rc = VERR_GENERAL_FAILURE;
531 rc = VINF_SUCCESS;
532#else
533 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, VMMGetSvnRev(), NULL);
534#endif
535 /*
536 * Flush the logs.
537 */
538#ifdef LOG_ENABLED
539 if ( pVCpu->vmm.s.pR0LoggerR3
540 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
541 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
542#endif
543 if (rc != VINF_VMM_CALL_HOST)
544 break;
545 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
546 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
547 break;
548 /* Resume R0 */
549 }
550
551 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
552 {
553 LogRel(("R0 init failed, rc=%Rra\n", rc));
554 if (RT_SUCCESS(rc))
555 rc = VERR_INTERNAL_ERROR;
556 }
557 return rc;
558}
559
560
561/**
562 * Initializes the RC VMM.
563 *
564 * @returns VBox status code.
565 * @param pVM The VM to operate on.
566 */
567VMMR3DECL(int) VMMR3InitRC(PVM pVM)
568{
569 PVMCPU pVCpu = VMMGetCpu(pVM);
570 Assert(pVCpu && pVCpu->idCpu == 0);
571
572 /* In VMX mode, there's no need to init RC. */
573 if (pVM->vmm.s.fSwitcherDisabled)
574 return VINF_SUCCESS;
575
576 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
577
578 /*
579 * Call VMMGCInit():
580 * -# resolve the address.
581 * -# setup stackframe and EIP to use the trampoline.
582 * -# do a generic hypervisor call.
583 */
584 RTRCPTR RCPtrEP;
585 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP);
586 if (RT_SUCCESS(rc))
587 {
588 CPUMHyperSetCtxCore(pVCpu, NULL);
589 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC); /* Clear the stack. */
590 uint64_t u64TS = RTTimeProgramStartNanoTS();
591 CPUMPushHyper(pVCpu, (uint32_t)(u64TS >> 32)); /* Param 3: The program startup TS - Hi. */
592 CPUMPushHyper(pVCpu, (uint32_t)u64TS); /* Param 3: The program startup TS - Lo. */
593 CPUMPushHyper(pVCpu, VMMGetSvnRev()); /* Param 2: Version argument. */
594 CPUMPushHyper(pVCpu, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */
595 CPUMPushHyper(pVCpu, pVM->pVMRC); /* Param 0: pVM */
596 CPUMPushHyper(pVCpu, 5 * sizeof(RTRCPTR)); /* trampoline param: stacksize. */
597 CPUMPushHyper(pVCpu, RCPtrEP); /* Call EIP. */
598 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
599 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
600
601 for (;;)
602 {
603#ifdef NO_SUPCALLR0VMM
604 //rc = VERR_GENERAL_FAILURE;
605 rc = VINF_SUCCESS;
606#else
607 rc = SUPR3CallVMMR0(pVM->pVMR0, 0 /* VCPU 0 */, VMMR0_DO_CALL_HYPERVISOR, NULL);
608#endif
609#ifdef LOG_ENABLED
610 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
611 if ( pLogger
612 && pLogger->offScratch > 0)
613 RTLogFlushRC(NULL, pLogger);
614#endif
615#ifdef VBOX_WITH_RC_RELEASE_LOGGING
616 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
617 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
618 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
619#endif
620 if (rc != VINF_VMM_CALL_HOST)
621 break;
622 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
623 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
624 break;
625 }
626
627 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
628 {
629 VMMR3FatalDump(pVM, pVCpu, rc);
630 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
631 rc = VERR_INTERNAL_ERROR;
632 }
633 AssertRC(rc);
634 }
635 return rc;
636}
637
638
639/**
640 * Terminate the VMM bits.
641 *
642 * @returns VINF_SUCCESS.
643 * @param pVM The VM handle.
644 */
645VMMR3DECL(int) VMMR3Term(PVM pVM)
646{
647 PVMCPU pVCpu = VMMGetCpu(pVM);
648 Assert(pVCpu && pVCpu->idCpu == 0);
649
650 /*
651 * Call Ring-0 entry with termination code.
652 */
653 int rc;
654 for (;;)
655 {
656#ifdef NO_SUPCALLR0VMM
657 //rc = VERR_GENERAL_FAILURE;
658 rc = VINF_SUCCESS;
659#else
660 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
661#endif
662 /*
663 * Flush the logs.
664 */
665#ifdef LOG_ENABLED
666 if ( pVCpu->vmm.s.pR0LoggerR3
667 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
668 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
669#endif
670 if (rc != VINF_VMM_CALL_HOST)
671 break;
672 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
673 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
674 break;
675 /* Resume R0 */
676 }
677 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
678 {
679 LogRel(("VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
680 if (RT_SUCCESS(rc))
681 rc = VERR_INTERNAL_ERROR;
682 }
683
684 RTCritSectDelete(&pVM->vmm.s.CritSectSync);
685 for (VMCPUID i = 0; i < pVM->cCpus; i++)
686 {
687 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
688 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
689 }
690 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
691 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
692 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
693 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
694 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
695 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
696 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
697 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
698
699#ifdef VBOX_STRICT_VMM_STACK
700 /*
701 * Make the two stack guard pages present again.
702 */
703 if (pVM->vmm.s.fStackGuardsStationed)
704 {
705 for (VMCPUID i = 0; i < pVM->cCpus; i++)
706 {
707 uint8_t *pbEMTStackR3 = pVM->aCpus[i].vmm.s.pbEMTStackR3;
708 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, false /*fSet*/);
709 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, false /*fSet*/);
710 }
711 pVM->vmm.s.fStackGuardsStationed = false;
712 }
713#endif
714 return rc;
715}
716
717
718/**
719 * Terminates the per-VCPU VMM.
720 *
721 * Termination means cleaning up and freeing all resources,
722 * the VM it self is at this point powered off or suspended.
723 *
724 * @returns VBox status code.
725 * @param pVM The VM to operate on.
726 */
727VMMR3DECL(int) VMMR3TermCPU(PVM pVM)
728{
729 return VINF_SUCCESS;
730}
731
732
733/**
734 * Applies relocations to data and code managed by this
735 * component. This function will be called at init and
736 * whenever the VMM need to relocate it self inside the GC.
737 *
738 * The VMM will need to apply relocations to the core code.
739 *
740 * @param pVM The VM handle.
741 * @param offDelta The relocation delta.
