VirtualBox

source: vbox/trunk/src/VBox/Runtime/common/dbg/dbgmoddwarf.cpp@ 100931

Last change on this file since 100931 was 100931, checked in by vboxsync, 16 months ago

IPRT/dbg: Early PDB support.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 230.1 KB
Line 
1/* $Id: dbgmoddwarf.cpp 100931 2023-08-21 23:11:01Z vboxsync $ */
2/** @file
3 * IPRT - Debug Info Reader For DWARF.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * The contents of this file may alternatively be used under the terms
26 * of the Common Development and Distribution License Version 1.0
27 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
28 * in the VirtualBox distribution, in which case the provisions of the
29 * CDDL are applicable instead of those of the GPL.
30 *
31 * You may elect to license modified versions of this file under the
32 * terms and conditions of either the GPL or the CDDL or both.
33 *
34 * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
35 */
36
37
38/*********************************************************************************************************************************
39* Header Files *
40*********************************************************************************************************************************/
41#define LOG_GROUP RTLOGGROUP_DBG_DWARF
42#include <iprt/dbg.h>
43#include "internal/iprt.h"
44
45#include <iprt/asm.h>
46#include <iprt/ctype.h>
47#include <iprt/err.h>
48#include <iprt/list.h>
49#include <iprt/log.h>
50#include <iprt/mem.h>
51#define RTDBGMODDWARF_WITH_MEM_CACHE
52#ifdef RTDBGMODDWARF_WITH_MEM_CACHE
53# include <iprt/memcache.h>
54#endif
55#include <iprt/path.h>
56#include <iprt/string.h>
57#include <iprt/strcache.h>
58#include <iprt/x86.h>
59#include <iprt/formats/dwarf.h>
60#include "internal/dbgmod.h"
61
62
63
64/*********************************************************************************************************************************
65* Structures and Typedefs *
66*********************************************************************************************************************************/
67/** Pointer to a DWARF section reader. */
68typedef struct RTDWARFCURSOR *PRTDWARFCURSOR;
69/** Pointer to an attribute descriptor. */
70typedef struct RTDWARFATTRDESC const *PCRTDWARFATTRDESC;
71/** Pointer to a DIE. */
72typedef struct RTDWARFDIE *PRTDWARFDIE;
73/** Pointer to a const DIE. */
74typedef struct RTDWARFDIE const *PCRTDWARFDIE;
75
76/**
77 * DWARF sections.
78 */
79typedef enum krtDbgModDwarfSect
80{
81 krtDbgModDwarfSect_abbrev = 0,
82 krtDbgModDwarfSect_aranges,
83 krtDbgModDwarfSect_frame,
84 krtDbgModDwarfSect_info,
85 krtDbgModDwarfSect_inlined,
86 krtDbgModDwarfSect_line,
87 krtDbgModDwarfSect_loc,
88 krtDbgModDwarfSect_macinfo,
89 krtDbgModDwarfSect_pubnames,
90 krtDbgModDwarfSect_pubtypes,
91 krtDbgModDwarfSect_ranges,
92 krtDbgModDwarfSect_str,
93 krtDbgModDwarfSect_types,
94 /** End of valid parts (exclusive). */
95 krtDbgModDwarfSect_End
96} krtDbgModDwarfSect;
97
98/**
99 * Abbreviation cache entry.
100 */
101typedef struct RTDWARFABBREV
102{
103 /** Whether there are children or not. */
104 bool fChildren;
105#ifdef LOG_ENABLED
106 uint8_t cbHdr; /**< For calcing ABGOFF matching dwarfdump. */
107#endif
108 /** The tag. */
109 uint16_t uTag;
110 /** Offset into the abbrev section of the specification pairs. */
111 uint32_t offSpec;
112 /** The abbreviation table offset this is entry is valid for.
113 * UINT32_MAX if not valid. */
114 uint32_t offAbbrev;
115} RTDWARFABBREV;
116/** Pointer to an abbreviation cache entry. */
117typedef RTDWARFABBREV *PRTDWARFABBREV;
118/** Pointer to a const abbreviation cache entry. */
119typedef RTDWARFABBREV const *PCRTDWARFABBREV;
120
121/**
122 * Structure for gathering segment info.
123 */
124typedef struct RTDBGDWARFSEG
125{
126 /** The highest offset in the segment. */
127 uint64_t offHighest;
128 /** Calculated base address. */
129 uint64_t uBaseAddr;
130 /** Estimated The segment size. */
131 uint64_t cbSegment;
132 /** Segment number (RTLDRSEG::Sel16bit). */
133 RTSEL uSegment;
134} RTDBGDWARFSEG;
135/** Pointer to segment info. */
136typedef RTDBGDWARFSEG *PRTDBGDWARFSEG;
137
138
139/**
140 * The instance data of the DWARF reader.
141 */
142typedef struct RTDBGMODDWARF
143{
144 /** The debug container containing doing the real work. */
145 RTDBGMOD hCnt;
146 /** The image module (no reference). */
147 PRTDBGMODINT pImgMod;
148 /** The debug info module (no reference). */
149 PRTDBGMODINT pDbgInfoMod;
150 /** Nested image module (with reference ofc). */
151 PRTDBGMODINT pNestedMod;
152
153 /** DWARF debug info sections. */
154 struct
155 {
156 /** The file offset of the part. */
157 RTFOFF offFile;
158 /** The size of the part. */
159 size_t cb;
160 /** The memory mapping of the part. */
161 void const *pv;
162 /** Set if present. */
163 bool fPresent;
164 /** The debug info ordinal number in the image file. */
165 uint32_t iDbgInfo;
166 } aSections[krtDbgModDwarfSect_End];
167
168 /** The offset into the abbreviation section of the current cache. */
169 uint32_t offCachedAbbrev;
170 /** The number of cached abbreviations we've allocated space for. */
171 uint32_t cCachedAbbrevsAlloced;
172 /** Array of cached abbreviations, indexed by code. */
173 PRTDWARFABBREV paCachedAbbrevs;
174 /** Used by rtDwarfAbbrev_Lookup when the result is uncachable. */
175 RTDWARFABBREV LookupAbbrev;
176
177 /** The list of compilation units (RTDWARFDIE). */
178 RTLISTANCHOR CompileUnitList;
179
180 /** Set if we have to use link addresses because the module does not have
181 * fixups (mach_kernel). */
182 bool fUseLinkAddress;
183 /** This is set to -1 if we're doing everything in one pass.
184 * Otherwise it's 1 or 2:
185 * - In pass 1, we collect segment info.
186 * - In pass 2, we add debug info to the container.
187 * The two pass parsing is necessary for watcom generated symbol files as
188 * these contains no information about the code and data segments in the
189 * image. So we have to figure out some approximate stuff based on the
190 * segments and offsets we encounter in the debug info. */
191 int8_t iWatcomPass;
192 /** Segment index hint. */
193 uint16_t iSegHint;
194 /** The number of segments in paSegs.
195 * (During segment copying, this is abused to count useful segments.) */
196 uint32_t cSegs;
197 /** Pointer to segments if iWatcomPass isn't -1. */
198 PRTDBGDWARFSEG paSegs;
199#ifdef RTDBGMODDWARF_WITH_MEM_CACHE
200 /** DIE allocators. */
201 struct
202 {
203 RTMEMCACHE hMemCache;
204 uint32_t cbMax;
205 } aDieAllocators[2];
206#endif
207} RTDBGMODDWARF;
208/** Pointer to instance data of the DWARF reader. */
209typedef RTDBGMODDWARF *PRTDBGMODDWARF;
210
211/**
212 * DWARF cursor for reading byte data.
213 */
214typedef struct RTDWARFCURSOR
215{
216 /** The current position. */
217 uint8_t const *pb;
218 /** The number of bytes left to read. */
219 size_t cbLeft;
220 /** The number of bytes left to read in the current unit. */
221 size_t cbUnitLeft;
222 /** The DWARF debug info reader instance. (Can be NULL for eh_frame.) */
223 PRTDBGMODDWARF pDwarfMod;
224 /** Set if this is 64-bit DWARF, clear if 32-bit. */
225 bool f64bitDwarf;
226 /** Set if the format endian is native, clear if endian needs to be
227 * inverted. */
228 bool fNativEndian;
229 /** The size of a native address. */
230 uint8_t cbNativeAddr;
231 /** The cursor status code. This is VINF_SUCCESS until some error
232 * occurs. */
233 int rc;
234 /** The start of the area covered by the cursor.
235 * Used for repositioning the cursor relative to the start of a section. */
236 uint8_t const *pbStart;
237 /** The section. */
238 krtDbgModDwarfSect enmSect;
239} RTDWARFCURSOR;
240
241
242/**
243 * DWARF line number program state.
244 */
245typedef struct RTDWARFLINESTATE
246{
247 /** @name Virtual Line Number Machine Registers.
248 * @{ */
249 struct
250 {
251 uint64_t uAddress;
252 uint64_t idxOp;
253 uint32_t iFile;
254 uint32_t uLine;
255 uint32_t uColumn;
256 bool fIsStatement;
257 bool fBasicBlock;
258 bool fEndSequence;
259 bool fPrologueEnd;
260 bool fEpilogueBegin;
261 uint32_t uIsa;
262 uint32_t uDiscriminator;
263 RTSEL uSegment;
264 } Regs;
265 /** @} */
266
267 /** Header. */
268 struct
269 {
270 uint32_t uVer;
271 uint64_t offFirstOpcode;
272 uint8_t cbMinInstr;
273 uint8_t cMaxOpsPerInstr;
274 uint8_t u8DefIsStmt;
275 int8_t s8LineBase;
276 uint8_t u8LineRange;
277 uint8_t u8OpcodeBase;
278 uint8_t const *pacStdOperands;
279 } Hdr;
280
281 /** @name Include Path Table (0-based)
282 * @{ */
283 const char **papszIncPaths;
284 uint32_t cIncPaths;
285 /** @} */
286
287 /** @name File Name Table (0-based, dummy zero entry)
288 * @{ */
289 char **papszFileNames;
290 uint32_t cFileNames;
291 /** @} */
292
293 /** The DWARF debug info reader instance. */
294 PRTDBGMODDWARF pDwarfMod;
295} RTDWARFLINESTATE;
296/** Pointer to a DWARF line number program state. */
297typedef RTDWARFLINESTATE *PRTDWARFLINESTATE;
298
299
300/**
301 * Decodes an attribute and stores it in the specified DIE member field.
302 *
303 * @returns IPRT status code.
304 * @param pDie Pointer to the DIE structure.
305 * @param pbMember Pointer to the first byte in the member.
306 * @param pDesc The attribute descriptor.
307 * @param uForm The data form.
308 * @param pCursor The cursor to read data from.
309 */
310typedef DECLCALLBACKTYPE(int, FNRTDWARFATTRDECODER,(PRTDWARFDIE pDie, uint8_t *pbMember, PCRTDWARFATTRDESC pDesc,
311 uint32_t uForm, PRTDWARFCURSOR pCursor));
312/** Pointer to an attribute decoder callback. */
313typedef FNRTDWARFATTRDECODER *PFNRTDWARFATTRDECODER;
314
315/**
316 * Attribute descriptor.
317 */
318typedef struct RTDWARFATTRDESC
319{
320 /** The attribute. */
321 uint16_t uAttr;
322 /** The data member offset. */
323 uint16_t off;
324 /** The data member size and initialization method. */
325 uint8_t cbInit;
326 uint8_t bPadding[3]; /**< Alignment padding. */
327 /** The decoder function. */
328 PFNRTDWARFATTRDECODER pfnDecoder;
329} RTDWARFATTRDESC;
330
331/** Define a attribute entry. */
332#define ATTR_ENTRY(a_uAttr, a_Struct, a_Member, a_Init, a_pfnDecoder) \
333 { \
334 a_uAttr, \
335 (uint16_t)RT_OFFSETOF(a_Struct, a_Member), \
336 a_Init | ((uint8_t)RT_SIZEOFMEMB(a_Struct, a_Member) & ATTR_SIZE_MASK), \
337 { 0, 0, 0 }, \
338 a_pfnDecoder\
339 }
340
341/** @name Attribute size and init methods.
342 * @{ */
343#define ATTR_INIT_ZERO UINT8_C(0x00)
344#define ATTR_INIT_FFFS UINT8_C(0x80)
345#define ATTR_INIT_MASK UINT8_C(0x80)
346#define ATTR_SIZE_MASK UINT8_C(0x3f)
347#define ATTR_GET_SIZE(a_pAttrDesc) ((a_pAttrDesc)->cbInit & ATTR_SIZE_MASK)
348/** @} */
349
350
351/**
352 * DIE descriptor.
353 */
354typedef struct RTDWARFDIEDESC
355{
356 /** The size of the DIE. */
357 size_t cbDie;
358 /** The number of attributes. */
359 size_t cAttributes;
360 /** Pointer to the array of attributes. */
361 PCRTDWARFATTRDESC paAttributes;
362} RTDWARFDIEDESC;
363typedef struct RTDWARFDIEDESC const *PCRTDWARFDIEDESC;
364/** DIE descriptor initializer. */
365#define DIE_DESC_INIT(a_Type, a_aAttrs) { sizeof(a_Type), RT_ELEMENTS(a_aAttrs), &a_aAttrs[0] }
366
367
368/**
369 * DIE core structure, all inherits (starts with) this.
370 */
371typedef struct RTDWARFDIE
372{
373 /** Pointer to the parent node. NULL if root unit. */
374 struct RTDWARFDIE *pParent;
375 /** Our node in the sibling list. */
376 RTLISTNODE SiblingNode;
377 /** List of children. */
378 RTLISTNODE ChildList;
379 /** The number of attributes successfully decoded. */
380 uint8_t cDecodedAttrs;
381 /** The number of unknown or otherwise unhandled attributes. */
382 uint8_t cUnhandledAttrs;
383#ifdef RTDBGMODDWARF_WITH_MEM_CACHE
384 /** The allocator index. */
385 uint8_t iAllocator;
386#endif
387 /** The die tag, indicating which union structure to use. */
388 uint16_t uTag;
389 /** Offset of the abbreviation specification (within debug_abbrev). */
390 uint32_t offSpec;
391} RTDWARFDIE;
392
393
394/**
395 * DWARF address structure.
396 */
397typedef struct RTDWARFADDR
398{
399 /** The address. */
400 uint64_t uAddress;
401} RTDWARFADDR;
402typedef RTDWARFADDR *PRTDWARFADDR;
403typedef RTDWARFADDR const *PCRTDWARFADDR;
404
405
406/**
407 * DWARF address range.
408 */
409typedef struct RTDWARFADDRRANGE
410{
411 uint64_t uLowAddress;
412 uint64_t uHighAddress;
413 uint8_t const *pbRanges; /* ?? */
414 uint8_t cAttrs : 2;
415 uint8_t fHaveLowAddress : 1;
416 uint8_t fHaveHighAddress : 1;
417 uint8_t fHaveHighIsAddress : 1;
418 uint8_t fHaveRanges : 1;
419} RTDWARFADDRRANGE;
420typedef RTDWARFADDRRANGE *PRTDWARFADDRRANGE;
421typedef RTDWARFADDRRANGE const *PCRTDWARFADDRRANGE;
422
423/** What a RTDWARFREF is relative to. */
424typedef enum krtDwarfRef
425{
426 krtDwarfRef_NotSet,
427 krtDwarfRef_LineSection,
428 krtDwarfRef_LocSection,
429 krtDwarfRef_RangesSection,
430 krtDwarfRef_InfoSection,
431 krtDwarfRef_SameUnit,
432 krtDwarfRef_TypeId64
433} krtDwarfRef;
434
435/**
436 * DWARF reference.
437 */
438typedef struct RTDWARFREF
439{
440 /** The offset. */
441 uint64_t off;
442 /** What the offset is relative to. */
443 krtDwarfRef enmWrt;
444} RTDWARFREF;
445typedef RTDWARFREF *PRTDWARFREF;
446typedef RTDWARFREF const *PCRTDWARFREF;
447
448
449/**
450 * DWARF Location state.
451 */
452typedef struct RTDWARFLOCST
453{
454 /** The input cursor. */
455 RTDWARFCURSOR Cursor;
456 /** Points to the current top of the stack. Initial value -1. */
457 int32_t iTop;
458 /** The value stack. */
459 uint64_t auStack[64];
460} RTDWARFLOCST;
461/** Pointer to location state. */
462typedef RTDWARFLOCST *PRTDWARFLOCST;
463
464
465
466/*********************************************************************************************************************************
467* Internal Functions *
468*********************************************************************************************************************************/
469static FNRTDWARFATTRDECODER rtDwarfDecode_Address;
470static FNRTDWARFATTRDECODER rtDwarfDecode_Bool;
471static FNRTDWARFATTRDECODER rtDwarfDecode_LowHighPc;
472static FNRTDWARFATTRDECODER rtDwarfDecode_Ranges;
473static FNRTDWARFATTRDECODER rtDwarfDecode_Reference;
474static FNRTDWARFATTRDECODER rtDwarfDecode_SectOff;
475static FNRTDWARFATTRDECODER rtDwarfDecode_String;
476static FNRTDWARFATTRDECODER rtDwarfDecode_UnsignedInt;
477static FNRTDWARFATTRDECODER rtDwarfDecode_SegmentLoc;
478
479
480/*********************************************************************************************************************************
481* Global Variables *
482*********************************************************************************************************************************/
483/** RTDWARFDIE description. */
484static const RTDWARFDIEDESC g_CoreDieDesc = { sizeof(RTDWARFDIE), 0, NULL };
485
486
487/**
488 * DW_TAG_compile_unit & DW_TAG_partial_unit.
489 */
490typedef struct RTDWARFDIECOMPILEUNIT
491{
492 /** The DIE core structure. */
493 RTDWARFDIE Core;
494 /** The unit name. */
495 const char *pszName;
496 /** The address range of the code belonging to this unit. */
497 RTDWARFADDRRANGE PcRange;
498 /** The language name. */
499 uint16_t uLanguage;
500 /** The identifier case. */
501 uint8_t uIdentifierCase;
502 /** String are UTF-8 encoded. If not set, the encoding is
503 * unknown. */
504 bool fUseUtf8;
505 /** The unit contains main() or equivalent. */
506 bool fMainFunction;
507 /** The line numbers for this unit. */
508 RTDWARFREF StmtListRef;
509 /** The macro information for this unit. */
510 RTDWARFREF MacroInfoRef;
511 /** Reference to the base types. */
512 RTDWARFREF BaseTypesRef;
513 /** Working directory for the unit. */
514 const char *pszCurDir;
515 /** The name of the compiler or whatever that produced this unit. */
516 const char *pszProducer;
517
518 /** @name From the unit header.
519 * @{ */
520 /** The offset into debug_info of this unit (for references). */
521 uint64_t offUnit;
522 /** The length of this unit. */
523 uint64_t cbUnit;
524 /** The offset into debug_abbrev of the abbreviation for this unit. */
525 uint64_t offAbbrev;
526 /** The native address size. */
527 uint8_t cbNativeAddr;
528 /** The DWARF version. */
529 uint8_t uDwarfVer;
530 /** @} */
531} RTDWARFDIECOMPILEUNIT;
532typedef RTDWARFDIECOMPILEUNIT *PRTDWARFDIECOMPILEUNIT;
533
534
535/** RTDWARFDIECOMPILEUNIT attributes. */
536static const RTDWARFATTRDESC g_aCompileUnitAttrs[] =
537{
538 ATTR_ENTRY(DW_AT_name, RTDWARFDIECOMPILEUNIT, pszName, ATTR_INIT_ZERO, rtDwarfDecode_String),
539 ATTR_ENTRY(DW_AT_low_pc, RTDWARFDIECOMPILEUNIT, PcRange, ATTR_INIT_ZERO, rtDwarfDecode_LowHighPc),
540 ATTR_ENTRY(DW_AT_high_pc, RTDWARFDIECOMPILEUNIT, PcRange, ATTR_INIT_ZERO, rtDwarfDecode_LowHighPc),
541 ATTR_ENTRY(DW_AT_ranges, RTDWARFDIECOMPILEUNIT, PcRange, ATTR_INIT_ZERO, rtDwarfDecode_Ranges),
542 ATTR_ENTRY(DW_AT_language, RTDWARFDIECOMPILEUNIT, uLanguage, ATTR_INIT_ZERO, rtDwarfDecode_UnsignedInt),
543 ATTR_ENTRY(DW_AT_macro_info, RTDWARFDIECOMPILEUNIT, MacroInfoRef, ATTR_INIT_ZERO, rtDwarfDecode_SectOff),
544 ATTR_ENTRY(DW_AT_stmt_list, RTDWARFDIECOMPILEUNIT, StmtListRef, ATTR_INIT_ZERO, rtDwarfDecode_SectOff),
545 ATTR_ENTRY(DW_AT_comp_dir, RTDWARFDIECOMPILEUNIT, pszCurDir, ATTR_INIT_ZERO, rtDwarfDecode_String),
546 ATTR_ENTRY(DW_AT_producer, RTDWARFDIECOMPILEUNIT, pszProducer, ATTR_INIT_ZERO, rtDwarfDecode_String),
547 ATTR_ENTRY(DW_AT_identifier_case, RTDWARFDIECOMPILEUNIT, uIdentifierCase,ATTR_INIT_ZERO, rtDwarfDecode_UnsignedInt),
548 ATTR_ENTRY(DW_AT_base_types, RTDWARFDIECOMPILEUNIT, BaseTypesRef, ATTR_INIT_ZERO, rtDwarfDecode_Reference),
549 ATTR_ENTRY(DW_AT_use_UTF8, RTDWARFDIECOMPILEUNIT, fUseUtf8, ATTR_INIT_ZERO, rtDwarfDecode_Bool),
550 ATTR_ENTRY(DW_AT_main_subprogram, RTDWARFDIECOMPILEUNIT, fMainFunction, ATTR_INIT_ZERO, rtDwarfDecode_Bool)
551};
552
553/** RTDWARFDIECOMPILEUNIT description. */
554static const RTDWARFDIEDESC g_CompileUnitDesc = DIE_DESC_INIT(RTDWARFDIECOMPILEUNIT, g_aCompileUnitAttrs);
555
556
557/**
558 * DW_TAG_subprogram.
559 */
560typedef struct RTDWARFDIESUBPROGRAM
561{
562 /** The DIE core structure. */
563 RTDWARFDIE Core;
564 /** The name. */
565 const char *pszName;
566 /** The linkage name. */
567 const char *pszLinkageName;
568 /** The address range of the code belonging to this unit. */
569 RTDWARFADDRRANGE PcRange;
570 /** The first instruction in the function. */
571 RTDWARFADDR EntryPc;
572 /** Segment number (watcom). */
573 RTSEL uSegment;
574 /** Reference to the specification. */
575 RTDWARFREF SpecRef;
576} RTDWARFDIESUBPROGRAM;
577/** Pointer to a DW_TAG_subprogram DIE. */
578typedef RTDWARFDIESUBPROGRAM *PRTDWARFDIESUBPROGRAM;
579/** Pointer to a const DW_TAG_subprogram DIE. */
580typedef RTDWARFDIESUBPROGRAM const *PCRTDWARFDIESUBPROGRAM;
581
582
583/** RTDWARFDIESUBPROGRAM attributes. */
584static const RTDWARFATTRDESC g_aSubProgramAttrs[] =
585{
586 ATTR_ENTRY(DW_AT_name, RTDWARFDIESUBPROGRAM, pszName, ATTR_INIT_ZERO, rtDwarfDecode_String),
587 ATTR_ENTRY(DW_AT_linkage_name, RTDWARFDIESUBPROGRAM, pszLinkageName, ATTR_INIT_ZERO, rtDwarfDecode_String),
588 ATTR_ENTRY(DW_AT_MIPS_linkage_name, RTDWARFDIESUBPROGRAM, pszLinkageName, ATTR_INIT_ZERO, rtDwarfDecode_String),
589 ATTR_ENTRY(DW_AT_low_pc, RTDWARFDIESUBPROGRAM, PcRange, ATTR_INIT_ZERO, rtDwarfDecode_LowHighPc),
590 ATTR_ENTRY(DW_AT_high_pc, RTDWARFDIESUBPROGRAM, PcRange, ATTR_INIT_ZERO, rtDwarfDecode_LowHighPc),
591 ATTR_ENTRY(DW_AT_ranges, RTDWARFDIESUBPROGRAM, PcRange, ATTR_INIT_ZERO, rtDwarfDecode_Ranges),
592 ATTR_ENTRY(DW_AT_entry_pc, RTDWARFDIESUBPROGRAM, EntryPc, ATTR_INIT_ZERO, rtDwarfDecode_Address),
593 ATTR_ENTRY(DW_AT_segment, RTDWARFDIESUBPROGRAM, uSegment, ATTR_INIT_ZERO, rtDwarfDecode_SegmentLoc),
594 ATTR_ENTRY(DW_AT_specification, RTDWARFDIESUBPROGRAM, SpecRef, ATTR_INIT_ZERO, rtDwarfDecode_Reference)
595};
596
597/** RTDWARFDIESUBPROGRAM description. */
598static const RTDWARFDIEDESC g_SubProgramDesc = DIE_DESC_INIT(RTDWARFDIESUBPROGRAM, g_aSubProgramAttrs);
599
600
601/** RTDWARFDIESUBPROGRAM attributes for the specification hack. */
602static const RTDWARFATTRDESC g_aSubProgramSpecHackAttrs[] =
603{
604 ATTR_ENTRY(DW_AT_name, RTDWARFDIESUBPROGRAM, pszName, ATTR_INIT_ZERO, rtDwarfDecode_String),
605 ATTR_ENTRY(DW_AT_linkage_name, RTDWARFDIESUBPROGRAM, pszLinkageName, ATTR_INIT_ZERO, rtDwarfDecode_String),
606 ATTR_ENTRY(DW_AT_MIPS_linkage_name, RTDWARFDIESUBPROGRAM, pszLinkageName, ATTR_INIT_ZERO, rtDwarfDecode_String),
607};
608
609/** RTDWARFDIESUBPROGRAM description for the specification hack. */
610static const RTDWARFDIEDESC g_SubProgramSpecHackDesc = DIE_DESC_INIT(RTDWARFDIESUBPROGRAM, g_aSubProgramSpecHackAttrs);
611
612
613/**
614 * DW_TAG_label.
615 */
616typedef struct RTDWARFDIELABEL
617{
618 /** The DIE core structure. */
619 RTDWARFDIE Core;
620 /** The name. */
621 const char *pszName;
622 /** The address of the first instruction. */
623 RTDWARFADDR Address;
624 /** Segment number (watcom). */
625 RTSEL uSegment;
626 /** Externally visible? */
627 bool fExternal;
628} RTDWARFDIELABEL;
629/** Pointer to a DW_TAG_label DIE. */
630typedef RTDWARFDIELABEL *PRTDWARFDIELABEL;
631/** Pointer to a const DW_TAG_label DIE. */
632typedef RTDWARFDIELABEL const *PCRTDWARFDIELABEL;
633
634
635/** RTDWARFDIESUBPROGRAM attributes. */
636static const RTDWARFATTRDESC g_aLabelAttrs[] =
637{
638 ATTR_ENTRY(DW_AT_name, RTDWARFDIELABEL, pszName, ATTR_INIT_ZERO, rtDwarfDecode_String),
639 ATTR_ENTRY(DW_AT_low_pc, RTDWARFDIELABEL, Address, ATTR_INIT_ZERO, rtDwarfDecode_Address),
640 ATTR_ENTRY(DW_AT_segment, RTDWARFDIELABEL, uSegment, ATTR_INIT_ZERO, rtDwarfDecode_SegmentLoc),
641 ATTR_ENTRY(DW_AT_external, RTDWARFDIELABEL, fExternal, ATTR_INIT_ZERO, rtDwarfDecode_Bool)
642};
643
644/** RTDWARFDIESUBPROGRAM description. */
645static const RTDWARFDIEDESC g_LabelDesc = DIE_DESC_INIT(RTDWARFDIELABEL, g_aLabelAttrs);
646
647
648/**
649 * Tag names and descriptors.
650 */
651static const struct RTDWARFTAGDESC
652{
653 /** The tag value. */
654 uint16_t uTag;
655 /** The tag name as string. */
656 const char *pszName;
657 /** The DIE descriptor to use. */
658 PCRTDWARFDIEDESC pDesc;
659} g_aTagDescs[] =
660{
661#define TAGDESC(a_Name, a_pDesc) { DW_ ## a_Name, #a_Name, a_pDesc }
662#define TAGDESC_EMPTY() { 0, NULL, &g_CoreDieDesc }
663#define TAGDESC_CORE(a_Name) TAGDESC(a_Name, &g_CoreDieDesc)
664 TAGDESC_EMPTY(), /* 0x00 */
665 TAGDESC_CORE(TAG_array_type),
666 TAGDESC_CORE(TAG_class_type),
667 TAGDESC_CORE(TAG_entry_point),
668 TAGDESC_CORE(TAG_enumeration_type), /* 0x04 */
669 TAGDESC_CORE(TAG_formal_parameter),
670 TAGDESC_EMPTY(),
671 TAGDESC_EMPTY(),
672 TAGDESC_CORE(TAG_imported_declaration), /* 0x08 */
673 TAGDESC_EMPTY(),
674 TAGDESC(TAG_label, &g_LabelDesc),
675 TAGDESC_CORE(TAG_lexical_block),
676 TAGDESC_EMPTY(), /* 0x0c */
677 TAGDESC_CORE(TAG_member),
678 TAGDESC_EMPTY(),
679 TAGDESC_CORE(TAG_pointer_type),
680 TAGDESC_CORE(TAG_reference_type), /* 0x10 */
681 TAGDESC_CORE(TAG_compile_unit),
682 TAGDESC_CORE(TAG_string_type),
683 TAGDESC_CORE(TAG_structure_type),
684 TAGDESC_EMPTY(), /* 0x14 */
685 TAGDESC_CORE(TAG_subroutine_type),
686 TAGDESC_CORE(TAG_typedef),
687 TAGDESC_CORE(TAG_union_type),
688 TAGDESC_CORE(TAG_unspecified_parameters), /* 0x18 */
689 TAGDESC_CORE(TAG_variant),
690 TAGDESC_CORE(TAG_common_block),
691 TAGDESC_CORE(TAG_common_inclusion),
692 TAGDESC_CORE(TAG_inheritance), /* 0x1c */
693 TAGDESC_CORE(TAG_inlined_subroutine),
694 TAGDESC_CORE(TAG_module),
695 TAGDESC_CORE(TAG_ptr_to_member_type),
696 TAGDESC_CORE(TAG_set_type), /* 0x20 */
697 TAGDESC_CORE(TAG_subrange_type),
698 TAGDESC_CORE(TAG_with_stmt),
699 TAGDESC_CORE(TAG_access_declaration),
700 TAGDESC_CORE(TAG_base_type), /* 0x24 */
701 TAGDESC_CORE(TAG_catch_block),
702 TAGDESC_CORE(TAG_const_type),
703 TAGDESC_CORE(TAG_constant),
704 TAGDESC_CORE(TAG_enumerator), /* 0x28 */
705 TAGDESC_CORE(TAG_file_type),
706 TAGDESC_CORE(TAG_friend),
707 TAGDESC_CORE(TAG_namelist),
708 TAGDESC_CORE(TAG_namelist_item), /* 0x2c */
709 TAGDESC_CORE(TAG_packed_type),
710 TAGDESC(TAG_subprogram, &g_SubProgramDesc),
711 TAGDESC_CORE(TAG_template_type_parameter),
712 TAGDESC_CORE(TAG_template_value_parameter), /* 0x30 */
713 TAGDESC_CORE(TAG_thrown_type),
714 TAGDESC_CORE(TAG_try_block),
715 TAGDESC_CORE(TAG_variant_part),
716 TAGDESC_CORE(TAG_variable), /* 0x34 */
717 TAGDESC_CORE(TAG_volatile_type),
718 TAGDESC_CORE(TAG_dwarf_procedure),
719 TAGDESC_CORE(TAG_restrict_type),
720 TAGDESC_CORE(TAG_interface_type), /* 0x38 */
721 TAGDESC_CORE(TAG_namespace),
722 TAGDESC_CORE(TAG_imported_module),
723 TAGDESC_CORE(TAG_unspecified_type),
724 TAGDESC_CORE(TAG_partial_unit), /* 0x3c */
725 TAGDESC_CORE(TAG_imported_unit),
726 TAGDESC_EMPTY(),
727 TAGDESC_CORE(TAG_condition),
728 TAGDESC_CORE(TAG_shared_type), /* 0x40 */
729 TAGDESC_CORE(TAG_type_unit),
730 TAGDESC_CORE(TAG_rvalue_reference_type),
731 TAGDESC_CORE(TAG_template_alias)
732#undef TAGDESC
733#undef TAGDESC_EMPTY
734#undef TAGDESC_CORE
735};
736
737
738/*********************************************************************************************************************************
739* Internal Functions *
740*********************************************************************************************************************************/
741static int rtDwarfInfo_ParseDie(PRTDBGMODDWARF pThis, PRTDWARFDIE pDie, PCRTDWARFDIEDESC pDieDesc,
742 PRTDWARFCURSOR pCursor, PCRTDWARFABBREV pAbbrev, bool fInitDie);
743
744
745
746#if defined(LOG_ENABLED) || defined(RT_STRICT)
747
748# if 0 /* unused */
749/**
750 * Turns a tag value into a string for logging purposes.
751 *
752 * @returns String name.
753 * @param uTag The tag.
754 */
755static const char *rtDwarfLog_GetTagName(uint32_t uTag)
756{
757 if (uTag < RT_ELEMENTS(g_aTagDescs))
758 {
759 const char *pszTag = g_aTagDescs[uTag].pszName;
760 if (pszTag)
761 return pszTag;
762 }
763
764 static char s_szStatic[32];
765 RTStrPrintf(s_szStatic, sizeof(s_szStatic),"DW_TAG_%#x", uTag);
766 return s_szStatic;
767}
768# endif
769
770
771/**
772 * Turns an attributevalue into a string for logging purposes.
773 *
774 * @returns String name.
775 * @param uAttr The attribute.
776 */
777static const char *rtDwarfLog_AttrName(uint32_t uAttr)
778{
779 switch (uAttr)
780 {
781 RT_CASE_RET_STR(DW_AT_sibling);
782 RT_CASE_RET_STR(DW_AT_location);
783 RT_CASE_RET_STR(DW_AT_name);
784 RT_CASE_RET_STR(DW_AT_ordering);
785 RT_CASE_RET_STR(DW_AT_byte_size);
786 RT_CASE_RET_STR(DW_AT_bit_offset);
787 RT_CASE_RET_STR(DW_AT_bit_size);
788 RT_CASE_RET_STR(DW_AT_stmt_list);
789 RT_CASE_RET_STR(DW_AT_low_pc);
790 RT_CASE_RET_STR(DW_AT_high_pc);
791 RT_CASE_RET_STR(DW_AT_language);
792 RT_CASE_RET_STR(DW_AT_discr);
793 RT_CASE_RET_STR(DW_AT_discr_value);
794 RT_CASE_RET_STR(DW_AT_visibility);
795 RT_CASE_RET_STR(DW_AT_import);
796 RT_CASE_RET_STR(DW_AT_string_length);
797 RT_CASE_RET_STR(DW_AT_common_reference);
798 RT_CASE_RET_STR(DW_AT_comp_dir);
799 RT_CASE_RET_STR(DW_AT_const_value);
800 RT_CASE_RET_STR(DW_AT_containing_type);
801 RT_CASE_RET_STR(DW_AT_default_value);
802 RT_CASE_RET_STR(DW_AT_inline);
803 RT_CASE_RET_STR(DW_AT_is_optional);
804 RT_CASE_RET_STR(DW_AT_lower_bound);
805 RT_CASE_RET_STR(DW_AT_producer);
806 RT_CASE_RET_STR(DW_AT_prototyped);
807 RT_CASE_RET_STR(DW_AT_return_addr);
808 RT_CASE_RET_STR(DW_AT_start_scope);
809 RT_CASE_RET_STR(DW_AT_bit_stride);
810 RT_CASE_RET_STR(DW_AT_upper_bound);
811 RT_CASE_RET_STR(DW_AT_abstract_origin);
812 RT_CASE_RET_STR(DW_AT_accessibility);
813 RT_CASE_RET_STR(DW_AT_address_class);
814 RT_CASE_RET_STR(DW_AT_artificial);
815 RT_CASE_RET_STR(DW_AT_base_types);
816 RT_CASE_RET_STR(DW_AT_calling_convention);
817 RT_CASE_RET_STR(DW_AT_count);
818 RT_CASE_RET_STR(DW_AT_data_member_location);
819 RT_CASE_RET_STR(DW_AT_decl_column);
820 RT_CASE_RET_STR(DW_AT_decl_file);
821 RT_CASE_RET_STR(DW_AT_decl_line);
822 RT_CASE_RET_STR(DW_AT_declaration);
823 RT_CASE_RET_STR(DW_AT_discr_list);
824 RT_CASE_RET_STR(DW_AT_encoding);
825 RT_CASE_RET_STR(DW_AT_external);
826 RT_CASE_RET_STR(DW_AT_frame_base);
827 RT_CASE_RET_STR(DW_AT_friend);
828 RT_CASE_RET_STR(DW_AT_identifier_case);
829 RT_CASE_RET_STR(DW_AT_macro_info);
830 RT_CASE_RET_STR(DW_AT_namelist_item);
831 RT_CASE_RET_STR(DW_AT_priority);
832 RT_CASE_RET_STR(DW_AT_segment);
833 RT_CASE_RET_STR(DW_AT_specification);
834 RT_CASE_RET_STR(DW_AT_static_link);
835 RT_CASE_RET_STR(DW_AT_type);
836 RT_CASE_RET_STR(DW_AT_use_location);
837 RT_CASE_RET_STR(DW_AT_variable_parameter);
838 RT_CASE_RET_STR(DW_AT_virtuality);
839 RT_CASE_RET_STR(DW_AT_vtable_elem_location);
840 RT_CASE_RET_STR(DW_AT_allocated);
841 RT_CASE_RET_STR(DW_AT_associated);
842 RT_CASE_RET_STR(DW_AT_data_location);
843 RT_CASE_RET_STR(DW_AT_byte_stride);
844 RT_CASE_RET_STR(DW_AT_entry_pc);
845 RT_CASE_RET_STR(DW_AT_use_UTF8);
846 RT_CASE_RET_STR(DW_AT_extension);
847 RT_CASE_RET_STR(DW_AT_ranges);
848 RT_CASE_RET_STR(DW_AT_trampoline);
849 RT_CASE_RET_STR(DW_AT_call_column);
850 RT_CASE_RET_STR(DW_AT_call_file);
851 RT_CASE_RET_STR(DW_AT_call_line);
852 RT_CASE_RET_STR(DW_AT_description);
853 RT_CASE_RET_STR(DW_AT_binary_scale);
854 RT_CASE_RET_STR(DW_AT_decimal_scale);
855 RT_CASE_RET_STR(DW_AT_small);
856 RT_CASE_RET_STR(DW_AT_decimal_sign);
857 RT_CASE_RET_STR(DW_AT_digit_count);
858 RT_CASE_RET_STR(DW_AT_picture_string);
859 RT_CASE_RET_STR(DW_AT_mutable);
860 RT_CASE_RET_STR(DW_AT_threads_scaled);
861 RT_CASE_RET_STR(DW_AT_explicit);
862 RT_CASE_RET_STR(DW_AT_object_pointer);
863 RT_CASE_RET_STR(DW_AT_endianity);
864 RT_CASE_RET_STR(DW_AT_elemental);
865 RT_CASE_RET_STR(DW_AT_pure);
866 RT_CASE_RET_STR(DW_AT_recursive);
867 RT_CASE_RET_STR(DW_AT_signature);
868 RT_CASE_RET_STR(DW_AT_main_subprogram);
869 RT_CASE_RET_STR(DW_AT_data_bit_offset);
870 RT_CASE_RET_STR(DW_AT_const_expr);
871 RT_CASE_RET_STR(DW_AT_enum_class);
872 RT_CASE_RET_STR(DW_AT_linkage_name);
873 RT_CASE_RET_STR(DW_AT_MIPS_linkage_name);
874 RT_CASE_RET_STR(DW_AT_WATCOM_memory_model);
875 RT_CASE_RET_STR(DW_AT_WATCOM_references_start);
876 RT_CASE_RET_STR(DW_AT_WATCOM_parm_entry);
877 }
878 static char s_szStatic[32];
879 RTStrPrintf(s_szStatic, sizeof(s_szStatic),"DW_AT_%#x", uAttr);
880 return s_szStatic;
881}
882
883
884/**
885 * Turns a form value into a string for logging purposes.
886 *
887 * @returns String name.
888 * @param uForm The form.
889 */
890static const char *rtDwarfLog_FormName(uint32_t uForm)
891{
892 switch (uForm)
893 {
894 RT_CASE_RET_STR(DW_FORM_addr);
895 RT_CASE_RET_STR(DW_FORM_block2);
896 RT_CASE_RET_STR(DW_FORM_block4);
897 RT_CASE_RET_STR(DW_FORM_data2);
898 RT_CASE_RET_STR(DW_FORM_data4);
899 RT_CASE_RET_STR(DW_FORM_data8);
900 RT_CASE_RET_STR(DW_FORM_string);
901 RT_CASE_RET_STR(DW_FORM_block);
902 RT_CASE_RET_STR(DW_FORM_block1);
903 RT_CASE_RET_STR(DW_FORM_data1);
904 RT_CASE_RET_STR(DW_FORM_flag);
905 RT_CASE_RET_STR(DW_FORM_sdata);
906 RT_CASE_RET_STR(DW_FORM_strp);
907 RT_CASE_RET_STR(DW_FORM_udata);
908 RT_CASE_RET_STR(DW_FORM_ref_addr);
909 RT_CASE_RET_STR(DW_FORM_ref1);
910 RT_CASE_RET_STR(DW_FORM_ref2);
911 RT_CASE_RET_STR(DW_FORM_ref4);
912 RT_CASE_RET_STR(DW_FORM_ref8);
913 RT_CASE_RET_STR(DW_FORM_ref_udata);
914 RT_CASE_RET_STR(DW_FORM_indirect);
915 RT_CASE_RET_STR(DW_FORM_sec_offset);
916 RT_CASE_RET_STR(DW_FORM_exprloc);
917 RT_CASE_RET_STR(DW_FORM_flag_present);
918 RT_CASE_RET_STR(DW_FORM_ref_sig8);
919 }
920 static char s_szStatic[32];
921 RTStrPrintf(s_szStatic, sizeof(s_szStatic),"DW_FORM_%#x", uForm);
922 return s_szStatic;
923}
924
925#endif /* LOG_ENABLED || RT_STRICT */
926
927
928
929/** @callback_method_impl{FNRTLDRENUMSEGS} */
930static DECLCALLBACK(int) rtDbgModDwarfScanSegmentsCallback(RTLDRMOD hLdrMod, PCRTLDRSEG pSeg, void *pvUser)
931{
932 PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pvUser;
933 Log(("Segment %.*s: LinkAddress=%#llx RVA=%#llx cb=%#llx\n",
934 pSeg->cchName, pSeg->pszName, (uint64_t)pSeg->LinkAddress, (uint64_t)pSeg->RVA, pSeg->cb));
935 NOREF(hLdrMod);
936
937 /* Count relevant segments. */
938 if (pSeg->RVA != NIL_RTLDRADDR)
939 pThis->cSegs++;
940
941 return VINF_SUCCESS;
942}
943
944
945/** @callback_method_impl{FNRTLDRENUMSEGS} */
946static DECLCALLBACK(int) rtDbgModDwarfAddSegmentsCallback(RTLDRMOD hLdrMod, PCRTLDRSEG pSeg, void *pvUser)
947{
948 PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pvUser;
949 Log(("Segment %.*s: LinkAddress=%#llx RVA=%#llx cb=%#llx cbMapped=%#llx\n",
950 pSeg->cchName, pSeg->pszName, (uint64_t)pSeg->LinkAddress, (uint64_t)pSeg->RVA, pSeg->cb, pSeg->cbMapped));
951 NOREF(hLdrMod);
952 Assert(pSeg->cchName > 0);
953 Assert(!pSeg->pszName[pSeg->cchName]);
954
955 /* If the segment doesn't have a mapping, just add a dummy so the indexing
956 works out correctly (same as for the image). */
957 if (pSeg->RVA == NIL_RTLDRADDR)
958 return RTDbgModSegmentAdd(pThis->hCnt, 0, 0, pSeg->pszName, 0 /*fFlags*/, NULL);
959
960 /* The link address is 0 for all segments in a relocatable ELF image. */
961 RTLDRADDR cb = pSeg->cb;
962 if ( cb < pSeg->cbMapped
963 && RTLdrGetFormat(hLdrMod) != RTLDRFMT_LX /* for debugging our drivers; 64KB section align by linker, 4KB by loader. */
964 )
965 cb = pSeg->cbMapped;
966 return RTDbgModSegmentAdd(pThis->hCnt, pSeg->RVA, cb, pSeg->pszName, 0 /*fFlags*/, NULL);
967}
968
969
970/**
971 * Calls rtDbgModDwarfAddSegmentsCallback for each segment in the executable
972 * image.
973 *
974 * @returns IPRT status code.
975 * @param pThis The DWARF instance.
976 */
977static int rtDbgModDwarfAddSegmentsFromImage(PRTDBGMODDWARF pThis)
978{
979 AssertReturn(pThis->pImgMod && pThis->pImgMod->pImgVt, VERR_INTERNAL_ERROR_2);
980 Assert(!pThis->cSegs);
981 int rc = pThis->pImgMod->pImgVt->pfnEnumSegments(pThis->pImgMod, rtDbgModDwarfScanSegmentsCallback, pThis);
982 if (RT_SUCCESS(rc))
983 {
984 if (pThis->cSegs == 0)
985 pThis->iWatcomPass = 1;
986 else
987 {
988 pThis->cSegs = 0;
989 pThis->iWatcomPass = -1;
990 rc = pThis->pImgMod->pImgVt->pfnEnumSegments(pThis->pImgMod, rtDbgModDwarfAddSegmentsCallback, pThis);
991 }
992 }
993
994 return rc;
995}
996
997
998/**
999 * Looks up a segment.
1000 *
1001 * @returns Pointer to the segment on success, NULL if not found.
1002 * @param pThis The DWARF instance.
1003 * @param uSeg The segment number / selector.
1004 */
1005static PRTDBGDWARFSEG rtDbgModDwarfFindSegment(PRTDBGMODDWARF pThis, RTSEL uSeg)
1006{
1007 uint32_t cSegs = pThis->cSegs;
1008 uint32_t iSeg = pThis->iSegHint;
1009 PRTDBGDWARFSEG paSegs = pThis->paSegs;
1010 if ( iSeg < cSegs
1011 && paSegs[iSeg].uSegment == uSeg)
1012 return &paSegs[iSeg];
1013
1014 for (iSeg = 0; iSeg < cSegs; iSeg++)
1015 if (uSeg == paSegs[iSeg].uSegment)
1016 {
1017 pThis->iSegHint = iSeg;
1018 return &paSegs[iSeg];
1019 }
1020
1021 AssertFailed();
1022 return NULL;
1023}
1024
1025
1026/**
1027 * Record a segment:offset during pass 1.
1028 *
1029 * @returns IPRT status code.
1030 * @param pThis The DWARF instance.
1031 * @param uSeg The segment number / selector.
1032 * @param offSeg The segment offset.
1033 */
1034static int rtDbgModDwarfRecordSegOffset(PRTDBGMODDWARF pThis, RTSEL uSeg, uint64_t offSeg)
1035{
1036 /* Look up the segment. */
1037 uint32_t cSegs = pThis->cSegs;
1038 uint32_t iSeg = pThis->iSegHint;
1039 PRTDBGDWARFSEG paSegs = pThis->paSegs;
1040 if ( iSeg >= cSegs
1041 || paSegs[iSeg].uSegment != uSeg)
1042 {
1043 for (iSeg = 0; iSeg < cSegs; iSeg++)
1044 if (uSeg <= paSegs[iSeg].uSegment)
1045 break;
1046 if ( iSeg >= cSegs
1047 || paSegs[iSeg].uSegment != uSeg)
1048 {
1049 /* Add */
1050 void *pvNew = RTMemRealloc(paSegs, (pThis->cSegs + 1) * sizeof(paSegs[0]));
1051 if (!pvNew)
1052 return VERR_NO_MEMORY;
1053 pThis->paSegs = paSegs = (PRTDBGDWARFSEG)pvNew;
1054 if (iSeg != cSegs)
1055 memmove(&paSegs[iSeg + 1], &paSegs[iSeg], (cSegs - iSeg) * sizeof(paSegs[0]));
1056 paSegs[iSeg].offHighest = offSeg;
1057 paSegs[iSeg].uBaseAddr = 0;
1058 paSegs[iSeg].cbSegment = 0;
1059 paSegs[iSeg].uSegment = uSeg;
1060 pThis->cSegs++;
1061 }
1062
1063 pThis->iSegHint = iSeg;
1064 }
1065
1066 /* Increase it's range? */
1067 if (paSegs[iSeg].offHighest < offSeg)
1068 {
1069 Log3(("rtDbgModDwarfRecordSegOffset: iSeg=%d uSeg=%#06x offSeg=%#llx\n", iSeg, uSeg, offSeg));
1070 paSegs[iSeg].offHighest = offSeg;
1071 }
1072
1073 return VINF_SUCCESS;
1074}
1075
1076
1077/**
1078 * Calls pfnSegmentAdd for each segment in the executable image.
1079 *
1080 * @returns IPRT status code.
1081 * @param pThis The DWARF instance.
1082 */
1083static int rtDbgModDwarfAddSegmentsFromPass1(PRTDBGMODDWARF pThis)
1084{
1085 AssertReturn(pThis->cSegs, VERR_DWARF_BAD_INFO);
1086 uint32_t const cSegs = pThis->cSegs;
1087 PRTDBGDWARFSEG paSegs = pThis->paSegs;
1088
1089 /*
1090 * Are the segments assigned more or less in numerical order?
1091 */
1092 if ( paSegs[0].uSegment < 16U
1093 && paSegs[cSegs - 1].uSegment - paSegs[0].uSegment + 1U <= cSegs + 16U)
1094 {
1095 /** @todo heuristics, plase. */
1096 AssertFailedReturn(VERR_DWARF_TODO);
1097
1098 }
1099 /*
1100 * Assume DOS segmentation.
1101 */
1102 else
1103 {
1104 for (uint32_t iSeg = 0; iSeg < cSegs; iSeg++)
1105 paSegs[iSeg].uBaseAddr = (uint32_t)paSegs[iSeg].uSegment << 16;
1106 for (uint32_t iSeg = 0; iSeg < cSegs; iSeg++)
1107 paSegs[iSeg].cbSegment = paSegs[iSeg].offHighest;
1108 }
1109
1110 /*
1111 * Add them.
1112 */
1113 for (uint32_t iSeg = 0; iSeg < cSegs; iSeg++)
1114 {
1115 Log3(("rtDbgModDwarfAddSegmentsFromPass1: Seg#%u: %#010llx LB %#llx uSegment=%#x\n",
1116 iSeg, paSegs[iSeg].uBaseAddr, paSegs[iSeg].cbSegment, paSegs[iSeg].uSegment));
1117 char szName[32];
1118 RTStrPrintf(szName, sizeof(szName), "seg-%#04xh", paSegs[iSeg].uSegment);
1119 int rc = RTDbgModSegmentAdd(pThis->hCnt, paSegs[iSeg].uBaseAddr, paSegs[iSeg].cbSegment,
1120 szName, 0 /*fFlags*/, NULL);
1121 if (RT_FAILURE(rc))
1122 return rc;
1123 }
1124
1125 return VINF_SUCCESS;
1126}
1127
1128
1129/**
1130 * Loads a DWARF section from the image file.
1131 *
1132 * @returns IPRT status code.
1133 * @param pThis The DWARF instance.
1134 * @param enmSect The section to load.
1135 */
1136static int rtDbgModDwarfLoadSection(PRTDBGMODDWARF pThis, krtDbgModDwarfSect enmSect)
1137{
1138 /*
1139 * Don't load stuff twice.
1140 */
1141 if (pThis->aSections[enmSect].pv)
1142 return VINF_SUCCESS;
1143
1144 /*
1145 * Sections that are not present cannot be loaded, treat them like they
1146 * are empty
1147 */
1148 if (!pThis->aSections[enmSect].fPresent)
1149 {
1150 Assert(pThis->aSections[enmSect].cb);
1151 return VINF_SUCCESS;
1152 }
1153 if (!pThis->aSections[enmSect].cb)
1154 return VINF_SUCCESS;
1155
1156 /*
1157 * Sections must be readable with the current image interface.
1158 */
1159 if (pThis->aSections[enmSect].offFile < 0)
1160 return VERR_OUT_OF_RANGE;
1161
1162 /*
1163 * Do the job.
1164 */
1165 return pThis->pDbgInfoMod->pImgVt->pfnMapPart(pThis->pDbgInfoMod,
1166 pThis->aSections[enmSect].iDbgInfo,
1167 pThis->aSections[enmSect].offFile,
1168 pThis->aSections[enmSect].cb,
1169 &pThis->aSections[enmSect].pv);
1170}
1171
1172
1173#ifdef SOME_UNUSED_FUNCTION
1174/**
1175 * Unloads a DWARF section previously mapped by rtDbgModDwarfLoadSection.
1176 *
1177 * @returns IPRT status code.
1178 * @param pThis The DWARF instance.
1179 * @param enmSect The section to unload.
1180 */
1181static int rtDbgModDwarfUnloadSection(PRTDBGMODDWARF pThis, krtDbgModDwarfSect enmSect)
1182{
1183 if (!pThis->aSections[enmSect].pv)
1184 return VINF_SUCCESS;
1185
1186 int rc = pThis->pDbgInfoMod->pImgVt->pfnUnmapPart(pThis->pDbgInfoMod, pThis->aSections[enmSect].cb, &pThis->aSections[enmSect].pv);
1187 AssertRC(rc);
1188 return rc;
1189}
1190#endif
1191
1192
1193/**
1194 * Converts to UTF-8 or otherwise makes sure it's valid UTF-8.
1195 *
1196 * @returns IPRT status code.
1197 * @param pThis The DWARF instance.
1198 * @param ppsz Pointer to the string pointer. May be
1199 * reallocated (RTStr*).
1200 */
1201static int rtDbgModDwarfStringToUtf8(PRTDBGMODDWARF pThis, char **ppsz)
1202{
1203 /** @todo DWARF & UTF-8. */
1204 NOREF(pThis);
1205 RTStrPurgeEncoding(*ppsz);
1206 return VINF_SUCCESS;
1207}
1208
1209
1210/**
1211 * Convers a link address into a segment+offset or RVA.
1212 *
1213 * @returns IPRT status code.
1214 * @param pThis The DWARF instance.
1215 * @param uSegment The segment, 0 if not applicable.
1216 * @param LinkAddress The address to convert..
1217 * @param piSeg The segment index.
1218 * @param poffSeg Where to return the segment offset.
1219 */
1220static int rtDbgModDwarfLinkAddressToSegOffset(PRTDBGMODDWARF pThis, RTSEL uSegment, uint64_t LinkAddress,
1221 PRTDBGSEGIDX piSeg, PRTLDRADDR poffSeg)
1222{
1223 if (pThis->paSegs)
1224 {
1225 PRTDBGDWARFSEG pSeg = rtDbgModDwarfFindSegment(pThis, uSegment);
1226 if (pSeg)
1227 {
1228 *piSeg = pSeg - pThis->paSegs;
1229 *poffSeg = LinkAddress;
1230 return VINF_SUCCESS;
1231 }
1232 }
1233
1234 if (pThis->fUseLinkAddress)
1235 return pThis->pImgMod->pImgVt->pfnLinkAddressToSegOffset(pThis->pImgMod, LinkAddress, piSeg, poffSeg);
1236
1237 /* If we have a non-zero segment number, assume it's correct for now.
1238 This helps loading watcom linked LX drivers. */
1239 if (uSegment > 0)
1240 {
1241 *piSeg = uSegment - 1;
1242 *poffSeg = LinkAddress;
1243 return VINF_SUCCESS;
1244 }
1245
1246 return pThis->pImgMod->pImgVt->pfnRvaToSegOffset(pThis->pImgMod, LinkAddress, piSeg, poffSeg);
1247}
1248
1249
1250/**
1251 * Converts a segment+offset address into an RVA.
1252 *
1253 * @returns IPRT status code.
1254 * @param pThis The DWARF instance.
1255 * @param idxSegment The segment index.
1256 * @param offSegment The segment offset.
1257 * @param puRva Where to return the calculated RVA.
1258 */
1259static int rtDbgModDwarfSegOffsetToRva(PRTDBGMODDWARF pThis, RTDBGSEGIDX idxSegment, uint64_t offSegment, PRTUINTPTR puRva)
1260{
1261 if (pThis->paSegs)
1262 {
1263 PRTDBGDWARFSEG pSeg = rtDbgModDwarfFindSegment(pThis, idxSegment);
1264 if (pSeg)
1265 {
1266 *puRva = pSeg->uBaseAddr + offSegment;
1267 return VINF_SUCCESS;
1268 }
1269 }
1270
1271 RTUINTPTR uRva = RTDbgModSegmentRva(pThis->pImgMod, idxSegment);
1272 if (uRva != RTUINTPTR_MAX)
1273 {
1274 *puRva = uRva + offSegment;
1275 return VINF_SUCCESS;
1276 }
1277 return VERR_INVALID_POINTER;
1278}
1279
1280/**
1281 * Converts a segment+offset address into an RVA.
1282 *
1283 * @returns IPRT status code.
1284 * @param pThis The DWARF instance.
1285 * @param uRva The RVA to convert.
1286 * @param pidxSegment Where to return the segment index.
1287 * @param poffSegment Where to return the segment offset.
1288 */
1289static int rtDbgModDwarfRvaToSegOffset(PRTDBGMODDWARF pThis, RTUINTPTR uRva, RTDBGSEGIDX *pidxSegment, uint64_t *poffSegment)
1290{
1291 RTUINTPTR offSeg = 0;
1292 RTDBGSEGIDX idxSeg = RTDbgModRvaToSegOff(pThis->pImgMod, uRva, &offSeg);
1293 if (idxSeg != NIL_RTDBGSEGIDX)
1294 {
1295 *pidxSegment = idxSeg;
1296 *poffSegment = offSeg;
1297 return VINF_SUCCESS;
1298 }
1299 return VERR_INVALID_POINTER;
1300}
1301
1302
1303
1304/*
1305 *
1306 * DWARF Cursor.
1307 * DWARF Cursor.
1308 * DWARF Cursor.
1309 *
1310 */
1311
1312
1313/**
1314 * Reads a 8-bit unsigned integer and advances the cursor.
1315 *
1316 * @returns 8-bit unsigned integer. On error RTDWARFCURSOR::rc is set and @a
1317 * uErrValue is returned.
1318 * @param pCursor The cursor.
1319 * @param uErrValue What to return on read error.
1320 */
1321static uint8_t rtDwarfCursor_GetU8(PRTDWARFCURSOR pCursor, uint8_t uErrValue)
1322{
1323 if (pCursor->cbUnitLeft < 1)
1324 {
1325 pCursor->rc = VERR_DWARF_UNEXPECTED_END;
1326 return uErrValue;
1327 }
1328
1329 uint8_t u8 = pCursor->pb[0];
1330 pCursor->pb += 1;
1331 pCursor->cbUnitLeft -= 1;
1332 pCursor->cbLeft -= 1;
1333 return u8;
1334}
1335
1336
1337/**
1338 * Reads a 16-bit unsigned integer and advances the cursor.
1339 *
1340 * @returns 16-bit unsigned integer. On error RTDWARFCURSOR::rc is set and @a
1341 * uErrValue is returned.
1342 * @param pCursor The cursor.
1343 * @param uErrValue What to return on read error.
1344 */
1345static uint16_t rtDwarfCursor_GetU16(PRTDWARFCURSOR pCursor, uint16_t uErrValue)
1346{
1347 if (pCursor->cbUnitLeft < 2)
1348 {
1349 pCursor->pb += pCursor->cbUnitLeft;
1350 pCursor->cbLeft -= pCursor->cbUnitLeft;
1351 pCursor->cbUnitLeft = 0;
1352 pCursor->rc = VERR_DWARF_UNEXPECTED_END;
1353 return uErrValue;
1354 }
1355
1356 uint16_t u16 = RT_MAKE_U16(pCursor->pb[0], pCursor->pb[1]);
1357 pCursor->pb += 2;
1358 pCursor->cbUnitLeft -= 2;
1359 pCursor->cbLeft -= 2;
1360 if (!pCursor->fNativEndian)
1361 u16 = RT_BSWAP_U16(u16);
1362 return u16;
1363}
1364
1365
1366/**
1367 * Reads a 32-bit unsigned integer and advances the cursor.
1368 *
1369 * @returns 32-bit unsigned integer. On error RTDWARFCURSOR::rc is set and @a
1370 * uErrValue is returned.
1371 * @param pCursor The cursor.
1372 * @param uErrValue What to return on read error.
1373 */
1374static uint32_t rtDwarfCursor_GetU32(PRTDWARFCURSOR pCursor, uint32_t uErrValue)
1375{
1376 if (pCursor->cbUnitLeft < 4)
1377 {
1378 pCursor->pb += pCursor->cbUnitLeft;
1379 pCursor->cbLeft -= pCursor->cbUnitLeft;
1380 pCursor->cbUnitLeft = 0;
1381 pCursor->rc = VERR_DWARF_UNEXPECTED_END;
1382 return uErrValue;
1383 }
1384
1385 uint32_t u32 = RT_MAKE_U32_FROM_U8(pCursor->pb[0], pCursor->pb[1], pCursor->pb[2], pCursor->pb[3]);
1386 pCursor->pb += 4;
1387 pCursor->cbUnitLeft -= 4;
1388 pCursor->cbLeft -= 4;
1389 if (!pCursor->fNativEndian)
1390 u32 = RT_BSWAP_U32(u32);
1391 return u32;
1392}
1393
1394
1395/**
1396 * Reads a 64-bit unsigned integer and advances the cursor.
1397 *
1398 * @returns 64-bit unsigned integer. On error RTDWARFCURSOR::rc is set and @a
1399 * uErrValue is returned.
1400 * @param pCursor The cursor.
1401 * @param uErrValue What to return on read error.
1402 */
1403static uint64_t rtDwarfCursor_GetU64(PRTDWARFCURSOR pCursor, uint64_t uErrValue)
1404{
1405 if (pCursor->cbUnitLeft < 8)
1406 {
1407 pCursor->pb += pCursor->cbUnitLeft;
1408 pCursor->cbLeft -= pCursor->cbUnitLeft;
1409 pCursor->cbUnitLeft = 0;
1410 pCursor->rc = VERR_DWARF_UNEXPECTED_END;
1411 return uErrValue;
1412 }
1413
1414 uint64_t u64 = RT_MAKE_U64_FROM_U8(pCursor->pb[0], pCursor->pb[1], pCursor->pb[2], pCursor->pb[3],
1415 pCursor->pb[4], pCursor->pb[5], pCursor->pb[6], pCursor->pb[7]);
1416 pCursor->pb += 8;
1417 pCursor->cbUnitLeft -= 8;
1418 pCursor->cbLeft -= 8;
1419 if (!pCursor->fNativEndian)
1420 u64 = RT_BSWAP_U64(u64);
1421 return u64;
1422}
1423
1424
1425/**
1426 * Reads an unsigned LEB128 encoded number.
1427 *
1428 * @returns unsigned 64-bit number. On error RTDWARFCURSOR::rc is set and @a
1429 * uErrValue is returned.
1430 * @param pCursor The cursor.
1431 * @param uErrValue The value to return on error.
1432 */
1433static uint64_t rtDwarfCursor_GetULeb128(PRTDWARFCURSOR pCursor, uint64_t uErrValue)
1434{
1435 if (pCursor->cbUnitLeft < 1)
1436 {
1437 pCursor->rc = VERR_DWARF_UNEXPECTED_END;
1438 return uErrValue;
1439 }
1440
1441 /*
1442 * Special case - single byte.
1443 */
1444 uint8_t b = pCursor->pb[0];
1445 if (!(b & 0x80))
1446 {
1447 pCursor->pb += 1;
1448 pCursor->cbUnitLeft -= 1;
1449 pCursor->cbLeft -= 1;
1450 return b;
1451 }
1452
1453 /*
1454 * Generic case.
1455 */
1456 /* Decode. */
1457 uint32_t off = 1;
1458 uint64_t u64Ret = b & 0x7f;
1459 do
1460 {
1461 if (off == pCursor->cbUnitLeft)
1462 {
1463 pCursor->rc = VERR_DWARF_UNEXPECTED_END;
1464 u64Ret = uErrValue;
1465 break;
1466 }
1467 b = pCursor->pb[off];
1468 u64Ret |= (b & 0x7f) << off * 7;
1469 off++;
1470 } while (b & 0x80);
1471
1472 /* Update the cursor. */
1473 pCursor->pb += off;
1474 pCursor->cbUnitLeft -= off;
1475 pCursor->cbLeft -= off;
1476
1477 /* Check the range. */
1478 uint32_t cBits = off * 7;
1479 if (cBits > 64)
1480 {
1481 pCursor->rc = VERR_DWARF_LEB_OVERFLOW;
1482 u64Ret = uErrValue;
1483 }
1484
1485 return u64Ret;
1486}
1487
1488
1489/**
1490 * Reads a signed LEB128 encoded number.
1491 *
1492 * @returns signed 64-bit number. On error RTDWARFCURSOR::rc is set and @a
1493 * uErrValue is returned.
1494 * @param pCursor The cursor.
1495 * @param sErrValue The value to return on error.
1496 */
1497static int64_t rtDwarfCursor_GetSLeb128(PRTDWARFCURSOR pCursor, int64_t sErrValue)
1498{
1499 if (pCursor->cbUnitLeft < 1)
1500 {
1501 pCursor->rc = VERR_DWARF_UNEXPECTED_END;
1502 return sErrValue;
1503 }
1504
1505 /*
1506 * Special case - single byte.
1507 */
1508 uint8_t b = pCursor->pb[0];
1509 if (!(b & 0x80))
1510 {
1511 pCursor->pb += 1;
1512 pCursor->cbUnitLeft -= 1;
1513 pCursor->cbLeft -= 1;
1514 if (b & 0x40)
1515 b |= 0x80;
1516 return (int8_t)b;
1517 }
1518
1519 /*
1520 * Generic case.
1521 */
1522 /* Decode it. */
1523 uint32_t off = 1;
1524 uint64_t u64Ret = b & 0x7f;
1525 do
1526 {
1527 if (off == pCursor->cbUnitLeft)
1528 {
1529 pCursor->rc = VERR_DWARF_UNEXPECTED_END;
1530 u64Ret = (uint64_t)sErrValue;
1531 break;
1532 }
1533 b = pCursor->pb[off];
1534 u64Ret |= (b & 0x7f) << off * 7;
1535 off++;
1536 } while (b & 0x80);
1537
1538 /* Update cursor. */
1539 pCursor->pb += off;
1540 pCursor->cbUnitLeft -= off;
1541 pCursor->cbLeft -= off;
1542
1543 /* Check the range. */
1544 uint32_t cBits = off * 7;
1545 if (cBits > 64)
1546 {
1547 pCursor->rc = VERR_DWARF_LEB_OVERFLOW;
1548 u64Ret = (uint64_t)sErrValue;
1549 }
1550 /* Sign extend the value. */
1551 else if (u64Ret & RT_BIT_64(cBits - 1))
1552 u64Ret |= ~(RT_BIT_64(cBits - 1) - 1);
1553
1554 return (int64_t)u64Ret;
1555}
1556
1557
1558/**
1559 * Reads an unsigned LEB128 encoded number, max 32-bit width.
1560 *
1561 * @returns unsigned 32-bit number. On error RTDWARFCURSOR::rc is set and @a
1562 * uErrValue is returned.
1563 * @param pCursor The cursor.
1564 * @param uErrValue The value to return on error.
1565 */
1566static uint32_t rtDwarfCursor_GetULeb128AsU32(PRTDWARFCURSOR pCursor, uint32_t uErrValue)
1567{
1568 uint64_t u64 = rtDwarfCursor_GetULeb128(pCursor, uErrValue);
1569 if (u64 > UINT32_MAX)
1570 {
1571 pCursor->rc = VERR_DWARF_LEB_OVERFLOW;
1572 return uErrValue;
1573 }
1574 return (uint32_t)u64;
1575}
1576
1577
1578/**
1579 * Reads a signed LEB128 encoded number, max 32-bit width.
1580 *
1581 * @returns signed 32-bit number. On error RTDWARFCURSOR::rc is set and @a
1582 * uErrValue is returned.
1583 * @param pCursor The cursor.
1584 * @param sErrValue The value to return on error.
1585 */
1586static int32_t rtDwarfCursor_GetSLeb128AsS32(PRTDWARFCURSOR pCursor, int32_t sErrValue)
1587{
1588 int64_t s64 = rtDwarfCursor_GetSLeb128(pCursor, sErrValue);
1589 if (s64 > INT32_MAX || s64 < INT32_MIN)
1590 {
1591 pCursor->rc = VERR_DWARF_LEB_OVERFLOW;
1592 return sErrValue;
1593 }
1594 return (int32_t)s64;
1595}
1596
1597
1598/**
1599 * Skips a LEB128 encoded number.
1600 *
1601 * @returns IPRT status code.
1602 * @param pCursor The cursor.
1603 */
1604static int rtDwarfCursor_SkipLeb128(PRTDWARFCURSOR pCursor)
1605{
1606 if (RT_FAILURE(pCursor->rc))
1607 return pCursor->rc;
1608
1609 if (pCursor->cbUnitLeft < 1)
1610 return pCursor->rc = VERR_DWARF_UNEXPECTED_END;
1611
1612 uint32_t offSkip = 1;
1613 if (pCursor->pb[0] & 0x80)
1614 do
1615 {
1616 if (offSkip == pCursor->cbUnitLeft)
1617 {
1618 pCursor->rc = VERR_DWARF_UNEXPECTED_END;
1619 break;
1620 }
1621 } while (pCursor->pb[offSkip++] & 0x80);
1622
1623 pCursor->pb += offSkip;
1624 pCursor->cbUnitLeft -= offSkip;
1625 pCursor->cbLeft -= offSkip;
1626 return pCursor->rc;
1627}
1628
1629
1630/**
1631 * Advances the cursor a given number of bytes.
1632 *
1633 * @returns IPRT status code.
1634 * @param pCursor The cursor.
1635 * @param offSkip The number of bytes to advance.
1636 */
1637static int rtDwarfCursor_SkipBytes(PRTDWARFCURSOR pCursor, uint64_t offSkip)
1638{
1639 if (RT_FAILURE(pCursor->rc))
1640 return pCursor->rc;
1641 if (pCursor->cbUnitLeft < offSkip)
1642 return pCursor->rc = VERR_DWARF_UNEXPECTED_END;
1643
1644 size_t const offSkipSizeT = (size_t)offSkip;
1645 pCursor->cbUnitLeft -= offSkipSizeT;
1646 pCursor->cbLeft -= offSkipSizeT;
1647 pCursor->pb += offSkipSizeT;
1648
1649 return VINF_SUCCESS;
1650}
1651
1652
1653/**
1654 * Reads a zero terminated string, advancing the cursor beyond the terminator.
1655 *
1656 * @returns Pointer to the string.
1657 * @param pCursor The cursor.
1658 * @param pszErrValue What to return if the string isn't terminated
1659 * before the end of the unit.
1660 */
1661static const char *rtDwarfCursor_GetSZ(PRTDWARFCURSOR pCursor, const char *pszErrValue)
1662{
1663 const char *pszRet = (const char *)pCursor->pb;
1664 for (;;)
1665 {
1666 if (!pCursor->cbUnitLeft)
1667 {
1668 pCursor->rc = VERR_DWARF_BAD_STRING;
1669 return pszErrValue;
1670 }
1671 pCursor->cbUnitLeft--;
1672 pCursor->cbLeft--;
1673 if (!*pCursor->pb++)
1674 break;
1675 }
1676 return pszRet;
1677}
1678
1679
1680/**
1681 * Reads a 1, 2, 4 or 8 byte unsigned value.
1682 *
1683 * @returns 64-bit unsigned value.
1684 * @param pCursor The cursor.
1685 * @param cbValue The value size.
1686 * @param uErrValue The error value.
1687 */
1688static uint64_t rtDwarfCursor_GetVarSizedU(PRTDWARFCURSOR pCursor, size_t cbValue, uint64_t uErrValue)
1689{
1690 uint64_t u64Ret;
1691 switch (cbValue)
1692 {
1693 case 1: u64Ret = rtDwarfCursor_GetU8( pCursor, UINT8_MAX); break;
1694 case 2: u64Ret = rtDwarfCursor_GetU16(pCursor, UINT16_MAX); break;
1695 case 4: u64Ret = rtDwarfCursor_GetU32(pCursor, UINT32_MAX); break;
1696 case 8: u64Ret = rtDwarfCursor_GetU64(pCursor, UINT64_MAX); break;
1697 default:
1698 pCursor->rc = VERR_DWARF_BAD_INFO;
1699 return uErrValue;
1700 }
1701 if (RT_FAILURE(pCursor->rc))
1702 return uErrValue;
1703 return u64Ret;
1704}
1705
1706
1707#if 0 /* unused */
1708/**
1709 * Gets the pointer to a variable size block and advances the cursor.
1710 *
1711 * @returns Pointer to the block at the current cursor location. On error
1712 * RTDWARFCURSOR::rc is set and NULL returned.
1713 * @param pCursor The cursor.
1714 * @param cbBlock The block size.
1715 */
1716static const uint8_t *rtDwarfCursor_GetBlock(PRTDWARFCURSOR pCursor, uint32_t cbBlock)
1717{
1718 if (cbBlock > pCursor->cbUnitLeft)
1719 {
1720 pCursor->rc = VERR_DWARF_UNEXPECTED_END;
1721 return NULL;
1722 }
1723
1724 uint8_t const *pb = &pCursor->pb[0];
1725 pCursor->pb += cbBlock;
1726 pCursor->cbUnitLeft -= cbBlock;
1727 pCursor->cbLeft -= cbBlock;
1728 return pb;
1729}
1730#endif
1731
1732
1733/**
1734 * Reads an unsigned DWARF half number.
1735 *
1736 * @returns The number. On error RTDWARFCURSOR::rc is set and @a
1737 * uErrValue is returned.
1738 * @param pCursor The cursor.
1739 * @param uErrValue What to return on error.
1740 */
1741static uint16_t rtDwarfCursor_GetUHalf(PRTDWARFCURSOR pCursor, uint16_t uErrValue)
1742{
1743 return rtDwarfCursor_GetU16(pCursor, uErrValue);
1744}
1745
1746
1747/**
1748 * Reads an unsigned DWARF byte number.
1749 *
1750 * @returns The number. On error RTDWARFCURSOR::rc is set and @a
1751 * uErrValue is returned.
1752 * @param pCursor The cursor.
1753 * @param uErrValue What to return on error.
1754 */
1755static uint8_t rtDwarfCursor_GetUByte(PRTDWARFCURSOR pCursor, uint8_t uErrValue)
1756{
1757 return rtDwarfCursor_GetU8(pCursor, uErrValue);
1758}
1759
1760
1761/**
1762 * Reads a signed DWARF byte number.
1763 *
1764 * @returns The number. On error RTDWARFCURSOR::rc is set and @a
1765 * uErrValue is returned.
1766 * @param pCursor The cursor.
1767 * @param iErrValue What to return on error.
1768 */
1769static int8_t rtDwarfCursor_GetSByte(PRTDWARFCURSOR pCursor, int8_t iErrValue)
1770{
1771 return (int8_t)rtDwarfCursor_GetU8(pCursor, (uint8_t)iErrValue);
1772}
1773
1774
1775/**
1776 * Reads a unsigned DWARF offset value.
1777 *
1778 * @returns The value. On error RTDWARFCURSOR::rc is set and @a
1779 * uErrValue is returned.
1780 * @param pCursor The cursor.
1781 * @param uErrValue What to return on error.
1782 */
1783static uint64_t rtDwarfCursor_GetUOff(PRTDWARFCURSOR pCursor, uint64_t uErrValue)
1784{
1785 if (pCursor->f64bitDwarf)
1786 return rtDwarfCursor_GetU64(pCursor, uErrValue);
1787 return rtDwarfCursor_GetU32(pCursor, (uint32_t)uErrValue);
1788}
1789
1790
1791/**
1792 * Reads a unsigned DWARF native offset value.
1793 *
1794 * @returns The value. On error RTDWARFCURSOR::rc is set and @a
1795 * uErrValue is returned.
1796 * @param pCursor The cursor.
1797 * @param uErrValue What to return on error.
1798 */
1799static uint64_t rtDwarfCursor_GetNativeUOff(PRTDWARFCURSOR pCursor, uint64_t uErrValue)
1800{
1801 switch (pCursor->cbNativeAddr)
1802 {
1803 case 1: return rtDwarfCursor_GetU8(pCursor, (uint8_t )uErrValue);
1804 case 2: return rtDwarfCursor_GetU16(pCursor, (uint16_t)uErrValue);
1805 case 4: return rtDwarfCursor_GetU32(pCursor, (uint32_t)uErrValue);
1806 case 8: return rtDwarfCursor_GetU64(pCursor, uErrValue);
1807 default:
1808 pCursor->rc = VERR_INTERNAL_ERROR_2;
1809 return uErrValue;
1810 }
1811}
1812
1813
1814/**
1815 * Reads a 1, 2, 4 or 8 byte unsigned value.
1816 *
1817 * @returns 64-bit unsigned value.
1818 * @param pCursor The cursor.
1819 * @param bPtrEnc The pointer encoding.
1820 * @param uErrValue The error value.
1821 */
1822static uint64_t rtDwarfCursor_GetPtrEnc(PRTDWARFCURSOR pCursor, uint8_t bPtrEnc, uint64_t uErrValue)
1823{
1824 uint64_t u64Ret;
1825 switch (bPtrEnc & DW_EH_PE_FORMAT_MASK)
1826 {
1827 case DW_EH_PE_ptr:
1828 u64Ret = rtDwarfCursor_GetNativeUOff(pCursor, uErrValue);
1829 break;
1830 case DW_EH_PE_uleb128:
1831 u64Ret = rtDwarfCursor_GetULeb128(pCursor, uErrValue);
1832 break;
1833 case DW_EH_PE_udata2:
1834 u64Ret = rtDwarfCursor_GetU16(pCursor, UINT16_MAX);
1835 break;
1836 case DW_EH_PE_udata4:
1837 u64Ret = rtDwarfCursor_GetU32(pCursor, UINT32_MAX);
1838 break;
1839 case DW_EH_PE_udata8:
1840 u64Ret = rtDwarfCursor_GetU64(pCursor, UINT64_MAX);
1841 break;
1842 case DW_EH_PE_sleb128:
1843 u64Ret = rtDwarfCursor_GetSLeb128(pCursor, uErrValue);
1844 break;
1845 case DW_EH_PE_sdata2:
1846 u64Ret = (int64_t)(int16_t)rtDwarfCursor_GetU16(pCursor, UINT16_MAX);
1847 break;
1848 case DW_EH_PE_sdata4:
1849 u64Ret = (int64_t)(int32_t)rtDwarfCursor_GetU32(pCursor, UINT32_MAX);
1850 break;
1851 case DW_EH_PE_sdata8:
1852 u64Ret = rtDwarfCursor_GetU64(pCursor, UINT64_MAX);
1853 break;
1854 default:
1855 pCursor->rc = VERR_DWARF_BAD_INFO;
1856 return uErrValue;
1857 }
1858 if (RT_FAILURE(pCursor->rc))
1859 return uErrValue;
1860 return u64Ret;
1861}
1862
1863
1864/**
1865 * Gets the unit length, updating the unit length member and DWARF bitness
1866 * members of the cursor.
1867 *
1868 * @returns The unit length.
1869 * @param pCursor The cursor.
1870 */
1871static uint64_t rtDwarfCursor_GetInitialLength(PRTDWARFCURSOR pCursor)
1872{
1873 /*
1874 * Read the initial length.
1875 */
1876 pCursor->cbUnitLeft = pCursor->cbLeft;
1877 uint64_t cbUnit = rtDwarfCursor_GetU32(pCursor, 0);
1878 if (cbUnit != UINT32_C(0xffffffff))
1879 pCursor->f64bitDwarf = false;
1880 else
1881 {
1882 pCursor->f64bitDwarf = true;
1883 cbUnit = rtDwarfCursor_GetU64(pCursor, 0);
1884 }
1885
1886
1887 /*
1888 * Set the unit length, quitely fixing bad lengths.
1889 */
1890 pCursor->cbUnitLeft = (size_t)cbUnit;
1891 if ( pCursor->cbUnitLeft > pCursor->cbLeft
1892 || pCursor->cbUnitLeft != cbUnit)
1893 pCursor->cbUnitLeft = pCursor->cbLeft;
1894
1895 return cbUnit;
1896}
1897
1898
1899/**
1900 * Calculates the section offset corresponding to the current cursor position.
1901 *
1902 * @returns 32-bit section offset. If out of range, RTDWARFCURSOR::rc will be
1903 * set and UINT32_MAX returned.
1904 * @param pCursor The cursor.
1905 */
1906static uint32_t rtDwarfCursor_CalcSectOffsetU32(PRTDWARFCURSOR pCursor)
1907{
1908 size_t off = pCursor->pb - pCursor->pbStart;
1909 uint32_t offRet = (uint32_t)off;
1910 if (offRet != off)
1911 {
1912 AssertFailed();
1913 pCursor->rc = VERR_OUT_OF_RANGE;
1914 offRet = UINT32_MAX;
1915 }
1916 return offRet;
1917}
1918
1919
1920/**
1921 * Calculates an absolute cursor position from one relative to the current
1922 * cursor position.
1923 *
1924 * @returns The absolute cursor position.
1925 * @param pCursor The cursor.
1926 * @param offRelative The relative position. Must be a positive
1927 * offset.
1928 */
1929static uint8_t const *rtDwarfCursor_CalcPos(PRTDWARFCURSOR pCursor, size_t offRelative)
1930{
1931 if (offRelative > pCursor->cbUnitLeft)
1932 {
1933 Log(("rtDwarfCursor_CalcPos: bad position %#zx, cbUnitLeft=%#zu\n", offRelative, pCursor->cbUnitLeft));
1934 pCursor->rc = VERR_DWARF_BAD_POS;
1935 return NULL;
1936 }
1937 return pCursor->pb + offRelative;
1938}
1939
1940
1941/**
1942 * Advances the cursor to the given position.
1943 *
1944 * @returns IPRT status code.
1945 * @param pCursor The cursor.
1946 * @param pbNewPos The new position - returned by
1947 * rtDwarfCursor_CalcPos().
1948 */
1949static int rtDwarfCursor_AdvanceToPos(PRTDWARFCURSOR pCursor, uint8_t const *pbNewPos)
1950{
1951 if (RT_FAILURE(pCursor->rc))
1952 return pCursor->rc;
1953 AssertPtr(pbNewPos);
1954 if ((uintptr_t)pbNewPos < (uintptr_t)pCursor->pb)
1955 {
1956 Log(("rtDwarfCursor_AdvanceToPos: bad position %p, current %p\n", pbNewPos, pCursor->pb));
1957 return pCursor->rc = VERR_DWARF_BAD_POS;
1958 }
1959
1960 uintptr_t cbAdj = (uintptr_t)pbNewPos - (uintptr_t)pCursor->pb;
1961 if (RT_UNLIKELY(cbAdj > pCursor->cbUnitLeft))
1962 {
1963 AssertFailed();
1964 pCursor->rc = VERR_DWARF_BAD_POS;
1965 cbAdj = pCursor->cbUnitLeft;
1966 }
1967
1968 pCursor->cbUnitLeft -= cbAdj;
1969 pCursor->cbLeft -= cbAdj;
1970 pCursor->pb += cbAdj;
1971 return pCursor->rc;
1972}
1973
1974
1975/**
1976 * Check if the cursor is at the end of the current DWARF unit.
1977 *
1978 * @retval true if at the end or a cursor error is pending.
1979 * @retval false if not.
1980 * @param pCursor The cursor.
1981 */
1982static bool rtDwarfCursor_IsAtEndOfUnit(PRTDWARFCURSOR pCursor)
1983{
1984 return !pCursor->cbUnitLeft || RT_FAILURE(pCursor->rc);
1985}
1986
1987
1988/**
1989 * Skips to the end of the current unit.
1990 *
1991 * @returns IPRT status code.
1992 * @param pCursor The cursor.
1993 */
1994static int rtDwarfCursor_SkipUnit(PRTDWARFCURSOR pCursor)
1995{
1996 pCursor->pb += pCursor->cbUnitLeft;
1997 pCursor->cbLeft -= pCursor->cbUnitLeft;
1998 pCursor->cbUnitLeft = 0;
1999 return pCursor->rc;
2000}
2001
2002
2003/**
2004 * Check if the cursor is at the end of the section (or whatever the cursor is
2005 * processing).
2006 *
2007 * @retval true if at the end or a cursor error is pending.
2008 * @retval false if not.
2009 * @param pCursor The cursor.
2010 */
2011static bool rtDwarfCursor_IsAtEnd(PRTDWARFCURSOR pCursor)
2012{
2013 return !pCursor->cbLeft || RT_FAILURE(pCursor->rc);
2014}
2015
2016
2017/**
2018 * Initialize a section reader cursor.
2019 *
2020 * @returns IPRT status code.
2021 * @param pCursor The cursor.
2022 * @param pThis The dwarf module.
2023 * @param enmSect The name of the section to read.
2024 */
2025static int rtDwarfCursor_Init(PRTDWARFCURSOR pCursor, PRTDBGMODDWARF pThis, krtDbgModDwarfSect enmSect)
2026{
2027 int rc = rtDbgModDwarfLoadSection(pThis, enmSect);
2028 if (RT_FAILURE(rc))
2029 return rc;
2030
2031 pCursor->enmSect = enmSect;
2032 pCursor->pbStart = (uint8_t const *)pThis->aSections[enmSect].pv;
2033 pCursor->pb = pCursor->pbStart;
2034 pCursor->cbLeft = pThis->aSections[enmSect].cb;
2035 pCursor->cbUnitLeft = pCursor->cbLeft;
2036 pCursor->pDwarfMod = pThis;
2037 pCursor->f64bitDwarf = false;
2038 /** @todo ask the image about the endian used as well as the address
2039 * width. */
2040 pCursor->fNativEndian = true;
2041 pCursor->cbNativeAddr = 4;
2042 pCursor->rc = VINF_SUCCESS;
2043
2044 return VINF_SUCCESS;
2045}
2046
2047
2048/**
2049 * Initialize a section reader cursor with a skip offset.
2050 *
2051 * @returns IPRT status code.
2052 * @param pCursor The cursor.
2053 * @param pThis The dwarf module.
2054 * @param enmSect The name of the section to read.
2055 * @param offSect The offset to skip into the section.
2056 */
2057static int rtDwarfCursor_InitWithOffset(PRTDWARFCURSOR pCursor, PRTDBGMODDWARF pThis,
2058 krtDbgModDwarfSect enmSect, uint32_t offSect)
2059{
2060 if (offSect > pThis->aSections[enmSect].cb)
2061 {
2062 Log(("rtDwarfCursor_InitWithOffset: offSect=%#x cb=%#x enmSect=%d\n", offSect, pThis->aSections[enmSect].cb, enmSect));
2063 return VERR_DWARF_BAD_POS;
2064 }
2065
2066 int rc = rtDwarfCursor_Init(pCursor, pThis, enmSect);
2067 if (RT_SUCCESS(rc))
2068 {
2069 /* pCursor->pbStart += offSect; - we're skipping, offsets are relative to start of section... */
2070 pCursor->pb += offSect;
2071 pCursor->cbLeft -= offSect;
2072 pCursor->cbUnitLeft -= offSect;
2073 }
2074
2075 return rc;
2076}
2077
2078
2079/**
2080 * Initialize a cursor for a block (subsection) retrieved from the given cursor.
2081 *
2082 * The parent cursor will be advanced past the block.
2083 *
2084 * @returns IPRT status code.
2085 * @param pCursor The cursor.
2086 * @param pParent The parent cursor. Will be moved by @a cbBlock.
2087 * @param cbBlock The size of the block the new cursor should
2088 * cover.
2089 */
2090static int rtDwarfCursor_InitForBlock(PRTDWARFCURSOR pCursor, PRTDWARFCURSOR pParent, uint32_t cbBlock)
2091{
2092 if (RT_FAILURE(pParent->rc))
2093 return pParent->rc;
2094 if (pParent->cbUnitLeft < cbBlock)
2095 {
2096 Log(("rtDwarfCursor_InitForBlock: cbUnitLeft=%#x < cbBlock=%#x \n", pParent->cbUnitLeft, cbBlock));
2097 return VERR_DWARF_BAD_POS;
2098 }
2099
2100 *pCursor = *pParent;
2101 pCursor->cbLeft = cbBlock;
2102 pCursor->cbUnitLeft = cbBlock;
2103
2104 pParent->pb += cbBlock;
2105 pParent->cbLeft -= cbBlock;
2106 pParent->cbUnitLeft -= cbBlock;
2107
2108 return VINF_SUCCESS;
2109}
2110
2111
2112/**
2113 * Initialize a reader cursor for a memory block (eh_frame).
2114 *
2115 * @returns IPRT status code.
2116 * @param pCursor The cursor.
2117 * @param pvMem The memory block.
2118 * @param cbMem The size of the memory block.
2119 */
2120static int rtDwarfCursor_InitForMem(PRTDWARFCURSOR pCursor, void const *pvMem, size_t cbMem)
2121{
2122 pCursor->enmSect = krtDbgModDwarfSect_End;
2123 pCursor->pbStart = (uint8_t const *)pvMem;
2124 pCursor->pb = (uint8_t const *)pvMem;
2125 pCursor->cbLeft = cbMem;
2126 pCursor->cbUnitLeft = cbMem;
2127 pCursor->pDwarfMod = NULL;
2128 pCursor->f64bitDwarf = false;
2129 /** @todo ask the image about the endian used as well as the address
2130 * width. */
2131 pCursor->fNativEndian = true;
2132 pCursor->cbNativeAddr = 4;
2133 pCursor->rc = VINF_SUCCESS;
2134
2135 return VINF_SUCCESS;
2136}
2137
2138
2139/**
2140 * Deletes a section reader initialized by rtDwarfCursor_Init.
2141 *
2142 * @returns @a rcOther or RTDWARCURSOR::rc.
2143 * @param pCursor The section reader.
2144 * @param rcOther Other error code to be returned if it indicates
2145 * error or if the cursor status is OK.
2146 */
2147static int rtDwarfCursor_Delete(PRTDWARFCURSOR pCursor, int rcOther)
2148{
2149 /* ... and a drop of poison. */
2150 pCursor->pb = NULL;
2151 pCursor->cbLeft = ~(size_t)0;
2152 pCursor->cbUnitLeft = ~(size_t)0;
2153 pCursor->pDwarfMod = NULL;
2154 if (RT_FAILURE(pCursor->rc) && RT_SUCCESS(rcOther))
2155 rcOther = pCursor->rc;
2156 pCursor->rc = VERR_INTERNAL_ERROR_4;
2157 return rcOther;
2158}
2159
2160
2161/*
2162 *
2163 * DWARF Frame Unwind Information.
2164 * DWARF Frame Unwind Information.
2165 * DWARF Frame Unwind Information.
2166 *
2167 */
2168
2169/**
2170 * Common information entry (CIE) information.
2171 */
2172typedef struct RTDWARFCIEINFO
2173{
2174 /** The segment location of the CIE. */
2175 uint64_t offCie;
2176 /** The DWARF version. */
2177 uint8_t uDwarfVer;
2178 /** The address pointer encoding. */
2179 uint8_t bAddressPtrEnc;
2180 /** The segment size (v4). */
2181 uint8_t cbSegment;
2182 /** The return register column. UINT8_MAX if default register. */
2183 uint8_t bRetReg;
2184 /** The LSDA pointer encoding. */
2185 uint8_t bLsdaPtrEnc;
2186
2187 /** Set if the EH data field is present ('eh'). */
2188 bool fHasEhData : 1;
2189 /** Set if there is an augmentation data size ('z'). */
2190 bool fHasAugmentationSize : 1;
2191 /** Set if the augmentation data contains a LSDA (pointer size byte in CIE,
2192 * pointer in FDA) ('L'). */
2193 bool fHasLanguageSpecificDataArea : 1;
2194 /** Set if the augmentation data contains a personality routine
2195 * (pointer size + pointer) ('P'). */
2196 bool fHasPersonalityRoutine : 1;
2197 /** Set if the augmentation data contains the address encoding . */
2198 bool fHasAddressEnc : 1;
2199 /** Set if signal frame. */
2200 bool fIsSignalFrame : 1;
2201 /** Set if we've encountered unknown augmentation data. This
2202 * means the CIE is incomplete and cannot be used. */
2203 bool fHasUnknowAugmentation : 1;
2204
2205 /** Copy of the augmentation string. */
2206 const char *pszAugmentation;
2207
2208 /** Code alignment factor for the instruction. */
2209 uint64_t uCodeAlignFactor;
2210 /** Data alignment factor for the instructions. */
2211 int64_t iDataAlignFactor;
2212
2213 /** Pointer to the instruction sequence. */
2214 uint8_t const *pbInstructions;
2215 /** The length of the instruction sequence. */
2216 size_t cbInstructions;
2217} RTDWARFCIEINFO;
2218/** Pointer to CIE info. */
2219typedef RTDWARFCIEINFO *PRTDWARFCIEINFO;
2220/** Pointer to const CIE info. */
2221typedef RTDWARFCIEINFO const *PCRTDWARFCIEINFO;
2222
2223
2224/** Number of registers we care about.
2225 * @note We're currently not expecting to be decoding ppc, arm, ia64 or such,
2226 * only x86 and x86_64. We can easily increase the column count. */
2227#define RTDWARFCF_MAX_REGISTERS 96
2228
2229
2230/**
2231 * Call frame state row.
2232 */
2233typedef struct RTDWARFCFROW
2234{
2235 /** Stack worked by DW_CFA_remember_state and DW_CFA_restore_state. */
2236 struct RTDWARFCFROW *pNextOnStack;
2237
2238 /** @name CFA - Canonical frame address expression.
2239 * Since there are partial CFA instructions, we cannot be lazy like with the
2240 * register but keep register+offset around. For DW_CFA_def_cfa_expression
2241 * we just take down the program location, though.
2242 * @{ */
2243 /** Pointer to DW_CFA_def_cfa_expression instruction, NULL if reg+offset. */
2244 uint8_t const *pbCfaExprInstr;
2245 /** The CFA register offset. */
2246 int64_t offCfaReg;
2247 /** The CFA base register number. */
2248 uint16_t uCfaBaseReg;
2249 /** Set if we've got a valid CFA definition. */
2250 bool fCfaDefined : 1;
2251 /** @} */
2252
2253 /** Set if on the heap and needs freeing. */
2254 bool fOnHeap : 1;
2255 /** Pointer to the instructions bytes defining registers.
2256 * NULL means */
2257 uint8_t const *apbRegInstrs[RTDWARFCF_MAX_REGISTERS];
2258} RTDWARFCFROW;
2259typedef RTDWARFCFROW *PRTDWARFCFROW;
2260typedef RTDWARFCFROW const *PCRTDWARFCFROW;
2261
2262/** Row program execution state. */
2263typedef struct RTDWARFCFEXEC
2264{
2265 PRTDWARFCFROW pRow;
2266 /** Number of PC bytes left to advance before we get a hit. */
2267 uint64_t cbLeftToAdvance;
2268 /** Number of pushed rows. */
2269 uint32_t cPushes;
2270 /** Set if little endian, clear if big endian. */
2271 bool fLittleEndian;
2272 /** The CIE. */
2273 PCRTDWARFCIEINFO pCie;
2274 /** The program counter value for the FDE. Subjected to segment.
2275 * Needed for DW_CFA_set_loc. */
2276 uint64_t uPcBegin;
2277 /** The offset relative to uPcBegin for which we're searching for a row.
2278 * Needed for DW_CFA_set_loc. */
2279 uint64_t offInRange;
2280} RTDWARFCFEXEC;
2281typedef RTDWARFCFEXEC *PRTDWARFCFEXEC;
2282
2283
2284/* Set of macros for getting and skipping operands. */
2285#define SKIP_ULEB128_OR_LEB128() \
2286 do \
2287 { \
2288 AssertReturn(offInstr < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); \
2289 } while (pbInstr[offInstr++] & 0x80)
2290
2291#define GET_ULEB128_AS_U14(a_uDst) \
2292 do \
2293 { \
2294 AssertReturn(offInstr < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); \
2295 uint8_t b = pbInstr[offInstr++]; \
2296 (a_uDst) = b & 0x7f; \
2297 if (b & 0x80) \
2298 { \
2299 AssertReturn(offInstr < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); \
2300 b = pbInstr[offInstr++]; \
2301 AssertReturn(!(b & 0x80), VERR_DBG_MALFORMED_UNWIND_INFO); \
2302 (a_uDst) |= (uint16_t)b << 7; \
2303 } \
2304 } while (0)
2305#define GET_ULEB128_AS_U63(a_uDst) \
2306 do \
2307 { \
2308 AssertReturn(offInstr < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); \
2309 uint8_t b = pbInstr[offInstr++]; \
2310 (a_uDst) = b & 0x7f; \
2311 if (b & 0x80) \
2312 { \
2313 unsigned cShift = 7; \
2314 do \
2315 { \
2316 AssertReturn(offInstr < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); \
2317 AssertReturn(cShift < 63, VERR_DWARF_LEB_OVERFLOW); \
2318 b = pbInstr[offInstr++]; \
2319 (a_uDst) |= (uint16_t)(b & 0x7f) << cShift; \
2320 cShift += 7; \
2321 } while (b & 0x80); \
2322 } \
2323 } while (0)
2324#define GET_LEB128_AS_I63(a_uDst) \
2325 do \
2326 { \
2327 AssertReturn(offInstr < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); \
2328 uint8_t b = pbInstr[offInstr++]; \
2329 if (!(b & 0x80)) \
2330 (a_uDst) = !(b & 0x40) ? b : (int64_t)(int8_t)(b | 0x80); \
2331 else \
2332 { \
2333 /* Read value into unsigned variable: */ \
2334 unsigned cShift = 7; \
2335 uint64_t uTmp = b & 0x7f; \
2336 do \
2337 { \
2338 AssertReturn(offInstr < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); \
2339 AssertReturn(cShift < 63, VERR_DWARF_LEB_OVERFLOW); \
2340 b = pbInstr[offInstr++]; \
2341 uTmp |= (uint16_t)(b & 0x7f) << cShift; \
2342 cShift += 7; \
2343 } while (b & 0x80); \
2344 /* Sign extend before setting the destination value: */ \
2345 cShift -= 7 + 1; \
2346 if (uTmp & RT_BIT_64(cShift)) \
2347 uTmp |= ~(RT_BIT_64(cShift) - 1); \
2348 (a_uDst) = (int64_t)uTmp; \
2349 } \
2350 } while (0)
2351
2352#define SKIP_BLOCK() \
2353 do \
2354 { \
2355 uint16_t cbBlock; \
2356 GET_ULEB128_AS_U14(cbBlock); \
2357 AssertReturn(offInstr + cbBlock <= cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); \
2358 offInstr += cbBlock; \
2359 } while (0)
2360
2361
2362static int rtDwarfUnwind_Execute(PRTDWARFCFEXEC pExecState, uint8_t const *pbInstr, uint32_t cbInstr)
2363{
2364 PRTDWARFCFROW pRow = pExecState->pRow;
2365 for (uint32_t offInstr = 0; offInstr < cbInstr;)
2366 {
2367 /*
2368 * Instruction switches.
2369 */
2370 uint8_t const bInstr = pbInstr[offInstr++];
2371 switch (bInstr & DW_CFA_high_bit_mask)
2372 {
2373 case DW_CFA_advance_loc:
2374 {
2375 uint8_t const cbAdvance = bInstr & ~DW_CFA_high_bit_mask;
2376 if (cbAdvance > pExecState->cbLeftToAdvance)
2377 return VINF_SUCCESS;
2378 pExecState->cbLeftToAdvance -= cbAdvance;
2379 break;
2380 }
2381
2382 case DW_CFA_offset:
2383 {
2384 uint8_t iReg = bInstr & ~DW_CFA_high_bit_mask;
2385 if (iReg < RT_ELEMENTS(pRow->apbRegInstrs))
2386 pRow->apbRegInstrs[iReg] = &pbInstr[offInstr - 1];
2387 SKIP_ULEB128_OR_LEB128();
2388 break;
2389 }
2390
2391 case 0:
2392 switch (bInstr)
2393 {
2394 case DW_CFA_nop:
2395 break;
2396
2397 /*
2398 * Register instructions.
2399 */
2400 case DW_CFA_register:
2401 case DW_CFA_offset_extended:
2402 case DW_CFA_offset_extended_sf:
2403 case DW_CFA_val_offset:
2404 case DW_CFA_val_offset_sf:
2405 {
2406 uint8_t const * const pbCurInstr = &pbInstr[offInstr - 1];
2407 uint16_t iReg;
2408 GET_ULEB128_AS_U14(iReg);
2409 if (iReg < RT_ELEMENTS(pRow->apbRegInstrs))
2410 pRow->apbRegInstrs[iReg] = pbCurInstr;
2411 SKIP_ULEB128_OR_LEB128();
2412 break;
2413 }
2414
2415 case DW_CFA_expression:
2416 case DW_CFA_val_expression:
2417 {
2418 uint8_t const * const pbCurInstr = &pbInstr[offInstr - 1];
2419 uint16_t iReg;
2420 GET_ULEB128_AS_U14(iReg);
2421 if (iReg < RT_ELEMENTS(pRow->apbRegInstrs))
2422 pRow->apbRegInstrs[iReg] = pbCurInstr;
2423 SKIP_BLOCK();
2424 break;
2425 }
2426
2427 case DW_CFA_restore_extended:
2428 {
2429 uint8_t const * const pbCurInstr = &pbInstr[offInstr - 1];
2430 uint16_t iReg;
2431 GET_ULEB128_AS_U14(iReg);
2432 if (iReg < RT_ELEMENTS(pRow->apbRegInstrs))
2433 pRow->apbRegInstrs[iReg] = pbCurInstr;
2434 break;
2435 }
2436
2437 case DW_CFA_undefined:
2438 {
2439 uint16_t iReg;
2440 GET_ULEB128_AS_U14(iReg);
2441 if (iReg < RT_ELEMENTS(pRow->apbRegInstrs))
2442 pRow->apbRegInstrs[iReg] = NULL;
2443 break;
2444 }
2445
2446 case DW_CFA_same_value:
2447 {
2448 uint8_t const * const pbCurInstr = &pbInstr[offInstr - 1];
2449 uint16_t iReg;
2450 GET_ULEB128_AS_U14(iReg);
2451 if (iReg < RT_ELEMENTS(pRow->apbRegInstrs))
2452 pRow->apbRegInstrs[iReg] = pbCurInstr;
2453 break;
2454 }
2455
2456
2457 /*
2458 * CFA instructions.
2459 */
2460 case DW_CFA_def_cfa:
2461 {
2462 GET_ULEB128_AS_U14(pRow->uCfaBaseReg);
2463 uint64_t offCfaReg;
2464 GET_ULEB128_AS_U63(offCfaReg);
2465 pRow->offCfaReg = offCfaReg;
2466 pRow->pbCfaExprInstr = NULL;
2467 pRow->fCfaDefined = true;
2468 break;
2469 }
2470
2471 case DW_CFA_def_cfa_register:
2472 {
2473 GET_ULEB128_AS_U14(pRow->uCfaBaseReg);
2474 pRow->pbCfaExprInstr = NULL;
2475 pRow->fCfaDefined = true;
2476 /* Leaves offCfaReg as is. */
2477 break;
2478 }
2479
2480 case DW_CFA_def_cfa_offset:
2481 {
2482 uint64_t offCfaReg;
2483 GET_ULEB128_AS_U63(offCfaReg);
2484 pRow->offCfaReg = offCfaReg;
2485 pRow->pbCfaExprInstr = NULL;
2486 pRow->fCfaDefined = true;
2487 /* Leaves uCfaBaseReg as is. */
2488 break;
2489 }
2490
2491 case DW_CFA_def_cfa_sf:
2492 GET_ULEB128_AS_U14(pRow->uCfaBaseReg);
2493 GET_LEB128_AS_I63(pRow->offCfaReg);
2494 pRow->pbCfaExprInstr = NULL;
2495 pRow->fCfaDefined = true;
2496 break;
2497
2498 case DW_CFA_def_cfa_offset_sf:
2499 GET_LEB128_AS_I63(pRow->offCfaReg);
2500 pRow->pbCfaExprInstr = NULL;
2501 pRow->fCfaDefined = true;
2502 /* Leaves uCfaBaseReg as is. */
2503 break;
2504
2505 case DW_CFA_def_cfa_expression:
2506 pRow->pbCfaExprInstr = &pbInstr[offInstr - 1];
2507 pRow->fCfaDefined = true;
2508 SKIP_BLOCK();
2509 break;
2510
2511 /*
2512 * Less likely instructions:
2513 */
2514 case DW_CFA_advance_loc1:
2515 {
2516 AssertReturn(offInstr < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO);
2517 uint8_t const cbAdvance = pbInstr[offInstr++];
2518 if (cbAdvance > pExecState->cbLeftToAdvance)
2519 return VINF_SUCCESS;
2520 pExecState->cbLeftToAdvance -= cbAdvance;
2521 break;
2522 }
2523
2524 case DW_CFA_advance_loc2:
2525 {
2526 AssertReturn(offInstr + 1 < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO);
2527 uint16_t const cbAdvance = pExecState->fLittleEndian
2528 ? RT_MAKE_U16(pbInstr[offInstr], pbInstr[offInstr + 1])
2529 : RT_MAKE_U16(pbInstr[offInstr + 1], pbInstr[offInstr]);
2530 if (cbAdvance > pExecState->cbLeftToAdvance)
2531 return VINF_SUCCESS;
2532 pExecState->cbLeftToAdvance -= cbAdvance;
2533 offInstr += 2;
2534 break;
2535 }
2536
2537 case DW_CFA_advance_loc4:
2538 {
2539 AssertReturn(offInstr + 3 < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO);
2540 uint32_t const cbAdvance = pExecState->fLittleEndian
2541 ? RT_MAKE_U32_FROM_U8(pbInstr[offInstr + 0], pbInstr[offInstr + 1],
2542 pbInstr[offInstr + 2], pbInstr[offInstr + 3])
2543 : RT_MAKE_U32_FROM_U8(pbInstr[offInstr + 3], pbInstr[offInstr + 2],
2544 pbInstr[offInstr + 1], pbInstr[offInstr + 0]);
2545 if (cbAdvance > pExecState->cbLeftToAdvance)
2546 return VINF_SUCCESS;
2547 pExecState->cbLeftToAdvance -= cbAdvance;
2548 offInstr += 4;
2549 break;
2550 }
2551
2552 /*
2553 * This bugger is really annoying and probably never used.
2554 */
2555 case DW_CFA_set_loc:
2556 {
2557 /* Ignore the segment number. */
2558 if (pExecState->pCie->cbSegment)
2559 {
2560 offInstr += pExecState->pCie->cbSegment;
2561 AssertReturn(offInstr < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO);
2562 }
2563
2564 /* Retrieve the address. sigh. */
2565 uint64_t uAddress;
2566 switch (pExecState->pCie->bAddressPtrEnc & (DW_EH_PE_FORMAT_MASK | DW_EH_PE_indirect))
2567 {
2568 case DW_EH_PE_udata2:
2569 AssertReturn(offInstr + 1 < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO);
2570 if (pExecState->fLittleEndian)
2571 uAddress = RT_MAKE_U16(pbInstr[offInstr], pbInstr[offInstr + 1]);
2572 else
2573 uAddress = RT_MAKE_U16(pbInstr[offInstr + 1], pbInstr[offInstr]);
2574 offInstr += 2;
2575 break;
2576 case DW_EH_PE_sdata2:
2577 AssertReturn(offInstr + 1 < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO);
2578 if (pExecState->fLittleEndian)
2579 uAddress = (int64_t)(int16_t)RT_MAKE_U16(pbInstr[offInstr], pbInstr[offInstr + 1]);
2580 else
2581 uAddress = (int64_t)(int16_t)RT_MAKE_U16(pbInstr[offInstr + 1], pbInstr[offInstr]);
2582 offInstr += 2;
2583 break;
2584 case DW_EH_PE_udata4:
2585 AssertReturn(offInstr + 3 < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO);
2586 if (pExecState->fLittleEndian)
2587 uAddress = RT_MAKE_U32_FROM_U8(pbInstr[offInstr + 0], pbInstr[offInstr + 1],
2588 pbInstr[offInstr + 2], pbInstr[offInstr + 3]);
2589 else
2590 uAddress = RT_MAKE_U32_FROM_U8(pbInstr[offInstr + 3], pbInstr[offInstr + 2],
2591 pbInstr[offInstr + 1], pbInstr[offInstr + 0]);
2592
2593 offInstr += 4;
2594 break;
2595 case DW_EH_PE_sdata4:
2596 AssertReturn(offInstr + 3 < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO);
2597 if (pExecState->fLittleEndian)
2598 uAddress = (int64_t)(int32_t)RT_MAKE_U32_FROM_U8(pbInstr[offInstr + 0], pbInstr[offInstr + 1],
2599 pbInstr[offInstr + 2], pbInstr[offInstr + 3]);
2600 else
2601 uAddress = (int64_t)(int32_t)RT_MAKE_U32_FROM_U8(pbInstr[offInstr + 3], pbInstr[offInstr + 2],
2602 pbInstr[offInstr + 1], pbInstr[offInstr + 0]);
2603 offInstr += 4;
2604 break;
2605 case DW_EH_PE_udata8:
2606 case DW_EH_PE_sdata8:
2607 AssertReturn(offInstr + 7 < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO);
2608 if (pExecState->fLittleEndian)
2609 uAddress = RT_MAKE_U64_FROM_U8(pbInstr[offInstr + 0], pbInstr[offInstr + 1],
2610 pbInstr[offInstr + 2], pbInstr[offInstr + 3],
2611 pbInstr[offInstr + 4], pbInstr[offInstr + 5],
2612 pbInstr[offInstr + 6], pbInstr[offInstr + 7]);
2613 else
2614 uAddress = RT_MAKE_U64_FROM_U8(pbInstr[offInstr + 7], pbInstr[offInstr + 6],
2615 pbInstr[offInstr + 5], pbInstr[offInstr + 4],
2616 pbInstr[offInstr + 3], pbInstr[offInstr + 2],
2617 pbInstr[offInstr + 1], pbInstr[offInstr + 0]);
2618 offInstr += 8;
2619 break;
2620 case DW_EH_PE_sleb128:
2621 case DW_EH_PE_uleb128:
2622 default:
2623 AssertMsgFailedReturn(("%#x\n", pExecState->pCie->bAddressPtrEnc), VERR_DWARF_TODO);
2624 }
2625 AssertReturn(uAddress >= pExecState->uPcBegin, VERR_DBG_MALFORMED_UNWIND_INFO);
2626
2627 /* Did we advance past the desire address already? */
2628 if (uAddress > pExecState->uPcBegin + pExecState->offInRange)
2629 return VINF_SUCCESS;
2630 pExecState->cbLeftToAdvance = pExecState->uPcBegin + pExecState->offInRange - uAddress;
2631 break;
2632
2633
2634 /*
2635 * Row state push/pop instructions.
2636 */
2637
2638 case DW_CFA_remember_state:
2639 {
2640 AssertReturn(pExecState->cPushes < 10, VERR_DBG_MALFORMED_UNWIND_INFO);
2641 PRTDWARFCFROW pNewRow = (PRTDWARFCFROW)RTMemTmpAlloc(sizeof(*pNewRow));
2642 AssertReturn(pNewRow, VERR_NO_TMP_MEMORY);
2643 memcpy(pNewRow, pRow, sizeof(*pNewRow));
2644 pNewRow->pNextOnStack = pRow;
2645 pNewRow->fOnHeap = true;
2646 pExecState->pRow = pNewRow;
2647 pExecState->cPushes += 1;
2648 pRow = pNewRow;
2649 break;
2650 }
2651
2652 case DW_CFA_restore_state:
2653 AssertReturn(pRow->pNextOnStack, VERR_DBG_MALFORMED_UNWIND_INFO);
2654 Assert(pRow->fOnHeap);
2655 Assert(pExecState->cPushes > 0);
2656 pExecState->cPushes -= 1;
2657 pExecState->pRow = pRow->pNextOnStack;
2658 RTMemTmpFree(pRow);
2659 pRow = pExecState->pRow;
2660 break;
2661 }
2662 }
2663 break;
2664
2665 case DW_CFA_restore:
2666 {
2667 uint8_t const * const pbCurInstr = &pbInstr[offInstr - 1];
2668 uint8_t const iReg = bInstr & ~DW_CFA_high_bit_mask;
2669 if (iReg < RT_ELEMENTS(pRow->apbRegInstrs))
2670 pRow->apbRegInstrs[iReg] = pbCurInstr;
2671 break;
2672 }
2673 }
2674 }
2675 return VINF_TRY_AGAIN;
2676}
2677
2678
2679/**
2680 * Register getter for AMD64.
2681 *
2682 * @returns true if found, false if not.
2683 * @param pState The unwind state to get the register from.
2684 * @param iReg The dwarf register number.
2685 * @param puValue Where to store the register value.
2686 */
2687static bool rtDwarfUnwind_Amd64GetRegFromState(PCRTDBGUNWINDSTATE pState, uint16_t iReg, uint64_t *puValue)
2688{
2689 switch (iReg)
2690 {
2691 case DWREG_AMD64_RAX: *puValue = pState->u.x86.auRegs[X86_GREG_xAX]; return true;
2692 case DWREG_AMD64_RDX: *puValue = pState->u.x86.auRegs[X86_GREG_xDX]; return true;
2693 case DWREG_AMD64_RCX: *puValue = pState->u.x86.auRegs[X86_GREG_xCX]; return true;
2694 case DWREG_AMD64_RBX: *puValue = pState->u.x86.auRegs[X86_GREG_xBX]; return true;
2695 case DWREG_AMD64_RSI: *puValue = pState->u.x86.auRegs[X86_GREG_xSI]; return true;
2696 case DWREG_AMD64_RDI: *puValue = pState->u.x86.auRegs[X86_GREG_xDI]; return true;
2697 case DWREG_AMD64_RBP: *puValue = pState->u.x86.auRegs[X86_GREG_xBP]; return true;
2698 case DWREG_AMD64_RSP: *puValue = pState->u.x86.auRegs[X86_GREG_xSP]; return true;
2699 case DWREG_AMD64_R8: *puValue = pState->u.x86.auRegs[X86_GREG_x8]; return true;
2700 case DWREG_AMD64_R9: *puValue = pState->u.x86.auRegs[X86_GREG_x9]; return true;
2701 case DWREG_AMD64_R10: *puValue = pState->u.x86.auRegs[X86_GREG_x10]; return true;
2702 case DWREG_AMD64_R11: *puValue = pState->u.x86.auRegs[X86_GREG_x11]; return true;
2703 case DWREG_AMD64_R12: *puValue = pState->u.x86.auRegs[X86_GREG_x12]; return true;
2704 case DWREG_AMD64_R13: *puValue = pState->u.x86.auRegs[X86_GREG_x13]; return true;
2705 case DWREG_AMD64_R14: *puValue = pState->u.x86.auRegs[X86_GREG_x14]; return true;
2706 case DWREG_AMD64_R15: *puValue = pState->u.x86.auRegs[X86_GREG_x15]; return true;
2707 case DWREG_AMD64_RFLAGS: *puValue = pState->u.x86.uRFlags; return true;
2708 case DWREG_AMD64_ES: *puValue = pState->u.x86.auSegs[X86_SREG_ES]; return true;
2709 case DWREG_AMD64_CS: *puValue = pState->u.x86.auSegs[X86_SREG_CS]; return true;
2710 case DWREG_AMD64_SS: *puValue = pState->u.x86.auSegs[X86_SREG_SS]; return true;
2711 case DWREG_AMD64_DS: *puValue = pState->u.x86.auSegs[X86_SREG_DS]; return true;
2712 case DWREG_AMD64_FS: *puValue = pState->u.x86.auSegs[X86_SREG_FS]; return true;
2713 case DWREG_AMD64_GS: *puValue = pState->u.x86.auSegs[X86_SREG_GS]; return true;
2714 }
2715 return false;
2716}
2717
2718
2719/**
2720 * Register getter for 386+.
2721 *
2722 * @returns true if found, false if not.
2723 * @param pState The unwind state to get the register from.
2724 * @param iReg The dwarf register number.
2725 * @param puValue Where to store the register value.
2726 */
2727static bool rtDwarfUnwind_X86GetRegFromState(PCRTDBGUNWINDSTATE pState, uint16_t iReg, uint64_t *puValue)
2728{
2729 switch (iReg)
2730 {
2731 case DWREG_X86_EAX: *puValue = pState->u.x86.auRegs[X86_GREG_xAX]; return true;
2732 case DWREG_X86_ECX: *puValue = pState->u.x86.auRegs[X86_GREG_xCX]; return true;
2733 case DWREG_X86_EDX: *puValue = pState->u.x86.auRegs[X86_GREG_xDX]; return true;
2734 case DWREG_X86_EBX: *puValue = pState->u.x86.auRegs[X86_GREG_xBX]; return true;
2735 case DWREG_X86_ESP: *puValue = pState->u.x86.auRegs[X86_GREG_xSP]; return true;
2736 case DWREG_X86_EBP: *puValue = pState->u.x86.auRegs[X86_GREG_xBP]; return true;
2737 case DWREG_X86_ESI: *puValue = pState->u.x86.auRegs[X86_GREG_xSI]; return true;
2738 case DWREG_X86_EDI: *puValue = pState->u.x86.auRegs[X86_GREG_xDI]; return true;
2739 case DWREG_X86_EFLAGS: *puValue = pState->u.x86.uRFlags; return true;
2740 case DWREG_X86_ES: *puValue = pState->u.x86.auSegs[X86_SREG_ES]; return true;
2741 case DWREG_X86_CS: *puValue = pState->u.x86.auSegs[X86_SREG_CS]; return true;
2742 case DWREG_X86_SS: *puValue = pState->u.x86.auSegs[X86_SREG_SS]; return true;
2743 case DWREG_X86_DS: *puValue = pState->u.x86.auSegs[X86_SREG_DS]; return true;
2744 case DWREG_X86_FS: *puValue = pState->u.x86.auSegs[X86_SREG_FS]; return true;
2745 case DWREG_X86_GS: *puValue = pState->u.x86.auSegs[X86_SREG_GS]; return true;
2746 }
2747 return false;
2748}
2749
2750/** Register getter. */
2751typedef bool FNDWARFUNWINDGEREGFROMSTATE(PCRTDBGUNWINDSTATE pState, uint16_t iReg, uint64_t *puValue);
2752/** Pointer to a register getter. */
2753typedef FNDWARFUNWINDGEREGFROMSTATE *PFNDWARFUNWINDGEREGFROMSTATE;
2754
2755
2756
2757/**
2758 * Does the heavy work for figuring out the return value of a register.
2759 *
2760 * @returns IPRT status code.
2761 * @retval VERR_NOT_FOUND if register is undefined.
2762 *
2763 * @param pRow The DWARF unwind table "row" to use.
2764 * @param uReg The DWARF register number.
2765 * @param pCie The corresponding CIE.
2766 * @param uCfa The canonical frame address to use.
2767 * @param pState The unwind to use when reading stack.
2768 * @param pOldState The unwind state to get register values from.
2769 * @param pfnGetReg The register value getter.
2770 * @param puValue Where to store the return value.
2771 * @param cbValue The size this register would have on the stack.
2772 */
2773static int rtDwarfUnwind_CalcRegisterValue(PRTDWARFCFROW pRow, unsigned uReg, PCRTDWARFCIEINFO pCie, uint64_t uCfa,
2774 PRTDBGUNWINDSTATE pState, PCRTDBGUNWINDSTATE pOldState,
2775 PFNDWARFUNWINDGEREGFROMSTATE pfnGetReg, uint64_t *puValue, uint8_t cbValue)
2776{
2777 Assert(uReg < RT_ELEMENTS(pRow->apbRegInstrs));
2778 uint8_t const *pbInstr = pRow->apbRegInstrs[uReg];
2779 if (!pbInstr)
2780 return VERR_NOT_FOUND;
2781
2782 uint32_t cbInstr = UINT32_MAX / 2;
2783 uint32_t offInstr = 1;
2784 uint8_t const bInstr = *pbInstr;
2785 switch (bInstr)
2786 {
2787 default:
2788 if ((bInstr & DW_CFA_high_bit_mask) == DW_CFA_offset)
2789 {
2790 uint64_t offCfa;
2791 GET_ULEB128_AS_U63(offCfa);
2792 int rc = pState->pfnReadStack(pState, uCfa + (int64_t)offCfa * pCie->iDataAlignFactor, cbValue, puValue);
2793 Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_offset %#RX64: %Rrc, %#RX64\n", uReg, uCfa + (int64_t)offCfa * pCie->iDataAlignFactor, rc, *puValue));
2794 return rc;
2795 }
2796 AssertReturn((bInstr & DW_CFA_high_bit_mask) == DW_CFA_restore, VERR_INTERNAL_ERROR);
2797 RT_FALL_THRU();
2798 case DW_CFA_restore_extended:
2799 /* Need to search the CIE for the rule. */
2800 Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_restore/extended:\n", uReg));
2801 AssertFailedReturn(VERR_DWARF_TODO);
2802
2803 case DW_CFA_offset_extended:
2804 {
2805 SKIP_ULEB128_OR_LEB128();
2806 uint64_t offCfa;
2807 GET_ULEB128_AS_U63(offCfa);
2808 int rc = pState->pfnReadStack(pState, uCfa + (int64_t)offCfa * pCie->iDataAlignFactor, cbValue, puValue);
2809 Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_offset_extended %#RX64: %Rrc, %#RX64\n", uReg, uCfa + (int64_t)offCfa * pCie->iDataAlignFactor, rc, *puValue));
2810 return rc;
2811 }
2812
2813 case DW_CFA_offset_extended_sf:
2814 {
2815 SKIP_ULEB128_OR_LEB128();
2816 int64_t offCfa;
2817 GET_LEB128_AS_I63(offCfa);
2818 int rc = pState->pfnReadStack(pState, uCfa + offCfa * pCie->iDataAlignFactor, cbValue, puValue);
2819 Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_offset_extended_sf %#RX64: %Rrc, %#RX64\n", uReg, uCfa + offCfa * pCie->iDataAlignFactor, rc, *puValue));
2820 return rc;
2821 }
2822
2823 case DW_CFA_val_offset:
2824 {
2825 SKIP_ULEB128_OR_LEB128();
2826 uint64_t offCfa;
2827 GET_ULEB128_AS_U63(offCfa);
2828 *puValue = uCfa + (int64_t)offCfa * pCie->iDataAlignFactor;
2829 Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_val_offset: %#RX64\n", uReg, *puValue));
2830 return VINF_SUCCESS;
2831 }
2832
2833 case DW_CFA_val_offset_sf:
2834 {
2835 SKIP_ULEB128_OR_LEB128();
2836 int64_t offCfa;
2837 GET_LEB128_AS_I63(offCfa);
2838 *puValue = uCfa + offCfa * pCie->iDataAlignFactor;
2839 Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_val_offset_sf: %#RX64\n", uReg, *puValue));
2840 return VINF_SUCCESS;
2841 }
2842
2843 case DW_CFA_register:
2844 {
2845 SKIP_ULEB128_OR_LEB128();
2846 uint16_t iSrcReg;
2847 GET_ULEB128_AS_U14(iSrcReg);
2848 if (pfnGetReg(pOldState, uReg, puValue))
2849 {
2850 Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_register: %#RX64\n", uReg, *puValue));
2851 return VINF_SUCCESS;
2852 }
2853 Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_register: VERR_NOT_FOUND\n", uReg));
2854 return VERR_NOT_FOUND;
2855 }
2856
2857 case DW_CFA_expression:
2858 Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_expression: TODO\n", uReg));
2859 AssertFailedReturn(VERR_DWARF_TODO);
2860
2861 case DW_CFA_val_expression:
2862 Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_val_expression: TODO\n", uReg));
2863 AssertFailedReturn(VERR_DWARF_TODO);
2864
2865 case DW_CFA_undefined:
2866 Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_undefined\n", uReg));
2867 return VERR_NOT_FOUND;
2868
2869 case DW_CFA_same_value:
2870 if (pfnGetReg(pOldState, uReg, puValue))
2871 {
2872 Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_same_value: %#RX64\n", uReg, *puValue));
2873 return VINF_SUCCESS;
2874 }
2875 Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_same_value: VERR_NOT_FOUND\n", uReg));
2876 return VERR_NOT_FOUND;
2877 }
2878}
2879
2880
2881DECLINLINE(void) rtDwarfUnwind_UpdateX86GRegFromRow(PRTDBGUNWINDSTATE pState, PCRTDBGUNWINDSTATE pOldState, unsigned idxGReg,
2882 PRTDWARFCFROW pRow, unsigned idxDwReg, PCRTDWARFCIEINFO pCie,
2883 uint64_t uCfa, PFNDWARFUNWINDGEREGFROMSTATE pfnGetReg, uint8_t cbGReg)
2884{
2885 int rc = rtDwarfUnwind_CalcRegisterValue(pRow, idxDwReg, pCie, uCfa, pState, pOldState, pfnGetReg,
2886 &pState->u.x86.auRegs[idxGReg], cbGReg);
2887 if (RT_SUCCESS(rc))
2888 pState->u.x86.Loaded.s.fRegs |= RT_BIT_32(idxGReg);
2889}
2890
2891
2892DECLINLINE(void) rtDwarfUnwind_UpdateX86SRegFromRow(PRTDBGUNWINDSTATE pState, PCRTDBGUNWINDSTATE pOldState, unsigned idxSReg,
2893 PRTDWARFCFROW pRow, unsigned idxDwReg, PCRTDWARFCIEINFO pCie,
2894 uint64_t uCfa, PFNDWARFUNWINDGEREGFROMSTATE pfnGetReg)
2895{
2896 uint64_t uValue = pState->u.x86.auSegs[idxSReg];
2897 int rc = rtDwarfUnwind_CalcRegisterValue(pRow, idxDwReg, pCie, uCfa, pState, pOldState, pfnGetReg, &uValue, sizeof(uint16_t));
2898 if (RT_SUCCESS(rc))
2899 {
2900 pState->u.x86.auSegs[idxSReg] = (uint16_t)uValue;
2901 pState->u.x86.Loaded.s.fSegs |= RT_BIT_32(idxSReg);
2902 }
2903}
2904
2905
2906DECLINLINE(void) rtDwarfUnwind_UpdateX86RFlagsFromRow(PRTDBGUNWINDSTATE pState, PCRTDBGUNWINDSTATE pOldState,
2907 PRTDWARFCFROW pRow, unsigned idxDwReg, PCRTDWARFCIEINFO pCie,
2908 uint64_t uCfa, PFNDWARFUNWINDGEREGFROMSTATE pfnGetReg)
2909{
2910 int rc = rtDwarfUnwind_CalcRegisterValue(pRow, idxDwReg, pCie, uCfa, pState, pOldState, pfnGetReg,
2911 &pState->u.x86.uRFlags, sizeof(uint32_t));
2912 if (RT_SUCCESS(rc))
2913 pState->u.x86.Loaded.s.fRFlags = 1;
2914}
2915
2916
2917DECLINLINE(void) rtDwarfUnwind_UpdatePCFromRow(PRTDBGUNWINDSTATE pState, PCRTDBGUNWINDSTATE pOldState,
2918 PRTDWARFCFROW pRow, unsigned idxDwReg, PCRTDWARFCIEINFO pCie,
2919 uint64_t uCfa, PFNDWARFUNWINDGEREGFROMSTATE pfnGetReg, uint8_t cbPc)
2920{
2921 if (pCie->bRetReg != UINT8_MAX)
2922 idxDwReg = pCie->bRetReg;
2923 int rc = rtDwarfUnwind_CalcRegisterValue(pRow, idxDwReg, pCie, uCfa, pState, pOldState, pfnGetReg, &pState->uPc, cbPc);
2924 if (RT_SUCCESS(rc))
2925 pState->u.x86.Loaded.s.fPc = 1;
2926 else
2927 {
2928 rc = pState->pfnReadStack(pState, uCfa - cbPc, cbPc, &pState->uPc);
2929 if (RT_SUCCESS(rc))
2930 pState->u.x86.Loaded.s.fPc = 1;
2931 }
2932}
2933
2934
2935
2936/**
2937 * Updates @a pState with the rules found in @a pRow.
2938 *
2939 * @returns IPRT status code.
2940 * @param pState The unwind state to update.
2941 * @param pRow The "row" in the dwarf unwind table.
2942 * @param pCie The CIE structure for the row.
2943 * @param enmImageArch The image architecture.
2944 */
2945static int rtDwarfUnwind_UpdateStateFromRow(PRTDBGUNWINDSTATE pState, PRTDWARFCFROW pRow,
2946 PCRTDWARFCIEINFO pCie, RTLDRARCH enmImageArch)
2947{
2948 /*
2949 * We need to make a copy of the current state so we can get at the
2950 * current register values while calculating the ones of the next frame.
2951 */
2952 RTDBGUNWINDSTATE const Old = *pState;
2953
2954 /*
2955 * Get the register state getter.
2956 */
2957 PFNDWARFUNWINDGEREGFROMSTATE pfnGetReg;
2958 switch (enmImageArch)
2959 {
2960 case RTLDRARCH_AMD64:
2961 pfnGetReg = rtDwarfUnwind_Amd64GetRegFromState;
2962 break;
2963 case RTLDRARCH_X86_32:
2964 case RTLDRARCH_X86_16:
2965 pfnGetReg = rtDwarfUnwind_X86GetRegFromState;
2966 break;
2967 default:
2968 return VERR_NOT_SUPPORTED;
2969 }
2970
2971 /*
2972 * Calc the canonical frame address for the current row.
2973 */
2974 AssertReturn(pRow->fCfaDefined, VERR_DBG_MALFORMED_UNWIND_INFO);
2975 uint64_t uCfa = 0;
2976 if (!pRow->pbCfaExprInstr)
2977 {
2978 pfnGetReg(&Old, pRow->uCfaBaseReg, &uCfa);
2979 uCfa += pRow->offCfaReg;
2980 }
2981 else
2982 {
2983 AssertFailed();
2984 return VERR_DWARF_TODO;
2985 }
2986 Log8(("rtDwarfUnwind_UpdateStateFromRow: uCfa=%RX64\n", uCfa));
2987
2988 /*
2989 * Do the architecture specific register updating.
2990 */
2991 switch (enmImageArch)
2992 {
2993 case RTLDRARCH_AMD64:
2994 pState->enmRetType = RTDBGRETURNTYPE_NEAR64;
2995 pState->u.x86.FrameAddr.off = uCfa - 8*2;
2996 pState->u.x86.Loaded.fAll = 0;
2997 pState->u.x86.Loaded.s.fFrameAddr = 1;
2998 rtDwarfUnwind_UpdatePCFromRow(pState, &Old, pRow, DWREG_AMD64_RA, pCie, uCfa, pfnGetReg, sizeof(uint64_t));
2999 rtDwarfUnwind_UpdateX86RFlagsFromRow(pState, &Old, pRow, DWREG_AMD64_RFLAGS, pCie, uCfa, pfnGetReg);
3000 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xAX, pRow, DWREG_AMD64_RAX, pCie, uCfa, pfnGetReg, sizeof(uint64_t));
3001 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xCX, pRow, DWREG_AMD64_RCX, pCie, uCfa, pfnGetReg, sizeof(uint64_t));
3002 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xDX, pRow, DWREG_AMD64_RDX, pCie, uCfa, pfnGetReg, sizeof(uint64_t));
3003 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xBX, pRow, DWREG_AMD64_RBX, pCie, uCfa, pfnGetReg, sizeof(uint64_t));
3004 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xSP, pRow, DWREG_AMD64_RSP, pCie, uCfa, pfnGetReg, sizeof(uint64_t));
3005 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xBP, pRow, DWREG_AMD64_RBP, pCie, uCfa, pfnGetReg, sizeof(uint64_t));
3006 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xSI, pRow, DWREG_AMD64_RSI, pCie, uCfa, pfnGetReg, sizeof(uint64_t));
3007 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xDI, pRow, DWREG_AMD64_RDI, pCie, uCfa, pfnGetReg, sizeof(uint64_t));
3008 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_x8, pRow, DWREG_AMD64_R8, pCie, uCfa, pfnGetReg, sizeof(uint64_t));
3009 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_x9, pRow, DWREG_AMD64_R9, pCie, uCfa, pfnGetReg, sizeof(uint64_t));
3010 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_x10, pRow, DWREG_AMD64_R10, pCie, uCfa, pfnGetReg, sizeof(uint64_t));
3011 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_x11, pRow, DWREG_AMD64_R11, pCie, uCfa, pfnGetReg, sizeof(uint64_t));
3012 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_x12, pRow, DWREG_AMD64_R12, pCie, uCfa, pfnGetReg, sizeof(uint64_t));
3013 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_x13, pRow, DWREG_AMD64_R13, pCie, uCfa, pfnGetReg, sizeof(uint64_t));
3014 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_x14, pRow, DWREG_AMD64_R14, pCie, uCfa, pfnGetReg, sizeof(uint64_t));
3015 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_x15, pRow, DWREG_AMD64_R15, pCie, uCfa, pfnGetReg, sizeof(uint64_t));
3016 rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_ES, pRow, DWREG_AMD64_ES, pCie, uCfa, pfnGetReg);
3017 rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_CS, pRow, DWREG_AMD64_CS, pCie, uCfa, pfnGetReg);
3018 rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_SS, pRow, DWREG_AMD64_SS, pCie, uCfa, pfnGetReg);
3019 rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_DS, pRow, DWREG_AMD64_DS, pCie, uCfa, pfnGetReg);
3020 rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_FS, pRow, DWREG_AMD64_FS, pCie, uCfa, pfnGetReg);
3021 rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_GS, pRow, DWREG_AMD64_GS, pCie, uCfa, pfnGetReg);
3022 break;
3023
3024 case RTLDRARCH_X86_32:
3025 case RTLDRARCH_X86_16:
3026 pState->enmRetType = RTDBGRETURNTYPE_NEAR32;
3027 pState->u.x86.FrameAddr.off = uCfa - 4*2;
3028 pState->u.x86.Loaded.fAll = 0;
3029 pState->u.x86.Loaded.s.fFrameAddr = 1;
3030 rtDwarfUnwind_UpdatePCFromRow(pState, &Old, pRow, DWREG_X86_RA, pCie, uCfa, pfnGetReg, sizeof(uint32_t));
3031 rtDwarfUnwind_UpdateX86RFlagsFromRow(pState, &Old, pRow, DWREG_X86_EFLAGS, pCie, uCfa, pfnGetReg);
3032 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xAX, pRow, DWREG_X86_EAX, pCie, uCfa, pfnGetReg, sizeof(uint32_t));
3033 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xCX, pRow, DWREG_X86_ECX, pCie, uCfa, pfnGetReg, sizeof(uint32_t));
3034 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xDX, pRow, DWREG_X86_EDX, pCie, uCfa, pfnGetReg, sizeof(uint32_t));
3035 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xBX, pRow, DWREG_X86_EBX, pCie, uCfa, pfnGetReg, sizeof(uint32_t));
3036 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xSP, pRow, DWREG_X86_ESP, pCie, uCfa, pfnGetReg, sizeof(uint32_t));
3037 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xBP, pRow, DWREG_X86_EBP, pCie, uCfa, pfnGetReg, sizeof(uint32_t));
3038 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xSI, pRow, DWREG_X86_ESI, pCie, uCfa, pfnGetReg, sizeof(uint32_t));
3039 rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xDI, pRow, DWREG_X86_EDI, pCie, uCfa, pfnGetReg, sizeof(uint32_t));
3040 rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_ES, pRow, DWREG_X86_ES, pCie, uCfa, pfnGetReg);
3041 rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_CS, pRow, DWREG_X86_CS, pCie, uCfa, pfnGetReg);
3042 rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_SS, pRow, DWREG_X86_SS, pCie, uCfa, pfnGetReg);
3043 rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_DS, pRow, DWREG_X86_DS, pCie, uCfa, pfnGetReg);
3044 rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_FS, pRow, DWREG_X86_FS, pCie, uCfa, pfnGetReg);
3045 rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_GS, pRow, DWREG_X86_GS, pCie, uCfa, pfnGetReg);
3046 if (pState->u.x86.Loaded.s.fRegs & RT_BIT_32(X86_GREG_xSP))
3047 pState->u.x86.FrameAddr.off = pState->u.x86.auRegs[X86_GREG_xSP] - 8;
3048 else
3049 pState->u.x86.FrameAddr.off = uCfa - 8;
3050 pState->u.x86.FrameAddr.sel = pState->u.x86.auSegs[X86_SREG_SS];
3051 if (pState->u.x86.Loaded.s.fSegs & RT_BIT_32(X86_SREG_CS))
3052 {
3053 if ((pState->uPc >> 16) == pState->u.x86.auSegs[X86_SREG_CS])
3054 {
3055 pState->enmRetType = RTDBGRETURNTYPE_FAR16;
3056 pState->uPc &= UINT16_MAX;
3057 Log8(("rtDwarfUnwind_UpdateStateFromRow: Detected FAR16 return to %04x:%04RX64\n", pState->u.x86.auSegs[X86_SREG_CS], pState->uPc));
3058 }
3059 else
3060 {
3061 pState->enmRetType = RTDBGRETURNTYPE_FAR32;
3062 Log8(("rtDwarfUnwind_UpdateStateFromRow: CS loaded, assume far return.\n"));
3063 }
3064 }
3065 break;
3066
3067 default:
3068 AssertFailedReturn(VERR_NOT_SUPPORTED);
3069 }
3070
3071 return VINF_SUCCESS;
3072}
3073
3074
3075/**
3076 * Processes a FDE, taking over after the PC range field.
3077 *
3078 * @returns IPRT status code.
3079 * @param pCursor The cursor.
3080 * @param pCie Information about the corresponding CIE.
3081 * @param uPcBegin The PC begin field value (sans segment).
3082 * @param cbPcRange The PC range from @a uPcBegin.
3083 * @param offInRange The offset into the range corresponding to
3084 * pState->uPc.
3085 * @param enmImageArch The image architecture.
3086 * @param pState The unwind state to work.
3087 */
3088static int rtDwarfUnwind_ProcessFde(PRTDWARFCURSOR pCursor, PCRTDWARFCIEINFO pCie, uint64_t uPcBegin,
3089 uint64_t cbPcRange, uint64_t offInRange, RTLDRARCH enmImageArch, PRTDBGUNWINDSTATE pState)
3090{
3091 /*
3092 * Deal with augmented data fields.
3093 */
3094 /* The size. */
3095 size_t cbInstr = ~(size_t)0;
3096 if (pCie->fHasAugmentationSize)
3097 {
3098 uint64_t cbAugData = rtDwarfCursor_GetULeb128(pCursor, UINT64_MAX);
3099 if (RT_FAILURE(pCursor->rc))
3100 return pCursor->rc;
3101 if (cbAugData > pCursor->cbUnitLeft)
3102 return VERR_DBG_MALFORMED_UNWIND_INFO;
3103 cbInstr = pCursor->cbUnitLeft - cbAugData;
3104 }
3105 else if (pCie->fHasUnknowAugmentation)
3106 return VERR_DBG_MALFORMED_UNWIND_INFO;
3107
3108 /* Parse the string and fetch FDE fields. */
3109 if (!pCie->fHasEhData)
3110 for (const char *pszAug = pCie->pszAugmentation; *pszAug != '\0'; pszAug++)
3111 switch (*pszAug)
3112 {
3113 case 'L':
3114 if (pCie->bLsdaPtrEnc != DW_EH_PE_omit)
3115 rtDwarfCursor_GetPtrEnc(pCursor, pCie->bLsdaPtrEnc, 0);
3116 break;
3117 }
3118
3119 /* Skip unconsumed bytes. */
3120 if ( cbInstr != ~(size_t)0
3121 && pCursor->cbUnitLeft > cbInstr)
3122 rtDwarfCursor_SkipBytes(pCursor, pCursor->cbUnitLeft - cbInstr);
3123 if (RT_FAILURE(pCursor->rc))
3124 return pCursor->rc;
3125
3126 /*
3127 * Now "execute" the programs till we've constructed the desired row.
3128 */
3129 RTDWARFCFROW Row;
3130 RTDWARFCFEXEC ExecState = { &Row, offInRange, 0, true /** @todo byte-order*/, pCie, uPcBegin, offInRange };
3131 RT_ZERO(Row);
3132
3133 int rc = rtDwarfUnwind_Execute(&ExecState, pCie->pbInstructions, (uint32_t)pCie->cbInstructions);
3134 if (rc == VINF_TRY_AGAIN)
3135 rc = rtDwarfUnwind_Execute(&ExecState, pCursor->pb, (uint32_t)pCursor->cbUnitLeft);
3136
3137 /* On success, extract whatever state we've got. */
3138 if (RT_SUCCESS(rc))
3139 rc = rtDwarfUnwind_UpdateStateFromRow(pState, &Row, pCie, enmImageArch);
3140
3141 /*
3142 * Clean up allocations in case of pushes.
3143 */
3144 if (ExecState.pRow == &Row)
3145 Assert(!ExecState.pRow->fOnHeap);
3146 else
3147 do
3148 {
3149 PRTDWARFCFROW pPopped = ExecState.pRow;
3150 ExecState.pRow = ExecState.pRow->pNextOnStack;
3151 Assert(pPopped->fOnHeap);
3152 RTMemTmpFree(pPopped);
3153 } while (ExecState.pRow && ExecState.pRow != &Row);
3154
3155 RT_NOREF(pState, uPcBegin, cbPcRange, offInRange);
3156 return rc;
3157}
3158
3159
3160/**
3161 * Load the information we need from a CIE.
3162 *
3163 * This starts after the initial length and CIE_pointer fields has
3164 * been processed.
3165 *
3166 * @returns IPRT status code.
3167 * @param pCursor The cursor.
3168 * @param pNewCie The structure to populate with parsed CIE info.
3169 * @param offUnit The unit offset.
3170 * @param bDefaultPtrEnc The default pointer encoding.
3171 */
3172static int rtDwarfUnwind_LoadCie(PRTDWARFCURSOR pCursor, PRTDWARFCIEINFO pNewCie, uint64_t offUnit, uint8_t bDefaultPtrEnc)
3173{
3174 /*
3175 * Initialize the CIE record and get the version.
3176 */
3177 RT_ZERO(*pNewCie);
3178 pNewCie->offCie = offUnit;
3179 pNewCie->bLsdaPtrEnc = DW_EH_PE_omit;
3180 pNewCie->bAddressPtrEnc = DW_EH_PE_omit; /* set later */
3181 pNewCie->uDwarfVer = rtDwarfCursor_GetUByte(pCursor, 0);
3182 if ( pNewCie->uDwarfVer >= 1 /* Note! Some GCC versions may emit v1 here. */
3183 && pNewCie->uDwarfVer <= 5)
3184 { /* likely */ }
3185 else
3186 {
3187 Log(("rtDwarfUnwind_LoadCie(%RX64): uDwarfVer=%u: VERR_VERSION_MISMATCH\n", offUnit, pNewCie->uDwarfVer));
3188 return VERR_VERSION_MISMATCH;
3189 }
3190
3191 /*
3192 * The augmentation string.
3193 *
3194 * First deal with special "eh" string from oldish GCC (dwarf2out.c about 1997), specified in LSB:
3195 * https://refspecs.linuxfoundation.org/LSB_3.0.0/LSB-PDA/LSB-PDA/ehframechpt.html
3196 */
3197 pNewCie->pszAugmentation = rtDwarfCursor_GetSZ(pCursor, "");
3198 if ( pNewCie->pszAugmentation[0] == 'e'
3199 && pNewCie->pszAugmentation[1] == 'h'
3200 && pNewCie->pszAugmentation[2] == '\0')
3201 {
3202 pNewCie->fHasEhData = true;
3203 rtDwarfCursor_GetPtrEnc(pCursor, bDefaultPtrEnc, 0);
3204 }
3205 else
3206 {
3207 /* Regular augmentation string. */
3208 for (const char *pszAug = pNewCie->pszAugmentation; *pszAug != '\0'; pszAug++)
3209 switch (*pszAug)
3210 {
3211 case 'z':
3212 pNewCie->fHasAugmentationSize = true;
3213 break;
3214 case 'L':
3215 pNewCie->fHasLanguageSpecificDataArea = true;
3216 break;
3217 case 'P':
3218 pNewCie->fHasPersonalityRoutine = true;
3219 break;
3220 case 'R':
3221 pNewCie->fHasAddressEnc = true;
3222 break;
3223 case 'S':
3224 pNewCie->fIsSignalFrame = true;
3225 break;
3226 default:
3227 pNewCie->fHasUnknowAugmentation = true;
3228 break;
3229 }
3230 }
3231
3232 /*
3233 * More standard fields
3234 */
3235 uint8_t cbAddress = 0;
3236 if (pNewCie->uDwarfVer >= 4)
3237 {
3238 cbAddress = rtDwarfCursor_GetU8(pCursor, bDefaultPtrEnc == DW_EH_PE_udata8 ? 8 : 4);
3239 pNewCie->cbSegment = rtDwarfCursor_GetU8(pCursor, 0);
3240 }
3241 pNewCie->uCodeAlignFactor = rtDwarfCursor_GetULeb128(pCursor, 1);
3242 pNewCie->iDataAlignFactor = rtDwarfCursor_GetSLeb128(pCursor, 1);
3243 pNewCie->bRetReg = rtDwarfCursor_GetU8(pCursor, UINT8_MAX);
3244
3245 /*
3246 * Augmentation data.
3247 */
3248 if (!pNewCie->fHasEhData)
3249 {
3250 /* The size. */
3251 size_t cbInstr = ~(size_t)0;
3252 if (pNewCie->fHasAugmentationSize)
3253 {
3254 uint64_t cbAugData = rtDwarfCursor_GetULeb128(pCursor, UINT64_MAX);
3255 if (RT_FAILURE(pCursor->rc))
3256 {
3257 Log(("rtDwarfUnwind_LoadCie(%#RX64): rtDwarfCursor_GetULeb128 -> %Rrc!\n", offUnit, pCursor->rc));
3258 return pCursor->rc;
3259 }
3260 if (cbAugData > pCursor->cbUnitLeft)
3261 {
3262 Log(("rtDwarfUnwind_LoadCie(%#RX64): cbAugData=%#x pCursor->cbUnitLeft=%#x -> VERR_DBG_MALFORMED_UNWIND_INFO!\n", offUnit, cbAugData, pCursor->cbUnitLeft));
3263 return VERR_DBG_MALFORMED_UNWIND_INFO;
3264 }
3265 cbInstr = pCursor->cbUnitLeft - cbAugData;
3266 }
3267 else if (pNewCie->fHasUnknowAugmentation)
3268 {
3269 Log(("rtDwarfUnwind_LoadCie(%#RX64): fHasUnknowAugmentation=1 -> VERR_DBG_MALFORMED_UNWIND_INFO!\n", offUnit));
3270 return VERR_DBG_MALFORMED_UNWIND_INFO;
3271 }
3272
3273 /* Parse the string. */
3274 for (const char *pszAug = pNewCie->pszAugmentation; *pszAug != '\0'; pszAug++)
3275 switch (*pszAug)
3276 {
3277 case 'L':
3278 pNewCie->bLsdaPtrEnc = rtDwarfCursor_GetU8(pCursor, DW_EH_PE_omit);
3279 break;
3280 case 'P':
3281 rtDwarfCursor_GetPtrEnc(pCursor, rtDwarfCursor_GetU8(pCursor, DW_EH_PE_omit), 0);
3282 break;
3283 case 'R':
3284 pNewCie->bAddressPtrEnc = rtDwarfCursor_GetU8(pCursor, DW_EH_PE_omit);
3285 break;
3286 }
3287
3288 /* Skip unconsumed bytes. */
3289 if ( cbInstr != ~(size_t)0
3290 && pCursor->cbUnitLeft > cbInstr)
3291 rtDwarfCursor_SkipBytes(pCursor, pCursor->cbUnitLeft - cbInstr);
3292 }
3293
3294 /*
3295 * Note down where the instructions are.
3296 */
3297 pNewCie->pbInstructions = pCursor->pb;
3298 pNewCie->cbInstructions = pCursor->cbUnitLeft;
3299
3300 /*
3301 * Determine the target address encoding. Make sure we resolve DW_EH_PE_ptr.
3302 */
3303 if (pNewCie->bAddressPtrEnc == DW_EH_PE_omit)
3304 switch (cbAddress)
3305 {
3306 case 2: pNewCie->bAddressPtrEnc = DW_EH_PE_udata2; break;
3307 case 4: pNewCie->bAddressPtrEnc = DW_EH_PE_udata4; break;
3308 case 8: pNewCie->bAddressPtrEnc = DW_EH_PE_udata8; break;
3309 default: pNewCie->bAddressPtrEnc = bDefaultPtrEnc; break;
3310 }
3311 else if ((pNewCie->bAddressPtrEnc & DW_EH_PE_FORMAT_MASK) == DW_EH_PE_ptr)
3312 pNewCie->bAddressPtrEnc = bDefaultPtrEnc;
3313
3314 return VINF_SUCCESS;
3315}
3316
3317
3318/**
3319 * Does a slow unwind of a '.debug_frame' or '.eh_frame' section.
3320 *
3321 * @returns IPRT status code.
3322 * @param pCursor The cursor.
3323 * @param uRvaCursor The RVA corrsponding to the cursor start location.
3324 * @param idxSeg The segment of the PC location.
3325 * @param offSeg The segment offset of the PC location.
3326 * @param uRva The RVA of the PC location.
3327 * @param pState The unwind state to work.
3328 * @param bDefaultPtrEnc The default pointer encoding.
3329 * @param fIsEhFrame Set if this is a '.eh_frame'. GCC generate these
3330 * with different CIE_pointer values.
3331 * @param enmImageArch The image architecture.
3332 */
3333static int rtDwarfUnwind_Slow(PRTDWARFCURSOR pCursor, RTUINTPTR uRvaCursor,
3334 RTDBGSEGIDX idxSeg, RTUINTPTR offSeg, RTUINTPTR uRva,
3335 PRTDBGUNWINDSTATE pState, uint8_t bDefaultPtrEnc, bool fIsEhFrame, RTLDRARCH enmImageArch)
3336{
3337 Log8(("rtDwarfUnwind_Slow: idxSeg=%#x offSeg=%RTptr uRva=%RTptr enmArch=%d PC=%#RX64\n", idxSeg, offSeg, uRva, pState->enmArch, pState->uPc));
3338
3339 /*
3340 * CIE info we collect.
3341 */
3342 PRTDWARFCIEINFO paCies = NULL;
3343 uint32_t cCies = 0;
3344 PRTDWARFCIEINFO pCieHint = NULL;
3345
3346 /*
3347 * Do the scanning.
3348 */
3349 uint64_t const offCieOffset = pCursor->f64bitDwarf ? UINT64_MAX : UINT32_MAX;
3350 int rc = VERR_DBG_UNWIND_INFO_NOT_FOUND;
3351 while (!rtDwarfCursor_IsAtEnd(pCursor))
3352 {
3353 uint64_t const offUnit = rtDwarfCursor_CalcSectOffsetU32(pCursor);
3354 if (rtDwarfCursor_GetInitialLength(pCursor) == 0)
3355 break;
3356
3357 uint64_t const offRelCie = rtDwarfCursor_GetUOff(pCursor, offCieOffset);
3358 if (offRelCie != offCieOffset)
3359 {
3360 /*
3361 * Frame descriptor entry (FDE).
3362 */
3363 /* Locate the corresponding CIE. The CIE pointer is self relative
3364 in .eh_frame and section relative in .debug_frame. */
3365 PRTDWARFCIEINFO pCieForFde;
3366 uint64_t offCie = fIsEhFrame ? offUnit + 4 - offRelCie : offRelCie;
3367 if (pCieHint && pCieHint->offCie == offCie)
3368 pCieForFde = pCieHint;
3369 else
3370 {
3371 pCieForFde = NULL;
3372 uint32_t i = cCies;
3373 while (i-- > 0)
3374 if (paCies[i].offCie == offCie)
3375 {
3376 pCieHint = pCieForFde = &paCies[i];
3377 break;
3378 }
3379 }
3380 if (pCieForFde)
3381 {
3382 /* Read the PC range covered by this FDE (the fields are also known as initial_location). */
3383 RTDBGSEGIDX idxFdeSeg = RTDBGSEGIDX_RVA;
3384 if (pCieForFde->cbSegment)
3385 idxFdeSeg = rtDwarfCursor_GetVarSizedU(pCursor, pCieForFde->cbSegment, RTDBGSEGIDX_RVA);
3386 uint64_t uPcBegin;
3387 switch (pCieForFde->bAddressPtrEnc & DW_EH_PE_APPL_MASK)
3388 {
3389 default: AssertFailed();
3390 RT_FALL_THRU();
3391 case DW_EH_PE_absptr:
3392 uPcBegin = rtDwarfCursor_GetPtrEnc(pCursor, pCieForFde->bAddressPtrEnc, 0);
3393 break;
3394 case DW_EH_PE_pcrel:
3395 {
3396 uPcBegin = rtDwarfCursor_CalcSectOffsetU32(pCursor) + uRvaCursor;
3397 uPcBegin += rtDwarfCursor_GetPtrEnc(pCursor, pCieForFde->bAddressPtrEnc, 0);
3398 break;
3399 }
3400 }
3401 uint64_t cbPcRange = rtDwarfCursor_GetPtrEnc(pCursor, pCieForFde->bAddressPtrEnc, 0);
3402
3403 /* Match it with what we're looking for. */
3404 bool fMatch = idxFdeSeg == RTDBGSEGIDX_RVA
3405 ? uRva - uPcBegin < cbPcRange
3406 : idxSeg == idxFdeSeg && offSeg - uPcBegin < cbPcRange;
3407 Log8(("%#08RX64: FDE pCie=%p idxFdeSeg=%#x uPcBegin=%#RX64 cbPcRange=%#x fMatch=%d\n",
3408 offUnit, pCieForFde, idxFdeSeg, uPcBegin, cbPcRange, fMatch));
3409 if (fMatch)
3410 {
3411 rc = rtDwarfUnwind_ProcessFde(pCursor, pCieForFde, uPcBegin, cbPcRange,
3412 idxFdeSeg == RTDBGSEGIDX_RVA ? uRva - uPcBegin : offSeg - uPcBegin,
3413 enmImageArch, pState);
3414 break;
3415 }
3416 }
3417 else
3418 Log8(("%#08RX64: FDE - pCie=NULL!! offCie=%#RX64 offRelCie=%#RX64 fIsEhFrame=%d\n", offUnit, offCie, offRelCie, fIsEhFrame));
3419 }
3420 else
3421 {
3422 /*
3423 * Common information entry (CIE). Record the info we need about it.
3424 */
3425 if ((cCies % 8) == 0)
3426 {
3427 void *pvNew = RTMemRealloc(paCies, sizeof(paCies[0]) * (cCies + 8));
3428 if (pvNew)
3429 {
3430 paCies = (PRTDWARFCIEINFO)pvNew;
3431 pCieHint = NULL;
3432 }
3433 else
3434 {
3435 rc = VERR_NO_MEMORY;
3436 break;
3437 }
3438 }
3439 Log8(("%#08RX64: CIE\n", offUnit));
3440 int rc2 = rtDwarfUnwind_LoadCie(pCursor, &paCies[cCies], offUnit, bDefaultPtrEnc);
3441 if (RT_SUCCESS(rc2))
3442 {
3443 Log8(("%#08RX64: CIE #%u: offCie=%#RX64\n", offUnit, cCies, paCies[cCies].offCie));
3444 cCies++;
3445 }
3446 }
3447 rtDwarfCursor_SkipUnit(pCursor);
3448 }
3449
3450 /*
3451 * Cleanup.
3452 */
3453 if (paCies)
3454 RTMemFree(paCies);
3455 Log8(("rtDwarfUnwind_Slow: returns %Rrc PC=%#RX64\n", rc, pState->uPc));
3456 return rc;
3457}
3458
3459
3460/**
3461 * Helper for translating a loader architecture value to a pointe encoding.
3462 *
3463 * @returns Pointer encoding.
3464 * @param enmLdrArch The loader architecture value to convert.
3465 */
3466static uint8_t rtDwarfUnwind_ArchToPtrEnc(RTLDRARCH enmLdrArch)
3467{
3468 switch (enmLdrArch)
3469 {
3470 case RTLDRARCH_AMD64:
3471 case RTLDRARCH_ARM64:
3472 return DW_EH_PE_udata8;
3473 case RTLDRARCH_X86_16:
3474 case RTLDRARCH_X86_32:
3475 case RTLDRARCH_ARM32:
3476 return DW_EH_PE_udata4;
3477 case RTLDRARCH_HOST:
3478 case RTLDRARCH_WHATEVER:
3479 case RTLDRARCH_INVALID:
3480 case RTLDRARCH_END:
3481 case RTLDRARCH_32BIT_HACK:
3482 break;
3483 }
3484 AssertFailed();
3485 return DW_EH_PE_udata4;
3486}
3487
3488
3489/**
3490 * Interface for the loader code.
3491 *
3492 * @returns IPRT status.
3493 * @param pvSection The '.eh_frame' section data.
3494 * @param cbSection The size of the '.eh_frame' section data.
3495 * @param uRvaSection The RVA of the '.eh_frame' section.
3496 * @param idxSeg The segment of the PC location.
3497 * @param offSeg The segment offset of the PC location.
3498 * @param uRva The RVA of the PC location.
3499 * @param pState The unwind state to work.
3500 * @param enmArch The image architecture.
3501 */
3502DECLHIDDEN(int) rtDwarfUnwind_EhData(void const *pvSection, size_t cbSection, RTUINTPTR uRvaSection,
3503 RTDBGSEGIDX idxSeg, RTUINTPTR offSeg, RTUINTPTR uRva,
3504 PRTDBGUNWINDSTATE pState, RTLDRARCH enmArch)
3505{
3506 RTDWARFCURSOR Cursor;
3507 rtDwarfCursor_InitForMem(&Cursor, pvSection, cbSection);
3508 int rc = rtDwarfUnwind_Slow(&Cursor, uRvaSection, idxSeg, offSeg, uRva, pState,
3509 rtDwarfUnwind_ArchToPtrEnc(enmArch), true /*fIsEhFrame*/, enmArch);
3510 LogFlow(("rtDwarfUnwind_EhData: rtDwarfUnwind_Slow -> %Rrc\n", rc));
3511 rc = rtDwarfCursor_Delete(&Cursor, rc);
3512 LogFlow(("rtDwarfUnwind_EhData: returns %Rrc\n", rc));
3513 return rc;
3514}
3515
3516
3517/*
3518 *
3519 * DWARF Line Numbers.
3520 * DWARF Line Numbers.
3521 * DWARF Line Numbers.
3522 *
3523 */
3524
3525
3526/**
3527 * Defines a file name.
3528 *
3529 * @returns IPRT status code.
3530 * @param pLnState The line number program state.
3531 * @param pszFilename The name of the file.
3532 * @param idxInc The include path index.
3533 */
3534static int rtDwarfLine_DefineFileName(PRTDWARFLINESTATE pLnState, const char *pszFilename, uint64_t idxInc)
3535{
3536 /*
3537 * Resize the array if necessary.
3538 */
3539 uint32_t iFileName = pLnState->cFileNames;
3540 if ((iFileName % 2) == 0)
3541 {
3542 void *pv = RTMemRealloc(pLnState->papszFileNames, sizeof(pLnState->papszFileNames[0]) * (iFileName + 2));
3543 if (!pv)
3544 return VERR_NO_MEMORY;
3545 pLnState->papszFileNames = (char **)pv;
3546 }
3547
3548 /*
3549 * Add the file name.
3550 */
3551 if ( pszFilename[0] == '/'
3552 || pszFilename[0] == '\\'
3553 || (RT_C_IS_ALPHA(pszFilename[0]) && pszFilename[1] == ':') )
3554 pLnState->papszFileNames[iFileName] = RTStrDup(pszFilename);
3555 else if (idxInc < pLnState->cIncPaths)
3556 pLnState->papszFileNames[iFileName] = RTPathJoinA(pLnState->papszIncPaths[idxInc], pszFilename);
3557 else
3558 return VERR_DWARF_BAD_LINE_NUMBER_HEADER;
3559 if (!pLnState->papszFileNames[iFileName])
3560 return VERR_NO_STR_MEMORY;
3561 pLnState->cFileNames = iFileName + 1;
3562
3563 /*
3564 * Sanitize the name.
3565 */
3566 int rc = rtDbgModDwarfStringToUtf8(pLnState->pDwarfMod, &pLnState->papszFileNames[iFileName]);
3567 Log((" File #%02u = '%s'\n", iFileName, pLnState->papszFileNames[iFileName]));
3568 return rc;
3569}
3570
3571
3572/**
3573 * Adds a line to the table and resets parts of the state (DW_LNS_copy).
3574 *
3575 * @returns IPRT status code
3576 * @param pLnState The line number program state.
3577 * @param offOpCode The opcode offset (for logging
3578 * purposes).
3579 */
3580static int rtDwarfLine_AddLine(PRTDWARFLINESTATE pLnState, uint32_t offOpCode)
3581{
3582 PRTDBGMODDWARF pThis = pLnState->pDwarfMod;
3583 int rc;
3584 if (pThis->iWatcomPass == 1)
3585 rc = rtDbgModDwarfRecordSegOffset(pThis, pLnState->Regs.uSegment, pLnState->Regs.uAddress + 1);
3586 else
3587 {
3588 const char *pszFile = pLnState->Regs.iFile < pLnState->cFileNames
3589 ? pLnState->papszFileNames[pLnState->Regs.iFile]
3590 : "<bad file name index>";
3591 NOREF(offOpCode);
3592
3593 RTDBGSEGIDX iSeg;
3594 RTUINTPTR offSeg;
3595 rc = rtDbgModDwarfLinkAddressToSegOffset(pLnState->pDwarfMod, pLnState->Regs.uSegment, pLnState->Regs.uAddress,
3596 &iSeg, &offSeg); /*AssertRC(rc);*/
3597 if (RT_SUCCESS(rc))
3598 {
3599 Log2(("rtDwarfLine_AddLine: %x:%08llx (%#llx) %s(%d) [offOpCode=%08x]\n", iSeg, offSeg, pLnState->Regs.uAddress, pszFile, pLnState->Regs.uLine, offOpCode));
3600 rc = RTDbgModLineAdd(pLnState->pDwarfMod->hCnt, pszFile, pLnState->Regs.uLine, iSeg, offSeg, NULL);
3601
3602 /* Ignore address conflicts for now. */
3603 if (rc == VERR_DBG_ADDRESS_CONFLICT)
3604 rc = VINF_SUCCESS;
3605 }
3606 else
3607 rc = VINF_SUCCESS; /* ignore failure */
3608 }
3609
3610 pLnState->Regs.fBasicBlock = false;
3611 pLnState->Regs.fPrologueEnd = false;
3612 pLnState->Regs.fEpilogueBegin = false;
3613 pLnState->Regs.uDiscriminator = 0;
3614 return rc;
3615}
3616
3617
3618/**
3619 * Reset the program to the start-of-sequence state.
3620 *
3621 * @param pLnState The line number program state.
3622 */
3623static void rtDwarfLine_ResetState(PRTDWARFLINESTATE pLnState)
3624{
3625 pLnState->Regs.uAddress = 0;
3626 pLnState->Regs.idxOp = 0;
3627 pLnState->Regs.iFile = 1;
3628 pLnState->Regs.uLine = 1;
3629 pLnState->Regs.uColumn = 0;
3630 pLnState->Regs.fIsStatement = RT_BOOL(pLnState->Hdr.u8DefIsStmt);
3631 pLnState->Regs.fBasicBlock = false;
3632 pLnState->Regs.fEndSequence = false;
3633 pLnState->Regs.fPrologueEnd = false;
3634 pLnState->Regs.fEpilogueBegin = false;
3635 pLnState->Regs.uIsa = 0;
3636 pLnState->Regs.uDiscriminator = 0;
3637 pLnState->Regs.uSegment = 0;
3638}
3639
3640
3641/**
3642 * Runs the line number program.
3643 *
3644 * @returns IPRT status code.
3645 * @param pLnState The line number program state.
3646 * @param pCursor The cursor.
3647 */
3648static int rtDwarfLine_RunProgram(PRTDWARFLINESTATE pLnState, PRTDWARFCURSOR pCursor)
3649{
3650 LogFlow(("rtDwarfLine_RunProgram: cbUnitLeft=%zu\n", pCursor->cbUnitLeft));
3651
3652 int rc = VINF_SUCCESS;
3653 rtDwarfLine_ResetState(pLnState);
3654
3655 while (!rtDwarfCursor_IsAtEndOfUnit(pCursor))
3656 {
3657#ifdef LOG_ENABLED
3658 uint32_t const offOpCode = rtDwarfCursor_CalcSectOffsetU32(pCursor);
3659#else
3660 uint32_t const offOpCode = 0;
3661#endif
3662 uint8_t bOpCode = rtDwarfCursor_GetUByte(pCursor, DW_LNS_extended);
3663 if (bOpCode >= pLnState->Hdr.u8OpcodeBase)
3664 {
3665 /*
3666 * Special opcode.
3667 */
3668 uint8_t const bLogOpCode = bOpCode; NOREF(bLogOpCode);
3669 bOpCode -= pLnState->Hdr.u8OpcodeBase;
3670
3671 int32_t const cLineDelta = bOpCode % pLnState->Hdr.u8LineRange + (int32_t)pLnState->Hdr.s8LineBase;
3672 bOpCode /= pLnState->Hdr.u8LineRange;
3673
3674 uint64_t uTmp = bOpCode + pLnState->Regs.idxOp;
3675 uint64_t const cAddressDelta = uTmp / pLnState->Hdr.cMaxOpsPerInstr * pLnState->Hdr.cbMinInstr;
3676 uint64_t const cOpIndexDelta = uTmp % pLnState->Hdr.cMaxOpsPerInstr;
3677
3678 pLnState->Regs.uLine += cLineDelta;
3679 pLnState->Regs.uAddress += cAddressDelta;
3680 pLnState->Regs.idxOp += cOpIndexDelta;
3681 Log2(("%08x: DW Special Opcode %#04x: uLine + %d => %u; uAddress + %#llx => %#llx; idxOp + %#llx => %#llx\n",
3682 offOpCode, bLogOpCode, cLineDelta, pLnState->Regs.uLine, cAddressDelta, pLnState->Regs.uAddress,
3683 cOpIndexDelta, pLnState->Regs.idxOp));
3684
3685 /*
3686 * LLVM emits debug info for global constructors (_GLOBAL__I_a) which are not part of source
3687 * code but are inserted by the compiler: The resulting line number will be 0
3688 * because they are not part of the source file obviously (see https://reviews.llvm.org/rL205999),
3689 * so skip adding them when they are encountered.
3690 */
3691 if (pLnState->Regs.uLine)
3692 rc = rtDwarfLine_AddLine(pLnState, offOpCode);
3693 }
3694 else
3695 {
3696 switch (bOpCode)
3697 {
3698 /*
3699 * Standard opcode.
3700 */
3701 case DW_LNS_copy:
3702 Log2(("%08x: DW_LNS_copy\n", offOpCode));
3703 /* See the comment about LLVM above. */
3704 if (pLnState->Regs.uLine)
3705 rc = rtDwarfLine_AddLine(pLnState, offOpCode);
3706 break;
3707
3708 case DW_LNS_advance_pc:
3709 {
3710 uint64_t u64Adv = rtDwarfCursor_GetULeb128(pCursor, 0);
3711 pLnState->Regs.uAddress += (pLnState->Regs.idxOp + u64Adv) / pLnState->Hdr.cMaxOpsPerInstr
3712 * pLnState->Hdr.cbMinInstr;
3713 pLnState->Regs.idxOp += (pLnState->Regs.idxOp + u64Adv) % pLnState->Hdr.cMaxOpsPerInstr;
3714 Log2(("%08x: DW_LNS_advance_pc: u64Adv=%#llx (%lld) )\n", offOpCode, u64Adv, u64Adv));
3715 break;
3716 }
3717
3718 case DW_LNS_advance_line:
3719 {
3720 int32_t cLineDelta = rtDwarfCursor_GetSLeb128AsS32(pCursor, 0);
3721 pLnState->Regs.uLine += cLineDelta;
3722 Log2(("%08x: DW_LNS_advance_line: uLine + %d => %u\n", offOpCode, cLineDelta, pLnState->Regs.uLine));
3723 break;
3724 }
3725
3726 case DW_LNS_set_file:
3727 pLnState->Regs.iFile = rtDwarfCursor_GetULeb128AsU32(pCursor, 0);
3728 Log2(("%08x: DW_LNS_set_file: iFile=%u\n", offOpCode, pLnState->Regs.iFile));
3729 break;
3730
3731 case DW_LNS_set_column:
3732 pLnState->Regs.uColumn = rtDwarfCursor_GetULeb128AsU32(pCursor, 0);
3733 Log2(("%08x: DW_LNS_set_column\n", offOpCode));
3734 break;
3735
3736 case DW_LNS_negate_stmt:
3737 pLnState->Regs.fIsStatement = !pLnState->Regs.fIsStatement;
3738 Log2(("%08x: DW_LNS_negate_stmt\n", offOpCode));
3739 break;
3740
3741 case DW_LNS_set_basic_block:
3742 pLnState->Regs.fBasicBlock = true;
3743 Log2(("%08x: DW_LNS_set_basic_block\n", offOpCode));
3744 break;
3745
3746 case DW_LNS_const_add_pc:
3747 {
3748 uint8_t u8Adv = (255 - pLnState->Hdr.u8OpcodeBase) / pLnState->Hdr.u8LineRange;
3749 if (pLnState->Hdr.cMaxOpsPerInstr <= 1)
3750 pLnState->Regs.uAddress += (uint32_t)pLnState->Hdr.cbMinInstr * u8Adv;
3751 else
3752 {
3753 pLnState->Regs.uAddress += (pLnState->Regs.idxOp + u8Adv) / pLnState->Hdr.cMaxOpsPerInstr
3754 * pLnState->Hdr.cbMinInstr;
3755 pLnState->Regs.idxOp = (pLnState->Regs.idxOp + u8Adv) % pLnState->Hdr.cMaxOpsPerInstr;
3756 }
3757 Log2(("%08x: DW_LNS_const_add_pc\n", offOpCode));
3758 break;
3759 }
3760 case DW_LNS_fixed_advance_pc:
3761 pLnState->Regs.uAddress += rtDwarfCursor_GetUHalf(pCursor, 0);
3762 pLnState->Regs.idxOp = 0;
3763 Log2(("%08x: DW_LNS_fixed_advance_pc\n", offOpCode));
3764 break;
3765
3766 case DW_LNS_set_prologue_end:
3767 pLnState->Regs.fPrologueEnd = true;
3768 Log2(("%08x: DW_LNS_set_prologue_end\n", offOpCode));
3769 break;
3770
3771 case DW_LNS_set_epilogue_begin:
3772 pLnState->Regs.fEpilogueBegin = true;
3773 Log2(("%08x: DW_LNS_set_epilogue_begin\n", offOpCode));
3774 break;
3775
3776 case DW_LNS_set_isa:
3777 pLnState->Regs.uIsa = rtDwarfCursor_GetULeb128AsU32(pCursor, 0);
3778 Log2(("%08x: DW_LNS_set_isa %#x\n", offOpCode, pLnState->Regs.uIsa));
3779 break;
3780
3781 default:
3782 {
3783 unsigned cOpsToSkip = pLnState->Hdr.pacStdOperands[bOpCode - 1];
3784 Log(("rtDwarfLine_RunProgram: Unknown standard opcode %#x, %#x operands, at %08x.\n", bOpCode, cOpsToSkip, offOpCode));
3785 while (cOpsToSkip-- > 0)
3786 rc = rtDwarfCursor_SkipLeb128(pCursor);
3787 break;
3788 }
3789
3790 /*
3791 * Extended opcode.
3792 */
3793 case DW_LNS_extended:
3794 {
3795 /* The instruction has a length prefix. */
3796 uint64_t cbInstr = rtDwarfCursor_GetULeb128(pCursor, UINT64_MAX);
3797 if (RT_FAILURE(pCursor->rc))
3798 return pCursor->rc;
3799 if (cbInstr > pCursor->cbUnitLeft)
3800 return VERR_DWARF_BAD_LNE;
3801 uint8_t const * const pbEndOfInstr = rtDwarfCursor_CalcPos(pCursor, cbInstr);
3802
3803 /* Get the opcode and deal with it if we know it. */
3804 bOpCode = rtDwarfCursor_GetUByte(pCursor, 0);
3805 switch (bOpCode)
3806 {
3807 case DW_LNE_end_sequence:
3808#if 0 /* No need for this, I think. */
3809 pLnState->Regs.fEndSequence = true;
3810 rc = rtDwarfLine_AddLine(pLnState, offOpCode);
3811#endif
3812 rtDwarfLine_ResetState(pLnState);
3813 Log2(("%08x: DW_LNE_end_sequence\n", offOpCode));
3814 break;
3815
3816 case DW_LNE_set_address:
3817 pLnState->Regs.uAddress = rtDwarfCursor_GetVarSizedU(pCursor, cbInstr - 1, UINT64_MAX);
3818 pLnState->Regs.idxOp = 0;
3819 Log2(("%08x: DW_LNE_set_address: %#llx\n", offOpCode, pLnState->Regs.uAddress));
3820 break;
3821
3822 case DW_LNE_define_file:
3823 {
3824 const char *pszFilename = rtDwarfCursor_GetSZ(pCursor, NULL);
3825 uint32_t idxInc = rtDwarfCursor_GetULeb128AsU32(pCursor, UINT32_MAX);
3826 rtDwarfCursor_SkipLeb128(pCursor); /* st_mtime */
3827 rtDwarfCursor_SkipLeb128(pCursor); /* st_size */
3828 Log2(("%08x: DW_LNE_define_file: {%d}/%s\n", offOpCode, idxInc, pszFilename));
3829
3830 rc = rtDwarfCursor_AdvanceToPos(pCursor, pbEndOfInstr);
3831 if (RT_SUCCESS(rc))
3832 rc = rtDwarfLine_DefineFileName(pLnState, pszFilename, idxInc);
3833 break;
3834 }
3835
3836 /*
3837 * Note! Was defined in DWARF 4. But... Watcom used it for setting the
3838 * segment in DWARF 2, creating an incompatibility with the newer
3839 * standard. And gcc 10 uses v3 for these.
3840 */
3841 case DW_LNE_set_descriminator:
3842 if (pLnState->Hdr.uVer != 2)
3843 {
3844 Assert(pLnState->Hdr.uVer >= 3);
3845 pLnState->Regs.uDiscriminator = rtDwarfCursor_GetULeb128AsU32(pCursor, UINT32_MAX);
3846 Log2(("%08x: DW_LNE_set_descriminator: %u\n", offOpCode, pLnState->Regs.uDiscriminator));
3847 }
3848 else
3849 {
3850 uint64_t uSeg = rtDwarfCursor_GetVarSizedU(pCursor, cbInstr - 1, UINT64_MAX);
3851 Log2(("%08x: DW_LNE_set_segment: %#llx, cbInstr=%#x - Watcom Extension\n", offOpCode, uSeg, cbInstr));
3852 pLnState->Regs.uSegment = (RTSEL)uSeg;
3853 AssertStmt(pLnState->Regs.uSegment == uSeg, rc = VERR_DWARF_BAD_INFO);
3854 }
3855 break;
3856
3857 default:
3858 Log(("rtDwarfLine_RunProgram: Unknown extended opcode %#x, length %#x at %08x\n", bOpCode, cbInstr, offOpCode));
3859 break;
3860 }
3861
3862 /* Advance the cursor to the end of the instruction . */
3863 rtDwarfCursor_AdvanceToPos(pCursor, pbEndOfInstr);
3864 break;
3865 }
3866 }
3867 }
3868
3869 /*
3870 * Check the status before looping.
3871 */
3872 if (RT_FAILURE(rc))
3873 return rc;
3874 if (RT_FAILURE(pCursor->rc))
3875 return pCursor->rc;
3876 }
3877 return rc;
3878}
3879
3880
3881/**
3882 * Reads the include directories for a line number unit.
3883 *
3884 * @returns IPRT status code
3885 * @param pLnState The line number program state.
3886 * @param pCursor The cursor.
3887 */
3888static int rtDwarfLine_ReadFileNames(PRTDWARFLINESTATE pLnState, PRTDWARFCURSOR pCursor)
3889{
3890 int rc = rtDwarfLine_DefineFileName(pLnState, "/<bad-zero-file-name-entry>", 0);
3891 if (RT_FAILURE(rc))
3892 return rc;
3893
3894 for (;;)
3895 {
3896 const char *psz = rtDwarfCursor_GetSZ(pCursor, NULL);
3897 if (!*psz)
3898 break;
3899
3900 uint64_t idxInc = rtDwarfCursor_GetULeb128(pCursor, UINT64_MAX);
3901 rtDwarfCursor_SkipLeb128(pCursor); /* st_mtime */
3902 rtDwarfCursor_SkipLeb128(pCursor); /* st_size */
3903
3904 rc = rtDwarfLine_DefineFileName(pLnState, psz, idxInc);
3905 if (RT_FAILURE(rc))
3906 return rc;
3907 }
3908 return pCursor->rc;
3909}
3910
3911
3912/**
3913 * Reads the include directories for a line number unit.
3914 *
3915 * @returns IPRT status code
3916 * @param pLnState The line number program state.
3917 * @param pCursor The cursor.
3918 */
3919static int rtDwarfLine_ReadIncludePaths(PRTDWARFLINESTATE pLnState, PRTDWARFCURSOR pCursor)
3920{
3921 const char *psz = ""; /* The zeroth is the unit dir. */
3922 for (;;)
3923 {
3924 if ((pLnState->cIncPaths % 2) == 0)
3925 {
3926 void *pv = RTMemRealloc(pLnState->papszIncPaths, sizeof(pLnState->papszIncPaths[0]) * (pLnState->cIncPaths + 2));
3927 if (!pv)
3928 return VERR_NO_MEMORY;
3929 pLnState->papszIncPaths = (const char **)pv;
3930 }
3931 Log((" Path #%02u = '%s'\n", pLnState->cIncPaths, psz));
3932 pLnState->papszIncPaths[pLnState->cIncPaths] = psz;
3933 pLnState->cIncPaths++;
3934
3935 psz = rtDwarfCursor_GetSZ(pCursor, NULL);
3936 if (!*psz)
3937 break;
3938 }
3939
3940 return pCursor->rc;
3941}
3942
3943
3944/**
3945 * Explodes the line number table for a compilation unit.
3946 *
3947 * @returns IPRT status code
3948 * @param pThis The DWARF instance.
3949 * @param pCursor The cursor to read the line number information
3950 * via.
3951 */
3952static int rtDwarfLine_ExplodeUnit(PRTDBGMODDWARF pThis, PRTDWARFCURSOR pCursor)
3953{
3954 RTDWARFLINESTATE LnState;
3955 RT_ZERO(LnState);
3956 LnState.pDwarfMod = pThis;
3957
3958 /*
3959 * Parse the header.
3960 */
3961 rtDwarfCursor_GetInitialLength(pCursor);
3962 LnState.Hdr.uVer = rtDwarfCursor_GetUHalf(pCursor, 0);
3963 if ( LnState.Hdr.uVer < 2
3964 || LnState.Hdr.uVer > 4)
3965 return rtDwarfCursor_SkipUnit(pCursor);
3966
3967 LnState.Hdr.offFirstOpcode = rtDwarfCursor_GetUOff(pCursor, 0);
3968 uint8_t const * const pbFirstOpcode = rtDwarfCursor_CalcPos(pCursor, LnState.Hdr.offFirstOpcode);
3969
3970 LnState.Hdr.cbMinInstr = rtDwarfCursor_GetUByte(pCursor, 0);
3971 if (LnState.Hdr.uVer >= 4)
3972 LnState.Hdr.cMaxOpsPerInstr = rtDwarfCursor_GetUByte(pCursor, 0);
3973 else
3974 LnState.Hdr.cMaxOpsPerInstr = 1;
3975 LnState.Hdr.u8DefIsStmt = rtDwarfCursor_GetUByte(pCursor, 0);
3976 LnState.Hdr.s8LineBase = rtDwarfCursor_GetSByte(pCursor, 0);
3977 LnState.Hdr.u8LineRange = rtDwarfCursor_GetUByte(pCursor, 0);
3978 LnState.Hdr.u8OpcodeBase = rtDwarfCursor_GetUByte(pCursor, 0);
3979
3980 if ( !LnState.Hdr.u8OpcodeBase
3981 || !LnState.Hdr.cMaxOpsPerInstr
3982 || !LnState.Hdr.u8LineRange
3983 || LnState.Hdr.u8DefIsStmt > 1)
3984 return VERR_DWARF_BAD_LINE_NUMBER_HEADER;
3985 Log2(("DWARF Line number header:\n"
3986 " uVer %d\n"
3987 " offFirstOpcode %#llx\n"
3988 " cbMinInstr %u\n"
3989 " cMaxOpsPerInstr %u\n"
3990 " u8DefIsStmt %u\n"
3991 " s8LineBase %d\n"
3992 " u8LineRange %u\n"
3993 " u8OpcodeBase %u\n",
3994 LnState.Hdr.uVer, LnState.Hdr.offFirstOpcode, LnState.Hdr.cbMinInstr, LnState.Hdr.cMaxOpsPerInstr,
3995 LnState.Hdr.u8DefIsStmt, LnState.Hdr.s8LineBase, LnState.Hdr.u8LineRange, LnState.Hdr.u8OpcodeBase));
3996
3997 LnState.Hdr.pacStdOperands = pCursor->pb;
3998 for (uint8_t iStdOpcode = 1; iStdOpcode < LnState.Hdr.u8OpcodeBase; iStdOpcode++)
3999 rtDwarfCursor_GetUByte(pCursor, 0);
4000
4001 int rc = pCursor->rc;
4002 if (RT_SUCCESS(rc))
4003 rc = rtDwarfLine_ReadIncludePaths(&LnState, pCursor);
4004 if (RT_SUCCESS(rc))
4005 rc = rtDwarfLine_ReadFileNames(&LnState, pCursor);
4006
4007 /*
4008 * Run the program....
4009 */
4010 if (RT_SUCCESS(rc))
4011 rc = rtDwarfCursor_AdvanceToPos(pCursor, pbFirstOpcode);
4012 if (RT_SUCCESS(rc))
4013 rc = rtDwarfLine_RunProgram(&LnState, pCursor);
4014
4015 /*
4016 * Clean up.
4017 */
4018 size_t i = LnState.cFileNames;
4019 while (i-- > 0)
4020 RTStrFree(LnState.papszFileNames[i]);
4021 RTMemFree(LnState.papszFileNames);
4022 RTMemFree(LnState.papszIncPaths);
4023
4024 Assert(rtDwarfCursor_IsAtEndOfUnit(pCursor) || RT_FAILURE(rc));
4025 return rc;
4026}
4027
4028
4029/**
4030 * Explodes the line number table.
4031 *
4032 * The line numbers are insered into the debug info container.
4033 *
4034 * @returns IPRT status code
4035 * @param pThis The DWARF instance.
4036 */
4037static int rtDwarfLine_ExplodeAll(PRTDBGMODDWARF pThis)
4038{
4039 if (!pThis->aSections[krtDbgModDwarfSect_line].fPresent)
4040 return VINF_SUCCESS;
4041
4042 RTDWARFCURSOR Cursor;
4043 int rc = rtDwarfCursor_Init(&Cursor, pThis, krtDbgModDwarfSect_line);
4044 if (RT_FAILURE(rc))
4045 return rc;
4046
4047 while ( !rtDwarfCursor_IsAtEnd(&Cursor)
4048 && RT_SUCCESS(rc))
4049 rc = rtDwarfLine_ExplodeUnit(pThis, &Cursor);
4050
4051 return rtDwarfCursor_Delete(&Cursor, rc);
4052}
4053
4054
4055/*
4056 *
4057 * DWARF Abbreviations.
4058 * DWARF Abbreviations.
4059 * DWARF Abbreviations.
4060 *
4061 */
4062
4063/**
4064 * Deals with a cache miss in rtDwarfAbbrev_Lookup.
4065 *
4066 * @returns Pointer to abbreviation cache entry (read only). May be rendered
4067 * invalid by subsequent calls to this function.
4068 * @param pThis The DWARF instance.
4069 * @param uCode The abbreviation code to lookup.
4070 */
4071static PCRTDWARFABBREV rtDwarfAbbrev_LookupMiss(PRTDBGMODDWARF pThis, uint32_t uCode)
4072{
4073 /*
4074 * There is no entry with code zero.
4075 */
4076 if (!uCode)
4077 return NULL;
4078
4079 /*
4080 * Resize the cache array if the code is considered cachable.
4081 */
4082 bool fFillCache = true;
4083 if (pThis->cCachedAbbrevsAlloced < uCode)
4084 {
4085 if (uCode >= _64K)
4086 fFillCache = false;
4087 else
4088 {
4089 uint32_t cNew = RT_ALIGN(uCode, 64);
4090 void *pv = RTMemRealloc(pThis->paCachedAbbrevs, sizeof(pThis->paCachedAbbrevs[0]) * cNew);
4091 if (!pv)
4092 fFillCache = false;
4093 else
4094 {
4095 Log(("rtDwarfAbbrev_LookupMiss: Growing from %u to %u...\n", pThis->cCachedAbbrevsAlloced, cNew));
4096 pThis->paCachedAbbrevs = (PRTDWARFABBREV)pv;
4097 for (uint32_t i = pThis->cCachedAbbrevsAlloced; i < cNew; i++)
4098 pThis->paCachedAbbrevs[i].offAbbrev = UINT32_MAX;
4099 pThis->cCachedAbbrevsAlloced = cNew;
4100 }
4101 }
4102 }
4103
4104 /*
4105 * Walk the abbreviations till we find the desired code.
4106 */
4107 RTDWARFCURSOR Cursor;
4108 int rc = rtDwarfCursor_InitWithOffset(&Cursor, pThis, krtDbgModDwarfSect_abbrev, pThis->offCachedAbbrev);
4109 if (RT_FAILURE(rc))
4110 return NULL;
4111
4112 PRTDWARFABBREV pRet = NULL;
4113 if (fFillCache)
4114 {
4115 /*
4116 * Search for the entry and fill the cache while doing so.
4117 * We assume that abbreviation codes for a unit will stop when we see
4118 * zero code or when the code value drops.
4119 */
4120 uint32_t uPrevCode = 0;
4121 for (;;)
4122 {
4123 /* Read the 'header'. Skipping zero code bytes. */
4124#ifdef LOG_ENABLED
4125 uint32_t const offStart = rtDwarfCursor_CalcSectOffsetU32(&Cursor);
4126#endif
4127 uint32_t const uCurCode = rtDwarfCursor_GetULeb128AsU32(&Cursor, 0);
4128 if (pRet && (uCurCode == 0 || uCurCode < uPrevCode))
4129 break; /* probably end of unit. */
4130 if (uCurCode != 0)
4131 {
4132 uint32_t const uCurTag = rtDwarfCursor_GetULeb128AsU32(&Cursor, 0);
4133 uint8_t const uChildren = rtDwarfCursor_GetU8(&Cursor, 0);
4134 if (RT_FAILURE(Cursor.rc))
4135 break;
4136 if ( uCurTag > 0xffff
4137 || uChildren > 1)
4138 {
4139 Cursor.rc = VERR_DWARF_BAD_ABBREV;
4140 break;
4141 }
4142
4143 /* Cache it? */
4144 if (uCurCode <= pThis->cCachedAbbrevsAlloced)
4145 {
4146 PRTDWARFABBREV pEntry = &pThis->paCachedAbbrevs[uCurCode - 1];
4147 if (pEntry->offAbbrev != pThis->offCachedAbbrev)
4148 {
4149 pEntry->offAbbrev = pThis->offCachedAbbrev;
4150 pEntry->fChildren = RT_BOOL(uChildren);
4151 pEntry->uTag = uCurTag;
4152 pEntry->offSpec = rtDwarfCursor_CalcSectOffsetU32(&Cursor);
4153#ifdef LOG_ENABLED
4154 pEntry->cbHdr = (uint8_t)(pEntry->offSpec - offStart);
4155 Log7(("rtDwarfAbbrev_LookupMiss(%#x): fill: %#x: uTag=%#x offAbbrev=%#x%s\n",
4156 uCode, offStart, pEntry->uTag, pEntry->offAbbrev, pEntry->fChildren ? " has-children" : ""));
4157#endif
4158 if (uCurCode == uCode)
4159 {
4160 Assert(!pRet);
4161 pRet = pEntry;
4162 if (uCurCode == pThis->cCachedAbbrevsAlloced)
4163 break;
4164 }
4165 }
4166 else if (pRet)
4167 break; /* Next unit, don't cache more. */
4168 /* else: We're growing the cache and re-reading old data. */
4169 }
4170
4171 /* Skip the specification. */
4172 uint32_t uAttr, uForm;
4173 do
4174 {
4175 uAttr = rtDwarfCursor_GetULeb128AsU32(&Cursor, 0);
4176 uForm = rtDwarfCursor_GetULeb128AsU32(&Cursor, 0);
4177 } while (uAttr != 0);
4178 }
4179 if (RT_FAILURE(Cursor.rc))
4180 break;
4181
4182 /* Done? (Maximize cache filling.) */
4183 if ( pRet != NULL
4184 && uCurCode >= pThis->cCachedAbbrevsAlloced)
4185 break;
4186 uPrevCode = uCurCode;
4187 }
4188 if (pRet)
4189 Log6(("rtDwarfAbbrev_LookupMiss(%#x): uTag=%#x offSpec=%#x offAbbrev=%#x [fill]\n",
4190 uCode, pRet->uTag, pRet->offSpec, pRet->offAbbrev));
4191 else
4192 Log6(("rtDwarfAbbrev_LookupMiss(%#x): failed [fill]\n", uCode));
4193 }
4194 else
4195 {
4196 /*
4197 * Search for the entry with the desired code, no cache filling.
4198 */
4199 for (;;)
4200 {
4201 /* Read the 'header'. */
4202#ifdef LOG_ENABLED
4203 uint32_t const offStart = rtDwarfCursor_CalcSectOffsetU32(&Cursor);
4204#endif
4205 uint32_t const uCurCode = rtDwarfCursor_GetULeb128AsU32(&Cursor, 0);
4206 uint32_t const uCurTag = rtDwarfCursor_GetULeb128AsU32(&Cursor, 0);
4207 uint8_t const uChildren = rtDwarfCursor_GetU8(&Cursor, 0);
4208 if (RT_FAILURE(Cursor.rc))
4209 break;
4210 if ( uCurTag > 0xffff
4211 || uChildren > 1)
4212 {
4213 Cursor.rc = VERR_DWARF_BAD_ABBREV;
4214 break;
4215 }
4216
4217 /* Do we have a match? */
4218 if (uCurCode == uCode)
4219 {
4220 pRet = &pThis->LookupAbbrev;
4221 pRet->fChildren = RT_BOOL(uChildren);
4222 pRet->uTag = uCurTag;
4223 pRet->offSpec = rtDwarfCursor_CalcSectOffsetU32(&Cursor);
4224 pRet->offAbbrev = pThis->offCachedAbbrev;
4225#ifdef LOG_ENABLED
4226 pRet->cbHdr = (uint8_t)(pRet->offSpec - offStart);
4227#endif
4228 break;
4229 }
4230
4231 /* Skip the specification. */
4232 uint32_t uAttr, uForm;
4233 do
4234 {
4235 uAttr = rtDwarfCursor_GetULeb128AsU32(&Cursor, 0);
4236 uForm = rtDwarfCursor_GetULeb128AsU32(&Cursor, 0);
4237 } while (uAttr != 0);
4238 if (RT_FAILURE(Cursor.rc))
4239 break;
4240 }
4241 if (pRet)
4242 Log6(("rtDwarfAbbrev_LookupMiss(%#x): uTag=%#x offSpec=%#x offAbbrev=%#x [no-fill]\n",
4243 uCode, pRet->uTag, pRet->offSpec, pRet->offAbbrev));
4244 else
4245 Log6(("rtDwarfAbbrev_LookupMiss(%#x): failed [no-fill]\n", uCode));
4246 }
4247
4248 rtDwarfCursor_Delete(&Cursor, VINF_SUCCESS);
4249 return pRet;
4250}
4251
4252
4253/**
4254 * Looks up an abbreviation.
4255 *
4256 * @returns Pointer to abbreviation cache entry (read only). May be rendered
4257 * invalid by subsequent calls to this function.
4258 * @param pThis The DWARF instance.
4259 * @param uCode The abbreviation code to lookup.
4260 */
4261static PCRTDWARFABBREV rtDwarfAbbrev_Lookup(PRTDBGMODDWARF pThis, uint32_t uCode)
4262{
4263 uCode -= 1;
4264 if (uCode < pThis->cCachedAbbrevsAlloced)
4265 {
4266 if (pThis->paCachedAbbrevs[uCode].offAbbrev == pThis->offCachedAbbrev)
4267 return &pThis->paCachedAbbrevs[uCode];
4268 }
4269 return rtDwarfAbbrev_LookupMiss(pThis, uCode + 1);
4270}
4271
4272
4273/**
4274 * Sets the abbreviation offset of the current unit.
4275 *
4276 * @param pThis The DWARF instance.
4277 * @param offAbbrev The offset into the abbreviation section.
4278 */
4279static void rtDwarfAbbrev_SetUnitOffset(PRTDBGMODDWARF pThis, uint32_t offAbbrev)
4280{
4281 pThis->offCachedAbbrev = offAbbrev;
4282}
4283
4284
4285
4286/*
4287 *
4288 * DIE Attribute Parsers.
4289 * DIE Attribute Parsers.
4290 * DIE Attribute Parsers.
4291 *
4292 */
4293
4294/**
4295 * Gets the compilation unit a DIE belongs to.
4296 *
4297 * @returns The compilation unit DIE.
4298 * @param pDie Some DIE in the unit.
4299 */
4300static PRTDWARFDIECOMPILEUNIT rtDwarfDie_GetCompileUnit(PRTDWARFDIE pDie)
4301{
4302 while (pDie->pParent)
4303 pDie = pDie->pParent;
4304 AssertReturn( pDie->uTag == DW_TAG_compile_unit
4305 || pDie->uTag == DW_TAG_partial_unit,
4306 NULL);
4307 return (PRTDWARFDIECOMPILEUNIT)pDie;
4308}
4309
4310
4311/**
4312 * Resolves a string section (debug_str) reference.
4313 *
4314 * @returns Pointer to the string (inside the string section).
4315 * @param pThis The DWARF instance.
4316 * @param pCursor The cursor.
4317 * @param pszErrValue What to return on failure (@a
4318 * pCursor->rc is set).
4319 */
4320static const char *rtDwarfDecodeHlp_GetStrp(PRTDBGMODDWARF pThis, PRTDWARFCURSOR pCursor, const char *pszErrValue)
4321{
4322 uint64_t offDebugStr = rtDwarfCursor_GetUOff(pCursor, UINT64_MAX);
4323 if (RT_FAILURE(pCursor->rc))
4324 return pszErrValue;
4325
4326 if (offDebugStr >= pThis->aSections[krtDbgModDwarfSect_str].cb)
4327 {
4328 /* Ugly: Exploit the cursor status field for reporting errors. */
4329 pCursor->rc = VERR_DWARF_BAD_INFO;
4330 return pszErrValue;
4331 }
4332
4333 if (!pThis->aSections[krtDbgModDwarfSect_str].pv)
4334 {
4335 int rc = rtDbgModDwarfLoadSection(pThis, krtDbgModDwarfSect_str);
4336 if (RT_FAILURE(rc))
4337 {
4338 /* Ugly: Exploit the cursor status field for reporting errors. */
4339 pCursor->rc = rc;
4340 return pszErrValue;
4341 }
4342 }
4343
4344 return (const char *)pThis->aSections[krtDbgModDwarfSect_str].pv + (size_t)offDebugStr;
4345}
4346
4347
4348/** @callback_method_impl{FNRTDWARFATTRDECODER} */
4349static DECLCALLBACK(int) rtDwarfDecode_Address(PRTDWARFDIE pDie, uint8_t *pbMember, PCRTDWARFATTRDESC pDesc,
4350 uint32_t uForm, PRTDWARFCURSOR pCursor)
4351{
4352 AssertReturn(ATTR_GET_SIZE(pDesc) == sizeof(RTDWARFADDR), VERR_INTERNAL_ERROR_3);
4353 NOREF(pDie);
4354
4355 uint64_t uAddr;
4356 switch (uForm)
4357 {
4358 case DW_FORM_addr: uAddr = rtDwarfCursor_GetNativeUOff(pCursor, 0); break;
4359 case DW_FORM_data1: uAddr = rtDwarfCursor_GetU8(pCursor, 0); break;
4360 case DW_FORM_data2: uAddr = rtDwarfCursor_GetU16(pCursor, 0); break;
4361 case DW_FORM_data4: uAddr = rtDwarfCursor_GetU32(pCursor, 0); break;
4362 case DW_FORM_data8: uAddr = rtDwarfCursor_GetU64(pCursor, 0); break;
4363 case DW_FORM_udata: uAddr = rtDwarfCursor_GetULeb128(pCursor, 0); break;
4364 default:
4365 AssertMsgFailedReturn(("%#x (%s)\n", uForm, rtDwarfLog_FormName(uForm)), VERR_DWARF_UNEXPECTED_FORM);
4366 }
4367 if (RT_FAILURE(pCursor->rc))
4368 return pCursor->rc;
4369
4370 PRTDWARFADDR pAddr = (PRTDWARFADDR)pbMember;
4371 pAddr->uAddress = uAddr;
4372
4373 Log4((" %-20s %#010llx [%s]\n", rtDwarfLog_AttrName(pDesc->uAttr), uAddr, rtDwarfLog_FormName(uForm)));
4374 return VINF_SUCCESS;
4375}
4376
4377
4378/** @callback_method_impl{FNRTDWARFATTRDECODER} */
4379static DECLCALLBACK(int) rtDwarfDecode_Bool(PRTDWARFDIE pDie, uint8_t *pbMember, PCRTDWARFATTRDESC pDesc,
4380 uint32_t uForm, PRTDWARFCURSOR pCursor)
4381{
4382 AssertReturn(ATTR_GET_SIZE(pDesc) == sizeof(bool), VERR_INTERNAL_ERROR_3);
4383 NOREF(pDie);
4384
4385 bool *pfMember = (bool *)pbMember;
4386 switch (uForm)
4387 {
4388 case DW_FORM_flag:
4389 {
4390 uint8_t b = rtDwarfCursor_GetU8(pCursor, UINT8_MAX);
4391 if (b > 1)
4392 {
4393 Log(("Unexpected boolean value %#x\n", b));
4394 return RT_FAILURE(pCursor->rc) ? pCursor->rc : pCursor->rc = VERR_DWARF_BAD_INFO;
4395 }
4396 *pfMember = RT_BOOL(b);
4397 break;
4398 }
4399
4400 case DW_FORM_flag_present:
4401 *pfMember = true;
4402 break;
4403
4404 default:
4405 AssertMsgFailedReturn(("%#x\n", uForm), VERR_DWARF_UNEXPECTED_FORM);
4406 }
4407
4408 Log4((" %-20s %RTbool [%s]\n", rtDwarfLog_AttrName(pDesc->uAttr), *pfMember, rtDwarfLog_FormName(uForm)));
4409 return VINF_SUCCESS;
4410}
4411
4412
4413/** @callback_method_impl{FNRTDWARFATTRDECODER} */
4414static DECLCALLBACK(int) rtDwarfDecode_LowHighPc(PRTDWARFDIE pDie, uint8_t *pbMember, PCRTDWARFATTRDESC pDesc,
4415 uint32_t uForm, PRTDWARFCURSOR pCursor)
4416{
4417 AssertReturn(ATTR_GET_SIZE(pDesc) == sizeof(RTDWARFADDRRANGE), VERR_INTERNAL_ERROR_3);
4418 AssertReturn(pDesc->uAttr == DW_AT_low_pc || pDesc->uAttr == DW_AT_high_pc, VERR_INTERNAL_ERROR_3);
4419 NOREF(pDie);
4420
4421 uint64_t uAddr;
4422 switch (uForm)
4423 {
4424 case DW_FORM_addr: uAddr = rtDwarfCursor_GetNativeUOff(pCursor, 0); break;
4425 case DW_FORM_data1: uAddr = rtDwarfCursor_GetU8(pCursor, 0); break;
4426 case DW_FORM_data2: uAddr = rtDwarfCursor_GetU16(pCursor, 0); break;
4427 case DW_FORM_data4: uAddr = rtDwarfCursor_GetU32(pCursor, 0); break;
4428 case DW_FORM_data8: uAddr = rtDwarfCursor_GetU64(pCursor, 0); break;
4429 case DW_FORM_udata: uAddr = rtDwarfCursor_GetULeb128(pCursor, 0); break;
4430 default:
4431 AssertMsgFailedReturn(("%#x\n", uForm), VERR_DWARF_UNEXPECTED_FORM);
4432 }
4433 if (RT_FAILURE(pCursor->rc))
4434 return pCursor->rc;
4435
4436 PRTDWARFADDRRANGE pRange = (PRTDWARFADDRRANGE)pbMember;
4437 if (pDesc->uAttr == DW_AT_low_pc)
4438 {
4439 if (pRange->fHaveLowAddress)
4440 {
4441 Log(("rtDwarfDecode_LowHighPc: Duplicate DW_AT_low_pc\n"));
4442 return pCursor->rc = VERR_DWARF_BAD_INFO;
4443 }
4444 pRange->fHaveLowAddress = true;
4445 pRange->uLowAddress = uAddr;
4446 }
4447 else
4448 {
4449 if (pRange->fHaveHighAddress)
4450 {
4451 Log(("rtDwarfDecode_LowHighPc: Duplicate DW_AT_high_pc\n"));
4452 return pCursor->rc = VERR_DWARF_BAD_INFO;
4453 }
4454 pRange->fHaveHighAddress = true;
4455 pRange->fHaveHighIsAddress = uForm == DW_FORM_addr;
4456 if (!pRange->fHaveHighIsAddress && pRange->fHaveLowAddress)
4457 {
4458 pRange->fHaveHighIsAddress = true;
4459 pRange->uHighAddress = uAddr + pRange->uLowAddress;
4460 }
4461 else
4462 pRange->uHighAddress = uAddr;
4463
4464 }
4465 pRange->cAttrs++;
4466
4467 Log4((" %-20s %#010llx [%s]\n", rtDwarfLog_AttrName(pDesc->uAttr), uAddr, rtDwarfLog_FormName(uForm)));
4468 return VINF_SUCCESS;
4469}
4470
4471
4472/** @callback_method_impl{FNRTDWARFATTRDECODER} */
4473static DECLCALLBACK(int) rtDwarfDecode_Ranges(PRTDWARFDIE pDie, uint8_t *pbMember, PCRTDWARFATTRDESC pDesc,
4474 uint32_t uForm, PRTDWARFCURSOR pCursor)
4475{
4476 AssertReturn(ATTR_GET_SIZE(pDesc) == sizeof(RTDWARFADDRRANGE), VERR_INTERNAL_ERROR_3);
4477 AssertReturn(pDesc->uAttr == DW_AT_ranges, VERR_INTERNAL_ERROR_3);
4478 NOREF(pDie);
4479
4480 /* Decode it. */
4481 uint64_t off;
4482 switch (uForm)
4483 {
4484 case DW_FORM_addr: off = rtDwarfCursor_GetNativeUOff(pCursor, 0); break;
4485 case DW_FORM_data4: off = rtDwarfCursor_GetU32(pCursor, 0); break;
4486 case DW_FORM_data8: off = rtDwarfCursor_GetU64(pCursor, 0); break;
4487 case DW_FORM_sec_offset: off = rtDwarfCursor_GetUOff(pCursor, 0); break;
4488 default:
4489 AssertMsgFailedReturn(("%#x\n", uForm), VERR_DWARF_UNEXPECTED_FORM);
4490 }
4491 if (RT_FAILURE(pCursor->rc))
4492 return pCursor->rc;
4493
4494 /* Validate the offset and load the ranges. */
4495 PRTDBGMODDWARF pThis = pCursor->pDwarfMod;
4496 if (off >= pThis->aSections[krtDbgModDwarfSect_ranges].cb)
4497 {
4498 Log(("rtDwarfDecode_Ranges: bad ranges off=%#llx\n", off));
4499 return pCursor->rc = VERR_DWARF_BAD_POS;
4500 }
4501
4502 if (!pThis->aSections[krtDbgModDwarfSect_ranges].pv)
4503 {
4504 int rc = rtDbgModDwarfLoadSection(pThis, krtDbgModDwarfSect_ranges);
4505 if (RT_FAILURE(rc))
4506 return pCursor->rc = rc;
4507 }
4508
4509 /* Store the result. */
4510 PRTDWARFADDRRANGE pRange = (PRTDWARFADDRRANGE)pbMember;
4511 if (pRange->fHaveRanges)
4512 {
4513 Log(("rtDwarfDecode_Ranges: Duplicate DW_AT_ranges\n"));
4514 return pCursor->rc = VERR_DWARF_BAD_INFO;
4515 }
4516 pRange->fHaveRanges = true;
4517 pRange->cAttrs++;
4518 pRange->pbRanges = (uint8_t const *)pThis->aSections[krtDbgModDwarfSect_ranges].pv + (size_t)off;
4519
4520 Log4((" %-20s TODO [%s]\n", rtDwarfLog_AttrName(pDesc->uAttr), rtDwarfLog_FormName(uForm)));
4521 return VINF_SUCCESS;
4522}
4523
4524
4525/** @callback_method_impl{FNRTDWARFATTRDECODER} */
4526static DECLCALLBACK(int) rtDwarfDecode_Reference(PRTDWARFDIE pDie, uint8_t *pbMember, PCRTDWARFATTRDESC pDesc,
4527 uint32_t uForm, PRTDWARFCURSOR pCursor)
4528{
4529 AssertReturn(ATTR_GET_SIZE(pDesc) == sizeof(RTDWARFREF), VERR_INTERNAL_ERROR_3);
4530
4531 /* Decode it. */
4532 uint64_t off;
4533 krtDwarfRef enmWrt = krtDwarfRef_SameUnit;
4534 switch (uForm)
4535 {
4536 case DW_FORM_ref1: off = rtDwarfCursor_GetU8(pCursor, 0); break;
4537 case DW_FORM_ref2: off = rtDwarfCursor_GetU16(pCursor, 0); break;
4538 case DW_FORM_ref4: off = rtDwarfCursor_GetU32(pCursor, 0); break;
4539 case DW_FORM_ref8: off = rtDwarfCursor_GetU64(pCursor, 0); break;
4540 case DW_FORM_ref_udata: off = rtDwarfCursor_GetULeb128(pCursor, 0); break;
4541
4542 case DW_FORM_ref_addr:
4543 enmWrt = krtDwarfRef_InfoSection;
4544 off = rtDwarfCursor_GetUOff(pCursor, 0);
4545 break;
4546
4547 case DW_FORM_ref_sig8:
4548 enmWrt = krtDwarfRef_TypeId64;
4549 off = rtDwarfCursor_GetU64(pCursor, 0);
4550 break;
4551
4552 default:
4553 AssertMsgFailedReturn(("%#x\n", uForm), VERR_DWARF_UNEXPECTED_FORM);
4554 }
4555 if (RT_FAILURE(pCursor->rc))
4556 return pCursor->rc;
4557
4558 /* Validate the offset and convert to debug_info relative offsets. */
4559 if (enmWrt == krtDwarfRef_InfoSection)
4560 {
4561 if (off >= pCursor->pDwarfMod->aSections[krtDbgModDwarfSect_info].cb)
4562 {
4563 Log(("rtDwarfDecode_Reference: bad info off=%#llx\n", off));
4564 return pCursor->rc = VERR_DWARF_BAD_POS;
4565 }
4566 }
4567 else if (enmWrt == krtDwarfRef_SameUnit)
4568 {
4569 PRTDWARFDIECOMPILEUNIT pUnit = rtDwarfDie_GetCompileUnit(pDie);
4570 if (off >= pUnit->cbUnit)
4571 {
4572 Log(("rtDwarfDecode_Reference: bad unit off=%#llx\n", off));
4573 return pCursor->rc = VERR_DWARF_BAD_POS;
4574 }
4575 off += pUnit->offUnit;
4576 enmWrt = krtDwarfRef_InfoSection;
4577 }
4578 /* else: not bother verifying/resolving the indirect type reference yet. */
4579
4580 /* Store it */
4581 PRTDWARFREF pRef = (PRTDWARFREF)pbMember;
4582 pRef->enmWrt = enmWrt;
4583 pRef->off = off;
4584
4585 Log4((" %-20s %d:%#010llx [%s]\n", rtDwarfLog_AttrName(pDesc->uAttr), enmWrt, off, rtDwarfLog_FormName(uForm)));
4586 return VINF_SUCCESS;
4587}
4588
4589
4590/** @callback_method_impl{FNRTDWARFATTRDECODER} */
4591static DECLCALLBACK(int) rtDwarfDecode_SectOff(PRTDWARFDIE pDie, uint8_t *pbMember, PCRTDWARFATTRDESC pDesc,
4592 uint32_t uForm, PRTDWARFCURSOR pCursor)
4593{
4594 AssertReturn(ATTR_GET_SIZE(pDesc) == sizeof(RTDWARFREF), VERR_INTERNAL_ERROR_3);
4595 NOREF(pDie);
4596
4597 uint64_t off;
4598 switch (uForm)
4599 {
4600 case DW_FORM_data4: off = rtDwarfCursor_GetU32(pCursor, 0); break;
4601 case DW_FORM_data8: off = rtDwarfCursor_GetU64(pCursor, 0); break;
4602 case DW_FORM_sec_offset: off = rtDwarfCursor_GetUOff(pCursor, 0); break;
4603 default:
4604 AssertMsgFailedReturn(("%#x (%s)\n", uForm, rtDwarfLog_FormName(uForm)), VERR_DWARF_UNEXPECTED_FORM);
4605 }
4606 if (RT_FAILURE(pCursor->rc))
4607 return pCursor->rc;
4608
4609 krtDbgModDwarfSect enmSect;
4610 krtDwarfRef enmWrt;
4611 switch (pDesc->uAttr)
4612 {
4613 case DW_AT_stmt_list: enmSect = krtDbgModDwarfSect_line; enmWrt = krtDwarfRef_LineSection; break;
4614 case DW_AT_macro_info: enmSect = krtDbgModDwarfSect_loc; enmWrt = krtDwarfRef_LocSection; break;
4615 case DW_AT_ranges: enmSect = krtDbgModDwarfSect_ranges; enmWrt = krtDwarfRef_RangesSection; break;
4616 default:
4617 AssertMsgFailedReturn(("%u (%s)\n", pDesc->uAttr, rtDwarfLog_AttrName(pDesc->uAttr)), VERR_INTERNAL_ERROR_4);
4618 }
4619 size_t cbSect = pCursor->pDwarfMod->aSections[enmSect].cb;
4620 if (off >= cbSect)
4621 {
4622 /* Watcom generates offset past the end of the section, increasing the
4623 offset by one for each compile unit. So, just fudge it. */
4624 Log(("rtDwarfDecode_SectOff: bad off=%#llx, attr %#x (%s), enmSect=%d cb=%#llx; Assuming watcom/gcc.\n", off,
4625 pDesc->uAttr, rtDwarfLog_AttrName(pDesc->uAttr), enmSect, cbSect));
4626 off = cbSect;
4627 }
4628
4629 PRTDWARFREF pRef = (PRTDWARFREF)pbMember;
4630 pRef->enmWrt = enmWrt;
4631 pRef->off = off;
4632
4633 Log4((" %-20s %d:%#010llx [%s]\n", rtDwarfLog_AttrName(pDesc->uAttr), enmWrt, off, rtDwarfLog_FormName(uForm)));
4634 return VINF_SUCCESS;
4635}
4636
4637
4638/** @callback_method_impl{FNRTDWARFATTRDECODER} */
4639static DECLCALLBACK(int) rtDwarfDecode_String(PRTDWARFDIE pDie, uint8_t *pbMember, PCRTDWARFATTRDESC pDesc,
4640 uint32_t uForm, PRTDWARFCURSOR pCursor)
4641{
4642 AssertReturn(ATTR_GET_SIZE(pDesc) == sizeof(const char *), VERR_INTERNAL_ERROR_3);
4643 NOREF(pDie);
4644
4645 const char *psz;
4646 switch (uForm)
4647 {
4648 case DW_FORM_string:
4649 psz = rtDwarfCursor_GetSZ(pCursor, NULL);
4650 break;
4651
4652 case DW_FORM_strp:
4653 psz = rtDwarfDecodeHlp_GetStrp(pCursor->pDwarfMod, pCursor, NULL);
4654 break;
4655
4656 default:
4657 AssertMsgFailedReturn(("%#x\n", uForm), VERR_DWARF_UNEXPECTED_FORM);
4658 }
4659
4660 *(const char **)pbMember = psz;
4661 Log4((" %-20s '%s' [%s]\n", rtDwarfLog_AttrName(pDesc->uAttr), psz, rtDwarfLog_FormName(uForm)));
4662 return pCursor->rc;
4663}
4664
4665
4666/** @callback_method_impl{FNRTDWARFATTRDECODER} */
4667static DECLCALLBACK(int) rtDwarfDecode_UnsignedInt(PRTDWARFDIE pDie, uint8_t *pbMember, PCRTDWARFATTRDESC pDesc,
4668 uint32_t uForm, PRTDWARFCURSOR pCursor)
4669{
4670 NOREF(pDie);
4671 uint64_t u64Val;
4672 switch (uForm)
4673 {
4674 case DW_FORM_udata: u64Val = rtDwarfCursor_GetULeb128(pCursor, 0); break;
4675 case DW_FORM_data1: u64Val = rtDwarfCursor_GetU8(pCursor, 0); break;
4676 case DW_FORM_data2: u64Val = rtDwarfCursor_GetU16(pCursor, 0); break;
4677 case DW_FORM_data4: u64Val = rtDwarfCursor_GetU32(pCursor, 0); break;
4678 case DW_FORM_data8: u64Val = rtDwarfCursor_GetU64(pCursor, 0); break;
4679 default:
4680 AssertMsgFailedReturn(("%#x\n", uForm), VERR_DWARF_UNEXPECTED_FORM);
4681 }
4682 if (RT_FAILURE(pCursor->rc))
4683 return pCursor->rc;
4684
4685 switch (ATTR_GET_SIZE(pDesc))
4686 {
4687 case 1:
4688 *pbMember = (uint8_t)u64Val;
4689 if (*pbMember != u64Val)
4690 {
4691 AssertFailed();
4692 return VERR_OUT_OF_RANGE;
4693 }
4694 break;
4695
4696 case 2:
4697 *(uint16_t *)pbMember = (uint16_t)u64Val;
4698 if (*(uint16_t *)pbMember != u64Val)
4699 {
4700 AssertFailed();
4701 return VERR_OUT_OF_RANGE;
4702 }
4703 break;
4704
4705 case 4:
4706 *(uint32_t *)pbMember = (uint32_t)u64Val;
4707 if (*(uint32_t *)pbMember != u64Val)
4708 {
4709 AssertFailed();
4710 return VERR_OUT_OF_RANGE;
4711 }
4712 break;
4713
4714 case 8:
4715 *(uint64_t *)pbMember = (uint64_t)u64Val;
4716 if (*(uint64_t *)pbMember != u64Val)
4717 {
4718 AssertFailed();
4719 return VERR_OUT_OF_RANGE;
4720 }
4721 break;
4722
4723 default:
4724 AssertMsgFailedReturn(("%#x\n", ATTR_GET_SIZE(pDesc)), VERR_INTERNAL_ERROR_2);
4725 }
4726 return VINF_SUCCESS;
4727}
4728
4729
4730/**
4731 * Initialize location interpreter state from cursor & form.
4732 *
4733 * @returns IPRT status code.
4734 * @retval VERR_NOT_FOUND if no location information (i.e. there is source but
4735 * it resulted in no byte code).
4736 * @param pLoc The location state structure to initialize.
4737 * @param pCursor The cursor to read from.
4738 * @param uForm The attribute form.
4739 */
4740static int rtDwarfLoc_Init(PRTDWARFLOCST pLoc, PRTDWARFCURSOR pCursor, uint32_t uForm)
4741{
4742 uint32_t cbBlock;
4743 switch (uForm)
4744 {
4745 case DW_FORM_block1:
4746 cbBlock = rtDwarfCursor_GetU8(pCursor, 0);
4747 break;
4748
4749 case DW_FORM_block2:
4750 cbBlock = rtDwarfCursor_GetU16(pCursor, 0);
4751 break;
4752
4753 case DW_FORM_block4:
4754 cbBlock = rtDwarfCursor_GetU32(pCursor, 0);
4755 break;
4756
4757 case DW_FORM_block:
4758 cbBlock = rtDwarfCursor_GetULeb128(pCursor, 0);
4759 break;
4760
4761 default:
4762 AssertMsgFailedReturn(("uForm=%#x\n", uForm), VERR_DWARF_UNEXPECTED_FORM);
4763 }
4764 if (!cbBlock)
4765 return VERR_NOT_FOUND;
4766
4767 int rc = rtDwarfCursor_InitForBlock(&pLoc->Cursor, pCursor, cbBlock);
4768 if (RT_FAILURE(rc))
4769 return rc;
4770 pLoc->iTop = -1;
4771 return VINF_SUCCESS;
4772}
4773
4774
4775/**
4776 * Pushes a value onto the stack.
4777 *
4778 * @returns VINF_SUCCESS or VERR_DWARF_STACK_OVERFLOW.
4779 * @param pLoc The state.
4780 * @param uValue The value to push.
4781 */
4782static int rtDwarfLoc_Push(PRTDWARFLOCST pLoc, uint64_t uValue)
4783{
4784 int iTop = pLoc->iTop + 1;
4785 AssertReturn((unsigned)iTop < RT_ELEMENTS(pLoc->auStack), VERR_DWARF_STACK_OVERFLOW);
4786 pLoc->auStack[iTop] = uValue;
4787 pLoc->iTop = iTop;
4788 return VINF_SUCCESS;
4789}
4790
4791
4792static int rtDwarfLoc_Evaluate(PRTDWARFLOCST pLoc, void *pvLater, void *pvUser)
4793{
4794 RT_NOREF_PV(pvLater); RT_NOREF_PV(pvUser);
4795
4796 while (!rtDwarfCursor_IsAtEndOfUnit(&pLoc->Cursor))
4797 {
4798 /* Read the next opcode.*/
4799 uint8_t const bOpcode = rtDwarfCursor_GetU8(&pLoc->Cursor, 0);
4800
4801 /* Get its operands. */
4802 uint64_t uOperand1 = 0;
4803 uint64_t uOperand2 = 0;
4804 switch (bOpcode)
4805 {
4806 case DW_OP_addr:
4807 uOperand1 = rtDwarfCursor_GetNativeUOff(&pLoc->Cursor, 0);
4808 break;
4809 case DW_OP_pick:
4810 case DW_OP_const1u:
4811 case DW_OP_deref_size:
4812 case DW_OP_xderef_size:
4813 uOperand1 = rtDwarfCursor_GetU8(&pLoc->Cursor, 0);
4814 break;
4815 case DW_OP_const1s:
4816 uOperand1 = (int8_t)rtDwarfCursor_GetU8(&pLoc->Cursor, 0);
4817 break;
4818 case DW_OP_const2u:
4819 uOperand1 = rtDwarfCursor_GetU16(&pLoc->Cursor, 0);
4820 break;
4821 case DW_OP_skip:
4822 case DW_OP_bra:
4823 case DW_OP_const2s:
4824 uOperand1 = (int16_t)rtDwarfCursor_GetU16(&pLoc->Cursor, 0);
4825 break;
4826 case DW_OP_const4u:
4827 uOperand1 = rtDwarfCursor_GetU32(&pLoc->Cursor, 0);
4828 break;
4829 case DW_OP_const4s:
4830 uOperand1 = (int32_t)rtDwarfCursor_GetU32(&pLoc->Cursor, 0);
4831 break;
4832 case DW_OP_const8u:
4833 uOperand1 = rtDwarfCursor_GetU64(&pLoc->Cursor, 0);
4834 break;
4835 case DW_OP_const8s:
4836 uOperand1 = rtDwarfCursor_GetU64(&pLoc->Cursor, 0);
4837 break;
4838 case DW_OP_regx:
4839 case DW_OP_piece:
4840 case DW_OP_plus_uconst:
4841 case DW_OP_constu:
4842 uOperand1 = rtDwarfCursor_GetULeb128(&pLoc->Cursor, 0);
4843 break;
4844 case DW_OP_consts:
4845 case DW_OP_fbreg:
4846 case DW_OP_breg0+0: case DW_OP_breg0+1: case DW_OP_breg0+2: case DW_OP_breg0+3:
4847 case DW_OP_breg0+4: case DW_OP_breg0+5: case DW_OP_breg0+6: case DW_OP_breg0+7:
4848 case DW_OP_breg0+8: case DW_OP_breg0+9: case DW_OP_breg0+10: case DW_OP_breg0+11:
4849 case DW_OP_breg0+12: case DW_OP_breg0+13: case DW_OP_breg0+14: case DW_OP_breg0+15:
4850 case DW_OP_breg0+16: case DW_OP_breg0+17: case DW_OP_breg0+18: case DW_OP_breg0+19:
4851 case DW_OP_breg0+20: case DW_OP_breg0+21: case DW_OP_breg0+22: case DW_OP_breg0+23:
4852 case DW_OP_breg0+24: case DW_OP_breg0+25: case DW_OP_breg0+26: case DW_OP_breg0+27:
4853 case DW_OP_breg0+28: case DW_OP_breg0+29: case DW_OP_breg0+30: case DW_OP_breg0+31:
4854 uOperand1 = rtDwarfCursor_GetSLeb128(&pLoc->Cursor, 0);
4855 break;
4856 case DW_OP_bregx:
4857 uOperand1 = rtDwarfCursor_GetULeb128(&pLoc->Cursor, 0);
4858 uOperand2 = rtDwarfCursor_GetSLeb128(&pLoc->Cursor, 0);
4859 break;
4860 }
4861 if (RT_FAILURE(pLoc->Cursor.rc))
4862 break;
4863
4864 /* Interpret the opcode. */
4865 int rc;
4866 switch (bOpcode)
4867 {
4868 case DW_OP_const1u:
4869 case DW_OP_const1s:
4870 case DW_OP_const2u:
4871 case DW_OP_const2s:
4872 case DW_OP_const4u:
4873 case DW_OP_const4s:
4874 case DW_OP_const8u:
4875 case DW_OP_const8s:
4876 case DW_OP_constu:
4877 case DW_OP_consts:
4878 case DW_OP_addr:
4879 rc = rtDwarfLoc_Push(pLoc, uOperand1);
4880 break;
4881 case DW_OP_lit0 + 0: case DW_OP_lit0 + 1: case DW_OP_lit0 + 2: case DW_OP_lit0 + 3:
4882 case DW_OP_lit0 + 4: case DW_OP_lit0 + 5: case DW_OP_lit0 + 6: case DW_OP_lit0 + 7:
4883 case DW_OP_lit0 + 8: case DW_OP_lit0 + 9: case DW_OP_lit0 + 10: case DW_OP_lit0 + 11:
4884 case DW_OP_lit0 + 12: case DW_OP_lit0 + 13: case DW_OP_lit0 + 14: case DW_OP_lit0 + 15:
4885 case DW_OP_lit0 + 16: case DW_OP_lit0 + 17: case DW_OP_lit0 + 18: case DW_OP_lit0 + 19:
4886 case DW_OP_lit0 + 20: case DW_OP_lit0 + 21: case DW_OP_lit0 + 22: case DW_OP_lit0 + 23:
4887 case DW_OP_lit0 + 24: case DW_OP_lit0 + 25: case DW_OP_lit0 + 26: case DW_OP_lit0 + 27:
4888 case DW_OP_lit0 + 28: case DW_OP_lit0 + 29: case DW_OP_lit0 + 30: case DW_OP_lit0 + 31:
4889 rc = rtDwarfLoc_Push(pLoc, bOpcode - DW_OP_lit0);
4890 break;
4891 case DW_OP_nop:
4892 break;
4893 case DW_OP_dup: /** @todo 0 operands. */
4894 case DW_OP_drop: /** @todo 0 operands. */
4895 case DW_OP_over: /** @todo 0 operands. */
4896 case DW_OP_pick: /** @todo 1 operands, a 1-byte stack index. */
4897 case DW_OP_swap: /** @todo 0 operands. */
4898 case DW_OP_rot: /** @todo 0 operands. */
4899 case DW_OP_abs: /** @todo 0 operands. */
4900 case DW_OP_and: /** @todo 0 operands. */
4901 case DW_OP_div: /** @todo 0 operands. */
4902 case DW_OP_minus: /** @todo 0 operands. */
4903 case DW_OP_mod: /** @todo 0 operands. */
4904 case DW_OP_mul: /** @todo 0 operands. */
4905 case DW_OP_neg: /** @todo 0 operands. */
4906 case DW_OP_not: /** @todo 0 operands. */
4907 case DW_OP_or: /** @todo 0 operands. */
4908 case DW_OP_plus: /** @todo 0 operands. */
4909 case DW_OP_plus_uconst: /** @todo 1 operands, a ULEB128 addend. */
4910 case DW_OP_shl: /** @todo 0 operands. */
4911 case DW_OP_shr: /** @todo 0 operands. */
4912 case DW_OP_shra: /** @todo 0 operands. */
4913 case DW_OP_xor: /** @todo 0 operands. */
4914 case DW_OP_skip: /** @todo 1 signed 2-byte constant. */
4915 case DW_OP_bra: /** @todo 1 signed 2-byte constant. */
4916 case DW_OP_eq: /** @todo 0 operands. */
4917 case DW_OP_ge: /** @todo 0 operands. */
4918 case DW_OP_gt: /** @todo 0 operands. */
4919 case DW_OP_le: /** @todo 0 operands. */
4920 case DW_OP_lt: /** @todo 0 operands. */
4921 case DW_OP_ne: /** @todo 0 operands. */
4922 case DW_OP_reg0 + 0: case DW_OP_reg0 + 1: case DW_OP_reg0 + 2: case DW_OP_reg0 + 3: /** @todo 0 operands - reg 0..31. */
4923 case DW_OP_reg0 + 4: case DW_OP_reg0 + 5: case DW_OP_reg0 + 6: case DW_OP_reg0 + 7:
4924 case DW_OP_reg0 + 8: case DW_OP_reg0 + 9: case DW_OP_reg0 + 10: case DW_OP_reg0 + 11:
4925 case DW_OP_reg0 + 12: case DW_OP_reg0 + 13: case DW_OP_reg0 + 14: case DW_OP_reg0 + 15:
4926 case DW_OP_reg0 + 16: case DW_OP_reg0 + 17: case DW_OP_reg0 + 18: case DW_OP_reg0 + 19:
4927 case DW_OP_reg0 + 20: case DW_OP_reg0 + 21: case DW_OP_reg0 + 22: case DW_OP_reg0 + 23:
4928 case DW_OP_reg0 + 24: case DW_OP_reg0 + 25: case DW_OP_reg0 + 26: case DW_OP_reg0 + 27:
4929 case DW_OP_reg0 + 28: case DW_OP_reg0 + 29: case DW_OP_reg0 + 30: case DW_OP_reg0 + 31:
4930 case DW_OP_breg0+ 0: case DW_OP_breg0+ 1: case DW_OP_breg0+ 2: case DW_OP_breg0+ 3: /** @todo 1 operand, a SLEB128 offset. */
4931 case DW_OP_breg0+ 4: case DW_OP_breg0+ 5: case DW_OP_breg0+ 6: case DW_OP_breg0+ 7:
4932 case DW_OP_breg0+ 8: case DW_OP_breg0+ 9: case DW_OP_breg0+ 10: case DW_OP_breg0+ 11:
4933 case DW_OP_breg0+ 12: case DW_OP_breg0+ 13: case DW_OP_breg0+ 14: case DW_OP_breg0+ 15:
4934 case DW_OP_breg0+ 16: case DW_OP_breg0+ 17: case DW_OP_breg0+ 18: case DW_OP_breg0+ 19:
4935 case DW_OP_breg0+ 20: case DW_OP_breg0+ 21: case DW_OP_breg0+ 22: case DW_OP_breg0+ 23:
4936 case DW_OP_breg0+ 24: case DW_OP_breg0+ 25: case DW_OP_breg0+ 26: case DW_OP_breg0+ 27:
4937 case DW_OP_breg0+ 28: case DW_OP_breg0+ 29: case DW_OP_breg0+ 30: case DW_OP_breg0+ 31:
4938 case DW_OP_piece: /** @todo 1 operand, a ULEB128 size of piece addressed. */
4939 case DW_OP_regx: /** @todo 1 operand, a ULEB128 register. */
4940 case DW_OP_fbreg: /** @todo 1 operand, a SLEB128 offset. */
4941 case DW_OP_bregx: /** @todo 2 operands, a ULEB128 register followed by a SLEB128 offset. */
4942 case DW_OP_deref: /** @todo 0 operands. */
4943 case DW_OP_deref_size: /** @todo 1 operand, a 1-byte size of data retrieved. */
4944 case DW_OP_xderef: /** @todo 0 operands. */
4945 case DW_OP_xderef_size: /** @todo 1 operand, a 1-byte size of data retrieved. */
4946 AssertMsgFailedReturn(("bOpcode=%#x\n", bOpcode), VERR_DWARF_TODO);
4947 default:
4948 AssertMsgFailedReturn(("bOpcode=%#x\n", bOpcode), VERR_DWARF_UNKNOWN_LOC_OPCODE);
4949 }
4950 }
4951
4952 return pLoc->Cursor.rc;
4953}
4954
4955
4956/** @callback_method_impl{FNRTDWARFATTRDECODER} */
4957static DECLCALLBACK(int) rtDwarfDecode_SegmentLoc(PRTDWARFDIE pDie, uint8_t *pbMember, PCRTDWARFATTRDESC pDesc,
4958 uint32_t uForm, PRTDWARFCURSOR pCursor)
4959{
4960 NOREF(pDie);
4961 AssertReturn(ATTR_GET_SIZE(pDesc) == 2, VERR_DWARF_IPE);
4962
4963 int rc;
4964 if ( uForm == DW_FORM_block
4965 || uForm == DW_FORM_block1
4966 || uForm == DW_FORM_block2
4967 || uForm == DW_FORM_block4)
4968 {
4969 RTDWARFLOCST LocSt;
4970 rc = rtDwarfLoc_Init(&LocSt, pCursor, uForm);
4971 if (RT_SUCCESS(rc))
4972 {
4973 rc = rtDwarfLoc_Evaluate(&LocSt, NULL, NULL);
4974 if (RT_SUCCESS(rc))
4975 {
4976 if (LocSt.iTop >= 0)
4977 {
4978 *(uint16_t *)pbMember = LocSt.auStack[LocSt.iTop];
4979 Log4((" %-20s %#06llx [%s]\n", rtDwarfLog_AttrName(pDesc->uAttr),
4980 LocSt.auStack[LocSt.iTop], rtDwarfLog_FormName(uForm)));
4981 return VINF_SUCCESS;
4982 }
4983 rc = VERR_DWARF_STACK_UNDERFLOW;
4984 }
4985 }
4986 }
4987 else
4988 rc = rtDwarfDecode_UnsignedInt(pDie, pbMember, pDesc, uForm, pCursor);
4989 return rc;
4990}
4991
4992/*
4993 *
4994 * DWARF debug_info parser
4995 * DWARF debug_info parser
4996 * DWARF debug_info parser
4997 *
4998 */
4999
5000
5001/**
5002 * Special hack to get the name and/or linkage name for a subprogram via a
5003 * specification reference.
5004 *
5005 * Since this is a hack, we ignore failure.
5006 *
5007 * If we want to really make use of DWARF info, we'll have to create some kind
5008 * of lookup tree for handling this. But currently we don't, so a hack will
5009 * suffice.
5010 *
5011 * @param pThis The DWARF instance.
5012 * @param pSubProgram The subprogram which is short on names.
5013 */
5014static void rtDwarfInfo_TryGetSubProgramNameFromSpecRef(PRTDBGMODDWARF pThis, PRTDWARFDIESUBPROGRAM pSubProgram)
5015{
5016 /*
5017 * Must have a spec ref, and it must be in the info section.
5018 */
5019 if (pSubProgram->SpecRef.enmWrt != krtDwarfRef_InfoSection)
5020 return;
5021
5022 /*
5023 * Create a cursor for reading the info and then the abbrivation code
5024 * starting the off the DIE.
5025 */
5026 RTDWARFCURSOR InfoCursor;
5027 int rc = rtDwarfCursor_InitWithOffset(&InfoCursor, pThis, krtDbgModDwarfSect_info, pSubProgram->SpecRef.off);
5028 if (RT_FAILURE(rc))
5029 return;
5030
5031 uint32_t uAbbrCode = rtDwarfCursor_GetULeb128AsU32(&InfoCursor, UINT32_MAX);
5032 if (uAbbrCode)
5033 {
5034 /* Only references to subprogram tags are interesting here. */
5035 PCRTDWARFABBREV pAbbrev = rtDwarfAbbrev_Lookup(pThis, uAbbrCode);
5036 if ( pAbbrev
5037 && pAbbrev->uTag == DW_TAG_subprogram)
5038 {
5039 /*
5040 * Use rtDwarfInfo_ParseDie to do the parsing, but with a different
5041 * attribute spec than usual.
5042 */
5043 rtDwarfInfo_ParseDie(pThis, &pSubProgram->Core, &g_SubProgramSpecHackDesc, &InfoCursor,
5044 pAbbrev, false /*fInitDie*/);
5045 }
5046 }
5047
5048 rtDwarfCursor_Delete(&InfoCursor, VINF_SUCCESS);
5049}
5050
5051
5052/**
5053 * Select which name to use.
5054 *
5055 * @returns One of the names.
5056 * @param pszName The DWARF name, may exclude namespace and class.
5057 * Can also be NULL.
5058 * @param pszLinkageName The linkage name. Can be NULL.
5059 */
5060static const char *rtDwarfInfo_SelectName(const char *pszName, const char *pszLinkageName)
5061{
5062 if (!pszName || !pszLinkageName)
5063 return pszName ? pszName : pszLinkageName;
5064
5065 /*
5066 * Some heuristics for selecting the link name if the normal name is missing
5067 * namespace or class prefixes.
5068 */
5069 size_t cchName = strlen(pszName);
5070 size_t cchLinkageName = strlen(pszLinkageName);
5071 if (cchLinkageName <= cchName + 1)
5072 return pszName;
5073
5074 const char *psz = strstr(pszLinkageName, pszName);
5075 if (!psz || psz - pszLinkageName < 4)
5076 return pszName;
5077
5078 return pszLinkageName;
5079}
5080
5081
5082/**
5083 * Parse the attributes of a DIE.
5084 *
5085 * @returns IPRT status code.
5086 * @param pThis The DWARF instance.
5087 * @param pDie The internal DIE structure to fill.
5088 */
5089static int rtDwarfInfo_SnoopSymbols(PRTDBGMODDWARF pThis, PRTDWARFDIE pDie)
5090{
5091 int rc = VINF_SUCCESS;
5092 switch (pDie->uTag)
5093 {
5094 case DW_TAG_subprogram:
5095 {
5096 PRTDWARFDIESUBPROGRAM pSubProgram = (PRTDWARFDIESUBPROGRAM)pDie;
5097
5098 /* Obtain referenced specification there is only partial info. */
5099 if ( pSubProgram->PcRange.cAttrs
5100 && !pSubProgram->pszName)
5101 rtDwarfInfo_TryGetSubProgramNameFromSpecRef(pThis, pSubProgram);
5102
5103 if (pSubProgram->PcRange.cAttrs)
5104 {
5105 if (pSubProgram->PcRange.fHaveRanges)
5106 Log5(("subprogram %s (%s) <implement ranges>\n", pSubProgram->pszName, pSubProgram->pszLinkageName));
5107 else
5108 {
5109 Log5(("subprogram %s (%s) %#llx-%#llx%s\n", pSubProgram->pszName, pSubProgram->pszLinkageName,
5110 pSubProgram->PcRange.uLowAddress, pSubProgram->PcRange.uHighAddress,
5111 pSubProgram->PcRange.cAttrs == 2 ? "" : " !bad!"));
5112 if ( ( pSubProgram->pszName || pSubProgram->pszLinkageName)
5113 && pSubProgram->PcRange.cAttrs == 2)
5114 {
5115 if (pThis->iWatcomPass == 1)
5116 rc = rtDbgModDwarfRecordSegOffset(pThis, pSubProgram->uSegment, pSubProgram->PcRange.uHighAddress);
5117 else
5118 {
5119 RTDBGSEGIDX iSeg;
5120 RTUINTPTR offSeg;
5121 rc = rtDbgModDwarfLinkAddressToSegOffset(pThis, pSubProgram->uSegment,
5122 pSubProgram->PcRange.uLowAddress,
5123 &iSeg, &offSeg);
5124 if (RT_SUCCESS(rc))
5125 {
5126 uint64_t cb;
5127 if (pSubProgram->PcRange.uHighAddress >= pSubProgram->PcRange.uLowAddress)
5128 cb = pSubProgram->PcRange.uHighAddress - pSubProgram->PcRange.uLowAddress;
5129 else
5130 cb = 1;
5131 rc = RTDbgModSymbolAdd(pThis->hCnt,
5132 rtDwarfInfo_SelectName(pSubProgram->pszName, pSubProgram->pszLinkageName),
5133 iSeg, offSeg, cb, 0 /*fFlags*/, NULL /*piOrdinal*/);
5134 if (RT_FAILURE(rc))
5135 {
5136 if ( rc == VERR_DBG_DUPLICATE_SYMBOL
5137 || rc == VERR_DBG_ADDRESS_CONFLICT /** @todo figure why this happens with 10.6.8 mach_kernel, 32-bit. */
5138 )
5139 rc = VINF_SUCCESS;
5140 else
5141 AssertMsgFailed(("%Rrc\n", rc));
5142 }
5143 }
5144 else if ( pSubProgram->PcRange.uLowAddress == 0 /* see with vmlinux */
5145 && pSubProgram->PcRange.uHighAddress == 0)
5146 {
5147 Log5(("rtDbgModDwarfLinkAddressToSegOffset: Ignoring empty range.\n"));
5148 rc = VINF_SUCCESS; /* ignore */
5149 }
5150 else
5151 {
5152 AssertRC(rc);
5153 Log5(("rtDbgModDwarfLinkAddressToSegOffset failed: %Rrc\n", rc));
5154 }
5155 }
5156 }
5157 }
5158 }
5159 else
5160 Log5(("subprogram %s (%s) external\n", pSubProgram->pszName, pSubProgram->pszLinkageName));
5161 break;
5162 }
5163
5164 case DW_TAG_label:
5165 {
5166 PCRTDWARFDIELABEL pLabel = (PCRTDWARFDIELABEL)pDie;
5167 //if (pLabel->fExternal)
5168 {
5169 Log5(("label %s %#x:%#llx\n", pLabel->pszName, pLabel->uSegment, pLabel->Address.uAddress));
5170 if (pThis->iWatcomPass == 1)
5171 rc = rtDbgModDwarfRecordSegOffset(pThis, pLabel->uSegment, pLabel->Address.uAddress);
5172 else if (pLabel->pszName && *pLabel->pszName != '\0') /* Seen empty labels with isolinux. */
5173 {
5174 RTDBGSEGIDX iSeg;
5175 RTUINTPTR offSeg;
5176 rc = rtDbgModDwarfLinkAddressToSegOffset(pThis, pLabel->uSegment, pLabel->Address.uAddress,
5177 &iSeg, &offSeg);
5178 AssertRC(rc);
5179 if (RT_SUCCESS(rc))
5180 {
5181 rc = RTDbgModSymbolAdd(pThis->hCnt, pLabel->pszName, iSeg, offSeg, 0 /*cb*/,
5182 0 /*fFlags*/, NULL /*piOrdinal*/);
5183 AssertMsg(RT_SUCCESS(rc) || rc == VERR_DBG_ADDRESS_CONFLICT,
5184 ("%Rrc %s %x:%x\n", rc, pLabel->pszName, iSeg, offSeg));
5185 }
5186 else
5187 Log5(("rtDbgModDwarfLinkAddressToSegOffset failed: %Rrc\n", rc));
5188
5189 /* Ignore errors regarding local labels. */
5190 if (RT_FAILURE(rc) && !pLabel->fExternal)
5191 rc = -rc;
5192 }
5193
5194 }
5195 break;
5196 }
5197
5198 }
5199 return rc;
5200}
5201
5202
5203/**
5204 * Initializes the non-core fields of an internal DIE structure.
5205 *
5206 * @param pDie The DIE structure.
5207 * @param pDieDesc The DIE descriptor.
5208 */
5209static void rtDwarfInfo_InitDie(PRTDWARFDIE pDie, PCRTDWARFDIEDESC pDieDesc)
5210{
5211 size_t i = pDieDesc->cAttributes;
5212 while (i-- > 0)
5213 {
5214 switch (pDieDesc->paAttributes[i].cbInit & ATTR_INIT_MASK)
5215 {
5216 case ATTR_INIT_ZERO:
5217 /* Nothing to do (RTMemAllocZ). */
5218 break;
5219
5220 case ATTR_INIT_FFFS:
5221 switch (pDieDesc->paAttributes[i].cbInit & ATTR_SIZE_MASK)
5222 {
5223 case 1:
5224 *(uint8_t *)((uintptr_t)pDie + pDieDesc->paAttributes[i].off) = UINT8_MAX;
5225 break;
5226 case 2:
5227 *(uint16_t *)((uintptr_t)pDie + pDieDesc->paAttributes[i].off) = UINT16_MAX;
5228 break;
5229 case 4:
5230 *(uint32_t *)((uintptr_t)pDie + pDieDesc->paAttributes[i].off) = UINT32_MAX;
5231 break;
5232 case 8:
5233 *(uint64_t *)((uintptr_t)pDie + pDieDesc->paAttributes[i].off) = UINT64_MAX;
5234 break;
5235 default:
5236 AssertFailed();
5237 memset((uint8_t *)pDie + pDieDesc->paAttributes[i].off, 0xff,
5238 pDieDesc->paAttributes[i].cbInit & ATTR_SIZE_MASK);
5239 break;
5240 }
5241 break;
5242
5243 default:
5244 AssertFailed();
5245 }
5246 }
5247}
5248
5249
5250/**
5251 * Creates a new internal DIE structure and links it up.
5252 *
5253 * @returns Pointer to the new DIE structure.
5254 * @param pThis The DWARF instance.
5255 * @param pDieDesc The DIE descriptor (for size and init).
5256 * @param pAbbrev The abbreviation cache entry.
5257 * @param pParent The parent DIE (NULL if unit).
5258 */
5259static PRTDWARFDIE rtDwarfInfo_NewDie(PRTDBGMODDWARF pThis, PCRTDWARFDIEDESC pDieDesc,
5260 PCRTDWARFABBREV pAbbrev, PRTDWARFDIE pParent)
5261{
5262 NOREF(pThis);
5263 Assert(pDieDesc->cbDie >= sizeof(RTDWARFDIE));
5264#ifdef RTDBGMODDWARF_WITH_MEM_CACHE
5265 uint32_t iAllocator = pDieDesc->cbDie > pThis->aDieAllocators[0].cbMax;
5266 Assert(pDieDesc->cbDie <= pThis->aDieAllocators[iAllocator].cbMax);
5267 PRTDWARFDIE pDie = (PRTDWARFDIE)RTMemCacheAlloc(pThis->aDieAllocators[iAllocator].hMemCache);
5268#else
5269 PRTDWARFDIE pDie = (PRTDWARFDIE)RTMemAllocZ(pDieDesc->cbDie);
5270#endif
5271 if (pDie)
5272 {
5273#ifdef RTDBGMODDWARF_WITH_MEM_CACHE
5274 RT_BZERO(pDie, pDieDesc->cbDie);
5275 pDie->iAllocator = iAllocator;
5276#endif
5277 rtDwarfInfo_InitDie(pDie, pDieDesc);
5278
5279 pDie->uTag = pAbbrev->uTag;
5280 pDie->offSpec = pAbbrev->offSpec;
5281 pDie->pParent = pParent;
5282 if (pParent)
5283 RTListAppend(&pParent->ChildList, &pDie->SiblingNode);
5284 else
5285 RTListInit(&pDie->SiblingNode);
5286 RTListInit(&pDie->ChildList);
5287
5288 }
5289 return pDie;
5290}
5291
5292
5293/**
5294 * Free all children of a DIE.
5295 *
5296