/* $Id: heapsimple.cpp 100308 2023-06-28 10:24:38Z vboxsync $ */ /** @file * IPRT - A Simple Heap. */ /* * Copyright (C) 2006-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included * in the VirtualBox distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0 */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP RTLOGGROUP_DEFAULT #include #include "internal/iprt.h" #include #include #include #include #include #include #include "internal/magics.h" /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** Pointer to the heap anchor block. */ typedef struct RTHEAPSIMPLEINTERNAL *PRTHEAPSIMPLEINTERNAL; /** Pointer to a heap block. */ typedef struct RTHEAPSIMPLEBLOCK *PRTHEAPSIMPLEBLOCK; /** Pointer to a free heap block. */ typedef struct RTHEAPSIMPLEFREE *PRTHEAPSIMPLEFREE; /** * Structure describing a simple heap block. * If this block is allocated, it is followed by the user data. * If this block is free, see RTHEAPSIMPLEFREE. */ typedef struct RTHEAPSIMPLEBLOCK { /** The next block in the global block list. */ PRTHEAPSIMPLEBLOCK pNext; /** The previous block in the global block list. */ PRTHEAPSIMPLEBLOCK pPrev; /** Pointer to the heap anchor block. */ PRTHEAPSIMPLEINTERNAL pHeap; /** Flags + magic. */ uintptr_t fFlags; } RTHEAPSIMPLEBLOCK; AssertCompileSizeAlignment(RTHEAPSIMPLEBLOCK, 16); /** The block is free if this flag is set. When cleared it's allocated. */ #define RTHEAPSIMPLEBLOCK_FLAGS_FREE ((uintptr_t)RT_BIT(0)) /** The magic value. */ #define RTHEAPSIMPLEBLOCK_FLAGS_MAGIC ((uintptr_t)0xabcdef00) /** The mask that needs to be applied to RTHEAPSIMPLEBLOCK::fFlags to obtain the magic value. */ #define RTHEAPSIMPLEBLOCK_FLAGS_MAGIC_MASK (~(uintptr_t)RT_BIT(0)) /** * Checks if the specified block is valid or not. * @returns boolean answer. * @param pBlock Pointer to a RTHEAPSIMPLEBLOCK structure. */ #define RTHEAPSIMPLEBLOCK_IS_VALID(pBlock) \ ( ((pBlock)->fFlags & RTHEAPSIMPLEBLOCK_FLAGS_MAGIC_MASK) == RTHEAPSIMPLEBLOCK_FLAGS_MAGIC ) /** * Checks if the specified block is valid and in use. * @returns boolean answer. * @param pBlock Pointer to a RTHEAPSIMPLEBLOCK structure. */ #define RTHEAPSIMPLEBLOCK_IS_VALID_USED(pBlock) \ ( ((pBlock)->fFlags & (RTHEAPSIMPLEBLOCK_FLAGS_MAGIC_MASK | RTHEAPSIMPLEBLOCK_FLAGS_FREE)) \ == RTHEAPSIMPLEBLOCK_FLAGS_MAGIC ) /** * Checks if the specified block is valid and free. * @returns boolean answer. * @param pBlock Pointer to a RTHEAPSIMPLEBLOCK structure. */ #define RTHEAPSIMPLEBLOCK_IS_VALID_FREE(pBlock) \ ( ((pBlock)->fFlags & (RTHEAPSIMPLEBLOCK_FLAGS_MAGIC_MASK | RTHEAPSIMPLEBLOCK_FLAGS_FREE)) \ == (RTHEAPSIMPLEBLOCK_FLAGS_MAGIC | RTHEAPSIMPLEBLOCK_FLAGS_FREE) ) /** * Checks if the specified block is free or not. * @returns boolean answer. * @param pBlock Pointer to a valid RTHEAPSIMPLEBLOCK structure. */ #define RTHEAPSIMPLEBLOCK_IS_FREE(pBlock) (!!((pBlock)->fFlags & RTHEAPSIMPLEBLOCK_FLAGS_FREE)) /** * A free heap block. * This is an extended version of RTHEAPSIMPLEBLOCK that takes the unused * user data to store free list pointers and a cached size value. */ typedef struct RTHEAPSIMPLEFREE { /** Core stuff. */ RTHEAPSIMPLEBLOCK Core; /** Pointer to the next free block. */ PRTHEAPSIMPLEFREE pNext; /** Pointer to the previous free block. */ PRTHEAPSIMPLEFREE pPrev; /** The size of the block (excluding the RTHEAPSIMPLEBLOCK part). */ size_t cb; /** An alignment filler to make it a multiple of (sizeof(void *) * 2). */ size_t Alignment; } RTHEAPSIMPLEFREE; /** * The heap anchor block. * This structure is placed at the head of the memory block specified to RTHeapSimpleInit(), * which means that the first RTHEAPSIMPLEBLOCK appears immediately after this structure. */ typedef struct RTHEAPSIMPLEINTERNAL { /** The typical magic (RTHEAPSIMPLE_MAGIC). */ size_t uMagic; /** The heap size. (This structure is included!) */ size_t cbHeap; /** Pointer to the end of the heap. */ void *pvEnd; /** The amount of free memory in the heap. */ size_t cbFree; /** Free head pointer. */ PRTHEAPSIMPLEFREE pFreeHead; /** Free tail pointer. */ PRTHEAPSIMPLEFREE pFreeTail; /** Make the size of this structure is a multiple of 32. */ size_t auAlignment[2]; } RTHEAPSIMPLEINTERNAL; AssertCompileSizeAlignment(RTHEAPSIMPLEINTERNAL, 32); /** The minimum allocation size. */ #define RTHEAPSIMPLE_MIN_BLOCK (sizeof(RTHEAPSIMPLEBLOCK)) AssertCompile(RTHEAPSIMPLE_MIN_BLOCK >= sizeof(RTHEAPSIMPLEBLOCK)); AssertCompile(RTHEAPSIMPLE_MIN_BLOCK >= sizeof(RTHEAPSIMPLEFREE) - sizeof(RTHEAPSIMPLEBLOCK)); /** The minimum and default alignment. */ #define RTHEAPSIMPLE_ALIGNMENT (sizeof(RTHEAPSIMPLEBLOCK)) /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ #ifdef RT_STRICT # define RTHEAPSIMPLE_STRICT 1 #endif #define ASSERT_L(a, b) AssertMsg((uintptr_t)(a) < (uintptr_t)(b), ("a=%p b=%p\n", (uintptr_t)(a), (uintptr_t)(b))) #define ASSERT_LE(a, b) AssertMsg((uintptr_t)(a) <= (uintptr_t)(b), ("a=%p b=%p\n", (uintptr_t)(a), (uintptr_t)(b))) #define ASSERT_G(a, b) AssertMsg((uintptr_t)(a) > (uintptr_t)(b), ("a=%p b=%p\n", (uintptr_t)(a), (uintptr_t)(b))) #define ASSERT_GE(a, b) AssertMsg((uintptr_t)(a) >= (uintptr_t)(b), ("a=%p b=%p\n", (uintptr_t)(a), (uintptr_t)(b))) #define ASSERT_ALIGN(a) AssertMsg(!((uintptr_t)(a) & (RTHEAPSIMPLE_ALIGNMENT - 1)), ("a=%p\n", (uintptr_t)(a))) #define ASSERT_PREV(pHeapInt, pBlock) \ do { ASSERT_ALIGN((pBlock)->pPrev); \ if ((pBlock)->pPrev) \ { \ ASSERT_L((pBlock)->pPrev, (pBlock)); \ ASSERT_GE((pBlock)->pPrev, (pHeapInt) + 1); \ } \ else \ Assert((pBlock) == (PRTHEAPSIMPLEBLOCK)((pHeapInt) + 1)); \ } while (0) #define ASSERT_NEXT(pHeap, pBlock) \ do { ASSERT_ALIGN((pBlock)->pNext); \ if ((pBlock)->pNext) \ { \ ASSERT_L((pBlock)->pNext, (pHeapInt)->pvEnd); \ ASSERT_G((pBlock)->pNext, (pBlock)); \ } \ } while (0) #define ASSERT_BLOCK(pHeapInt, pBlock) \ do { AssertMsg(RTHEAPSIMPLEBLOCK_IS_VALID(pBlock), ("%#x\n", (pBlock)->fFlags)); \ AssertMsg((pBlock)->pHeap == (pHeapInt), ("%p != %p\n", (pBlock)->pHeap, (pHeapInt))); \ ASSERT_GE((pBlock), (pHeapInt) + 1); \ ASSERT_L((pBlock), (pHeapInt)->pvEnd); \ ASSERT_NEXT(pHeapInt, pBlock); \ ASSERT_PREV(pHeapInt, pBlock); \ } while (0) #define ASSERT_BLOCK_USED(pHeapInt, pBlock) \ do { AssertMsg(RTHEAPSIMPLEBLOCK_IS_VALID_USED((pBlock)), ("%#x\n", (pBlock)->fFlags)); \ AssertMsg((pBlock)->pHeap == (pHeapInt), ("%p != %p\n", (pBlock)->pHeap, (pHeapInt))); \ ASSERT_GE((pBlock), (pHeapInt) + 1); \ ASSERT_L((pBlock), (pHeapInt)->pvEnd); \ ASSERT_NEXT(pHeapInt, pBlock); \ ASSERT_PREV(pHeapInt, pBlock); \ } while (0) #define ASSERT_FREE_PREV(pHeapInt, pBlock) \ do { ASSERT_ALIGN((pBlock)->pPrev); \ if ((pBlock)->pPrev) \ { \ ASSERT_GE((pBlock)->pPrev, (pHeapInt)->pFreeHead); \ ASSERT_L((pBlock)->pPrev, (pBlock)); \ ASSERT_LE((pBlock)->pPrev, (pBlock)->Core.pPrev); \ } \ else \ Assert((pBlock) == (pHeapInt)->pFreeHead); \ } while (0) #define ASSERT_FREE_NEXT(pHeapInt, pBlock) \ do { ASSERT_ALIGN((pBlock)->pNext); \ if ((pBlock)->pNext) \ { \ ASSERT_LE((pBlock)->pNext, (pHeapInt)->pFreeTail); \ ASSERT_G((pBlock)->pNext, (pBlock)); \ ASSERT_GE((pBlock)->pNext, (pBlock)->Core.pNext); \ } \ else \ Assert((pBlock) == (pHeapInt)->pFreeTail); \ } while (0) #ifdef RTHEAPSIMPLE_STRICT # define ASSERT_FREE_CB(pHeapInt, pBlock) \ do { size_t cbCalc = ((pBlock)->Core.pNext ? (uintptr_t)(pBlock)->Core.pNext : (uintptr_t)(pHeapInt)->pvEnd) \ - (uintptr_t)(pBlock) - sizeof(RTHEAPSIMPLEBLOCK); \ AssertMsg((pBlock)->cb == cbCalc, ("cb=%#zx cbCalc=%#zx\n", (pBlock)->cb, cbCalc)); \ } while (0) #else # define ASSERT_FREE_CB(pHeapInt, pBlock) do {} while (0) #endif /** Asserts that a free block is valid. */ #define ASSERT_BLOCK_FREE(pHeapInt, pBlock) \ do { ASSERT_BLOCK(pHeapInt, &(pBlock)->Core); \ Assert(RTHEAPSIMPLEBLOCK_IS_VALID_FREE(&(pBlock)->Core)); \ ASSERT_GE((pBlock), (pHeapInt)->pFreeHead); \ ASSERT_LE((pBlock), (pHeapInt)->pFreeTail); \ ASSERT_FREE_NEXT(pHeapInt, pBlock); \ ASSERT_FREE_PREV(pHeapInt, pBlock); \ ASSERT_FREE_CB(pHeapInt, pBlock); \ } while (0) /** Asserts that the heap anchor block is ok. */ #define ASSERT_ANCHOR(pHeapInt) \ do { AssertPtr(pHeapInt);\ Assert((pHeapInt)->uMagic == RTHEAPSIMPLE_MAGIC); \ } while (0) /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ #ifdef RTHEAPSIMPLE_STRICT static void rtHeapSimpleAssertAll(PRTHEAPSIMPLEINTERNAL pHeapInt); #endif static PRTHEAPSIMPLEBLOCK rtHeapSimpleAllocBlock(PRTHEAPSIMPLEINTERNAL pHeapInt, size_t cb, size_t uAlignment); static void rtHeapSimpleFreeBlock(PRTHEAPSIMPLEINTERNAL pHeapInt, PRTHEAPSIMPLEBLOCK pBlock); RTDECL(int) RTHeapSimpleInit(PRTHEAPSIMPLE phHeap, void *pvMemory, size_t cbMemory) { PRTHEAPSIMPLEINTERNAL pHeapInt; PRTHEAPSIMPLEFREE pFree; unsigned i; /* * Validate input. The imposed minimum heap size is just a convenient value. */ AssertReturn(cbMemory >= _4K, VERR_INVALID_PARAMETER); AssertPtrReturn(pvMemory, VERR_INVALID_POINTER); AssertReturn((uintptr_t)pvMemory + (cbMemory - 1) > (uintptr_t)cbMemory, VERR_INVALID_PARAMETER); /* * Place the heap anchor block at the start of the heap memory, * enforce 32 byte alignment of it. Also align the heap size correctly. */ pHeapInt = (PRTHEAPSIMPLEINTERNAL)pvMemory; if ((uintptr_t)pvMemory & 31) { const uintptr_t off = 32 - ((uintptr_t)pvMemory & 31); cbMemory -= off; pHeapInt = (PRTHEAPSIMPLEINTERNAL)((uintptr_t)pvMemory + off); } cbMemory &= ~(RTHEAPSIMPLE_ALIGNMENT - 1); /* Init the heap anchor block. */ pHeapInt->uMagic = RTHEAPSIMPLE_MAGIC; pHeapInt->pvEnd = (uint8_t *)pHeapInt + cbMemory; pHeapInt->cbHeap = cbMemory; pHeapInt->cbFree = cbMemory - sizeof(RTHEAPSIMPLEBLOCK) - sizeof(RTHEAPSIMPLEINTERNAL); pHeapInt->pFreeTail = pHeapInt->pFreeHead = (PRTHEAPSIMPLEFREE)(pHeapInt + 1); for (i = 0; i < RT_ELEMENTS(pHeapInt->auAlignment); i++) pHeapInt->auAlignment[i] = ~(size_t)0; /* Init the single free block. */ pFree = pHeapInt->pFreeHead; pFree->Core.pNext = NULL; pFree->Core.pPrev = NULL; pFree->Core.pHeap = pHeapInt; pFree->Core.fFlags = RTHEAPSIMPLEBLOCK_FLAGS_MAGIC | RTHEAPSIMPLEBLOCK_FLAGS_FREE; pFree->pNext = NULL; pFree->pPrev = NULL; pFree->cb = pHeapInt->cbFree; *phHeap = pHeapInt; #ifdef RTHEAPSIMPLE_STRICT rtHeapSimpleAssertAll(pHeapInt); #endif return VINF_SUCCESS; } RT_EXPORT_SYMBOL(RTHeapSimpleInit); RTDECL(int) RTHeapSimpleRelocate(RTHEAPSIMPLE hHeap, uintptr_t offDelta) { PRTHEAPSIMPLEINTERNAL pHeapInt = hHeap; PRTHEAPSIMPLEFREE pCur; /* * Validate input. */ AssertPtrReturn(pHeapInt, VERR_INVALID_HANDLE); AssertReturn(pHeapInt->uMagic == RTHEAPSIMPLE_MAGIC, VERR_INVALID_HANDLE); AssertMsgReturn((uintptr_t)pHeapInt - (uintptr_t)pHeapInt->pvEnd + pHeapInt->cbHeap == offDelta, ("offDelta=%p, expected=%p\n", offDelta, (uintptr_t)pHeapInt->pvEnd - pHeapInt->cbHeap - (uintptr_t)pHeapInt), VERR_INVALID_PARAMETER); /* * Relocate the heap anchor block. */ #define RELOCATE_IT(var, type, offDelta) do { if (RT_UNLIKELY((var) != NULL)) { (var) = (type)((uintptr_t)(var) + offDelta); } } while (0) RELOCATE_IT(pHeapInt->pvEnd, void *, offDelta); RELOCATE_IT(pHeapInt->pFreeHead, PRTHEAPSIMPLEFREE, offDelta); RELOCATE_IT(pHeapInt->pFreeTail, PRTHEAPSIMPLEFREE, offDelta); /* * Walk the heap blocks. */ for (pCur = (PRTHEAPSIMPLEFREE)(pHeapInt + 1); pCur && (uintptr_t)pCur < (uintptr_t)pHeapInt->pvEnd; pCur = (PRTHEAPSIMPLEFREE)pCur->Core.pNext) { RELOCATE_IT(pCur->Core.pNext, PRTHEAPSIMPLEBLOCK, offDelta); RELOCATE_IT(pCur->Core.pPrev, PRTHEAPSIMPLEBLOCK, offDelta); RELOCATE_IT(pCur->Core.pHeap, PRTHEAPSIMPLEINTERNAL, offDelta); if (RTHEAPSIMPLEBLOCK_IS_FREE(&pCur->Core)) { RELOCATE_IT(pCur->pNext, PRTHEAPSIMPLEFREE, offDelta); RELOCATE_IT(pCur->pPrev, PRTHEAPSIMPLEFREE, offDelta); } } #undef RELOCATE_IT #ifdef RTHEAPSIMPLE_STRICT /* * Give it a once over before we return. */ rtHeapSimpleAssertAll(pHeapInt); #endif return VINF_SUCCESS; } RT_EXPORT_SYMBOL(RTHeapSimpleRelocate); RTDECL(void *) RTHeapSimpleAlloc(RTHEAPSIMPLE hHeap, size_t cb, size_t cbAlignment) { PRTHEAPSIMPLEINTERNAL pHeapInt = hHeap; PRTHEAPSIMPLEBLOCK pBlock; /* * Validate and adjust the input. */ AssertPtrReturn(pHeapInt, NULL); if (cb < RTHEAPSIMPLE_MIN_BLOCK) cb = RTHEAPSIMPLE_MIN_BLOCK; else cb = RT_ALIGN_Z(cb, RTHEAPSIMPLE_ALIGNMENT); if (!cbAlignment) cbAlignment = RTHEAPSIMPLE_ALIGNMENT; else { Assert(!(cbAlignment & (cbAlignment - 1))); Assert((cbAlignment & ~(cbAlignment - 1)) == cbAlignment); if (cbAlignment < RTHEAPSIMPLE_ALIGNMENT) cbAlignment = RTHEAPSIMPLE_ALIGNMENT; } /* * Do the allocation. */ pBlock = rtHeapSimpleAllocBlock(pHeapInt, cb, cbAlignment); if (RT_LIKELY(pBlock)) { void *pv = pBlock + 1; return pv; } return NULL; } RT_EXPORT_SYMBOL(RTHeapSimpleAlloc); RTDECL(void *) RTHeapSimpleAllocZ(RTHEAPSIMPLE hHeap, size_t cb, size_t cbAlignment) { PRTHEAPSIMPLEINTERNAL pHeapInt = hHeap; PRTHEAPSIMPLEBLOCK pBlock; /* * Validate and adjust the input. */ AssertPtrReturn(pHeapInt, NULL); if (cb < RTHEAPSIMPLE_MIN_BLOCK) cb = RTHEAPSIMPLE_MIN_BLOCK; else cb = RT_ALIGN_Z(cb, RTHEAPSIMPLE_ALIGNMENT); if (!cbAlignment) cbAlignment = RTHEAPSIMPLE_ALIGNMENT; else { Assert(!(cbAlignment & (cbAlignment - 1))); Assert((cbAlignment & ~(cbAlignment - 1)) == cbAlignment); if (cbAlignment < RTHEAPSIMPLE_ALIGNMENT) cbAlignment = RTHEAPSIMPLE_ALIGNMENT; } /* * Do the allocation. */ pBlock = rtHeapSimpleAllocBlock(pHeapInt, cb, cbAlignment); if (RT_LIKELY(pBlock)) { void *pv = pBlock + 1; memset(pv, 0, cb); return pv; } return NULL; } RT_EXPORT_SYMBOL(RTHeapSimpleAllocZ); /** * Allocates a block of memory from the specified heap. * * No parameter validation or adjustment is performed. * * @returns Pointer to the allocated block. * @returns NULL on failure. * * @param pHeapInt The heap. * @param cb Size of the memory block to allocate. * @param uAlignment The alignment specifications for the allocated block. */ static PRTHEAPSIMPLEBLOCK rtHeapSimpleAllocBlock(PRTHEAPSIMPLEINTERNAL pHeapInt, size_t cb, size_t uAlignment) { PRTHEAPSIMPLEBLOCK pRet = NULL; PRTHEAPSIMPLEFREE pFree; #ifdef RTHEAPSIMPLE_STRICT rtHeapSimpleAssertAll(pHeapInt); #endif /* * Search for a fitting block from the lower end of the heap. */ for (pFree = pHeapInt->pFreeHead; pFree; pFree = pFree->pNext) { uintptr_t offAlign; ASSERT_BLOCK_FREE(pHeapInt, pFree); /* * Match for size and alignment. */ if (pFree->cb < cb) continue; offAlign = (uintptr_t)(&pFree->Core + 1) & (uAlignment - 1); if (offAlign) { RTHEAPSIMPLEFREE Free; PRTHEAPSIMPLEBLOCK pPrev; offAlign = uAlignment - offAlign; if (pFree->cb - offAlign < cb) continue; /* * Make a stack copy of the free block header and adjust the pointer. */ Free = *pFree; pFree = (PRTHEAPSIMPLEFREE)((uintptr_t)pFree + offAlign); /* * Donate offAlign bytes to the node in front of us. * If we're the head node, we'll have to create a fake node. We'll * mark it USED for simplicity. * * (Should this policy of donating memory to the guy in front of us * cause big 'leaks', we could create a new free node if there is room * for that.) */ pPrev = Free.Core.pPrev; if (pPrev) { AssertMsg(!RTHEAPSIMPLEBLOCK_IS_FREE(pPrev), ("Impossible!