VirtualBox

source: vbox/trunk/src/VBox/HostDrivers/Support/SUPDrvGip.cpp@ 64281

Last change on this file since 64281 was 64281, checked in by vboxsync, 8 years ago

IPRT,SUP: Major vboxdrv and GIP version change; more flexible processor group handling on Windows.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 180.8 KB
Line 
1/* $Id: SUPDrvGip.cpp 64281 2016-10-15 16:46:29Z vboxsync $ */
2/** @file
3 * VBoxDrv - The VirtualBox Support Driver - Common code for GIP.
4 */
5
6/*
7 * Copyright (C) 2006-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#define LOG_GROUP LOG_GROUP_SUP_DRV
32#define SUPDRV_AGNOSTIC
33#include "SUPDrvInternal.h"
34#ifndef PAGE_SHIFT
35# include <iprt/param.h>
36#endif
37#include <iprt/asm.h>
38#include <iprt/asm-amd64-x86.h>
39#include <iprt/asm-math.h>
40#include <iprt/cpuset.h>
41#include <iprt/handletable.h>
42#include <iprt/mem.h>
43#include <iprt/mp.h>
44#include <iprt/power.h>
45#include <iprt/process.h>
46#include <iprt/semaphore.h>
47#include <iprt/spinlock.h>
48#include <iprt/thread.h>
49#include <iprt/uuid.h>
50#include <iprt/net.h>
51#include <iprt/crc.h>
52#include <iprt/string.h>
53#include <iprt/timer.h>
54#if defined(RT_OS_DARWIN) || defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD)
55# include <iprt/rand.h>
56# include <iprt/path.h>
57#endif
58#include <iprt/uint128.h>
59#include <iprt/x86.h>
60
61#include <VBox/param.h>
62#include <VBox/log.h>
63#include <VBox/err.h>
64
65#if defined(RT_OS_SOLARIS) || defined(RT_OS_DARWIN)
66# include "dtrace/SUPDrv.h"
67#else
68/* ... */
69#endif
70
71
72/*********************************************************************************************************************************
73* Defined Constants And Macros *
74*********************************************************************************************************************************/
75/** The frequency by which we recalculate the u32UpdateHz and
76 * u32UpdateIntervalNS GIP members. The value must be a power of 2.
77 *
78 * Warning: Bumping this too high might overflow u32UpdateIntervalNS.
79 */
80#define GIP_UPDATEHZ_RECALC_FREQ 0x800
81
82/** A reserved TSC value used for synchronization as well as measurement of
83 * TSC deltas. */
84#define GIP_TSC_DELTA_RSVD UINT64_MAX
85/** The number of TSC delta measurement loops in total (includes primer and
86 * read-time loops). */
87#define GIP_TSC_DELTA_LOOPS 96
88/** The number of cache primer loops. */
89#define GIP_TSC_DELTA_PRIMER_LOOPS 4
90/** The number of loops until we keep computing the minumum read time. */
91#define GIP_TSC_DELTA_READ_TIME_LOOPS 24
92
93/** The TSC frequency refinement period in seconds.
94 * The timer fires after 200ms, then every second, this value just says when
95 * to stop it after that. */
96#define GIP_TSC_REFINE_PERIOD_IN_SECS 12
97/** The TSC-delta threshold for the SUPGIPUSETSCDELTA_PRACTICALLY_ZERO rating */
98#define GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO 32
99/** The TSC-delta threshold for the SUPGIPUSETSCDELTA_ROUGHLY_ZERO rating */
100#define GIP_TSC_DELTA_THRESHOLD_ROUGHLY_ZERO 448
101/** The TSC delta value for the initial GIP master - 0 in regular builds.
102 * To test the delta code this can be set to a non-zero value. */
103#if 0
104# define GIP_TSC_DELTA_INITIAL_MASTER_VALUE INT64_C(170139095182512) /* 0x00009abd9854acb0 */
105#else
106# define GIP_TSC_DELTA_INITIAL_MASTER_VALUE INT64_C(0)
107#endif
108
109AssertCompile(GIP_TSC_DELTA_PRIMER_LOOPS < GIP_TSC_DELTA_READ_TIME_LOOPS);
110AssertCompile(GIP_TSC_DELTA_PRIMER_LOOPS + GIP_TSC_DELTA_READ_TIME_LOOPS < GIP_TSC_DELTA_LOOPS);
111
112/** @def VBOX_SVN_REV
113 * The makefile should define this if it can. */
114#ifndef VBOX_SVN_REV
115# define VBOX_SVN_REV 0
116#endif
117
118#if 0 /* Don't start the GIP timers. Useful when debugging the IPRT timer code. */
119# define DO_NOT_START_GIP
120#endif
121
122
123/*********************************************************************************************************************************
124* Internal Functions *
125*********************************************************************************************************************************/
126static DECLCALLBACK(void) supdrvGipSyncAndInvariantTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
127static DECLCALLBACK(void) supdrvGipAsyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
128static int supdrvGipSetFlags(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, uint32_t fOrMask, uint32_t fAndMask);
129static void supdrvGipInitCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pCpu, uint64_t u64NanoTS, uint64_t uCpuHz);
130static void supdrvTscResetSamples(PSUPDRVDEVEXT pDevExt, bool fClearDeltas);
131#ifdef SUPDRV_USE_TSC_DELTA_THREAD
132static int supdrvTscDeltaThreadInit(PSUPDRVDEVEXT pDevExt);
133static void supdrvTscDeltaTerm(PSUPDRVDEVEXT pDevExt);
134static void supdrvTscDeltaThreadStartMeasurement(PSUPDRVDEVEXT pDevExt, bool fForceAll);
135#else
136static int supdrvTscMeasureInitialDeltas(PSUPDRVDEVEXT pDevExt);
137static int supdrvTscMeasureDeltaOne(PSUPDRVDEVEXT pDevExt, uint32_t idxWorker);
138#endif
139
140
141/*********************************************************************************************************************************
142* Global Variables *
143*********************************************************************************************************************************/
144DECLEXPORT(PSUPGLOBALINFOPAGE) g_pSUPGlobalInfoPage = NULL;
145
146
147
148/*
149 *
150 * Misc Common GIP Code
151 * Misc Common GIP Code
152 * Misc Common GIP Code
153 *
154 *
155 */
156
157
158/**
159 * Finds the GIP CPU index corresponding to @a idCpu.
