VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMInternal.h@ 15414

Last change on this file since 15414 was 15411, checked in by vboxsync, 16 years ago

VMM: Working around set overflows caused by the page pool.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 190.4 KB
Line 
1/* $Id: PGMInternal.h 15411 2008-12-13 03:30:58Z vboxsync $ */
2/** @file
3 * PGM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22#ifndef ___PGMInternal_h
23#define ___PGMInternal_h
24
25#include <VBox/cdefs.h>
26#include <VBox/types.h>
27#include <VBox/err.h>
28#include <VBox/stam.h>
29#include <VBox/param.h>
30#include <VBox/vmm.h>
31#include <VBox/mm.h>
32#include <VBox/pdmcritsect.h>
33#include <VBox/pdmapi.h>
34#include <VBox/dis.h>
35#include <VBox/dbgf.h>
36#include <VBox/log.h>
37#include <VBox/gmm.h>
38#include <VBox/hwaccm.h>
39#include <iprt/avl.h>
40#include <iprt/assert.h>
41#include <iprt/critsect.h>
42
43
44
45/** @defgroup grp_pgm_int Internals
46 * @ingroup grp_pgm
47 * @internal
48 * @{
49 */
50
51
52/** @name PGM Compile Time Config
53 * @{
54 */
55
56/**
57 * Solve page is out of sync issues inside Guest Context (in PGMGC.cpp).
58 * Comment it if it will break something.
59 */
60#define PGM_OUT_OF_SYNC_IN_GC
61
62/**
63 * Check and skip global PDEs for non-global flushes
64 */
65#define PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
66
67/**
68 * Sync N pages instead of a whole page table
69 */
70#define PGM_SYNC_N_PAGES
71
72/**
73 * Number of pages to sync during a page fault
74 *
75 * When PGMPOOL_WITH_GCPHYS_TRACKING is enabled using high values here
76 * causes a lot of unnecessary extents and also is slower than taking more \#PFs.
77 */
78#define PGM_SYNC_NR_PAGES 8
79
80/**
81 * Number of PGMPhysRead/Write cache entries (must be <= sizeof(uint64_t))
82 */
83#define PGM_MAX_PHYSCACHE_ENTRIES 64
84#define PGM_MAX_PHYSCACHE_ENTRIES_MASK (PGM_MAX_PHYSCACHE_ENTRIES-1)
85
86/**
87 * Enable caching of PGMR3PhysRead/WriteByte/Word/Dword
88 */
89#define PGM_PHYSMEMACCESS_CACHING
90
91/** @def PGMPOOL_WITH_CACHE
92 * Enable agressive caching using the page pool.
93 *
94 * This requires PGMPOOL_WITH_USER_TRACKING and PGMPOOL_WITH_MONITORING.
95 */
96#define PGMPOOL_WITH_CACHE
97
98/** @def PGMPOOL_WITH_MIXED_PT_CR3
99 * When defined, we'll deal with 'uncachable' pages.
100 */
101#ifdef PGMPOOL_WITH_CACHE
102# define PGMPOOL_WITH_MIXED_PT_CR3
103#endif
104
105/** @def PGMPOOL_WITH_MONITORING
106 * Monitor the guest pages which are shadowed.
107 * When this is enabled, PGMPOOL_WITH_CACHE or PGMPOOL_WITH_GCPHYS_TRACKING must
108 * be enabled as well.
109 * @remark doesn't really work without caching now. (Mixed PT/CR3 change.)
110 */
111#ifdef PGMPOOL_WITH_CACHE
112# define PGMPOOL_WITH_MONITORING
113#endif
114
115/** @def PGMPOOL_WITH_GCPHYS_TRACKING
116 * Tracking the of shadow pages mapping guest physical pages.
117 *
118 * This is very expensive, the current cache prototype is trying to figure out
119 * whether it will be acceptable with an agressive caching policy.
120 */
121#if defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
122# define PGMPOOL_WITH_GCPHYS_TRACKING
123#endif
124
125/** @def PGMPOOL_WITH_USER_TRACKING
126 * Tracking users of shadow pages. This is required for the linking of shadow page
127 * tables and physical guest addresses.
128 */
129#if defined(PGMPOOL_WITH_GCPHYS_TRACKING) || defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
130# define PGMPOOL_WITH_USER_TRACKING
131#endif
132
133/** @def PGMPOOL_CFG_MAX_GROW
134 * The maximum number of pages to add to the pool in one go.
135 */
136#define PGMPOOL_CFG_MAX_GROW (_256K >> PAGE_SHIFT)
137
138/** @def VBOX_STRICT_PGM_HANDLER_VIRTUAL
139 * Enables some extra assertions for virtual handlers (mainly phys2virt related).
140 */
141#ifdef VBOX_STRICT
142# define VBOX_STRICT_PGM_HANDLER_VIRTUAL
143#endif
144/** @} */
145
146
147/** @name PDPT and PML4 flags.
148 * These are placed in the three bits available for system programs in
149 * the PDPT and PML4 entries.
150 * @{ */
151/** The entry is a permanent one and it's must always be present.
152 * Never free such an entry. */
153#define PGM_PLXFLAGS_PERMANENT RT_BIT_64(10)
154/** Mapping (hypervisor allocated pagetable). */
155#define PGM_PLXFLAGS_MAPPING RT_BIT_64(11)
156/** @} */
157
158/** @name Page directory flags.
159 * These are placed in the three bits available for system programs in
160 * the page directory entries.
161 * @{ */
162/** Mapping (hypervisor allocated pagetable). */
163#define PGM_PDFLAGS_MAPPING RT_BIT_64(10)
164/** Made read-only to facilitate dirty bit tracking. */
165#define PGM_PDFLAGS_TRACK_DIRTY RT_BIT_64(11)
166/** @} */
167
168/** @name Page flags.
169 * These are placed in the three bits available for system programs in
170 * the page entries.
171 * @{ */
172/** Made read-only to facilitate dirty bit tracking. */
173#define PGM_PTFLAGS_TRACK_DIRTY RT_BIT_64(9)
174
175#ifndef PGM_PTFLAGS_CSAM_VALIDATED
176/** Scanned and approved by CSAM (tm).
177 * NOTE: Must be identical to the one defined in CSAMInternal.h!!
178 * @todo Move PGM_PTFLAGS_* and PGM_PDFLAGS_* to VBox/pgm.h. */
179#define PGM_PTFLAGS_CSAM_VALIDATED RT_BIT_64(11)
180#endif
181/** @} */
182
183/** @name Defines used to indicate the shadow and guest paging in the templates.
184 * @{ */
185#define PGM_TYPE_REAL 1
186#define PGM_TYPE_PROT 2
187#define PGM_TYPE_32BIT 3
188#define PGM_TYPE_PAE 4
189#define PGM_TYPE_AMD64 5
190#define PGM_TYPE_NESTED 6
191#define PGM_TYPE_EPT 7
192#define PGM_TYPE_MAX PGM_TYPE_EPT
193/** @} */
194
195/** Macro for checking if the guest is using paging.
196 * @param uGstType PGM_TYPE_*
197 * @param uShwType PGM_TYPE_*
198 * @remark ASSUMES certain order of the PGM_TYPE_* values.
199 */
200#define PGM_WITH_PAGING(uGstType, uShwType) \
201 ( (uGstType) >= PGM_TYPE_32BIT \
202 && (uShwType) != PGM_TYPE_NESTED \
203 && (uShwType) != PGM_TYPE_EPT)
204
205/** Macro for checking if the guest supports the NX bit.
206 * @param uGstType PGM_TYPE_*
207 * @param uShwType PGM_TYPE_*
208 * @remark ASSUMES certain order of the PGM_TYPE_* values.
209 */
210#define PGM_WITH_NX(uGstType, uShwType) \
211 ( (uGstType) >= PGM_TYPE_PAE \
212 && (uShwType) != PGM_TYPE_NESTED \
213 && (uShwType) != PGM_TYPE_EPT)
214
215
216/** @def PGM_HCPHYS_2_PTR
217 * Maps a HC physical page pool address to a virtual address.
218 *
219 * @returns VBox status code.
220 * @param pVM The VM handle.
221 * @param HCPhys The HC physical address to map to a virtual one.
222 * @param ppv Where to store the virtual address. No need to cast this.
223 *
224 * @remark In GC this uses PGMGCDynMapHCPage(), so it will consume of the
225 * small page window employeed by that function. Be careful.
226 * @remark There is no need to assert on the result.
227 */
228#ifdef IN_RC
229# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) \
230 PGMDynMapHCPage(pVM, HCPhys, (void **)(ppv))
231#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
232# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) \
233 pgmR0DynMapHCPageInlined(&(pVM)->pgm.s, HCPhys, (void **)(ppv))
234#else
235# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) \
236 MMPagePhys2PageEx(pVM, HCPhys, (void **)(ppv))
237#endif
238
239/** @def PGM_HCPHYS_2_PTR_BY_PGM
240 * Maps a HC physical page pool address to a virtual address.
241 *
242 * @returns VBox status code.
243 * @param pPGM The PGM instance data.
244 * @param HCPhys The HC physical address to map to a virtual one.
245 * @param ppv Where to store the virtual address. No need to cast this.
246 *
247 * @remark In GC this uses PGMGCDynMapHCPage(), so it will consume of the
248 * small page window employeed by that function. Be careful.
249 * @remark There is no need to assert on the result.
250 */
251#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
252# define PGM_HCPHYS_2_PTR_BY_PGM(pPGM, HCPhys, ppv) \
253 pgmR0DynMapHCPageInlined(pPGM, HCPhys, (void **)(ppv))
254#else
255# define PGM_HCPHYS_2_PTR_BY_PGM(pPGM, HCPhys, ppv) \
256 PGM_HCPHYS_2_PTR(PGM2VM(pPGM), HCPhys, (void **)(ppv))
257#endif
258
259/** @def PGM_GCPHYS_2_PTR
260 * Maps a GC physical page address to a virtual address.
261 *
262 * @returns VBox status code.
263 * @param pVM The VM handle.
264 * @param GCPhys The GC physical address to map to a virtual one.
265 * @param ppv Where to store the virtual address. No need to cast this.
266 *
267 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
268 * small page window employeed by that function. Be careful.
269 * @remark There is no need to assert on the result.
270 */
271#ifdef IN_RC
272# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) \
273 PGMDynMapGCPage(pVM, GCPhys, (void **)(ppv))
274#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
275# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) \
276 pgmR0DynMapGCPageInlined(&(pVM)->pgm.s, GCPhys, (void **)(ppv))
277#else
278# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) \
279 PGMPhysGCPhys2R3Ptr(pVM, GCPhys, 1 /* one page only */, (PRTR3PTR)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
280#endif
281
282/** @def PGM_GCPHYS_2_PTR_BY_PGM
283 * Maps a GC physical page address to a virtual address.
284 *
285 * @returns VBox status code.
286 * @param pPGM Pointer to the PGM instance data.
287 * @param GCPhys The GC physical address to map to a virtual one.
288 * @param ppv Where to store the virtual address. No need to cast this.
289 *
290 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
291 * small page window employeed by that function. Be careful.
292 * @remark There is no need to assert on the result.
293 */
294#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
295# define PGM_GCPHYS_2_PTR_BY_PGM(pPGM, GCPhys, ppv) \
296 pgmR0DynMapGCPageInlined(pPGM, GCPhys, (void **)(ppv))
297#else
298# define PGM_GCPHYS_2_PTR_BY_PGM(pPGM, GCPhys, ppv) \
299 PGM_GCPHYS_2_PTR(PGM2VM(pPGM), GCPhys, ppv)
300#endif
301
302/** @def PGM_GCPHYS_2_PTR_EX
303 * Maps a unaligned GC physical page address to a virtual address.
304 *
305 * @returns VBox status code.
306 * @param pVM The VM handle.
307 * @param GCPhys The GC physical address to map to a virtual one.
308 * @param ppv Where to store the virtual address. No need to cast this.
309 *
310 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
311 * small page window employeed by that function. Be careful.
312 * @remark There is no need to assert on the result.
313 */
314#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
315# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) \
316 PGMDynMapGCPageOff(pVM, GCPhys, (void **)(ppv))
317#else
318# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) \
319 PGMPhysGCPhys2R3Ptr(pVM, GCPhys, 1 /* one page only */, (PRTR3PTR)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
320#endif
321
322/** @def PGM_INVL_PG
323 * Invalidates a page when in GC does nothing in HC.
324 *
325 * @param GCVirt The virtual address of the page to invalidate.
326 */
327#ifdef IN_RC
328# define PGM_INVL_PG(GCVirt) ASMInvalidatePage((void *)(GCVirt))
329#elif defined(IN_RING0)
330# define PGM_INVL_PG(GCVirt) HWACCMInvalidatePage(pVM, (RTGCPTR)(GCVirt))
331#else
332# define PGM_INVL_PG(GCVirt) HWACCMInvalidatePage(pVM, (RTGCPTR)(GCVirt))
333#endif
334
335/** @def PGM_INVL_BIG_PG
336 * Invalidates a 4MB page directory entry when in GC does nothing in HC.
337 *
338 * @param GCVirt The virtual address within the page directory to invalidate.
339 */
340#ifdef IN_RC
341# define PGM_INVL_BIG_PG(GCVirt) ASMReloadCR3()
342#elif defined(IN_RING0)
343# define PGM_INVL_BIG_PG(GCVirt) HWACCMFlushTLB(pVM)
344#else
345# define PGM_INVL_BIG_PG(GCVirt) HWACCMFlushTLB(pVM)
346#endif
347
348/** @def PGM_INVL_GUEST_TLBS()
349 * Invalidates all guest TLBs.
350 */
351#ifdef IN_RC
352# define PGM_INVL_GUEST_TLBS() ASMReloadCR3()
353#elif defined(IN_RING0)
354# define PGM_INVL_GUEST_TLBS() HWACCMFlushTLB(pVM)
355#else
356# define PGM_INVL_GUEST_TLBS() HWACCMFlushTLB(pVM)
357#endif
358
359
360/**
361 * Structure for tracking GC Mappings.
362 *
363 * This structure is used by linked list in both GC and HC.
364 */
365typedef struct PGMMAPPING
366{
367 /** Pointer to next entry. */
368 R3PTRTYPE(struct PGMMAPPING *) pNextR3;
369 /** Pointer to next entry. */
370 R0PTRTYPE(struct PGMMAPPING *) pNextR0;
371 /** Pointer to next entry. */
372 RCPTRTYPE(struct PGMMAPPING *) pNextRC;
373#if GC_ARCH_BITS == 64
374 RTRCPTR padding0;
375#endif
376 /** Start Virtual address. */
377 RTGCPTR GCPtr;
378 /** Last Virtual address (inclusive). */
379 RTGCPTR GCPtrLast;
380 /** Range size (bytes). */
381 RTGCPTR cb;
382 /** Pointer to relocation callback function. */
383 R3PTRTYPE(PFNPGMRELOCATE) pfnRelocate;
384 /** User argument to the callback. */
385 R3PTRTYPE(void *) pvUser;
386 /** Mapping description / name. For easing debugging. */
387 R3PTRTYPE(const char *) pszDesc;
388 /** Number of page tables. */
389 RTUINT cPTs;
390#if HC_ARCH_BITS != GC_ARCH_BITS || GC_ARCH_BITS == 64
391 RTUINT uPadding1; /**< Alignment padding. */
392#endif
393 /** Array of page table mapping data. Each entry
394 * describes one page table. The array can be longer
395 * than the declared length.
396 */
397 struct
398 {
399 /** The HC physical address of the page table. */
400 RTHCPHYS HCPhysPT;
401 /** The HC physical address of the first PAE page table. */
402 RTHCPHYS HCPhysPaePT0;
403 /** The HC physical address of the second PAE page table. */
404 RTHCPHYS HCPhysPaePT1;
405 /** The HC virtual address of the 32-bit page table. */
406 R3PTRTYPE(PX86PT) pPTR3;
407 /** The HC virtual address of the two PAE page table. (i.e 1024 entries instead of 512) */
408 R3PTRTYPE(PX86PTPAE) paPaePTsR3;
409 /** The GC virtual address of the 32-bit page table. */
410 RCPTRTYPE(PX86PT) pPTRC;
411 /** The GC virtual address of the two PAE page table. */
412 RCPTRTYPE(PX86PTPAE) paPaePTsRC;
413 /** The GC virtual address of the 32-bit page table. */
414 R0PTRTYPE(PX86PT) pPTR0;
415 /** The GC virtual address of the two PAE page table. */
416 R0PTRTYPE(PX86PTPAE) paPaePTsR0;
417 } aPTs[1];
418} PGMMAPPING;
419/** Pointer to structure for tracking GC Mappings. */
420typedef struct PGMMAPPING *PPGMMAPPING;
421
422
423/**
424 * Physical page access handler structure.
425 *
426 * This is used to keep track of physical address ranges
427 * which are being monitored in some kind of way.
428 */
429typedef struct PGMPHYSHANDLER
430{
431 AVLROGCPHYSNODECORE Core;
432 /** Access type. */
433 PGMPHYSHANDLERTYPE enmType;
434 /** Number of pages to update. */
435 uint32_t cPages;
436 /** Pointer to R3 callback function. */
437 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3;
438 /** User argument for R3 handlers. */
439 R3PTRTYPE(void *) pvUserR3;
440 /** Pointer to R0 callback function. */
441 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0;
442 /** User argument for R0 handlers. */
443 R0PTRTYPE(void *) pvUserR0;
444 /** Pointer to GC callback function. */
445 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC;
446 /** User argument for RC handlers. */
447 RCPTRTYPE(void *) pvUserRC;
448 /** Description / Name. For easing debugging. */
449 R3PTRTYPE(const char *) pszDesc;
450#ifdef VBOX_WITH_STATISTICS
451 /** Profiling of this handler. */
452 STAMPROFILE Stat;
453#endif
454} PGMPHYSHANDLER;
455/** Pointer to a physical page access handler structure. */
456typedef PGMPHYSHANDLER *PPGMPHYSHANDLER;
457
458
459/**
460 * Cache node for the physical addresses covered by a virtual handler.
461 */
462typedef struct PGMPHYS2VIRTHANDLER
463{
464 /** Core node for the tree based on physical ranges. */
465 AVLROGCPHYSNODECORE Core;
466 /** Offset from this struct to the PGMVIRTHANDLER structure. */
467 int32_t offVirtHandler;
468 /** Offset of the next alias relative to this one.
469 * Bit 0 is used for indicating whether we're in the tree.
470 * Bit 1 is used for indicating that we're the head node.
471 */
472 int32_t offNextAlias;
473} PGMPHYS2VIRTHANDLER;
474/** Pointer to a phys to virtual handler structure. */
475typedef PGMPHYS2VIRTHANDLER *PPGMPHYS2VIRTHANDLER;
476
477/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
478 * node is in the tree. */
479#define PGMPHYS2VIRTHANDLER_IN_TREE RT_BIT(0)
480/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
481 * node is in the head of an alias chain.
482 * The PGMPHYS2VIRTHANDLER_IN_TREE is always set if this bit is set. */
483#define PGMPHYS2VIRTHANDLER_IS_HEAD RT_BIT(1)
484/** The mask to apply to PGMPHYS2VIRTHANDLER::offNextAlias to get the offset. */
485#define PGMPHYS2VIRTHANDLER_OFF_MASK (~(int32_t)3)
486
487
488/**
489 * Virtual page access handler structure.
490 *
491 * This is used to keep track of virtual address ranges
492 * which are being monitored in some kind of way.
493 */
494typedef struct PGMVIRTHANDLER
495{
496 /** Core node for the tree based on virtual ranges. */
497 AVLROGCPTRNODECORE Core;
498 /** Size of the range (in bytes). */
499 RTGCPTR cb;
500 /** Number of cache pages. */
501 uint32_t cPages;
502 /** Access type. */
503 PGMVIRTHANDLERTYPE enmType;
504 /** Pointer to the RC callback function. */
505 RCPTRTYPE(PFNPGMRCVIRTHANDLER) pfnHandlerRC;
506#if HC_ARCH_BITS == 64
507 RTRCPTR padding;
508#endif
509 /** Pointer to the R3 callback function for invalidation. */
510 R3PTRTYPE(PFNPGMR3VIRTINVALIDATE) pfnInvalidateR3;
511 /** Pointer to the R3 callback function. */
512 R3PTRTYPE(PFNPGMR3VIRTHANDLER) pfnHandlerR3;
513 /** Description / Name. For easing debugging. */
514 R3PTRTYPE(const char *) pszDesc;
515#ifdef VBOX_WITH_STATISTICS
516 /** Profiling of this handler. */
517 STAMPROFILE Stat;
518#endif
519 /** Array of cached physical addresses for the monitored ranged. */
520 PGMPHYS2VIRTHANDLER aPhysToVirt[HC_ARCH_BITS == 32 ? 1 : 2];
521} PGMVIRTHANDLER;
522/** Pointer to a virtual page access handler structure. */
523typedef PGMVIRTHANDLER *PPGMVIRTHANDLER;
524
525
526/**
527 * Page type.
528 * @remarks This enum has to fit in a 3-bit field (see PGMPAGE::u3Type).
529 * @todo convert to \#defines.
530 */
531typedef enum PGMPAGETYPE
532{
533 /** The usual invalid zero entry. */
534 PGMPAGETYPE_INVALID = 0,
535 /** RAM page. (RWX) */
536 PGMPAGETYPE_RAM,
537 /** MMIO2 page. (RWX) */
538 PGMPAGETYPE_MMIO2,
539 /** Shadowed ROM. (RWX) */
540 PGMPAGETYPE_ROM_SHADOW,
541 /** ROM page. (R-X) */
542 PGMPAGETYPE_ROM,
543 /** MMIO page. (---) */
544 PGMPAGETYPE_MMIO,
545 /** End of valid entries. */
546 PGMPAGETYPE_END
547} PGMPAGETYPE;
548AssertCompile(PGMPAGETYPE_END < 7);
549
550/** @name Page type predicates.
551 * @{ */
552#define PGMPAGETYPE_IS_READABLE(type) ( (type) <= PGMPAGETYPE_ROM )
553#define PGMPAGETYPE_IS_WRITEABLE(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
554#define PGMPAGETYPE_IS_RWX(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
555#define PGMPAGETYPE_IS_ROX(type) ( (type) == PGMPAGETYPE_ROM )
556#define PGMPAGETYPE_IS_NP(type) ( (type) == PGMPAGETYPE_MMIO )
557/** @} */
558
559
560/**
561 * A Physical Guest Page tracking structure.
562 *
563 * The format of this structure is complicated because we have to fit a lot
564 * of information into as few bits as possible. The format is also subject
565 * to change (there is one comming up soon). Which means that for we'll be
566 * using PGM_PAGE_GET_*, PGM_PAGE_IS_ and PGM_PAGE_SET_* macros for *all*
567 * accessess to the structure.
568 */
569typedef struct PGMPAGE
570{
571 /** The physical address and a whole lot of other stuff. All bits are used! */
572 RTHCPHYS HCPhys;
573 /** The page state. */
574 uint32_t u2StateX : 2;
575 /** Flag indicating that a write monitored page was written to when set. */
576 uint32_t fWrittenToX : 1;
577 /** For later. */
578 uint32_t fSomethingElse : 1;
579 /** The Page ID.
580 * @todo Merge with HCPhys once we've liberated HCPhys of its stuff.
581 * The HCPhys will be 100% static. */
582 uint32_t idPageX : 28;
583 /** The page type (PGMPAGETYPE). */
584 uint32_t u3Type : 3;
585 /** The physical handler state (PGM_PAGE_HNDL_PHYS_STATE*) */
586 uint32_t u2HandlerPhysStateX : 2;
587 /** The virtual handler state (PGM_PAGE_HNDL_VIRT_STATE*) */
588 uint32_t u2HandlerVirtStateX : 2;
589 uint32_t u29B : 25;
590} PGMPAGE;
591AssertCompileSize(PGMPAGE, 16);
592/** Pointer to a physical guest page. */
593typedef PGMPAGE *PPGMPAGE;
594/** Pointer to a const physical guest page. */
595typedef const PGMPAGE *PCPGMPAGE;
596/** Pointer to a physical guest page pointer. */
597typedef PPGMPAGE *PPPGMPAGE;
598
599
600/**
601 * Clears the page structure.
602 * @param pPage Pointer to the physical guest page tracking structure.
603 */
604#define PGM_PAGE_CLEAR(pPage) \
605 do { \
606 (pPage)->HCPhys = 0; \
607 (pPage)->u2StateX = 0; \
608 (pPage)->fWrittenToX = 0; \
609 (pPage)->fSomethingElse = 0; \
610 (pPage)->idPageX = 0; \
611 (pPage)->u3Type = 0; \
612 (pPage)->u29B = 0; \
613 } while (0)
614
615/**
616 * Initializes the page structure.
617 * @param pPage Pointer to the physical guest page tracking structure.
618 */
619#define PGM_PAGE_INIT(pPage, _HCPhys, _idPage, _uType, _uState) \
620 do { \
621 (pPage)->HCPhys = (_HCPhys); \
622 (pPage)->u2StateX = (_uState); \
623 (pPage)->fWrittenToX = 0; \
624 (pPage)->fSomethingElse = 0; \
625 (pPage)->idPageX = (_idPage); \
626 /*(pPage)->u3Type = (_uType); - later */ \
627 PGM_PAGE_SET_TYPE(pPage, _uType); \
628 (pPage)->u29B = 0; \
629 } while (0)
630
631/**
632 * Initializes the page structure of a ZERO page.
633 * @param pPage Pointer to the physical guest page tracking structure.
634 */
635#ifdef VBOX_WITH_NEW_PHYS_CODE
636# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
637 PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
638#else
639# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
640 PGM_PAGE_INIT(pPage, 0, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
641#endif
642/** Temporary hack. Replaced by PGM_PAGE_INIT_ZERO once the old code is kicked out. */
643# define PGM_PAGE_INIT_ZERO_REAL(pPage, pVM, _uType) \
644 PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
645
646
647/** @name The Page state, PGMPAGE::u2StateX.
648 * @{ */
649/** The zero page.
650 * This is a per-VM page that's never ever mapped writable. */
651#define PGM_PAGE_STATE_ZERO 0
652/** A allocated page.
653 * This is a per-VM page allocated from the page pool (or wherever
654 * we get MMIO2 pages from if the type is MMIO2).