\n")); pPrev->pNext = &pFree->Core; } else { pPrev = (PRTHEAPSIMPLEBLOCK)(pHeapInt + 1); Assert(pPrev == &pFree->Core); pPrev->pPrev = NULL; pPrev->pNext = &pFree->Core; pPrev->pHeap = pHeapInt; pPrev->fFlags = RTHEAPSIMPLEBLOCK_FLAGS_MAGIC; } pHeapInt->cbFree -= offAlign; /* * Recreate pFree in the new position and adjust the neighbors. */ *pFree = Free; /* the core */ if (pFree->Core.pNext) pFree->Core.pNext->pPrev = &pFree->Core; pFree->Core.pPrev = pPrev; /* the free part */ pFree->cb -= offAlign; if (pFree->pNext) pFree->pNext->pPrev = pFree; else pHeapInt->pFreeTail = pFree; if (pFree->pPrev) pFree->pPrev->pNext = pFree; else pHeapInt->pFreeHead = pFree; ASSERT_BLOCK_FREE(pHeapInt, pFree); ASSERT_BLOCK_USED(pHeapInt, pPrev); } /* * Split off a new FREE block? */ if (pFree->cb >= cb + RT_ALIGN_Z(sizeof(RTHEAPSIMPLEFREE), RTHEAPSIMPLE_ALIGNMENT)) { /* * Move the FREE block up to make room for the new USED block. */ PRTHEAPSIMPLEFREE pNew = (PRTHEAPSIMPLEFREE)((uintptr_t)&pFree->Core + cb + sizeof(RTHEAPSIMPLEBLOCK)); pNew->Core.pNext = pFree->Core.pNext; if (pFree->Core.pNext) pFree->Core.pNext->pPrev = &pNew->Core; pNew->Core.pPrev = &pFree->Core; pNew->Core.pHeap = pHeapInt; pNew->Core.fFlags = RTHEAPSIMPLEBLOCK_FLAGS_MAGIC | RTHEAPSIMPLEBLOCK_FLAGS_FREE; pNew->pNext = pFree->pNext; if (pNew->pNext) pNew->pNext->pPrev = pNew; else pHeapInt->pFreeTail = pNew; pNew->pPrev = pFree->pPrev; if (pNew->pPrev) pNew->pPrev->pNext = pNew; else pHeapInt->pFreeHead = pNew; pNew->cb = (pNew->Core.pNext ? (uintptr_t)pNew->Core.pNext : (uintptr_t)pHeapInt->pvEnd) \ - (uintptr_t)pNew - sizeof(RTHEAPSIMPLEBLOCK); ASSERT_BLOCK_FREE(pHeapInt, pNew); /* * Update the old FREE node making it a USED node. */ pFree->Core.fFlags &= ~RTHEAPSIMPLEBLOCK_FLAGS_FREE; pFree->Core.pNext = &pNew->Core; pHeapInt->cbFree -= pFree->cb; pHeapInt->cbFree += pNew->cb; pRet = &pFree->Core; ASSERT_BLOCK_USED(pHeapInt, pRet); } else { /* * Link it out of the free list. */ if (pFree->pNext) pFree->pNext->pPrev = pFree->pPrev; else pHeapInt->pFreeTail = pFree->pPrev; if (pFree->pPrev) pFree->pPrev->pNext = pFree->pNext; else pHeapInt->pFreeHead = pFree->pNext; /* * Convert it to a used block. */ pHeapInt->cbFree -= pFree->cb; pFree->Core.fFlags &= ~RTHEAPSIMPLEBLOCK_FLAGS_FREE; pRet = &pFree->Core; ASSERT_BLOCK_USED(pHeapInt, pRet); } break; } #ifdef RTHEAPSIMPLE_STRICT rtHeapSimpleAssertAll(pHeapInt); #endif return pRet; } RTDECL(void) RTHeapSimpleFree(RTHEAPSIMPLE hHeap, void *pv) { PRTHEAPSIMPLEINTERNAL pHeapInt; PRTHEAPSIMPLEBLOCK pBlock; /* * Validate input. */ if (!pv) return; AssertPtr(pv); Assert(RT_ALIGN_P(pv, RTHEAPSIMPLE_ALIGNMENT) == pv); /* * Get the block and heap. If in strict mode, validate these. */ pBlock = (PRTHEAPSIMPLEBLOCK)pv - 1; pHeapInt = pBlock->pHeap; ASSERT_BLOCK_USED(pHeapInt, pBlock); ASSERT_ANCHOR(pHeapInt); Assert(pHeapInt == (PRTHEAPSIMPLEINTERNAL)hHeap || !hHeap); RT_NOREF_PV(hHeap); #ifdef RTHEAPSIMPLE_FREE_POISON /* * Poison the block. */ const size_t cbBlock = (pBlock->pNext ? (uintptr_t)pBlock->pNext : (uintptr_t)pHeapInt->pvEnd) - (uintptr_t)pBlock - sizeof(RTHEAPSIMPLEBLOCK); memset(pBlock + 1, RTHEAPSIMPLE_FREE_POISON, cbBlock); #endif /* * Call worker which does the actual job. */ rtHeapSimpleFreeBlock(pHeapInt, pBlock); } RT_EXPORT_SYMBOL(RTHeapSimpleFree); /** * Free a memory block. * * @param pHeapInt The heap. * @param pBlock The memory block to free. */ static void rtHeapSimpleFreeBlock(PRTHEAPSIMPLEINTERNAL pHeapInt, PRTHEAPSIMPLEBLOCK pBlock) { PRTHEAPSIMPLEFREE pFree = (PRTHEAPSIMPLEFREE)pBlock; PRTHEAPSIMPLEFREE pLeft; PRTHEAPSIMPLEFREE pRight; #ifdef RTHEAPSIMPLE_STRICT rtHeapSimpleAssertAll(pHeapInt); #endif /* * Look for the closest free list blocks by walking the blocks right * of us (both lists are sorted by address). */ pLeft = NULL; pRight = NULL; if (pHeapInt->pFreeTail) { pRight = (PRTHEAPSIMPLEFREE)pFree->Core.pNext; while (pRight && !RTHEAPSIMPLEBLOCK_IS_FREE(&pRight->Core)) { ASSERT_BLOCK(pHeapInt, &pRight->Core); pRight = (PRTHEAPSIMPLEFREE)pRight->Core.pNext; } if (!pRight) pLeft = pHeapInt->pFreeTail; else { ASSERT_BLOCK_FREE(pHeapInt, pRight); pLeft = pRight->pPrev; } if (pLeft) ASSERT_BLOCK_FREE(pHeapInt, pLeft); } AssertMsgReturnVoid(pLeft != pFree, ("Freed twice! pv=%p (pBlock=%p)\n", pBlock + 1, pBlock)); ASSERT_L(pLeft, pFree); Assert(!pRight || (uintptr_t)pRight > (uintptr_t)pFree); Assert(!pLeft || pLeft->pNext == pRight); /* * Insert at the head of the free block list? */ if (!pLeft) { Assert(pRight == pHeapInt->pFreeHead); pFree->Core.fFlags |= RTHEAPSIMPLEBLOCK_FLAGS_FREE; pFree->pPrev = NULL; pFree->pNext = pRight; if (pRight) pRight->pPrev = pFree; else pHeapInt->pFreeTail = pFree; pHeapInt->pFreeHead = pFree; } else { /* * Can we merge with left hand free block? */ if (pLeft->Core.pNext == &pFree->Core) { pLeft->Core.pNext = pFree->Core.pNext; if (pFree->Core.pNext) pFree->Core.pNext->pPrev = &pLeft->Core; pHeapInt->cbFree -= pLeft->cb; pFree = pLeft; } /* * No, just link it into the free list then. */ else { pFree->Core.fFlags |= RTHEAPSIMPLEBLOCK_FLAGS_FREE; pFree->pNext = pRight; pFree->pPrev = pLeft; pLeft->pNext = pFree; if (pRight) pRight->pPrev = pFree; else pHeapInt->pFreeTail = pFree; } } /* * Can we merge with right hand free block? */ if ( pRight && pRight->Core.pPrev == &pFree->Core) { /* core */ pFree->Core.pNext = pRight->Core.pNext; if (pRight->Core.pNext) pRight->Core.pNext->pPrev = &pFree->Core; /* free */ pFree->pNext = pRight->pNext; if (pRight->pNext) pRight->pNext->pPrev = pFree; else pHeapInt->pFreeTail = pFree; pHeapInt->cbFree -= pRight->cb; } /* * Calculate the size and update free stats. */ pFree->cb = (pFree->Core.pNext ? (uintptr_t)pFree->Core.pNext : (uintptr_t)pHeapInt->pvEnd) - (uintptr_t)pFree - sizeof(RTHEAPSIMPLEBLOCK); pHeapInt->cbFree += pFree->cb; ASSERT_BLOCK_FREE(pHeapInt, pFree); #ifdef RTHEAPSIMPLE_STRICT rtHeapSimpleAssertAll(pHeapInt); #endif } #ifdef RTHEAPSIMPLE_STRICT /** * Internal consistency check (relying on assertions). * @param pHeapInt */ static void rtHeapSimpleAssertAll(PRTHEAPSIMPLEINTERNAL