VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 18499

Last change on this file since 18499 was 18353, checked in by vboxsync, 15 years ago

PGM: More (cheap) release stats.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 232.1 KB
Line 
1/* $Id: PGM.cpp 18353 2009-03-26 22:14:25Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574/*******************************************************************************
575* Header Files *
576*******************************************************************************/
577#define LOG_GROUP LOG_GROUP_PGM
578#include <VBox/dbgf.h>
579#include <VBox/pgm.h>
580#include <VBox/cpum.h>
581#include <VBox/iom.h>
582#include <VBox/sup.h>
583#include <VBox/mm.h>
584#include <VBox/em.h>
585#include <VBox/stam.h>
586#include <VBox/rem.h>
587#include <VBox/dbgf.h>
588#include <VBox/rem.h>
589#include <VBox/selm.h>
590#include <VBox/ssm.h>
591#include "PGMInternal.h"
592#include <VBox/vm.h>
593#include <VBox/dbg.h>
594#include <VBox/hwaccm.h>
595
596#include <iprt/assert.h>
597#include <iprt/alloc.h>
598#include <iprt/asm.h>
599#include <iprt/thread.h>
600#include <iprt/string.h>
601#ifdef DEBUG_bird
602# include <iprt/env.h>
603#endif
604#include <VBox/param.h>
605#include <VBox/err.h>
606
607
608/*******************************************************************************
609* Defined Constants And Macros *
610*******************************************************************************/
611/** Saved state data unit version. */
612#ifdef VBOX_WITH_NEW_PHYS_CODE
613# define PGM_SAVED_STATE_VERSION 7
614#else
615# define PGM_SAVED_STATE_VERSION 6
616#endif
617/** Saved state data unit version. */
618#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
619
620
621/*******************************************************************************
622* Internal Functions *
623*******************************************************************************/
624static int pgmR3InitPaging(PVM pVM);
625static void pgmR3InitStats(PVM pVM);
626static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
627static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
628static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
629static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
630static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
631static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
632#ifdef VBOX_STRICT
633static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
634#endif
635static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
636static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
637static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
638static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
639static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
640
641#ifdef VBOX_WITH_DEBUGGER
642/** @todo all but the two last commands must be converted to 'info'. */
643static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
644static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
645static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
646static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
647# ifdef VBOX_STRICT
648static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
649# endif
650#endif
651
652
653/*******************************************************************************
654* Global Variables *
655*******************************************************************************/
656#ifdef VBOX_WITH_DEBUGGER
657/** Command descriptors. */
658static const DBGCCMD g_aCmds[] =
659{
660 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
661 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
662 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
663 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
664#ifdef VBOX_STRICT
665 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
666#endif
667 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
668};
669#endif
670
671
672
673
674/*
675 * Shadow - 32-bit mode
676 */
677#define PGM_SHW_TYPE PGM_TYPE_32BIT
678#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
679#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
680#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
681#include "PGMShw.h"
682
683/* Guest - real mode */
684#define PGM_GST_TYPE PGM_TYPE_REAL
685#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
686#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
687#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
688#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
689#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
690#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
691#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
692#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
693#include "PGMBth.h"
694#include "PGMGstDefs.h"
695#include "PGMGst.h"
696#undef BTH_PGMPOOLKIND_PT_FOR_PT
697#undef BTH_PGMPOOLKIND_ROOT
698#undef PGM_BTH_NAME
699#undef PGM_BTH_NAME_RC_STR
700#undef PGM_BTH_NAME_R0_STR
701#undef PGM_GST_TYPE
702#undef PGM_GST_NAME
703#undef PGM_GST_NAME_RC_STR
704#undef PGM_GST_NAME_R0_STR
705
706/* Guest - protected mode */
707#define PGM_GST_TYPE PGM_TYPE_PROT
708#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
709#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
710#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
711#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
712#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
713#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
714#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
715#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
716#include "PGMBth.h"
717#include "PGMGstDefs.h"
718#include "PGMGst.h"
719#undef BTH_PGMPOOLKIND_PT_FOR_PT
720#undef BTH_PGMPOOLKIND_ROOT
721#undef PGM_BTH_NAME
722#undef PGM_BTH_NAME_RC_STR
723#undef PGM_BTH_NAME_R0_STR
724#undef PGM_GST_TYPE
725#undef PGM_GST_NAME
726#undef PGM_GST_NAME_RC_STR
727#undef PGM_GST_NAME_R0_STR
728
729/* Guest - 32-bit mode */
730#define PGM_GST_TYPE PGM_TYPE_32BIT
731#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
732#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
733#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
734#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
735#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
736#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
737#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
738#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
739#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
740#include "PGMBth.h"
741#include "PGMGstDefs.h"
742#include "PGMGst.h"
743#undef BTH_PGMPOOLKIND_PT_FOR_BIG
744#undef BTH_PGMPOOLKIND_PT_FOR_PT
745#undef BTH_PGMPOOLKIND_ROOT
746#undef PGM_BTH_NAME
747#undef PGM_BTH_NAME_RC_STR
748#undef PGM_BTH_NAME_R0_STR
749#undef PGM_GST_TYPE
750#undef PGM_GST_NAME
751#undef PGM_GST_NAME_RC_STR
752#undef PGM_GST_NAME_R0_STR
753
754#undef PGM_SHW_TYPE
755#undef PGM_SHW_NAME
756#undef PGM_SHW_NAME_RC_STR
757#undef PGM_SHW_NAME_R0_STR
758
759
760/*
761 * Shadow - PAE mode
762 */
763#define PGM_SHW_TYPE PGM_TYPE_PAE
764#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
765#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
766#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
767#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
768#include "PGMShw.h"
769
770/* Guest - real mode */
771#define PGM_GST_TYPE PGM_TYPE_REAL
772#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
773#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
774#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
775#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
776#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
777#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
778#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
779#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
780#include "PGMGstDefs.h"
781#include "PGMBth.h"
782#undef BTH_PGMPOOLKIND_PT_FOR_PT
783#undef BTH_PGMPOOLKIND_ROOT
784#undef PGM_BTH_NAME
785#undef PGM_BTH_NAME_RC_STR
786#undef PGM_BTH_NAME_R0_STR
787#undef PGM_GST_TYPE
788#undef PGM_GST_NAME
789#undef PGM_GST_NAME_RC_STR
790#undef PGM_GST_NAME_R0_STR
791
792/* Guest - protected mode */
793#define PGM_GST_TYPE PGM_TYPE_PROT
794#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
795#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
796#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
797#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
798#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
799#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
800#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
801#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
802#include "PGMGstDefs.h"
803#include "PGMBth.h"
804#undef BTH_PGMPOOLKIND_PT_FOR_PT
805#undef BTH_PGMPOOLKIND_ROOT
806#undef PGM_BTH_NAME
807#undef PGM_BTH_NAME_RC_STR
808#undef PGM_BTH_NAME_R0_STR
809#undef PGM_GST_TYPE
810#undef PGM_GST_NAME
811#undef PGM_GST_NAME_RC_STR
812#undef PGM_GST_NAME_R0_STR
813
814/* Guest - 32-bit mode */
815#define PGM_GST_TYPE PGM_TYPE_32BIT
816#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
817#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
818#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
819#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
820#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
821#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
822#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
823#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
824#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
825#include "PGMGstDefs.h"
826#include "PGMBth.h"
827#undef BTH_PGMPOOLKIND_PT_FOR_BIG
828#undef BTH_PGMPOOLKIND_PT_FOR_PT
829#undef BTH_PGMPOOLKIND_ROOT
830#undef PGM_BTH_NAME
831#undef PGM_BTH_NAME_RC_STR
832#undef PGM_BTH_NAME_R0_STR
833#undef PGM_GST_TYPE
834#undef PGM_GST_NAME
835#undef PGM_GST_NAME_RC_STR
836#undef PGM_GST_NAME_R0_STR
837
838/* Guest - PAE mode */
839#define PGM_GST_TYPE PGM_TYPE_PAE
840#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
841#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
842#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
843#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
844#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
845#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
846#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
847#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
848#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
849#include "PGMBth.h"
850#include "PGMGstDefs.h"
851#include "PGMGst.h"
852#undef BTH_PGMPOOLKIND_PT_FOR_BIG
853#undef BTH_PGMPOOLKIND_PT_FOR_PT
854#undef BTH_PGMPOOLKIND_ROOT
855#undef PGM_BTH_NAME
856#undef PGM_BTH_NAME_RC_STR
857#undef PGM_BTH_NAME_R0_STR
858#undef PGM_GST_TYPE
859#undef PGM_GST_NAME
860#undef PGM_GST_NAME_RC_STR
861#undef PGM_GST_NAME_R0_STR
862
863#undef PGM_SHW_TYPE
864#undef PGM_SHW_NAME
865#undef PGM_SHW_NAME_RC_STR
866#undef PGM_SHW_NAME_R0_STR
867
868
869/*
870 * Shadow - AMD64 mode
871 */
872#define PGM_SHW_TYPE PGM_TYPE_AMD64
873#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
874#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
875#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
876#include "PGMShw.h"
877
878#ifdef VBOX_WITH_64_BITS_GUESTS
879/* Guest - AMD64 mode */
880# define PGM_GST_TYPE PGM_TYPE_AMD64
881# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
882# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
883# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
884# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
885# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
886# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
887# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
888# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
889# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
890# include "PGMBth.h"
891# include "PGMGstDefs.h"
892# include "PGMGst.h"
893# undef BTH_PGMPOOLKIND_PT_FOR_BIG
894# undef BTH_PGMPOOLKIND_PT_FOR_PT
895# undef BTH_PGMPOOLKIND_ROOT
896# undef PGM_BTH_NAME
897# undef PGM_BTH_NAME_RC_STR
898# undef PGM_BTH_NAME_R0_STR
899# undef PGM_GST_TYPE
900# undef PGM_GST_NAME
901# undef PGM_GST_NAME_RC_STR
902# undef PGM_GST_NAME_R0_STR
903#endif /* VBOX_WITH_64_BITS_GUESTS */
904
905#undef PGM_SHW_TYPE
906#undef PGM_SHW_NAME
907#undef PGM_SHW_NAME_RC_STR
908#undef PGM_SHW_NAME_R0_STR
909
910
911/*
912 * Shadow - Nested paging mode
913 */
914#define PGM_SHW_TYPE PGM_TYPE_NESTED
915#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
916#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
917#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
918#include "PGMShw.h"
919
920/* Guest - real mode */
921#define PGM_GST_TYPE PGM_TYPE_REAL
922#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
923#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
924#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
925#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
926#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
927#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
928#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
929#include "PGMGstDefs.h"
930#include "PGMBth.h"
931#undef BTH_PGMPOOLKIND_PT_FOR_PT
932#undef PGM_BTH_NAME
933#undef PGM_BTH_NAME_RC_STR
934#undef PGM_BTH_NAME_R0_STR
935#undef PGM_GST_TYPE
936#undef PGM_GST_NAME
937#undef PGM_GST_NAME_RC_STR
938#undef PGM_GST_NAME_R0_STR
939
940/* Guest - protected mode */
941#define PGM_GST_TYPE PGM_TYPE_PROT
942#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
943#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
944#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
945#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
946#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
947#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
948#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
949#include "PGMGstDefs.h"
950#include "PGMBth.h"
951#undef BTH_PGMPOOLKIND_PT_FOR_PT
952#undef PGM_BTH_NAME
953#undef PGM_BTH_NAME_RC_STR
954#undef PGM_BTH_NAME_R0_STR
955#undef PGM_GST_TYPE
956#undef PGM_GST_NAME
957#undef PGM_GST_NAME_RC_STR
958#undef PGM_GST_NAME_R0_STR
959
960/* Guest - 32-bit mode */
961#define PGM_GST_TYPE PGM_TYPE_32BIT
962#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
963#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
964#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
965#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
966#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
967#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
968#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
969#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
970#include "PGMGstDefs.h"
971#include "PGMBth.h"
972#undef BTH_PGMPOOLKIND_PT_FOR_BIG
973#undef BTH_PGMPOOLKIND_PT_FOR_PT
974#undef PGM_BTH_NAME
975#undef PGM_BTH_NAME_RC_STR
976#undef PGM_BTH_NAME_R0_STR
977#undef PGM_GST_TYPE
978#undef PGM_GST_NAME
979#undef PGM_GST_NAME_RC_STR
980#undef PGM_GST_NAME_R0_STR
981
982/* Guest - PAE mode */
983#define PGM_GST_TYPE PGM_TYPE_PAE
984#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
985#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
986#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
987#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
988#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
989#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
990#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
991#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
992#include "PGMGstDefs.h"
993#include "PGMBth.h"
994#undef BTH_PGMPOOLKIND_PT_FOR_BIG
995#undef BTH_PGMPOOLKIND_PT_FOR_PT
996#undef PGM_BTH_NAME
997#undef PGM_BTH_NAME_RC_STR
998#undef PGM_BTH_NAME_R0_STR
999#undef PGM_GST_TYPE
1000#undef PGM_GST_NAME
1001#undef PGM_GST_NAME_RC_STR
1002#undef PGM_GST_NAME_R0_STR
1003
1004#ifdef VBOX_WITH_64_BITS_GUESTS
1005/* Guest - AMD64 mode */
1006# define PGM_GST_TYPE PGM_TYPE_AMD64
1007# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1008# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1009# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1010# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1011# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1012# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1013# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1014# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1015# include "PGMGstDefs.h"
1016# include "PGMBth.h"
1017# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1018# undef BTH_PGMPOOLKIND_PT_FOR_PT
1019# undef PGM_BTH_NAME
1020# undef PGM_BTH_NAME_RC_STR
1021# undef PGM_BTH_NAME_R0_STR
1022# undef PGM_GST_TYPE
1023# undef PGM_GST_NAME
1024# undef PGM_GST_NAME_RC_STR
1025# undef PGM_GST_NAME_R0_STR
1026#endif /* VBOX_WITH_64_BITS_GUESTS */
1027
1028#undef PGM_SHW_TYPE
1029#undef PGM_SHW_NAME
1030#undef PGM_SHW_NAME_RC_STR
1031#undef PGM_SHW_NAME_R0_STR
1032
1033
1034/*
1035 * Shadow - EPT
1036 */
1037#define PGM_SHW_TYPE PGM_TYPE_EPT
1038#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1039#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1040#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1041#include "PGMShw.h"
1042
1043/* Guest - real mode */
1044#define PGM_GST_TYPE PGM_TYPE_REAL
1045#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1046#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1047#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1048#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1049#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1050#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1051#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1052#include "PGMGstDefs.h"
1053#include "PGMBth.h"
1054#undef BTH_PGMPOOLKIND_PT_FOR_PT
1055#undef PGM_BTH_NAME
1056#undef PGM_BTH_NAME_RC_STR
1057#undef PGM_BTH_NAME_R0_STR
1058#undef PGM_GST_TYPE
1059#undef PGM_GST_NAME
1060#undef PGM_GST_NAME_RC_STR
1061#undef PGM_GST_NAME_R0_STR
1062
1063/* Guest - protected mode */
1064#define PGM_GST_TYPE PGM_TYPE_PROT
1065#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1066#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1067#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1068#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1069#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1070#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1071#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1072#include "PGMGstDefs.h"
1073#include "PGMBth.h"
1074#undef BTH_PGMPOOLKIND_PT_FOR_PT
1075#undef PGM_BTH_NAME
1076#undef PGM_BTH_NAME_RC_STR
1077#undef PGM_BTH_NAME_R0_STR
1078#undef PGM_GST_TYPE
1079#undef PGM_GST_NAME
1080#undef PGM_GST_NAME_RC_STR
1081#undef PGM_GST_NAME_R0_STR
1082
1083/* Guest - 32-bit mode */
1084#define PGM_GST_TYPE PGM_TYPE_32BIT
1085#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1086#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1087#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1088#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1089#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1090#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1091#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1092#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1093#include "PGMGstDefs.h"
1094#include "PGMBth.h"
1095#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1096#undef BTH_PGMPOOLKIND_PT_FOR_PT
1097#undef PGM_BTH_NAME
1098#undef PGM_BTH_NAME_RC_STR
1099#undef PGM_BTH_NAME_R0_STR
1100#undef PGM_GST_TYPE
1101#undef PGM_GST_NAME
1102#undef PGM_GST_NAME_RC_STR
1103#undef PGM_GST_NAME_R0_STR
1104
1105/* Guest - PAE mode */
1106#define PGM_GST_TYPE PGM_TYPE_PAE
1107#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1108#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1109#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1110#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1111#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1112#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1113#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1114#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1115#include "PGMGstDefs.h"
1116#include "PGMBth.h"
1117#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1118#undef BTH_PGMPOOLKIND_PT_FOR_PT
1119#undef PGM_BTH_NAME
1120#undef PGM_BTH_NAME_RC_STR
1121#undef PGM_BTH_NAME_R0_STR
1122#undef PGM_GST_TYPE
1123#undef PGM_GST_NAME
1124#undef PGM_GST_NAME_RC_STR
1125#undef PGM_GST_NAME_R0_STR
1126
1127#ifdef VBOX_WITH_64_BITS_GUESTS
1128/* Guest - AMD64 mode */
1129# define PGM_GST_TYPE PGM_TYPE_AMD64
1130# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1131# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1132# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1133# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1134# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1135# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1136# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1137# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1138# include "PGMGstDefs.h"
1139# include "PGMBth.h"
1140# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1141# undef BTH_PGMPOOLKIND_PT_FOR_PT
1142# undef PGM_BTH_NAME
1143# undef PGM_BTH_NAME_RC_STR
1144# undef PGM_BTH_NAME_R0_STR
1145# undef PGM_GST_TYPE
1146# undef PGM_GST_NAME
1147# undef PGM_GST_NAME_RC_STR
1148# undef PGM_GST_NAME_R0_STR
1149#endif /* VBOX_WITH_64_BITS_GUESTS */
1150
1151#undef PGM_SHW_TYPE
1152#undef PGM_SHW_NAME
1153#undef PGM_SHW_NAME_RC_STR
1154#undef PGM_SHW_NAME_R0_STR
1155
1156
1157
1158/**
1159 * Initiates the paging of VM.