160 *
161 * @returns GIP CPU array index, UINT32_MAX if not found.
162 * @param pGip The GIP.
163 * @param idCpu The CPU ID.
164 */
165static uint32_t supdrvGipFindCpuIndexForCpuId(PSUPGLOBALINFOPAGE pGip, RTCPUID idCpu)
166{
167 uint32_t i;
168 for (i = 0; i < pGip->cCpus; i++)
169 if (pGip->aCPUs[i].idCpu == idCpu)
170 return i;
171 return UINT32_MAX;
172}
173
174
175
176/*
177 *
178 * GIP Mapping and Unmapping Related Code.
179 * GIP Mapping and Unmapping Related Code.
180 * GIP Mapping and Unmapping Related Code.
181 *
182 *
183 */
184
185
186/**
187 * (Re-)initializes the per-cpu structure prior to starting or resuming the GIP
188 * updating.
189 *
190 * @param pGipCpu The per CPU structure for this CPU.
191 * @param u64NanoTS The current time.
192 */
193static void supdrvGipReInitCpu(PSUPGIPCPU pGipCpu, uint64_t u64NanoTS)
194{
195 /*
196 * Here we don't really care about applying the TSC delta. The re-initialization of this
197 * value is not relevant especially while (re)starting the GIP as the first few ones will
198 * be ignored anyway, see supdrvGipDoUpdateCpu().
199 */
200 pGipCpu->u64TSC = ASMReadTSC() - pGipCpu->u32UpdateIntervalTSC;
201 pGipCpu->u64NanoTS = u64NanoTS;
202}
203
204
205/**
206 * Set the current TSC and NanoTS value for the CPU.
207 *
208 * @param idCpu The CPU ID. Unused - we have to use the APIC ID.
209 * @param pvUser1 Pointer to the ring-0 GIP mapping.
210 * @param pvUser2 Pointer to the variable holding the current time.
211 */
212static DECLCALLBACK(void) supdrvGipReInitCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
213{
214 PSUPGLOBALINFOPAGE pGip = (PSUPGLOBALINFOPAGE)pvUser1;
215 unsigned iCpu = pGip->aiCpuFromApicId[ASMGetApicId()];
216
217 if (RT_LIKELY(iCpu < pGip->cCpus && pGip->aCPUs[iCpu].idCpu == idCpu))
218 supdrvGipReInitCpu(&pGip->aCPUs[iCpu], *(uint64_t *)pvUser2);
219
220 NOREF(pvUser2);
221 NOREF(idCpu);
222}
223
224
225/**
226 * State structure for supdrvGipDetectGetGipCpuCallback.
227 */
228typedef struct SUPDRVGIPDETECTGETCPU
229{
230 /** Bitmap of APIC IDs that has been seen (initialized to zero).
231 * Used to detect duplicate APIC IDs (paranoia). */
232 uint8_t volatile bmApicId[256 / 8];
233 /** Mask of supported GIP CPU getter methods (SUPGIPGETCPU_XXX) (all bits set
234 * initially). The callback clears the methods not detected. */
235 uint32_t volatile fSupported;
236 /** The first callback detecting any kind of range issues (initialized to
237 * NIL_RTCPUID). */
238 RTCPUID volatile idCpuProblem;
239} SUPDRVGIPDETECTGETCPU;
240/** Pointer to state structure for supdrvGipDetectGetGipCpuCallback. */
241typedef SUPDRVGIPDETECTGETCPU *PSUPDRVGIPDETECTGETCPU;
242
243
244/**
245 * Checks for alternative ways of getting the CPU ID.
246 *
247 * This also checks the APIC ID, CPU ID and CPU set index values against the
248 * GIP tables.
249 *
250 * @param idCpu The CPU ID. Unused - we have to use the APIC ID.
251 * @param pvUser1 Pointer to the state structure.
252 * @param pvUser2 Pointer to the GIP.