pHeapInt) { PRTHEAPSIMPLEFREE pPrev = NULL; PRTHEAPSIMPLEFREE pPrevFree = NULL; PRTHEAPSIMPLEFREE pBlock; for (pBlock = (PRTHEAPSIMPLEFREE)(pHeapInt + 1); pBlock; pBlock = (PRTHEAPSIMPLEFREE)pBlock->Core.pNext) { if (RTHEAPSIMPLEBLOCK_IS_FREE(&pBlock->Core)) { ASSERT_BLOCK_FREE(pHeapInt, pBlock); Assert(pBlock->pPrev == pPrevFree); Assert(pPrevFree || pHeapInt->pFreeHead == pBlock); pPrevFree = pBlock; } else ASSERT_BLOCK_USED(pHeapInt, &pBlock->Core); Assert(!pPrev || pPrev == (PRTHEAPSIMPLEFREE)pBlock->Core.pPrev); pPrev = pBlock; } Assert(pHeapInt->pFreeTail == pPrevFree); } #endif RTDECL(size_t) RTHeapSimpleSize(RTHEAPSIMPLE hHeap, void *pv) { PRTHEAPSIMPLEINTERNAL pHeapInt; PRTHEAPSIMPLEBLOCK pBlock; size_t cbBlock; /* * Validate input. */ if (!pv) return 0; AssertPtrReturn(pv, 0); AssertReturn(RT_ALIGN_P(pv, RTHEAPSIMPLE_ALIGNMENT) == pv, 0); /* * Get the block and heap. If in strict mode, validate these. */ pBlock = (PRTHEAPSIMPLEBLOCK)pv - 1; pHeapInt = pBlock->pHeap; ASSERT_BLOCK_USED(pHeapInt, pBlock); ASSERT_ANCHOR(pHeapInt); Assert(pHeapInt == (PRTHEAPSIMPLEINTERNAL)hHeap || !hHeap); RT_NOREF_PV(hHeap); /* * Calculate the block size. */ cbBlock = (pBlock->pNext ? (uintptr_t)pBlock->pNext : (uintptr_t)pHeapInt->pvEnd) - (uintptr_t)pBlock- sizeof(RTHEAPSIMPLEBLOCK); return cbBlock; } RT_EXPORT_SYMBOL(RTHeapSimpleSize); RTDECL(size_t) RTHeapSimpleGetHeapSize(RTHEAPSIMPLE hHeap) { PRTHEAPSIMPLEINTERNAL pHeapInt; if (hHeap == NIL_RTHEAPSIMPLE) return 0; pHeapInt = hHeap; AssertPtrReturn(pHeapInt, 0); ASSERT_ANCHOR(pHeapInt); return pHeapInt->cbHeap; } RT_EXPORT_SYMBOL(RTHeapSimpleGetHeapSize); RTDECL(size_t) RTHeapSimpleGetFreeSize(RTHEAPSIMPLE hHeap) { PRTHEAPSIMPLEINTERNAL pHeapInt; if (hHeap == NIL_RTHEAPSIMPLE) return 0; pHeapInt = hHeap; AssertPtrReturn(pHeapInt, 0); ASSERT_ANCHOR(pHeapInt); return pHeapInt->cbFree; } RT_EXPORT_SYMBOL(RTHeapSimpleGetFreeSize); RTDECL(void) RTHeapSimpleDump(RTHEAPSIMPLE hHeap, PFNRTHEAPSIMPLEPRINTF pfnPrintf) { PRTHEAPSIMPLEINTERNAL pHeapInt = (PRTHEAPSIMPLEINTERNAL)hHeap; PRTHEAPSIMPLEFREE pBlock; pfnPrintf("**** Dumping Heap %p - cbHeap=%zx cbFree=%zx ****\n", hHeap, pHeapInt->cbHeap, pHeapInt->cbFree); for (pBlock = (PRTHEAPSIMPLEFREE)(pHeapInt + 1); pBlock; pBlock = (PRTHEAPSIMPLEFREE)pBlock->Core.pNext) { size_t cb = (pBlock->pNext ? (uintptr_t)pBlock->Core.pNext : (uintptr_t)pHeapInt->pvEnd) - (uintptr_t)pBlock - sizeof(RTHEAPSIMPLEBLOCK); if (RTHEAPSIMPLEBLOCK_IS_FREE(&pBlock->Core)) pfnPrintf("%p %06x FREE pNext=%p pPrev=%p fFlags=%#x cb=%#06x : cb=%#06x pNext=%p pPrev=%p\n", pBlock, (uintptr_t)pBlock - (uintptr_t)(pHeapInt + 1), pBlock->Core.pNext, pBlock->Core.pPrev, pBlock->Core.fFlags, cb, pBlock->cb, pBlock->pNext, pBlock->pPrev); else pfnPrintf("%p %06x USED pNext=%p pPrev=%p fFlags=%#x cb=%#06x\n", pBlock, (uintptr_t)pBlock - (uintptr_t)(pHeapInt + 1), pBlock->Core.pNext, pBlock->Core.pPrev, pBlock->Core.fFlags, cb); } pfnPrintf("**** Done dumping Heap %p ****\n", hHeap); } RT_EXPORT_SYMBOL(RTHeapSimpleDump);