VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPool.cpp@ 25414

Last change on this file since 25414 was 25229, checked in by vboxsync, 15 years ago

PGMPool.cpp: -Wshadow.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 44.3 KB
Line 
1/* $Id: PGMPool.cpp 25229 2009-12-08 11:10:45Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/** @page pg_pgm_pool PGM Shadow Page Pool
23 *
24 * Motivations:
25 * -# Relationship between shadow page tables and physical guest pages. This
26 * should allow us to skip most of the global flushes now following access
27 * handler changes. The main expense is flushing shadow pages.
28 * -# Limit the pool size if necessary (default is kind of limitless).
29 * -# Allocate shadow pages from RC. We use to only do this in SyncCR3.
30 * -# Required for 64-bit guests.
31 * -# Combining the PD cache and page pool in order to simplify caching.
32 *
33 *
34 * @section sec_pgm_pool_outline Design Outline
35 *
36 * The shadow page pool tracks pages used for shadowing paging structures (i.e.
37 * page tables, page directory, page directory pointer table and page map
38 * level-4). Each page in the pool has an unique identifier. This identifier is
39 * used to link a guest physical page to a shadow PT. The identifier is a
40 * non-zero value and has a relativly low max value - say 14 bits. This makes it
41 * possible to fit it into the upper bits of the of the aHCPhys entries in the
42 * ram range.
43 *
44 * By restricting host physical memory to the first 48 bits (which is the
45 * announced physical memory range of the K8L chip (scheduled for 2008)), we
46 * can safely use the upper 16 bits for shadow page ID and reference counting.
47 *
48 * Update: The 48 bit assumption will be lifted with the new physical memory
49 * management (PGMPAGE), so we won't have any trouble when someone stuffs 2TB
50 * into a box in some years.
51 *
52 * Now, it's possible for a page to be aliased, i.e. mapped by more than one PT
53 * or PD. This is solved by creating a list of physical cross reference extents
54 * when ever this happens. Each node in the list (extent) is can contain 3 page
55 * pool indexes. The list it self is chained using indexes into the paPhysExt
56 * array.
57 *
58 *
59 * @section sec_pgm_pool_life Life Cycle of a Shadow Page
60 *
61 * -# The SyncPT function requests a page from the pool.
62 * The request includes the kind of page it is (PT/PD, PAE/legacy), the
63 * address of the page it's shadowing, and more.
64 * -# The pool responds to the request by allocating a new page.
65 * When the cache is enabled, it will first check if it's in the cache.
66 * Should the pool be exhausted, one of two things can be done:
67 * -# Flush the whole pool and current CR3.
68 * -# Use the cache to find a page which can be flushed (~age).
69 * -# The SyncPT function will sync one or more pages and insert it into the
70 * shadow PD.
71 * -# The SyncPage function may sync more pages on a later \#PFs.
72 * -# The page is freed / flushed in SyncCR3 (perhaps) and some other cases.
73 * When caching is enabled, the page isn't flush but remains in the cache.
74 *
75 *
76 * @section sec_pgm_pool_impl Monitoring
77 *
78 * We always monitor PAGE_SIZE chunks of memory. When we've got multiple shadow
79 * pages for the same PAGE_SIZE of guest memory (PAE and mixed PD/PT) the pages
80 * sharing the monitor get linked using the iMonitoredNext/Prev. The head page
81 * is the pvUser to the access handlers.
82 *
83 *
84 * @section sec_pgm_pool_impl Implementation
85 *
86 * The pool will take pages from the MM page pool. The tracking data
87 * (attributes, bitmaps and so on) are allocated from the hypervisor heap. The
88 * pool content can be accessed both by using the page id and the physical
89 * address (HC). The former is managed by means of an array, the latter by an
90 * offset based AVL tree.
91 *
92 * Flushing of a pool page means that we iterate the content (we know what kind
93 * it is) and updates the link information in the ram range.
94 *
95 * ...
96 */
97
98
99/*******************************************************************************
100* Header Files *
101*******************************************************************************/
102#define LOG_GROUP LOG_GROUP_PGM_POOL
103#include <VBox/pgm.h>
104#include <VBox/mm.h>
105#include "PGMInternal.h"
106#include <VBox/vm.h>
107
108#include <VBox/log.h>
109#include <VBox/err.h>
110#include <iprt/asm.h>
111#include <iprt/string.h>
112#include <VBox/dbg.h>
113
114
115/*******************************************************************************
116* Internal Functions *
117*******************************************************************************/
118#ifdef PGMPOOL_WITH_MONITORING
119static DECLCALLBACK(int) pgmR3PoolAccessHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
120#endif /* PGMPOOL_WITH_MONITORING */
121#ifdef VBOX_WITH_DEBUGGER
122static DECLCALLBACK(int) pgmR3PoolCmdCheck(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
123#endif
124
125#ifdef VBOX_WITH_DEBUGGER
126/** Command descriptors. */
127static const DBGCCMD g_aCmds[] =
128{
129 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
130 { "pgmpoolcheck", 0, 0, NULL, 0, NULL, 0, pgmR3PoolCmdCheck, "", "Check the pgm pool pages." },
131};
132#endif
133
134/**
135 * Initalizes the pool
136 *
137 * @returns VBox status code.
138 * @param pVM The VM handle.
139 */
140int pgmR3PoolInit(PVM pVM)
141{
142 AssertCompile(NIL_PGMPOOL_IDX == 0);
143 /* pPage->cLocked is an unsigned byte. */
144 AssertCompile(VMM_MAX_CPU_COUNT <= 255);
145
146 /*
147 * Query Pool config.