655 */
656#define PGM_PAGE_STATE_ALLOCATED 1
657/** A allocated page that's being monitored for writes.
658 * The shadow page table mappings are read-only. When a write occurs, the
659 * fWrittenTo member is set, the page remapped as read-write and the state
660 * moved back to allocated. */
661#define PGM_PAGE_STATE_WRITE_MONITORED 2
662/** The page is shared, aka. copy-on-write.
663 * This is a page that's shared with other VMs. */
664#define PGM_PAGE_STATE_SHARED 3
665/** @} */
666
667
668/**
669 * Gets the page state.
670 * @returns page state (PGM_PAGE_STATE_*).
671 * @param pPage Pointer to the physical guest page tracking structure.
672 */
673#define PGM_PAGE_GET_STATE(pPage) ( (pPage)->u2StateX )
674
675/**
676 * Sets the page state.
677 * @param pPage Pointer to the physical guest page tracking structure.
678 * @param _uState The new page state.
679 */
680#define PGM_PAGE_SET_STATE(pPage, _uState) \
681 do { (pPage)->u2StateX = (_uState); } while (0)
682
683
684/**
685 * Gets the host physical address of the guest page.
686 * @returns host physical address (RTHCPHYS).
687 * @param pPage Pointer to the physical guest page tracking structure.
688 */
689#define PGM_PAGE_GET_HCPHYS(pPage) ( (pPage)->HCPhys & UINT64_C(0x0000fffffffff000) )
690
691/**
692 * Sets the host physical address of the guest page.
693 * @param pPage Pointer to the physical guest page tracking structure.
694 * @param _HCPhys The new host physical address.
695 */
696#define PGM_PAGE_SET_HCPHYS(pPage, _HCPhys) \
697 do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0xffff000000000fff)) \
698 | ((_HCPhys) & UINT64_C(0x0000fffffffff000)); } while (0)
699
700/**
701 * Get the Page ID.
702 * @returns The Page ID; NIL_GMM_PAGEID if it's a ZERO page.
703 * @param pPage Pointer to the physical guest page tracking structure.
704 */
705#define PGM_PAGE_GET_PAGEID(pPage) ( (pPage)->idPageX )
706/* later:
707#define PGM_PAGE_GET_PAGEID(pPage) ( ((uint32_t)(pPage)->HCPhys >> (48 - 12))
708 | ((uint32_t)(pPage)->HCPhys & 0xfff) )
709*/
710/**
711 * Sets the Page ID.
712 * @param pPage Pointer to the physical guest page tracking structure.
713 */
714#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->idPageX = (_idPage); } while (0)
715/* later:
716#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0x0000fffffffff000)) \
717 | ((_idPage) & 0xfff) \
718 | (((_idPage) & 0x0ffff000) << (48-12)); } while (0)
719*/
720
721/**
722 * Get the Chunk ID.
723 * @returns The Chunk ID; NIL_GMM_CHUNKID if it's a ZERO page.
724 * @param pPage Pointer to the physical guest page tracking structure.
725 */
726#define PGM_PAGE_GET_CHUNKID(pPage) ( (pPage)->idPageX >> GMM_CHUNKID_SHIFT )
727/* later:
728#if GMM_CHUNKID_SHIFT == 12
729# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> 48) )
730#elif GMM_CHUNKID_SHIFT > 12
731# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> (48 + (GMM_CHUNKID_SHIFT - 12)) )
732#elif GMM_CHUNKID_SHIFT < 12
733# define PGM_PAGE_GET_CHUNKID(pPage) ( ( (uint32_t)((pPage)->HCPhys >> 48) << (12 - GMM_CHUNKID_SHIFT) ) \
734 | ( (uint32_t)((pPage)->HCPhys & 0xfff) >> GMM_CHUNKID_SHIFT ) )
735#else
736# error "GMM_CHUNKID_SHIFT isn't defined or something."
737#endif
738*/
739
740/**
741 * Get the index of the page within the allocaiton chunk.
742 * @returns The page index.
743 * @param pPage Pointer to the physical guest page tracking structure.
744 */
745#define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (pPage)->idPageX & GMM_PAGEID_IDX_MASK )
746/* later:
747#if GMM_CHUNKID_SHIFT <= 12
748# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & GMM_PAGEID_IDX_MASK) )
749#else
750# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & 0xfff) \
751 | ( (uint32_t)((pPage)->HCPhys >> 48) & (RT_BIT_32(GMM_CHUNKID_SHIFT - 12) - 1) ) )
752#endif
753*/
754
755
756/**
757 * Gets the page type.
758 * @returns The page type.
759 * @param pPage Pointer to the physical guest page tracking structure.
760 */
761#define PGM_PAGE_GET_TYPE(pPage) (pPage)->u3Type
762
763/**
764 * Sets the page type.
765 * @param pPage Pointer to the physical guest page tracking structure.
766 * @param _enmType The new page type (PGMPAGETYPE).
767 */
768#ifdef VBOX_WITH_NEW_PHYS_CODE
769#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
770 do { (pPage)->u3Type = (_enmType); } while (0)
771#else
772#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
773 do { \
774 (pPage)->u3Type = (_enmType); \
775 if ((_enmType) == PGMPAGETYPE_ROM) \
776 (pPage)->HCPhys |= MM_RAM_FLAGS_ROM; \
777 else if ((_enmType) == PGMPAGETYPE_ROM_SHADOW) \
778 (pPage)->HCPhys |= MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2; \
779 else if ((_enmType) == PGMPAGETYPE_MMIO2) \
780 (pPage)->HCPhys |= MM_RAM_FLAGS_MMIO2; \
781 } while (0)
782#endif
783
784
785/**
786 * Checks if the page is 'reserved'.
787 * @returns true/false.
788 * @param pPage Pointer to the physical guest page tracking structure.
789 */
790#define PGM_PAGE_IS_RESERVED(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_RESERVED) )
791
792/**
793 * Checks if the page is marked for MMIO.
794 * @returns true/false.
795 * @param pPage Pointer to the physical guest page tracking structure.
796 */
797#define PGM_PAGE_IS_MMIO(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_MMIO) )
798
799/**
800 * Checks if the page is backed by the ZERO page.
801 * @returns true/false.
802 * @param pPage Pointer to the physical guest page tracking structure.
803 */
804#define PGM_PAGE_IS_ZERO(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_ZERO )
805
806/**
807 * Checks if the page is backed by a SHARED page.
808 * @returns true/false.
809 * @param pPage Pointer to the physical guest page tracking structure.
810 */
811#define PGM_PAGE_IS_SHARED(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_SHARED )
812
813
814/**
815 * Marks the paget as written to (for GMM change monitoring).
816 * @param pPage Pointer to the physical guest page tracking structure.
817 */
818#define PGM_PAGE_SET_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 1; } while (0)
819
820/**
821 * Clears the written-to indicator.
822 * @param pPage Pointer to the physical guest page tracking structure.
823 */
824#define PGM_PAGE_CLEAR_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 0; } while (0)
825
826/**
827 * Checks if the page was marked as written-to.
828 * @returns true/false.
829 * @param pPage Pointer to the physical guest page tracking structure.
830 */
831#define PGM_PAGE_IS_WRITTEN_TO(pPage) ( (pPage)->fWrittenToX )
832
833
834/** @name Physical Access Handler State values (PGMPAGE::u2HandlerPhysStateX).
835 *
836 * @remarks The values are assigned in order of priority, so we can calculate
837 * the correct state for a page with different handlers installed.
838 * @{ */
839/** No handler installed. */
840#define PGM_PAGE_HNDL_PHYS_STATE_NONE 0
841/** Monitoring is temporarily disabled. */
842#define PGM_PAGE_HNDL_PHYS_STATE_DISABLED 1
843/** Write access is monitored. */
844#define PGM_PAGE_HNDL_PHYS_STATE_WRITE 2
845/** All access is monitored. */
846#define PGM_PAGE_HNDL_PHYS_STATE_ALL 3
847/** @} */
848
849/**
850 * Gets the physical access handler state of a page.
851 * @returns PGM_PAGE_HNDL_PHYS_STATE_* value.
852 * @param pPage Pointer to the physical guest page tracking structure.
853 */
854#define PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) ( (pPage)->u2HandlerPhysStateX )
855
856/**
857 * Sets the physical access handler state of a page.
858 * @param pPage Pointer to the physical guest page tracking structure.
859 * @param _uState The new state value.
860 */
861#define PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, _uState) \
862 do { (pPage)->u2HandlerPhysStateX = (_uState); } while (0)
863
864/**
865 * Checks if the page has any physical access handlers, including temporariliy disabled ones.
866 * @returns true/false
867 * @param pPage Pointer to the physical guest page tracking structure.
868 */
869#define PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE )
870
871/**
872 * Checks if the page has any active physical access handlers.
873 * @returns true/false
874 * @param pPage Pointer to the physical guest page tracking structure.
875 */
876#define PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE )
877
878
879/** @name Virtual Access Handler State values (PGMPAGE::u2HandlerVirtStateX).
880 *
881 * @remarks The values are assigned in order of priority, so we can calculate
882 * the correct state for a page with different handlers installed.
883 * @{ */
884/** No handler installed. */
885#define PGM_PAGE_HNDL_VIRT_STATE_NONE 0
886/* 1 is reserved so the lineup is identical with the physical ones. */
887/** Write access is monitored. */
888#define PGM_PAGE_HNDL_VIRT_STATE_WRITE 2
889/** All access is monitored. */
890#define PGM_PAGE_HNDL_VIRT_STATE_ALL 3
891/** @} */
892
893/**
894 * Gets the virtual access handler state of a page.
895 * @returns PGM_PAGE_HNDL_VIRT_STATE_* value.
896 * @param pPage Pointer to the physical guest page tracking structure.
897 */
898#define PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) ( (pPage)->u2HandlerVirtStateX )
899
900/**
901 * Sets the virtual access handler state of a page.
902 * @param pPage Pointer to the physical guest page tracking structure.
903 * @param _uState The new state value.
904 */
905#define PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, _uState) \
906 do { (pPage)->u2HandlerVirtStateX = (_uState); } while (0)
907
908/**
909 * Checks if the page has any virtual access handlers.
910 * @returns true/false
911 * @param pPage Pointer to the physical guest page tracking structure.
912 */
913#define PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage) ( (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
914
915/**
916 * Same as PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS - can't disable pages in
917 * virtual handlers.
918 * @returns true/false
919 * @param pPage Pointer to the physical guest page tracking structure.
920 */
921#define PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage) PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage)
922
923
924
925/**
926 * Checks if the page has any access handlers, including temporarily disabled ones.
927 * @returns true/false
928 * @param pPage Pointer to the physical guest page tracking structure.
929 */
930#define PGM_PAGE_HAS_ANY_HANDLERS(pPage) \
931 ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE \
932 || (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
933
934/**
935 * Checks if the page has any active access handlers.
936 * @returns true/false
937 * @param pPage Pointer to the physical guest page tracking structure.
938 */
939#define PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) \
940 ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE \
941 || (pPage)->u2HandlerVirtStateX >= PGM_PAGE_HNDL_VIRT_STATE_WRITE )
942
943/**
944 * Checks if the page has any active access handlers catching all accesses.
945 * @returns true/false
946 * @param pPage Pointer to the physical guest page tracking structure.
947 */
948#define PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) \
949 ( (pPage)->u2HandlerPhysStateX == PGM_PAGE_HNDL_PHYS_STATE_ALL \
950 || (pPage)->u2HandlerVirtStateX == PGM_PAGE_HNDL_VIRT_STATE_ALL )
951
952
953/**
954 * Ram range for GC Phys to HC Phys conversion.
955 *
956 * Can be used for HC Virt to GC Phys and HC Virt to HC Phys
957 * conversions too, but we'll let MM handle that for now.
958 *
959 * This structure is used by linked lists in both GC and HC.
960 */
961typedef struct PGMRAMRANGE
962{
963 /** Pointer to the next RAM range - for R3. */
964 R3PTRTYPE(struct PGMRAMRANGE *) pNextR3;
965 /** Pointer to the next RAM range - for R0. */
966 R0PTRTYPE(struct PGMRAMRANGE *) pNextR0;
967 /** Pointer to the next RAM range - for RC. */
968 RCPTRTYPE(struct PGMRAMRANGE *) pNextRC;
969 /** Pointer alignment. */
970 RTRCPTR RCPtrAlignment;
971 /** Start of the range. Page aligned. */
972 RTGCPHYS GCPhys;
973 /** Last address in the range (inclusive). Page aligned (-1). */
974 RTGCPHYS GCPhysLast;
975 /** Size of the range. (Page aligned of course). */
976 RTGCPHYS cb;
977 /** MM_RAM_* flags */
978 uint32_t fFlags;
979 uint32_t u32Alignment; /**< alignment. */
980#ifndef VBOX_WITH_NEW_PHYS_CODE
981 /** R3 virtual lookup ranges for chunks.
982 * Currently only used with MM_RAM_FLAGS_DYNAMIC_ALLOC ranges.
983 * @remarks This is occationally accessed from ring-0!! (not darwin) */
984# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
985 R3PTRTYPE(PRTR3UINTPTR) paChunkR3Ptrs;
986# else
987 R3R0PTRTYPE(PRTR3UINTPTR) paChunkR3Ptrs;
988# endif
989#endif
990 /** Start of the HC mapping of the range. This is only used for MMIO2. */
991 R3PTRTYPE(void *) pvR3;
992 /** The range description. */
993 R3PTRTYPE(const char *) pszDesc;
994
995 /** Padding to make aPage aligned on sizeof(PGMPAGE). */
996#ifdef VBOX_WITH_NEW_PHYS_CODE
997 uint32_t au32Reserved[2];
998#elif HC_ARCH_BITS == 32
999 uint32_t au32Reserved[1];
1000#endif
1001
1002 /** Array of physical guest page tracking structures. */
1003 PGMPAGE aPages[1];
1004} PGMRAMRANGE;
1005/** Pointer to Ram range for GC Phys to HC Phys conversion. */
1006typedef PGMRAMRANGE *PPGMRAMRANGE;
1007
1008/** Return hc ptr corresponding to the ram range and physical offset */
1009#define PGMRAMRANGE_GETHCPTR(pRam, off) \
1010 (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) ? (RTHCPTR)((pRam)->paChunkR3Ptrs[(off) >> PGM_DYNAMIC_CHUNK_SHIFT] + ((off) & PGM_DYNAMIC_CHUNK_OFFSET_MASK)) \
1011 : (RTHCPTR)((RTR3UINTPTR)(pRam)->pvR3 + (off));
1012
1013/**
1014 * Per page tracking structure for ROM image.
1015 *
1016 * A ROM image may have a shadow page, in which case we may have
1017 * two pages backing it. This structure contains the PGMPAGE for
1018 * both while PGMRAMRANGE have a copy of the active one. It is
1019 * important that these aren't out of sync in any regard other
1020 * than page pool tracking data.
1021 */
1022typedef struct PGMROMPAGE
1023{
1024 /** The page structure for the virgin ROM page. */
1025 PGMPAGE Virgin;
1026 /** The page structure for the shadow RAM page. */
1027 PGMPAGE Shadow;
1028 /** The current protection setting. */
1029 PGMROMPROT enmProt;
1030 /** Pad the structure size to a multiple of 8. */
1031 uint32_t u32Padding;
1032} PGMROMPAGE;
1033/** Pointer to a ROM page tracking structure. */
1034typedef PGMROMPAGE *PPGMROMPAGE;
1035
1036
1037/**
1038 * A registered ROM image.
1039 *
1040 * This is needed to keep track of ROM image since they generally
1041 * intrude into a PGMRAMRANGE. It also keeps track of additional
1042 * info like the two page sets (read-only virgin and read-write shadow),
1043 * the current state of each page.
1044 *
1045 * Because access handlers cannot easily be executed in a different
1046 * context, the ROM ranges needs to be accessible and in all contexts.
1047 */
1048typedef struct PGMROMRANGE
1049{
1050 /** Pointer to the next range - R3. */
1051 R3PTRTYPE(struct PGMROMRANGE *) pNextR3;
1052 /** Pointer to the next range - R0. */
1053 R0PTRTYPE(struct PGMROMRANGE *) pNextR0;
1054 /** Pointer to the next range - RC. */
1055 RCPTRTYPE(struct PGMROMRANGE *) pNextRC;
1056 /** Pointer alignment */
1057 RTRCPTR GCPtrAlignment;
1058 /** Address of the range. */
1059 RTGCPHYS GCPhys;
1060 /** Address of the last byte in the range. */
1061 RTGCPHYS GCPhysLast;
1062 /** Size of the range. */
1063 RTGCPHYS cb;
1064 /** The flags (PGMPHYS_ROM_FLAG_*). */
1065 uint32_t fFlags;
1066 /** Alignment padding ensuring that aPages is sizeof(PGMROMPAGE) aligned. */
1067 uint32_t au32Alignemnt[HC_ARCH_BITS == 32 ? 7 : 3];
1068 /** Pointer to the original bits when PGMPHYS_ROM_FLAG_PERMANENT_BINARY was specified.
1069 * This is used for strictness checks. */
1070 R3PTRTYPE(const void *) pvOriginal;
1071 /** The ROM description. */
1072 R3PTRTYPE(const char *) pszDesc;
1073 /** The per page tracking structures. */
1074 PGMROMPAGE aPages[1];
1075} PGMROMRANGE;
1076/** Pointer to a ROM range. */
1077typedef PGMROMRANGE *PPGMROMRANGE;
1078
1079
1080/**
1081 * A registered MMIO2 (= Device RAM) range.
1082 *
1083 * There are a few reason why we need to keep track of these
1084 * registrations. One of them is the deregistration & cleanup
1085 * stuff, while another is that the PGMRAMRANGE associated with
1086 * such a region may have to be removed from the ram range list.
1087 *
1088 * Overlapping with a RAM range has to be 100% or none at all. The
1089 * pages in the existing RAM range must not be ROM nor MMIO. A guru
1090 * meditation will be raised if a partial overlap or an overlap of
1091 * ROM pages is encountered. On an overlap we will free all the
1092 * existing RAM pages and put in the ram range pages instead.
1093 */
1094typedef struct PGMMMIO2RANGE
1095{
1096 /** The owner of the range. (a device) */
1097 PPDMDEVINSR3 pDevInsR3;
1098 /** Pointer to the ring-3 mapping of the allocation. */
1099 RTR3PTR pvR3;
1100 /** Pointer to the next range - R3. */
1101 R3PTRTYPE(struct PGMMMIO2RANGE *) pNextR3;
1102 /** Whether it's mapped or not. */
1103 bool fMapped;
1104 /** Whether it's overlapping or not. */
1105 bool fOverlapping;
1106 /** The PCI region number.
1107 * @remarks This ASSUMES that nobody will ever really need to have multiple
1108 * PCI devices with matching MMIO region numbers on a single device. */
1109 uint8_t iRegion;
1110 /** Alignment padding for putting the ram range on a PGMPAGE alignment boundrary. */
1111 uint8_t abAlignemnt[HC_ARCH_BITS == 32 ? 1 : 5];
1112 /** The associated RAM range. */
1113 PGMRAMRANGE RamRange;
1114} PGMMMIO2RANGE;
1115/** Pointer to a MMIO2 range. */
1116typedef PGMMMIO2RANGE *PPGMMMIO2RANGE;
1117
1118
1119
1120
1121/**
1122 * PGMPhysRead/Write cache entry
1123 */
1124typedef struct PGMPHYSCACHEENTRY
1125{
1126 /** R3 pointer to physical page. */
1127 R3PTRTYPE(uint8_t *) pbR3;
1128 /** GC Physical address for cache entry */
1129 RTGCPHYS GCPhys;
1130#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
1131 RTGCPHYS u32Padding0; /**< alignment padding. */
1132#endif
1133} PGMPHYSCACHEENTRY;
1134
1135/**
1136 * PGMPhysRead/Write cache to reduce REM memory access overhead
1137 */
1138typedef struct PGMPHYSCACHE
1139{
1140 /** Bitmap of valid cache entries */
1141 uint64_t aEntries;
1142 /** Cache entries */
1143 PGMPHYSCACHEENTRY Entry[PGM_MAX_PHYSCACHE_ENTRIES];
1144} PGMPHYSCACHE;
1145
1146
1147/** Pointer to an allocation chunk ring-3 mapping. */
1148typedef struct PGMCHUNKR3MAP *PPGMCHUNKR3MAP;
1149/** Pointer to an allocation chunk ring-3 mapping pointer. */
1150typedef PPGMCHUNKR3MAP *PPPGMCHUNKR3MAP;
1151
1152/**
1153 * Ring-3 tracking structore for an allocation chunk ring-3 mapping.
1154 *
1155 * The primary tree (Core) uses the chunk id as key.
1156 * The secondary tree (AgeCore) is used for ageing and uses ageing sequence number as key.
1157 */
1158typedef struct PGMCHUNKR3MAP
1159{
1160 /** The key is the chunk id. */
1161 AVLU32NODECORE Core;
1162 /** The key is the ageing sequence number. */
1163 AVLLU32NODECORE AgeCore;
1164 /** The current age thingy. */
1165 uint32_t iAge;
1166 /** The current reference count. */
1167 uint32_t volatile cRefs;
1168 /** The current permanent reference count. */
1169 uint32_t volatile cPermRefs;
1170 /** The mapping address. */
1171 void *pv;
1172} PGMCHUNKR3MAP;
1173
1174/**
1175 * Allocation chunk ring-3 mapping TLB entry.
1176 */
1177typedef struct PGMCHUNKR3MAPTLBE
1178{
1179 /** The chunk id. */
1180 uint32_t volatile idChunk;
1181#if HC_ARCH_BITS == 64
1182 uint32_t u32Padding; /**< alignment padding. */
1183#endif
1184 /** The chunk map. */
1185#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1186 R3PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk;
1187#else
1188 R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk;
1189#endif
1190} PGMCHUNKR3MAPTLBE;
1191/** Pointer to the an allocation chunk ring-3 mapping TLB entry. */
1192typedef PGMCHUNKR3MAPTLBE *PPGMCHUNKR3MAPTLBE;
1193
1194/** The number of TLB entries in PGMCHUNKR3MAPTLB.
1195 * @remark Must be a power of two value. */
1196#define PGM_CHUNKR3MAPTLB_ENTRIES 32
1197
1198/**
1199 * Allocation chunk ring-3 mapping TLB.
1200 *
1201 * @remarks We use a TLB to speed up lookups by avoiding walking the AVL.
1202 * At first glance this might look kinda odd since AVL trees are
1203 * supposed to give the most optimial lookup times of all trees
1204 * due to their balancing. However, take a tree with 1023 nodes
1205 * in it, that's 10 levels, meaning that most searches has to go
1206 * down 9 levels before they find what they want. This isn't fast
1207 * compared to a TLB hit. There is the factor of cache misses,
1208 * and of course the problem with trees and branch prediction.
1209 * This is why we use TLBs in front of most of the trees.
1210 *
1211 * @todo Generalize this TLB + AVL stuff, shouldn't be all that
1212 * difficult when we switch to the new inlined AVL trees (from kStuff).
1213 */
1214typedef struct PGMCHUNKR3MAPTLB
1215{
1216 /** The TLB entries. */
1217 PGMCHUNKR3MAPTLBE aEntries[PGM_CHUNKR3MAPTLB_ENTRIES];
1218} PGMCHUNKR3MAPTLB;
1219
1220/**
1221 * Calculates the index of a guest page in the Ring-3 Chunk TLB.
1222 * @returns Chunk TLB index.
1223 * @param idChunk The Chunk ID.
1224 */
1225#define PGM_CHUNKR3MAPTLB_IDX(idChunk) ( (idChunk) & (PGM_CHUNKR3MAPTLB_ENTRIES - 1) )
1226
1227
1228/**
1229 * Ring-3 guest page mapping TLB entry.
1230 * @remarks used in ring-0 as well at the moment.
1231 */
1232typedef struct PGMPAGER3MAPTLBE
1233{
1234 /** Address of the page. */
1235 RTGCPHYS volatile GCPhys;
1236 /** The guest page. */
1237#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1238 R3PTRTYPE(PPGMPAGE) volatile pPage;
1239#else
1240 R3R0PTRTYPE(PPGMPAGE) volatile pPage;
1241#endif
1242 /** Pointer to the page mapping tracking structure, PGMCHUNKR3MAP. */
1243#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1244 R3PTRTYPE(PPGMCHUNKR3MAP) volatile pMap;
1245#else
1246 R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pMap;
1247#endif
1248 /** The address */
1249#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1250 R3PTRTYPE(void *) volatile pv;
1251#else
1252 R3R0PTRTYPE(void *) volatile pv;
1253#endif
1254#if HC_ARCH_BITS == 32
1255 uint32_t u32Padding; /**< alignment padding. */
1256#endif
1257} PGMPAGER3MAPTLBE;
1258/** Pointer to an entry in the HC physical TLB. */
1259typedef PGMPAGER3MAPTLBE *PPGMPAGER3MAPTLBE;
1260
1261
1262/** The number of entries in the ring-3 guest page mapping TLB.
1263 * @remarks The value must be a power of two. */
1264#define PGM_PAGER3MAPTLB_ENTRIES 64
1265
1266/**
1267 * Ring-3 guest page mapping TLB.
1268 * @remarks used in ring-0 as well at the moment.
1269 */
1270typedef struct PGMPAGER3MAPTLB
1271{
1272 /** The TLB entries. */
1273 PGMPAGER3MAPTLBE aEntries[PGM_PAGER3MAPTLB_ENTRIES];
1274} PGMPAGER3MAPTLB;
1275/** Pointer to the ring-3 guest page mapping TLB. */
1276typedef PGMPAGER3MAPTLB *PPGMPAGER3MAPTLB;
1277
1278/**
1279 * Calculates the index of the TLB entry for the specified guest page.
1280 * @returns Physical TLB index.
1281 * @param GCPhys The guest physical address.
1282 */
1283#define PGM_PAGER3MAPTLB_IDX(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGM_PAGER3MAPTLB_ENTRIES - 1) )
1284
1285
1286/**
1287 * Mapping cache usage set entry.
1288 *
1289 * @remarks 16-bit ints was choosen as the set is not expected to be used beyond
1290 * the dynamic ring-0 and (to some extent) raw-mode context mapping
1291 * cache. If it's extended to include ring-3, well, then something will
1292 * have be changed here...