1160 *
1161 * @returns VBox status code.
1162 * @param pVM Pointer to VM structure.
1163 */
1164VMMR3DECL(int) PGMR3Init(PVM pVM)
1165{
1166 LogFlow(("PGMR3Init:\n"));
1167 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1168 int rc;
1169
1170 /*
1171 * Assert alignment and sizes.
1172 */
1173 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1174
1175 /*
1176 * Init the structure.
1177 */
1178 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1179 pVM->pgm.s.offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1180 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1181 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1182 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1183 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1184 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1185 pVM->pgm.s.fA20Enabled = true;
1186 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1187 pVM->pgm.s.pGstPaePdptR3 = NULL;
1188#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1189 pVM->pgm.s.pGstPaePdptR0 = NIL_RTR0PTR;
1190#endif
1191 pVM->pgm.s.pGstPaePdptRC = NIL_RTRCPTR;
1192 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsR3); i++)
1193 {
1194 pVM->pgm.s.apGstPaePDsR3[i] = NULL;
1195#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1196 pVM->pgm.s.apGstPaePDsR0[i] = NIL_RTR0PTR;
1197#endif
1198 pVM->pgm.s.apGstPaePDsRC[i] = NIL_RTRCPTR;
1199 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1200 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1201 }
1202
1203 rc = CFGMR3QueryBoolDef(pCfgPGM, "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc, false);
1204 AssertLogRelRCReturn(rc, rc);
1205
1206#if HC_ARCH_BITS == 64 || 1 /** @todo 4GB/32-bit: remove || 1 later and adjust the limit. */
1207 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1208#else
1209 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1210#endif
1211 AssertLogRelRCReturn(rc, rc);
1212 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1213 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1214
1215 /*
1216 * Get the configured RAM size - to estimate saved state size.
1217 */
1218 uint64_t cbRam;
1219 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1220 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1221 cbRam = pVM->pgm.s.cbRamSize = 0;
1222 else if (RT_SUCCESS(rc))
1223 {
1224 if (cbRam < PAGE_SIZE)
1225 cbRam = 0;
1226 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1227 pVM->pgm.s.cbRamSize = (RTUINT)cbRam; /* pointless legacy, remove after enabling the new phys code. */
1228 }
1229 else
1230 {
1231 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1232 return rc;
1233 }
1234
1235 /*
1236 * Register callbacks, string formatters and the saved state data unit.
1237 */
1238#ifdef VBOX_STRICT
1239 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1240#endif
1241 PGMRegisterStringFormatTypes();
1242
1243 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1244 NULL, pgmR3Save, NULL,
1245 NULL, pgmR3Load, NULL);
1246 if (RT_FAILURE(rc))
1247 return rc;
1248
1249 /*
1250 * Initialize the PGM critical section and flush the phys TLBs
1251 */
1252 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1253 AssertRCReturn(rc, rc);
1254
1255 PGMR3PhysChunkInvalidateTLB(pVM);
1256 PGMPhysInvalidatePageR3MapTLB(pVM);
1257 PGMPhysInvalidatePageR0MapTLB(pVM);
1258 PGMPhysInvalidatePageGCMapTLB(pVM);
1259
1260#ifdef VBOX_WITH_NEW_PHYS_CODE
1261 /*
1262 * For the time being we sport a full set of handy pages in addition to the base
1263 * memory to simplify things.
1264 */
1265 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages));
1266 AssertRCReturn(rc, rc);
1267#endif
1268
1269 /*
1270 * Trees
1271 */
1272 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1273 if (RT_SUCCESS(rc))
1274 {
1275 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1276 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1277
1278 /*
1279 * Alocate the zero page.
1280 */
1281 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1282 }
1283 if (RT_SUCCESS(rc))
1284 {
1285 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1286 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1287 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1288 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1289
1290 /*
1291 * Init the paging.
1292 */
1293 rc = pgmR3InitPaging(pVM);
1294 }
1295 if (RT_SUCCESS(rc))
1296 {
1297 /*
1298 * Init the page pool.
1299 */
1300 rc = pgmR3PoolInit(pVM);
1301 }
1302 if (RT_SUCCESS(rc))
1303 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1304
1305 if (RT_SUCCESS(rc))
1306 {
1307 /*
1308 * Info & statistics
1309 */
1310 DBGFR3InfoRegisterInternal(pVM, "mode",
1311 "Shows the current paging mode. "
1312 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1313 pgmR3InfoMode);
1314 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1315 "Dumps all the entries in the top level paging table. No arguments.",
1316 pgmR3InfoCr3);
1317 DBGFR3InfoRegisterInternal(pVM, "phys",
1318 "Dumps all the physical address ranges. No arguments.",
1319 pgmR3PhysInfo);
1320 DBGFR3InfoRegisterInternal(pVM, "handlers",
1321 "Dumps physical, virtual and hyper virtual handlers. "
1322 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1323 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1324 pgmR3InfoHandlers);
1325 DBGFR3InfoRegisterInternal(pVM, "mappings",
1326 "Dumps guest mappings.",
1327 pgmR3MapInfo);
1328
1329 pgmR3InitStats(pVM);
1330
1331#ifdef VBOX_WITH_DEBUGGER
1332 /*
1333 * Debugger commands.
1334 */
1335 static bool s_fRegisteredCmds = false;
1336 if (!s_fRegisteredCmds)
1337 {
1338 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1339 if (RT_SUCCESS(rc))
1340 s_fRegisteredCmds = true;
1341 }
1342#endif
1343 return VINF_SUCCESS;
1344 }
1345
1346 /* Almost no cleanup necessary, MM frees all memory. */
1347 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1348
1349 return rc;
1350}
1351
1352
1353/**
1354 * Initializes the per-VCPU PGM.
1355 *
1356 * @returns VBox status code.
1357 * @param pVM The VM to operate on.
1358 */
1359VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1360{
1361 LogFlow(("PGMR3InitCPU\n"));
1362 return VINF_SUCCESS;
1363}
1364
1365
1366/**
1367 * Init paging.
1368 *
1369 * Since we need to check what mode the host is operating in before we can choose
1370 * the right paging functions for the host we have to delay this until R0 has
1371 * been initialized.
1372 *
1373 * @returns VBox status code.
1374 * @param pVM VM handle.
1375 */
1376static int pgmR3InitPaging(PVM pVM)
1377{
1378 /*
1379 * Force a recalculation of modes and switcher so everyone gets notified.
1380 */
1381 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1382 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1383 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1384
1385 /*
1386 * Allocate static mapping space for whatever the cr3 register
1387 * points to and in the case of PAE mode to the 4 PDs.
1388 */
1389 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1390 if (RT_FAILURE(rc))
1391 {
1392 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1393 return rc;
1394 }
1395 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1396
1397 /*
1398 * Allocate pages for the three possible intermediate contexts
1399 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1400 * for the sake of simplicity. The AMD64 uses the PAE for the
1401 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1402 *
1403 * We assume that two page tables will be enought for the core code
1404 * mappings (HC virtual and identity).
1405 */
1406 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1407 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1408 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1409 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1410 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1411 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1412 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1413 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1414 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1415 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1416 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1417 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1418 if ( !pVM->pgm.s.pInterPD
1419 || !pVM->pgm.s.apInterPTs[0]
1420 || !pVM->pgm.s.apInterPTs[1]
1421 || !pVM->pgm.s.apInterPaePTs[0]
1422 || !pVM->pgm.s.apInterPaePTs[1]
1423 || !pVM->pgm.s.apInterPaePDs[0]
1424 || !pVM->pgm.s.apInterPaePDs[1]
1425 || !pVM->pgm.s.apInterPaePDs[2]
1426 || !pVM->pgm.s.apInterPaePDs[3]
1427 || !pVM->pgm.s.pInterPaePDPT
1428 || !pVM->pgm.s.pInterPaePDPT64
1429 || !pVM->pgm.s.pInterPaePML4)
1430 {
1431 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1432 return VERR_NO_PAGE_MEMORY;
1433 }
1434
1435 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1436 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1437 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1438 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1439 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1440 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1441
1442 /*
1443 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1444 */
1445 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1446 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1447 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1448
1449 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1450 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1451
1452 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1453 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1454 {
1455 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1456 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1457 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1458 }
1459
1460 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1461 {
1462 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1463 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1464 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1465 }
1466
1467 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1468 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1469 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1470 | HCPhysInterPaePDPT64;
1471
1472 /*
1473 * Initialize paging workers and mode from current host mode
1474 * and the guest running in real mode.
1475 */
1476 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1477 switch (pVM->pgm.s.enmHostMode)
1478 {
1479 case SUPPAGINGMODE_32_BIT:
1480 case SUPPAGINGMODE_32_BIT_GLOBAL:
1481 case SUPPAGINGMODE_PAE:
1482 case SUPPAGINGMODE_PAE_GLOBAL:
1483 case SUPPAGINGMODE_PAE_NX:
1484 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1485 break;
1486
1487 case SUPPAGINGMODE_AMD64:
1488 case SUPPAGINGMODE_AMD64_GLOBAL:
1489 case SUPPAGINGMODE_AMD64_NX:
1490 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1491#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1492 if (ARCH_BITS != 64)
1493 {
1494 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1495 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1496 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1497 }
1498#endif
1499 break;
1500 default:
1501 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1502 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1503 }
1504 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1505 if (RT_SUCCESS(rc))
1506 {
1507 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1508#if HC_ARCH_BITS == 64
1509 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1510 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1511 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1512 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1513 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1514 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1515 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1516#endif
1517
1518 return VINF_SUCCESS;
1519 }
1520
1521 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1522 return rc;
1523}
1524
1525
1526/**
1527 * Init statistics
1528 */
1529static void pgmR3InitStats(PVM pVM)
1530{
1531 PPGM pPGM = &pVM->pgm.s;
1532 unsigned i;
1533
1534 /* Common - misc variables */
1535 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1536 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1537 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1538 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1539 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_OCCURENCES, "The number of handy pages (not included in cAllPages).");
1540 STAM_REL_REG(pVM, &pPGM->cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1541 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES, "Number of hypervisor relocations.");
1542 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1543 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1544
1545 /*
1546 * Note! The layout below matches the member layout exactly!