148 */
149 PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM/Pool");
150
151 /** @cfgm{/PGM/Pool/MaxPages, uint16_t, #pages, 16, 0x3fff, 1024}
152 * The max size of the shadow page pool in pages. The pool will grow dynamically
153 * up to this limit.
154 */
155 uint16_t cMaxPages;
156 int rc = CFGMR3QueryU16Def(pCfg, "MaxPages", &cMaxPages, 4*_1M >> PAGE_SHIFT);
157 AssertLogRelRCReturn(rc, rc);
158 AssertLogRelMsgReturn(cMaxPages <= PGMPOOL_IDX_LAST && cMaxPages >= RT_ALIGN(PGMPOOL_IDX_FIRST, 16),
159 ("cMaxPages=%u (%#x)\n", cMaxPages, cMaxPages), VERR_INVALID_PARAMETER);
160 cMaxPages = RT_ALIGN(cMaxPages, 16);
161
162 /** @cfgm{/PGM/Pool/MaxUsers, uint16_t, #users, MaxUsers, 32K, MaxPages*2}
163 * The max number of shadow page user tracking records. Each shadow page has
164 * zero of other shadow pages (or CR3s) that references it, or uses it if you
165 * like. The structures describing these relationships are allocated from a
166 * fixed sized pool. This configuration variable defines the pool size.
167 */
168 uint16_t cMaxUsers;
169 rc = CFGMR3QueryU16Def(pCfg, "MaxUsers", &cMaxUsers, cMaxPages * 2);
170 AssertLogRelRCReturn(rc, rc);
171 AssertLogRelMsgReturn(cMaxUsers >= cMaxPages && cMaxPages <= _32K,
172 ("cMaxUsers=%u (%#x)\n", cMaxUsers, cMaxUsers), VERR_INVALID_PARAMETER);
173
174 /** @cfgm{/PGM/Pool/MaxPhysExts, uint16_t, #extents, 16, MaxPages * 2, MAX(MaxPages*2,0x3fff)}
175 * The max number of extents for tracking aliased guest pages.
176 */
177 uint16_t cMaxPhysExts;
178 rc = CFGMR3QueryU16Def(pCfg, "MaxPhysExts", &cMaxPhysExts, RT_MAX(cMaxPages * 2, PGMPOOL_IDX_LAST));
179 AssertLogRelRCReturn(rc, rc);
180 AssertLogRelMsgReturn(cMaxPhysExts >= 16 && cMaxPages <= PGMPOOL_IDX_LAST,
181 ("cMaxPhysExts=%u (%#x)\n", cMaxPhysExts, cMaxPhysExts), VERR_INVALID_PARAMETER);
182
183 /** @cfgm{/PGM/Pool/ChacheEnabled, bool, true}
184 * Enables or disabling caching of shadow pages. Chaching means that we will try
185 * reuse shadow pages instead of recreating them everything SyncCR3, SyncPT or
186 * SyncPage requests one. When reusing a shadow page, we can save time
187 * reconstructing it and it's children.
188 */
189 bool fCacheEnabled;
190 rc = CFGMR3QueryBoolDef(pCfg, "CacheEnabled", &fCacheEnabled, true);
191 AssertLogRelRCReturn(rc, rc);
192
193 Log(("pgmR3PoolInit: cMaxPages=%#RX16 cMaxUsers=%#RX16 cMaxPhysExts=%#RX16 fCacheEnable=%RTbool\n",
194 cMaxPages, cMaxUsers, cMaxPhysExts, fCacheEnabled));
195
196 /*
197 * Allocate the data structures.
198 */
199 uint32_t cb = RT_OFFSETOF(PGMPOOL, aPages[cMaxPages]);
200#ifdef PGMPOOL_WITH_USER_TRACKING
201 cb += cMaxUsers * sizeof(PGMPOOLUSER);
202#endif
203#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
204 cb += cMaxPhysExts * sizeof(PGMPOOLPHYSEXT);
205#endif
206 PPGMPOOL pPool;
207 rc = MMR3HyperAllocOnceNoRel(pVM, cb, 0, MM_TAG_PGM_POOL, (void **)&pPool);
208 if (RT_FAILURE(rc))
209 return rc;
210 pVM->pgm.s.pPoolR3 = pPool;
211 pVM->pgm.s.pPoolR0 = MMHyperR3ToR0(pVM, pPool);
212 pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pPool);
213
214 /*
215 * Initialize it.