742 */
743VMMR3DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
744{
745 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
746
747 /*
748 * Recalc the RC address.
749 */
750#ifdef VBOX_WITH_RAW_MODE
751 pVM->vmm.s.pvCoreCodeRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pvCoreCodeR3);
752#endif
753
754 /*
755 * The stack.
756 */
757 for (VMCPUID i = 0; i < pVM->cCpus; i++)
758 {
759 PVMCPU pVCpu = &pVM->aCpus[i];
760
761 CPUMSetHyperESP(pVCpu, CPUMGetHyperESP(pVCpu) + offDelta);
762
763 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
764 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
765 }
766
767 /*
768 * All the switchers.
769 */
770 vmmR3SwitcherRelocate(pVM, offDelta);
771
772 /*
773 * Get other RC entry points.
774 */
775 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMRCResumeGuest);
776 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Rra\n", rc));
777
778 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMRCResumeGuestV86);
779 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Rra\n", rc));
780
781 /*
782 * Update the logger.
783 */
784 VMMR3UpdateLoggers(pVM);
785}
786
787
788/**
789 * Updates the settings for the RC and R0 loggers.
790 *
791 * @returns VBox status code.
792 * @param pVM The VM handle.
793 */
794VMMR3DECL(int) VMMR3UpdateLoggers(PVM pVM)
795{
796 /*
797 * Simply clone the logger instance (for RC).
798 */
799 int rc = VINF_SUCCESS;
800 RTRCPTR RCPtrLoggerFlush = 0;
801
802 if (pVM->vmm.s.pRCLoggerR3
803#ifdef VBOX_WITH_RC_RELEASE_LOGGING
804 || pVM->vmm.s.pRCRelLoggerR3
805#endif
806 )
807 {
808 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &RCPtrLoggerFlush);
809 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Rra\n", rc));
810 }
811
812 if (pVM->vmm.s.pRCLoggerR3)
813 {
814 RTRCPTR RCPtrLoggerWrapper = 0;
815 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &RCPtrLoggerWrapper);
816 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Rra\n", rc));
817
818 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
819 rc = RTLogCloneRC(NULL /* default */, pVM->vmm.s.pRCLoggerR3, pVM->vmm.s.cbRCLogger,
820 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
821 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
822 }
823
824#ifdef VBOX_WITH_RC_RELEASE_LOGGING
825 if (pVM->vmm.s.pRCRelLoggerR3)
826 {
827 RTRCPTR RCPtrLoggerWrapper = 0;
828 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &RCPtrLoggerWrapper);
829 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Rra\n", rc));
830
831 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
832 rc = RTLogCloneRC(RTLogRelDefaultInstance(), pVM->vmm.s.pRCRelLoggerR3, pVM->vmm.s.cbRCRelLogger,
833 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
834 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
835 }
836#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
837
838#ifdef LOG_ENABLED
839 /*
840 * For the ring-0 EMT logger, we use a per-thread logger instance
841 * in ring-0. Only initialize it once.
842 */
843 for (VMCPUID i = 0; i < pVM->cCpus; i++)
844 {
845 PVMCPU pVCpu = &pVM->aCpus[i];
846 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
847 if (pR0LoggerR3)
848 {
849 if (!pR0LoggerR3->fCreated)
850 {
851 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
852 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
853 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
854
855 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
856 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
857 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
858
859 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger,
860 *(PFNRTLOGGER *)&pfnLoggerWrapper, *(PFNRTLOGFLUSH *)&pfnLoggerFlush,
861 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
862 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
863
864 RTR0PTR pfnLoggerPrefix = NIL_RTR0PTR;
865 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerPrefix", &pfnLoggerPrefix);
866 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerPrefix not found! rc=%Rra\n", rc), rc);
867 rc = RTLogSetCustomPrefixCallback(&pR0LoggerR3->Logger, *(PFNRTLOGPREFIX *)&pfnLoggerPrefix, NULL);
868 AssertReleaseMsgRCReturn(rc, ("RTLogSetCustomPrefixCallback failed! rc=%Rra\n", rc), rc);
869
870 pR0LoggerR3->idCpu = i;
871 pR0LoggerR3->fCreated = true;
872 pR0LoggerR3->fFlushingDisabled = false;
873
874 }
875
876 rc = RTLogCopyGroupsAndFlags(&pR0LoggerR3->Logger, NULL /* default */, pVM->vmm.s.pRCLoggerR3->fFlags, RTLOGFLAGS_BUFFERED);
877 AssertRC(rc);
878 }
879 }
880#endif
881 return rc;
882}
883
884
885/**
886 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
887 *
888 * @returns Pointer to the buffer.
889 * @param pVM The VM handle.
890 */
891VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
892{
893 if (HWACCMIsEnabled(pVM))
894 return pVM->vmm.s.szRing0AssertMsg1;
895
896 RTRCPTR RCPtr;
897 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg1", &RCPtr);
898 if (RT_SUCCESS(rc))
899 return (const char *)MMHyperRCToR3(pVM, RCPtr);
900
901 return NULL;
902}
903
904
905/**
906 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
907 *
908 * @returns Pointer to the buffer.
909 * @param pVM The VM handle.
910 */
911VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
912{
913 if (HWACCMIsEnabled(pVM))
914 return pVM->vmm.s.szRing0AssertMsg2;
915
916 RTRCPTR RCPtr;
917 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg2", &RCPtr);
918 if (RT_SUCCESS(rc))
919 return (const char *)MMHyperRCToR3(pVM, RCPtr);
920
921 return NULL;
922}
923
924
925/**
926 * Execute state save operation.
927 *
928 * @returns VBox status code.
929 * @param pVM VM Handle.
930 * @param pSSM SSM operation handle.
931 */
932static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
933{
934 LogFlow(("vmmR3Save:\n"));
935
936 /*
937 * Save the started/stopped state of all CPUs except 0 as it will always
938 * be running. This avoids breaking the saved state version. :-)
939 */
940 for (VMCPUID i = 1; i < pVM->cCpus; i++)
941 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(&pVM->aCpus[i])));
942
943 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
944}
945
946
947/**
948 * Execute state load operation.
949 *
950 * @returns VBox status code.
951 * @param pVM VM Handle.
952 * @param pSSM SSM operation handle.
953 * @param uVersion Data layout version.
954 * @param uPass The data pass.