1547 */
1548
1549#ifdef VBOX_WITH_STATISTICS
1550 /* Common - stats */
1551# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1552 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1553 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1554 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1555 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1556 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1557 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1558# endif
1559 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPtPD); i++)
1560 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1561 "The number of SyncPT per PD n.", "/PGM/PDSyncPT/%04X", i);
1562 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPagePD); i++)
1563 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1564 "The number of SyncPage per PD n.", "/PGM/PDSyncPage/%04X", i);
1565
1566 /* R3 only: */
1567 STAM_REG(pVM, &pPGM->StatR3DetectedConflicts, STAMTYPE_COUNTER, "/PGM/R3/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1568 STAM_REG(pVM, &pPGM->StatR3ResolveConflict, STAMTYPE_PROFILE, "/PGM/R3/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1569 STAM_REG(pVM, &pPGM->StatR3GuestPDWrite, STAMTYPE_COUNTER, "/PGM/R3/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1570 STAM_REG(pVM, &pPGM->StatR3GuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/R3/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1571#ifndef VBOX_WITH_NEW_PHYS_CODE
1572 STAM_REG(pVM, &pPGM->StatR3DynRamTotal, STAMTYPE_COUNTER, "/PGM/DynAlloc/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated MBs of guest ram.");
1573 STAM_REG(pVM, &pPGM->StatR3DynRamGrow, STAMTYPE_COUNTER, "/PGM/DynAlloc/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1574#endif
1575
1576 /* R0 only: */
1577 STAM_REG(pVM, &pPGM->StatR0DynMapMigrateInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapMigrateInvlPg", STAMUNIT_OCCURENCES, "invlpg count in PGMDynMapMigrateAutoSet.");
1578 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageGCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapGCPageInlined.");
1579 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1580 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1581 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamHits", STAMUNIT_OCCURENCES, "1st ram range hits.");
1582 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamMisses", STAMUNIT_OCCURENCES, "1st ram range misses, takes slow path.");
1583 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageHCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapHCPageInlined.");
1584 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1585 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1586 STAM_REG(pVM, &pPGM->StatR0DynMapPage, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPage");
1587 STAM_REG(pVM, &pPGM->StatR0DynMapSetOptimize, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetOptimize", STAMUNIT_OCCURENCES, "Calls to pgmDynMapOptimizeAutoSet.");
1588 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchFlushes, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchFlushes",STAMUNIT_OCCURENCES, "Set search restorting to subset flushes.");
1589 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchHits", STAMUNIT_OCCURENCES, "Set search hits.");
1590 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchMisses", STAMUNIT_OCCURENCES, "Set search misses.");
1591 STAM_REG(pVM, &pPGM->StatR0DynMapHCPage, STAMTYPE_PROFILE, "/PGM/R0/DynMapPage/HCPage", STAMUNIT_TICKS_PER_CALL, "Calls to PGMDynMapHCPage (ring-0).");
1592 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits0, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits0", STAMUNIT_OCCURENCES, "Hits at iPage+0");
1593 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits1, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits1", STAMUNIT_OCCURENCES, "Hits at iPage+1");
1594 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits2, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits2", STAMUNIT_OCCURENCES, "Hits at iPage+2");
1595 STAM_REG(pVM, &pPGM->StatR0DynMapPageInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/InvlPg", STAMUNIT_OCCURENCES, "invlpg count in pgmR0DynMapPageSlow.");
1596 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlow, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Slow", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1597 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopHits" , STAMUNIT_OCCURENCES, "Hits in the loop path.");
1598 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopMisses", STAMUNIT_OCCURENCES, "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1599 //STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLostHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLostHits", STAMUNIT_OCCURENCES, "Lost hits.");
1600 STAM_REG(pVM, &pPGM->StatR0DynMapSubsets, STAMTYPE_COUNTER, "/PGM/R0/Subsets", STAMUNIT_OCCURENCES, "Times PGMDynMapPushAutoSubset was called.");
1601 STAM_REG(pVM, &pPGM->StatR0DynMapPopFlushes, STAMTYPE_COUNTER, "/PGM/R0/SubsetPopFlushes", STAMUNIT_OCCURENCES, "Times PGMDynMapPopAutoSubset flushes the subset.");
1602 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[0], STAMTYPE_COUNTER, "/PGM/R0/SetSize000..09", STAMUNIT_OCCURENCES, "00-09% filled");
1603 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[1], STAMTYPE_COUNTER, "/PGM/R0/SetSize010..19", STAMUNIT_OCCURENCES, "10-19% filled");
1604 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[2], STAMTYPE_COUNTER, "/PGM/R0/SetSize020..29", STAMUNIT_OCCURENCES, "20-29% filled");
1605 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[3], STAMTYPE_COUNTER, "/PGM/R0/SetSize030..39", STAMUNIT_OCCURENCES, "30-39% filled");
1606 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[4], STAMTYPE_COUNTER, "/PGM/R0/SetSize040..49", STAMUNIT_OCCURENCES, "40-49% filled");
1607 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[5], STAMTYPE_COUNTER, "/PGM/R0/SetSize050..59", STAMUNIT_OCCURENCES, "50-59% filled");
1608 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[6], STAMTYPE_COUNTER, "/PGM/R0/SetSize060..69", STAMUNIT_OCCURENCES, "60-69% filled");
1609 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[7], STAMTYPE_COUNTER, "/PGM/R0/SetSize070..79", STAMUNIT_OCCURENCES, "70-79% filled");
1610 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[8], STAMTYPE_COUNTER, "/PGM/R0/SetSize080..89", STAMUNIT_OCCURENCES, "80-89% filled");
1611 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[9], STAMTYPE_COUNTER, "/PGM/R0/SetSize090..99", STAMUNIT_OCCURENCES, "90-99% filled");
1612 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[10], STAMTYPE_COUNTER, "/PGM/R0/SetSize100", STAMUNIT_OCCURENCES, "100% filled");
1613
1614 /* GC only: */
1615 STAM_REG(pVM, &pPGM->StatRCDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1616 STAM_REG(pVM, &pPGM->StatRCDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1617 STAM_REG(pVM, &pPGM->StatRCInvlPgConflict, STAMTYPE_COUNTER, "/PGM/RC/InvlPgConflict", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() detected a mapping conflict.");
1618 STAM_REG(pVM, &pPGM->StatRCInvlPgSyncMonCR3, STAMTYPE_COUNTER, "/PGM/RC/InvlPgSyncMonitorCR3", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1619
1620 /* RZ only: */
1621 STAM_REG(pVM, &pPGM->StatRZTrap0e, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrap0eHandler() body.");
1622 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeCheckPageFault, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1623 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1624 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeMapping, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1625 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeOutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1626 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeHandlers, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1627 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2CSAM, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1628 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2DirtyAndAccessed, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1629 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2GuestTrap, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1630 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1631 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerVirtual", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1632 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndUnhandled, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1633 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2Misc, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1634 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1635 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1636 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1637 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndObs, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1638 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2SyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1639 STAM_REG(pVM, &pPGM->StatRZTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1640 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1641 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1642 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersPhysical, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1643 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtual, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1644 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1645 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualUnmarked,STAMTYPE_COUNTER,"/PGM/RZ/Trap0e/Handlers/VirtualUnmarked",STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1646 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1647 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersInvalid, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1648 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1649 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1650 STAM_REG(pVM, &pPGM->StatRZTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1651 STAM_REG(pVM, &pPGM->StatRZTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1652 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1653 STAM_REG(pVM, &pPGM->StatRZTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1654 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1655 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1656 STAM_REG(pVM, &pPGM->StatRZTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1657 STAM_REG(pVM, &pPGM->StatRZTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1658 STAM_REG(pVM, &pPGM->StatRZTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1659 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPF, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF", STAMUNIT_OCCURENCES, "Number of real guest page faults.");
1660 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFUnh, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of real guest page faults from the 'unhandled' case.");
1661 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/InMapping", STAMUNIT_OCCURENCES, "Number of real guest page faults in a mapping.");
1662 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulInRZ, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/InRZ", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1663 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulToR3, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1664 for (i = 0; i < RT_ELEMENTS(pPGM->StatRZTrap0ePD); i++)
1665 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1666 "The number of traps in page directory n.", "/PGM/RZ/Trap0e/PD/%04X", i);
1667 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1668 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1669 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1670 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1671 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1672
1673 /* HC only: */
1674
1675 /* RZ & R3: */
1676 STAM_REG(pVM, &pPGM->StatRZSyncCR3, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1677 STAM_REG(pVM, &pPGM->StatRZSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1678 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1679 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1680 STAM_REG(pVM, &pPGM->StatRZSyncCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1681 STAM_REG(pVM, &pPGM->StatRZSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1682 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1683 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1684 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1685 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1686 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1687 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1688 STAM_REG(pVM, &pPGM->StatRZSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1689 STAM_REG(pVM, &pPGM->StatRZSyncPTFailed, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1690 STAM_REG(pVM, &pPGM->StatRZSyncPT4K, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1691 STAM_REG(pVM, &pPGM->StatRZSyncPT4M, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1692 STAM_REG(pVM, &pPGM->StatRZSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1693 STAM_REG(pVM, &pPGM->StatRZSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1694 STAM_REG(pVM, &pPGM->StatRZAccessedPage, STAMTYPE_COUNTER, "/PGM/RZ/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1695 STAM_REG(pVM, &pPGM->StatRZDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/RZ/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1696 STAM_REG(pVM, &pPGM->StatRZDirtyPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1697 STAM_REG(pVM, &pPGM->StatRZDirtyPageBig, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1698 STAM_REG(pVM, &pPGM->StatRZDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1699 STAM_REG(pVM, &pPGM->StatRZDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1700 STAM_REG(pVM, &pPGM->StatRZDirtiedPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1701 STAM_REG(pVM, &pPGM->StatRZDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1702 STAM_REG(pVM, &pPGM->StatRZPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1703 STAM_REG(pVM, &pPGM->StatRZInvalidatePage, STAMTYPE_PROFILE, "/PGM/RZ/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1704 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1705 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1706 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1707 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1708 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1709 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1710 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1711 STAM_REG(pVM, &pPGM->StatRZInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1712 STAM_REG(pVM, &pPGM->StatRZVirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/RZ/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1713 STAM_REG(pVM, &pPGM->StatRZPhysHandlerReset, STAMTYPE_COUNTER, "/PGM/RZ/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1714 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1715 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1716 STAM_REG(pVM, &pPGM->StatRZPrefetch, STAMTYPE_PROFILE, "/PGM/RZ/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1717 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsRZ", STAMUNIT_OCCURENCES, "TLB hits.");
1718 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesRZ", STAMUNIT_OCCURENCES, "TLB misses.");
1719 STAM_REG(pVM, &pPGM->StatRZPageMapTlbHits, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1720 STAM_REG(pVM, &pPGM->StatRZPageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1721 STAM_REG(pVM, &pPGM->StatRZPageReplaceShared, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1722 STAM_REG(pVM, &pPGM->StatRZPageReplaceZero, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1723/// @todo STAM_REG(pVM, &pPGM->StatRZPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/RZ/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1724 STAM_REG(pVM, &pPGM->StatRZFlushTLB, STAMTYPE_PROFILE, "/PGM/RZ/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1725 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1726 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1727 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1728 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1729 STAM_REG(pVM, &pPGM->StatRZGstModifyPage, STAMTYPE_PROFILE, "/PGM/RZ/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1730
1731 STAM_REG(pVM, &pPGM->StatR3SyncCR3, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1732 STAM_REG(pVM, &pPGM->StatR3SyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1733 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1734 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1735 STAM_REG(pVM, &pPGM->StatR3SyncCR3Global, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1736 STAM_REG(pVM, &pPGM->StatR3SyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1737 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1738 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1739 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1740 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1741 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1742 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1743 STAM_REG(pVM, &pPGM->StatR3SyncPT, STAMTYPE_PROFILE, "/PGM/R3/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1744 STAM_REG(pVM, &pPGM->StatR3SyncPTFailed, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1745 STAM_REG(pVM, &pPGM->StatR3SyncPT4K, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1746 STAM_REG(pVM, &pPGM->StatR3SyncPT4M, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1747 STAM_REG(pVM, &pPGM->StatR3SyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1748 STAM_REG(pVM, &pPGM->StatR3SyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1749 STAM_REG(pVM, &pPGM->StatR3AccessedPage, STAMTYPE_COUNTER, "/PGM/R3/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1750 STAM_REG(pVM, &pPGM->StatR3DirtyBitTracking, STAMTYPE_PROFILE, "/PGM/R3/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1751 STAM_REG(pVM, &pPGM->StatR3DirtyPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1752 STAM_REG(pVM, &pPGM->StatR3DirtyPageBig, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1753 STAM_REG(pVM, &pPGM->StatR3DirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1754 STAM_REG(pVM, &pPGM->StatR3DirtyPageTrap, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1755 STAM_REG(pVM, &pPGM->StatR3DirtiedPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1756 STAM_REG(pVM, &pPGM->StatR3DirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1757 STAM_REG(pVM, &pPGM->StatR3PageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1758 STAM_REG(pVM, &pPGM->StatR3InvalidatePage, STAMTYPE_PROFILE, "/PGM/R3/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1759 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1760 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1761 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1762 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1763 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1764 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1765 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1766 STAM_REG(pVM, &pPGM->StatR3InvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1767 STAM_REG(pVM, &pPGM->StatR3VirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/R3/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1768 STAM_REG(pVM, &pPGM->StatR3PhysHandlerReset, STAMTYPE_COUNTER, "/PGM/R3/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1769 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1770 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1771 STAM_REG(pVM, &pPGM->StatR3Prefetch, STAMTYPE_PROFILE, "/PGM/R3/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1772 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsR3", STAMUNIT_OCCURENCES, "TLB hits.");
1773 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesR3", STAMUNIT_OCCURENCES, "TLB misses.");
1774 STAM_REG(pVM, &pPGM->StatR3PageMapTlbHits, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1775 STAM_REG(pVM, &pPGM->StatR3PageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1776 STAM_REG(pVM, &pPGM->StatR3PageReplaceShared, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1777 STAM_REG(pVM, &pPGM->StatR3PageReplaceZero, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1778/// @todo STAM_REG(pVM, &pPGM->StatR3PageHandyAllocs, STAMTYPE_COUNTER, "/PGM/R3/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1779 STAM_REG(pVM, &pPGM->StatR3FlushTLB, STAMTYPE_PROFILE, "/PGM/R3/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1780 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1781 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1782 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1783 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1784 STAM_REG(pVM, &pPGM->StatR3GstModifyPage, STAMTYPE_PROFILE, "/PGM/R3/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1785#endif /* VBOX_WITH_STATISTICS */
1786}
1787
1788
1789/**
1790 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1791 *
1792 * The dynamic mapping area will also be allocated and initialized at this
1793 * time. We could allocate it during PGMR3Init of course, but the mapping
1794 * wouldn't be allocated at that time preventing us from setting up the
1795 * page table entries with the dummy page.
1796 *
1797 * @returns VBox status code.
1798 * @param pVM VM handle.
1799 */
1800VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1801{
1802 RTGCPTR GCPtr;
1803 int rc;
1804
1805 /*
1806 * Reserve space for the dynamic mappings.
1807 */
1808 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1809 if (RT_SUCCESS(rc))
1810 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1811
1812 if ( RT_SUCCESS(rc)
1813 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1814 {
1815 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1816 if (RT_SUCCESS(rc))
1817 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1818 }
1819 if (RT_SUCCESS(rc))
1820 {
1821 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1822 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1823 }
1824 return rc;
1825}
1826
1827
1828/**
1829 * Ring-3 init finalizing.
1830 *
1831 * @returns VBox status code.
1832 * @param pVM The VM handle.
1833 */
1834VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1835{
1836 int rc;
1837
1838 /*
1839 * Reserve space for the dynamic mappings.
1840 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1841 */
1842 /* get the pointer to the page table entries. */
1843 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1844 AssertRelease(pMapping);
1845 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1846 const unsigned iPT = off >> X86_PD_SHIFT;
1847 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1848 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1849 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1850
1851 /* init cache */
1852 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1853 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1854 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1855
1856 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1857 {
1858 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1859 AssertRCReturn(rc, rc);
1860 }
1861
1862 /*
1863 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1864 * Intel only goes up to 36 bits, so we stick to 36 as well.
1865 */
1866 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1867 uint32_t u32Dummy, u32Features;
1868 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1869
1870 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1871 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1872 else
1873 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1874
1875 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1876 return rc;
1877}
1878
1879
1880/**
1881 * Applies relocations to data and code managed by this component.
1882 *
1883 * This function will be called at init and whenever the VMM need to relocate it
1884 * self inside the GC.
1885 *
1886 * @param pVM The VM.
1887 * @param offDelta Relocation delta relative to old location.
1888 */
1889VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1890{
1891 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
1892
1893 /*
1894 * Paging stuff.
1895 */
1896 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1897 /** @todo move this into shadow and guest specific relocation functions. */
1898 pVM->pgm.s.pGst32BitPdRC += offDelta;
1899 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsRC); i++)
1900 {
1901 pVM->pgm.s.apGstPaePDsRC[i] += offDelta;
1902 }
1903 pVM->pgm.s.pGstPaePdptRC += offDelta;
1904
1905 pVM->pgm.s.pShwPageCR3RC += offDelta;
1906
1907 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1908 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1909
1910 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1911 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1912 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1913
1914 /*
1915 * Trees.
1916 */
1917 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1918
1919 /*
1920 * Ram ranges.
1921 */
1922 if (pVM->pgm.s.pRamRangesR3)
1923 {
1924 /* Update the pSelfRC pointers and relink them. */
1925 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
1926 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
1927 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
1928 pgmR3PhysRelinkRamRanges(pVM);
1929 }
1930
1931 /*
1932 * Update the two page directories with all page table mappings.
1933 * (One or more of them have changed, that's why we're here.)
1934 */
1935 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
1936 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1937 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1938
1939 /* Relocate GC addresses of Page Tables. */
1940 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1941 {
1942 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1943 {
1944 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
1945 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
1946 }
1947 }
1948
1949 /*
1950 * Dynamic page mapping area.
1951 */
1952 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1953 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1954 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1955
1956 /*
1957 * The Zero page.
1958 */
1959 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1960#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1961 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
1962#else
1963 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
1964#endif
1965
1966 /*
1967 * Physical and virtual handlers.
1968 */
1969 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1970 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1971 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1972
1973 /*
1974 * The page pool.
1975 */
1976 pgmR3PoolRelocate(pVM);
1977}
1978
1979
1980/**
1981 * Callback function for relocating a physical access handler.
1982 *
1983 * @returns 0 (continue enum)
1984 * @param pNode Pointer to a PGMPHYSHANDLER node.
1985 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1986 * not certain the delta will fit in a void pointer for all possible configs.
1987 */
1988static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1989{
1990 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
1991 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1992 if (pHandler->pfnHandlerRC)
1993 pHandler->pfnHandlerRC += offDelta;
1994 if (pHandler->pvUserRC >= 0x10000)
1995 pHandler->pvUserRC += offDelta;
1996 return 0;
1997}
1998
1999
2000/**
2001 * Callback function for relocating a virtual access handler.
2002 *
2003 * @returns 0 (continue enum)
2004 * @param pNode Pointer to a PGMVIRTHANDLER node.
2005 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2006 * not certain the delta will fit in a void pointer for all possible configs.
2007 */
2008static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2009{
2010 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2011 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2012 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2013 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2014 Assert(pHandler->pfnHandlerRC);
2015 pHandler->pfnHandlerRC += offDelta;
2016 return 0;
2017}
2018
2019
2020/**
2021 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2022 *
2023 * @returns 0 (continue enum)
2024 * @param pNode Pointer to a PGMVIRTHANDLER node.
2025 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2026 * not certain the delta will fit in a void pointer for all possible configs.
2027 */
2028static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2029{
2030 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2031 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2032 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2033 Assert(pHandler->pfnHandlerRC);
2034 pHandler->pfnHandlerRC += offDelta;
2035 return 0;
2036}
2037
2038
2039/**
2040 * The VM is being reset.
2041 *
2042 * For the PGM component this means that any PD write monitors
2043 * needs to be removed.
2044 *
2045 * @param pVM VM handle.
2046 */
2047VMMR3DECL(void) PGMR3Reset(PVM pVM)
2048{
2049 LogFlow(("PGMR3Reset:\n"));
2050 VM_ASSERT_EMT(pVM);
2051
2052 pgmLock(pVM);
2053
2054 /*
2055 * Unfix any fixed mappings and disable CR3 monitoring.
2056 */
2057 pVM->pgm.s.fMappingsFixed = false;
2058 pVM->pgm.s.GCPtrMappingFixed = 0;
2059 pVM->pgm.s.cbMappingFixed = 0;
2060
2061 /* Exit the guest paging mode before the pgm pool gets reset.
2062 * Important to clean up the amd64 case.
2063 */
2064 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2065 AssertRC(rc);
2066#ifdef DEBUG
2067 DBGFR3InfoLog(pVM, "mappings", NULL);
2068 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2069#endif
2070
2071 /*
2072 * Reset the shadow page pool.
2073 */
2074 pgmR3PoolReset(pVM);
2075
2076 /*
2077 * Re-init other members.
2078 */
2079 pVM->pgm.s.fA20Enabled = true;
2080
2081 /*
2082 * Clear the FFs PGM owns.
2083 */
2084 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2085 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2086
2087 /*
2088 * Reset (zero) RAM pages.