216 */
217 pPool->pVMR3 = pVM;
218 pPool->pVMR0 = pVM->pVMR0;
219 pPool->pVMRC = pVM->pVMRC;
220 pPool->cMaxPages = cMaxPages;
221 pPool->cCurPages = PGMPOOL_IDX_FIRST;
222#ifdef PGMPOOL_WITH_USER_TRACKING
223 pPool->iUserFreeHead = 0;
224 pPool->cMaxUsers = cMaxUsers;
225 PPGMPOOLUSER paUsers = (PPGMPOOLUSER)&pPool->aPages[pPool->cMaxPages];
226 pPool->paUsersR3 = paUsers;
227 pPool->paUsersR0 = MMHyperR3ToR0(pVM, paUsers);
228 pPool->paUsersRC = MMHyperR3ToRC(pVM, paUsers);
229 for (unsigned i = 0; i < cMaxUsers; i++)
230 {
231 paUsers[i].iNext = i + 1;
232 paUsers[i].iUser = NIL_PGMPOOL_IDX;
233 paUsers[i].iUserTable = 0xfffffffe;
234 }
235 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
236#endif
237#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
238 pPool->iPhysExtFreeHead = 0;
239 pPool->cMaxPhysExts = cMaxPhysExts;
240 PPGMPOOLPHYSEXT paPhysExts = (PPGMPOOLPHYSEXT)&paUsers[cMaxUsers];
241 pPool->paPhysExtsR3 = paPhysExts;
242 pPool->paPhysExtsR0 = MMHyperR3ToR0(pVM, paPhysExts);
243 pPool->paPhysExtsRC = MMHyperR3ToRC(pVM, paPhysExts);
244 for (unsigned i = 0; i < cMaxPhysExts; i++)
245 {
246 paPhysExts[i].iNext = i + 1;
247 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
248 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
249 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
250 }
251 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
252#endif
253#ifdef PGMPOOL_WITH_CACHE
254 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
255 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
256 pPool->iAgeHead = NIL_PGMPOOL_IDX;
257 pPool->iAgeTail = NIL_PGMPOOL_IDX;
258 pPool->fCacheEnabled = fCacheEnabled;
259#endif
260#ifdef PGMPOOL_WITH_MONITORING
261 pPool->pfnAccessHandlerR3 = pgmR3PoolAccessHandler;
262 pPool->pszAccessHandler = "Guest Paging Access Handler";
263#endif
264 pPool->HCPhysTree = 0;
265
266 /* The NIL entry. */
267 Assert(NIL_PGMPOOL_IDX == 0);
268 pPool->aPages[NIL_PGMPOOL_IDX].enmKind = PGMPOOLKIND_INVALID;
269
270 /* The Shadow 32-bit PD. (32 bits guest paging) */
271 pPool->aPages[PGMPOOL_IDX_PD].Core.Key = NIL_RTHCPHYS;
272 pPool->aPages[PGMPOOL_IDX_PD].GCPhys = NIL_RTGCPHYS;
273 pPool->aPages[PGMPOOL_IDX_PD].pvPageR3 = 0;
274 pPool->aPages[PGMPOOL_IDX_PD].enmKind = PGMPOOLKIND_32BIT_PD;
275 pPool->aPages[PGMPOOL_IDX_PD].idx = PGMPOOL_IDX_PD;
276
277 /* The Shadow PDPT. */
278 pPool->aPages[PGMPOOL_IDX_PDPT].Core.Key = NIL_RTHCPHYS;
279 pPool->aPages[PGMPOOL_IDX_PDPT].GCPhys = NIL_RTGCPHYS;
280 pPool->aPages[PGMPOOL_IDX_PDPT].pvPageR3 = 0;
281 pPool->aPages[PGMPOOL_IDX_PDPT].enmKind = PGMPOOLKIND_PAE_PDPT;
282 pPool->aPages[PGMPOOL_IDX_PDPT].idx = PGMPOOL_IDX_PDPT;
283
284 /* The Shadow AMD64 CR3. */
285 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].Core.Key = NIL_RTHCPHYS;
286 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].GCPhys = NIL_RTGCPHYS;
287 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].pvPageR3 = 0;
288 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].enmKind = PGMPOOLKIND_64BIT_PML4;
289 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].idx = PGMPOOL_IDX_AMD64_CR3;
290
291 /* The Nested Paging CR3. */
292 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].Core.Key = NIL_RTHCPHYS;
293 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].GCPhys = NIL_RTGCPHYS;
294 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].pvPageR3 = 0;
295 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].enmKind = PGMPOOLKIND_ROOT_NESTED;
296 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].idx = PGMPOOL_IDX_NESTED_ROOT;
297
298 /*
299 * Set common stuff.
300 */
301 for (unsigned iPage = 1; iPage < PGMPOOL_IDX_FIRST; iPage++)
302 {
303 pPool->aPages[iPage].iNext = NIL_PGMPOOL_IDX;
304#ifdef PGMPOOL_WITH_USER_TRACKING
305 pPool->aPages[iPage].iUserHead = NIL_PGMPOOL_USER_INDEX;
306#endif
307#ifdef PGMPOOL_WITH_MONITORING
308 pPool->aPages[iPage].iModifiedNext = NIL_PGMPOOL_IDX;
309 pPool->aPages[iPage].iModifiedPrev = NIL_PGMPOOL_IDX;
310 pPool->aPages[iPage].iMonitoredNext = NIL_PGMPOOL_IDX;
311 pPool->aPages[iPage].iMonitoredNext = NIL_PGMPOOL_IDX;
312#endif
313#ifdef PGMPOOL_WITH_CACHE
314 pPool->aPages[iPage].iAgeNext = NIL_PGMPOOL_IDX;
315 pPool->aPages[iPage].iAgePrev = NIL_PGMPOOL_IDX;
316#endif
317 Assert(pPool->aPages[iPage].idx == iPage);
318 Assert(pPool->aPages[iPage].GCPhys == NIL_RTGCPHYS);
319 Assert(!pPool->aPages[iPage].fSeenNonGlobal);
320 Assert(!pPool->aPages[iPage].fMonitored);
321 Assert(!pPool->aPages[iPage].fCached);
322 Assert(!pPool->aPages[iPage].fZeroed);
323 Assert(!pPool->aPages[iPage].fReusedFlushPending);
324 }
325
326#ifdef VBOX_WITH_STATISTICS
327 /*
328 * Register statistics.