955 */
956static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
957{
958 LogFlow(("vmmR3Load:\n"));
959 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
960
961 /*
962 * Validate version.
963 */
964 if ( uVersion != VMM_SAVED_STATE_VERSION
965 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
966 {
967 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
968 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
969 }
970
971 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
972 {
973 /* Ignore the stack bottom, stack pointer and stack bits. */
974 RTRCPTR RCPtrIgnored;
975 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
976 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
977#ifdef RT_OS_DARWIN
978 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
979 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
980 && SSMR3HandleRevision(pSSM) >= 48858
981 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
982 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
983 )
984 SSMR3Skip(pSSM, 16384);
985 else
986 SSMR3Skip(pSSM, 8192);
987#else
988 SSMR3Skip(pSSM, 8192);
989#endif
990 }
991
992 /*
993 * Restore the VMCPU states. VCPU 0 is always started.
994 */
995 VMCPU_SET_STATE(&pVM->aCpus[0], VMCPUSTATE_STARTED);
996 for (VMCPUID i = 1; i < pVM->cCpus; i++)
997 {
998 bool fStarted;
999 int rc = SSMR3GetBool(pSSM, &fStarted);
1000 if (RT_FAILURE(rc))
1001 return rc;
1002 VMCPU_SET_STATE(&pVM->aCpus[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
1003 }
1004
1005 /* terminator */
1006 uint32_t u32;
1007 int rc = SSMR3GetU32(pSSM, &u32);
1008 if (RT_FAILURE(rc))
1009 return rc;
1010 if (u32 != UINT32_MAX)
1011 {
1012 AssertMsgFailed(("u32=%#x\n", u32));
1013 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1014 }
1015 return VINF_SUCCESS;
1016}
1017
1018
1019/**
1020 * Resolve a builtin RC symbol.
1021 *
1022 * Called by PDM when loading or relocating RC modules.
1023 *
1024 * @returns VBox status
1025 * @param pVM VM Handle.
1026 * @param pszSymbol Symbol to resolv
1027 * @param pRCPtrValue Where to store the symbol value.
1028 *
1029 * @remark This has to work before VMMR3Relocate() is called.
1030 */
1031VMMR3DECL(int) VMMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1032{
1033 if (!strcmp(pszSymbol, "g_Logger"))
1034 {
1035 if (pVM->vmm.s.pRCLoggerR3)
1036 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
1037 *pRCPtrValue = pVM->vmm.s.pRCLoggerRC;
1038 }
1039 else if (!strcmp(pszSymbol, "g_RelLogger"))
1040 {
1041#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1042 if (pVM->vmm.s.pRCRelLoggerR3)
1043 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
1044 *pRCPtrValue = pVM->vmm.s.pRCRelLoggerRC;
1045#else
1046 *pRCPtrValue = NIL_RTRCPTR;
1047#endif
1048 }
1049 else
1050 return VERR_SYMBOL_NOT_FOUND;
1051 return VINF_SUCCESS;
1052}
1053
1054
1055/**
1056 * Suspends the CPU yielder.
1057 *
1058 * @param pVM The VM handle.
1059 */
1060VMMR3DECL(void) VMMR3YieldSuspend(PVM pVM)
1061{
1062 VMCPU_ASSERT_EMT(&pVM->aCpus[0]);
1063 if (!pVM->vmm.s.cYieldResumeMillies)
1064 {
1065 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1066 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1067 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1068 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1069 else
1070 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1071 TMTimerStop(pVM->vmm.s.pYieldTimer);
1072 }
1073 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1074}
1075
1076
1077/**
1078 * Stops the CPU yielder.
1079 *
1080 * @param pVM The VM handle.
1081 */
1082VMMR3DECL(void) VMMR3YieldStop(PVM pVM)
1083{
1084 if (!pVM->vmm.s.cYieldResumeMillies)
1085 TMTimerStop(pVM->vmm.s.pYieldTimer);
1086 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1087 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1088}
1089
1090
1091/**
1092 * Resumes the CPU yielder when it has been a suspended or stopped.
1093 *
1094 * @param pVM The VM handle.
1095 */
1096VMMR3DECL(void) VMMR3YieldResume(PVM pVM)
1097{
1098 if (pVM->vmm.s.cYieldResumeMillies)
1099 {
1100 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1101 pVM->vmm.s.cYieldResumeMillies = 0;
1102 }
1103}
1104
1105
1106/**
1107 * Internal timer callback function.
1108 *
1109 * @param pVM The VM.
1110 * @param pTimer The timer handle.
1111 * @param pvUser User argument specified upon timer creation.
1112 */
1113static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1114{
1115 /*
1116 * This really needs some careful tuning. While we shouldn't be too greedy since
1117 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1118 * because that'll cause us to stop up.
1119 *
1120 * The current logic is to use the default interval when there is no lag worth
1121 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1122 *
1123 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1124 * so the lag is up to date.)
1125 */
1126 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1127 if ( u64Lag < 50000000 /* 50ms */
1128 || ( u64Lag < 1000000000 /* 1s */
1129 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1130 )
1131 {
1132 uint64_t u64Elapsed = RTTimeNanoTS();
1133 pVM->vmm.s.u64LastYield = u64Elapsed;
1134
1135 RTThreadYield();
1136
1137#ifdef LOG_ENABLED
1138 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1139 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1140#endif
1141 }
1142 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1143}
1144
1145
1146/**
1147 * Executes guest code in the raw-mode context.
1148 *
1149 * @param pVM VM handle.
1150 * @param pVCpu The VMCPU to operate on.
1151 */
1152VMMR3DECL(int) VMMR3RawRunGC(PVM pVM, PVMCPU pVCpu)
1153{
1154 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1155
1156 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1157
1158 /*
1159 * Set the EIP and ESP.
1160 */
1161 CPUMSetHyperEIP(pVCpu, CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM
1162 ? pVM->vmm.s.pfnCPUMRCResumeGuestV86
1163 : pVM->vmm.s.pfnCPUMRCResumeGuest);
1164 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
1165
1166 /*
1167 * We hide log flushes (outer) and hypervisor interrupts (inner).