2089 */
2090 rc = pgmR3PhysRamReset(pVM);
2091 if (RT_SUCCESS(rc))
2092 {
2093#ifdef VBOX_WITH_NEW_PHYS_CODE
2094 /*
2095 * Reset (zero) shadow ROM pages.
2096 */
2097 rc = pgmR3PhysRomReset(pVM);
2098#endif
2099 if (RT_SUCCESS(rc))
2100 {
2101 /*
2102 * Switch mode back to real mode.
2103 */
2104 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2105 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2106 }
2107 }
2108
2109 pgmUnlock(pVM);
2110 //return rc;
2111 AssertReleaseRC(rc);
2112}
2113
2114
2115#ifdef VBOX_STRICT
2116/**
2117 * VM state change callback for clearing fNoMorePhysWrites after
2118 * a snapshot has been created.
2119 */
2120static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2121{
2122 if (enmState == VMSTATE_RUNNING)
2123 pVM->pgm.s.fNoMorePhysWrites = false;
2124}
2125#endif
2126
2127
2128/**
2129 * Terminates the PGM.
2130 *
2131 * @returns VBox status code.
2132 * @param pVM Pointer to VM structure.
2133 */
2134VMMR3DECL(int) PGMR3Term(PVM pVM)
2135{
2136 PGMDeregisterStringFormatTypes();
2137 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2138}
2139
2140
2141/**
2142 * Terminates the per-VCPU PGM.
2143 *
2144 * Termination means cleaning up and freeing all resources,
2145 * the VM it self is at this point powered off or suspended.
2146 *
2147 * @returns VBox status code.
2148 * @param pVM The VM to operate on.
2149 */
2150VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2151{
2152 return 0;
2153}
2154
2155#ifdef VBOX_WITH_NEW_PHYS_CODE
2156
2157/**
2158 * Find the ROM tracking structure for the given page.
2159 *
2160 * @returns Pointer to the ROM page structure. NULL if the caller didn't check
2161 * that it's a ROM page.
2162 * @param pVM The VM handle.
2163 * @param GCPhys The address of the ROM page.
2164 */
2165static PPGMROMPAGE pgmR3GetRomPage(PVM pVM, RTGCPHYS GCPhys)
2166{
2167 for (PPGMROMRANGE pRomRange = pVM->pgm.s.CTX_SUFF(pRomRanges);
2168 pRomRange;
2169 pRomRange = pRomRange->CTX_SUFF(pNext))
2170 {
2171 RTGCPHYS off = GCPhys - pRomRange->GCPhys;
2172 if (GCPhys - pRomRange->GCPhys < pRomRange->cb)
2173 return &pRomRange->aPages[off >> PAGE_SHIFT];
2174 }
2175 return NULL;
2176}
2177
2178
2179/**
2180 * Save zero indicator + bits for the specified page.
2181 *
2182 * @returns VBox status code, errors are logged/asserted before returning.
2183 * @param pVM The VM handle.
2184 * @param pSSH The saved state handle.
2185 * @param pPage The page to save.
2186 * @param GCPhys The address of the page.
2187 * @param pRam The ram range (for error logging).
2188 */
2189static int pgmR3SavePage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2190{
2191 int rc;
2192 if (PGM_PAGE_IS_ZERO(pPage))
2193 rc = SSMR3PutU8(pSSM, 0);
2194 else
2195 {
2196 void const *pvPage;
2197 rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, GCPhys, &pvPage);
2198 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2199
2200 SSMR3PutU8(pSSM, 1);
2201 rc = SSMR3PutMem(pSSM, pvPage, PAGE_SIZE);
2202 }
2203 return rc;
2204}
2205
2206
2207/**
2208 * Save a shadowed ROM page.
2209 *
2210 * Format: Type, protection, and two pages with zero indicators.
2211 *
2212 * @returns VBox status code, errors are logged/asserted before returning.
2213 * @param pVM The VM handle.
2214 * @param pSSH The saved state handle.
2215 * @param pPage The page to save.
2216 * @param GCPhys The address of the page.
2217 * @param pRam The ram range (for error logging).
2218 */
2219static int pgmR3SaveShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2220{
2221 /* Need to save both pages and the current state. */
2222 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2223 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2224
2225 SSMR3PutU8(pSSM, PGMPAGETYPE_ROM_SHADOW);
2226 SSMR3PutU8(pSSM, pRomPage->enmProt);
2227
2228 int rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhys, pRam);
2229 if (RT_SUCCESS(rc))
2230 {
2231 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2232 rc = pgmR3SavePage(pVM, pSSM, pPagePassive, GCPhys, pRam);
2233 }
2234 return rc;
2235}
2236
2237/** PGM fields to save/load. */
2238static SSMFIELD s_aPGMFields[] =
2239{
2240 SSMFIELD_ENTRY( PGM, fMappingsFixed),
2241 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
2242 SSMFIELD_ENTRY( PGM, cbMappingFixed),
2243 SSMFIELD_ENTRY( PGM, fA20Enabled),
2244 SSMFIELD_ENTRY_GCPHYS( PGM, GCPhysA20Mask),
2245 SSMFIELD_ENTRY( PGM, enmGuestMode),
2246 SSMFIELD_ENTRY_TERM()
2247};
2248#endif /* VBOX_WITH_NEW_PHYS_CODE */
2249
2250
2251/**
2252 * Execute state save operation.
2253 *
2254 * @returns VBox status code.
2255 * @param pVM VM Handle.
2256 * @param pSSM SSM operation handle.
2257 */
2258static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2259{
2260 int rc;
2261 PPGM pPGM = &pVM->pgm.s;
2262
2263 /*
2264 * Lock PGM and set the no-more-writes indicator.
2265 */
2266#ifdef VBOX_WITH_NEW_PHYS_CODE
2267 pgmLock(pVM);
2268#endif
2269 pVM->pgm.s.fNoMorePhysWrites = true;
2270
2271 /*
2272 * Save basic data (required / unaffected by relocation).
2273 */
2274#ifdef VBOX_WITH_NEW_PHYS_CODE
2275 SSMR3PutStruct(pSSM, pPGM, &s_aPGMFields[0]);
2276#else
2277 SSMR3PutBool( pSSM, pPGM->fMappingsFixed);
2278 SSMR3PutGCPtr( pSSM, pPGM->GCPtrMappingFixed);
2279 SSMR3PutU32( pSSM, pPGM->cbMappingFixed);
2280 SSMR3PutUInt( pSSM, pPGM->cbRamSize);
2281 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2282 SSMR3PutUInt( pSSM, pPGM->fA20Enabled);
2283 SSMR3PutUInt( pSSM, pPGM->fSyncFlags);
2284 SSMR3PutUInt( pSSM, pPGM->enmGuestMode);
2285 SSMR3PutU32( pSSM, ~0); /* Separator. */
2286#endif
2287
2288 /*
2289 * The guest mappings.
2290 */
2291 uint32_t i = 0;
2292 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2293 {
2294 SSMR3PutU32( pSSM, i);
2295 SSMR3PutStrZ( pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2296 SSMR3PutGCPtr( pSSM, pMapping->GCPtr);
2297 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2298 }
2299 rc = SSMR3PutU32(pSSM, ~0); /* terminator. */
2300
2301 /*
2302 * Ram ranges and the memory they describe.
2303 */
2304 i = 0;
2305 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2306 {
2307 /*
2308 * Save the ram range details.
2309 */
2310 SSMR3PutU32(pSSM, i);
2311 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2312 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2313 SSMR3PutGCPhys(pSSM, pRam->cb);
2314 SSMR3PutU8(pSSM, !!pRam->pvR3); /* Boolean indicating memory or not. */
2315#ifdef VBOX_WITH_NEW_PHYS_CODE
2316 SSMR3PutStrZ(pSSM, pRam->pszDesc); /* This is the best unique id we have... */
2317
2318 /*
2319 * Iterate the pages, only two special case.
2320 */
2321 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
2322 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2323 {
2324 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2325 PPGMPAGE pPage = &pRam->aPages[iPage];
2326 uint8_t uType = PGM_PAGE_GET_TYPE(pPage);
2327
2328 if (uType == PGMPAGETYPE_ROM_SHADOW)
2329 rc = pgmR3SaveShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
2330 else if (uType == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
2331 {
2332 /* MMIO2 alias -> MMIO; the device will just have to deal with this. */
2333 SSMR3PutU8(pSSM, PGMPAGETYPE_MMIO);
2334 rc = SSMR3PutU8(pSSM, 0 /* ZERO */);
2335 }
2336 else
2337 {
2338 SSMR3PutU8(pSSM, uType);
2339 rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhysPage, pRam);
2340 }
2341 if (RT_FAILURE(rc))
2342 break;
2343 }
2344 if (RT_FAILURE(rc))
2345 break;
2346
2347#else /* !VBOX_WITH_NEW_PHYS_CODE */
2348 /* Flags. */
2349 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2350 for (unsigned iPage = 0; iPage < cPages; iPage++)
2351 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2352
2353 /* Any memory associated with the range. */
2354 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2355 {
2356 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2357 {
2358 if (pRam->paChunkR3Ptrs[iChunk])
2359 {
2360 SSMR3PutU8(pSSM, 1); /* chunk present */
2361 SSMR3PutMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2362 }
2363 else
2364 SSMR3PutU8(pSSM, 0); /* no chunk present */
2365 }
2366 }
2367 else if (pRam->pvR3)
2368 {
2369 rc = SSMR3PutMem(pSSM, pRam->pvR3, pRam->cb);
2370 if (RT_FAILURE(rc))
2371 {
2372 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2373 return rc;
2374 }
2375 }
2376#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2377 }
2378
2379#ifdef VBOX_WITH_NEW_PHYS_CODE
2380 pgmUnlock(pVM);
2381#endif
2382 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2383}
2384
2385
2386#ifdef VBOX_WITH_NEW_PHYS_CODE
2387
2388/**
2389 * Load an ignored page.
2390 *
2391 * @returns VBox status code.
2392 * @param pSSM The saved state handle.
2393 */
2394static int pgmR3LoadPageToDevNull(PSSMHANDLE pSSM)
2395{
2396 uint8_t abPage[PAGE_SIZE];
2397 return SSMR3GetMem(pSSM, &abPage[0], sizeof(abPage));
2398}
2399
2400
2401/**
2402 * Loads a page without any bits in the saved state, i.e. making sure it's
2403 * really zero.
2404 *
2405 * @returns VBox status code.
2406 * @param pVM The VM handle.
2407 * @param uType The page type or PGMPAGETYPE_INVALID (old saved
2408 * state).
2409 * @param pPage The guest page tracking structure.
2410 * @param GCPhys The page address.
2411 * @param pRam The ram range (logging).
2412 */
2413static int pgmR3LoadPageZero(PVM pVM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2414{
2415 if ( PGM_PAGE_GET_TYPE(pPage) != uType
2416 && uType != PGMPAGETYPE_INVALID)
2417 return VERR_SSM_UNEXPECTED_DATA;
2418
2419 /* I think this should be sufficient. */
2420 if (!PGM_PAGE_IS_ZERO(pPage))
2421 return VERR_SSM_UNEXPECTED_DATA;
2422
2423 NOREF(pVM);
2424 NOREF(GCPhys);
2425 NOREF(pRam);
2426 return VINF_SUCCESS;
2427}
2428
2429
2430/**
2431 * Loads a page from the saved state.
2432 *
2433 * @returns VBox status code.
2434 * @param pVM The VM handle.
2435 * @param pSSM The SSM handle.
2436 * @param uType The page type or PGMPAGETYEP_INVALID (old saved
2437 * state).
2438 * @param pPage The guest page tracking structure.
2439 * @param GCPhys The page address.
2440 * @param pRam The ram range (logging).
2441 */
2442static int pgmR3LoadPageBits(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2443{
2444 int rc;
2445
2446 /*
2447 * Match up the type, dealing with MMIO2 aliases (dropped).
2448 */
2449 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == uType
2450 || uType == PGMPAGETYPE_INVALID,
2451 ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc),
2452 VERR_SSM_UNEXPECTED_DATA);
2453
2454 /*
2455 * Load the page.
2456 */
2457 void *pvPage;
2458 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvPage);
2459 if (RT_SUCCESS(rc))
2460 rc = SSMR3GetMem(pSSM, pvPage, PAGE_SIZE);
2461
2462 return rc;
2463}
2464
2465
2466/**
2467 * Loads a page (counter part to pgmR3SavePage).
2468 *
2469 * @returns VBox status code, fully bitched errors.
2470 * @param pVM The VM handle.
2471 * @param pSSM The SSM handle.
2472 * @param uType The page type.
2473 * @param pPage The page.
2474 * @param GCPhys The page address.
2475 * @param pRam The RAM range (for error messages).
2476 */
2477static int pgmR3LoadPage(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2478{
2479 uint8_t uState;
2480 int rc = SSMR3GetU8(pSSM, &uState);
2481 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s rc=%Rrc\n", pPage, GCPhys, pRam->pszDesc, rc), rc);
2482 if (uState == 0 /* zero */)
2483 rc = pgmR3LoadPageZero(pVM, uType, pPage, GCPhys, pRam);
2484 else if (uState == 1)
2485 rc = pgmR3LoadPageBits(pVM, pSSM, uType, pPage, GCPhys, pRam);
2486 else
2487 rc = VERR_INTERNAL_ERROR;
2488 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] uState=%d uType=%d GCPhys=%RGp %s rc=%Rrc\n",
2489 pPage, uState, uType, GCPhys, pRam->pszDesc, rc),
2490 rc);
2491 return VINF_SUCCESS;
2492}
2493
2494
2495/**
2496 * Loads a shadowed ROM page.
2497 *
2498 * @returns VBox status code, errors are fully bitched.
2499 * @param pVM The VM handle.
2500 * @param pSSM The saved state handle.
2501 * @param pPage The page.
2502 * @param GCPhys The page address.
2503 * @param pRam The RAM range (for error messages).
2504 */
2505static int pgmR3LoadShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2506{
2507 /*
2508 * Load and set the protection first, then load the two pages, the first
2509 * one is the active the other is the passive.
2510 */
2511 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2512 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2513
2514 uint8_t uProt;
2515 int rc = SSMR3GetU8(pSSM, &uProt);
2516 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2517 PGMROMPROT enmProt = (PGMROMPROT)uProt;
2518 AssertLogRelMsgReturn( enmProt >= PGMROMPROT_INVALID
2519 && enmProt < PGMROMPROT_END,
2520 ("enmProt=%d pPage=%R[pgmpage] GCPhys=%#x %s\n", enmProt, pPage, GCPhys, pRam->pszDesc),
2521 VERR_SSM_UNEXPECTED_DATA);
2522
2523 if (pRomPage->enmProt != enmProt)
2524 {
2525 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2526 AssertLogRelRCReturn(rc, rc);
2527 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_INTERNAL_ERROR);
2528 }
2529
2530 PPGMPAGE pPageActive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2531 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2532 uint8_t u8ActiveType = PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM : PGMPAGETYPE_ROM_SHADOW;
2533 uint8_t u8PassiveType= PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM_SHADOW : PGMPAGETYPE_ROM;
2534
2535 rc = pgmR3LoadPage(pVM, pSSM, u8ActiveType, pPage, GCPhys, pRam);
2536 if (RT_SUCCESS(rc))
2537 {
2538 *pPageActive = *pPage;
2539 rc = pgmR3LoadPage(pVM, pSSM, u8PassiveType, pPagePassive, GCPhys, pRam);
2540 }
2541 return rc;
2542}
2543
2544#endif /* VBOX_WITH_NEW_PHYS_CODE */
2545
2546/**
2547 * Worker for pgmR3Load.
2548 *
2549 * @returns VBox status code.
2550 *
2551 * @param pVM The VM handle.
2552 * @param pSSM The SSM handle.
2553 * @param u32Version The saved state version.
2554 */
2555static int pgmR3LoadLocked(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2556{
2557 int rc;
2558 PPGM pPGM = &pVM->pgm.s;
2559 uint32_t u32Sep;
2560
2561 /*
2562 * Load basic data (required / unaffected by relocation).