1293 */
1294typedef struct PGMMAPSETENTRY
1295{
1296 /** The mapping cache index. */
1297 uint16_t iPage;
1298 /** The number of references.
1299 * The max is UINT16_MAX - 1. */
1300 uint16_t cRefs;
1301 /** Pointer to the page. */
1302 RTR0PTR pvPage;
1303 /** The physical address for this entry. */
1304 RTHCPHYS HCPhys;
1305} PGMMAPSETENTRY;
1306/** Pointer to a mapping cache usage set entry. */
1307typedef PGMMAPSETENTRY *PPGMMAPSETENTRY;
1308
1309/**
1310 * Mapping cache usage set.
1311 *
1312 * This is used in ring-0 and the raw-mode context to track dynamic mappings
1313 * done during exits / traps. The set is
1314 */
1315typedef struct PGMMAPSET
1316{
1317 /** The number of occupied entries.
1318 * This is PGMMAPSET_CLOSED if the set is closed and we're not supposed to do
1319 * dynamic mappings. */
1320 uint32_t cEntries;
1321 /** The start of the current subset.
1322 * This is UINT32_MAX if no subset is currently open. */
1323 uint32_t iSubset;
1324 /** The index of the current CPU, only valid if the set is open. */
1325 int32_t iCpu;
1326 /** The entries. */
1327 PGMMAPSETENTRY aEntries[32];
1328 /** HCPhys -> iEntry fast lookup table.
1329 * Use PGMMAPSET_HASH for hashing.
1330 * The entries may or may not be valid, check against cEntries. */
1331 uint8_t aiHashTable[64];
1332} PGMMAPSET;
1333/** Pointer to the mapping cache set. */
1334typedef PGMMAPSET *PPGMMAPSET;
1335
1336/** PGMMAPSET::cEntries value for a closed set. */
1337#define PGMMAPSET_CLOSED UINT32_C(0xdeadc0fe)
1338
1339/** Hash function for aiHashTable. */
1340#define PGMMAPSET_HASH(HCPhys) (((HCPhys) >> PAGE_SHIFT) & 63)
1341
1342
1343/** @name Context neutrual page mapper TLB.
1344 *
1345 * Hoping to avoid some code and bug duplication parts of the GCxxx->CCPtr
1346 * code is writting in a kind of context neutrual way. Time will show whether
1347 * this actually makes sense or not...
1348 *
1349 * @todo this needs to be reconsidered and dropped/redone since the ring-0
1350 * context ends up using a global mapping cache on some platforms
1351 * (darwin).
1352 *
1353 * @{ */
1354/** @typedef PPGMPAGEMAPTLB
1355 * The page mapper TLB pointer type for the current context. */
1356/** @typedef PPGMPAGEMAPTLB
1357 * The page mapper TLB entry pointer type for the current context. */
1358/** @typedef PPGMPAGEMAPTLB
1359 * The page mapper TLB entry pointer pointer type for the current context. */
1360/** @def PGM_PAGEMAPTLB_ENTRIES
1361 * The number of TLB entries in the page mapper TLB for the current context. */
1362/** @def PGM_PAGEMAPTLB_IDX
1363 * Calculate the TLB index for a guest physical address.
1364 * @returns The TLB index.
1365 * @param GCPhys The guest physical address. */
1366/** @typedef PPGMPAGEMAP
1367 * Pointer to a page mapper unit for current context. */
1368/** @typedef PPPGMPAGEMAP
1369 * Pointer to a page mapper unit pointer for current context. */
1370#ifdef IN_RC
1371// typedef PPGMPAGEGCMAPTLB PPGMPAGEMAPTLB;
1372// typedef PPGMPAGEGCMAPTLBE PPGMPAGEMAPTLBE;
1373// typedef PPGMPAGEGCMAPTLBE *PPPGMPAGEMAPTLBE;
1374# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGEGCMAPTLB_ENTRIES
1375# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGEGCMAPTLB_IDX(GCPhys)
1376 typedef void * PPGMPAGEMAP;
1377 typedef void ** PPPGMPAGEMAP;
1378//#elif IN_RING0
1379// typedef PPGMPAGER0MAPTLB PPGMPAGEMAPTLB;
1380// typedef PPGMPAGER0MAPTLBE PPGMPAGEMAPTLBE;
1381// typedef PPGMPAGER0MAPTLBE *PPPGMPAGEMAPTLBE;
1382//# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER0MAPTLB_ENTRIES
1383//# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER0MAPTLB_IDX(GCPhys)
1384// typedef PPGMCHUNKR0MAP PPGMPAGEMAP;
1385// typedef PPPGMCHUNKR0MAP PPPGMPAGEMAP;
1386#else
1387 typedef PPGMPAGER3MAPTLB PPGMPAGEMAPTLB;
1388 typedef PPGMPAGER3MAPTLBE PPGMPAGEMAPTLBE;
1389 typedef PPGMPAGER3MAPTLBE *PPPGMPAGEMAPTLBE;
1390# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER3MAPTLB_ENTRIES
1391# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER3MAPTLB_IDX(GCPhys)
1392 typedef PPGMCHUNKR3MAP PPGMPAGEMAP;
1393 typedef PPPGMCHUNKR3MAP PPPGMPAGEMAP;
1394#endif
1395/** @} */
1396
1397
1398/** @name PGM Pool Indexes.
1399 * Aka. the unique shadow page identifier.
1400 * @{ */
1401/** NIL page pool IDX. */
1402#define NIL_PGMPOOL_IDX 0
1403/** The first normal index. */
1404#define PGMPOOL_IDX_FIRST_SPECIAL 1
1405/** Page directory (32-bit root). */
1406#define PGMPOOL_IDX_PD 1
1407#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
1408/** Page directory (32-bit root). */
1409#define PGMPOOL_IDX_PD 1
1410/** Page Directory Pointer Table (PAE root). */
1411#define PGMPOOL_IDX_PDPT 2
1412/** AMD64 CR3 level index.*/
1413#define PGMPOOL_IDX_AMD64_CR3 3
1414/** Nested paging root.*/
1415#define PGMPOOL_IDX_NESTED_ROOT 4
1416/** The first normal index. */
1417#define PGMPOOL_IDX_FIRST 5
1418#else
1419/** The extended PAE page directory (2048 entries, works as root currently). */
1420#define PGMPOOL_IDX_PAE_PD 2
1421/** PAE Page Directory Table 0. */
1422#define PGMPOOL_IDX_PAE_PD_0 3
1423/** PAE Page Directory Table 1. */
1424#define PGMPOOL_IDX_PAE_PD_1 4
1425/** PAE Page Directory Table 2. */
1426#define PGMPOOL_IDX_PAE_PD_2 5
1427/** PAE Page Directory Table 3. */
1428#define PGMPOOL_IDX_PAE_PD_3 6
1429/** Page Directory Pointer Table (PAE root, not currently used). */
1430#define PGMPOOL_IDX_PDPT 7
1431/** AMD64 CR3 level index.*/
1432#define PGMPOOL_IDX_AMD64_CR3 8
1433/** Nested paging root.*/
1434#define PGMPOOL_IDX_NESTED_ROOT 9
1435/** The first normal index. */
1436#define PGMPOOL_IDX_FIRST 10
1437#endif
1438/** The last valid index. (inclusive, 14 bits) */
1439#define PGMPOOL_IDX_LAST 0x3fff
1440/** @} */
1441
1442/** The NIL index for the parent chain. */
1443#define NIL_PGMPOOL_USER_INDEX ((uint16_t)0xffff)
1444
1445/**
1446 * Node in the chain linking a shadowed page to it's parent (user).
1447 */
1448#pragma pack(1)
1449typedef struct PGMPOOLUSER
1450{
1451 /** The index to the next item in the chain. NIL_PGMPOOL_USER_INDEX is no next. */
1452 uint16_t iNext;
1453 /** The user page index. */
1454 uint16_t iUser;
1455 /** Index into the user table. */
1456 uint32_t iUserTable;
1457} PGMPOOLUSER, *PPGMPOOLUSER;
1458typedef const PGMPOOLUSER *PCPGMPOOLUSER;
1459#pragma pack()
1460
1461
1462/** The NIL index for the phys ext chain. */
1463#define NIL_PGMPOOL_PHYSEXT_INDEX ((uint16_t)0xffff)
1464
1465/**
1466 * Node in the chain of physical cross reference extents.
1467 */
1468#pragma pack(1)
1469typedef struct PGMPOOLPHYSEXT
1470{
1471 /** The index to the next item in the chain. NIL_PGMPOOL_PHYSEXT_INDEX is no next. */
1472 uint16_t iNext;
1473 /** The user page index. */
1474 uint16_t aidx[3];
1475} PGMPOOLPHYSEXT, *PPGMPOOLPHYSEXT;
1476typedef const PGMPOOLPHYSEXT *PCPGMPOOLPHYSEXT;
1477#pragma pack()
1478
1479
1480/**
1481 * The kind of page that's being shadowed.
1482 */
1483typedef enum PGMPOOLKIND
1484{
1485 /** The virtual invalid 0 entry. */
1486 PGMPOOLKIND_INVALID = 0,
1487 /** The entry is free (=unused). */
1488 PGMPOOLKIND_FREE,
1489
1490 /** Shw: 32-bit page table; Gst: no paging */
1491 PGMPOOLKIND_32BIT_PT_FOR_PHYS,
1492 /** Shw: 32-bit page table; Gst: 32-bit page table. */
1493 PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT,
1494 /** Shw: 32-bit page table; Gst: 4MB page. */
1495 PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB,
1496 /** Shw: PAE page table; Gst: no paging */
1497 PGMPOOLKIND_PAE_PT_FOR_PHYS,
1498 /** Shw: PAE page table; Gst: 32-bit page table. */
1499 PGMPOOLKIND_PAE_PT_FOR_32BIT_PT,
1500 /** Shw: PAE page table; Gst: Half of a 4MB page. */
1501 PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB,
1502 /** Shw: PAE page table; Gst: PAE page table. */
1503 PGMPOOLKIND_PAE_PT_FOR_PAE_PT,
1504 /** Shw: PAE page table; Gst: 2MB page. */
1505 PGMPOOLKIND_PAE_PT_FOR_PAE_2MB,
1506
1507 /** Shw: 32-bit page directory. Gst: 32-bit page directory. */
1508 PGMPOOLKIND_32BIT_PD,
1509 /** Shw: 32-bit page directory. Gst: real mode. */
1510 PGMPOOLKIND_32BIT_PD_PHYS_REAL,
1511 /** Shw: 32-bit page directory. Gst: protected mode without paging. */
1512 PGMPOOLKIND_32BIT_PD_PHYS_PROT,
1513 /** Shw: PAE page directory; Gst: 32-bit page directory. */
1514 PGMPOOLKIND_PAE_PD_FOR_32BIT_PD,
1515 /** Shw: PAE page directory; Gst: PAE page directory. */
1516 PGMPOOLKIND_PAE_PD_FOR_PAE_PD,
1517 /** Shw: PAE page directory; Gst: real mode. */
1518 PGMPOOLKIND_PAE_PD_PHYS_REAL,
1519 /** Shw: PAE page directory; Gst: protected mode without paging. */
1520 PGMPOOLKIND_PAE_PD_PHYS_PROT,
1521
1522 /** Shw: PAE page directory pointer table (legacy, 4 entries); Gst 32 bits paging. */
1523 PGMPOOLKIND_PAE_PDPT_FOR_32BIT,
1524 /** Shw: PAE page directory pointer table (legacy, 4 entries); Gst PAE PDPT. */
1525 PGMPOOLKIND_PAE_PDPT,
1526
1527 /** Shw: 64-bit page directory pointer table; Gst: 64-bit page directory pointer table. */
1528 PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT,
1529 /** Shw: 64-bit page directory pointer table; Gst: no paging */
1530 PGMPOOLKIND_64BIT_PDPT_FOR_PHYS,
1531 /** Shw: 64-bit page directory table; Gst: 64-bit page directory table. */
1532 PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD,
1533 /** Shw: 64-bit page directory table; Gst: no paging */
1534 PGMPOOLKIND_64BIT_PD_FOR_PHYS,
1535
1536 /** Shw: 64-bit PML4; Gst: 64-bit PML4. */
1537 PGMPOOLKIND_64BIT_PML4_FOR_64BIT_PML4,
1538
1539 /** Shw: EPT page directory pointer table; Gst: no paging */
1540 PGMPOOLKIND_EPT_PDPT_FOR_PHYS,
1541 /** Shw: EPT page directory table; Gst: no paging */
1542 PGMPOOLKIND_EPT_PD_FOR_PHYS,
1543 /** Shw: EPT page table; Gst: no paging */
1544 PGMPOOLKIND_EPT_PT_FOR_PHYS,
1545
1546#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1547 /** Shw: Root 32-bit page directory. */
1548 PGMPOOLKIND_ROOT_32BIT_PD,
1549 /** Shw: Root PAE page directory */
1550 PGMPOOLKIND_ROOT_PAE_PD,
1551 /** Shw: Root PAE page directory pointer table (legacy, 4 entries). */
1552 PGMPOOLKIND_ROOT_PDPT,
1553#endif
1554 /** Shw: Root Nested paging table. */
1555 PGMPOOLKIND_ROOT_NESTED,
1556
1557 /** The last valid entry. */
1558 PGMPOOLKIND_LAST = PGMPOOLKIND_ROOT_NESTED
1559} PGMPOOLKIND;
1560
1561
1562/**
1563 * The tracking data for a page in the pool.
1564 */
1565typedef struct PGMPOOLPAGE
1566{
1567 /** AVL node code with the (R3) physical address of this page. */
1568 AVLOHCPHYSNODECORE Core;
1569 /** Pointer to the R3 mapping of the page. */
1570#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1571 R3PTRTYPE(void *) pvPageR3;
1572#else
1573 R3R0PTRTYPE(void *) pvPageR3;
1574#endif
1575 /** The guest physical address. */
1576#if HC_ARCH_BITS == 32 && GC_ARCH_BITS == 64
1577 uint32_t Alignment0;
1578#endif
1579 RTGCPHYS GCPhys;
1580 /** The kind of page we're shadowing. (This is really a PGMPOOLKIND enum.) */
1581 uint8_t enmKind;
1582 uint8_t bPadding;
1583 /** The index of this page. */
1584 uint16_t idx;
1585 /** The next entry in the list this page currently resides in.
1586 * It's either in the free list or in the GCPhys hash. */
1587 uint16_t iNext;
1588#ifdef PGMPOOL_WITH_USER_TRACKING
1589 /** Head of the user chain. NIL_PGMPOOL_USER_INDEX if not currently in use. */
1590 uint16_t iUserHead;
1591 /** The number of present entries. */
1592 uint16_t cPresent;
1593 /** The first entry in the table which is present. */
1594 uint16_t iFirstPresent;
1595#endif
1596#ifdef PGMPOOL_WITH_MONITORING
1597 /** The number of modifications to the monitored page. */
1598 uint16_t cModifications;
1599 /** The next modified page. NIL_PGMPOOL_IDX if tail. */
1600 uint16_t iModifiedNext;
1601 /** The previous modified page. NIL_PGMPOOL_IDX if head. */
1602 uint16_t iModifiedPrev;
1603 /** The next page sharing access handler. NIL_PGMPOOL_IDX if tail. */
1604 uint16_t iMonitoredNext;
1605 /** The previous page sharing access handler. NIL_PGMPOOL_IDX if head. */
1606 uint16_t iMonitoredPrev;
1607#endif
1608#ifdef PGMPOOL_WITH_CACHE
1609 /** The next page in the age list. */
1610 uint16_t iAgeNext;
1611 /** The previous page in the age list. */
1612 uint16_t iAgePrev;
1613#endif /* PGMPOOL_WITH_CACHE */
1614 /** Used to indicate that the page is zeroed. */
1615 bool fZeroed;
1616 /** Used to indicate that a PT has non-global entries. */
1617 bool fSeenNonGlobal;
1618 /** Used to indicate that we're monitoring writes to the guest page. */
1619 bool fMonitored;
1620 /** Used to indicate that the page is in the cache (e.g. in the GCPhys hash).
1621 * (All pages are in the age list.) */
1622 bool fCached;
1623 /** This is used by the R3 access handlers when invoked by an async thread.
1624 * It's a hack required because of REMR3NotifyHandlerPhysicalDeregister. */
1625 bool volatile fReusedFlushPending;
1626 /** Used to indicate that the guest is mapping the page is also used as a CR3.
1627 * In these cases the access handler acts differently and will check
1628 * for mapping conflicts like the normal CR3 handler.
1629 * @todo When we change the CR3 shadowing to use pool pages, this flag can be
1630 * replaced by a list of pages which share access handler.
1631 */
1632 bool fCR3Mix;
1633} PGMPOOLPAGE, *PPGMPOOLPAGE, **PPPGMPOOLPAGE;
1634
1635
1636#ifdef PGMPOOL_WITH_CACHE
1637/** The hash table size. */
1638# define PGMPOOL_HASH_SIZE 0x40
1639/** The hash function. */
1640# define PGMPOOL_HASH(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGMPOOL_HASH_SIZE - 1) )
1641#endif
1642
1643
1644/**
1645 * The shadow page pool instance data.
1646 *
1647 * It's all one big allocation made at init time, except for the
1648 * pages that is. The user nodes follows immediatly after the
1649 * page structures.
1650 */
1651typedef struct PGMPOOL
1652{
1653 /** The VM handle - R3 Ptr. */
1654 PVMR3 pVMR3;
1655 /** The VM handle - R0 Ptr. */
1656 PVMR0 pVMR0;
1657 /** The VM handle - RC Ptr. */
1658 PVMRC pVMRC;
1659 /** The max pool size. This includes the special IDs. */
1660 uint16_t cMaxPages;
1661 /** The current pool size. */
1662 uint16_t cCurPages;
1663 /** The head of the free page list. */
1664 uint16_t iFreeHead;
1665 /* Padding. */
1666 uint16_t u16Padding;
1667#ifdef PGMPOOL_WITH_USER_TRACKING
1668 /** Head of the chain of free user nodes. */
1669 uint16_t iUserFreeHead;
1670 /** The number of user nodes we've allocated. */
1671 uint16_t cMaxUsers;
1672 /** The number of present page table entries in the entire pool. */
1673 uint32_t cPresent;
1674 /** Pointer to the array of user nodes - RC pointer. */
1675 RCPTRTYPE(PPGMPOOLUSER) paUsersRC;
1676 /** Pointer to the array of user nodes - R3 pointer. */
1677 R3PTRTYPE(PPGMPOOLUSER) paUsersR3;
1678 /** Pointer to the array of user nodes - R0 pointer. */
1679 R0PTRTYPE(PPGMPOOLUSER) paUsersR0;
1680#endif /* PGMPOOL_WITH_USER_TRACKING */
1681#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1682 /** Head of the chain of free phys ext nodes. */
1683 uint16_t iPhysExtFreeHead;
1684 /** The number of user nodes we've allocated. */
1685 uint16_t cMaxPhysExts;
1686 /** Pointer to the array of physical xref extent - RC pointer. */
1687 RCPTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsRC;
1688 /** Pointer to the array of physical xref extent nodes - R3 pointer. */
1689 R3PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsR3;
1690 /** Pointer to the array of physical xref extent nodes - R0 pointer. */
1691 R0PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsR0;
1692#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1693#ifdef PGMPOOL_WITH_CACHE
1694 /** Hash table for GCPhys addresses. */
1695 uint16_t aiHash[PGMPOOL_HASH_SIZE];
1696 /** The head of the age list. */
1697 uint16_t iAgeHead;
1698 /** The tail of the age list. */
1699 uint16_t iAgeTail;
1700 /** Set if the cache is enabled. */
1701 bool fCacheEnabled;
1702#endif /* PGMPOOL_WITH_CACHE */
1703#ifdef PGMPOOL_WITH_MONITORING
1704 /** Head of the list of modified pages. */
1705 uint16_t iModifiedHead;
1706 /** The current number of modified pages. */
1707 uint16_t cModifiedPages;
1708 /** Access handler, RC. */
1709 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnAccessHandlerRC;
1710 /** Access handler, R0. */
1711 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnAccessHandlerR0;
1712 /** Access handler, R3. */
1713 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnAccessHandlerR3;
1714 /** The access handler description (HC ptr). */
1715 R3PTRTYPE(const char *) pszAccessHandler;
1716#endif /* PGMPOOL_WITH_MONITORING */
1717 /** The number of pages currently in use. */
1718 uint16_t cUsedPages;
1719#ifdef VBOX_WITH_STATISTICS
1720 /** The high wather mark for cUsedPages. */
1721 uint16_t cUsedPagesHigh;
1722 uint32_t Alignment1; /**< Align the next member on a 64-bit boundrary. */
1723 /** Profiling pgmPoolAlloc(). */
1724 STAMPROFILEADV StatAlloc;
1725 /** Profiling pgmPoolClearAll(). */
1726 STAMPROFILE StatClearAll;
1727 /** Profiling pgmPoolFlushAllInt(). */
1728 STAMPROFILE StatFlushAllInt;
1729 /** Profiling pgmPoolFlushPage(). */
1730 STAMPROFILE StatFlushPage;
1731 /** Profiling pgmPoolFree(). */
1732 STAMPROFILE StatFree;
1733 /** Profiling time spent zeroing pages. */
1734 STAMPROFILE StatZeroPage;
1735# ifdef PGMPOOL_WITH_USER_TRACKING
1736 /** Profiling of pgmPoolTrackDeref. */
1737 STAMPROFILE StatTrackDeref;
1738 /** Profiling pgmTrackFlushGCPhysPT. */
1739 STAMPROFILE StatTrackFlushGCPhysPT;
1740 /** Profiling pgmTrackFlushGCPhysPTs. */
1741 STAMPROFILE StatTrackFlushGCPhysPTs;
1742 /** Profiling pgmTrackFlushGCPhysPTsSlow. */
1743 STAMPROFILE StatTrackFlushGCPhysPTsSlow;
1744 /** Number of times we've been out of user records. */
1745 STAMCOUNTER StatTrackFreeUpOneUser;
1746# endif
1747# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1748 /** Profiling deref activity related tracking GC physical pages. */
1749 STAMPROFILE StatTrackDerefGCPhys;
1750 /** Number of linear searches for a HCPhys in the ram ranges. */
1751 STAMCOUNTER StatTrackLinearRamSearches;
1752 /** The number of failing pgmPoolTrackPhysExtAlloc calls. */
1753 STAMCOUNTER StamTrackPhysExtAllocFailures;
1754# endif
1755# ifdef PGMPOOL_WITH_MONITORING
1756 /** Profiling the RC/R0 access handler. */
1757 STAMPROFILE StatMonitorRZ;
1758 /** Times we've failed interpreting the instruction. */
1759 STAMCOUNTER StatMonitorRZEmulateInstr;
1760 /** Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler. */
1761 STAMPROFILE StatMonitorRZFlushPage;
1762 /** Times we've detected fork(). */
1763 STAMCOUNTER StatMonitorRZFork;
1764 /** Profiling the RC/R0 access we've handled (except REP STOSD). */
1765 STAMPROFILE StatMonitorRZHandled;
1766 /** Times we've failed interpreting a patch code instruction. */
1767 STAMCOUNTER StatMonitorRZIntrFailPatch1;
1768 /** Times we've failed interpreting a patch code instruction during flushing. */
1769 STAMCOUNTER StatMonitorRZIntrFailPatch2;
1770 /** The number of times we've seen rep prefixes we can't handle. */
1771 STAMCOUNTER StatMonitorRZRepPrefix;
1772 /** Profiling the REP STOSD cases we've handled. */
1773 STAMPROFILE StatMonitorRZRepStosd;
1774
1775 /** Profiling the R3 access handler. */
1776 STAMPROFILE StatMonitorR3;
1777 /** Times we've failed interpreting the instruction. */
1778 STAMCOUNTER StatMonitorR3EmulateInstr;
1779 /** Profiling the pgmPoolFlushPage calls made from the R3 access handler. */
1780 STAMPROFILE StatMonitorR3FlushPage;
1781 /** Times we've detected fork(). */
1782 STAMCOUNTER StatMonitorR3Fork;
1783 /** Profiling the R3 access we've handled (except REP STOSD). */
1784 STAMPROFILE StatMonitorR3Handled;
1785 /** The number of times we've seen rep prefixes we can't handle. */
1786 STAMCOUNTER StatMonitorR3RepPrefix;
1787 /** Profiling the REP STOSD cases we've handled. */
1788 STAMPROFILE StatMonitorR3RepStosd;
1789 /** The number of times we're called in an async thread an need to flush. */
1790 STAMCOUNTER StatMonitorR3Async;
1791 /** The high wather mark for cModifiedPages. */
1792 uint16_t cModifiedPagesHigh;
1793 uint16_t Alignment2[3]; /**< Align the next member on a 64-bit boundrary. */
1794# endif
1795# ifdef PGMPOOL_WITH_CACHE
1796 /** The number of cache hits. */
1797 STAMCOUNTER StatCacheHits;
1798 /** The number of cache misses. */
1799 STAMCOUNTER StatCacheMisses;
1800 /** The number of times we've got a conflict of 'kind' in the cache. */
1801 STAMCOUNTER StatCacheKindMismatches;
1802 /** Number of times we've been out of pages. */
1803 STAMCOUNTER StatCacheFreeUpOne;
1804 /** The number of cacheable allocations. */
1805 STAMCOUNTER StatCacheCacheable;
1806 /** The number of uncacheable allocations. */
1807 STAMCOUNTER StatCacheUncacheable;
1808# endif
1809#elif HC_ARCH_BITS == 64
1810 uint32_t Alignment3; /**< Align the next member on a 64-bit boundrary. */
1811#endif
1812 /** The AVL tree for looking up a page by its HC physical address. */
1813 AVLOHCPHYSTREE HCPhysTree;
1814 uint32_t Alignment4; /**< Align the next member on a 64-bit boundrary. */
1815 /** Array of pages. (cMaxPages in length)
1816 * The Id is the index into thist array.