1168 */
1169 for (;;)
1170 {
1171#ifdef VBOX_STRICT
1172 if (RT_UNLIKELY(!CPUMGetHyperCR3(pVCpu) || CPUMGetHyperCR3(pVCpu) != PGMGetHyperCR3(pVCpu)))
1173 EMR3FatalError(pVCpu, VERR_VMM_HYPER_CR3_MISMATCH);
1174 PGMMapCheck(pVM);
1175#endif
1176 int rc;
1177 do
1178 {
1179#ifdef NO_SUPCALLR0VMM
1180 rc = VERR_GENERAL_FAILURE;
1181#else
1182 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1183 if (RT_LIKELY(rc == VINF_SUCCESS))
1184 rc = pVCpu->vmm.s.iLastGZRc;
1185#endif
1186 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1187
1188 /*
1189 * Flush the logs.
1190 */
1191#ifdef LOG_ENABLED
1192 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1193 if ( pLogger
1194 && pLogger->offScratch > 0)
1195 RTLogFlushRC(NULL, pLogger);
1196#endif
1197#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1198 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1199 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1200 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1201#endif
1202 if (rc != VINF_VMM_CALL_HOST)
1203 {
1204 Log2(("VMMR3RawRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1205 return rc;
1206 }
1207 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1208 if (RT_FAILURE(rc))
1209 return rc;
1210 /* Resume GC */
1211 }
1212}
1213
1214
1215/**
1216 * Executes guest code (Intel VT-x and AMD-V).
1217 *
1218 * @param pVM VM handle.
1219 * @param pVCpu The VMCPU to operate on.
1220 */
1221VMMR3DECL(int) VMMR3HwAccRunGC(PVM pVM, PVMCPU pVCpu)
1222{
1223 Log2(("VMMR3HwAccRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1224
1225 for (;;)
1226 {
1227 int rc;
1228 do
1229 {
1230#ifdef NO_SUPCALLR0VMM
1231 rc = VERR_GENERAL_FAILURE;
1232#else
1233 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HWACC_RUN, pVCpu->idCpu);
1234 if (RT_LIKELY(rc == VINF_SUCCESS))
1235 rc = pVCpu->vmm.s.iLastGZRc;
1236#endif
1237 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1238
1239#ifdef LOG_ENABLED
1240 /*
1241 * Flush the log
1242 */
1243 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
1244 if ( pR0LoggerR3
1245 && pR0LoggerR3->Logger.offScratch > 0)
1246 RTLogFlushToLogger(&pR0LoggerR3->Logger, NULL);
1247#endif /* !LOG_ENABLED */
1248 if (rc != VINF_VMM_CALL_HOST)
1249 {
1250 Log2(("VMMR3HwAccRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1251 return rc;
1252 }
1253 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1254 if (RT_FAILURE(rc))
1255 return rc;
1256 /* Resume R0 */
1257 }
1258}
1259
1260/**
1261 * VCPU worker for VMMSendSipi.
1262 *
1263 * @param pVM The VM to operate on.
1264 * @param idCpu Virtual CPU to perform SIPI on
1265 * @param uVector SIPI vector
1266 */
1267DECLCALLBACK(int) vmmR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1268{
1269 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1270 VMCPU_ASSERT_EMT(pVCpu);
1271
1272 /** @todo what are we supposed to do if the processor is already running? */
1273 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1274 return VERR_ACCESS_DENIED;
1275
1276
1277 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1278
1279 pCtx->cs = uVector << 8;
1280 pCtx->csHid.u64Base = uVector << 12;
1281 pCtx->csHid.u32Limit = 0x0000ffff;
1282 pCtx->rip = 0;
1283
1284 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", uVector));
1285
1286# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1287 EMSetState(pVCpu, EMSTATE_HALTED);
1288 return VINF_EM_RESCHEDULE;
1289# else /* And if we go the VMCPU::enmState way it can stay here. */
1290 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1291 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1292 return VINF_SUCCESS;
1293# endif
1294}
1295
1296DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1297{
1298 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1299 VMCPU_ASSERT_EMT(pVCpu);
1300
1301 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1302 CPUMR3ResetCpu(pVCpu);
1303 return VINF_EM_WAIT_SIPI;
1304}
1305
1306/**
1307 * Sends SIPI to the virtual CPU by setting CS:EIP into vector-dependent state
1308 * and unhalting processor
1309 *
1310 * @param pVM The VM to operate on.
1311 * @param idCpu Virtual CPU to perform SIPI on
1312 * @param uVector SIPI vector
1313 */
1314VMMR3DECL(void) VMMR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1315{
1316 AssertReturnVoid(idCpu < pVM->cCpus);
1317
1318 int rc = VMR3ReqCallNoWaitU(pVM->pUVM, idCpu, (PFNRT)vmmR3SendSipi, 3, pVM, idCpu, uVector);
1319 AssertRC(rc);
1320}
1321
1322/**
1323 * Sends init IPI to the virtual CPU.
1324 *
1325 * @param pVM The VM to operate on.
1326 * @param idCpu Virtual CPU to perform int IPI on
1327 */
1328VMMR3DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1329{
1330 AssertReturnVoid(idCpu < pVM->cCpus);
1331
1332 int rc = VMR3ReqCallNoWaitU(pVM->pUVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1333 AssertRC(rc);
1334}
1335
1336/**
1337 * Registers the guest memory range that can be used for patching
1338 *
1339 * @returns VBox status code.
1340 * @param pVM The VM to operate on.
1341 * @param pPatchMem Patch memory range
1342 * @param cbPatchMem Size of the memory range
1343 */
1344VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1345{
1346 if (HWACCMIsEnabled(pVM))
1347 return HWACMMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1348
1349 return VERR_NOT_SUPPORTED;
1350}
1351
1352/**
1353 * Deregisters the guest memory range that can be used for patching
1354 *
1355 * @returns VBox status code.
1356 * @param pVM The VM to operate on.
1357 * @param pPatchMem Patch memory range
1358 * @param cbPatchMem Size of the memory range
1359 */
1360VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1361{
1362 if (HWACCMIsEnabled(pVM))
1363 return HWACMMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1364
1365 return VINF_SUCCESS;
1366}
1367
1368
1369/**
1370 * VCPU worker for VMMR3SynchronizeAllVCpus.
1371 *
1372 * @param pVM The VM to operate on.