253 */
254static DECLCALLBACK(void) supdrvGipDetectGetGipCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
255{
256 PSUPDRVGIPDETECTGETCPU pState = (PSUPDRVGIPDETECTGETCPU)pvUser1;
257 PSUPGLOBALINFOPAGE pGip = (PSUPGLOBALINFOPAGE)pvUser2;
258 uint32_t fSupported = 0;
259 uint16_t idApic;
260 int iCpuSet;
261 NOREF(pGip);
262
263 AssertMsg(idCpu == RTMpCpuId(), ("idCpu=%#x RTMpCpuId()=%#x\n", idCpu, RTMpCpuId())); /* paranoia^3 */
264
265 /*
266 * Check that the CPU ID and CPU set index are interchangable.
267 */
268 iCpuSet = RTMpCpuIdToSetIndex(idCpu);
269 if ((RTCPUID)iCpuSet == idCpu)
270 {
271 AssertCompile(RT_IS_POWER_OF_TWO(RTCPUSET_MAX_CPUS));
272 if ( iCpuSet >= 0
273 && iCpuSet < RTCPUSET_MAX_CPUS
274 && RT_IS_POWER_OF_TWO(RTCPUSET_MAX_CPUS))
275 {
276 PSUPGIPCPU pGipCpu = SUPGetGipCpuBySetIndex(pGip, iCpuSet);
277
278 /*
279 * Check whether the IDTR.LIMIT contains a CPU number.
280 */
281#ifdef RT_ARCH_X86
282 uint16_t const cbIdt = sizeof(X86DESC64SYSTEM) * 256;
283#else
284 uint16_t const cbIdt = sizeof(X86DESCGATE) * 256;
285#endif
286 RTIDTR Idtr;
287 ASMGetIDTR(&Idtr);
288 if (Idtr.cbIdt >= cbIdt)
289 {
290 uint32_t uTmp = Idtr.cbIdt - cbIdt;
291 uTmp &= RTCPUSET_MAX_CPUS - 1;
292 if (uTmp == idCpu)
293 {
294 RTIDTR Idtr2;
295 ASMGetIDTR(&Idtr2);
296 if (Idtr2.cbIdt == Idtr.cbIdt)
297 fSupported |= SUPGIPGETCPU_IDTR_LIMIT_MASK_MAX_SET_CPUS;
298 }
299 }
300
301 /*
302 * Check whether RDTSCP is an option.
303 */
304 if (ASMHasCpuId())
305 {
306 if ( ASMIsValidExtRange(ASMCpuId_EAX(UINT32_C(0x80000000)))
307 && (ASMCpuId_EDX(UINT32_C(0x80000001)) & X86_CPUID_EXT_FEATURE_EDX_RDTSCP) )
308 {
309 uint32_t uAux;
310 ASMReadTscWithAux(&uAux);
311 if ((uAux & (RTCPUSET_MAX_CPUS - 1)) == idCpu)
312 {
313 ASMNopPause();
314 ASMReadTscWithAux(&uAux);
315 if ((uAux & (RTCPUSET_MAX_CPUS - 1)) == idCpu)
316 fSupported |= SUPGIPGETCPU_RDTSCP_MASK_MAX_SET_CPUS;
317 }
318
319 if (pGipCpu)
320 {
321 uint32_t const uGroupedAux = (uint8_t)pGipCpu->iCpuGroupMember | ((uint32_t)pGipCpu->iCpuGroup << 8);
322 if ( (uAux & UINT16_MAX) == uGroupedAux
323 && pGipCpu->iCpuGroupMember <= UINT8_MAX)
324 {
325 ASMNopPause();
326 ASMReadTscWithAux(&uAux);
327 if ((uAux & UINT16_MAX) == uGroupedAux)
328 fSupported |= SUPGIPGETCPU_RDTSCP_GROUP_IN_CH_NUMBER_IN_CL;
329 }
330 }
331 }
332 }
333 }
334 }
335
336 /*
337 * Check that the APIC ID is unique.
338 */
339 idApic = ASMGetApicId();
340 if (RT_LIKELY( idApic < RT_ELEMENTS(pGip->aiCpuFromApicId)
341 && !ASMAtomicBitTestAndSet(pState->bmApicId, idApic)))
342 fSupported |= SUPGIPGETCPU_APIC_ID;
343 else
344 {
345 AssertCompile(sizeof(pState->bmApicId) * 8 == RT_ELEMENTS(pGip->aiCpuFromApicId));
346 ASMAtomicCmpXchgU32(&pState->idCpuProblem, idCpu, NIL_RTCPUID);
347 LogRel(("supdrvGipDetectGetGipCpuCallback: idCpu=%#x iCpuSet=%d idApic=%#x - duplicate APIC ID.\n",
348 idCpu, iCpuSet, idApic));
349 }
350
351 /*
352 * Check that the iCpuSet is within the expected range.
353 */
354 if (RT_UNLIKELY( iCpuSet < 0
355 || (unsigned)iCpuSet >= RTCPUSET_MAX_CPUS
356 || (unsigned)iCpuSet >= RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)))
357 {
358 ASMAtomicCmpXchgU32(&pState->idCpuProblem, idCpu, NIL_RTCPUID);
359 LogRel(("supdrvGipDetectGetGipCpuCallback: idCpu=%#x iCpuSet=%d idApic=%#x - CPU set index is out of range.\n",
360 idCpu, iCpuSet, idApic));
361 }
362 else
363 {
364 RTCPUID idCpu2 = RTMpCpuIdFromSetIndex(iCpuSet);
365 if (RT_UNLIKELY(idCpu2 != idCpu))
366 {
367 ASMAtomicCmpXchgU32(&pState->idCpuProblem, idCpu, NIL_RTCPUID);
368 LogRel(("supdrvGipDetectGetGipCpuCallback: idCpu=%#x iCpuSet=%d idApic=%#x - CPU id/index roundtrip problem: %#x\n",
369 idCpu, iCpuSet, idApic, idCpu2));
370 }
371 }
372
373 /*
374 * Update the supported feature mask before we return.