1817 */
1818 PGMPOOLPAGE aPages[PGMPOOL_IDX_FIRST];
1819} PGMPOOL, *PPGMPOOL, **PPPGMPOOL;
1820
1821
1822#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1823DECLINLINE(void *) pgmPoolMapPageInlined(PVM pVM, PPGMPOOLPAGE pPage, int iLine, const char *pszFile);
1824#endif
1825
1826/** @def PGMPOOL_PAGE_2_PTR
1827 * Maps a pool page pool into the current context.
1828 *
1829 * @returns VBox status code.
1830 * @param pVM The VM handle.
1831 * @param pPage The pool page.
1832 *
1833 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
1834 * small page window employeed by that function. Be careful.
1835 * @remark There is no need to assert on the result.
1836 */
1837#if defined(IN_RC)
1838# define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmPoolMapPageInlined(&(pVM)->pgm.s, (pPage), __LINE__, 0)
1839#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1840# define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmPoolMapPageInlined(&(pVM)->pgm.s, (pPage), __LINE__, __PRETTY_FUNCTION__)
1841#elif defined(VBOX_STRICT)
1842# define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmPoolMapPageStrict(pPage)
1843DECLINLINE(void *) pgmPoolMapPageStrict(PPGMPOOLPAGE pPage)
1844{
1845 Assert(pPage->pvPageR3);
1846 return pPage->pvPageR3;
1847}
1848#else
1849# define PGMPOOL_PAGE_2_PTR(pVM, pPage) ((pPage)->pvPageR3)
1850#endif
1851
1852/** @def PGMPOOL_PAGE_2_PTR_BY_PGM
1853 * Maps a pool page pool into the current context.
1854 *
1855 * @returns VBox status code.
1856 * @param pPGM Pointer to the PGM instance data.
1857 * @param pPage The pool page.
1858 *
1859 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
1860 * small page window employeed by that function. Be careful.
1861 * @remark There is no need to assert on the result.
1862 */
1863#if defined(IN_RC)
1864# define PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPage) pgmPoolMapPageInlined((pPGM), (pPage), __LINE__, 0)
1865#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1866# define PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPage) pgmPoolMapPageInlined((pPGM), (pPage), __LINE__, __PRETTY_FUNCTION__)
1867#else
1868# define PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPage) PGMPOOL_PAGE_2_PTR(PGM2VM(pPGM), pPage)
1869#endif
1870
1871
1872
1873/**
1874 * Trees are using self relative offsets as pointers.
1875 * So, all its data, including the root pointer, must be in the heap for HC and GC
1876 * to have the same layout.
1877 */
1878typedef struct PGMTREES
1879{
1880 /** Physical access handlers (AVL range+offsetptr tree). */
1881 AVLROGCPHYSTREE PhysHandlers;
1882 /** Virtual access handlers (AVL range + GC ptr tree). */
1883 AVLROGCPTRTREE VirtHandlers;
1884 /** Virtual access handlers (Phys range AVL range + offsetptr tree). */
1885 AVLROGCPHYSTREE PhysToVirtHandlers;
1886 /** Virtual access handlers for the hypervisor (AVL range + GC ptr tree). */
1887 AVLROGCPTRTREE HyperVirtHandlers;
1888} PGMTREES;
1889/** Pointer to PGM trees. */
1890typedef PGMTREES *PPGMTREES;
1891
1892
1893/** @name Paging mode macros
1894 * @{ */
1895#ifdef IN_RC
1896# define PGM_CTX(a,b) a##RC##b
1897# define PGM_CTX_STR(a,b) a "GC" b
1898# define PGM_CTX_DECL(type) VMMRCDECL(type)
1899#else
1900# ifdef IN_RING3
1901# define PGM_CTX(a,b) a##R3##b
1902# define PGM_CTX_STR(a,b) a "R3" b
1903# define PGM_CTX_DECL(type) DECLCALLBACK(type)
1904# else
1905# define PGM_CTX(a,b) a##R0##b
1906# define PGM_CTX_STR(a,b) a "R0" b
1907# define PGM_CTX_DECL(type) VMMDECL(type)
1908# endif
1909#endif
1910
1911#define PGM_GST_NAME_REAL(name) PGM_CTX(pgm,GstReal##name)
1912#define PGM_GST_NAME_RC_REAL_STR(name) "pgmRCGstReal" #name
1913#define PGM_GST_NAME_R0_REAL_STR(name) "pgmR0GstReal" #name
1914#define PGM_GST_NAME_PROT(name) PGM_CTX(pgm,GstProt##name)
1915#define PGM_GST_NAME_RC_PROT_STR(name) "pgmRCGstProt" #name
1916#define PGM_GST_NAME_R0_PROT_STR(name) "pgmR0GstProt" #name
1917#define PGM_GST_NAME_32BIT(name) PGM_CTX(pgm,Gst32Bit##name)
1918#define PGM_GST_NAME_RC_32BIT_STR(name) "pgmRCGst32Bit" #name
1919#define PGM_GST_NAME_R0_32BIT_STR(name) "pgmR0Gst32Bit" #name
1920#define PGM_GST_NAME_PAE(name) PGM_CTX(pgm,GstPAE##name)
1921#define PGM_GST_NAME_RC_PAE_STR(name) "pgmRCGstPAE" #name
1922#define PGM_GST_NAME_R0_PAE_STR(name) "pgmR0GstPAE" #name
1923#define PGM_GST_NAME_AMD64(name) PGM_CTX(pgm,GstAMD64##name)
1924#define PGM_GST_NAME_RC_AMD64_STR(name) "pgmRCGstAMD64" #name
1925#define PGM_GST_NAME_R0_AMD64_STR(name) "pgmR0GstAMD64" #name
1926#define PGM_GST_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Gst##name))
1927#define PGM_GST_DECL(type, name) PGM_CTX_DECL(type) PGM_GST_NAME(name)
1928
1929#define PGM_SHW_NAME_32BIT(name) PGM_CTX(pgm,Shw32Bit##name)
1930#define PGM_SHW_NAME_RC_32BIT_STR(name) "pgmRCShw32Bit" #name
1931#define PGM_SHW_NAME_R0_32BIT_STR(name) "pgmR0Shw32Bit" #name
1932#define PGM_SHW_NAME_PAE(name) PGM_CTX(pgm,ShwPAE##name)
1933#define PGM_SHW_NAME_RC_PAE_STR(name) "pgmRCShwPAE" #name
1934#define PGM_SHW_NAME_R0_PAE_STR(name) "pgmR0ShwPAE" #name
1935#define PGM_SHW_NAME_AMD64(name) PGM_CTX(pgm,ShwAMD64##name)
1936#define PGM_SHW_NAME_RC_AMD64_STR(name) "pgmRCShwAMD64" #name
1937#define PGM_SHW_NAME_R0_AMD64_STR(name) "pgmR0ShwAMD64" #name
1938#define PGM_SHW_NAME_NESTED(name) PGM_CTX(pgm,ShwNested##name)
1939#define PGM_SHW_NAME_RC_NESTED_STR(name) "pgmRCShwNested" #name
1940#define PGM_SHW_NAME_R0_NESTED_STR(name) "pgmR0ShwNested" #name
1941#define PGM_SHW_NAME_EPT(name) PGM_CTX(pgm,ShwEPT##name)
1942#define PGM_SHW_NAME_RC_EPT_STR(name) "pgmRCShwEPT" #name
1943#define PGM_SHW_NAME_R0_EPT_STR(name) "pgmR0ShwEPT" #name
1944#define PGM_SHW_DECL(type, name) PGM_CTX_DECL(type) PGM_SHW_NAME(name)
1945#define PGM_SHW_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Shw##name))
1946
1947/* Shw_Gst */
1948#define PGM_BTH_NAME_32BIT_REAL(name) PGM_CTX(pgm,Bth32BitReal##name)
1949#define PGM_BTH_NAME_32BIT_PROT(name) PGM_CTX(pgm,Bth32BitProt##name)
1950#define PGM_BTH_NAME_32BIT_32BIT(name) PGM_CTX(pgm,Bth32Bit32Bit##name)
1951#define PGM_BTH_NAME_PAE_REAL(name) PGM_CTX(pgm,BthPAEReal##name)
1952#define PGM_BTH_NAME_PAE_PROT(name) PGM_CTX(pgm,BthPAEProt##name)
1953#define PGM_BTH_NAME_PAE_32BIT(name) PGM_CTX(pgm,BthPAE32Bit##name)
1954#define PGM_BTH_NAME_PAE_PAE(name) PGM_CTX(pgm,BthPAEPAE##name)
1955#define PGM_BTH_NAME_AMD64_PROT(name) PGM_CTX(pgm,BthAMD64Prot##name)
1956#define PGM_BTH_NAME_AMD64_AMD64(name) PGM_CTX(pgm,BthAMD64AMD64##name)
1957#define PGM_BTH_NAME_NESTED_REAL(name) PGM_CTX(pgm,BthNestedReal##name)
1958#define PGM_BTH_NAME_NESTED_PROT(name) PGM_CTX(pgm,BthNestedProt##name)
1959#define PGM_BTH_NAME_NESTED_32BIT(name) PGM_CTX(pgm,BthNested32Bit##name)
1960#define PGM_BTH_NAME_NESTED_PAE(name) PGM_CTX(pgm,BthNestedPAE##name)
1961#define PGM_BTH_NAME_NESTED_AMD64(name) PGM_CTX(pgm,BthNestedAMD64##name)
1962#define PGM_BTH_NAME_EPT_REAL(name) PGM_CTX(pgm,BthEPTReal##name)
1963#define PGM_BTH_NAME_EPT_PROT(name) PGM_CTX(pgm,BthEPTProt##name)
1964#define PGM_BTH_NAME_EPT_32BIT(name) PGM_CTX(pgm,BthEPT32Bit##name)
1965#define PGM_BTH_NAME_EPT_PAE(name) PGM_CTX(pgm,BthEPTPAE##name)
1966#define PGM_BTH_NAME_EPT_AMD64(name) PGM_CTX(pgm,BthEPTAMD64##name)
1967
1968#define PGM_BTH_NAME_RC_32BIT_REAL_STR(name) "pgmRCBth32BitReal" #name
1969#define PGM_BTH_NAME_RC_32BIT_PROT_STR(name) "pgmRCBth32BitProt" #name
1970#define PGM_BTH_NAME_RC_32BIT_32BIT_STR(name) "pgmRCBth32Bit32Bit" #name
1971#define PGM_BTH_NAME_RC_PAE_REAL_STR(name) "pgmRCBthPAEReal" #name
1972#define PGM_BTH_NAME_RC_PAE_PROT_STR(name) "pgmRCBthPAEProt" #name
1973#define PGM_BTH_NAME_RC_PAE_32BIT_STR(name) "pgmRCBthPAE32Bit" #name
1974#define PGM_BTH_NAME_RC_PAE_PAE_STR(name) "pgmRCBthPAEPAE" #name
1975#define PGM_BTH_NAME_RC_AMD64_AMD64_STR(name) "pgmRCBthAMD64AMD64" #name
1976#define PGM_BTH_NAME_RC_NESTED_REAL_STR(name) "pgmRCBthNestedReal" #name
1977#define PGM_BTH_NAME_RC_NESTED_PROT_STR(name) "pgmRCBthNestedProt" #name
1978#define PGM_BTH_NAME_RC_NESTED_32BIT_STR(name) "pgmRCBthNested32Bit" #name
1979#define PGM_BTH_NAME_RC_NESTED_PAE_STR(name) "pgmRCBthNestedPAE" #name
1980#define PGM_BTH_NAME_RC_NESTED_AMD64_STR(name) "pgmRCBthNestedAMD64" #name
1981#define PGM_BTH_NAME_RC_EPT_REAL_STR(name) "pgmRCBthEPTReal" #name
1982#define PGM_BTH_NAME_RC_EPT_PROT_STR(name) "pgmRCBthEPTProt" #name
1983#define PGM_BTH_NAME_RC_EPT_32BIT_STR(name) "pgmRCBthEPT32Bit" #name
1984#define PGM_BTH_NAME_RC_EPT_PAE_STR(name) "pgmRCBthEPTPAE" #name
1985#define PGM_BTH_NAME_RC_EPT_AMD64_STR(name) "pgmRCBthEPTAMD64" #name
1986#define PGM_BTH_NAME_R0_32BIT_REAL_STR(name) "pgmR0Bth32BitReal" #name
1987#define PGM_BTH_NAME_R0_32BIT_PROT_STR(name) "pgmR0Bth32BitProt" #name
1988#define PGM_BTH_NAME_R0_32BIT_32BIT_STR(name) "pgmR0Bth32Bit32Bit" #name
1989#define PGM_BTH_NAME_R0_PAE_REAL_STR(name) "pgmR0BthPAEReal" #name
1990#define PGM_BTH_NAME_R0_PAE_PROT_STR(name) "pgmR0BthPAEProt" #name
1991#define PGM_BTH_NAME_R0_PAE_32BIT_STR(name) "pgmR0BthPAE32Bit" #name
1992#define PGM_BTH_NAME_R0_PAE_PAE_STR(name) "pgmR0BthPAEPAE" #name
1993#define PGM_BTH_NAME_R0_AMD64_PROT_STR(name) "pgmR0BthAMD64Prot" #name
1994#define PGM_BTH_NAME_R0_AMD64_AMD64_STR(name) "pgmR0BthAMD64AMD64" #name
1995#define PGM_BTH_NAME_R0_NESTED_REAL_STR(name) "pgmR0BthNestedReal" #name
1996#define PGM_BTH_NAME_R0_NESTED_PROT_STR(name) "pgmR0BthNestedProt" #name
1997#define PGM_BTH_NAME_R0_NESTED_32BIT_STR(name) "pgmR0BthNested32Bit" #name
1998#define PGM_BTH_NAME_R0_NESTED_PAE_STR(name) "pgmR0BthNestedPAE" #name
1999#define PGM_BTH_NAME_R0_NESTED_AMD64_STR(name) "pgmR0BthNestedAMD64" #name
2000#define PGM_BTH_NAME_R0_EPT_REAL_STR(name) "pgmR0BthEPTReal" #name
2001#define PGM_BTH_NAME_R0_EPT_PROT_STR(name) "pgmR0BthEPTProt" #name
2002#define PGM_BTH_NAME_R0_EPT_32BIT_STR(name) "pgmR0BthEPT32Bit" #name
2003#define PGM_BTH_NAME_R0_EPT_PAE_STR(name) "pgmR0BthEPTPAE" #name
2004#define PGM_BTH_NAME_R0_EPT_AMD64_STR(name) "pgmR0BthEPTAMD64" #name
2005
2006#define PGM_BTH_DECL(type, name) PGM_CTX_DECL(type) PGM_BTH_NAME(name)
2007#define PGM_BTH_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Bth##name))
2008/** @} */
2009
2010/**
2011 * Data for each paging mode.
2012 */
2013typedef struct PGMMODEDATA
2014{
2015 /** The guest mode type. */
2016 uint32_t uGstType;
2017 /** The shadow mode type. */
2018 uint32_t uShwType;
2019
2020 /** @name Function pointers for Shadow paging.
2021 * @{
2022 */
2023 DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCPTR offDelta));
2024 DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
2025 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2026 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2027
2028 DECLRCCALLBACKMEMBER(int, pfnRCShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2029 DECLRCCALLBACKMEMBER(int, pfnRCShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2030
2031 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2032 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2033 /** @} */
2034
2035 /** @name Function pointers for Guest paging.
2036 * @{
2037 */
2038 DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCPTR offDelta));
2039 DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
2040 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2041 DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2042 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2043#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2044 DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2045 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
2046#endif
2047 DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2048 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM));
2049#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2050 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
2051 R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
2052 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
2053 R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
2054#endif
2055 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2056 DECLRCCALLBACKMEMBER(int, pfnRCGstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2057 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2058#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2059 DECLRCCALLBACKMEMBER(int, pfnRCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2060 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmonitorCR3,(PVM pVM));
2061#endif
2062 DECLRCCALLBACKMEMBER(int, pfnRCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2063 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmapCR3,(PVM pVM));
2064#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2065 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstWriteHandlerCR3;
2066 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstPAEWriteHandlerCR3;
2067#endif
2068 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2069 DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2070 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2071#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2072 DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2073 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
2074#endif
2075 DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2076 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM));
2077#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2078 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
2079 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
2080#endif
2081 /** @} */
2082
2083 /** @name Function pointers for Both Shadow and Guest paging.
2084 * @{
2085 */
2086 DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCPTR offDelta));
2087 /* no pfnR3BthTrap0eHandler */
2088 DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2089 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2090 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2091 DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2092 DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2093#ifdef VBOX_STRICT
2094 DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2095#endif
2096
2097 DECLRCCALLBACKMEMBER(int, pfnRCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2098 DECLRCCALLBACKMEMBER(int, pfnRCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2099 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2100 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2101 DECLRCCALLBACKMEMBER(int, pfnRCBthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2102 DECLRCCALLBACKMEMBER(int, pfnRCBthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2103#ifdef VBOX_STRICT
2104 DECLRCCALLBACKMEMBER(unsigned, pfnRCBthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2105#endif
2106
2107 DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2108 DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2109 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2110 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2111 DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2112 DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2113#ifdef VBOX_STRICT
2114 DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2115#endif
2116 /** @} */
2117} PGMMODEDATA, *PPGMMODEDATA;
2118
2119
2120
2121/**
2122 * Converts a PGM pointer into a VM pointer.
2123 * @returns Pointer to the VM structure the PGM is part of.
2124 * @param pPGM Pointer to PGM instance data.
2125 */
2126#define PGM2VM(pPGM) ( (PVM)((char*)pPGM - pPGM->offVM) )
2127
2128/**
2129 * PGM Data (part of VM)
2130 */
2131typedef struct PGM
2132{
2133 /** Offset to the VM structure. */
2134 RTINT offVM;
2135 /** Offset of the PGMCPU structure relative to VMCPU. */
2136 int32_t offVCpu;
2137 /** Alignment padding. */
2138 int32_t i32Alignment;
2139
2140 /*
2141 * This will be redefined at least two more times before we're done, I'm sure.
2142 * The current code is only to get on with the coding.
2143 * - 2004-06-10: initial version, bird.
2144 * - 2004-07-02: 1st time, bird.
2145 * - 2004-10-18: 2nd time, bird.
2146 * - 2005-07-xx: 3rd time, bird.
2147 */
2148
2149 /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
2150 RCPTRTYPE(PX86PTE) paDynPageMap32BitPTEsGC;
2151 /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
2152 RCPTRTYPE(PX86PTEPAE) paDynPageMapPaePTEsGC;
2153
2154 /** The host paging mode. (This is what SUPLib reports.) */
2155 SUPPAGINGMODE enmHostMode;
2156 /** The shadow paging mode. */
2157 PGMMODE enmShadowMode;
2158 /** The guest paging mode. */
2159 PGMMODE enmGuestMode;
2160
2161 /** The current physical address representing in the guest CR3 register. */
2162 RTGCPHYS GCPhysCR3;
2163 /** Pointer to the 5 page CR3 content mapping.
2164 * The first page is always the CR3 (in some form) while the 4 other pages
2165 * are used of the PDs in PAE mode. */
2166 RTGCPTR GCPtrCR3Mapping;
2167#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
2168 uint32_t u32Alignment;
2169#endif
2170 /** The physical address of the currently monitored guest CR3 page.
2171 * When this value is NIL_RTGCPHYS no page is being monitored. */
2172 RTGCPHYS GCPhysGstCR3Monitored;
2173
2174 /** @name 32-bit Guest Paging.
2175 * @{ */
2176 /** The guest's page directory, R3 pointer. */
2177 R3PTRTYPE(PX86PD) pGst32BitPdR3;
2178#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2179 /** The guest's page directory, R0 pointer. */
2180 R0PTRTYPE(PX86PD) pGst32BitPdR0;
2181#endif
2182 /** The guest's page directory, static RC mapping. */
2183 RCPTRTYPE(PX86PD) pGst32BitPdRC;
2184 /** @} */
2185
2186 /** @name PAE Guest Paging.
2187 * @{ */
2188 /** The guest's page directory pointer table, static RC mapping. */
2189 RCPTRTYPE(PX86PDPT) pGstPaePdptRC;
2190 /** The guest's page directory pointer table, R3 pointer. */
2191 R3PTRTYPE(PX86PDPT) pGstPaePdptR3;
2192#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2193 /** The guest's page directory pointer table, R0 pointer. */
2194 R0PTRTYPE(PX86PDPT) pGstPaePdptR0;
2195#endif
2196
2197 /** The guest's page directories, R3 pointers.
2198 * These are individual pointers and don't have to be adjecent.
2199 * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
2200 R3PTRTYPE(PX86PDPAE) apGstPaePDsR3[4];
2201 /** The guest's page directories, R0 pointers.
2202 * Same restrictions as apGstPaePDsR3. */
2203#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2204 R0PTRTYPE(PX86PDPAE) apGstPaePDsR0[4];
2205#endif
2206 /** The guest's page directories, static GC mapping.
2207 * Unlike the R3/R0 array the first entry can be accessed as a 2048 entry PD.
2208 * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
2209 RCPTRTYPE(PX86PDPAE) apGstPaePDsRC[4];
2210 /** The physical addresses of the guest page directories (PAE) pointed to by apGstPagePDsHC/GC. */
2211 RTGCPHYS aGCPhysGstPaePDs[4];
2212 /** The physical addresses of the monitored guest page directories (PAE). */
2213 RTGCPHYS aGCPhysGstPaePDsMonitored[4];
2214 /** @} */
2215
2216 /** @name AMD64 Guest Paging.
2217 * @{ */
2218 /** The guest's page directory pointer table, R3 pointer. */
2219 R3PTRTYPE(PX86PML4) pGstAmd64Pml4R3;
2220#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2221 /** The guest's page directory pointer table, R0 pointer. */
2222 R0PTRTYPE(PX86PML4) pGstAmd64Pml4R0;
2223#endif
2224 /** @} */
2225
2226 /** @name 32-bit Shadow Paging
2227 * @{ */
2228#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
2229 /** The Physical Address (HC) of the current active shadow CR3. */
2230 RTHCPHYS HCPhysShwCR3;
2231 /** Pointer to the page of the current active CR3 - R3 Ptr. */
2232 R3PTRTYPE(PPGMPOOLPAGE) pShwPageCR3R3;
2233 /** Pointer to the page of the current active CR3 - R0 Ptr. */
2234 R0PTRTYPE(PPGMPOOLPAGE) pShwPageCR3R0;
2235 /** Pointer to the page of the current active CR3 - RC Ptr. */
2236 RCPTRTYPE(PPGMPOOLPAGE) pShwPageCR3RC;
2237# if HC_ARCH_BITS == 64
2238 RTRCPTR alignment6; /**< structure size alignment. */
2239# endif
2240#else
2241 /** The 32-Bit PD - R3 Ptr. */
2242 R3PTRTYPE(PX86PD) pShw32BitPdR3;
2243 /** The 32-Bit PD - R0 Ptr. */
2244 R0PTRTYPE(PX86PD) pShw32BitPdR0;
2245 /** The 32-Bit PD - RC Ptr. */
2246 RCPTRTYPE(PX86PD) pShw32BitPdRC;
2247# if HC_ARCH_BITS == 64
2248 uint32_t u32Padding1; /**< alignment padding. */
2249# endif
2250 /** The Physical Address (HC) of the 32-Bit PD. */
2251 RTHCPHYS HCPhysShw32BitPD;
2252 /** @} */
2253
2254 /** @name PAE Shadow Paging
2255 * @{ */
2256 /** The four PDs for the low 4GB - R3 Ptr.
2257 * Even though these are 4 pointers, what they point at is a single table.
2258 * Thus, it's possible to walk the 2048 entries starting where apHCPaePDs[0] points. */
2259 R3PTRTYPE(PX86PDPAE) apShwPaePDsR3[4];
2260# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2261 /** The four PDs for the low 4GB - R0 Ptr.
2262 * Same kind of mapping as apHCPaePDs. */
2263 R0PTRTYPE(PX86PDPAE) apShwPaePDsR0[4];
2264# endif
2265 /** The four PDs for the low 4GB - RC Ptr.
2266 * Same kind of mapping as apHCPaePDs. */
2267 RCPTRTYPE(PX86PDPAE) apShwPaePDsRC[4];
2268 /** The Physical Address (HC) of the four PDs for the low 4GB.
2269 * These are *NOT* 4 contiguous pages. */
2270 RTHCPHYS aHCPhysPaePDs[4];
2271 /** The Physical Address (HC) of the PAE PDPT. */
2272 RTHCPHYS HCPhysShwPaePdpt;
2273 /** The PAE PDPT - R3 Ptr. */
2274 R3PTRTYPE(PX86PDPT) pShwPaePdptR3;
2275 /** The PAE PDPT - R0 Ptr. */
2276 R0PTRTYPE(PX86PDPT) pShwPaePdptR0;
2277 /** The PAE PDPT - RC Ptr. */
2278 RCPTRTYPE(PX86PDPT) pShwPaePdptRC;
2279 /** @} */
2280# if HC_ARCH_BITS == 64
2281 RTRCPTR alignment5; /**< structure size alignment. */
2282# endif
2283
2284 /** @name AMD64 Shadow Paging
2285 * Extends PAE Paging.
2286 * @{ */
2287 /** The Page Map Level 4 table - R3 Ptr. */
2288 R3PTRTYPE(PX86PML4) pShwPaePml4R3;
2289# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2290 /** The Page Map Level 4 table - R0 Ptr. */
2291 R0PTRTYPE(PX86PML4) pShwPaePml4R0;
2292# endif
2293 /** The Physical Address (HC) of the Page Map Level 4 table. */
2294 RTHCPHYS HCPhysShwPaePml4;
2295 /** The pgm pool page descriptor for the current active CR3 - R3 Ptr. */
2296 R3PTRTYPE(PPGMPOOLPAGE) pShwAmd64CR3R3;
2297 /** The pgm pool page descriptor for the current active CR3 - R0 Ptr. */
2298 R0PTRTYPE(PPGMPOOLPAGE) pShwAmd64CR3R0;
2299 /** @}*/
2300
2301 /** @name Nested Shadow Paging
2302 * @{ */
2303 /** Root table; format depends on the host paging mode (AMD-V) or EPT - R3 pointer. */
2304 RTR3PTR pShwNestedRootR3;
2305# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2306 /** Root table; format depends on the host paging mode (AMD-V) or EPT - R0 pointer. */
2307 RTR0PTR pShwNestedRootR0;
2308# endif
2309 /** The Physical Address (HC) of the nested paging root. */
2310 RTHCPHYS HCPhysShwNestedRoot;
2311#endif
2312 /** @} */
2313
2314 /** @name Function pointers for Shadow paging.