329 */
330 STAM_REG(pVM, &pPool->cCurPages, STAMTYPE_U16, "/PGM/Pool/cCurPages", STAMUNIT_PAGES, "Current pool size.");
331 STAM_REG(pVM, &pPool->cMaxPages, STAMTYPE_U16, "/PGM/Pool/cMaxPages", STAMUNIT_PAGES, "Max pool size.");
332 STAM_REG(pVM, &pPool->cUsedPages, STAMTYPE_U16, "/PGM/Pool/cUsedPages", STAMUNIT_PAGES, "The number of pages currently in use.");
333 STAM_REG(pVM, &pPool->cUsedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/cUsedPagesHigh", STAMUNIT_PAGES, "The high watermark for cUsedPages.");
334 STAM_REG(pVM, &pPool->StatAlloc, STAMTYPE_PROFILE_ADV, "/PGM/Pool/Alloc", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolAlloc.");
335 STAM_REG(pVM, &pPool->StatClearAll, STAMTYPE_PROFILE, "/PGM/Pool/ClearAll", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolClearAll.");
336 STAM_REG(pVM, &pPool->StatR3Reset, STAMTYPE_PROFILE, "/PGM/Pool/R3Reset", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolReset.");
337 STAM_REG(pVM, &pPool->StatFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFlushPage.");
338 STAM_REG(pVM, &pPool->StatFree, STAMTYPE_PROFILE, "/PGM/Pool/Free", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFree.");
339 STAM_REG(pVM, &pPool->StatForceFlushPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForce", STAMUNIT_OCCURENCES, "Counting explicit flushes by PGMPoolFlushPage().");
340 STAM_REG(pVM, &pPool->StatForceFlushDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForceDirty", STAMUNIT_OCCURENCES, "Counting explicit flushes of dirty pages by PGMPoolFlushPage().");
341 STAM_REG(pVM, &pPool->StatForceFlushReused, STAMTYPE_COUNTER, "/PGM/Pool/FlushReused", STAMUNIT_OCCURENCES, "Counting flushes for reused pages.");
342 STAM_REG(pVM, &pPool->StatZeroPage, STAMTYPE_PROFILE, "/PGM/Pool/ZeroPage", STAMUNIT_TICKS_PER_CALL, "Profiling time spent zeroing pages. Overlaps with Alloc.");
343# ifdef PGMPOOL_WITH_USER_TRACKING
344 STAM_REG(pVM, &pPool->cMaxUsers, STAMTYPE_U16, "/PGM/Pool/Track/cMaxUsers", STAMUNIT_COUNT, "Max user tracking records.");
345 STAM_REG(pVM, &pPool->cPresent, STAMTYPE_U32, "/PGM/Pool/Track/cPresent", STAMUNIT_COUNT, "Number of present page table entries.");
346 STAM_REG(pVM, &pPool->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Pool/Track/Deref", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackDeref.");
347 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPT, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPT", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPT.");
348 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTs, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTs", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTs.");
349 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTsSlow, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTsSlow", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTsSlow.");
350 STAM_REG(pVM, &pPool->StatTrackFlushEntry, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Flush", STAMUNIT_COUNT, "Nr of flushed entries.");
351 STAM_REG(pVM, &pPool->StatTrackFlushEntryKeep, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Update", STAMUNIT_COUNT, "Nr of updated entries.");
352 STAM_REG(pVM, &pPool->StatTrackFreeUpOneUser, STAMTYPE_COUNTER, "/PGM/Pool/Track/FreeUpOneUser", STAMUNIT_TICKS_PER_CALL, "The number of times we were out of user tracking records.");
353# endif
354# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
355 STAM_REG(pVM, &pPool->StatTrackDerefGCPhys, STAMTYPE_PROFILE, "/PGM/Pool/Track/DrefGCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling deref activity related tracking GC physical pages.");
356 STAM_REG(pVM, &pPool->StatTrackLinearRamSearches, STAMTYPE_COUNTER, "/PGM/Pool/Track/LinearRamSearches", STAMUNIT_OCCURENCES, "The number of times we had to do linear ram searches.");
357 STAM_REG(pVM, &pPool->StamTrackPhysExtAllocFailures,STAMTYPE_COUNTER, "/PGM/Pool/Track/PhysExtAllocFailures", STAMUNIT_OCCURENCES, "The number of failing pgmPoolTrackPhysExtAlloc calls.");
358# endif
359# ifdef PGMPOOL_WITH_MONITORING
360 STAM_REG(pVM, &pPool->StatMonitorRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 access handler.");
361 STAM_REG(pVM, &pPool->StatMonitorRZEmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
362 STAM_REG(pVM, &pPool->StatMonitorRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler.");
363 STAM_REG(pVM, &pPool->StatMonitorRZFlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit.");
364 STAM_REG(pVM, &pPool->StatMonitorRZFlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often.");
365 STAM_REG(pVM, &pPool->StatMonitorRZFork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
366 STAM_REG(pVM, &pPool->StatMonitorRZHandled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 access we've handled (except REP STOSD).");
367 STAM_REG(pVM, &pPool->StatMonitorRZIntrFailPatch1, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IntrFailPatch1", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction.");
368 STAM_REG(pVM, &pPool->StatMonitorRZIntrFailPatch2, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IntrFailPatch2", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction during flushing.");
369 STAM_REG(pVM, &pPool->StatMonitorRZRepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
370 STAM_REG(pVM, &pPool->StatMonitorRZRepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
371 STAM_REG(pVM, &pPool->StatMonitorRZFaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