2563 */
2564#ifdef VBOX_WITH_NEW_PHYS_CODE
2565 if (u32Version >= PGM_SAVED_STATE_VERSION)
2566 {
2567 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFields[0]);
2568 AssertLogRelRCReturn(rc, rc);
2569 }
2570 else
2571#endif
2572 {
2573 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2574 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2575 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2576
2577 RTUINT cbRamSize;
2578 rc = SSMR3GetU32(pSSM, &cbRamSize);
2579 if (RT_FAILURE(rc))
2580 return rc;
2581 AssertLogRelMsgReturn(cbRamSize == pPGM->cbRamSize, ("%#x != %#x\n", cbRamSize, pPGM->cbRamSize),
2582 VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH);
2583 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2584
2585 uint32_t u32 = 0;
2586 SSMR3GetUInt(pSSM, &u32);
2587 pPGM->fA20Enabled = !!u32;
2588 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2589 RTUINT uGuestMode;
2590 SSMR3GetUInt(pSSM, &uGuestMode);
2591 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2592
2593 /* check separator. */
2594 SSMR3GetU32(pSSM, &u32Sep);
2595 if (RT_FAILURE(rc))
2596 return rc;
2597 if (u32Sep != (uint32_t)~0)
2598 {
2599 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2600 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2601 }
2602 }
2603
2604 /*
2605 * The guest mappings.
2606 */
2607 uint32_t i = 0;
2608 for (;; i++)
2609 {
2610 /* Check the seqence number / separator. */
2611 rc = SSMR3GetU32(pSSM, &u32Sep);
2612 if (RT_FAILURE(rc))
2613 return rc;
2614 if (u32Sep == ~0U)
2615 break;
2616 if (u32Sep != i)
2617 {
2618 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2619 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2620 }
2621
2622 /* get the mapping details. */
2623 char szDesc[256];
2624 szDesc[0] = '\0';
2625 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2626 if (RT_FAILURE(rc))
2627 return rc;
2628 RTGCPTR GCPtr;
2629 SSMR3GetGCPtr(pSSM, &GCPtr);
2630 RTGCPTR cPTs;
2631 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2632 if (RT_FAILURE(rc))
2633 return rc;
2634
2635 /* find matching range. */
2636 PPGMMAPPING pMapping;
2637 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2638 if ( pMapping->cPTs == cPTs
2639 && !strcmp(pMapping->pszDesc, szDesc))
2640 break;
2641 AssertLogRelMsgReturn(pMapping, ("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
2642 cPTs, szDesc, GCPtr),
2643 VERR_SSM_LOAD_CONFIG_MISMATCH);
2644
2645 /* relocate it. */
2646 if (pMapping->GCPtr != GCPtr)
2647 {
2648 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
2649 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2650 }
2651 else
2652 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
2653 }
2654
2655 /*
2656 * Ram range flags and bits.
2657 */
2658 i = 0;
2659 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2660 {
2661 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2662
2663 /* Check the seqence number / separator. */
2664 rc = SSMR3GetU32(pSSM, &u32Sep);
2665 if (RT_FAILURE(rc))
2666 return rc;
2667 if (u32Sep == ~0U)
2668 break;
2669 if (u32Sep != i)
2670 {
2671 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2672 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2673 }
2674
2675 /* Get the range details. */
2676 RTGCPHYS GCPhys;
2677 SSMR3GetGCPhys(pSSM, &GCPhys);
2678 RTGCPHYS GCPhysLast;
2679 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2680 RTGCPHYS cb;
2681 SSMR3GetGCPhys(pSSM, &cb);
2682 uint8_t fHaveBits;
2683 rc = SSMR3GetU8(pSSM, &fHaveBits);
2684 if (RT_FAILURE(rc))
2685 return rc;
2686 if (fHaveBits & ~1)
2687 {
2688 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2689 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2690 }
2691 char szDesc[256];
2692 szDesc[0] = '\0';
2693#ifdef VBOX_WITH_NEW_PHYS_CODE
2694 if (u32Version >= PGM_SAVED_STATE_VERSION)
2695 {
2696 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2697 if (RT_FAILURE(rc))
2698 return rc;
2699 }
2700#endif
2701
2702 /*
2703 * Match it up with the current range.
2704 *
2705 * Note there is a hack for dealing with the high BIOS mapping
2706 * in the old saved state format, this means we might not have
2707 * a 1:1 match on success.
2708 */
2709 if ( ( GCPhys != pRam->GCPhys
2710 || GCPhysLast != pRam->GCPhysLast
2711 || cb != pRam->cb
2712#ifdef VBOX_WITH_NEW_PHYS_CODE
2713 || (szDesc[0] && strcmp(szDesc, pRam->pszDesc))
2714#else
2715 || fHaveBits != !!pRam->pvR3
2716#endif
2717 )
2718#ifdef VBOX_WITH_NEW_PHYS_CODE
2719 /* Hack for PDMDevHlpPhysReserve(pDevIns, 0xfff80000, 0x80000, "High ROM Region"); */
2720 && ( u32Version != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
2721 || GCPhys != UINT32_C(0xfff80000)
2722 || GCPhysLast != UINT32_C(0xffffffff)
2723 || pRam->GCPhysLast != GCPhysLast
2724 || pRam->GCPhys < GCPhys
2725 || !fHaveBits)
2726#endif
2727 )
2728 {
2729 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s %s\n"
2730 "State : %RGp-%RGp %RGp bytes %s %s\n",
2731 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc,
2732 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc));
2733 /*
2734 * If we're loading a state for debugging purpose, don't make a fuss if
2735 * the MMIO and ROM stuff isn't 100% right, just skip the mismatches.
2736 */
2737 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2738 || GCPhys < 8 * _1M)
2739 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2740
2741#ifdef VBOX_WITH_NEW_PHYS_CODE
2742 if (u32Version > PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE)
2743 AssertMsgFailed(("debug skipping not implemented, sorry\n"));
2744 else
2745#else
2746 {
2747 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2748 while (cPages-- > 0)
2749 {
2750 uint16_t u16Ignore;
2751 SSMR3GetU16(pSSM, &u16Ignore);
2752 }
2753 }
2754#endif
2755 continue;
2756 }
2757
2758 uint32_t cPages = (GCPhysLast - GCPhys + 1) >> PAGE_SHIFT;
2759
2760#ifdef VBOX_WITH_NEW_PHYS_CODE
2761 if (u32Version >= PGM_SAVED_STATE_VERSION)
2762 {
2763 /*
2764 * Load the pages one by one.
2765 */
2766 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2767 {
2768 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2769 PPGMPAGE pPage = &pRam->aPages[iPage];
2770 uint8_t uType;
2771 rc = SSMR3GetU8(pSSM, &uType);
2772 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] iPage=%#x GCPhysPage=%#x %s\n", pPage, iPage, GCPhysPage, pRam->pszDesc), rc);
2773 if (uType == PGMPAGETYPE_ROM_SHADOW)
2774 rc = pgmR3LoadShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
2775 else
2776 rc = pgmR3LoadPage(pVM, pSSM, uType, pPage, GCPhysPage, pRam);
2777 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2778 }
2779 }
2780 else
2781 {
2782 /*
2783 * Old format.
2784 */
2785 AssertLogRelReturn(!pVM->pgm.s.fRamPreAlloc, VERR_NOT_SUPPORTED); /* can't be detected. */
2786
2787 /* Of the page flags, pick up MMIO2 and ROM/RESERVED for the !fHaveBits case.
2788 The rest is generally irrelevant and wrong since the stuff have to match registrations. */
2789 uint32_t fFlags = 0;
2790 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2791 {
2792 uint16_t u16Flags;
2793 rc = SSMR3GetU16(pSSM, &u16Flags);
2794 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2795 fFlags |= u16Flags;
2796 }
2797
2798 /* Load the bits */
2799 if ( !fHaveBits
2800 && GCPhysLast < UINT32_C(0xe0000000))
2801 {
2802 /*
2803 * Dynamic chunks.
2804 */
2805 const uint32_t cPagesInChunk = (1*1024*1024) >> PAGE_SHIFT;
2806 AssertLogRelMsgReturn(cPages % cPagesInChunk == 0,
2807 ("cPages=%#x cPagesInChunk=%#x\n", cPages, cPagesInChunk, pRam->GCPhys, pRam->pszDesc),
2808 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2809
2810 for (uint32_t iPage = 0; iPage < cPages; /* incremented by inner loop */ )
2811 {
2812 uint8_t fPresent;
2813 rc = SSMR3GetU8(pSSM, &fPresent);
2814 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2815 AssertLogRelMsgReturn(fPresent == (uint8_t)true || fPresent == (uint8_t)false,
2816 ("fPresent=%#x iPage=%#x GCPhys=%#x %s\n", fPresent, iPage, pRam->GCPhys, pRam->pszDesc),
2817 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2818
2819 for (uint32_t iChunkPage = 0; iChunkPage < cPagesInChunk; iChunkPage++, iPage++)
2820 {
2821 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2822 PPGMPAGE pPage = &pRam->aPages[iPage];
2823 if (fPresent)
2824 {
2825 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
2826 rc = pgmR3LoadPageToDevNull(pSSM);
2827 else
2828 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2829 }
2830 else
2831 rc = pgmR3LoadPageZero(pVM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2832 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2833 }
2834 }
2835 }
2836 else if (pRam->pvR3)
2837 {
2838 /*
2839 * MMIO2.
2840 */
2841 AssertLogRelMsgReturn((fFlags & 0x0f) == RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/,
2842 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2843 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2844 AssertLogRelMsgReturn(pRam->pvR3,
2845 ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc),
2846 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2847
2848 rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2849 AssertLogRelMsgRCReturn(rc, ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc), rc);
2850 }
2851 else if (GCPhysLast < UINT32_C(0xfff80000))
2852 {
2853 /*
2854 * PCI MMIO, no pages saved.
2855 */
2856 }
2857 else
2858 {
2859 /*
2860 * Load the 0xfff80000..0xffffffff BIOS range.
2861 * It starts with X reserved pages that we have to skip over since
2862 * the RAMRANGE create by the new code won't include those.
2863 */
2864 AssertLogRelMsgReturn( !(fFlags & RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/)
2865 && (fFlags & RT_BIT(0) /*MM_RAM_FLAGS_RESERVED*/),
2866 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2867 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2868 AssertLogRelMsgReturn(GCPhys == UINT32_C(0xfff80000),
2869 ("GCPhys=%RGp pRamRange{GCPhys=%#x %s}\n", GCPhys, pRam->GCPhys, pRam->pszDesc),
2870 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2871
2872 /* Skip wasted reserved pages before the ROM. */
2873 while (GCPhys < pRam->GCPhys)
2874 {
2875 rc = pgmR3LoadPageToDevNull(pSSM);
2876 GCPhys += PAGE_SIZE;
2877 }
2878
2879 /* Load the bios pages. */
2880 cPages = pRam->cb >> PAGE_SHIFT;
2881 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2882 {
2883 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2884 PPGMPAGE pPage = &pRam->aPages[iPage];
2885
2886 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM,
2887 ("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, GCPhys),
2888 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2889 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_ROM, pPage, GCPhysPage, pRam);
2890 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2891 }
2892 }
2893 }
2894
2895#else /* !VBOX_WITH_NEW_PHYS_CODE */
2896 /* Flags. */
2897 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2898 {
2899 uint16_t u16 = 0;
2900 SSMR3GetU16(pSSM, &u16);
2901 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2902 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2903 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2904 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2905 }
2906
2907 /* any memory associated with the range. */
2908 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2909 {
2910 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2911 {
2912 uint8_t fValidChunk;
2913
2914 rc = SSMR3GetU8(pSSM, &fValidChunk);
2915 if (RT_FAILURE(rc))
2916 return rc;
2917 if (fValidChunk > 1)
2918 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2919
2920 if (fValidChunk)
2921 {
2922 if (!pRam->paChunkR3Ptrs[iChunk])
2923 {
2924 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2925 if (RT_FAILURE(rc))
2926 return rc;
2927 }
2928 Assert(pRam->paChunkR3Ptrs[iChunk]);
2929
2930 SSMR3GetMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2931 }
2932 /* else nothing to do */
2933 }
2934 }
2935 else if (pRam->pvR3)
2936 {
2937 rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2938 if (RT_FAILURE(rc))
2939 {
2940 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2941 return rc;
2942 }
2943 }
2944#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2945 }
2946
2947 return rc;
2948}
2949
2950
2951/**
2952 * Execute state load operation.
2953 *
2954 * @returns VBox status code.
2955 * @param pVM VM Handle.
2956 * @param pSSM SSM operation handle.
2957 * @param u32Version Data layout version.
2958 */
2959static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2960{
2961 int rc;
2962 PPGM pPGM = &pVM->pgm.s;
2963
2964 /*
2965 * Validate version.
2966 */
2967 if ( u32Version != PGM_SAVED_STATE_VERSION
2968#ifdef VBOX_WITH_NEW_PHYS_CODE
2969 && u32Version != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
2970#endif
2971 )
2972 {
2973 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2974 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2975 }
2976
2977 /*
2978 * Call the reset function to make sure all the memory is cleared.
2979 */
2980 PGMR3Reset(pVM);
2981
2982 /*
2983 * Do the loading while owning the lock because a bunch of the functions
2984 * we're using requires this.
2985 */
2986 pgmLock(pVM);
2987 rc = pgmR3LoadLocked(pVM, pSSM, u32Version);
2988 pgmUnlock(pVM);
2989 if (RT_SUCCESS(rc))
2990 {
2991 /*
2992 * We require a full resync now.
2993 */
2994 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2995 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2996 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2997 pPGM->fPhysCacheFlushPending = true;
2998 pgmR3HandlerPhysicalUpdateAll(pVM);
2999
3000 /*
3001 * Change the paging mode.
3002 */
3003 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
3004
3005 /* Restore pVM->pgm.s.GCPhysCR3. */
3006 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
3007 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
3008 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
3009 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
3010 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
3011 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
3012 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
3013 else
3014 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
3015 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
3016 }
3017
3018 return rc;
3019}
3020
3021
3022/**
3023 * Show paging mode.
3024 *
3025 * @param pVM VM Handle.
3026 * @param pHlp The info helpers.
3027 * @param pszArgs "all" (default), "guest", "shadow" or "host".
3028 */
3029static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3030{
3031 /* digest argument. */
3032 bool fGuest, fShadow, fHost;
3033 if (pszArgs)
3034 pszArgs = RTStrStripL(pszArgs);
3035 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
3036 fShadow = fHost = fGuest = true;
3037 else
3038 {
3039 fShadow = fHost = fGuest = false;
3040 if (strstr(pszArgs, "guest"))
3041 fGuest = true;
3042 if (strstr(pszArgs, "shadow"))
3043 fShadow = true;
3044 if (strstr(pszArgs, "host"))
3045 fHost = true;
3046 }
3047
3048 /* print info. */
3049 if (fGuest)
3050 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
3051 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
3052 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
3053 if (fShadow)
3054 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
3055 if (fHost)
3056 {
3057 const char *psz;
3058 switch (pVM->pgm.s.enmHostMode)
3059 {
3060 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
3061 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
3062 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
3063 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
3064 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
3065 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
3066 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
3067 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
3068 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
3069 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
3070 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
3071 default: psz = "unknown"; break;
3072 }
3073 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
3074 }
3075}
3076
3077
3078/**
3079 * Dump registered MMIO ranges to the log.
3080 *
3081 * @param pVM VM Handle.
3082 * @param pHlp The info helpers.
3083 * @param pszArgs Arguments, ignored.
3084 */
3085static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3086{
3087 NOREF(pszArgs);
3088 pHlp->pfnPrintf(pHlp,
3089 "RAM ranges (pVM=%p)\n"
3090 "%.*s %.*s\n",
3091 pVM,
3092 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
3093 sizeof(RTHCPTR) * 2, "pvHC ");
3094
3095 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
3096 pHlp->pfnPrintf(pHlp,
3097 "%RGp-%RGp %RHv %s\n",
3098 pCur->GCPhys,
3099 pCur->GCPhysLast,
3100 pCur->pvR3,
3101 pCur->pszDesc);
3102}
3103
3104/**
3105 * Dump the page directory to the log.
3106 *
3107 * @param pVM VM Handle.
3108 * @param pHlp The info helpers.
3109 * @param pszArgs Arguments, ignored.
3110 */
3111static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3112{
3113/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
3114 /* Big pages supported? */
3115 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
3116
3117 /* Global pages supported? */
3118 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
3119
3120 NOREF(pszArgs);
3121
3122 /*
3123 * Get page directory addresses.
3124 */
3125 PX86PD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
3126 Assert(pPDSrc);
3127 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
3128
3129 /*
3130 * Iterate the page directory.
3131 */
3132 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
3133 {
3134 X86PDE PdeSrc = pPDSrc->a[iPD];
3135 if (PdeSrc.n.u1Present)
3136 {
3137 if (PdeSrc.b.u1Size && fPSE)
3138 pHlp->pfnPrintf(pHlp,
3139 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
3140 iPD,
3141 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
3142 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
3143 else
3144 pHlp->pfnPrintf(pHlp,
3145 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
3146 iPD,
3147 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
3148 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
3149 }
3150 }
3151}
3152
3153
3154/**
3155 * Serivce a VMMCALLHOST_PGM_LOCK call.