1373 * @param idCpu Virtual CPU to perform SIPI on
1374 * @param uVector SIPI vector
1375 */
1376DECLCALLBACK(int) vmmR3SyncVCpu(PVM pVM)
1377{
1378 /* Block until the job in the caller has finished. */
1379 RTCritSectEnter(&pVM->vmm.s.CritSectSync);
1380 RTCritSectLeave(&pVM->vmm.s.CritSectSync);
1381 return VINF_SUCCESS;
1382}
1383
1384
1385/**
1386 * Atomically execute a callback handler
1387 * Note: This is very expensive; avoid using it frequently!
1388 *
1389 * @param pVM The VM to operate on.
1390 * @param pfnHandler Callback handler
1391 * @param pvUser User specified parameter
1392 *
1393 * @thread EMT
1394 */
1395VMMR3DECL(int) VMMR3AtomicExecuteHandler(PVM pVM, PFNATOMICHANDLER pfnHandler, void *pvUser)
1396{
1397 int rc;
1398 PVMCPU pVCpu = VMMGetCpu(pVM);
1399 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1400
1401 /* Shortcut for the uniprocessor case. */
1402 if (pVM->cCpus == 1)
1403 return pfnHandler(pVM, pvUser);
1404
1405 RTCritSectEnter(&pVM->vmm.s.CritSectSync);
1406 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1407 {
1408 if (idCpu != pVCpu->idCpu)
1409 {
1410 rc = VMR3ReqCallNoWaitU(pVM->pUVM, idCpu, (PFNRT)vmmR3SyncVCpu, 1, pVM);
1411 AssertRC(rc);
1412 }
1413 }
1414 /* Wait until all other VCPUs are waiting for us. */
1415 while (RTCritSectGetWaiters(&pVM->vmm.s.CritSectSync) != (int32_t)(pVM->cCpus - 1))
1416 RTThreadSleep(1);
1417
1418 rc = pfnHandler(pVM, pvUser);
1419 RTCritSectLeave(&pVM->vmm.s.CritSectSync);
1420 return rc;
1421}
1422
1423
1424/**
1425 * Count returns and have the last non-caller EMT wake up the caller.
1426 *
1427 * @returns VBox strict informational status code for EM scheduling. No failures
1428 * will be returned here, those are for the caller only.
1429 *
1430 * @param pVM The VM handle.
1431 */
1432DECL_FORCE_INLINE(int) vmmR3EmtRendezvousNonCallerReturn(PVM pVM)
1433{
1434 int rcRet = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1435 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1436 if (cReturned == pVM->cCpus - 1U)
1437 {
1438 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1439 AssertLogRelRC(rc);
1440 }
1441
1442 AssertLogRelMsgReturn( rcRet <= VINF_SUCCESS
1443 || (rcRet >= VINF_EM_FIRST && rcRet <= VINF_EM_LAST),
1444 ("%Rrc\n", rcRet),
1445 VERR_IPE_UNEXPECTED_INFO_STATUS);
1446 return RT_SUCCESS(rcRet) ? rcRet : VINF_SUCCESS;
1447}
1448
1449
1450/**
1451 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1452 *
1453 * @returns VBox strict informational status code for EM scheduling. No failures
1454 * will be returned here, those are for the caller only. When
1455 * fIsCaller is set, VINF_SUCESS is always returned.
1456 *
1457 * @param pVM The VM handle.
1458 * @param pVCpu The VMCPU structure for the calling EMT.
1459 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1460 * not.
1461 * @param fFlags The flags.
1462 * @param pfnRendezvous The callback.
1463 * @param pvUser The user argument for the callback.
1464 */
1465static int vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1466 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1467{
1468 int rc;
1469
1470 /*
1471 * Enter, the last EMT triggers the next callback phase.
1472 */
1473 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1474 if (cEntered != pVM->cCpus)
1475 {
1476 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1477 {
1478 /* Wait for our turn. */
1479 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1480 AssertLogRelRC(rc);
1481 }
1482 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1483 {
1484 /* Wait for the last EMT to arrive and wake everyone up. */
1485 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1486 AssertLogRelRC(rc);
1487 }
1488 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1489 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1490 {
1491 /* Wait for our turn. */
1492 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1493 AssertLogRelRC(rc);
1494 }
1495 else
1496 {
1497 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1498
1499 /*
1500 * The execute once is handled specially to optimize the code flow.
1501 *
1502 * The last EMT to arrive will perform the callback and the other
1503 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1504 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1505 * returns, that EMT will initiate the normal return sequence.
1506 */
1507 if (!fIsCaller)
1508 {
1509 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1510 AssertLogRelRC(rc);
1511
1512 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1513 }
1514 return VINF_SUCCESS;
1515 }
1516 }
1517 else
1518 {
1519 /*
1520 * All EMTs are waiting, clear the FF and take action according to the
1521 * execution method.
1522 */
1523 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1524
1525 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1526 {
1527 /* Wake up everyone. */
1528 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1529 AssertLogRelRC(rc);
1530 }
1531 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1532 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1533 {
1534 /* Figure out who to wake up and wake it up. If it's ourself, then
1535 it's easy otherwise wait for our turn. */
1536 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1537 ? 0
1538 : pVM->cCpus - 1U;
1539 if (pVCpu->idCpu != iFirst)
1540 {
1541 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1542 AssertLogRelRC(rc);
1543 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1544 AssertLogRelRC(rc);
1545 }
1546 }
1547 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1548 }
1549
1550
1551 /*
1552 * Do the callback and update the status if necessary.
1553 */
1554 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1555 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1556 {
1557 VBOXSTRICTRC rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1558 if (rcStrict != VINF_SUCCESS)
1559 {
1560 AssertLogRelMsg( rcStrict <= VINF_SUCCESS
1561 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1562 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1563 int32_t i32RendezvousStatus;
1564 do
1565 {
1566 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1567 if ( rcStrict == i32RendezvousStatus
1568 || RT_FAILURE(i32RendezvousStatus)
1569 || ( i32RendezvousStatus != VINF_SUCCESS
1570 && rcStrict > i32RendezvousStatus))
1571 break;
1572 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict), i32RendezvousStatus));
1573 }
1574 }
1575
1576 /*
1577 * Increment the done counter and take action depending on whether we're
1578 * the last to finish callback execution.