2315 * @{
2316 */
2317 DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCPTR offDelta));
2318 DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
2319 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2320 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2321
2322 DECLRCCALLBACKMEMBER(int, pfnRCShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2323 DECLRCCALLBACKMEMBER(int, pfnRCShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2324
2325 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2326 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2327
2328 /** @} */
2329
2330 /** @name Function pointers for Guest paging.
2331 * @{
2332 */
2333 DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCPTR offDelta));
2334 DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
2335 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2336 DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2337 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2338#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2339 DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2340 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
2341#endif
2342 DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2343 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM));
2344#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2345 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
2346 R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
2347 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
2348 R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
2349#endif
2350 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2351 DECLRCCALLBACKMEMBER(int, pfnRCGstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2352 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2353#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2354 DECLRCCALLBACKMEMBER(int, pfnRCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2355 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmonitorCR3,(PVM pVM));
2356#endif
2357 DECLRCCALLBACKMEMBER(int, pfnRCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2358 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmapCR3,(PVM pVM));
2359#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2360 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstWriteHandlerCR3;
2361 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstPAEWriteHandlerCR3;
2362#endif
2363#if HC_ARCH_BITS == 64
2364 RTRCPTR alignment3; /**< structure size alignment. */
2365#endif
2366
2367 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2368 DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2369 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2370#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2371 DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2372 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
2373#endif
2374 DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2375 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM));
2376#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2377 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
2378 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
2379#endif
2380 /** @} */
2381
2382 /** @name Function pointers for Both Shadow and Guest paging.
2383 * @{
2384 */
2385 DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCPTR offDelta));
2386 /* no pfnR3BthTrap0eHandler */
2387 DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2388 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2389 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2390 DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2391 DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2392 DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2393
2394 DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2395 DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2396 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2397 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2398 DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2399 DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2400 DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2401
2402 DECLRCCALLBACKMEMBER(int, pfnRCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2403 DECLRCCALLBACKMEMBER(int, pfnRCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2404 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2405 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2406 DECLRCCALLBACKMEMBER(int, pfnRCBthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2407 DECLRCCALLBACKMEMBER(int, pfnRCBthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2408 DECLRCCALLBACKMEMBER(unsigned, pfnRCBthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2409#if HC_ARCH_BITS == 64
2410 RTRCPTR alignment2; /**< structure size alignment. */
2411#endif
2412 /** @} */
2413
2414 /** Pointer to SHW+GST mode data (function pointers).
2415 * The index into this table is made up from */
2416 R3PTRTYPE(PPGMMODEDATA) paModeData;
2417
2418 /** Pointer to the list of RAM ranges (Phys GC -> Phys HC conversion) - for R3.
2419 * This is sorted by physical address and contains no overlapping ranges. */
2420 R3PTRTYPE(PPGMRAMRANGE) pRamRangesR3;
2421 /** R0 pointer corresponding to PGM::pRamRangesR3. */
2422 R0PTRTYPE(PPGMRAMRANGE) pRamRangesR0;
2423 /** RC pointer corresponding to PGM::pRamRangesR3. */
2424 RCPTRTYPE(PPGMRAMRANGE) pRamRangesRC;
2425 /** The configured RAM size. */
2426 RTUINT cbRamSize;
2427
2428 /** Pointer to the list of ROM ranges - for R3.
2429 * This is sorted by physical address and contains no overlapping ranges. */
2430 R3PTRTYPE(PPGMROMRANGE) pRomRangesR3;
2431 /** R0 pointer corresponding to PGM::pRomRangesR3. */
2432 R0PTRTYPE(PPGMROMRANGE) pRomRangesR0;
2433 /** RC pointer corresponding to PGM::pRomRangesR3. */
2434 RCPTRTYPE(PPGMROMRANGE) pRomRangesRC;
2435 /** Alignment padding. */
2436 RTRCPTR GCPtrPadding2;
2437
2438 /** Pointer to the list of MMIO2 ranges - for R3.
2439 * Registration order. */
2440 R3PTRTYPE(PPGMMMIO2RANGE) pMmio2RangesR3;
2441
2442 /** PGM offset based trees - R3 Ptr. */
2443 R3PTRTYPE(PPGMTREES) pTreesR3;
2444 /** PGM offset based trees - R0 Ptr. */
2445 R0PTRTYPE(PPGMTREES) pTreesR0;
2446 /** PGM offset based trees - RC Ptr. */
2447 RCPTRTYPE(PPGMTREES) pTreesRC;
2448
2449 /** Linked list of GC mappings - for RC.
2450 * The list is sorted ascending on address.
2451 */
2452 RCPTRTYPE(PPGMMAPPING) pMappingsRC;
2453 /** Linked list of GC mappings - for HC.
2454 * The list is sorted ascending on address.
2455 */
2456 R3PTRTYPE(PPGMMAPPING) pMappingsR3;
2457 /** Linked list of GC mappings - for R0.
2458 * The list is sorted ascending on address.
2459 */
2460 R0PTRTYPE(PPGMMAPPING) pMappingsR0;
2461
2462 /** If set no conflict checks are required. (boolean) */
2463 bool fMappingsFixed;
2464 /** If set, then no mappings are put into the shadow page table. (boolean) */
2465 bool fDisableMappings;
2466 /** Size of fixed mapping */
2467 uint32_t cbMappingFixed;
2468 /** Base address (GC) of fixed mapping */
2469 RTGCPTR GCPtrMappingFixed;
2470#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
2471 uint32_t u32Padding0; /**< alignment padding. */
2472#endif
2473
2474
2475 /** @name Intermediate Context
2476 * @{ */
2477 /** Pointer to the intermediate page directory - Normal. */
2478 R3PTRTYPE(PX86PD) pInterPD;
2479 /** Pointer to the intermedate page tables - Normal.
2480 * There are two page tables, one for the identity mapping and one for
2481 * the host context mapping (of the core code). */
2482 R3PTRTYPE(PX86PT) apInterPTs[2];
2483 /** Pointer to the intermedate page tables - PAE. */
2484 R3PTRTYPE(PX86PTPAE) apInterPaePTs[2];
2485 /** Pointer to the intermedate page directory - PAE. */
2486 R3PTRTYPE(PX86PDPAE) apInterPaePDs[4];
2487 /** Pointer to the intermedate page directory - PAE. */
2488 R3PTRTYPE(PX86PDPT) pInterPaePDPT;
2489 /** Pointer to the intermedate page-map level 4 - AMD64. */
2490 R3PTRTYPE(PX86PML4) pInterPaePML4;
2491 /** Pointer to the intermedate page directory - AMD64. */
2492 R3PTRTYPE(PX86PDPT) pInterPaePDPT64;
2493 /** The Physical Address (HC) of the intermediate Page Directory - Normal. */
2494 RTHCPHYS HCPhysInterPD;
2495 /** The Physical Address (HC) of the intermediate Page Directory Pointer Table - PAE. */
2496 RTHCPHYS HCPhysInterPaePDPT;
2497 /** The Physical Address (HC) of the intermediate Page Map Level 4 table - AMD64. */
2498 RTHCPHYS HCPhysInterPaePML4;
2499 /** @} */
2500
2501 /** Base address of the dynamic page mapping area.
2502 * The array is MM_HYPER_DYNAMIC_SIZE bytes big.
2503 */
2504 RCPTRTYPE(uint8_t *) pbDynPageMapBaseGC;
2505 /** The index of the last entry used in the dynamic page mapping area. */
2506 RTUINT iDynPageMapLast;
2507 /** Cache containing the last entries in the dynamic page mapping area.
2508 * The cache size is covering half of the mapping area. */
2509 RTHCPHYS aHCPhysDynPageMapCache[MM_HYPER_DYNAMIC_SIZE >> (PAGE_SHIFT + 1)];
2510
2511 /** The address of the ring-0 mapping cache if we're making use of it. */
2512 RTR0PTR pvR0DynMapUsed;
2513#if HC_ARCH_BITS == 32
2514 RTR0PTR R0PtrPadding0; /**< Alignment. */
2515#endif
2516
2517
2518 /** 4 MB page mask; 32 or 36 bits depending on PSE-36 */
2519 RTGCPHYS GCPhys4MBPSEMask;
2520
2521 /** A20 gate mask.
2522 * Our current approach to A20 emulation is to let REM do it and don't bother
2523 * anywhere else. The interesting Guests will be operating with it enabled anyway.
2524 * But whould need arrise, we'll subject physical addresses to this mask. */
2525 RTGCPHYS GCPhysA20Mask;
2526 /** A20 gate state - boolean! */
2527 RTUINT fA20Enabled;
2528
2529 /** What needs syncing (PGM_SYNC_*).
2530 * This is used to queue operations for PGMSyncCR3, PGMInvalidatePage,
2531 * PGMFlushTLB, and PGMR3Load. */
2532 RTUINT fSyncFlags;
2533
2534 /** PGM critical section.
2535 * This protects the physical & virtual access handlers, ram ranges,
2536 * and the page flag updating (some of it anyway).
2537 */
2538 PDMCRITSECT CritSect;
2539
2540 /** Shadow Page Pool - R3 Ptr. */
2541 R3PTRTYPE(PPGMPOOL) pPoolR3;
2542 /** Shadow Page Pool - R0 Ptr. */
2543 R0PTRTYPE(PPGMPOOL) pPoolR0;
2544 /** Shadow Page Pool - RC Ptr. */
2545 RCPTRTYPE(PPGMPOOL) pPoolRC;
2546
2547 /** We're not in a state which permits writes to guest memory.
2548 * (Only used in strict builds.) */
2549 bool fNoMorePhysWrites;
2550
2551 /** Flush the cache on the next access. */
2552 bool fPhysCacheFlushPending;
2553/** @todo r=bird: Fix member names!*/
2554 /** PGMPhysRead cache */
2555 PGMPHYSCACHE pgmphysreadcache;
2556 /** PGMPhysWrite cache */
2557 PGMPHYSCACHE pgmphyswritecache;
2558
2559 /**
2560 * Data associated with managing the ring-3 mappings of the allocation chunks.
2561 */
2562 struct
2563 {
2564 /** The chunk tree, ordered by chunk id. */
2565#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2566 R3PTRTYPE(PAVLU32NODECORE) pTree;
2567#else
2568 R3R0PTRTYPE(PAVLU32NODECORE) pTree;
2569#endif
2570 /** The chunk mapping TLB. */
2571 PGMCHUNKR3MAPTLB Tlb;
2572 /** The number of mapped chunks. */
2573 uint32_t c;
2574 /** The maximum number of mapped chunks.
2575 * @cfgm PGM/MaxRing3Chunks */
2576 uint32_t cMax;
2577 /** The chunk age tree, ordered by ageing sequence number. */
2578 R3PTRTYPE(PAVLLU32NODECORE) pAgeTree;
2579 /** The current time. */
2580 uint32_t iNow;
2581 /** Number of pgmR3PhysChunkFindUnmapCandidate calls left to the next ageing. */
2582 uint32_t AgeingCountdown;
2583 } ChunkR3Map;
2584
2585 /**
2586 * The page mapping TLB for ring-3 and (for the time being) ring-0.
2587 */
2588 PGMPAGER3MAPTLB PhysTlbHC;
2589
2590 /** @name The zero page.
2591 * @{ */
2592 /** The host physical address of the zero page. */
2593 RTHCPHYS HCPhysZeroPg;
2594 /** The ring-3 mapping of the zero page. */
2595 RTR3PTR pvZeroPgR3;
2596 /** The ring-0 mapping of the zero page. */
2597 RTR0PTR pvZeroPgR0;
2598 /** The GC mapping of the zero page. */
2599 RTGCPTR pvZeroPgGC;
2600#if GC_ARCH_BITS != 32
2601 uint32_t u32ZeroAlignment; /**< Alignment padding. */
2602#endif
2603 /** @}*/
2604
2605 /** The number of handy pages. */
2606 uint32_t cHandyPages;
2607 /**
2608 * Array of handy pages.
2609 *
2610 * This array is used in a two way communication between pgmPhysAllocPage
2611 * and GMMR0AllocateHandyPages, with PGMR3PhysAllocateHandyPages serving as
2612 * an intermediary.
2613 *
2614 * The size of this array is important, see pgmPhysEnsureHandyPage for details.
2615 * (The current size of 32 pages, means 128 KB of handy memory.)
2616 */
2617 GMMPAGEDESC aHandyPages[32];
2618
2619 /** @name Release Statistics
2620 * @{ */
2621 uint32_t cAllPages; /**< The total number of pages. (Should be Private + Shared + Zero.) */
2622 uint32_t cPrivatePages; /**< The number of private pages. */
2623 uint32_t cSharedPages; /**< The number of shared pages. */
2624 uint32_t cZeroPages; /**< The number of zero backed pages. */
2625 /** The number of times the guest has switched mode since last reset or statistics reset. */
2626 STAMCOUNTER cGuestModeChanges;
2627 /** @} */
2628
2629#ifdef VBOX_WITH_STATISTICS /** @todo move this chunk to the heap. */
2630 /** RC: Which statistic this \#PF should be attributed to. */
2631 RCPTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionRC;
2632 RTRCPTR padding0;
2633 /** R0: Which statistic this \#PF should be attributed to. */
2634 R0PTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionR0;
2635 RTR0PTR padding1;
2636
2637 /* Common */
2638# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2639 STAMCOUNTER StatTrackVirgin; /**< The number of first time shadowings. */
2640 STAMCOUNTER StatTrackAliased; /**< The number of times switching to cRef2, i.e. the page is being shadowed by two PTs. */
2641 STAMCOUNTER StatTrackAliasedMany; /**< The number of times we're tracking using cRef2. */
2642 STAMCOUNTER StatTrackAliasedLots; /**< The number of times we're hitting pages which has overflowed cRef2. */
2643 STAMCOUNTER StatTrackOverflows; /**< The number of times the extent list grows to long. */
2644 STAMPROFILE StatTrackDeref; /**< Profiling of SyncPageWorkerTrackDeref (expensive). */
2645# endif
2646 STAMCOUNTER StatSyncPtPD[X86_PG_ENTRIES]; /**< SyncPT - PD distribution. */
2647 STAMCOUNTER StatSyncPagePD[X86_PG_ENTRIES]; /**< SyncPage - PD distribution. */
2648
2649 /* R3 only: */
2650 STAMCOUNTER StatR3DetectedConflicts; /**< R3: Number of times PGMR3MapHasConflicts() detected a conflict. */
2651 STAMPROFILE StatR3ResolveConflict; /**< R3: pgmR3SyncPTResolveConflict() profiling (includes the entire relocation). */
2652 STAMCOUNTER StatR3GuestPDWrite; /**< R3: The total number of times pgmHCGuestPDWriteHandler() was called. */
2653 STAMCOUNTER StatR3GuestPDWriteConflict; /**< R3: The number of times GuestPDWriteContlict() detected a conflict. */
2654 STAMCOUNTER StatR3DynRamTotal; /**< R3: Allocated MBs of guest ram */
2655 STAMCOUNTER StatR3DynRamGrow; /**< R3: Nr of pgmr3PhysGrowRange calls. */
2656
2657 /* R0 only: */
2658 STAMCOUNTER StatR0DynMapMigrateInvlPg; /**< R0: invlpg in PGMDynMapMigrateAutoSet. */
2659 STAMPROFILE StatR0DynMapGCPageInl; /**< R0: Calls to pgmR0DynMapGCPageInlined. */
2660 STAMCOUNTER StatR0DynMapGCPageInlHits; /**< R0: Hash table lookup hits. */
2661 STAMCOUNTER StatR0DynMapGCPageInlMisses; /**< R0: Misses that falls back to code common with PGMDynMapHCPage. */
2662 STAMCOUNTER StatR0DynMapGCPageInlRamHits; /**< R0: 1st ram range hits. */
2663 STAMCOUNTER StatR0DynMapGCPageInlRamMisses; /**< R0: 1st ram range misses, takes slow path. */
2664 STAMPROFILE StatR0DynMapHCPageInl; /**< R0: Calls to pgmR0DynMapHCPageInlined. */
2665 STAMCOUNTER StatR0DynMapHCPageInlHits; /**< R0: Hash table lookup hits. */
2666 STAMCOUNTER StatR0DynMapHCPageInlMisses; /**< R0: Misses that falls back to code common with PGMDynMapHCPage. */
2667 STAMPROFILE StatR0DynMapHCPage; /**< R0: Calls to PGMDynMapHCPage. */
2668 STAMCOUNTER StatR0DynMapSetOptimize; /**< R0: Calls to pgmDynMapOptimizeAutoSet. */
2669 STAMCOUNTER StatR0DynMapSetSearchFlushes; /**< R0: Set search restorting to subset flushes. */
2670 STAMCOUNTER StatR0DynMapSetSearchHits; /**< R0: Set search hits. */
2671 STAMCOUNTER StatR0DynMapSetSearchMisses; /**< R0: Set search misses. */
2672 STAMCOUNTER StatR0DynMapPage; /**< R0: Calls to pgmR0DynMapPage. */
2673 STAMCOUNTER StatR0DynMapPageHits0; /**< R0: Hits at iPage+0. */
2674 STAMCOUNTER StatR0DynMapPageHits1; /**< R0: Hits at iPage+1. */
2675 STAMCOUNTER StatR0DynMapPageHits2; /**< R0: Hits at iPage+2. */
2676 STAMCOUNTER StatR0DynMapPageInvlPg; /**< R0: invlpg. */
2677 STAMCOUNTER StatR0DynMapPageSlow; /**< R0: Calls to pgmR0DynMapPageSlow. */
2678 STAMCOUNTER StatR0DynMapPageSlowLoopHits; /**< R0: Hits in the pgmR0DynMapPageSlow search loop. */
2679 STAMCOUNTER StatR0DynMapPageSlowLoopMisses; /**< R0: Misses in the pgmR0DynMapPageSlow search loop. */
2680 //STAMCOUNTER StatR0DynMapPageSlowLostHits; /**< R0: Lost hits. */
2681 STAMCOUNTER StatR0DynMapSubsets; /**< R0: Times PGMDynMapPushAutoSubset was called. */
2682 STAMCOUNTER StatR0DynMapPopFlushes; /**< R0: Times PGMDynMapPopAutoSubset flushes the subset. */
2683
2684 /* RC only: */
2685 STAMCOUNTER StatRCDynMapCacheMisses; /**< RC: The number of dynamic page mapping cache hits */
2686 STAMCOUNTER StatRCDynMapCacheHits; /**< RC: The number of dynamic page mapping cache misses */
2687 STAMCOUNTER StatRCInvlPgConflict; /**< RC: Number of times PGMInvalidatePage() detected a mapping conflict. */
2688 STAMCOUNTER StatRCInvlPgSyncMonCR3; /**< RC: Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3. */
2689
2690 /* RZ only: */
2691 STAMPROFILE StatRZTrap0e; /**< RC/R0: PGMTrap0eHandler() profiling. */
2692 STAMPROFILE StatRZTrap0eTimeCheckPageFault;
2693 STAMPROFILE StatRZTrap0eTimeSyncPT;
2694 STAMPROFILE StatRZTrap0eTimeMapping;
2695 STAMPROFILE StatRZTrap0eTimeOutOfSync;
2696 STAMPROFILE StatRZTrap0eTimeHandlers;
2697 STAMPROFILE StatRZTrap0eTime2CSAM; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is CSAM. */
2698 STAMPROFILE StatRZTrap0eTime2DirtyAndAccessed; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation. */
2699 STAMPROFILE StatRZTrap0eTime2GuestTrap; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a guest trap. */
2700 STAMPROFILE StatRZTrap0eTime2HndPhys; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a physical handler. */
2701 STAMPROFILE StatRZTrap0eTime2HndVirt; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a virtual handler. */
2702 STAMPROFILE StatRZTrap0eTime2HndUnhandled; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page. */
2703 STAMPROFILE StatRZTrap0eTime2Misc; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is not known. */
2704 STAMPROFILE StatRZTrap0eTime2OutOfSync; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync page. */
2705 STAMPROFILE StatRZTrap0eTime2OutOfSyncHndPhys; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page. */
2706 STAMPROFILE StatRZTrap0eTime2OutOfSyncHndVirt; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page. */
2707 STAMPROFILE StatRZTrap0eTime2OutOfSyncHndObs; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an obsolete handler page. */
2708 STAMPROFILE StatRZTrap0eTime2SyncPT; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT. */
2709 STAMCOUNTER StatRZTrap0eConflicts; /**< RC/R0: The number of times \#PF was caused by an undetected conflict. */
2710 STAMCOUNTER StatRZTrap0eHandlersMapping; /**< RC/R0: Number of traps due to access handlers in mappings. */
2711 STAMCOUNTER StatRZTrap0eHandlersOutOfSync; /**< RC/R0: Number of out-of-sync handled pages. */
2712 STAMCOUNTER StatRZTrap0eHandlersPhysical; /**< RC/R0: Number of traps due to physical access handlers. */
2713 STAMCOUNTER StatRZTrap0eHandlersVirtual; /**< RC/R0: Number of traps due to virtual access handlers. */
2714 STAMCOUNTER StatRZTrap0eHandlersVirtualByPhys; /**< RC/R0: Number of traps due to virtual access handlers found by physical address. */
2715 STAMCOUNTER StatRZTrap0eHandlersVirtualUnmarked;/**< RC/R0: Number of traps due to virtual access handlers found by virtual address (without proper physical flags). */
2716 STAMCOUNTER StatRZTrap0eHandlersUnhandled; /**< RC/R0: Number of traps due to access outside range of monitored page(s). */
2717 STAMCOUNTER StatRZTrap0eHandlersInvalid; /**< RC/R0: Number of traps due to access to invalid physical memory. */
2718 STAMCOUNTER StatRZTrap0eUSNotPresentRead; /**< RC/R0: #PF err kind */
2719 STAMCOUNTER StatRZTrap0eUSNotPresentWrite; /**< RC/R0: #PF err kind */
2720 STAMCOUNTER StatRZTrap0eUSWrite; /**< RC/R0: #PF err kind */
2721 STAMCOUNTER StatRZTrap0eUSReserved; /**< RC/R0: #PF err kind */
2722 STAMCOUNTER StatRZTrap0eUSNXE; /**< RC/R0: #PF err kind */
2723 STAMCOUNTER StatRZTrap0eUSRead; /**< RC/R0: #PF err kind */
2724 STAMCOUNTER StatRZTrap0eSVNotPresentRead; /**< RC/R0: #PF err kind */
2725 STAMCOUNTER StatRZTrap0eSVNotPresentWrite; /**< RC/R0: #PF err kind */
2726 STAMCOUNTER StatRZTrap0eSVWrite; /**< RC/R0: #PF err kind */
2727 STAMCOUNTER StatRZTrap0eSVReserved; /**< RC/R0: #PF err kind */
2728 STAMCOUNTER StatRZTrap0eSNXE; /**< RC/R0: #PF err kind */
2729 STAMCOUNTER StatRZTrap0eGuestPF; /**< RC/R0: Real guest #PFs. */
2730 STAMCOUNTER StatRZTrap0eGuestPFUnh; /**< RC/R0: Real guest #PF ending up at the end of the #PF code. */
2731 STAMCOUNTER StatRZTrap0eGuestPFMapping; /**< RC/R0: Real guest #PF to HMA or other mapping. */
2732 STAMCOUNTER StatRZTrap0eWPEmulInRZ; /**< RC/R0: WP=0 virtualization trap, handled. */
2733 STAMCOUNTER StatRZTrap0eWPEmulToR3; /**< RC/R0: WP=0 virtualization trap, chickened out. */
2734 STAMCOUNTER StatRZTrap0ePD[X86_PG_ENTRIES]; /**< RC/R0: PD distribution of the #PFs. */
2735 STAMCOUNTER StatRZGuestCR3WriteHandled; /**< RC/R0: The number of times WriteHandlerCR3() was successfully called. */
2736 STAMCOUNTER StatRZGuestCR3WriteUnhandled; /**< RC/R0: The number of times WriteHandlerCR3() was called and we had to fall back to the recompiler. */
2737 STAMCOUNTER StatRZGuestCR3WriteConflict; /**< RC/R0: The number of times WriteHandlerCR3() was called and a conflict was detected. */
2738 STAMCOUNTER StatRZGuestROMWriteHandled; /**< RC/R0: The number of times pgmPhysRomWriteHandler() was successfully called. */
2739 STAMCOUNTER StatRZGuestROMWriteUnhandled; /**< RC/R0: The number of times pgmPhysRomWriteHandler() was called and we had to fall back to the recompiler */
2740
2741 /* HC - R3 and (maybe) R0: */
2742
2743 /* RZ & R3: */
2744 STAMPROFILE StatRZSyncCR3; /**< RC/R0: PGMSyncCR3() profiling. */
2745 STAMPROFILE StatRZSyncCR3Handlers; /**< RC/R0: Profiling of the PGMSyncCR3() update handler section. */
2746 STAMPROFILE StatRZSyncCR3HandlerVirtualReset; /**< RC/R0: Profiling of the virtual handler resets. */
2747 STAMPROFILE StatRZSyncCR3HandlerVirtualUpdate; /**< RC/R0: Profiling of the virtual handler updates. */
2748 STAMCOUNTER StatRZSyncCR3Global; /**< RC/R0: The number of global CR3 syncs. */
2749 STAMCOUNTER StatRZSyncCR3NotGlobal; /**< RC/R0: The number of non-global CR3 syncs. */
2750 STAMCOUNTER StatRZSyncCR3DstCacheHit; /**< RC/R0: The number of times we got some kind of cache hit on a page table. */
2751 STAMCOUNTER StatRZSyncCR3DstFreed; /**< RC/R0: The number of times we've had to free a shadow entry. */
2752 STAMCOUNTER StatRZSyncCR3DstFreedSrcNP; /**< RC/R0: The number of times we've had to free a shadow entry for which the source entry was not present. */