372 STAM_REG(pVM, &pPool->StatMonitorRZFaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
373 STAM_REG(pVM, &pPool->StatMonitorRZFaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
374 STAM_REG(pVM, &pPool->StatMonitorRZFaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
375 STAM_REG(pVM, &pPool->StatMonitorR3, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access handler.");
376 STAM_REG(pVM, &pPool->StatMonitorR3EmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
377 STAM_REG(pVM, &pPool->StatMonitorR3FlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the R3 access handler.");
378 STAM_REG(pVM, &pPool->StatMonitorR3FlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit.");
379 STAM_REG(pVM, &pPool->StatMonitorR3FlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often.");
380 STAM_REG(pVM, &pPool->StatMonitorR3Fork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
381 STAM_REG(pVM, &pPool->StatMonitorR3Handled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access we've handled (except REP STOSD).");
382 STAM_REG(pVM, &pPool->StatMonitorR3RepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
383 STAM_REG(pVM, &pPool->StatMonitorR3RepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
384 STAM_REG(pVM, &pPool->StatMonitorR3FaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
385 STAM_REG(pVM, &pPool->StatMonitorR3FaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
386 STAM_REG(pVM, &pPool->StatMonitorR3FaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
387 STAM_REG(pVM, &pPool->StatMonitorR3FaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
388 STAM_REG(pVM, &pPool->StatMonitorR3Async, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Async", STAMUNIT_OCCURENCES, "Times we're called in an async thread and need to flush.");
389 STAM_REG(pVM, &pPool->cModifiedPages, STAMTYPE_U16, "/PGM/Pool/Monitor/cModifiedPages", STAMUNIT_PAGES, "The current cModifiedPages value.");
390 STAM_REG(pVM, &pPool->cModifiedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/Monitor/cModifiedPagesHigh", STAMUNIT_PAGES, "The high watermark for cModifiedPages.");
391 STAM_REG(pVM, &pPool->StatResetDirtyPages, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Resets", STAMUNIT_OCCURENCES, "Times we've called pgmPoolResetDirtyPages (and there were dirty page).");
392 STAM_REG(pVM, &pPool->StatDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Pages", STAMUNIT_OCCURENCES, "Times we've called pgmPoolAddDirtyPage.");
393 STAM_REG(pVM, &pPool->StatDirtyPageDupFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushDup", STAMUNIT_OCCURENCES, "Times we've had to flush duplicates for dirty page management.");
394 STAM_REG(pVM, &pPool->StatDirtyPageOverFlowFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushOverflow",STAMUNIT_OCCURENCES, "Times we've had to flush because of overflow.");
395
396# endif
397# ifdef PGMPOOL_WITH_CACHE
398 STAM_REG(pVM, &pPool->StatCacheHits, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Hits", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls satisfied by the cache.");
399 STAM_REG(pVM, &pPool->StatCacheMisses, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Misses", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls not statisfied by the cache.");
400 STAM_REG(pVM, &pPool->StatCacheKindMismatches, STAMTYPE_COUNTER, "/PGM/Pool/Cache/KindMismatches", STAMUNIT_OCCURENCES, "The number of shadow page kind mismatches. (Better be low, preferably 0!)");
401 STAM_REG(pVM, &pPool->StatCacheFreeUpOne, STAMTYPE_COUNTER, "/PGM/Pool/Cache/FreeUpOne", STAMUNIT_OCCURENCES, "The number of times the cache was asked to free up a page.");
402 STAM_REG(pVM, &pPool->StatCacheCacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Cacheable", STAMUNIT_OCCURENCES, "The number of cacheable allocations.");
403 STAM_REG(pVM, &pPool->StatCacheUncacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Uncacheable", STAMUNIT_OCCURENCES, "The number of uncacheable allocations.");
404# endif
405#endif /* VBOX_WITH_STATISTICS */
406
407#ifdef VBOX_WITH_DEBUGGER
408 /*
409 * Debugger commands.
410 */
411 static bool s_fRegisteredCmds = false;
412 if (!s_fRegisteredCmds)
413 {
414 rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
415 if (RT_SUCCESS(rc))
416 s_fRegisteredCmds = true;
417 }
418#endif
419
420 return VINF_SUCCESS;
421}
422
423
424/**
425 * Relocate the page pool data.
426 *
427 * @param pVM The VM handle.
428 */
429void pgmR3PoolRelocate(PVM pVM)
430{
431 pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3);
432 pVM->pgm.s.pPoolR3->pVMRC = pVM->pVMRC;
433#ifdef PGMPOOL_WITH_USER_TRACKING
434 pVM->pgm.s.pPoolR3->paUsersRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paUsersR3);
435#endif
436#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
437 pVM->pgm.s.pPoolR3->paPhysExtsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paPhysExtsR3);
438#endif
439#ifdef PGMPOOL_WITH_MONITORING
440 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "pgmPoolAccessHandler", &pVM->pgm.s.pPoolR3->pfnAccessHandlerRC);
441 AssertReleaseRC(rc);
442 /* init order hack. */
443 if (!pVM->pgm.s.pPoolR3->pfnAccessHandlerR0)
444 {
445 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "pgmPoolAccessHandler", &pVM->pgm.s.pPoolR3->pfnAccessHandlerR0);
446 AssertReleaseRC(rc);
447 }
448#endif
449}
450
451
452/**
453 * Grows the shadow page pool.
454 *
455 * I.e. adds more pages to it, assuming that hasn't reached cMaxPages yet.
456 *
457 * @returns VBox status code.
458 * @param pVM The VM handle.
459 */
460VMMR3DECL(int) PGMR3PoolGrow(PVM pVM)
461{
462 PPGMPOOL pPool = pVM->pgm.s.pPoolR3;
463 AssertReturn(pPool->cCurPages < pPool->cMaxPages, VERR_INTERNAL_ERROR);
464
465 pgmLock(pVM);
466
467 /*
468 * How much to grow it by?
469 */
470 uint32_t cPages = pPool->cMaxPages - pPool->cCurPages;
471 cPages = RT_MIN(PGMPOOL_CFG_MAX_GROW, cPages);
472 LogFlow(("PGMR3PoolGrow: Growing the pool by %d (%#x) pages.\n", cPages, cPages));
473
474 for (unsigned i = pPool->cCurPages; cPages-- > 0; i++)
475 {
476 PPGMPOOLPAGE pPage = &pPool->aPages[i];
477
478 /* Allocate all pages in low (below 4 GB) memory as 32 bits guests need a page table root in low memory. */
479 pPage->pvPageR3 = MMR3PageAllocLow(pVM);
480 if (!pPage->pvPageR3)
481 {
482 Log(("We're out of memory!! i=%d\n", i));
483 pgmUnlock(pVM);
484 return i ? VINF_SUCCESS : VERR_NO_PAGE_MEMORY;
485 }
486 pPage->Core.Key = MMPage2Phys(pVM, pPage->pvPageR3);
487 pPage->GCPhys = NIL_RTGCPHYS;
488 pPage->enmKind = PGMPOOLKIND_FREE;
489 pPage->idx = pPage - &pPool->aPages[0];
490 LogFlow(("PGMR3PoolGrow: insert page #%#x - %RHp\n", pPage->idx, pPage->Core.Key));
491 pPage->iNext = pPool->iFreeHead;
492#ifdef PGMPOOL_WITH_USER_TRACKING
493 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
494#endif
495#ifdef PGMPOOL_WITH_MONITORING
496 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
497 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
498 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
499 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
500#endif
501#ifdef PGMPOOL_WITH_CACHE
502 pPage->iAgeNext = NIL_PGMPOOL_IDX;
503 pPage->iAgePrev = NIL_PGMPOOL_IDX;
504#endif
505 /* commit it */
506 bool fRc = RTAvloHCPhysInsert(&pPool->HCPhysTree, &pPage->Core); Assert(fRc); NOREF(fRc);
507 pPool->iFreeHead = i;
508 pPool->cCurPages = i + 1;
509 }
510
511 pgmUnlock(pVM);
512 Assert(pPool->cCurPages <= pPool->cMaxPages);
513 return VINF_SUCCESS;
514}
515
516
517#ifdef PGMPOOL_WITH_MONITORING
518
519/**
520 * Worker used by pgmR3PoolAccessHandler when it's invoked by an async thread.
521 *
522 * @param pPool The pool.
523 * @param pPage The page.
524 */
525static DECLCALLBACK(void) pgmR3PoolFlushReusedPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
526{
527 /* for the present this should be safe enough I think... */
528 pgmLock(pPool->pVMR3);
529 if ( pPage->fReusedFlushPending
530 && pPage->enmKind != PGMPOOLKIND_FREE)
531 pgmPoolFlushPage(pPool, pPage);
532 pgmUnlock(pPool->pVMR3);
533}
534
535
536/**
537 * \#PF Handler callback for PT write accesses.
538 *
539 * The handler can not raise any faults, it's mainly for monitoring write access
540 * to certain pages.
541 *
542 * @returns VINF_SUCCESS if the handler has carried out the operation.
543 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
544 * @param pVM VM Handle.
545 * @param GCPhys The physical address the guest is writing to.
546 * @param pvPhys The HC mapping of that address.
547 * @param pvBuf What the guest is reading/writing.
548 * @param cbBuf How much it's reading/writing.
549 * @param enmAccessType The access type.
550 * @param pvUser User argument.
551 */
552static DECLCALLBACK(int) pgmR3PoolAccessHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
553{
554 STAM_PROFILE_START(&pVM->pgm.s.pPoolR3->StatMonitorR3, a);
555 PPGMPOOL pPool = pVM->pgm.s.pPoolR3;
556 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
557 LogFlow(("pgmR3PoolAccessHandler: GCPhys=%RGp %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n",
558 GCPhys, pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind));
559
560 PVMCPU pVCpu = VMMGetCpu(pVM);
561
562 /*
563 * We don't have to be very sophisticated about this since there are relativly few calls here.
564 * However, we must try our best to detect any non-cpu accesses (disk / networking).
565 *
566 * Just to make life more interesting, we'll have to deal with the async threads too.
567 * We cannot flush a page if we're in an async thread because of REM notifications.