3156 *
3157 * @returns VBox status code.
3158 * @param pVM The VM handle.
3159 */
3160VMMR3DECL(int) PGMR3LockCall(PVM pVM)
3161{
3162 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
3163 AssertRC(rc);
3164 return rc;
3165}
3166
3167
3168/**
3169 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
3170 *
3171 * @returns PGM_TYPE_*.
3172 * @param pgmMode The mode value to convert.
3173 */
3174DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
3175{
3176 switch (pgmMode)
3177 {
3178 case PGMMODE_REAL: return PGM_TYPE_REAL;
3179 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
3180 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
3181 case PGMMODE_PAE:
3182 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
3183 case PGMMODE_AMD64:
3184 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
3185 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
3186 case PGMMODE_EPT: return PGM_TYPE_EPT;
3187 default:
3188 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
3189 }
3190}
3191
3192
3193/**
3194 * Gets the index into the paging mode data array of a SHW+GST mode.
3195 *
3196 * @returns PGM::paPagingData index.
3197 * @param uShwType The shadow paging mode type.
3198 * @param uGstType The guest paging mode type.
3199 */
3200DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
3201{
3202 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
3203 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
3204 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
3205 + (uGstType - PGM_TYPE_REAL);
3206}
3207
3208
3209/**
3210 * Gets the index into the paging mode data array of a SHW+GST mode.
3211 *
3212 * @returns PGM::paPagingData index.
3213 * @param enmShw The shadow paging mode.
3214 * @param enmGst The guest paging mode.
3215 */
3216DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
3217{
3218 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
3219 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
3220 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
3221}
3222
3223
3224/**
3225 * Calculates the max data index.
3226 * @returns The number of entries in the paging data array.
3227 */
3228DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
3229{
3230 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
3231}
3232
3233
3234/**
3235 * Initializes the paging mode data kept in PGM::paModeData.
3236 *
3237 * @param pVM The VM handle.
3238 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
3239 * This is used early in the init process to avoid trouble with PDM
3240 * not being initialized yet.
3241 */
3242static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
3243{
3244 PPGMMODEDATA pModeData;
3245 int rc;
3246
3247 /*
3248 * Allocate the array on the first call.
3249 */
3250 if (!pVM->pgm.s.paModeData)
3251 {
3252 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
3253 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
3254 }
3255
3256 /*
3257 * Initialize the array entries.
3258 */
3259 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
3260 pModeData->uShwType = PGM_TYPE_32BIT;
3261 pModeData->uGstType = PGM_TYPE_REAL;
3262 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3263 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3264 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3265
3266 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
3267 pModeData->uShwType = PGM_TYPE_32BIT;
3268 pModeData->uGstType = PGM_TYPE_PROT;
3269 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3270 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3271 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3272
3273 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
3274 pModeData->uShwType = PGM_TYPE_32BIT;
3275 pModeData->uGstType = PGM_TYPE_32BIT;
3276 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3277 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3278 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3279
3280 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
3281 pModeData->uShwType = PGM_TYPE_PAE;
3282 pModeData->uGstType = PGM_TYPE_REAL;
3283 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3284 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3285 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3286
3287 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
3288 pModeData->uShwType = PGM_TYPE_PAE;
3289 pModeData->uGstType = PGM_TYPE_PROT;
3290 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3291 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3292 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3293
3294 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
3295 pModeData->uShwType = PGM_TYPE_PAE;
3296 pModeData->uGstType = PGM_TYPE_32BIT;
3297 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3298 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3299 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3300
3301 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
3302 pModeData->uShwType = PGM_TYPE_PAE;
3303 pModeData->uGstType = PGM_TYPE_PAE;
3304 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3305 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3306 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3307
3308#ifdef VBOX_WITH_64_BITS_GUESTS
3309 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
3310 pModeData->uShwType = PGM_TYPE_AMD64;
3311 pModeData->uGstType = PGM_TYPE_AMD64;
3312 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3313 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3314 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3315#endif
3316
3317 /* The nested paging mode. */
3318 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
3319 pModeData->uShwType = PGM_TYPE_NESTED;
3320 pModeData->uGstType = PGM_TYPE_REAL;
3321 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3322 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3323
3324 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
3325 pModeData->uShwType = PGM_TYPE_NESTED;
3326 pModeData->uGstType = PGM_TYPE_PROT;
3327 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3328 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3329
3330 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
3331 pModeData->uShwType = PGM_TYPE_NESTED;
3332 pModeData->uGstType = PGM_TYPE_32BIT;
3333 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3334 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3335
3336 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
3337 pModeData->uShwType = PGM_TYPE_NESTED;
3338 pModeData->uGstType = PGM_TYPE_PAE;
3339 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3340 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3341
3342#ifdef VBOX_WITH_64_BITS_GUESTS
3343 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3344 pModeData->uShwType = PGM_TYPE_NESTED;
3345 pModeData->uGstType = PGM_TYPE_AMD64;
3346 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3347 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3348#endif
3349
3350 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
3351 switch (pVM->pgm.s.enmHostMode)
3352 {
3353#if HC_ARCH_BITS == 32
3354 case SUPPAGINGMODE_32_BIT:
3355 case SUPPAGINGMODE_32_BIT_GLOBAL:
3356 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3357 {
3358 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3359 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3360 }
3361# ifdef VBOX_WITH_64_BITS_GUESTS
3362 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3363 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3364# endif
3365 break;
3366
3367 case SUPPAGINGMODE_PAE:
3368 case SUPPAGINGMODE_PAE_NX:
3369 case SUPPAGINGMODE_PAE_GLOBAL:
3370 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3371 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3372 {
3373 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3374 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3375 }
3376# ifdef VBOX_WITH_64_BITS_GUESTS
3377 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3378 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3379# endif
3380 break;
3381#endif /* HC_ARCH_BITS == 32 */
3382
3383#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
3384 case SUPPAGINGMODE_AMD64:
3385 case SUPPAGINGMODE_AMD64_GLOBAL:
3386 case SUPPAGINGMODE_AMD64_NX:
3387 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3388# ifdef VBOX_WITH_64_BITS_GUESTS
3389 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
3390# else
3391 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3392# endif
3393 {
3394 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3395 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3396 }
3397 break;
3398#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
3399
3400 default:
3401 AssertFailed();
3402 break;
3403 }
3404
3405 /* Extended paging (EPT) / Intel VT-x */
3406 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
3407 pModeData->uShwType = PGM_TYPE_EPT;
3408 pModeData->uGstType = PGM_TYPE_REAL;
3409 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3410 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3411 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3412
3413 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3414 pModeData->uShwType = PGM_TYPE_EPT;
3415 pModeData->uGstType = PGM_TYPE_PROT;
3416 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3417 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3418 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3419
3420 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3421 pModeData->uShwType = PGM_TYPE_EPT;
3422 pModeData->uGstType = PGM_TYPE_32BIT;
3423 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3424 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3425 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3426
3427 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3428 pModeData->uShwType = PGM_TYPE_EPT;
3429 pModeData->uGstType = PGM_TYPE_PAE;
3430 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3431 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3432 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3433
3434#ifdef VBOX_WITH_64_BITS_GUESTS
3435 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3436 pModeData->uShwType = PGM_TYPE_EPT;
3437 pModeData->uGstType = PGM_TYPE_AMD64;
3438 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3439 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3440 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3441#endif
3442 return VINF_SUCCESS;
3443}
3444
3445
3446/**
3447 * Switch to different (or relocated in the relocate case) mode data.
3448 *
3449 * @param pVM The VM handle.
3450 * @param enmShw The the shadow paging mode.
3451 * @param enmGst The the guest paging mode.
3452 */
3453static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
3454{
3455 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3456
3457 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3458 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3459
3460 /* shadow */
3461 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3462 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3463 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3464 Assert(pVM->pgm.s.pfnR3ShwGetPage);
3465 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3466
3467 pVM->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3468 pVM->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3469
3470 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3471 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3472
3473
3474 /* guest */
3475 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3476 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3477 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3478 Assert(pVM->pgm.s.pfnR3GstGetPage);
3479 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3480 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3481 pVM->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3482 pVM->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3483 pVM->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3484 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3485 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3486 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3487
3488 /* both */
3489 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3490 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3491 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3492 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
3493 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
3494 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3495 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3496#ifdef VBOX_STRICT
3497 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3498#endif
3499 pVM->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3500 pVM->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3501
3502 pVM->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3503 pVM->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3504 pVM->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3505 pVM->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
3506 pVM->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3507 pVM->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3508#ifdef VBOX_STRICT
3509 pVM->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3510#endif
3511 pVM->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3512 pVM->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3513
3514 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3515 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3516 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3517 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3518 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3519 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3520#ifdef VBOX_STRICT
3521 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3522#endif
3523 pVM->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3524 pVM->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3525}
3526
3527
3528/**
3529 * Calculates the shadow paging mode.
3530 *
3531 * @returns The shadow paging mode.
3532 * @param pVM VM handle.
3533 * @param enmGuestMode The guest mode.
3534 * @param enmHostMode The host mode.
3535 * @param enmShadowMode The current shadow mode.
3536 * @param penmSwitcher Where to store the switcher to use.
3537 * VMMSWITCHER_INVALID means no change.
3538 */
3539static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3540{
3541 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3542 switch (enmGuestMode)
3543 {
3544 /*
3545 * When switching to real or protected mode we don't change
3546 * anything since it's likely that we'll switch back pretty soon.
3547 *
3548 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3549 * and is supposed to determine which shadow paging and switcher to
3550 * use during init.
3551 */
3552 case PGMMODE_REAL:
3553 case PGMMODE_PROTECTED:
3554 if ( enmShadowMode != PGMMODE_INVALID
3555 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3556 break; /* (no change) */
3557
3558 switch (enmHostMode)
3559 {
3560 case SUPPAGINGMODE_32_BIT:
3561 case SUPPAGINGMODE_32_BIT_GLOBAL:
3562 enmShadowMode = PGMMODE_32_BIT;
3563 enmSwitcher = VMMSWITCHER_32_TO_32;
3564 break;
3565
3566 case SUPPAGINGMODE_PAE:
3567 case SUPPAGINGMODE_PAE_NX:
3568 case SUPPAGINGMODE_PAE_GLOBAL:
3569 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3570 enmShadowMode = PGMMODE_PAE;
3571 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3572#ifdef DEBUG_bird
3573 if (RTEnvExist("VBOX_32BIT"))
3574 {
3575 enmShadowMode = PGMMODE_32_BIT;
3576 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3577 }
3578#endif
3579 break;
3580
3581 case SUPPAGINGMODE_AMD64:
3582 case SUPPAGINGMODE_AMD64_GLOBAL:
3583 case SUPPAGINGMODE_AMD64_NX:
3584 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3585 enmShadowMode = PGMMODE_PAE;
3586 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3587#ifdef DEBUG_bird
3588 if (RTEnvExist("VBOX_32BIT"))
3589 {
3590 enmShadowMode = PGMMODE_32_BIT;
3591 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3592 }
3593#endif
3594 break;
3595
3596 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3597 }
3598 break;
3599
3600 case PGMMODE_32_BIT:
3601 switch (enmHostMode)
3602 {
3603 case SUPPAGINGMODE_32_BIT:
3604 case SUPPAGINGMODE_32_BIT_GLOBAL:
3605 enmShadowMode = PGMMODE_32_BIT;
3606 enmSwitcher = VMMSWITCHER_32_TO_32;
3607 break;
3608
3609 case SUPPAGINGMODE_PAE:
3610 case SUPPAGINGMODE_PAE_NX:
3611 case SUPPAGINGMODE_PAE_GLOBAL:
3612 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3613 enmShadowMode = PGMMODE_PAE;
3614 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3615#ifdef DEBUG_bird
3616 if (RTEnvExist("VBOX_32BIT"))
3617 {
3618 enmShadowMode = PGMMODE_32_BIT;
3619 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3620 }
3621#endif
3622 break;
3623
3624 case SUPPAGINGMODE_AMD64:
3625 case SUPPAGINGMODE_AMD64_GLOBAL:
3626 case SUPPAGINGMODE_AMD64_NX:
3627 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3628 enmShadowMode = PGMMODE_PAE;
3629 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3630#ifdef DEBUG_bird
3631 if (RTEnvExist("VBOX_32BIT"))
3632 {
3633 enmShadowMode = PGMMODE_32_BIT;
3634 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3635 }
3636#endif
3637 break;
3638
3639 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3640 }
3641 break;
3642
3643 case PGMMODE_PAE:
3644 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3645 switch (enmHostMode)
3646 {
3647 case SUPPAGINGMODE_32_BIT:
3648 case SUPPAGINGMODE_32_BIT_GLOBAL:
3649 enmShadowMode = PGMMODE_PAE;
3650 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3651 break;
3652
3653 case SUPPAGINGMODE_PAE:
3654 case SUPPAGINGMODE_PAE_NX:
3655 case SUPPAGINGMODE_PAE_GLOBAL:
3656 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3657 enmShadowMode = PGMMODE_PAE;
3658 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3659 break;
3660
3661 case SUPPAGINGMODE_AMD64:
3662 case SUPPAGINGMODE_AMD64_GLOBAL:
3663 case SUPPAGINGMODE_AMD64_NX:
3664 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3665 enmShadowMode = PGMMODE_PAE;
3666 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3667 break;
3668
3669 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3670 }
3671 break;
3672
3673 case PGMMODE_AMD64:
3674 case PGMMODE_AMD64_NX:
3675 switch (enmHostMode)
3676 {
3677 case SUPPAGINGMODE_32_BIT:
3678 case SUPPAGINGMODE_32_BIT_GLOBAL:
3679 enmShadowMode = PGMMODE_AMD64;
3680 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3681 break;
3682
3683 case SUPPAGINGMODE_PAE:
3684 case SUPPAGINGMODE_PAE_NX:
3685 case SUPPAGINGMODE_PAE_GLOBAL:
3686 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3687 enmShadowMode = PGMMODE_AMD64;
3688 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3689 break;
3690
3691 case SUPPAGINGMODE_AMD64:
3692 case SUPPAGINGMODE_AMD64_GLOBAL:
3693 case SUPPAGINGMODE_AMD64_NX:
3694 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3695 enmShadowMode = PGMMODE_AMD64;
3696 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3697 break;
3698
3699 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3700 }
3701 break;
3702
3703
3704 default:
3705 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3706 return PGMMODE_INVALID;
3707 }
3708 /* Override the shadow mode is nested paging is active. */
3709 if (HWACCMIsNestedPagingActive(pVM))
3710 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3711
3712 *penmSwitcher = enmSwitcher;
3713 return enmShadowMode;
3714}
3715
3716
3717/**
3718 * Performs the actual mode change.
3719 * This is called by PGMChangeMode and pgmR3InitPaging().
3720 *
3721 * @returns VBox status code.
3722 * @param pVM VM handle.
3723 * @param enmGuestMode The new guest mode. This is assumed to be different from
3724 * the current mode.
3725 */
3726VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3727{
3728 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3729 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3730
3731 /*
3732 * Calc the shadow mode and switcher.
3733 */
3734 VMMSWITCHER enmSwitcher;
3735 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3736 if (enmSwitcher != VMMSWITCHER_INVALID)
3737 {
3738 /*
3739 * Select new switcher.
3740 */
3741 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3742 if (RT_FAILURE(rc))
3743 {
3744 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3745 return rc;
3746 }
3747 }
3748
3749 /*
3750 * Exit old mode(s).
3751 */
3752 /* shadow */
3753 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3754 {
3755 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3756 if (PGM_SHW_PFN(Exit, pVM))
3757 {
3758 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3759 if (RT_FAILURE(rc))
3760 {
3761 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVM->pgm.s.enmShadowMode, rc));
3762 return rc;
3763 }
3764 }
3765
3766 }
3767 else
3768 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3769
3770 /* guest */
3771 if (PGM_GST_PFN(Exit, pVM))
3772 {
3773 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3774 if (RT_FAILURE(rc))
3775 {
3776 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVM->pgm.s.enmGuestMode, rc));
3777 return rc;
3778 }
3779 }
3780
3781 /*
3782 * Load new paging mode data.
3783 */
3784 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3785
3786 /*
3787 * Enter new shadow mode (if changed).