2753 STAMCOUNTER StatRZSyncCR3DstNotPresent; /**< RC/R0: The number of times we've encountered a not present shadow entry for a present guest entry. */
2754 STAMCOUNTER StatRZSyncCR3DstSkippedGlobalPD; /**< RC/R0: The number of times a global page directory wasn't flushed. */
2755 STAMCOUNTER StatRZSyncCR3DstSkippedGlobalPT; /**< RC/R0: The number of times a page table with only global entries wasn't flushed. */
2756 STAMPROFILE StatRZSyncPT; /**< RC/R0: PGMSyncPT() profiling. */
2757 STAMCOUNTER StatRZSyncPTFailed; /**< RC/R0: The number of times PGMSyncPT() failed. */
2758 STAMCOUNTER StatRZSyncPT4K; /**< RC/R0: Number of 4KB syncs. */
2759 STAMCOUNTER StatRZSyncPT4M; /**< RC/R0: Number of 4MB syncs. */
2760 STAMCOUNTER StatRZSyncPagePDNAs; /**< RC/R0: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
2761 STAMCOUNTER StatRZSyncPagePDOutOfSync; /**< RC/R0: The number of time we've encountered an out-of-sync PD in SyncPage. */
2762 STAMCOUNTER StatRZAccessedPage; /**< RC/R0: The number of pages marked not present for accessed bit emulation. */
2763 STAMPROFILE StatRZDirtyBitTracking; /**< RC/R0: Profiling the dirty bit tracking in CheckPageFault().. */
2764 STAMCOUNTER StatRZDirtyPage; /**< RC/R0: The number of pages marked read-only for dirty bit tracking. */
2765 STAMCOUNTER StatRZDirtyPageBig; /**< RC/R0: The number of pages marked read-only for dirty bit tracking. */
2766 STAMCOUNTER StatRZDirtyPageSkipped; /**< RC/R0: The number of pages already dirty or readonly. */
2767 STAMCOUNTER StatRZDirtyPageTrap; /**< RC/R0: The number of traps generated for dirty bit tracking. */
2768 STAMCOUNTER StatRZDirtyTrackRealPF; /**< RC/R0: The number of real pages faults during dirty bit tracking. */
2769 STAMCOUNTER StatRZDirtiedPage; /**< RC/R0: The number of pages marked dirty because of write accesses. */
2770 STAMCOUNTER StatRZPageAlreadyDirty; /**< RC/R0: The number of pages already marked dirty because of write accesses. */
2771 STAMPROFILE StatRZInvalidatePage; /**< RC/R0: PGMInvalidatePage() profiling. */
2772 STAMCOUNTER StatRZInvalidatePage4KBPages; /**< RC/R0: The number of times PGMInvalidatePage() was called for a 4KB page. */
2773 STAMCOUNTER StatRZInvalidatePage4MBPages; /**< RC/R0: The number of times PGMInvalidatePage() was called for a 4MB page. */
2774 STAMCOUNTER StatRZInvalidatePage4MBPagesSkip; /**< RC/R0: The number of times PGMInvalidatePage() skipped a 4MB page. */
2775 STAMCOUNTER StatRZInvalidatePagePDMappings; /**< RC/R0: The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict). */
2776 STAMCOUNTER StatRZInvalidatePagePDNAs; /**< RC/R0: The number of times PGMInvalidatePage() was called for a not accessed page directory. */
2777 STAMCOUNTER StatRZInvalidatePagePDNPs; /**< RC/R0: The number of times PGMInvalidatePage() was called for a not present page directory. */
2778 STAMCOUNTER StatRZInvalidatePagePDOutOfSync; /**< RC/R0: The number of times PGMInvalidatePage() was called for an out of sync page directory. */
2779 STAMCOUNTER StatRZInvalidatePageSkipped; /**< RC/R0: The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
2780 STAMPROFILE StatRZVirtHandlerSearchByPhys; /**< RC/R0: Profiling of pgmHandlerVirtualFindByPhysAddr. */
2781 STAMCOUNTER StatRZPhysHandlerReset; /**< RC/R0: The number of times PGMHandlerPhysicalReset is called. */
2782 STAMCOUNTER StatRZPageOutOfSyncUser; /**< RC/R0: The number of times user page is out of sync was detected in #PF or VerifyAccessSyncPage. */
2783 STAMCOUNTER StatRZPageOutOfSyncSupervisor; /**< RC/R0: The number of times supervisor page is out of sync was detected in in #PF or VerifyAccessSyncPage. */
2784 STAMPROFILE StatRZPrefetch; /**< RC/R0: PGMPrefetchPage. */
2785 STAMCOUNTER StatRZChunkR3MapTlbHits; /**< RC/R0: Ring-3/0 chunk mapper TLB hits. */
2786 STAMCOUNTER StatRZChunkR3MapTlbMisses; /**< RC/R0: Ring-3/0 chunk mapper TLB misses. */
2787 STAMCOUNTER StatRZPageMapTlbHits; /**< RC/R0: Ring-3/0 page mapper TLB hits. */
2788 STAMCOUNTER StatRZPageMapTlbMisses; /**< RC/R0: Ring-3/0 page mapper TLB misses. */
2789 STAMCOUNTER StatRZPageReplaceShared; /**< RC/R0: Times a shared page has been replaced by a private one. */
2790 STAMCOUNTER StatRZPageReplaceZero; /**< RC/R0: Times the zero page has been replaced by a private one. */
2791/// @todo STAMCOUNTER StatRZPageHandyAllocs; /**< RC/R0: The number of times we've executed GMMR3AllocateHandyPages. */
2792 STAMPROFILE StatRZFlushTLB; /**< RC/R0: Profiling of the PGMFlushTLB() body. */
2793 STAMCOUNTER StatRZFlushTLBNewCR3; /**< RC/R0: The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */
2794 STAMCOUNTER StatRZFlushTLBNewCR3Global; /**< RC/R0: The number of times PGMFlushTLB was called with a new CR3, global. (switch) */
2795 STAMCOUNTER StatRZFlushTLBSameCR3; /**< RC/R0: The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */
2796 STAMCOUNTER StatRZFlushTLBSameCR3Global; /**< RC/R0: The number of times PGMFlushTLB was called with the same CR3, global. (flush) */
2797 STAMPROFILE StatRZGstModifyPage; /**< RC/R0: Profiling of the PGMGstModifyPage() body */
2798
2799 STAMPROFILE StatR3SyncCR3; /**< R3: PGMSyncCR3() profiling. */
2800 STAMPROFILE StatR3SyncCR3Handlers; /**< R3: Profiling of the PGMSyncCR3() update handler section. */
2801 STAMPROFILE StatR3SyncCR3HandlerVirtualReset; /**< R3: Profiling of the virtual handler resets. */
2802 STAMPROFILE StatR3SyncCR3HandlerVirtualUpdate; /**< R3: Profiling of the virtual handler updates. */
2803 STAMCOUNTER StatR3SyncCR3Global; /**< R3: The number of global CR3 syncs. */
2804 STAMCOUNTER StatR3SyncCR3NotGlobal; /**< R3: The number of non-global CR3 syncs. */
2805 STAMCOUNTER StatR3SyncCR3DstFreed; /**< R3: The number of times we've had to free a shadow entry. */
2806 STAMCOUNTER StatR3SyncCR3DstFreedSrcNP; /**< R3: The number of times we've had to free a shadow entry for which the source entry was not present. */
2807 STAMCOUNTER StatR3SyncCR3DstNotPresent; /**< R3: The number of times we've encountered a not present shadow entry for a present guest entry. */
2808 STAMCOUNTER StatR3SyncCR3DstSkippedGlobalPD; /**< R3: The number of times a global page directory wasn't flushed. */
2809 STAMCOUNTER StatR3SyncCR3DstSkippedGlobalPT; /**< R3: The number of times a page table with only global entries wasn't flushed. */
2810 STAMCOUNTER StatR3SyncCR3DstCacheHit; /**< R3: The number of times we got some kind of cache hit on a page table. */
2811 STAMPROFILE StatR3SyncPT; /**< R3: PGMSyncPT() profiling. */
2812 STAMCOUNTER StatR3SyncPTFailed; /**< R3: The number of times PGMSyncPT() failed. */
2813 STAMCOUNTER StatR3SyncPT4K; /**< R3: Number of 4KB syncs. */
2814 STAMCOUNTER StatR3SyncPT4M; /**< R3: Number of 4MB syncs. */
2815 STAMCOUNTER StatR3SyncPagePDNAs; /**< R3: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
2816 STAMCOUNTER StatR3SyncPagePDOutOfSync; /**< R3: The number of time we've encountered an out-of-sync PD in SyncPage. */
2817 STAMCOUNTER StatR3AccessedPage; /**< R3: The number of pages marked not present for accessed bit emulation. */
2818 STAMPROFILE StatR3DirtyBitTracking; /**< R3: Profiling the dirty bit tracking in CheckPageFault(). */
2819 STAMCOUNTER StatR3DirtyPage; /**< R3: The number of pages marked read-only for dirty bit tracking. */
2820 STAMCOUNTER StatR3DirtyPageBig; /**< R3: The number of pages marked read-only for dirty bit tracking. */
2821 STAMCOUNTER StatR3DirtyPageSkipped; /**< R3: The number of pages already dirty or readonly. */
2822 STAMCOUNTER StatR3DirtyPageTrap; /**< R3: The number of traps generated for dirty bit tracking. */
2823 STAMCOUNTER StatR3DirtyTrackRealPF; /**< R3: The number of real pages faults during dirty bit tracking. */
2824 STAMCOUNTER StatR3DirtiedPage; /**< R3: The number of pages marked dirty because of write accesses. */
2825 STAMCOUNTER StatR3PageAlreadyDirty; /**< R3: The number of pages already marked dirty because of write accesses. */
2826 STAMPROFILE StatR3InvalidatePage; /**< R3: PGMInvalidatePage() profiling. */
2827 STAMCOUNTER StatR3InvalidatePage4KBPages; /**< R3: The number of times PGMInvalidatePage() was called for a 4KB page. */
2828 STAMCOUNTER StatR3InvalidatePage4MBPages; /**< R3: The number of times PGMInvalidatePage() was called for a 4MB page. */
2829 STAMCOUNTER StatR3InvalidatePage4MBPagesSkip; /**< R3: The number of times PGMInvalidatePage() skipped a 4MB page. */
2830 STAMCOUNTER StatR3InvalidatePagePDNAs; /**< R3: The number of times PGMInvalidatePage() was called for a not accessed page directory. */
2831 STAMCOUNTER StatR3InvalidatePagePDNPs; /**< R3: The number of times PGMInvalidatePage() was called for a not present page directory. */
2832 STAMCOUNTER StatR3InvalidatePagePDMappings; /**< R3: The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict). */
2833 STAMCOUNTER StatR3InvalidatePagePDOutOfSync; /**< R3: The number of times PGMInvalidatePage() was called for an out of sync page directory. */
2834 STAMCOUNTER StatR3InvalidatePageSkipped; /**< R3: The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
2835 STAMPROFILE StatR3VirtHandlerSearchByPhys; /**< R3: Profiling of pgmHandlerVirtualFindByPhysAddr. */
2836 STAMCOUNTER StatR3PhysHandlerReset; /**< R3: The number of times PGMHandlerPhysicalReset is called. */
2837 STAMCOUNTER StatR3PageOutOfSyncUser; /**< R3: The number of times user page is out of sync was detected in #PF or VerifyAccessSyncPage. */
2838 STAMCOUNTER StatR3PageOutOfSyncSupervisor; /**< R3: The number of times supervisor page is out of sync was detected in in #PF or VerifyAccessSyncPage. */
2839 STAMPROFILE StatR3Prefetch; /**< R3: PGMPrefetchPage. */
2840 STAMCOUNTER StatR3ChunkR3MapTlbHits; /**< R3: Ring-3/0 chunk mapper TLB hits. */
2841 STAMCOUNTER StatR3ChunkR3MapTlbMisses; /**< R3: Ring-3/0 chunk mapper TLB misses. */
2842 STAMCOUNTER StatR3PageMapTlbHits; /**< R3: Ring-3/0 page mapper TLB hits. */
2843 STAMCOUNTER StatR3PageMapTlbMisses; /**< R3: Ring-3/0 page mapper TLB misses. */
2844 STAMCOUNTER StatR3PageReplaceShared; /**< R3: Times a shared page has been replaced by a private one. */
2845 STAMCOUNTER StatR3PageReplaceZero; /**< R3: Times the zero page has been replaced by a private one. */
2846/// @todo STAMCOUNTER StatR3PageHandyAllocs; /**< R3: The number of times we've executed GMMR3AllocateHandyPages. */
2847 STAMPROFILE StatR3FlushTLB; /**< R3: Profiling of the PGMFlushTLB() body. */
2848 STAMCOUNTER StatR3FlushTLBNewCR3; /**< R3: The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */
2849 STAMCOUNTER StatR3FlushTLBNewCR3Global; /**< R3: The number of times PGMFlushTLB was called with a new CR3, global. (switch) */
2850 STAMCOUNTER StatR3FlushTLBSameCR3; /**< R3: The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */
2851 STAMCOUNTER StatR3FlushTLBSameCR3Global; /**< R3: The number of times PGMFlushTLB was called with the same CR3, global. (flush) */
2852 STAMPROFILE StatR3GstModifyPage; /**< R3: Profiling of the PGMGstModifyPage() body */
2853#endif /* VBOX_WITH_STATISTICS */
2854} PGM;
2855/** Pointer to the PGM instance data. */
2856typedef PGM *PPGM;
2857
2858
2859/**
2860 * PGMCPU Data (part of VMCPU).
2861 */
2862typedef struct PGMCPU
2863{
2864 /** Offset to the VMCPU structure. */
2865 RTINT offVMCPU;
2866 /** Automatically tracked physical memory mapping set.
2867 * Ring-0 and strict raw-mode builds. */
2868 PGMMAPSET AutoSet;
2869} PGMCPU;
2870/** Pointer to the per-cpu PGM data. */
2871typedef PGMCPU *PPGMCPU;
2872
2873
2874/** @name PGM::fSyncFlags Flags
2875 * @{
2876 */
2877/** Updates the virtual access handler state bit in PGMPAGE. */
2878#define PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL RT_BIT(0)
2879/** Always sync CR3. */
2880#define PGM_SYNC_ALWAYS RT_BIT(1)
2881/** Check monitoring on next CR3 (re)load and invalidate page. */
2882#define PGM_SYNC_MONITOR_CR3 RT_BIT(2)
2883/** Check guest mapping in SyncCR3. */
2884#define PGM_SYNC_MAP_CR3 RT_BIT(3)
2885/** Clear the page pool (a light weight flush). */
2886#define PGM_SYNC_CLEAR_PGM_POOL RT_BIT(8)
2887/** @} */
2888
2889
2890__BEGIN_DECLS
2891
2892int pgmLock(PVM pVM);
2893void pgmUnlock(PVM pVM);
2894
2895VMMRCDECL(int) pgmGCGuestPDWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
2896VMMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
2897
2898int pgmR3SyncPTResolveConflict(PVM pVM, PPGMMAPPING pMapping, PX86PD pPDSrc, RTGCPTR GCPtrOldMapping);
2899int pgmR3SyncPTResolveConflictPAE(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping);
2900PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr);
2901void pgmR3MapRelocate(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping, RTGCPTR GCPtrNewMapping);
2902DECLCALLBACK(void) pgmR3MapInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
2903
2904void pgmR3HandlerPhysicalUpdateAll(PVM pVM);
2905int pgmHandlerVirtualFindByPhysAddr(PVM pVM, RTGCPHYS GCPhys, PPGMVIRTHANDLER *ppVirt, unsigned *piPage);
2906DECLCALLBACK(int) pgmHandlerVirtualResetOne(PAVLROGCPTRNODECORE pNode, void *pvUser);
2907#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
2908void pgmHandlerVirtualDumpPhysPages(PVM pVM);
2909#else
2910# define pgmHandlerVirtualDumpPhysPages(a) do { } while (0)
2911#endif
2912DECLCALLBACK(void) pgmR3InfoHandlers(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
2913
2914
2915void pgmPhysFreePage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
2916int pgmPhysPageLoadIntoTlb(PPGM pPGM, RTGCPHYS GCPhys);
2917int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
2918int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv);
2919#ifdef IN_RING3
2920int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk);
2921int pgmR3PhysRamReset(PVM pVM);
2922int pgmR3PhysRomReset(PVM pVM);
2923# ifndef VBOX_WITH_NEW_PHYS_CODE
2924int pgmr3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys);
2925# endif
2926
2927int pgmR3PoolInit(PVM pVM);
2928void pgmR3PoolRelocate(PVM pVM);
2929void pgmR3PoolReset(PVM pVM);
2930
2931#endif /* IN_RING3 */
2932#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2933int pgmR0DynMapHCPageCommon(PVM pVM, PPGMMAPSET pSet, RTHCPHYS HCPhys, void **ppv);
2934#endif
2935#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
2936void *pgmPoolMapPageFallback(PPGM pPGM, PPGMPOOLPAGE pPage);
2937#endif
2938int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage);
2939PPGMPOOLPAGE pgmPoolGetPageByHCPhys(PVM pVM, RTHCPHYS HCPhys);
2940void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable);
2941void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
2942int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2943void pgmPoolFlushAll(PVM pVM);
2944void pgmPoolClearAll(PVM pVM);
2945int pgmPoolSyncCR3(PVM pVM);
2946void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs);
2947void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt);
2948int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
2949PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
2950void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
2951void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
2952uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT);
2953void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage);
2954#ifdef PGMPOOL_WITH_MONITORING
2955# ifdef IN_RING3
2956void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTHCPTR pvAddress, PDISCPUSTATE pCpu);
2957# else
2958void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTGCPTR pvAddress, PDISCPUSTATE pCpu);
2959# endif
2960int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2961void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2962void pgmPoolMonitorModifiedClearAll(PVM pVM);
2963int pgmPoolMonitorMonitorCR3(PPGMPOOL pPool, uint16_t idxRoot, RTGCPHYS GCPhysCR3);
2964int pgmPoolMonitorUnmonitorCR3(PPGMPOOL pPool, uint16_t idxRoot);
2965#endif
2966
2967__END_DECLS
2968
2969
2970/**
2971 * Gets the PGMRAMRANGE structure for a guest page.
2972 *
2973 * @returns Pointer to the RAM range on success.
2974 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2975 *
2976 * @param pPGM PGM handle.
2977 * @param GCPhys The GC physical address.
2978 */
2979DECLINLINE(PPGMRAMRANGE) pgmPhysGetRange(PPGM pPGM, RTGCPHYS GCPhys)
2980{
2981 /*
2982 * Optimize for the first range.
2983 */
2984 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
2985 RTGCPHYS off = GCPhys - pRam->GCPhys;
2986 if (RT_UNLIKELY(off >= pRam->cb))
2987 {
2988 do
2989 {
2990 pRam = pRam->CTX_SUFF(pNext);
2991 if (RT_UNLIKELY(!pRam))
2992 break;
2993 off = GCPhys - pRam->GCPhys;
2994 } while (off >= pRam->cb);
2995 }
2996 return pRam;
2997}
2998
2999
3000/**
3001 * Gets the PGMPAGE structure for a guest page.
3002 *
3003 * @returns Pointer to the page on success.
3004 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
3005 *
3006 * @param pPGM PGM handle.
3007 * @param GCPhys The GC physical address.
3008 */
3009DECLINLINE(PPGMPAGE) pgmPhysGetPage(PPGM pPGM, RTGCPHYS GCPhys)
3010{
3011 /*
3012 * Optimize for the first range.
3013 */
3014 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3015 RTGCPHYS off = GCPhys - pRam->GCPhys;
3016 if (RT_UNLIKELY(off >= pRam->cb))
3017 {
3018 do
3019 {
3020 pRam = pRam->CTX_SUFF(pNext);
3021 if (RT_UNLIKELY(!pRam))
3022 return NULL;
3023 off = GCPhys - pRam->GCPhys;
3024 } while (off >= pRam->cb);
3025 }
3026 return &pRam->aPages[off >> PAGE_SHIFT];
3027}
3028
3029
3030/**
3031 * Gets the PGMPAGE structure for a guest page.
3032 *
3033 * Old Phys code: Will make sure the page is present.
3034 *
3035 * @returns VBox status code.
3036 * @retval VINF_SUCCESS and a valid *ppPage on success.
3037 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
3038 *
3039 * @param pPGM PGM handle.
3040 * @param GCPhys The GC physical address.
3041 * @param ppPage Where to store the page poitner on success.
3042 */
3043DECLINLINE(int) pgmPhysGetPageEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage)
3044{
3045 /*
3046 * Optimize for the first range.
3047 */
3048 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3049 RTGCPHYS off = GCPhys - pRam->GCPhys;
3050 if (RT_UNLIKELY(off >= pRam->cb))
3051 {
3052 do
3053 {
3054 pRam = pRam->CTX_SUFF(pNext);
3055 if (RT_UNLIKELY(!pRam))
3056 {
3057 *ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
3058 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3059 }
3060 off = GCPhys - pRam->GCPhys;
3061 } while (off >= pRam->cb);
3062 }
3063 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
3064#ifndef VBOX_WITH_NEW_PHYS_CODE
3065
3066 /*
3067 * Make sure it's present.
3068 */
3069 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
3070 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
3071 {
3072#ifdef IN_RING3
3073 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
3074#else
3075 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
3076#endif
3077 if (RT_FAILURE(rc))
3078 {
3079 *ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
3080 return rc;
3081 }
3082 Assert(rc == VINF_SUCCESS);
3083 }
3084#endif
3085 return VINF_SUCCESS;
3086}
3087
3088
3089
3090
3091/**
3092 * Gets the PGMPAGE structure for a guest page.
3093 *
3094 * Old Phys code: Will make sure the page is present.
3095 *
3096 * @returns VBox status code.
3097 * @retval VINF_SUCCESS and a valid *ppPage on success.
3098 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
3099 *
3100 * @param pPGM PGM handle.
3101 * @param GCPhys The GC physical address.
3102 * @param ppPage Where to store the page poitner on success.
3103 * @param ppRamHint Where to read and store the ram list hint.
3104 * The caller initializes this to NULL before the call.
3105 */
3106DECLINLINE(int) pgmPhysGetPageWithHintEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRamHint)
3107{
3108 RTGCPHYS off;
3109 PPGMRAMRANGE pRam = *ppRamHint;
3110 if ( !pRam
3111 || RT_UNLIKELY((off = GCPhys - pRam->GCPhys) >= pRam->cb))
3112 {
3113 pRam = pPGM->CTX_SUFF(pRamRanges);
3114 off = GCPhys - pRam->GCPhys;
3115 if (RT_UNLIKELY(off >= pRam->cb))
3116 {
3117 do
3118 {
3119 pRam = pRam->CTX_SUFF(pNext);
3120 if (RT_UNLIKELY(!pRam))
3121 {
3122 *ppPage = NULL; /* Kill the incorrect and extremely annoying GCC warnings. */
3123 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3124 }
3125 off = GCPhys - pRam->GCPhys;
3126 } while (off >= pRam->cb);
3127 }
3128 *ppRamHint = pRam;
3129 }
3130 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
3131#ifndef VBOX_WITH_NEW_PHYS_CODE
3132
3133 /*
3134 * Make sure it's present.
3135 */
3136 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
3137 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
3138 {
3139#ifdef IN_RING3
3140 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
3141#else
3142 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
3143#endif
3144 if (RT_FAILURE(rc))
3145 {
3146 *ppPage = NULL; /* Shut up annoying smart ass. */
3147 return rc;
3148 }
3149 Assert(rc == VINF_SUCCESS);
3150 }
3151#endif
3152 return VINF_SUCCESS;
3153}
3154
3155
3156/**
3157 * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
3158 *
3159 * @returns Pointer to the page on success.
3160 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
3161 *
3162 * @param pPGM PGM handle.
3163 * @param GCPhys The GC physical address.
3164 * @param ppRam Where to store the pointer to the PGMRAMRANGE.
3165 */
3166DECLINLINE(PPGMPAGE) pgmPhysGetPageAndRange(PPGM pPGM, RTGCPHYS GCPhys, PPGMRAMRANGE *ppRam)
3167{
3168 /*
3169 * Optimize for the first range.
3170 */
3171 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3172 RTGCPHYS off = GCPhys - pRam->GCPhys;
3173 if (RT_UNLIKELY(off >= pRam->cb))
3174 {
3175 do
3176 {
3177 pRam = pRam->CTX_SUFF(pNext);
3178 if (RT_UNLIKELY(!pRam))
3179 return NULL;
3180 off = GCPhys - pRam->GCPhys;
3181 } while (off >= pRam->cb);
3182 }
3183 *ppRam = pRam;
3184 return &pRam->aPages[off >> PAGE_SHIFT];
3185}
3186
3187
3188/**
3189 * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
3190 *
3191 * @returns Pointer to the page on success.
3192 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
3193 *
3194 * @param pPGM PGM handle.
3195 * @param GCPhys The GC physical address.
3196 * @param ppPage Where to store the pointer to the PGMPAGE structure.
3197 * @param ppRam Where to store the pointer to the PGMRAMRANGE structure.
3198 */
3199DECLINLINE(int) pgmPhysGetPageAndRangeEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRam)
3200{
3201 /*
3202 * Optimize for the first range.
3203 */
3204 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3205 RTGCPHYS off = GCPhys - pRam->GCPhys;
3206 if (RT_UNLIKELY(off >= pRam->cb))
3207 {
3208 do
3209 {
3210 pRam = pRam->CTX_SUFF(pNext);
3211 if (RT_UNLIKELY(!pRam))
3212 {
3213 *ppRam = NULL; /* Shut up silly GCC warnings. */
3214 *ppPage = NULL; /* ditto */
3215 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3216 }
3217 off = GCPhys - pRam->GCPhys;
3218 } while (off >= pRam->cb);
3219 }
3220 *ppRam = pRam;
3221 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
3222#ifndef VBOX_WITH_NEW_PHYS_CODE
3223
3224 /*
3225 * Make sure it's present.
3226 */
3227 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
3228 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
3229 {
3230#ifdef IN_RING3
3231 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
3232#else
3233 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
3234#endif
3235 if (RT_FAILURE(rc))
3236 {
3237 *ppPage = NULL; /* Shut up silly GCC warnings. */
3238 *ppPage = NULL; /* ditto */
3239 return rc;
3240 }
3241 Assert(rc == VINF_SUCCESS);
3242
3243 }
3244#endif
3245 return VINF_SUCCESS;
3246}
3247
3248
3249/**
3250 * Convert GC Phys to HC Phys.