1579 */
1580 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1581 if ( cDone != pVM->cCpus
1582 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1583 {
1584 /* Signal the next EMT? */
1585 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1586 {
1587 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1588 AssertLogRelRC(rc);
1589 }
1590 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1591 {
1592 Assert(cDone == pVCpu->idCpu + 1U);
1593 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1594 AssertLogRelRC(rc);
1595 }
1596 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1597 {
1598 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1599 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1600 AssertLogRelRC(rc);
1601 }
1602
1603 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1604 if (!fIsCaller)
1605 {
1606 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1607 AssertLogRelRC(rc);
1608 }
1609 }
1610 else
1611 {
1612 /* Callback execution is all done, tell the rest to return. */
1613 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1614 AssertLogRelRC(rc);
1615 }
1616
1617 if (!fIsCaller)
1618 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1619 return VINF_SUCCESS;
1620}
1621
1622
1623/**
1624 * Called in response to VM_FF_EMT_RENDEZVOUS.
1625 *
1626 * @returns VBox strict status code - EM scheduling. No errors will be returned
1627 * here, nor will any non-EM scheduling status codes be returned.
1628 *
1629 * @param pVM The VM handle
1630 * @param pVCpu The handle of the calling EMT.
1631 *
1632 * @thread EMT
1633 */
1634VMMR3DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1635{
1636 return vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1637 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1638}
1639
1640
1641/**
1642 * EMT rendezvous.
1643 *
1644 * Gathers all the EMTs and execute some code on each of them, either in a one
1645 * by one fashion or all at once.
1646 *
1647 * @returns VBox strict status code. This will be the the first error,
1648 * VINF_SUCCESS, or an EM scheduling status code.
1649 *
1650 * @param pVM The VM handle.
1651 * @param fFlags Flags indicating execution methods. See
1652 * grp_VMMR3EmtRendezvous_fFlags.
1653 * @param pfnRendezvous The callback.
1654 * @param pvUser User argument for the callback.
1655 *
1656 * @thread Any.
1657 */
1658VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1659{
1660 /*
1661 * Validate input.
1662 */
1663 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1664 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1665 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1666 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1667 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
1668 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
1669 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
1670
1671 VBOXSTRICTRC rcStrict;
1672 PVMCPU pVCpu = VMMGetCpu(pVM);
1673 if (!pVCpu)
1674 /*
1675 * Forward the request to an EMT thread.
1676 */
1677 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY,
1678 (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1679 else if (pVM->cCpus == 1)
1680 /*
1681 * Shortcut for the single EMT case.
1682 */
1683 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1684 else
1685 {
1686 /*
1687 * Spin lock. If busy, wait for the other EMT to finish while keeping a
1688 * lookout of the RENDEZVOUS FF.
1689 */
1690 int rc;
1691 rcStrict = VINF_SUCCESS;
1692 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
1693 {
1694 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
1695 {
1696 if (VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS))
1697 {
1698 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
1699 if ( rc != VINF_SUCCESS
1700 && ( rcStrict == VINF_SUCCESS
1701 || rcStrict > rc))
1702 rcStrict = rc;
1703 /** @todo Perhaps deal with termination here? */
1704 }
1705 ASMNopPause();
1706 }
1707 }
1708 Assert(!VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS));
1709
1710 /*
1711 * Clear the slate. This is a semaphore ping-pong orgy. :-)
1712 */
1713 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1714 {
1715 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
1716 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1717 }
1718 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1719 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1720 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1721 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1722 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1723 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1724 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1725 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1726 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1727 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1728 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1729
1730 /*
1731 * Set the FF and poke the other EMTs.
1732 */
1733 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
1734 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
1735
1736 /*
1737 * Do the same ourselves.
1738 */
1739 vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
1740
1741 /*
1742 * The caller waits for the other EMTs to be done and return before doing
1743 * the cleanup. This makes away with wakeup / reset races we would otherwise
1744 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
1745 */
1746 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1747 AssertLogRelRC(rc);
1748
1749 /*
1750 * Get the return code and clean up a little bit.
1751 */
1752 int rcMy = pVM->vmm.s.i32RendezvousStatus;
1753 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, NULL);
1754
1755 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
1756
1757 /*
1758 * Merge rcStrict and rcMy.
1759 */
1760 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
1761 if ( rcMy != VINF_SUCCESS
1762 && ( rcStrict == VINF_SUCCESS
1763 || rcStrict > rcMy))
1764 rcStrict = rcMy;
1765 }
1766
1767 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
1768 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1769 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
1770 VERR_IPE_UNEXPECTED_INFO_STATUS);
1771 return VBOXSTRICTRC_VAL(rcStrict);
1772}
1773
1774
1775/**
1776 * Read from the ring 0 jump buffer stack
1777 *
1778 * @returns VBox status code.
1779 *
1780 * @param pVM Pointer to the shared VM structure.
1781 * @param idCpu The ID of the source CPU context (for the address).
1782 * @param pAddress Where to start reading.
1783 * @param pvBuf Where to store the data we've read.
1784 * @param cbRead The number of bytes to read.
1785 */
1786VMMR3DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR pAddress, void *pvBuf, size_t cbRead)
1787{
1788 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1789 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
1790
1791 RTHCUINTPTR offset = pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - pAddress;
1792 if (offset >= pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack)
1793 return VERR_INVALID_POINTER;
1794
1795 memcpy(pvBuf, pVCpu->vmm.s.pbEMTStackR3 + pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - offset, cbRead);
1796 return VINF_SUCCESS;
1797}
1798
1799
1800/**
1801 * Calls a RC function.
1802 *
1803 * @param pVM The VM handle.
1804 * @param RCPtrEntry The address of the RC function.
1805 * @param cArgs The number of arguments in the ....
1806 * @param ... Arguments to the function.
1807 */
1808VMMR3DECL(int) VMMR3CallRC(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, ...)
1809{
1810 va_list args;
1811 va_start(args, cArgs);
1812 int rc = VMMR3CallRCV(pVM, RCPtrEntry, cArgs, args);
1813 va_end(args);
1814 return rc;
1815}
1816
1817
1818/**
1819 * Calls a RC function.
1820 *
1821 * @param pVM The VM handle.
1822 * @param RCPtrEntry The address of the RC function.
1823 * @param cArgs The number of arguments in the ....
1824 * @param args Arguments to the function.
1825 */
1826VMMR3DECL(int) VMMR3CallRCV(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, va_list args)
1827{
1828 /* Raw mode implies 1 VCPU. */
1829 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1830 PVMCPU pVCpu = &pVM->aCpus[0];
1831
1832 Log2(("VMMR3CallGCV: RCPtrEntry=%RRv cArgs=%d\n", RCPtrEntry, cArgs));
1833
1834 /*
1835 * Setup the call frame using the trampoline.