3788 */
3789 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3790 {
3791 int rc;
3792 pVM->pgm.s.enmShadowMode = enmShadowMode;
3793 switch (enmShadowMode)
3794 {
3795 case PGMMODE_32_BIT:
3796 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3797 break;
3798 case PGMMODE_PAE:
3799 case PGMMODE_PAE_NX:
3800 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3801 break;
3802 case PGMMODE_AMD64:
3803 case PGMMODE_AMD64_NX:
3804 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3805 break;
3806 case PGMMODE_NESTED:
3807 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3808 break;
3809 case PGMMODE_EPT:
3810 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3811 break;
3812 case PGMMODE_REAL:
3813 case PGMMODE_PROTECTED:
3814 default:
3815 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3816 return VERR_INTERNAL_ERROR;
3817 }
3818 if (RT_FAILURE(rc))
3819 {
3820 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3821 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3822 return rc;
3823 }
3824 }
3825
3826 /*
3827 * Always flag the necessary updates
3828 */
3829 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
3830
3831 /*
3832 * Enter the new guest and shadow+guest modes.
3833 */
3834 int rc = -1;
3835 int rc2 = -1;
3836 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3837 pVM->pgm.s.enmGuestMode = enmGuestMode;
3838 switch (enmGuestMode)
3839 {
3840 case PGMMODE_REAL:
3841 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3842 switch (pVM->pgm.s.enmShadowMode)
3843 {
3844 case PGMMODE_32_BIT:
3845 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3846 break;
3847 case PGMMODE_PAE:
3848 case PGMMODE_PAE_NX:
3849 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3850 break;
3851 case PGMMODE_NESTED:
3852 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3853 break;
3854 case PGMMODE_EPT:
3855 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3856 break;
3857 case PGMMODE_AMD64:
3858 case PGMMODE_AMD64_NX:
3859 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3860 default: AssertFailed(); break;
3861 }
3862 break;
3863
3864 case PGMMODE_PROTECTED:
3865 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3866 switch (pVM->pgm.s.enmShadowMode)
3867 {
3868 case PGMMODE_32_BIT:
3869 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3870 break;
3871 case PGMMODE_PAE:
3872 case PGMMODE_PAE_NX:
3873 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3874 break;
3875 case PGMMODE_NESTED:
3876 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3877 break;
3878 case PGMMODE_EPT:
3879 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3880 break;
3881 case PGMMODE_AMD64:
3882 case PGMMODE_AMD64_NX:
3883 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3884 default: AssertFailed(); break;
3885 }
3886 break;
3887
3888 case PGMMODE_32_BIT:
3889 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3890 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3891 switch (pVM->pgm.s.enmShadowMode)
3892 {
3893 case PGMMODE_32_BIT:
3894 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3895 break;
3896 case PGMMODE_PAE:
3897 case PGMMODE_PAE_NX:
3898 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3899 break;
3900 case PGMMODE_NESTED:
3901 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3902 break;
3903 case PGMMODE_EPT:
3904 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3905 break;
3906 case PGMMODE_AMD64:
3907 case PGMMODE_AMD64_NX:
3908 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3909 default: AssertFailed(); break;
3910 }
3911 break;
3912
3913 case PGMMODE_PAE_NX:
3914 case PGMMODE_PAE:
3915 {
3916 uint32_t u32Dummy, u32Features;
3917
3918 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3919 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3920 {
3921 /* Pause first, then inform Main. */
3922 rc = VMR3SuspendNoSave(pVM);
3923 AssertRC(rc);
3924
3925 VMSetRuntimeError(pVM, true, "PAEmode",
3926 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3927 /* we must return VINF_SUCCESS here otherwise the recompiler will assert */
3928 return VINF_SUCCESS;
3929 }
3930 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3931 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3932 switch (pVM->pgm.s.enmShadowMode)
3933 {
3934 case PGMMODE_PAE:
3935 case PGMMODE_PAE_NX:
3936 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3937 break;
3938 case PGMMODE_NESTED:
3939 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3940 break;
3941 case PGMMODE_EPT:
3942 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3943 break;
3944 case PGMMODE_32_BIT:
3945 case PGMMODE_AMD64:
3946 case PGMMODE_AMD64_NX:
3947 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3948 default: AssertFailed(); break;
3949 }
3950 break;
3951 }
3952
3953#ifdef VBOX_WITH_64_BITS_GUESTS
3954 case PGMMODE_AMD64_NX:
3955 case PGMMODE_AMD64:
3956 GCPhysCR3 = CPUMGetGuestCR3(pVM) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3957 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3958 switch (pVM->pgm.s.enmShadowMode)
3959 {
3960 case PGMMODE_AMD64:
3961 case PGMMODE_AMD64_NX:
3962 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3963 break;
3964 case PGMMODE_NESTED:
3965 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3966 break;
3967 case PGMMODE_EPT:
3968 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3969 break;
3970 case PGMMODE_32_BIT:
3971 case PGMMODE_PAE:
3972 case PGMMODE_PAE_NX:
3973 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3974 default: AssertFailed(); break;
3975 }
3976 break;
3977#endif
3978
3979 default:
3980 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3981 rc = VERR_NOT_IMPLEMENTED;
3982 break;
3983 }
3984
3985 /* status codes. */
3986 AssertRC(rc);
3987 AssertRC(rc2);
3988 if (RT_SUCCESS(rc))
3989 {
3990 rc = rc2;
3991 if (RT_SUCCESS(rc)) /* no informational status codes. */
3992 rc = VINF_SUCCESS;
3993 }
3994
3995 /* Notify HWACCM as well. */
3996 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
3997 return rc;
3998}
3999
4000
4001/**
4002 * Dumps a PAE shadow page table.
4003 *
4004 * @returns VBox status code (VINF_SUCCESS).
4005 * @param pVM The VM handle.
4006 * @param pPT Pointer to the page table.
4007 * @param u64Address The virtual address of the page table starts.
4008 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4009 * @param cMaxDepth The maxium depth.
4010 * @param pHlp Pointer to the output functions.
4011 */
4012static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4013{
4014 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4015 {
4016 X86PTEPAE Pte = pPT->a[i];
4017 if (Pte.n.u1Present)
4018 {
4019 pHlp->pfnPrintf(pHlp,
4020 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4021 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
4022 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
4023 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
4024 Pte.n.u1Write ? 'W' : 'R',
4025 Pte.n.u1User ? 'U' : 'S',
4026 Pte.n.u1Accessed ? 'A' : '-',
4027 Pte.n.u1Dirty ? 'D' : '-',
4028 Pte.n.u1Global ? 'G' : '-',
4029 Pte.n.u1WriteThru ? "WT" : "--",
4030 Pte.n.u1CacheDisable? "CD" : "--",
4031 Pte.n.u1PAT ? "AT" : "--",
4032 Pte.n.u1NoExecute ? "NX" : "--",
4033 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4034 Pte.u & RT_BIT(10) ? '1' : '0',
4035 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
4036 Pte.u & X86_PTE_PAE_PG_MASK);
4037 }
4038 }
4039 return VINF_SUCCESS;
4040}
4041
4042
4043/**
4044 * Dumps a PAE shadow page directory table.
4045 *
4046 * @returns VBox status code (VINF_SUCCESS).
4047 * @param pVM The VM handle.
4048 * @param HCPhys The physical address of the page directory table.
4049 * @param u64Address The virtual address of the page table starts.
4050 * @param cr4 The CR4, PSE is currently used.
4051 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4052 * @param cMaxDepth The maxium depth.
4053 * @param pHlp Pointer to the output functions.
4054 */
4055static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4056{
4057 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
4058 if (!pPD)
4059 {
4060 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
4061 fLongMode ? 16 : 8, u64Address, HCPhys);
4062 return VERR_INVALID_PARAMETER;
4063 }
4064 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
4065
4066 int rc = VINF_SUCCESS;
4067 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4068 {
4069 X86PDEPAE Pde = pPD->a[i];
4070 if (Pde.n.u1Present)
4071 {
4072 if (fBigPagesSupported && Pde.b.u1Size)
4073 pHlp->pfnPrintf(pHlp,
4074 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4075 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
4076 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
4077 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
4078 Pde.b.u1Write ? 'W' : 'R',
4079 Pde.b.u1User ? 'U' : 'S',
4080 Pde.b.u1Accessed ? 'A' : '-',
4081 Pde.b.u1Dirty ? 'D' : '-',
4082 Pde.b.u1Global ? 'G' : '-',
4083 Pde.b.u1WriteThru ? "WT" : "--",
4084 Pde.b.u1CacheDisable? "CD" : "--",
4085 Pde.b.u1PAT ? "AT" : "--",
4086 Pde.b.u1NoExecute ? "NX" : "--",
4087 Pde.u & RT_BIT_64(9) ? '1' : '0',
4088 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4089 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4090 Pde.u & X86_PDE_PAE_PG_MASK);
4091 else
4092 {
4093 pHlp->pfnPrintf(pHlp,
4094 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4095 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
4096 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
4097 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
4098 Pde.n.u1Write ? 'W' : 'R',
4099 Pde.n.u1User ? 'U' : 'S',
4100 Pde.n.u1Accessed ? 'A' : '-',
4101 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4102 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4103 Pde.n.u1WriteThru ? "WT" : "--",
4104 Pde.n.u1CacheDisable? "CD" : "--",
4105 Pde.n.u1NoExecute ? "NX" : "--",
4106 Pde.u & RT_BIT_64(9) ? '1' : '0',
4107 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4108 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4109 Pde.u & X86_PDE_PAE_PG_MASK);
4110 if (cMaxDepth >= 1)
4111 {
4112 /** @todo what about using the page pool for mapping PTs? */
4113 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
4114 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
4115 PX86PTPAE pPT = NULL;
4116 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4117 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
4118 else
4119 {
4120 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4121 {
4122 uint64_t off = u64AddressPT - pMap->GCPtr;
4123 if (off < pMap->cb)
4124 {
4125 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
4126 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
4127 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
4128 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4129 fLongMode ? 16 : 8, u64AddressPT, iPDE,
4130 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
4131 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
4132 }
4133 }
4134 }
4135 int rc2 = VERR_INVALID_PARAMETER;
4136 if (pPT)
4137 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
4138 else
4139 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
4140 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
4141 if (rc2 < rc && RT_SUCCESS(rc))
4142 rc = rc2;
4143 }
4144 }
4145 }
4146 }
4147 return rc;
4148}
4149
4150
4151/**
4152 * Dumps a PAE shadow page directory pointer table.
4153 *
4154 * @returns VBox status code (VINF_SUCCESS).
4155 * @param pVM The VM handle.
4156 * @param HCPhys The physical address of the page directory pointer table.
4157 * @param u64Address The virtual address of the page table starts.
4158 * @param cr4 The CR4, PSE is currently used.
4159 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4160 * @param cMaxDepth The maxium depth.
4161 * @param pHlp Pointer to the output functions.
4162 */
4163static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4164{
4165 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
4166 if (!pPDPT)
4167 {
4168 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
4169 fLongMode ? 16 : 8, u64Address, HCPhys);
4170 return VERR_INVALID_PARAMETER;
4171 }
4172
4173 int rc = VINF_SUCCESS;
4174 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
4175 for (unsigned i = 0; i < c; i++)
4176 {
4177 X86PDPE Pdpe = pPDPT->a[i];
4178 if (Pdpe.n.u1Present)
4179 {
4180 if (fLongMode)
4181 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4182 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4183 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4184 Pdpe.lm.u1Write ? 'W' : 'R',
4185 Pdpe.lm.u1User ? 'U' : 'S',
4186 Pdpe.lm.u1Accessed ? 'A' : '-',
4187 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
4188 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
4189 Pdpe.lm.u1WriteThru ? "WT" : "--",
4190 Pdpe.lm.u1CacheDisable? "CD" : "--",
4191 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
4192 Pdpe.lm.u1NoExecute ? "NX" : "--",
4193 Pdpe.u & RT_BIT(9) ? '1' : '0',
4194 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4195 Pdpe.u & RT_BIT(11) ? '1' : '0',
4196 Pdpe.u & X86_PDPE_PG_MASK);
4197 else
4198 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
4199 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
4200 i << X86_PDPT_SHIFT,
4201 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
4202 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
4203 Pdpe.n.u1WriteThru ? "WT" : "--",
4204 Pdpe.n.u1CacheDisable? "CD" : "--",
4205 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
4206 Pdpe.u & RT_BIT(9) ? '1' : '0',
4207 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4208 Pdpe.u & RT_BIT(11) ? '1' : '0',
4209 Pdpe.u & X86_PDPE_PG_MASK);
4210 if (cMaxDepth >= 1)
4211 {
4212 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4213 cr4, fLongMode, cMaxDepth - 1, pHlp);
4214 if (rc2 < rc && RT_SUCCESS(rc))
4215 rc = rc2;
4216 }
4217 }
4218 }
4219 return rc;
4220}
4221
4222
4223/**
4224 * Dumps a 32-bit shadow page table.
4225 *
4226 * @returns VBox status code (VINF_SUCCESS).
4227 * @param pVM The VM handle.
4228 * @param HCPhys The physical address of the table.
4229 * @param cr4 The CR4, PSE is currently used.
4230 * @param cMaxDepth The maxium depth.
4231 * @param pHlp Pointer to the output functions.
4232 */
4233static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4234{
4235 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
4236 if (!pPML4)
4237 {
4238 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
4239 return VERR_INVALID_PARAMETER;
4240 }
4241
4242 int rc = VINF_SUCCESS;
4243 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
4244 {
4245 X86PML4E Pml4e = pPML4->a[i];
4246 if (Pml4e.n.u1Present)
4247 {
4248 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
4249 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4250 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4251 u64Address,
4252 Pml4e.n.u1Write ? 'W' : 'R',
4253 Pml4e.n.u1User ? 'U' : 'S',
4254 Pml4e.n.u1Accessed ? 'A' : '-',
4255 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
4256 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
4257 Pml4e.n.u1WriteThru ? "WT" : "--",
4258 Pml4e.n.u1CacheDisable? "CD" : "--",
4259 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
4260 Pml4e.n.u1NoExecute ? "NX" : "--",
4261 Pml4e.u & RT_BIT(9) ? '1' : '0',
4262 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4263 Pml4e.u & RT_BIT(11) ? '1' : '0',
4264 Pml4e.u & X86_PML4E_PG_MASK);
4265
4266 if (cMaxDepth >= 1)
4267 {
4268 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
4269 if (rc2 < rc && RT_SUCCESS(rc))
4270 rc = rc2;
4271 }
4272 }
4273 }
4274 return rc;
4275}
4276
4277
4278/**
4279 * Dumps a 32-bit shadow page table.
4280 *
4281 * @returns VBox status code (VINF_SUCCESS).
4282 * @param pVM The VM handle.
4283 * @param pPT Pointer to the page table.
4284 * @param u32Address The virtual address this table starts at.
4285 * @param pHlp Pointer to the output functions.
4286 */
4287int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
4288{
4289 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4290 {
4291 X86PTE Pte = pPT->a[i];
4292 if (Pte.n.u1Present)
4293 {
4294 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4295 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4296 u32Address + (i << X86_PT_SHIFT),
4297 Pte.n.u1Write ? 'W' : 'R',
4298 Pte.n.u1User ? 'U' : 'S',
4299 Pte.n.u1Accessed ? 'A' : '-',
4300 Pte.n.u1Dirty ? 'D' : '-',
4301 Pte.n.u1Global ? 'G' : '-',
4302 Pte.n.u1WriteThru ? "WT" : "--",
4303 Pte.n.u1CacheDisable? "CD" : "--",
4304 Pte.n.u1PAT ? "AT" : "--",
4305 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4306 Pte.u & RT_BIT(10) ? '1' : '0',
4307 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4308 Pte.u & X86_PDE_PG_MASK);
4309 }
4310 }
4311 return VINF_SUCCESS;
4312}
4313
4314
4315/**
4316 * Dumps a 32-bit shadow page directory and page tables.
4317 *
4318 * @returns VBox status code (VINF_SUCCESS).
4319 * @param pVM The VM handle.
4320 * @param cr3 The root of the hierarchy.
4321 * @param cr4 The CR4, PSE is currently used.
4322 * @param cMaxDepth How deep into the hierarchy the dumper should go.
4323 * @param pHlp Pointer to the output functions.
4324 */
4325int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4326{
4327 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
4328 if (!pPD)
4329 {
4330 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
4331 return VERR_INVALID_PARAMETER;
4332 }
4333
4334 int rc = VINF_SUCCESS;
4335 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4336 {
4337 X86PDE Pde = pPD->a[i];
4338 if (Pde.n.u1Present)
4339 {
4340 const uint32_t u32Address = i << X86_PD_SHIFT;
4341 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4342 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4343 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4344 u32Address,
4345 Pde.b.u1Write ? 'W' : 'R',
4346 Pde.b.u1User ? 'U' : 'S',
4347 Pde.b.u1Accessed ? 'A' : '-',
4348 Pde.b.u1Dirty ? 'D' : '-',
4349 Pde.b.u1Global ? 'G' : '-',
4350 Pde.b.u1WriteThru ? "WT" : "--",
4351 Pde.b.u1CacheDisable? "CD" : "--",
4352 Pde.b.u1PAT ? "AT" : "--",
4353 Pde.u & RT_BIT_64(9) ? '1' : '0',
4354 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4355 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4356 Pde.u & X86_PDE4M_PG_MASK);
4357 else
4358 {
4359 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4360 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4361 u32Address,
4362 Pde.n.u1Write ? 'W' : 'R',
4363 Pde.n.u1User ? 'U' : 'S',
4364 Pde.n.u1Accessed ? 'A' : '-',
4365 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4366 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4367 Pde.n.u1WriteThru ? "WT" : "--",
4368 Pde.n.u1CacheDisable? "CD" : "--",
4369 Pde.u & RT_BIT_64(9) ? '1' : '0',
4370 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4371 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4372 Pde.u & X86_PDE_PG_MASK);
4373 if (cMaxDepth >= 1)
4374 {
4375 /** @todo what about using the page pool for mapping PTs? */
4376 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
4377 PX86PT pPT = NULL;
4378 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4379 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
4380 else
4381 {
4382 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4383 if (u32Address - pMap->GCPtr < pMap->cb)
4384 {
4385 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
4386 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
4387 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4388 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
4389 pPT = pMap->aPTs[iPDE].pPTR3;
4390 }
4391 }
4392 int rc2 = VERR_INVALID_PARAMETER;
4393 if (pPT)
4394 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
4395 else
4396 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
4397 if (rc2 < rc && RT_SUCCESS(rc))
4398 rc = rc2;
4399 }
4400 }
4401 }
4402 }
4403
4404 return rc;
4405}
4406
4407
4408/**
4409 * Dumps a 32-bit shadow page table.
4410 *
4411 * @returns VBox status code (VINF_SUCCESS).
4412 * @param pVM The VM handle.
4413 * @param pPT Pointer to the page table.
4414 * @param u32Address The virtual address this table starts at.
4415 * @param PhysSearch Address to search for.
4416 */
4417int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
4418{
4419 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4420 {
4421 X86PTE Pte = pPT->a[i];
4422 if (Pte.n.u1Present)
4423 {
4424 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4425 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4426 u32Address + (i << X86_PT_SHIFT),
4427 Pte.n.u1Write ? 'W' : 'R',
4428 Pte.n.u1User ? 'U' : 'S',
4429 Pte.n.u1Accessed ? 'A' : '-',
4430 Pte.n.u1Dirty ? 'D' : '-',
4431 Pte.n.u1Global ? 'G' : '-',
4432 Pte.n.u1WriteThru ? "WT" : "--",
4433 Pte.n.u1CacheDisable? "CD" : "--",
4434 Pte.n.u1PAT ? "AT" : "--",
4435 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4436 Pte.u & RT_BIT(10) ? '1' : '0',
4437 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4438 Pte.u & X86_PDE_PG_MASK));
4439
4440 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
4441 {
4442 uint64_t fPageShw = 0;
4443 RTHCPHYS pPhysHC = 0;
4444
4445 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
4446 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
4447 }
4448 }
4449 }
4450 return VINF_SUCCESS;
4451}
4452
4453
4454/**
4455 * Dumps a 32-bit guest page directory and page tables.
4456 *
4457 * @returns VBox status code (VINF_SUCCESS).
4458 * @param pVM The VM handle.
4459 * @param cr3 The root of the hierarchy.
4460 * @param cr4 The CR4, PSE is currently used.
4461 * @param PhysSearch Address to search for.
4462 */
4463VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
4464{
4465 bool fLongMode = false;
4466 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
4467 PX86PD pPD = 0;
4468
4469 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
4470 if (RT_FAILURE(rc) || !pPD)
4471 {
4472 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
4473 return VERR_INVALID_PARAMETER;
4474 }
4475
4476 Log(("cr3=%08x cr4=%08x%s\n"
4477 "%-*s P - Present\n"
4478 "%-*s | R/W - Read (0) / Write (1)\n"
4479 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4480 "%-*s | | | A - Accessed\n"
4481 "%-*s | | | | D - Dirty\n"
4482 "%-*s | | | | | G - Global\n"
4483 "%-*s | | | | | | WT - Write thru\n"
4484 "%-*s | | | | | | | CD - Cache disable\n"
4485 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4486 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4487 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4488 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4489 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4490 "%-*s Level | | | | | | | | | | | | Page\n"
4491 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4492 - W U - - - -- -- -- -- -- 010 */
4493 , cr3, cr4, fLongMode ? " Long Mode" : "",
4494 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4495 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4496
4497 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4498 {
4499 X86PDE Pde = pPD->a[i];
4500 if (Pde.n.u1Present)
4501 {
4502 const uint32_t u32Address = i << X86_PD_SHIFT;
4503
4504 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4505 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4506 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4507 u32Address,
4508 Pde.b.u1Write ? 'W' : 'R',
4509 Pde.b.u1User ? 'U' : 'S',
4510 Pde.b.u1Accessed ? 'A' : '-',
4511 Pde.b.u1Dirty ? 'D' : '-',
4512 Pde.b.u1Global ? 'G' : '-',
4513 Pde.b.u1WriteThru ? "WT" : "--",
4514 Pde.b.u1CacheDisable? "CD" : "--",
4515 Pde.b.u1PAT ? "AT" : "--",
4516 Pde.u & RT_BIT(9) ? '1' : '0',
4517 Pde.u & RT_BIT(10) ? '1' : '0',
4518 Pde.u & RT_BIT(11) ? '1' : '0',
4519 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4520 /** @todo PhysSearch */
4521 else
4522 {
4523 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4524 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4525 u32Address,
4526 Pde.n.u1Write ? 'W' : 'R',
4527 Pde.n.u1User ? 'U' : 'S',
4528 Pde.n.u1Accessed ? 'A' : '-',
4529 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4530 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4531 Pde.n.u1WriteThru ? "WT" : "--",
4532 Pde.n.u1CacheDisable? "CD" : "--",
4533 Pde.u & RT_BIT(9) ? '1' : '0',
4534 Pde.u & RT_BIT(10) ? '1' : '0',
4535 Pde.u & RT_BIT(11) ? '1' : '0',
4536 Pde.u & X86_PDE_PG_MASK));
4537 ////if (cMaxDepth >= 1)
4538 {
4539 /** @todo what about using the page pool for mapping PTs? */
4540 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4541 PX86PT pPT = NULL;
4542
4543 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4544
4545 int rc2 = VERR_INVALID_PARAMETER;
4546 if (pPT)
4547 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4548 else
4549 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4550 if (rc2 < rc && RT_SUCCESS(rc))
4551 rc = rc2;
4552 }
4553 }
4554 }
4555 }
4556
4557 return rc;
4558}
4559
4560
4561/**
4562 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4563 *
4564 * @returns VBox status code (VINF_SUCCESS).
4565 * @param pVM The VM handle.
4566 * @param cr3 The root of the hierarchy.
4567 * @param cr4 The cr4, only PAE and PSE is currently used.
4568 * @param fLongMode Set if long mode, false if not long mode.
4569 * @param cMaxDepth Number of levels to dump.
4570 * @param pHlp Pointer to the output functions.
4571 */
4572VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4573{
4574 if (!pHlp)
4575 pHlp = DBGFR3InfoLogHlp();
4576 if (!cMaxDepth)
4577 return VINF_SUCCESS;
4578 const unsigned cch = fLongMode ? 16 : 8;
4579 pHlp->pfnPrintf(pHlp,
4580 "cr3=%08x cr4=%08x%s\n"
4581 "%-*s P - Present\n"
4582 "%-*s | R/W - Read (0) / Write (1)\n"
4583 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4584 "%-*s | | | A - Accessed\n"
4585 "%-*s | | | | D - Dirty\n"
4586 "%-*s | | | | | G - Global\n"
4587 "%-*s | | | | | | WT - Write thru\n"
4588 "%-*s | | | | | | | CD - Cache disable\n"
4589 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4590 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4591 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4592 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4593 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4594 "%-*s Level | | | | | | | | | | | | Page\n"
4595 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4596 - W U - - - -- -- -- -- -- 010 */
4597 , cr3, cr4, fLongMode ? " Long Mode" : "",
4598 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4599 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4600 if (cr4 & X86_CR4_PAE)
4601 {
4602 if (fLongMode)
4603 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4604 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4605 }
4606 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4607}
4608
4609#ifdef VBOX_WITH_DEBUGGER
4610
4611/**
4612 * The '.pgmram' command.
4613 *
4614 * @returns VBox status.
4615 * @param pCmd Pointer to the command descriptor (as registered).
4616 * @param pCmdHlp Pointer to command helper functions.
4617 * @param pVM Pointer to the current VM (if any).
4618 * @param paArgs Pointer to (readonly) array of arguments.
4619 * @param cArgs Number of arguments in the array.
4620 */
4621static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4622{
4623 /*
4624 * Validate input.
4625 */
4626 if (!pVM)
4627 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4628 if (!pVM->pgm.s.pRamRangesRC)
4629 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4630
4631 /*
4632 * Dump the ranges.
4633 */
4634 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4635 PPGMRAMRANGE pRam;
4636 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4637 {
4638 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4639 "%RGp - %RGp %p\n",
4640 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4641 if (RT_FAILURE(rc))
4642 return rc;
4643 }
4644
4645 return VINF_SUCCESS;
4646}
4647
4648
4649/**
4650 * The '.pgmmap' command.
4651 *
4652 * @returns VBox status.
4653 * @param pCmd Pointer to the command descriptor (as registered).
4654 * @param pCmdHlp Pointer to command helper functions.
4655 * @param pVM Pointer to the current VM (if any).
4656 * @param paArgs Pointer to (readonly) array of arguments.
4657 * @param cArgs Number of arguments in the array.
4658 */
4659static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4660{
4661 /*
4662 * Validate input.
4663 */
4664 if (!pVM)
4665 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4666 if (!pVM->pgm.s.pMappingsR3)
4667 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4668
4669 /*
4670 * Print message about the fixedness of the mappings.
4671 */
4672 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4673 if (RT_FAILURE(rc))
4674 return rc;
4675
4676 /*
4677 * Dump the ranges.
4678 */
4679 PPGMMAPPING pCur;
4680 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4681 {
4682 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4683 "%08x - %08x %s\n",
4684 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4685 if (RT_FAILURE(rc))
4686 return rc;
4687 }
4688
4689 return VINF_SUCCESS;
4690}
4691
4692
4693/**
4694 * The '.pgmsync' command.
4695 *
4696 * @returns VBox status.
4697 * @param pCmd Pointer to the command descriptor (as registered).
4698 * @param pCmdHlp Pointer to command helper functions.
4699 * @param pVM Pointer to the current VM (if any).
4700 * @param paArgs Pointer to (readonly) array of arguments.
4701 * @param cArgs Number of arguments in the array.
4702 */
4703static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4704{
4705 /*
4706 * Validate input.
4707 */
4708 if (!pVM)
4709 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4710
4711 /*
4712 * Force page directory sync.
4713 */
4714 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4715
4716 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4717 if (RT_FAILURE(rc))
4718 return rc;
4719
4720 return VINF_SUCCESS;
4721}
4722
4723
4724#ifdef VBOX_STRICT
4725/**
4726 * The '.pgmassertcr3' command.
4727 *
4728 * @returns VBox status.
4729 * @param pCmd Pointer to the command descriptor (as registered).
4730 * @param pCmdHlp Pointer to command helper functions.
4731 * @param pVM Pointer to the current VM (if any).
4732 * @param paArgs Pointer to (readonly) array of arguments.
4733 * @param cArgs Number of arguments in the array.
4734 */
4735static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4736{
4737 /*
4738 * Validate input.
4739 */
4740 if (!pVM)
4741 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4742
4743 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4744 if (RT_FAILURE(rc))
4745 return rc;
4746
4747 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4748
4749 return VINF_SUCCESS;
4750}
4751#endif /* VBOX_STRICT */
4752
4753
4754/**
4755 * The '.pgmsyncalways' command.
4756 *
4757 * @returns VBox status.
4758 * @param pCmd Pointer to the command descriptor (as registered).
4759 * @param pCmdHlp Pointer to command helper functions.
4760 * @param pVM Pointer to the current VM (if any).
4761 * @param paArgs Pointer to (readonly) array of arguments.
4762 * @param cArgs Number of arguments in the array.
4763 */
4764static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4765{
4766 /*
4767 * Validate input.
4768 */
4769 if (!pVM)
4770 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4771
4772 /*
4773 * Force page directory sync.
4774 */
4775 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4776 {
4777 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4778 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4779 }
4780 else
4781 {
4782 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4783 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4784 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4785 }
4786}
4787
4788#endif /* VBOX_WITH_DEBUGGER */
4789
4790/**
4791 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4792 */
4793typedef struct PGMCHECKINTARGS
4794{
4795 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4796 PPGMPHYSHANDLER pPrevPhys;
4797 PPGMVIRTHANDLER pPrevVirt;
4798 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4799 PVM pVM;
4800} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4801
4802/**
4803 * Validate a node in the physical handler tree.
4804 *
4805 * @returns 0 on if ok, other wise 1.
4806 * @param pNode The handler node.
4807 * @param pvUser pVM.
4808 */
4809static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4810{
4811 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4812 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4813 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4814 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4815 AssertReleaseMsg( !pArgs->pPrevPhys
4816 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4817 ("pPrevPhys=%p %RGp-%RGp %s\n"
4818 " pCur=%p %RGp-%RGp %s\n",
4819 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4820 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4821 pArgs->pPrevPhys = pCur;
4822 return 0;
4823}
4824
4825
4826/**
4827 * Validate a node in the virtual handler tree.
4828 *
4829 * @returns 0 on if ok, other wise 1.
4830 * @param pNode The handler node.
4831 * @param pvUser pVM.
4832 */
4833static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4834{
4835 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4836 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4837 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4838 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4839 AssertReleaseMsg( !pArgs->pPrevVirt
4840 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4841 ("pPrevVirt=%p %RGv-%RGv %s\n"
4842 " pCur=%p %RGv-%RGv %s\n",
4843 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4844 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4845 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4846 {
4847 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4848 ("pCur=%p %RGv-%RGv %s\n"
4849 "iPage=%d offVirtHandle=%#x expected %#x\n",
4850 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4851 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4852 }
4853 pArgs->pPrevVirt = pCur;
4854 return 0;
4855}
4856
4857
4858/**
4859 * Validate a node in the virtual handler tree.
4860 *
4861 * @returns 0 on if ok, other wise 1.
4862 * @param pNode The handler node.
4863 * @param pvUser pVM.
4864 */
4865static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4866{
4867 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4868 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4869 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4870 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4871 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4872 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4873 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4874 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4875 " pCur=%p %RGp-%RGp\n",
4876 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4877 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4878 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4879 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4880 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4881 " pCur=%p %RGp-%RGp\n",
4882 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4883 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4884 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4885 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4886 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4887 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4888 {
4889 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4890 for (;;)
4891 {
4892 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4893 AssertReleaseMsg(pCur2 != pCur,
4894 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4895 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4896 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4897 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4898 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4899 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4900 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4901 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4902 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4903 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4904 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4905 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4906 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4907 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4908 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4909 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4910 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4911 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4912 break;
4913 }
4914 }
4915
4916 pArgs->pPrevPhys2Virt = pCur;
4917 return 0;
4918}
4919
4920
4921/**
4922 * Perform an integrity check on the PGM component.
4923 *
4924 * @returns VINF_SUCCESS if everything is fine.
4925 * @returns VBox error status after asserting on integrity breach.
4926 * @param pVM The VM handle.
4927 */
4928VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4929{
4930 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4931
4932 /*
4933 * Check the trees.
4934 */
4935 int cErrors = 0;
4936 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4937 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4938 PGMCHECKINTARGS Args = s_LeftToRight;
4939 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4940 Args = s_RightToLeft;
4941 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4942 Args = s_LeftToRight;
4943 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4944 Args = s_RightToLeft;
4945 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4946 Args = s_LeftToRight;
4947 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4948 Args = s_RightToLeft;
4949 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4950 Args = s_LeftToRight;
4951 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4952 Args = s_RightToLeft;
4953 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4954
4955 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4956}
4957
4958
Note: See TracBrowser for help on using the repository browser.

© 2023 Oracle
ContactPrivacy policyTerms of Use