3251 *
3252 * @returns VBox status.
3253 * @param pPGM PGM handle.
3254 * @param GCPhys The GC physical address.
3255 * @param pHCPhys Where to store the corresponding HC physical address.
3256 *
3257 * @deprecated Doesn't deal with zero, shared or write monitored pages.
3258 * Avoid when writing new code!
3259 */
3260DECLINLINE(int) pgmRamGCPhys2HCPhys(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
3261{
3262 PPGMPAGE pPage;
3263 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3264 if (RT_FAILURE(rc))
3265 return rc;
3266 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
3267 return VINF_SUCCESS;
3268}
3269
3270#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3271
3272/**
3273 * Inlined version of the ring-0 version of PGMDynMapHCPage that
3274 * optimizes access to pages already in the set.
3275 *
3276 * @returns See pgmR0DynMapHCPageCommon.
3277 * @param pPGM Pointer to the PVM instance data.
3278 * @param HCPhys The physical address of the page.
3279 * @param ppv Where to store the mapping address.
3280 */
3281DECLINLINE(int) pgmR0DynMapHCPageInlined(PPGM pPGM, RTHCPHYS HCPhys, void **ppv)
3282{
3283 STAM_PROFILE_START(&pPGM->StatR0DynMapHCPageInl, a);
3284 PPGMMAPSET pSet = &((PPGMCPU)((uint8_t *)VMMGetCpu(PGM2VM(pPGM)) + pPGM->offVCpu))->AutoSet; /* very pretty ;-) */
3285 Assert(!(HCPhys & PAGE_OFFSET_MASK));
3286 Assert(pSet->cEntries <= RT_ELEMENTS(pSet->aEntries));
3287 int rc;
3288
3289 unsigned iHash = PGMMAPSET_HASH(HCPhys);
3290 unsigned iEntry = pSet->aiHashTable[iHash];
3291 if ( iEntry < pSet->cEntries
3292 && pSet->aEntries[iEntry].HCPhys == HCPhys)
3293 {
3294 *ppv = pSet->aEntries[iEntry].pvPage;
3295 STAM_COUNTER_INC(&pPGM->StatR0DynMapHCPageInlHits);
3296 rc = VINF_SUCCESS;
3297 }
3298 else
3299 {
3300 STAM_COUNTER_INC(&pPGM->StatR0DynMapHCPageInlMisses);
3301 rc = pgmR0DynMapHCPageCommon(PGM2VM(pPGM), pSet, HCPhys, ppv);
3302 }
3303
3304 STAM_PROFILE_STOP(&pPGM->StatR0DynMapHCPageInl, a);
3305 return rc;
3306}
3307
3308
3309/**
3310 * Inlined version of the ring-0 version of PGMDynMapGCPage that optimizes
3311 * access to pages already in the set.
3312 *
3313 * @returns See pgmR0DynMapHCPageCommon.
3314 * @param pPGM Pointer to the PVM instance data.
3315 * @param HCPhys The physical address of the page.
3316 * @param ppv Where to store the mapping address.
3317 */
3318DECLINLINE(int) pgmR0DynMapGCPageInlined(PPGM pPGM, RTGCPHYS GCPhys, void **ppv)
3319{
3320 STAM_PROFILE_START(&pPGM->StatR0DynMapGCPageInl, a);
3321 Assert(!(GCPhys & PAGE_OFFSET_MASK));
3322
3323 /*
3324 * Get the ram range.
3325 */
3326 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3327 RTGCPHYS off = GCPhys - pRam->GCPhys;
3328 if (RT_UNLIKELY(off >= pRam->cb
3329 /** @todo || page state stuff */))
3330 {
3331 /* This case is not counted into StatR0DynMapGCPageInl. */
3332 STAM_COUNTER_INC(&pPGM->StatR0DynMapGCPageInlRamMisses);
3333 return PGMDynMapGCPage(PGM2VM(pPGM), GCPhys, ppv);
3334 }
3335
3336 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[off >> PAGE_SHIFT]);
3337 STAM_COUNTER_INC(&pPGM->StatR0DynMapGCPageInlRamHits);
3338
3339 /*
3340 * pgmR0DynMapHCPageInlined with out stats.
3341 */
3342 PPGMMAPSET pSet = &((PPGMCPU)((uint8_t *)VMMGetCpu(PGM2VM(pPGM)) + pPGM->offVCpu))->AutoSet; /* very pretty ;-) */
3343 Assert(!(HCPhys & PAGE_OFFSET_MASK));
3344 Assert(pSet->cEntries <= RT_ELEMENTS(pSet->aEntries));
3345 int rc;
3346
3347 unsigned iHash = PGMMAPSET_HASH(HCPhys);
3348 unsigned iEntry = pSet->aiHashTable[iHash];
3349 if ( iEntry < pSet->cEntries
3350 && pSet->aEntries[iEntry].HCPhys == HCPhys)
3351 {
3352 *ppv = pSet->aEntries[iEntry].pvPage;
3353 STAM_COUNTER_INC(&pPGM->StatR0DynMapGCPageInlHits);
3354 rc = VINF_SUCCESS;
3355 }
3356 else
3357 {
3358 STAM_COUNTER_INC(&pPGM->StatR0DynMapGCPageInlMisses);
3359 rc = pgmR0DynMapHCPageCommon(PGM2VM(pPGM), pSet, HCPhys, ppv);
3360 }
3361
3362 STAM_PROFILE_STOP(&pPGM->StatR0DynMapGCPageInl, a);
3363 return rc;
3364}
3365
3366#endif /* VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
3367
3368#ifndef IN_RC
3369/**
3370 * Queries the Physical TLB entry for a physical guest page,
3371 * attemting to load the TLB entry if necessary.
3372 *
3373 * @returns VBox status code.
3374 * @retval VINF_SUCCESS on success
3375 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
3376 * @param pPGM The PGM instance handle.
3377 * @param GCPhys The address of the guest page.
3378 * @param ppTlbe Where to store the pointer to the TLB entry.
3379 */
3380
3381DECLINLINE(int) pgmPhysPageQueryTlbe(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGEMAPTLBE ppTlbe)
3382{
3383 int rc;
3384 PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
3385 if (pTlbe->GCPhys == (GCPhys & X86_PTE_PAE_PG_MASK))
3386 {
3387 STAM_COUNTER_INC(&pPGM->CTX_MID_Z(Stat,PageMapTlbHits));
3388 rc = VINF_SUCCESS;
3389 }
3390 else
3391 rc = pgmPhysPageLoadIntoTlb(pPGM, GCPhys);
3392 *ppTlbe = pTlbe;
3393 return rc;
3394}
3395#endif /* !IN_RC */
3396
3397#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
3398
3399# ifndef VBOX_WITH_NEW_PHYS_CODE
3400/**
3401 * Convert GC Phys to HC Virt.
3402 *
3403 * @returns VBox status.
3404 * @param pPGM PGM handle.
3405 * @param GCPhys The GC physical address.
3406 * @param pHCPtr Where to store the corresponding HC virtual address.
3407 *
3408 * @deprecated This will be eliminated by PGMPhysGCPhys2CCPtr. Only user is
3409 * pgmPoolMonitorGCPtr2CCPtr.
3410 */
3411DECLINLINE(int) pgmRamGCPhys2HCPtr(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr)
3412{
3413 PPGMRAMRANGE pRam;
3414 PPGMPAGE pPage;
3415 int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
3416 if (RT_FAILURE(rc))
3417 {
3418 *pHCPtr = 0; /* Shut up silly GCC warnings. */
3419 return rc;
3420 }
3421 RTGCPHYS off = GCPhys - pRam->GCPhys;
3422
3423 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3424 {
3425 unsigned iChunk = off >> PGM_DYNAMIC_CHUNK_SHIFT;
3426 *pHCPtr = (RTHCPTR)(pRam->paChunkR3Ptrs[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3427 return VINF_SUCCESS;
3428 }
3429 if (pRam->pvR3)
3430 {
3431 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvR3 + off);
3432 return VINF_SUCCESS;
3433 }
3434 *pHCPtr = 0; /* Shut up silly GCC warnings. */
3435 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3436}
3437# endif /* !VBOX_WITH_NEW_PHYS_CODE */
3438#endif /* !IN_RC && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) */
3439
3440/**
3441 * Convert GC Phys to HC Virt and HC Phys.
3442 *
3443 * @returns VBox status.
3444 * @param pPGM PGM handle.
3445 * @param GCPhys The GC physical address.
3446 * @param pHCPtr Where to store the corresponding HC virtual address.
3447 * @param pHCPhys Where to store the HC Physical address and its flags.
3448 *
3449 * @deprecated Will go away or be changed. Only user is MapCR3. MapCR3 will have to do ring-3
3450 * and ring-0 locking of the CR3 in a lazy fashion I'm fear... or perhaps not. we'll see.
3451 */
3452DECLINLINE(int) pgmRamGCPhys2HCPtrAndHCPhysWithFlags(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr, PRTHCPHYS pHCPhys)
3453{
3454 PPGMRAMRANGE pRam;
3455 PPGMPAGE pPage;
3456 int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
3457 if (RT_FAILURE(rc))
3458 {
3459 *pHCPtr = 0; /* Shut up crappy GCC warnings */
3460 *pHCPhys = 0; /* ditto */
3461 return rc;
3462 }
3463 RTGCPHYS off = GCPhys - pRam->GCPhys;
3464
3465 *pHCPhys = pPage->HCPhys; /** @todo PAGE FLAGS */
3466 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3467 {
3468 unsigned idx = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
3469#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /* ASSUMES only MapCR3 usage. */
3470 PRTR3UINTPTR paChunkR3Ptrs = (PRTR3UINTPTR)MMHyperR3ToCC(PGM2VM(pPGM), pRam->paChunkR3Ptrs);
3471 *pHCPtr = (RTHCPTR)(paChunkR3Ptrs[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3472#else
3473 *pHCPtr = (RTHCPTR)(pRam->paChunkR3Ptrs[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3474#endif
3475 return VINF_SUCCESS;
3476 }
3477 if (pRam->pvR3)
3478 {
3479 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvR3 + off);
3480 return VINF_SUCCESS;
3481 }
3482 *pHCPtr = 0;
3483 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3484}
3485
3486
3487/**
3488 * Clears flags associated with a RAM address.
3489 *
3490 * @returns VBox status code.
3491 * @param pPGM PGM handle.
3492 * @param GCPhys Guest context physical address.
3493 * @param fFlags fFlags to clear. (Bits 0-11.)
3494 */
3495DECLINLINE(int) pgmRamFlagsClearByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
3496{
3497 PPGMPAGE pPage;
3498 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3499 if (RT_FAILURE(rc))
3500 return rc;
3501
3502 fFlags &= ~X86_PTE_PAE_PG_MASK;
3503 pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
3504 return VINF_SUCCESS;
3505}
3506
3507
3508/**
3509 * Clears flags associated with a RAM address.
3510 *
3511 * @returns VBox status code.
3512 * @param pPGM PGM handle.
3513 * @param GCPhys Guest context physical address.
3514 * @param fFlags fFlags to clear. (Bits 0-11.)
3515 * @param ppRamHint Where to read and store the ram list hint.
3516 * The caller initializes this to NULL before the call.
3517 */
3518DECLINLINE(int) pgmRamFlagsClearByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
3519{
3520 PPGMPAGE pPage;
3521 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
3522 if (RT_FAILURE(rc))
3523 return rc;
3524
3525 fFlags &= ~X86_PTE_PAE_PG_MASK;
3526 pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
3527 return VINF_SUCCESS;
3528}
3529
3530
3531/**
3532 * Sets (bitwise OR) flags associated with a RAM address.
3533 *
3534 * @returns VBox status code.
3535 * @param pPGM PGM handle.
3536 * @param GCPhys Guest context physical address.
3537 * @param fFlags fFlags to set clear. (Bits 0-11.)
3538 */
3539DECLINLINE(int) pgmRamFlagsSetByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
3540{
3541 PPGMPAGE pPage;
3542 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3543 if (RT_FAILURE(rc))
3544 return rc;
3545
3546 fFlags &= ~X86_PTE_PAE_PG_MASK;
3547 pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
3548 return VINF_SUCCESS;
3549}
3550
3551
3552/**
3553 * Sets (bitwise OR) flags associated with a RAM address.
3554 *
3555 * @returns VBox status code.
3556 * @param pPGM PGM handle.
3557 * @param GCPhys Guest context physical address.
3558 * @param fFlags fFlags to set clear. (Bits 0-11.)
3559 * @param ppRamHint Where to read and store the ram list hint.
3560 * The caller initializes this to NULL before the call.
3561 */
3562DECLINLINE(int) pgmRamFlagsSetByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
3563{
3564 PPGMPAGE pPage;
3565 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
3566 if (RT_FAILURE(rc))
3567 return rc;
3568
3569 fFlags &= ~X86_PTE_PAE_PG_MASK;
3570 pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
3571 return VINF_SUCCESS;
3572}
3573
3574
3575/**
3576 * Calculated the guest physical address of the large (4 MB) page in 32 bits paging mode.
3577 * Takes PSE-36 into account.
3578 *
3579 * @returns guest physical address
3580 * @param pPGM Pointer to the PGM instance data.
3581 * @param Pde Guest Pde
3582 */
3583DECLINLINE(RTGCPHYS) pgmGstGet4MBPhysPage(PPGM pPGM, X86PDE Pde)
3584{
3585 RTGCPHYS GCPhys = Pde.u & X86_PDE4M_PG_MASK;
3586 GCPhys |= (RTGCPHYS)Pde.b.u8PageNoHigh << 32;
3587
3588 return GCPhys & pPGM->GCPhys4MBPSEMask;
3589}
3590
3591
3592/**
3593 * Gets the page directory entry for the specified address (32-bit paging).
3594 *
3595 * @returns The page directory entry in question.
3596 * @param pPGM Pointer to the PGM instance data.
3597 * @param GCPtr The address.
3598 */
3599DECLINLINE(X86PDE) pgmGstGet32bitPDE(PPGM pPGM, RTGCPTR GCPtr)
3600{
3601#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3602 PCX86PD pGuestPD = 0;
3603 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPD);
3604 if (RT_FAILURE(rc))
3605 {
3606 X86PDE ZeroPde = {0};
3607 AssertMsgFailedReturn(("%Rrc\n", rc), ZeroPde);
3608 }
3609 return pGuestPD->a[GCPtr >> X86_PD_SHIFT];
3610#else
3611 return pPGM->CTX_SUFF(pGst32BitPd)->a[GCPtr >> X86_PD_SHIFT];
3612#endif
3613}
3614
3615
3616/**
3617 * Gets the address of a specific page directory entry (32-bit paging).
3618 *
3619 * @returns Pointer the page directory entry in question.
3620 * @param pPGM Pointer to the PGM instance data.
3621 * @param GCPtr The address.
3622 */
3623DECLINLINE(PX86PDE) pgmGstGet32bitPDEPtr(PPGM pPGM, RTGCPTR GCPtr)
3624{
3625#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3626 PX86PD pGuestPD = 0;
3627 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPD);
3628 AssertRCReturn(rc, 0);
3629 return &pGuestPD->a[GCPtr >> X86_PD_SHIFT];
3630#else
3631 return &pPGM->CTX_SUFF(pGst32BitPd)->a[GCPtr >> X86_PD_SHIFT];
3632#endif
3633}
3634
3635
3636/**
3637 * Gets the address the guest page directory (32-bit paging).
3638 *
3639 * @returns Pointer the page directory entry in question.
3640 * @param pPGM Pointer to the PGM instance data.
3641 */
3642DECLINLINE(PX86PD) pgmGstGet32bitPDPtr(PPGM pPGM)
3643{
3644#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3645 PX86PD pGuestPD = 0;
3646 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPD);
3647 AssertRCReturn(rc, 0);
3648 return pGuestPD;
3649#else
3650 return pPGM->CTX_SUFF(pGst32BitPd);
3651#endif
3652}
3653
3654
3655/**
3656 * Gets the guest page directory pointer table.
3657 *
3658 * @returns Pointer to the page directory in question.
3659 * @returns NULL if the page directory is not present or on an invalid page.
3660 * @param pPGM Pointer to the PGM instance data.
3661 */
3662DECLINLINE(PX86PDPT) pgmGstGetPaePDPTPtr(PPGM pPGM)
3663{
3664#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3665 PX86PDPT pGuestPDPT = 0;
3666 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPDPT);
3667 AssertRCReturn(rc, 0);
3668 return pGuestPDPT;
3669#else
3670 return pPGM->CTX_SUFF(pGstPaePdpt);
3671#endif
3672}
3673
3674
3675/**
3676 * Gets the guest page directory pointer table entry for the specified address.
3677 *
3678 * @returns Pointer to the page directory in question.
3679 * @returns NULL if the page directory is not present or on an invalid page.
3680 * @param pPGM Pointer to the PGM instance data.
3681 * @param GCPtr The address.
3682 */
3683DECLINLINE(PX86PDPE) pgmGstGetPaePDPEPtr(PPGM pPGM, RTGCPTR GCPtr)
3684{
3685 AssertGCPtr32(GCPtr);
3686
3687#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3688 PX86PDPT pGuestPDPT = 0;
3689 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPDPT);
3690 AssertRCReturn(rc, 0);
3691 return &pGuestPDPT->a[(GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE];
3692#else
3693 return &pPGM->CTX_SUFF(pGstPaePdpt)->a[(GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE];
3694#endif
3695}
3696
3697
3698/**
3699 * Gets the page directory for the specified address.
3700 *
3701 * @returns Pointer to the page directory in question.
3702 * @returns NULL if the page directory is not present or on an invalid page.
3703 * @param pPGM Pointer to the PGM instance data.
3704 * @param GCPtr The address.
3705 */
3706DECLINLINE(PX86PDPAE) pgmGstGetPaePD(PPGM pPGM, RTGCPTR GCPtr)
3707{
3708 AssertGCPtr32(GCPtr);
3709
3710#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3711 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3712 AssertReturn(pGuestPDPT, 0);
3713#else
3714 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3715#endif
3716 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3717 if (pGuestPDPT->a[iPdPt].n.u1Present)
3718 {
3719#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3720 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3721 return pPGM->CTX_SUFF(apGstPaePDs)[iPdPt];
3722#endif
3723
3724 /* cache is out-of-sync. */
3725 PX86PDPAE pPD;
3726 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3727 if (RT_SUCCESS(rc))
3728 return pPD;
3729 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, pGuestPDPT->a[iPdPt].u));
3730 /* returning NULL is ok if we assume it's just an invalid page of some kind emulated as all 0s. (not quite true) */
3731 }
3732 return NULL;
3733}
3734
3735
3736/**
3737 * Gets the page directory entry for the specified address.
3738 *
3739 * @returns Pointer to the page directory entry in question.
3740 * @returns NULL if the page directory is not present or on an invalid page.
3741 * @param pPGM Pointer to the PGM instance data.
3742 * @param GCPtr The address.
3743 */
3744DECLINLINE(PX86PDEPAE) pgmGstGetPaePDEPtr(PPGM pPGM, RTGCPTR GCPtr)
3745{
3746 AssertGCPtr32(GCPtr);
3747
3748#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3749 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3750 AssertReturn(pGuestPDPT, 0);
3751#else
3752 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3753#endif
3754 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3755 if (pGuestPDPT->a[iPdPt].n.u1Present)
3756 {
3757 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3758#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3759 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3760 return &pPGM->CTX_SUFF(apGstPaePDs)[iPdPt]->a[iPD];
3761#endif
3762
3763 /* The cache is out-of-sync. */
3764 PX86PDPAE pPD;
3765 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3766 if (RT_SUCCESS(rc))
3767 return &pPD->a[iPD];
3768 AssertMsgFailed(("Impossible! rc=%Rrc PDPE=%RX64\n", rc, pGuestPDPT->a[iPdPt].u));
3769 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page or something which we'll emulate as all 0s. (not quite true) */
3770 }
3771 return NULL;
3772}
3773
3774
3775/**
3776 * Gets the page directory entry for the specified address.
3777 *
3778 * @returns The page directory entry in question.
3779 * @returns A non-present entry if the page directory is not present or on an invalid page.
3780 * @param pPGM Pointer to the PGM instance data.
3781 * @param GCPtr The address.
3782 */
3783DECLINLINE(X86PDEPAE) pgmGstGetPaePDE(PPGM pPGM, RTGCPTR GCPtr)
3784{
3785 AssertGCPtr32(GCPtr);
3786
3787#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3788 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3789 if (RT_LIKELY(pGuestPDPT))
3790#else
3791 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3792#endif
3793 {
3794 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3795 if (pGuestPDPT->a[iPdPt].n.u1Present)
3796 {
3797 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3798#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3799 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3800 return pPGM->CTX_SUFF(apGstPaePDs)[iPdPt]->a[iPD];
3801#endif
3802
3803 /* cache is out-of-sync. */
3804 PX86PDPAE pPD;
3805 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3806 if (RT_SUCCESS(rc))
3807 return pPD->a[iPD];
3808 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, pGuestPDPT->a[iPdPt]));
3809 }
3810 }
3811 X86PDEPAE ZeroPde = {0};
3812 return ZeroPde;
3813}
3814
3815
3816/**
3817 * Gets the page directory pointer table entry for the specified address
3818 * and returns the index into the page directory
3819 *
3820 * @returns Pointer to the page directory in question.
3821 * @returns NULL if the page directory is not present or on an invalid page.
3822 * @param pPGM Pointer to the PGM instance data.
3823 * @param GCPtr The address.
3824 * @param piPD Receives the index into the returned page directory
3825 * @param pPdpe Receives the page directory pointer entry. Optional.
3826 */
3827DECLINLINE(PX86PDPAE) pgmGstGetPaePDPtr(PPGM pPGM, RTGCPTR GCPtr, unsigned *piPD, PX86PDPE pPdpe)
3828{
3829 AssertGCPtr32(GCPtr);
3830
3831#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3832 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3833 AssertReturn(pGuestPDPT, 0);
3834#else
3835 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3836#endif
3837 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3838 if (pPdpe)
3839 *pPdpe = pGuestPDPT->a[iPdPt];
3840 if (pGuestPDPT->a[iPdPt].n.u1Present)
3841 {
3842 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3843#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3844 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3845 {
3846 *piPD = iPD;
3847 return pPGM->CTX_SUFF(apGstPaePDs)[iPdPt];
3848 }
3849#endif
3850
3851 /* cache is out-of-sync. */
3852 PX86PDPAE pPD;
3853 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3854 if (RT_SUCCESS(rc))
3855 {
3856 *piPD = iPD;
3857 return pPD;
3858 }
3859 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, pGuestPDPT->a[iPdPt].u));
3860 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page of some kind emulated as all 0s. */
3861 }
3862 return NULL;
3863}
3864
3865#ifndef IN_RC
3866
3867/**
3868 * Gets the page map level-4 pointer for the guest.
3869 *
3870 * @returns Pointer to the PML4 page.
3871 * @param pPGM Pointer to the PGM instance data.
3872 */
3873DECLINLINE(PX86PML4) pgmGstGetLongModePML4Ptr(PPGM pPGM)
3874{
3875#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3876 PX86PML4 pGuestPml4;
3877 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPml4);
3878 AssertRCReturn(rc, NULL);
3879 return pGuestPml4;
3880#else
3881 Assert(pPGM->CTX_SUFF(pGstAmd64Pml4));
3882 return pPGM->CTX_SUFF(pGstAmd64Pml4);
3883#endif
3884}
3885
3886
3887/**
3888 * Gets the pointer to a page map level-4 entry.
3889 *
3890 * @returns Pointer to the PML4 entry.
3891 * @param pPGM Pointer to the PGM instance data.
3892 * @param iPml4 The index.
3893 */
3894DECLINLINE(PX86PML4E) pgmGstGetLongModePML4EPtr(PPGM pPGM, unsigned int iPml4)
3895{
3896#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3897 PX86PML4 pGuestPml4;
3898 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPml4);
3899 AssertRCReturn(rc, NULL);
3900 return &pGuestPml4->a[iPml4];
3901#else
3902 Assert(pPGM->CTX_SUFF(pGstAmd64Pml4));
3903 return &pPGM->CTX_SUFF(pGstAmd64Pml4)->a[iPml4];
3904#endif
3905}
3906
3907
3908/**
3909 * Gets a page map level-4 entry.
3910 *
3911 * @returns The PML4 entry.
3912 * @param pPGM Pointer to the PGM instance data.
3913 * @param iPml4 The index.
3914 */
3915DECLINLINE(X86PML4E) pgmGstGetLongModePML4E(PPGM pPGM, unsigned int iPml4)
3916{
3917#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3918 PX86PML4 pGuestPml4;
3919 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPml4);
3920 if (RT_FAILURE(rc))
3921 {
3922 X86PML4E ZeroPml4e = {0};
3923 AssertMsgFailedReturn(("%Rrc\n", rc), ZeroPml4e);
3924 }
3925 return pGuestPml4->a[iPml4];
3926#else
3927 Assert(pPGM->CTX_SUFF(pGstAmd64Pml4));
3928 return pPGM->CTX_SUFF(pGstAmd64Pml4)->a[iPml4];
3929#endif
3930}
3931
3932
3933/**
3934 * Gets the page directory pointer entry for the specified address.
3935 *
3936 * @returns Pointer to the page directory pointer entry in question.
3937 * @returns NULL if the page directory is not present or on an invalid page.
3938 * @param pPGM Pointer to the PGM instance data.
3939 * @param GCPtr The address.
3940 * @param ppPml4e Page Map Level-4 Entry (out)
3941 */
3942DECLINLINE(PX86PDPE) pgmGstGetLongModePDPTPtr(PPGM pPGM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e)
3943{
3944 PX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
3945 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3946 PCX86PML4E pPml4e = *ppPml4e = &pGuestPml4->a[iPml4];
3947 if (pPml4e->n.u1Present)
3948 {
3949 PX86PDPT pPdpt;
3950 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPml4e->u & X86_PML4E_PG_MASK, &pPdpt);
3951 AssertRCReturn(rc, NULL);
3952
3953 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3954 return &pPdpt->a[iPdPt];
3955 }
3956 return NULL;
3957}
3958
3959
3960/**
3961 * Gets the page directory entry for the specified address.