375 */
376 ASMAtomicAndU32(&pState->fSupported, fSupported);
377
378 NOREF(pvUser2);
379}
380
381
382/**
383 * Increase the timer freqency on hosts where this is possible (NT).
384 *
385 * The idea is that more interrupts is better for us... Also, it's better than
386 * we increase the timer frequence, because we might end up getting inaccurate
387 * callbacks if someone else does it.
388 *
389 * @param pDevExt Sets u32SystemTimerGranularityGrant if increased.
390 */
391static void supdrvGipRequestHigherTimerFrequencyFromSystem(PSUPDRVDEVEXT pDevExt)
392{
393 if (pDevExt->u32SystemTimerGranularityGrant == 0)
394 {
395 uint32_t u32SystemResolution;
396 if ( RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 976563 /* 1024 HZ */, &u32SystemResolution))
397 || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 1000000 /* 1000 HZ */, &u32SystemResolution))
398 || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 1953125 /* 512 HZ */, &u32SystemResolution))
399 || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 2000000 /* 500 HZ */, &u32SystemResolution))
400 )
401 {
402#if 0 /* def VBOX_STRICT - this is somehow triggers bogus assertions on windows 10 */
403 uint32_t u32After = RTTimerGetSystemGranularity();
404 AssertMsg(u32After <= u32SystemResolution, ("u32After=%u u32SystemResolution=%u\n", u32After, u32SystemResolution));
405#endif
406 pDevExt->u32SystemTimerGranularityGrant = u32SystemResolution;
407 }
408 }
409}
410
411
412/**
413 * Undoes supdrvGipRequestHigherTimerFrequencyFromSystem.
414 *
415 * @param pDevExt Clears u32SystemTimerGranularityGrant.
416 */
417static void supdrvGipReleaseHigherTimerFrequencyFromSystem(PSUPDRVDEVEXT pDevExt)
418{
419 if (pDevExt->u32SystemTimerGranularityGrant)
420 {
421 int rc2 = RTTimerReleaseSystemGranularity(pDevExt->u32SystemTimerGranularityGrant);
422 AssertRC(rc2);
423 pDevExt->u32SystemTimerGranularityGrant = 0;
424 }
425}
426
427
428/**
429 * Maps the GIP into userspace and/or get the physical address of the GIP.
430 *
431 * @returns IPRT status code.
432 * @param pSession Session to which the GIP mapping should belong.
433 * @param ppGipR3 Where to store the address of the ring-3 mapping. (optional)
434 * @param pHCPhysGip Where to store the physical address. (optional)
435 *
436 * @remark There is no reference counting on the mapping, so one call to this function
437 * count globally as one reference. One call to SUPR0GipUnmap() is will unmap GIP
438 * and remove the session as a GIP user.
439 */
440SUPR0DECL(int) SUPR0GipMap(PSUPDRVSESSION pSession, PRTR3PTR ppGipR3, PRTHCPHYS pHCPhysGip)
441{
442 int rc;
443 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
444 RTR3PTR pGipR3 = NIL_RTR3PTR;
445 RTHCPHYS HCPhys = NIL_RTHCPHYS;
446 LogFlow(("SUPR0GipMap: pSession=%p ppGipR3=%p pHCPhysGip=%p\n", pSession, ppGipR3, pHCPhysGip));
447
448 /*
449 * Validate
450 */
451 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
452 AssertPtrNullReturn(ppGipR3, VERR_INVALID_POINTER);
453 AssertPtrNullReturn(pHCPhysGip, VERR_INVALID_POINTER);
454
455#ifdef SUPDRV_USE_MUTEX_FOR_GIP
456 RTSemMutexRequest(pDevExt->mtxGip, RT_INDEFINITE_WAIT);
457#else
458 RTSemFastMutexRequest(pDevExt->mtxGip);
459#endif
460 if (pDevExt->pGip)
461 {
462 /*
463 * Map it?
464 */
465 rc = VINF_SUCCESS;
466 if (ppGipR3)
467 {
468 if (pSession->GipMapObjR3 == NIL_RTR0MEMOBJ)
469 rc = RTR0MemObjMapUser(&pSession->GipMapObjR3, pDevExt->GipMemObj, (RTR3PTR)-1, 0,
470 RTMEM_PROT_READ, NIL_RTR0PROCESS);
471 if (RT_SUCCESS(rc))
472 pGipR3 = RTR0MemObjAddressR3(pSession->GipMapObjR3);
473 }
474
475 /*
476 * Get physical address.
477 */
478 if (pHCPhysGip && RT_SUCCESS(rc))
479 HCPhys = pDevExt->HCPhysGip;
480
481 /*
482 * Reference globally.