568 */
569 pgmLock(pVM);
570 if (PHYS_PAGE_ADDRESS(GCPhys) != PHYS_PAGE_ADDRESS(pPage->GCPhys))
571 {
572 /* Pool page changed while we were waiting for the lock; ignore. */
573 Log(("CPU%d: pgmR3PoolAccessHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhys), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
574 pgmUnlock(pVM);
575 return VINF_PGM_HANDLER_DO_DEFAULT;
576 }
577
578 Assert(pPage->enmKind != PGMPOOLKIND_FREE);
579
580 if (!pVCpu) /** @todo This shouldn't happen any longer, all access handlers will be called on an EMT. All ring-3 handlers, except MMIO, already own the PGM lock. @bugref{3170} */
581 {
582 Log(("pgmR3PoolAccessHandler: async thread, requesting EMT to flush the page: %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n",
583 pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind));
584 STAM_COUNTER_INC(&pPool->StatMonitorR3Async);
585 if (!pPage->fReusedFlushPending)
586 {
587 pgmUnlock(pVM);
588 int rc = VMR3ReqCallVoidNoWait(pPool->pVMR3, VMCPUID_ANY, (PFNRT)pgmR3PoolFlushReusedPage, 2, pPool, pPage);
589 AssertRCReturn(rc, rc);
590 pgmLock(pVM);
591 pPage->fReusedFlushPending = true;
592 pPage->cModifications += 0x1000;
593 }
594
595 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, NULL);
596 /** @todo r=bird: making unsafe assumption about not crossing entries here! */
597 while (cbBuf > 4)
598 {
599 cbBuf -= 4;
600 pvPhys = (uint8_t *)pvPhys + 4;
601 GCPhys += 4;
602 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, NULL);
603 }
604 STAM_PROFILE_STOP(&pPool->StatMonitorR3, a);
605 }
606 else if ( ( pPage->cModifications < 96 /* it's cheaper here. */
607 || pgmPoolIsPageLocked(&pVM->pgm.s, pPage)
608 )
609 && cbBuf <= 4)
610 {
611 /* Clear the shadow entry. */
612 if (!pPage->cModifications++)
613 pgmPoolMonitorModifiedInsert(pPool, pPage);
614 /** @todo r=bird: making unsafe assumption about not crossing entries here! */
615 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, NULL);
616 STAM_PROFILE_STOP(&pPool->StatMonitorR3, a);
617 }
618 else
619 {
620 pgmPoolMonitorChainFlush(pPool, pPage); /* ASSUME that VERR_PGM_POOL_CLEARED can be ignored here and that FFs will deal with it in due time. */
621 STAM_PROFILE_STOP_EX(&pPool->StatMonitorR3, &pPool->StatMonitorR3FlushPage, a);
622 }
623 pgmUnlock(pVM);
624 return VINF_PGM_HANDLER_DO_DEFAULT;
625}
626
627
628/**
629 * Rendezvous callback used by pgmR3PoolClearAll that clears all shadow pages
630 * and all modification counters.
631 *
632 * This is only called on one of the EMTs while the other ones are waiting for
633 * it to complete this function.
634 *
635 * @returns VINF_SUCCESS (VBox strict status code).
636 * @param pVM The VM handle.
637 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
638 * @param pvUser Unused parameter.
639 *
640 * @remark Should only be used when monitoring is available, thus placed in
641 * the PGMPOOL_WITH_MONITORING \#ifdef.
642 * bird: This is no longer the case as we ditched the flush and are
643 * using this instead of it...
644 */
645static DECLCALLBACK(VBOXSTRICTRC) pgmR3PoolClearAllRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
646{
647 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
648 STAM_PROFILE_START(&pPool->StatClearAll, c);
649 LogFlow(("pgmPoolClearAllDoIt: cUsedPages=%d\n", pPool->cUsedPages));
650
651 pgmLock(pVM);
652
653#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
654 pgmPoolResetDirtyPages(pVM);
655#endif
656
657 /*
658 * Iterate all the pages until we've encountered all that are in use.
659 * This is simple but not quite optimal solution.
660 */
661 unsigned cModifiedPages = 0; NOREF(cModifiedPages);
662 unsigned cLeft = pPool->cUsedPages;
663 unsigned iPage = pPool->cCurPages;
664 while (--iPage >= PGMPOOL_IDX_FIRST)
665 {
666 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
667 if (pPage->GCPhys != NIL_RTGCPHYS)
668 {
669 switch (pPage->enmKind)
670 {
671 /*
672 * We only care about shadow page tables.
673 */
674 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
675 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
676 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
677 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
678 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
679 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
680 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
681 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
682 {
683#ifdef PGMPOOL_WITH_USER_TRACKING
684 if (pPage->cPresent)
685#endif
686 {
687 void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
688 STAM_PROFILE_START(&pPool->StatZeroPage, z);
689 ASMMemZeroPage(pvShw);
690 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
691#ifdef PGMPOOL_WITH_USER_TRACKING
692 pPage->cPresent = 0;
693 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
694#endif
695 }
696#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
697 else
698 Assert(!pPage->fDirty);
699#endif
700 }
701 /* fall thru */
702
703 default:
704#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
705 Assert(!pPage->fDirty);
706#endif
707 Assert(!pPage->cModifications || ++cModifiedPages);
708 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
709 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
710 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
711 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
712 pPage->cModifications = 0;
713 break;
714
715 }
716 if (!--cLeft)
717 break;
718 }
719 }
720
721 /* swipe the special pages too. */
722 for (iPage = PGMPOOL_IDX_FIRST_SPECIAL; iPage < PGMPOOL_IDX_FIRST; iPage++)
723 {
724 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
725 if (pPage->GCPhys != NIL_RTGCPHYS)
726 {
727 Assert(!pPage->cModifications || ++cModifiedPages);
728 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
729 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
730 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
731 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
732 pPage->cModifications = 0;
733 }
734 }
735
736#ifndef DEBUG_michael
737 AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
738#endif
739 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
740 pPool->cModifiedPages = 0;
741
742#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
743 /*
744 * Clear all the GCPhys links and rebuild the phys ext free list.