1836 */
1837 CPUMHyperSetCtxCore(pVCpu, NULL);
1838 memset(pVCpu->vmm.s.pbEMTStackR3, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
1839 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC - cArgs * sizeof(RTGCUINTPTR32));
1840 PRTGCUINTPTR32 pFrame = (PRTGCUINTPTR32)(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE) - cArgs;
1841 int i = cArgs;
1842 while (i-- > 0)
1843 *pFrame++ = va_arg(args, RTGCUINTPTR32);
1844
1845 CPUMPushHyper(pVCpu, cArgs * sizeof(RTGCUINTPTR32)); /* stack frame size */
1846 CPUMPushHyper(pVCpu, RCPtrEntry); /* what to call */
1847 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
1848
1849 /*
1850 * We hide log flushes (outer) and hypervisor interrupts (inner).
1851 */
1852 for (;;)
1853 {
1854 int rc;
1855 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1856 do
1857 {
1858#ifdef NO_SUPCALLR0VMM
1859 rc = VERR_GENERAL_FAILURE;
1860#else
1861 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1862 if (RT_LIKELY(rc == VINF_SUCCESS))
1863 rc = pVCpu->vmm.s.iLastGZRc;
1864#endif
1865 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1866
1867 /*
1868 * Flush the logs.
1869 */
1870#ifdef LOG_ENABLED
1871 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1872 if ( pLogger
1873 && pLogger->offScratch > 0)
1874 RTLogFlushRC(NULL, pLogger);
1875#endif
1876#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1877 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1878 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1879 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1880#endif
1881 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
1882 VMMR3FatalDump(pVM, pVCpu, rc);
1883 if (rc != VINF_VMM_CALL_HOST)
1884 {
1885 Log2(("VMMR3CallGCV: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1886 return rc;
1887 }
1888 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1889 if (RT_FAILURE(rc))
1890 return rc;
1891 }
1892}
1893
1894
1895/**
1896 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
1897 *
1898 * @returns VBox status code.
1899 * @param pVM The VM to operate on.
1900 * @param uOperation Operation to execute.
1901 * @param u64Arg Constant argument.
1902 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
1903 * details.
1904 */
1905VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
1906{
1907 PVMCPU pVCpu = VMMGetCpu(pVM);
1908 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1909
1910 /*
1911 * Call Ring-0 entry with init code.
1912 */
1913 int rc;
1914 for (;;)
1915 {
1916#ifdef NO_SUPCALLR0VMM
1917 rc = VERR_GENERAL_FAILURE;
1918#else
1919 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, pVCpu->idCpu, uOperation, u64Arg, pReqHdr);
1920#endif
1921 /*
1922 * Flush the logs.
1923 */
1924#ifdef LOG_ENABLED
1925 if ( pVCpu->vmm.s.pR0LoggerR3
1926 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
1927 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
1928#endif
1929 if (rc != VINF_VMM_CALL_HOST)
1930 break;
1931 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1932 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
1933 break;
1934 /* Resume R0 */
1935 }
1936
1937 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
1938 ("uOperation=%u rc=%Rrc\n", uOperation, rc),
1939 VERR_INTERNAL_ERROR);
1940 return rc;
1941}
1942
1943
1944/**
1945 * Resumes executing hypervisor code when interrupted by a queue flush or a
1946 * debug event.
1947 *
1948 * @returns VBox status code.
1949 * @param pVM VM handle.
1950 * @param pVCpu VMCPU handle.
1951 */
1952VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM, PVMCPU pVCpu)
1953{
1954 Log(("VMMR3ResumeHyper: eip=%RRv esp=%RRv\n", CPUMGetHyperEIP(pVCpu), CPUMGetHyperESP(pVCpu)));
1955 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1956
1957 /*
1958 * We hide log flushes (outer) and hypervisor interrupts (inner).
1959 */
1960 for (;;)
1961 {
1962 int rc;
1963 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1964 do
1965 {
1966#ifdef NO_SUPCALLR0VMM
1967 rc = VERR_GENERAL_FAILURE;
1968#else
1969 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1970 if (RT_LIKELY(rc == VINF_SUCCESS))
1971 rc = pVCpu->vmm.s.iLastGZRc;
1972#endif
1973 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1974
1975 /*
1976 * Flush the loggers,
1977 */
1978#ifdef LOG_ENABLED
1979 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1980 if ( pLogger
1981 && pLogger->offScratch > 0)
1982 RTLogFlushRC(NULL, pLogger);
1983#endif
1984#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1985 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1986 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1987 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1988#endif
1989 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
1990 VMMR3FatalDump(pVM, pVCpu, rc);
1991 if (rc != VINF_VMM_CALL_HOST)
1992 {
1993 Log(("VMMR3ResumeHyper: returns %Rrc\n", rc));
1994 return rc;
1995 }
1996 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1997 if (RT_FAILURE(rc))
1998 return rc;
1999 }
2000}
2001
2002
2003/**
2004 * Service a call to the ring-3 host code.
2005 *
2006 * @returns VBox status code.
2007 * @param pVM VM handle.
2008 * @param pVCpu VMCPU handle
2009 * @remark Careful with critsects.
2010 */
2011static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2012{
2013 /*
2014 * We must also check for pending critsect exits or else we can deadlock
2015 * when entering other critsects here.
2016 */
2017 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PDM_CRITSECT))
2018 PDMCritSectFF(pVCpu);
2019
2020 switch (pVCpu->vmm.s.enmCallRing3Operation)
2021 {
2022 /*
2023 * Acquire the PDM lock.
2024 */
2025 case VMMCALLRING3_PDM_LOCK:
2026 {
2027 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
2028 break;
2029 }
2030
2031 /*
2032 * Flush a PDM queue.
2033 */
2034 case VMMCALLRING3_PDM_QUEUE_FLUSH:
2035 {
2036 PDMR3QueueFlushWorker(pVM, NULL);
2037 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2038 break;
2039 }
2040
2041 /*
2042 * Grow the PGM pool.
2043 */
2044 case VMMCALLRING3_PGM_POOL_GROW:
2045 {
2046 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM);
2047 break;
2048 }
2049
2050 /*
2051 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2052 */
2053 case VMMCALLRING3_PGM_MAP_CHUNK:
2054 {
2055 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2056 break;
2057 }
2058
2059 /*
2060 * Allocates more handy pages.
2061 */
2062 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2063 {
2064 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2065 break;
2066 }
2067
2068 /*
2069 * Allocates a large page.
2070 */
2071 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2072 {
2073 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2074 break;
2075 }
2076
2077 /*
2078 * Acquire the PGM lock.
2079 */
2080 case VMMCALLRING3_PGM_LOCK:
2081 {
2082 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
2083 break;
2084 }
2085
2086 /*
2087 * Acquire the MM hypervisor heap lock.
2088 */
2089 case VMMCALLRING3_MMHYPER_LOCK:
2090 {
2091 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
2092 break;
2093 }
2094
2095 /*
2096 * Flush REM handler notifications.
2097 */
2098 case VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS:
2099 {
2100 REMR3ReplayHandlerNotifications(pVM);
2101 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2102 break;
2103 }
2104
2105 /*
2106 * This is a noop. We just take this route to avoid unnecessary
2107 * tests in the loops.
2108 */
2109 case VMMCALLRING3_VMM_LOGGER_FLUSH:
2110 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2111 LogAlways(("*FLUSH*\n"));
2112 break;
2113
2114 /*
2115 * Set the VM error message.
2116 */
2117 case VMMCALLRING3_VM_SET_ERROR:
2118 VMR3SetErrorWorker(pVM);
2119 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2120 break;
2121
2122 /*
2123 * Set the VM runtime error message.
2124 */
2125 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
2126 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
2127 break;
2128
2129 /*
2130 * Signal a ring 0 hypervisor assertion.
2131 * Cancel the longjmp operation that's in progress.
2132 */
2133 case VMMCALLRING3_VM_R0_ASSERTION:
2134 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2135 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2136#ifdef RT_ARCH_X86
2137 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2138#else
2139 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2140#endif
2141 LogRel((pVM->vmm.s.szRing0AssertMsg1));
2142 LogRel((pVM->vmm.s.szRing0AssertMsg2));
2143 return VERR_VMM_RING0_ASSERTION;
2144
2145 /*
2146 * A forced switch to ring 0 for preemption purposes.
2147 */
2148 case VMMCALLRING3_VM_R0_PREEMPT:
2149 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2150 break;
2151
2152 default:
2153 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2154 return VERR_INTERNAL_ERROR;
2155 }
2156
2157 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2158 return VINF_SUCCESS;
2159}
2160
2161
2162/**
2163 * Displays the Force action Flags.
2164 *
2165 * @param pVM The VM handle.
2166 * @param pHlp The output helpers.
2167 * @param pszArgs The additional arguments (ignored).
2168 */
2169static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2170{
2171 int c;
2172 uint32_t f;
2173#define PRINT_FLAG(prf,flag) do { \
2174 if (f & (prf##flag)) \
2175 { \
2176 static const char *s_psz = #flag; \
2177 if (!(c % 6)) \
2178 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2179 else \
2180 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2181 c++; \
2182 f &= ~(prf##flag); \
2183 } \
2184 } while (0)
2185
2186#define PRINT_GROUP(prf,grp,sfx) do { \
2187 if (f & (prf##grp##sfx)) \
2188 { \
2189 static const char *s_psz = #grp; \
2190 if (!(c % 5)) \
2191 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2192 else \
2193 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2194 c++; \
2195 } \
2196 } while (0)
2197
2198 /*
2199 * The global flags.
2200 */
2201 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2202 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2203
2204 /* show the flag mnemonics */
2205 c = 0;
2206 f = fGlobalForcedActions;
2207 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2208 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2209 PRINT_FLAG(VM_FF_,PDM_DMA);
2210 PRINT_FLAG(VM_FF_,DBGF);
2211 PRINT_FLAG(VM_FF_,REQUEST);
2212 PRINT_FLAG(VM_FF_,TERMINATE);
2213 PRINT_FLAG(VM_FF_,RESET);
2214 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2215 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2216 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2217 PRINT_FLAG(VM_FF_,REM_HANDLER_NOTIFY);
2218 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2219 if (f)
2220 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2221 else
2222 pHlp->pfnPrintf(pHlp, "\n");
2223
2224 /* the groups */
2225 c = 0;
2226 f = fGlobalForcedActions;
2227 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2228 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2229 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2230 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2231 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2232 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2233 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2234 PRINT_GROUP(VM_FF_,ALL_BUT_RAW,_MASK);
2235 if (c)
2236 pHlp->pfnPrintf(pHlp, "\n");
2237
2238 /*
2239 * Per CPU flags.
2240 */
2241 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2242 {
2243 const uint32_t fLocalForcedActions = pVM->aCpus[i].fLocalForcedActions;
2244 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX32", i, fLocalForcedActions);
2245
2246 /* show the flag mnemonics */
2247 c = 0;
2248 f = fLocalForcedActions;
2249 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2250 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2251 PRINT_FLAG(VMCPU_FF_,TIMER);
2252 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2253 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2254 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2255 PRINT_FLAG(VMCPU_FF_,TRPM_SYNC_IDT);
2256 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_TSS);
2257 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_GDT);
2258 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_LDT);
2259 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2260 PRINT_FLAG(VMCPU_FF_,CSAM_SCAN_PAGE);
2261 PRINT_FLAG(VMCPU_FF_,CSAM_PENDING_ACTION);
2262 PRINT_FLAG(VMCPU_FF_,TO_R3);
2263 if (f)
2264 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2265 else
2266 pHlp->pfnPrintf(pHlp, "\n");
2267
2268 /* the groups */
2269 c = 0;
2270 f = fLocalForcedActions;
2271 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2272 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2273 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2274 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2275 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2276 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2277 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2278 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2279 PRINT_GROUP(VMCPU_FF_,HWACCM_TO_R3,_MASK);
2280 PRINT_GROUP(VMCPU_FF_,ALL_BUT_RAW,_MASK);
2281 if (c)
2282 pHlp->pfnPrintf(pHlp, "\n");
2283 }
2284
2285#undef PRINT_FLAG
2286#undef PRINT_GROUP
2287}
2288
Note: See TracBrowser for help on using the repository browser.

© 2023 Oracle
ContactPrivacy policyTerms of Use