483 */
484 if (!pSession->fGipReferenced && RT_SUCCESS(rc))
485 {
486 pSession->fGipReferenced = 1;
487 pDevExt->cGipUsers++;
488 if (pDevExt->cGipUsers == 1)
489 {
490 PSUPGLOBALINFOPAGE pGipR0 = pDevExt->pGip;
491 uint64_t u64NanoTS;
492
493 /*
494 * GIP starts/resumes updating again. On windows we bump the
495 * host timer frequency to make sure we don't get stuck in guest
496 * mode and to get better timer (and possibly clock) accuracy.
497 */
498 LogFlow(("SUPR0GipMap: Resumes GIP updating\n"));
499
500 supdrvGipRequestHigherTimerFrequencyFromSystem(pDevExt);
501
502 /*
503 * document me
504 */
505 if (pGipR0->aCPUs[0].u32TransactionId != 2 /* not the first time */)
506 {
507 unsigned i;
508 for (i = 0; i < pGipR0->cCpus; i++)
509 ASMAtomicUoWriteU32(&pGipR0->aCPUs[i].u32TransactionId,
510 (pGipR0->aCPUs[i].u32TransactionId + GIP_UPDATEHZ_RECALC_FREQ * 2)
511 & ~(GIP_UPDATEHZ_RECALC_FREQ * 2 - 1));
512 ASMAtomicWriteU64(&pGipR0->u64NanoTSLastUpdateHz, 0);
513 }
514
515 /*
516 * document me
517 */
518 u64NanoTS = RTTimeSystemNanoTS() - pGipR0->u32UpdateIntervalNS;
519 if ( pGipR0->u32Mode == SUPGIPMODE_INVARIANT_TSC
520 || pGipR0->u32Mode == SUPGIPMODE_SYNC_TSC
521 || RTMpGetOnlineCount() == 1)
522 supdrvGipReInitCpu(&pGipR0->aCPUs[0], u64NanoTS);
523 else
524 RTMpOnAll(supdrvGipReInitCpuCallback, pGipR0, &u64NanoTS);
525
526 /*
527 * Detect alternative ways to figure the CPU ID in ring-3 and
528 * raw-mode context. Check the sanity of the APIC IDs, CPU IDs,
529 * and CPU set indexes while we're at it.
530 */
531 if (RT_SUCCESS(rc))
532 {
533 SUPDRVGIPDETECTGETCPU DetectState;
534 RT_BZERO((void *)&DetectState.bmApicId, sizeof(DetectState.bmApicId));
535 DetectState.fSupported = UINT32_MAX;
536 DetectState.idCpuProblem = NIL_RTCPUID;
537 rc = RTMpOnAll(supdrvGipDetectGetGipCpuCallback, &DetectState, pGipR0);
538 if (DetectState.idCpuProblem == NIL_RTCPUID)
539 {
540 if ( DetectState.fSupported != UINT32_MAX
541 && DetectState.fSupported != 0)
542 {
543 if (pGipR0->fGetGipCpu != DetectState.fSupported)
544 {
545 pGipR0->fGetGipCpu = DetectState.fSupported;
546 LogRel(("SUPR0GipMap: fGetGipCpu=%#x\n", DetectState.fSupported));
547 }
548 }
549 else
550 {
551 LogRel(("SUPR0GipMap: No supported ways of getting the APIC ID or CPU number in ring-3! (%#x)\n",
552 DetectState.fSupported));
553 rc = VERR_UNSUPPORTED_CPU;
554 }
555 }
556 else
557 {
558 LogRel(("SUPR0GipMap: APIC ID, CPU ID or CPU set index problem detected on CPU #%u (%#x)!\n",
559 DetectState.idCpuProblem, DetectState.idCpuProblem));
560 rc = VERR_INVALID_CPU_ID;
561 }
562 }
563
564 /*
565 * Start the GIP timer if all is well..
566 */
567 if (RT_SUCCESS(rc))
568 {
569#ifndef DO_NOT_START_GIP
570 rc = RTTimerStart(pDevExt->pGipTimer, 0 /* fire ASAP */); AssertRC(rc);
571#endif
572 rc = VINF_SUCCESS;
573 }
574
575 /*
576 * Bail out on error.
577 */
578 if (RT_FAILURE(rc))
579 {
580 LogRel(("SUPR0GipMap: failed rc=%Rrc\n", rc));
581 pDevExt->cGipUsers = 0;
582 pSession->fGipReferenced = 0;
583 if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ)
584 {
585 int rc2 = RTR0MemObjFree(pSession->GipMapObjR3, false); AssertRC(rc2);
586 if (RT_SUCCESS(rc2))
587 pSession->GipMapObjR3 = NIL_RTR0MEMOBJ;
588 }
589 HCPhys = NIL_RTHCPHYS;
590 pGipR3 = NIL_RTR3PTR;
591 }
592 }
593 }
594 }
595 else
596 {
597 rc = VERR_GENERAL_FAILURE;
598 Log(("SUPR0GipMap: GIP is not available!\n"));
599 }
600#ifdef SUPDRV_USE_MUTEX_FOR_GIP
601 RTSemMutexRelease(pDevExt->mtxGip);
602#else
603 RTSemFastMutexRelease(pDevExt->mtxGip);
604#endif
605
606 /*
607 * Write returns.
608 */
609 if (pHCPhysGip)
610 *pHCPhysGip = HCPhys;
611 if (ppGipR3)
612 *ppGipR3 = pGipR3;
613
614#ifdef DEBUG_DARWIN_GIP
615 OSDBGPRINT(("SUPR0GipMap: returns %d *pHCPhysGip=%lx pGipR3=%p\n", rc, (unsigned long)HCPhys, (void *)pGipR3));
616#else
617 LogFlow(( "SUPR0GipMap: returns %d *pHCPhysGip=%lx pGipR3=%p\n", rc, (unsigned long)HCPhys, (void *)pGipR3));
618#endif
619 return rc;
620}
621
622
623/**
624 * Unmaps any user mapping of the GIP and terminates all GIP access
625 * from this session.
626 *
627 * @returns IPRT status code.
628 * @param pSession Session to which the GIP mapping should belong.
629 */
630SUPR0DECL(int) SUPR0GipUnmap(PSUPDRVSESSION pSession)
631{
632 int rc = VINF_SUCCESS;
633 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
634#ifdef DEBUG_DARWIN_GIP
635 OSDBGPRINT(("SUPR0GipUnmap: pSession=%p pGip=%p GipMapObjR3=%p\n",
636 pSession,
637 pSession->GipMapObjR3 != NIL_RTR0MEMOBJ ? RTR0MemObjAddress(pSession->GipMapObjR3) : NULL,
638 pSession->GipMapObjR3));
639#else
640 LogFlow(("SUPR0GipUnmap: pSession=%p\n", pSession));
641#endif
642 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
643
644#ifdef SUPDRV_USE_MUTEX_FOR_GIP
645 RTSemMutexRequest(pDevExt->mtxGip, RT_INDEFINITE_WAIT);
646#else
647 RTSemFastMutexRequest(pDevExt->mtxGip);
648#endif
649
650 /*
651 * GIP test-mode session?
652 */
653 if ( pSession->fGipTestMode
654 && pDevExt->pGip)
655 {
656 supdrvGipSetFlags(pDevExt, pSession, 0, ~SUPGIP_FLAGS_TESTING_ENABLE);
657 Assert(!pSession->fGipTestMode);
658 }
659
660 /*
661 * Unmap anything?
662 */
663 if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ)
664 {
665 rc = RTR0MemObjFree(pSession->GipMapObjR3, false);
666 AssertRC(rc);
667 if (RT_SUCCESS(rc))
668 pSession->GipMapObjR3 = NIL_RTR0MEMOBJ;
669 }
670
671 /*
672 * Dereference global GIP.
673 */
674 if (pSession->fGipReferenced && !rc)
675 {
676 pSession->fGipReferenced = 0;
677 if ( pDevExt->cGipUsers > 0
678 && !--pDevExt->cGipUsers)
679 {
680 LogFlow(("SUPR0GipUnmap: Suspends GIP updating\n"));
681#ifndef DO_NOT_START_GIP
682 rc = RTTimerStop(pDevExt->pGipTimer); AssertRC(rc); rc = VINF_SUCCESS;
683#endif
684 supdrvGipReleaseHigherTimerFrequencyFromSystem(pDevExt);
685 }
686 }
687
688#ifdef SUPDRV_USE_MUTEX_FOR_GIP
689 RTSemMutexRelease(pDevExt->mtxGip);
690#else
691 RTSemFastMutexRelease(pDevExt->mtxGip);
692#endif
693
694 return rc;
695}
696
697
698/**
699 * Gets the GIP pointer.
700 *
701 * @returns Pointer to the GIP or NULL.
702 */
703SUPDECL(PSUPGLOBALINFOPAGE) SUPGetGIP(void)
704{
705 return g_pSUPGlobalInfoPage;
706}
707
708
709
710
711
712/*
713 *
714 *
715 * GIP Initialization, Termination and CPU Offline / Online Related Code.
716 * GIP Initialization, Termination and CPU Offline / Online Related Code.
717 * GIP Initialization, Termination and CPU Offline / Online Related Code.
718 *
719 *
720 */
721
722/**
723 * Used by supdrvGipInitRefineInvariantTscFreqTimer and supdrvGipInitMeasureTscFreq
724 * to update the TSC frequency related GIP variables.
725 *
726 * @param pGip The GIP.
727 * @param nsElapsed The number of nanoseconds elapsed.
728 * @param cElapsedTscTicks The corresponding number of TSC ticks.
729 * @param iTick The tick number for debugging.
730 */
731static void supdrvGipInitSetCpuFreq(PSUPGLOBALINFOPAGE pGip, uint64_t nsElapsed, uint64_t cElapsedTscTicks, uint32_t iTick)
732{
733 /*
734 * Calculate the frequency.
735 */
736 uint64_t uCpuHz;
737 if ( cElapsedTscTicks < UINT64_MAX / RT_NS_1SEC
738 && nsElapsed < UINT32_MAX)
739 uCpuHz = ASMMultU64ByU32DivByU32(cElapsedTscTicks, RT_NS_1SEC, (uint32_t)nsElapsed);
740 else
741 {
742 RTUINT128U CpuHz, Tmp, Divisor;
743 CpuHz.s.Lo = CpuHz.s.Hi = 0;
744 RTUInt128MulU64ByU64(&Tmp, cElapsedTscTicks, RT_NS_1SEC_64);
745 RTUInt128Div(&CpuHz, &Tmp, RTUInt128AssignU64(&Divisor, nsElapsed));
746 uCpuHz = CpuHz.s.Lo;
747 }
748
749 /*
750 * Update the GIP.
751 */
752 ASMAtomicWriteU64(&pGip->u64CpuHz, uCpuHz);
753 if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
754 {
755 ASMAtomicWriteU64(&pGip->aCPUs[0].u64CpuHz, uCpuHz);
756
757 /* For inspecting the frequency calcs using tstGIP-2, debugger or similar. */
758 if (iTick + 1 < pGip->cCpus)
759 ASMAtomicWriteU64(&pGip->aCPUs[iTick + 1].u64CpuHz, uCpuHz);
760 }
761}
762
763
764/**
765 * Timer callback function for TSC frequency refinement in invariant GIP mode.
766 *
767 * This is started during driver init and fires once
768 * GIP_TSC_REFINE_PERIOD_IN_SECS seconds later.
769 *
770 * @param pTimer The timer.
771 * @param pvUser Opaque pointer to the device instance data.
772 * @param iTick The timer tick.
773 */
774static DECLCALLBACK(void) supdrvGipInitRefineInvariantTscFreqTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
775{
776 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
777 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
778 RTCPUID idCpu;
779 uint64_t cNsElapsed;
780 uint64_t cTscTicksElapsed;
781 uint64_t nsNow;
782 uint64_t uTsc;
783 RTCCUINTREG fEFlags;
784
785 /* Paranoia. */
786 AssertReturnVoid(pGip);
787 AssertReturnVoid(pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC);
788
789 /*
790 * If we got a power event, stop the refinement process.
791 */
792 if (pDevExt->fInvTscRefinePowerEvent)
793 {
794 int rc = RTTimerStop(pTimer); AssertRC(rc);
795 return;
796 }
797
798 /*
799 * Read the TSC and time, noting which CPU we are on.
800 *
801 * Don't bother spinning until RTTimeSystemNanoTS changes, since on
802 * systems where it matters we're in a context where we cannot waste that
803 * much time (DPC watchdog, called from clock interrupt).
804 */
805 fEFlags = ASMIntDisableFlags();
806 uTsc = ASMReadTSC();
807 nsNow = RTTimeSystemNanoTS();
808 idCpu = RTMpCpuId();
809 ASMSetFlags(fEFlags);
810
811 cNsElapsed = nsNow - pDevExt->nsStartInvarTscRefine;
812 cTscTicksElapsed = uTsc - pDevExt->uTscStartInvarTscRefine;
813
814 /*
815 * If the above measurement was taken on a different CPU than the one we
816 * started the process on, cTscTicksElapsed will need to be adjusted with
817 * the TSC deltas of both the CPUs.
818 *
819 * We ASSUME that the delta calculation process takes less time than the
820 * TSC frequency refinement timer. If it doesn't, we'll complain and
821 * drop the frequency refinement.
822 *
823 * Note! We cannot entirely trust enmUseTscDelta here because it's
824 * downgraded after each delta calculation.
825 */
826 if ( idCpu != pDevExt->idCpuInvarTscRefine
827 && pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
828 {
829 uint32_t iStartCpuSet = RTMpCpuIdToSetIndex(pDevExt->idCpuInvarTscRefine);
830 uint32_t iStopCpuSet = RTMpCpuIdToSetIndex(idCpu);
831 uint16_t iStartGipCpu = iStartCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
832 ? pGip->aiCpuFromCpuSetIdx[iStartCpuSet] : UINT16_MAX;
833 uint16_t iStopGipCpu = iStopCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
834 ? pGip->aiCpuFromCpuSetIdx[iStopCpuSet] : UINT16_MAX;
835 int64_t iStartTscDelta = iStartGipCpu < pGip->cCpus ? pGip->aCPUs[iStartGipCpu].i64TSCDelta : INT64_MAX;
836 int64_t iStopTscDelta = iStopGipCpu < pGip->cCpus ? pGip->aCPUs[iStopGipCpu].i64TSCDelta : INT64_MAX;
837 if (RT_LIKELY(iStartTscDelta != INT64_MAX && iStopTscDelta != INT64_MAX))
838 {
839 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_PRACTICALLY_ZERO)
840 {
841 /* cTscTicksElapsed = (uTsc - iStopTscDelta) - (pDevExt->uTscStartInvarTscRefine - iStartTscDelta); */
842 cTscTicksElapsed += iStartTscDelta - iStopTscDelta;
843 }
844 }
845 /*
846 * Allow 5 times the refinement period to elapse before we give up on the TSC delta
847 * calculations.
848 */
849 else if (cNsElapsed > GIP_TSC_REFINE_PERIOD_IN_SECS * 5 * RT_NS_1SEC_64)
850 {
851 SUPR0Printf("vboxdrv: Failed to refine invariant TSC frequency because deltas are unavailable after %u (%u) seconds\n",
852 (uint32_t)(cNsElapsed / RT_NS_1SEC), GIP_TSC_REFINE_PERIOD_IN_SECS);
853 SUPR0Printf("vboxdrv: start: %u, %u, %#llx stop: %u, %u, %#llx\n",
854 iStartCpuSet, iStartGipCpu, iStartTscDelta, iStopCpuSet, iStopGipCpu, iStopTscDelta);
855 int rc = RTTimerStop(pTimer); AssertRC(rc);
856 return;
857 }
858 }
859
860 /*
861 * Calculate and update the CPU frequency variables in GIP.