745 */
746 for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
747 pRam;
748 pRam = pRam->CTX_SUFF(pNext))
749 {
750 iPage = pRam->cb >> PAGE_SHIFT;
751 while (iPage-- > 0)
752 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
753 }
754
755 pPool->iPhysExtFreeHead = 0;
756 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
757 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
758 for (unsigned i = 0; i < cMaxPhysExts; i++)
759 {
760 paPhysExts[i].iNext = i + 1;
761 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
762 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
763 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
764 }
765 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
766#endif
767
768#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
769 /* Clear all dirty pages. */
770 pPool->idxFreeDirtyPage = 0;
771 pPool->cDirtyPages = 0;
772 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++)
773 pPool->aIdxDirtyPages[i] = NIL_PGMPOOL_IDX;
774#endif
775
776 /* Clear the PGM_SYNC_CLEAR_PGM_POOL flag on all VCPUs to prevent redundant flushes. */
777 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
778 pVM->aCpus[idCpu].pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
779
780 pPool->cPresent = 0;
781 pgmUnlock(pVM);
782 PGM_INVL_ALL_VCPU_TLBS(pVM);
783 STAM_PROFILE_STOP(&pPool->StatClearAll, c);
784 return VINF_SUCCESS;
785}
786
787
788/**
789 * Clears the shadow page pool.
790 *
791 * @param pVM The VM handle.
792 */
793void pgmR3PoolClearAll(PVM pVM)
794{
795 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PoolClearAllRendezvous, NULL);
796 AssertRC(rc);
797}
798
799#endif /* PGMPOOL_WITH_MONITORING */
800
801#ifdef VBOX_WITH_DEBUGGER
802/**
803 * The '.pgmpoolcheck' command.
804 *
805 * @returns VBox status.
806 * @param pCmd Pointer to the command descriptor (as registered).
807 * @param pCmdHlp Pointer to command helper functions.
808 * @param pVM Pointer to the current VM (if any).
809 * @param paArgs Pointer to (readonly) array of arguments.
810 * @param cArgs Number of arguments in the array.
811 */
812static DECLCALLBACK(int) pgmR3PoolCmdCheck(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
813{
814 /*
815 * Validate input.
816 */
817 if (!pVM)
818 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
819
820 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
821
822 for (unsigned i = 0; i < pPool->cCurPages; i++)
823 {
824 PPGMPOOLPAGE pPage = &pPool->aPages[i];
825 bool fFirstMsg = true;
826
827 /* Todo: cover other paging modes too. */
828 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
829 {
830 PX86PTPAE pShwPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
831 PX86PTPAE pGstPT;
832 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pGstPT); AssertReleaseRC(rc);
833
834 /* Check if any PTEs are out of sync. */
835 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
836 {
837 if (pShwPT->a[j].n.u1Present)
838 {
839 RTHCPHYS HCPhys = -1;
840 rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[j].u & X86_PTE_PAE_PG_MASK, &HCPhys);
841 if ( rc != VINF_SUCCESS
842 || (pShwPT->a[j].u & X86_PTE_PAE_PG_MASK) != HCPhys)
843 {
844 if (fFirstMsg)
845 {
846 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Check pool page %RGp\n", pPage->GCPhys);
847 fFirstMsg = false;
848 }
849 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Mismatch HCPhys: rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, j, pGstPT->a[j].u, pShwPT->a[j].u, HCPhys);
850 }
851 else
852 if ( pShwPT->a[j].n.u1Write
853 && !pGstPT->a[j].n.u1Write)
854 {
855 if (fFirstMsg)
856 {
857 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Check pool page %RGp\n", pPage->GCPhys);
858 fFirstMsg = false;
859 }
860 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Mismatch r/w gst/shw: idx=%d guest %RX64 shw=%RX64 vs %RHp\n", j, pGstPT->a[j].u, pShwPT->a[j].u, HCPhys);
861 }
862 }
863 }
864
865 /* Make sure this page table can't be written to from any shadow mapping. */
866 RTHCPHYS HCPhysPT = -1;
867 rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pPage->GCPhys, &HCPhysPT);
868 AssertMsgRC(rc, ("PGMPhysGCPhys2HCPhys failed with rc=%d for %RGp\n", rc, pPage->GCPhys));
869 if (rc == VINF_SUCCESS)
870 {
871 for (unsigned j = 0; j < pPool->cCurPages; j++)
872 {
873 PPGMPOOLPAGE pTempPage = &pPool->aPages[j];
874
875 if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
876 {
877 PX86PTPAE pShwPT2 = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pTempPage);
878
879 for (unsigned k = 0; k < RT_ELEMENTS(pShwPT->a); k++)
880 {
881 if ( pShwPT2->a[k].n.u1Present
882 && pShwPT2->a[k].n.u1Write
883# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
884 && !pPage->fDirty
885# endif
886 && ((pShwPT2->a[k].u & X86_PTE_PAE_PG_MASK) == HCPhysPT))
887 {
888 if (fFirstMsg)
889 {
890 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Check pool page %RGp\n", pPage->GCPhys);
891 fFirstMsg = false;
892 }
893 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Mismatch: r/w: GCPhys=%RGp idx=%d shw %RX64 %RX64\n", pTempPage->GCPhys, k, pShwPT->a[k].u, pShwPT2->a[k].u);
894 }
895 }
896 }
897 }
898 }
899 }
900 }
901 return VINF_SUCCESS;
902}
903#endif /* VBOX_WITH_DEBUGGER */
Note: See TracBrowser for help on using the repository browser.

© 2023 Oracle
ContactPrivacy policyTerms of Use