3962 *
3963 * @returns The page directory entry in question.
3964 * @returns A non-present entry if the page directory is not present or on an invalid page.
3965 * @param pPGM Pointer to the PGM instance data.
3966 * @param GCPtr The address.
3967 * @param ppPml4e Page Map Level-4 Entry (out)
3968 * @param pPdpe Page directory pointer table entry (out)
3969 */
3970DECLINLINE(X86PDEPAE) pgmGstGetLongModePDEEx(PPGM pPGM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe)
3971{
3972 X86PDEPAE ZeroPde = {0};
3973 PX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
3974 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3975 PCX86PML4E pPml4e = *ppPml4e = &pGuestPml4->a[iPml4];
3976 if (pPml4e->n.u1Present)
3977 {
3978 PCX86PDPT pPdptTemp;
3979 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPml4e->u & X86_PML4E_PG_MASK, &pPdptTemp);
3980 AssertRCReturn(rc, ZeroPde);
3981
3982 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3983 *pPdpe = pPdptTemp->a[iPdPt];
3984 if (pPdptTemp->a[iPdPt].n.u1Present)
3985 {
3986 PCX86PDPAE pPD;
3987 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3988 AssertRCReturn(rc, ZeroPde);
3989
3990 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3991 return pPD->a[iPD];
3992 }
3993 }
3994
3995 return ZeroPde;
3996}
3997
3998
3999/**
4000 * Gets the page directory entry for the specified address.
4001 *
4002 * @returns The page directory entry in question.
4003 * @returns A non-present entry if the page directory is not present or on an invalid page.
4004 * @param pPGM Pointer to the PGM instance data.
4005 * @param GCPtr The address.
4006 */
4007DECLINLINE(X86PDEPAE) pgmGstGetLongModePDE(PPGM pPGM, RTGCPTR64 GCPtr)
4008{
4009 X86PDEPAE ZeroPde = {0};
4010 PCX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4011 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4012 if (pGuestPml4->a[iPml4].n.u1Present)
4013 {
4014 PCX86PDPT pPdptTemp;
4015 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPml4->a[iPml4].u & X86_PML4E_PG_MASK, &pPdptTemp);
4016 AssertRCReturn(rc, ZeroPde);
4017
4018 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4019 if (pPdptTemp->a[iPdPt].n.u1Present)
4020 {
4021 PCX86PDPAE pPD;
4022 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4023 AssertRCReturn(rc, ZeroPde);
4024
4025 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4026 return pPD->a[iPD];
4027 }
4028 }
4029 return ZeroPde;
4030}
4031
4032
4033/**
4034 * Gets the page directory entry for the specified address.
4035 *
4036 * @returns Pointer to the page directory entry in question.
4037 * @returns NULL if the page directory is not present or on an invalid page.
4038 * @param pPGM Pointer to the PGM instance data.
4039 * @param GCPtr The address.
4040 */
4041DECLINLINE(PX86PDEPAE) pgmGstGetLongModePDEPtr(PPGM pPGM, RTGCPTR64 GCPtr)
4042{
4043 PCX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4044 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4045 if (pGuestPml4->a[iPml4].n.u1Present)
4046 {
4047 PCX86PDPT pPdptTemp;
4048 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPml4->a[iPml4].u & X86_PML4E_PG_MASK, &pPdptTemp);
4049 AssertRCReturn(rc, NULL);
4050
4051 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4052 if (pPdptTemp->a[iPdPt].n.u1Present)
4053 {
4054 PX86PDPAE pPD;
4055 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4056 AssertRCReturn(rc, NULL);
4057
4058 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4059 return &pPD->a[iPD];
4060 }
4061 }
4062 return NULL;
4063}
4064
4065
4066/**
4067 * Gets the GUEST page directory pointer for the specified address.
4068 *
4069 * @returns The page directory in question.
4070 * @returns NULL if the page directory is not present or on an invalid page.
4071 * @param pPGM Pointer to the PGM instance data.
4072 * @param GCPtr The address.
4073 * @param ppPml4e Page Map Level-4 Entry (out)
4074 * @param pPdpe Page directory pointer table entry (out)
4075 * @param piPD Receives the index into the returned page directory
4076 */
4077DECLINLINE(PX86PDPAE) pgmGstGetLongModePDPtr(PPGM pPGM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe, unsigned *piPD)
4078{
4079 PX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4080 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4081 PCX86PML4E pPml4e = *ppPml4e = &pGuestPml4->a[iPml4];
4082 if (pPml4e->n.u1Present)
4083 {
4084 PCX86PDPT pPdptTemp;
4085 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPml4e->u & X86_PML4E_PG_MASK, &pPdptTemp);
4086 AssertRCReturn(rc, NULL);
4087
4088 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4089 *pPdpe = pPdptTemp->a[iPdPt];
4090 if (pPdptTemp->a[iPdPt].n.u1Present)
4091 {
4092 PX86PDPAE pPD;
4093 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4094 AssertRCReturn(rc, NULL);
4095
4096 *piPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4097 return pPD;
4098 }
4099 }
4100 return 0;
4101}
4102
4103#endif /* !IN_RC */
4104
4105
4106/**
4107 * Gets the shadow page directory, 32-bit.
4108 *
4109 * @returns Pointer to the shadow 32-bit PD.
4110 * @param pPGM Pointer to the PGM instance data.
4111 */
4112DECLINLINE(PX86PD) pgmShwGet32BitPDPtr(PPGM pPGM)
4113{
4114#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4115 return (PX86PD)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPGM->CTX_SUFF(pShwPageCR3));
4116#else
4117# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4118 PX86PD pShwPd;
4119 Assert(pPGM->HCPhysShw32BitPD != 0 && pPGM->HCPhysShw32BitPD != NIL_RTHCPHYS);
4120 int rc = PGM_HCPHYS_2_PTR_BY_PGM(pPGM, pPGM->HCPhysShw32BitPD, &pShwPd);
4121 AssertRCReturn(rc, NULL);
4122 return pShwPd;
4123# else
4124 return pPGM->CTX_SUFF(pShw32BitPd);
4125# endif
4126#endif
4127}
4128
4129
4130/**
4131 * Gets the shadow page directory entry for the specified address, 32-bit.
4132 *
4133 * @returns Shadow 32-bit PDE.
4134 * @param pPGM Pointer to the PGM instance data.
4135 * @param GCPtr The address.
4136 */
4137DECLINLINE(X86PDE) pgmShwGet32BitPDE(PPGM pPGM, RTGCPTR GCPtr)
4138{
4139 const unsigned iPd = (GCPtr >> X86_PD_SHIFT) & X86_PD_MASK;
4140
4141 PX86PD pShwPde = pgmShwGet32BitPDPtr(pPGM);
4142 if (!pShwPde)
4143 {
4144 X86PDE ZeroPde = {0};
4145 return ZeroPde;
4146 }
4147 return pShwPde->a[iPd];
4148}
4149
4150
4151/**
4152 * Gets the pointer to the shadow page directory entry for the specified
4153 * address, 32-bit.
4154 *
4155 * @returns Pointer to the shadow 32-bit PDE.
4156 * @param pPGM Pointer to the PGM instance data.
4157 * @param GCPtr The address.
4158 */
4159DECLINLINE(PX86PDE) pgmShwGet32BitPDEPtr(PPGM pPGM, RTGCPTR GCPtr)
4160{
4161 const unsigned iPd = (GCPtr >> X86_PD_SHIFT) & X86_PD_MASK;
4162
4163 PX86PD pPde = pgmShwGet32BitPDPtr(pPGM);
4164 AssertReturn(pPde, NULL);
4165 return &pPde->a[iPd];
4166}
4167
4168
4169/**
4170 * Gets the shadow page pointer table, PAE.
4171 *
4172 * @returns Pointer to the shadow PAE PDPT.
4173 * @param pPGM Pointer to the PGM instance data.
4174 */
4175DECLINLINE(PX86PDPT) pgmShwGetPaePDPTPtr(PPGM pPGM)
4176{
4177#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4178 return (PX86PDPT)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPGM->CTX_SUFF(pShwPageCR3));
4179#else
4180# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4181 PX86PDPT pShwPdpt;
4182 Assert(pPGM->HCPhysShwPaePdpt != 0 && pPGM->HCPhysShwPaePdpt != NIL_RTHCPHYS);
4183 int rc = PGM_HCPHYS_2_PTR_BY_PGM(pPGM, pPGM->HCPhysShwPaePdpt, &pShwPdpt);
4184 AssertRCReturn(rc, 0);
4185 return pShwPdpt;
4186# else
4187 return pPGM->CTX_SUFF(pShwPaePdpt);
4188# endif
4189#endif
4190}
4191
4192
4193/**
4194 * Gets the shadow page directory for the specified address, PAE.
4195 *
4196 * @returns Pointer to the shadow PD.
4197 * @param pPGM Pointer to the PGM instance data.
4198 * @param GCPtr The address.
4199 */
4200DECLINLINE(PX86PDPAE) pgmShwGetPaePDPtr(PPGM pPGM, RTGCPTR GCPtr)
4201{
4202#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4203 const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
4204 PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(pPGM);
4205
4206 /* Fetch the pgm pool shadow descriptor. */
4207 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(PGM2VM(pPGM), pPdpt->a[iPdpt].u & X86_PDPE_PG_MASK);
4208 AssertReturn(pShwPde, NULL);
4209
4210 return (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pShwPde);
4211#else
4212 const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
4213# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4214 PX86PDPAE pPD;
4215 int rc = PGM_HCPHYS_2_PTR_BY_PGM(pPGM, pPGM->aHCPhysPaePDs[iPdpt], &pPD);
4216 AssertRCReturn(rc, 0);
4217 return pPD;
4218# else
4219 PX86PDPAE pPD = pPGM->CTX_SUFF(apShwPaePDs)[iPdpt];
4220 Assert(pPD);
4221 return pPD;
4222# endif
4223#endif
4224}
4225
4226
4227/**
4228 * Gets the shadow page directory entry, PAE.
4229 *
4230 * @returns PDE.
4231 * @param pPGM Pointer to the PGM instance data.
4232 * @param GCPtr The address.
4233 */
4234DECLINLINE(X86PDEPAE) pgmShwGetPaePDE(PPGM pPGM, RTGCPTR GCPtr)
4235{
4236 const unsigned iPd = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4237
4238 PX86PDPAE pShwPde = pgmShwGetPaePDPtr(pPGM, GCPtr);
4239 if (!pShwPde)
4240 {
4241 X86PDEPAE ZeroPde = {0};
4242 return ZeroPde;
4243 }
4244 return pShwPde->a[iPd];
4245}
4246
4247
4248/**
4249 * Gets the pointer to the shadow page directory entry for an address, PAE.
4250 *
4251 * @returns Pointer to the PDE.
4252 * @param pPGM Pointer to the PGM instance data.
4253 * @param GCPtr The address.
4254 */
4255DECLINLINE(PX86PDEPAE) pgmShwGetPaePDEPtr(PPGM pPGM, RTGCPTR GCPtr)
4256{
4257 const unsigned iPd = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4258
4259 PX86PDPAE pPde = pgmShwGetPaePDPtr(pPGM, GCPtr);
4260 AssertReturn(pPde, NULL);
4261 return &pPde->a[iPd];
4262}
4263
4264#ifndef IN_RC
4265
4266/**
4267 * Gets the shadow page map level-4 pointer.
4268 *
4269 * @returns Pointer to the shadow PML4.
4270 * @param pPGM Pointer to the PGM instance data.
4271 */
4272DECLINLINE(PX86PML4) pgmShwGetLongModePML4Ptr(PPGM pPGM)
4273{
4274#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4275 return (PX86PML4)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPGM->CTX_SUFF(pShwPageCR3));
4276#else
4277# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4278 PX86PML4 pShwPml4;
4279 Assert(pPGM->HCPhysShwPaePml4 != 0 && pPGM->HCPhysShwPaePml4 != NIL_RTHCPHYS);
4280 int rc = PGM_HCPHYS_2_PTR_BY_PGM(pPGM, pPGM->HCPhysShwPaePml4, &pShwPml4);
4281 AssertRCReturn(rc, 0);
4282 return pShwPml4;
4283# else
4284 Assert(pPGM->CTX_SUFF(pShwPaePml4));
4285 return pPGM->CTX_SUFF(pShwPaePml4);
4286# endif
4287#endif
4288}
4289
4290
4291/**
4292 * Gets the shadow page map level-4 entry for the specified address.
4293 *
4294 * @returns The entry.
4295 * @param pPGM Pointer to the PGM instance data.
4296 * @param GCPtr The address.
4297 */
4298DECLINLINE(X86PML4E) pgmShwGetLongModePML4E(PPGM pPGM, RTGCPTR GCPtr)
4299{
4300 const unsigned iPml4 = ((RTGCUINTPTR64)GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4301 PX86PML4 pShwPml4 = pgmShwGetLongModePML4Ptr(pPGM);
4302
4303 if (!pShwPml4)
4304 {
4305 X86PML4E ZeroPml4e = {0};
4306 return ZeroPml4e;
4307 }
4308 return pShwPml4->a[iPml4];
4309}
4310
4311
4312/**
4313 * Gets the pointer to the specified shadow page map level-4 entry.
4314 *
4315 * @returns The entry.
4316 * @param pPGM Pointer to the PGM instance data.
4317 * @param iPml4 The PML4 index.
4318 */
4319DECLINLINE(PX86PML4E) pgmShwGetLongModePML4EPtr(PPGM pPGM, unsigned int iPml4)
4320{
4321 PX86PML4 pShwPml4 = pgmShwGetLongModePML4Ptr(pPGM);
4322 if (!pShwPml4)
4323 return NULL;
4324 return &pShwPml4->a[iPml4];
4325}
4326
4327
4328/**
4329 * Gets the GUEST page directory pointer for the specified address.
4330 *
4331 * @returns The page directory in question.
4332 * @returns NULL if the page directory is not present or on an invalid page.
4333 * @param pPGM Pointer to the PGM instance data.
4334 * @param GCPtr The address.
4335 * @param piPD Receives the index into the returned page directory
4336 */
4337DECLINLINE(PX86PDPAE) pgmGstGetLongModePDPtr(PPGM pPGM, RTGCPTR64 GCPtr, unsigned *piPD)
4338{
4339 PCX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4340 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4341 if (pGuestPml4->a[iPml4].n.u1Present)
4342 {
4343 PCX86PDPT pPdptTemp;
4344 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPml4->a[iPml4].u & X86_PML4E_PG_MASK, &pPdptTemp);
4345 AssertRCReturn(rc, NULL);
4346
4347 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4348 if (pPdptTemp->a[iPdPt].n.u1Present)
4349 {
4350 PX86PDPAE pPD;
4351 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4352 AssertRCReturn(rc, NULL);
4353
4354 *piPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4355 return pPD;
4356 }
4357 }
4358 return NULL;
4359}
4360
4361#endif /* !IN_RC */
4362
4363/**
4364 * Checks if any of the specified page flags are set for the given page.
4365 *
4366 * @returns true if any of the flags are set.
4367 * @returns false if all the flags are clear.
4368 * @param pPGM PGM handle.
4369 * @param GCPhys The GC physical address.
4370 * @param fFlags The flags to check for.
4371 */
4372DECLINLINE(bool) pgmRamTestFlags(PPGM pPGM, RTGCPHYS GCPhys, uint64_t fFlags)
4373{
4374 PPGMPAGE pPage = pgmPhysGetPage(pPGM, GCPhys);
4375 return pPage
4376 && (pPage->HCPhys & fFlags) != 0; /** @todo PAGE FLAGS */
4377}
4378
4379
4380/**
4381 * Gets the page state for a physical handler.
4382 *
4383 * @returns The physical handler page state.
4384 * @param pCur The physical handler in question.
4385 */
4386DECLINLINE(unsigned) pgmHandlerPhysicalCalcState(PPGMPHYSHANDLER pCur)
4387{
4388 switch (pCur->enmType)
4389 {
4390 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
4391 return PGM_PAGE_HNDL_PHYS_STATE_WRITE;
4392
4393 case PGMPHYSHANDLERTYPE_MMIO:
4394 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
4395 return PGM_PAGE_HNDL_PHYS_STATE_ALL;
4396
4397 default:
4398 AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
4399 }
4400}
4401
4402
4403/**
4404 * Gets the page state for a virtual handler.
4405 *
4406 * @returns The virtual handler page state.
4407 * @param pCur The virtual handler in question.
4408 * @remarks This should never be used on a hypervisor access handler.
4409 */
4410DECLINLINE(unsigned) pgmHandlerVirtualCalcState(PPGMVIRTHANDLER pCur)
4411{
4412 switch (pCur->enmType)
4413 {
4414 case PGMVIRTHANDLERTYPE_WRITE:
4415 return PGM_PAGE_HNDL_VIRT_STATE_WRITE;
4416 case PGMVIRTHANDLERTYPE_ALL:
4417 return PGM_PAGE_HNDL_VIRT_STATE_ALL;
4418 default:
4419 AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
4420 }
4421}
4422
4423
4424/**
4425 * Clears one physical page of a virtual handler
4426 *
4427 * @param pPGM Pointer to the PGM instance.
4428 * @param pCur Virtual handler structure
4429 * @param iPage Physical page index
4430 *
4431 * @remark Only used when PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL is being set, so no
4432 * need to care about other handlers in the same page.
4433 */
4434DECLINLINE(void) pgmHandlerVirtualClearPage(PPGM pPGM, PPGMVIRTHANDLER pCur, unsigned iPage)
4435{
4436 const PPGMPHYS2VIRTHANDLER pPhys2Virt = &pCur->aPhysToVirt[iPage];
4437
4438 /*
4439 * Remove the node from the tree (it's supposed to be in the tree if we get here!).
4440 */
4441#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4442 AssertReleaseMsg(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
4443 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4444 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
4445#endif
4446 if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IS_HEAD)
4447 {
4448 /* We're the head of the alias chain. */
4449 PPGMPHYS2VIRTHANDLER pRemove = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysRemove(&pPGM->CTX_SUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key); NOREF(pRemove);
4450#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4451 AssertReleaseMsg(pRemove != NULL,
4452 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4453 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
4454 AssertReleaseMsg(pRemove == pPhys2Virt,
4455 ("wanted: pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4456 " got: pRemove=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4457 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias,
4458 pRemove, pRemove->Core.Key, pRemove->Core.KeyLast, pRemove->offVirtHandler, pRemove->offNextAlias));
4459#endif
4460 if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4461 {
4462 /* Insert the next list in the alias chain into the tree. */
4463 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4464#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4465 AssertReleaseMsg(pNext->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
4466 ("pNext=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4467 pNext, pNext->Core.Key, pNext->Core.KeyLast, pNext->offVirtHandler, pNext->offNextAlias));
4468#endif
4469 pNext->offNextAlias |= PGMPHYS2VIRTHANDLER_IS_HEAD;
4470 bool fRc = RTAvlroGCPhysInsert(&pPGM->CTX_SUFF(pTrees)->PhysToVirtHandlers, &pNext->Core);
4471 AssertRelease(fRc);
4472 }
4473 }
4474 else
4475 {
4476 /* Locate the previous node in the alias chain. */
4477 PPGMPHYS2VIRTHANDLER pPrev = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGet(&pPGM->CTX_SUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key);
4478#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4479 AssertReleaseMsg(pPrev != pPhys2Virt,
4480 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
4481 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
4482#endif
4483 for (;;)
4484 {
4485 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPrev + (pPrev->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4486 if (pNext == pPhys2Virt)
4487 {
4488 /* unlink. */
4489 LogFlow(("pgmHandlerVirtualClearPage: removed %p:{.offNextAlias=%#RX32} from alias chain. prev %p:{.offNextAlias=%#RX32} [%RGp-%RGp]\n",
4490 pPhys2Virt, pPhys2Virt->offNextAlias, pPrev, pPrev->offNextAlias, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast));
4491 if (!(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4492 pPrev->offNextAlias &= ~PGMPHYS2VIRTHANDLER_OFF_MASK;
4493 else
4494 {
4495 PPGMPHYS2VIRTHANDLER pNewNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4496 pPrev->offNextAlias = ((intptr_t)pNewNext - (intptr_t)pPrev)
4497 | (pPrev->offNextAlias & ~PGMPHYS2VIRTHANDLER_OFF_MASK);
4498 }
4499 break;
4500 }
4501
4502 /* next */
4503 if (pNext == pPrev)
4504 {
4505#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4506 AssertReleaseMsg(pNext != pPrev,
4507 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
4508 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
4509#endif
4510 break;
4511 }
4512 pPrev = pNext;
4513 }
4514 }
4515 Log2(("PHYS2VIRT: Removing %RGp-%RGp %#RX32 %s\n",
4516 pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias, R3STRING(pCur->pszDesc)));
4517 pPhys2Virt->offNextAlias = 0;
4518 pPhys2Virt->Core.KeyLast = NIL_RTGCPHYS; /* require reinsert */
4519
4520 /*
4521 * Clear the ram flags for this page.
4522 */
4523 PPGMPAGE pPage = pgmPhysGetPage(pPGM, pPhys2Virt->Core.Key);
4524 AssertReturnVoid(pPage);
4525 PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, PGM_PAGE_HNDL_VIRT_STATE_NONE);
4526}
4527
4528
4529/**
4530 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4531 *
4532 * @returns Pointer to the shadow page structure.
4533 * @param pPool The pool.
4534 * @param HCPhys The HC physical address of the shadow page.
4535 */
4536DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
4537{
4538 /*
4539 * Look up the page.
4540 */
4541 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
4542 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0));
4543 return pPage;
4544}
4545
4546
4547/**
4548 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4549 *
4550 * @returns Pointer to the shadow page structure.
4551 * @param pPool The pool.
4552 * @param idx The pool page index.
4553 */
4554DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPageByIdx(PPGMPOOL pPool, unsigned idx)
4555{
4556 AssertFatalMsg(idx >= PGMPOOL_IDX_FIRST && idx < pPool->cCurPages, ("idx=%d\n", idx));
4557 return &pPool->aPages[idx];
4558}
4559
4560
4561#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
4562/**
4563 * Clear references to guest physical memory.
4564 *
4565 * @param pPool The pool.
4566 * @param pPoolPage The pool page.
4567 * @param pPhysPage The physical guest page tracking structure.
4568 */
4569DECLINLINE(void) pgmTrackDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage)
4570{
4571 /*
4572 * Just deal with the simple case here.
4573 */
4574# ifdef LOG_ENABLED
4575 const RTHCPHYS HCPhysOrg = pPhysPage->HCPhys; /** @todo PAGE FLAGS */
4576# endif
4577 const unsigned cRefs = pPhysPage->HCPhys >> MM_RAM_FLAGS_CREFS_SHIFT; /** @todo PAGE FLAGS */
4578 if (cRefs == 1)
4579 {
4580 Assert(pPoolPage->idx == ((pPhysPage->HCPhys >> MM_RAM_FLAGS_IDX_SHIFT) & MM_RAM_FLAGS_IDX_MASK));
4581 pPhysPage->HCPhys = pPhysPage->HCPhys & MM_RAM_FLAGS_NO_REFS_MASK;
4582 }
4583 else
4584 pgmPoolTrackPhysExtDerefGCPhys(pPool, pPoolPage, pPhysPage);
4585 LogFlow(("pgmTrackDerefGCPhys: HCPhys=%RHp -> %RHp\n", HCPhysOrg, pPhysPage->HCPhys));
4586}
4587#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
4588
4589
4590#ifdef PGMPOOL_WITH_CACHE
4591/**
4592 * Moves the page to the head of the age list.
4593 *
4594 * This is done when the cached page is used in one way or another.
4595 *
4596 * @param pPool The pool.
4597 * @param pPage The cached page.
4598 * @todo inline in PGMInternal.h!
4599 */
4600DECLINLINE(void) pgmPoolCacheUsed(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
4601{
4602 /*
4603 * Move to the head of the age list.
4604 */
4605 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
4606 {
4607 /* unlink */
4608 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
4609 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
4610 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
4611 else
4612 pPool->iAgeTail = pPage->iAgePrev;
4613
4614 /* insert at head */
4615 pPage->iAgePrev = NIL_PGMPOOL_IDX;
4616 pPage->iAgeNext = pPool->iAgeHead;
4617 Assert(pPage->iAgeNext != NIL_PGMPOOL_IDX); /* we would've already been head then */
4618 pPool->iAgeHead = pPage->idx;
4619 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->idx;
4620 }
4621}
4622#endif /* PGMPOOL_WITH_CACHE */
4623
4624
4625#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4626/**
4627 * Maps the page into current context (RC and maybe R0).
4628 *
4629 * @returns pointer to the mapping.
4630 * @param pVM Pointer to the PGM instance data.
4631 * @param pPage The page.
4632 */
4633DECLINLINE(void *) pgmPoolMapPageInlined(PPGM pPGM, PPGMPOOLPAGE pPage, int iLine, const char *pszFile)
4634{
4635 if (pPage->idx >= PGMPOOL_IDX_FIRST)
4636 {
4637 Assert(pPage->idx < pPGM->CTX_SUFF(pPool)->cCurPages);
4638 void *pv;
4639# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4640 int rc = pgmR0DynMapHCPageInlined(pPGM, pPage->Core.Key, &pv);
4641# else
4642 int rc = PGMDynMapHCPage(PGM2VM(pPGM), pPage->Core.Key, &pv);
4643# endif
4644 if (RT_SUCCESS(rc))
4645 return pv;
4646 AssertMsgFailed(("%Rrc: %s(%d)\n", rc, pszFile, iLine));
4647 }
4648 return pgmPoolMapPageFallback(pPGM, pPage);
4649}
4650#endif
4651
4652
4653/**
4654 * Tells if mappings are to be put into the shadow page table or not
4655 *
4656 * @returns boolean result
4657 * @param pVM VM handle.
4658 */
4659
4660DECLINLINE(bool) pgmMapAreMappingsEnabled(PPGM pPGM)
4661{
4662#ifdef IN_RING0
4663 /* There are no mappings in VT-x and AMD-V mode. */
4664 Assert(pPGM->fDisableMappings);
4665 return false;
4666#else
4667 return !pPGM->fDisableMappings;
4668#endif
4669}
4670
4671/** @} */
4672
4673#endif
4674
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette