/* $Id: asm-fake.cpp 98103 2023-01-17 14:15:46Z vboxsync $ */ /** @file * IPRT - Fake asm.h routines for use early in a new port. */ /* * Copyright (C) 2010-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included * in the VirtualBox distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0 */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include #include "internal/iprt.h" #include #include RTDECL(uint8_t) ASMAtomicXchgU8(volatile uint8_t *pu8, uint8_t u8) { uint8_t u8Ret = *pu8; *pu8 = u8; return u8Ret; } RTDECL(uint16_t) ASMAtomicXchgU16(volatile uint16_t *pu16, uint16_t u16) { uint16_t u16Ret = *pu16; *pu16 = u16; return u16Ret; } RTDECL(uint32_t) ASMAtomicXchgU32(volatile uint32_t *pu32, uint32_t u32) { uint32_t u32Ret = *pu32; *pu32 = u32; return u32Ret; } RTDECL(uint64_t) ASMAtomicXchgU64(volatile uint64_t *pu64, uint64_t u64) { uint64_t u64Ret = *pu64; *pu64 = u64; return u64Ret; } RTDECL(bool) ASMAtomicCmpXchgU8(volatile uint8_t *pu8, const uint8_t u8New, const uint8_t u8Old) { if (*pu8 == u8Old) { *pu8 = u8New; return true; } return false; } RTDECL(bool) ASMAtomicCmpXchgU32(volatile uint32_t *pu32, const uint32_t u32New, const uint32_t u32Old) { if (*pu32 == u32Old) { *pu32 = u32New; return true; } return false; } RTDECL(bool) ASMAtomicCmpXchgU64(volatile uint64_t *pu64, const uint64_t u64New, const uint64_t u64Old) { if (*pu64 == u64Old) { *pu64 = u64New; return true; } return false; } RTDECL(bool) ASMAtomicCmpXchgExU32(volatile uint32_t *pu32, const uint32_t u32New, const uint32_t u32Old, uint32_t *pu32Old) { uint32_t u32Cur = *pu32; if (u32Cur == u32Old) { *pu32 = u32New; *pu32Old = u32Old; return true; } *pu32Old = u32Cur; return false; } RTDECL(bool) ASMAtomicCmpXchgExU64(volatile uint64_t *pu64, const uint64_t u64New, const uint64_t u64Old, uint64_t *pu64Old) { uint64_t u64Cur = *pu64; if (u64Cur == u64Old) { *pu64 = u64New; *pu64Old = u64Old; return true; } *pu64Old = u64Cur; return false; } RTDECL(uint32_t) ASMAtomicAddU32(uint32_t volatile *pu32, uint32_t u32) { uint32_t u32Old = *pu32; *pu32 = u32Old + u32; return u32Old; } RTDECL(uint64_t) ASMAtomicAddU64(uint64_t volatile *pu64, uint64_t u64) { uint64_t u64Old = *pu64; *pu64 = u64Old + u64; return u64Old; } RTDECL(uint32_t) ASMAtomicIncU32(uint32_t volatile *pu32) { return *pu32 += 1; } RTDECL(uint32_t) ASMAtomicUoIncU32(uint32_t volatile *pu32) { return *pu32 += 1; } RTDECL(uint32_t) ASMAtomicDecU32(uint32_t volatile *pu32) { return *pu32 -= 1; } RTDECL(uint32_t) ASMAtomicUoDecU32(uint32_t volatile *pu32) { return *pu32 -= 1; } RTDECL(uint64_t) ASMAtomicIncU64(uint64_t volatile *pu64) { return *pu64 += 1; } RTDECL(uint64_t) ASMAtomicDecU64(uint64_t volatile *pu64) { return *pu64 -= 1; } RTDECL(void) ASMAtomicOrU32(uint32_t volatile *pu32, uint32_t u32) { *pu32 |= u32; } RTDECL(void) ASMAtomicUoOrU32(uint32_t volatile *pu32, uint32_t u32) { *pu32 |= u32; } RTDECL(void) ASMAtomicAndU32(uint32_t volatile *pu32, uint32_t u32) { *pu32 &= u32; } RTDECL(void) ASMAtomicUoAndU32(uint32_t volatile *pu32, uint32_t u32) { *pu32 &= u32; } RTDECL(void) ASMAtomicOrU64(uint64_t volatile *pu64, uint64_t u64) { *pu64 |= u64; } RTDECL(void) ASMAtomicAndU64(uint64_t volatile *pu64, uint64_t u64) { *pu64 &= u64; } RTDECL(void) ASMSerializeInstruction(void) { } RTDECL(uint64_t) ASMAtomicReadU64(volatile uint64_t *pu64) { return *pu64; } RTDECL(uint64_t) ASMAtomicUoReadU64(volatile uint64_t *pu64) { return *pu64; } RTDECL(uint8_t) ASMProbeReadByte(const void *pvByte) { return *(volatile uint8_t *)pvByte; } #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) RTDECL(void) ASMNopPause(void) { } #endif RTDECL(void) ASMBitSet(volatile void *pvBitmap, int32_t iBit) { uint8_t volatile *pau8Bitmap = (uint8_t volatile *)pvBitmap; pau8Bitmap[iBit / 8] |= (uint8_t)RT_BIT_32(iBit & 7); } RTDECL(void) ASMAtomicBitSet(volatile void *pvBitmap, int32_t iBit) { ASMBitSet(pvBitmap, iBit); } RTDECL(void) ASMBitClear(volatile void *pvBitmap, int32_t iBit) { uint8_t volatile *pau8Bitmap = (uint8_t volatile *)pvBitmap; pau8Bitmap[iBit / 8] &= ~((uint8_t)RT_BIT_32(iBit & 7)); } RTDECL(void) ASMAtomicBitClear(volatile void *pvBitmap, int32_t iBit) { ASMBitClear(pvBitmap, iBit); } RTDECL(void) ASMBitToggle(volatile void *pvBitmap, int32_t iBit) { uint8_t volatile *pau8Bitmap = (uint8_t volatile *)pvBitmap; pau8Bitmap[iBit / 8] ^= (uint8_t)RT_BIT_32(iBit & 7); } RTDECL(void) ASMAtomicBitToggle(volatile void *pvBitmap, int32_t iBit) { ASMBitToggle(pvBitmap, iBit); } RTDECL(bool) ASMBitTestAndSet(volatile void *pvBitmap, int32_t iBit) { if (ASMBitTest(pvBitmap, iBit)) return true; ASMBitSet(pvBitmap, iBit); return false; } RTDECL(bool) ASMAtomicBitTestAndSet(volatile void *pvBitmap, int32_t iBit) { return ASMBitTestAndSet(pvBitmap, iBit); } RTDECL(bool) ASMBitTestAndClear(volatile void *pvBitmap, int32_t iBit) { if (!ASMBitTest(pvBitmap, iBit)) return false; ASMBitClear(pvBitmap, iBit); return true; } RTDECL(bool) ASMAtomicBitTestAndClear(volatile void *pvBitmap, int32_t iBit) { return ASMBitTestAndClear(pvBitmap, iBit); } RTDECL(bool) ASMBitTestAndToggle(volatile void *pvBitmap, int32_t iBit) { bool fRet = ASMBitTest(pvBitmap, iBit); ASMBitToggle(pvBitmap, iBit); return fRet; } RTDECL(bool) ASMAtomicBitTestAndToggle(volatile void *pvBitmap, int32_t iBit) { return ASMBitTestAndToggle(pvBitmap, iBit); } RTDECL(bool) ASMBitTest(const volatile void *pvBitmap, int32_t iBit) { uint8_t volatile *pau8Bitmap = (uint8_t volatile *)pvBitmap; return pau8Bitmap[iBit / 8] & (uint8_t)RT_BIT_32(iBit & 7) ? true : false; } RTDECL(unsigned) ASMBitFirstSetU32(uint32_t u32) { uint32_t iBit; for (iBit = 0; iBit < 32; iBit++) if (u32 & RT_BIT_32(iBit)) return iBit + 1; return 0; } RTDECL(unsigned) ASMBitLastSetU32(uint32_t u32) { uint32_t iBit = 32; while (iBit-- > 0) if (u32 & RT_BIT_32(iBit)) return iBit + 1; return 0; } RTDECL(unsigned) ASMBitFirstSetU64(uint64_t u64) { uint32_t iBit; for (iBit = 0; iBit < 64; iBit++) if (u64 & RT_BIT_64(iBit)) return iBit + 1; return 0; } RTDECL(unsigned) ASMBitLastSetU64(uint64_t u64) { uint32_t iBit = 64; while (iBit-- > 0) if (u64 & RT_BIT_64(iBit)) return iBit + 1; return 0; } RTDECL(uint16_t) ASMByteSwapU16(uint16_t u16) { return RT_MAKE_U16(RT_HIBYTE(u16), RT_LOBYTE(u16)); } RTDECL(uint32_t) ASMByteSwapU32(uint32_t u32) { return RT_MAKE_U32_FROM_U8(RT_BYTE4(u32), RT_BYTE3(u32), RT_BYTE2(u32), RT_BYTE1(u32)); }