862 *
863 * If there is a GIP user already and we've already refined the frequency
864 * a couple of times, don't update it as we want a stable frequency value
865 * for all VMs.
866 */
867 if ( pDevExt->cGipUsers == 0
868 || cNsElapsed < RT_NS_1SEC * 2)
869 {
870 supdrvGipInitSetCpuFreq(pGip, cNsElapsed, cTscTicksElapsed, (uint32_t)iTick);
871
872 /*
873 * Stop the timer once we've reached the defined refinement period.
874 */
875 if (cNsElapsed > GIP_TSC_REFINE_PERIOD_IN_SECS * RT_NS_1SEC_64)
876 {
877 int rc = RTTimerStop(pTimer);
878 AssertRC(rc);
879 }
880 }
881 else
882 {
883 int rc = RTTimerStop(pTimer);
884 AssertRC(rc);
885 }
886}
887
888
889/**
890 * @callback_method_impl{FNRTPOWERNOTIFICATION}
891 */
892static DECLCALLBACK(void) supdrvGipPowerNotificationCallback(RTPOWEREVENT enmEvent, void *pvUser)
893{
894 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
895 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
896
897 /*
898 * If the TSC frequency refinement timer is running, we need to cancel it so it
899 * doesn't screw up the frequency after a long suspend.
900 *
901 * Recalculate all TSC-deltas on host resume as it may have changed, seen
902 * on Windows 7 running on the Dell Optiplex Intel Core i5-3570.
903 */
904 if (enmEvent == RTPOWEREVENT_RESUME)
905 {
906 ASMAtomicWriteBool(&pDevExt->fInvTscRefinePowerEvent, true);
907 if ( RT_LIKELY(pGip)
908 && pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED
909 && !supdrvOSAreCpusOfflinedOnSuspend())
910 {
911#ifdef SUPDRV_USE_TSC_DELTA_THREAD
912 supdrvTscDeltaThreadStartMeasurement(pDevExt, true /* fForceAll */);
913#else
914 RTCpuSetCopy(&pDevExt->TscDeltaCpuSet, &pGip->OnlineCpuSet);
915 supdrvTscMeasureInitialDeltas(pDevExt);
916#endif
917 }
918 }
919 else if (enmEvent == RTPOWEREVENT_SUSPEND)
920 ASMAtomicWriteBool(&pDevExt->fInvTscRefinePowerEvent, true);
921}
922
923
924/**
925 * Start the TSC-frequency refinment timer for the invariant TSC GIP mode.
926 *
927 * We cannot use this in the synchronous and asynchronous tsc GIP modes because
928 * the CPU may change the TSC frequence between now and when the timer fires
929 * (supdrvInitAsyncRefineTscTimer).
930 *
931 * @param pDevExt Pointer to the device instance data.
932 */
933static void supdrvGipInitStartTimerForRefiningInvariantTscFreq(PSUPDRVDEVEXT pDevExt)
934{
935 uint64_t u64NanoTS;
936 RTCCUINTREG fEFlags;
937 int rc;
938
939 /*
940 * Register a power management callback.
941 */
942 pDevExt->fInvTscRefinePowerEvent = false;
943 rc = RTPowerNotificationRegister(supdrvGipPowerNotificationCallback, pDevExt);
944 AssertRC(rc); /* ignore */
945
946 /*
947 * Record the TSC and NanoTS as the starting anchor point for refinement
948 * of the TSC. We try get as close to a clock tick as possible on systems
949 * which does not provide high resolution time.
950 */
951 u64NanoTS = RTTimeSystemNanoTS();
952 while (RTTimeSystemNanoTS() == u64NanoTS)
953 ASMNopPause();
954
955 fEFlags = ASMIntDisableFlags();
956 pDevExt->uTscStartInvarTscRefine = ASMReadTSC();
957 pDevExt->nsStartInvarTscRefine = RTTimeSystemNanoTS();
958 pDevExt->idCpuInvarTscRefine = RTMpCpuId();
959 ASMSetFlags(fEFlags);
960
961 /*
962 * Create a timer that runs on the same CPU so we won't have a depencency
963 * on the TSC-delta and can run in parallel to it. On systems that does not
964 * implement CPU specific timers we'll apply deltas in the timer callback,
965 * just like we do for CPUs going offline.
966 *
967 * The longer the refinement interval the better the accuracy, at least in
968 * theory. If it's too long though, ring-3 may already be starting its
969 * first VMs before we're done. On most systems we will be loading the
970 * support driver during boot and VMs won't be started for a while yet,
971 * it is really only a problem during development (especially with
972 * on-demand driver starting on windows).
973 *
974 * To avoid wasting time doing a long supdrvGipInitMeasureTscFreq() call
975 * to calculate the frequency during driver loading, the timer is set
976 * to fire after 200 ms the first time. It will then reschedule itself
977 * to fire every second until GIP_TSC_REFINE_PERIOD_IN_SECS has been
978 * reached or it notices that there is a user land client with GIP
979 * mapped (we want a stable frequency for all VMs).
980 */
981 rc = RTTimerCreateEx(&pDevExt->pInvarTscRefineTimer, RT_NS_1SEC,
982 RTTIMER_FLAGS_CPU(RTMpCpuIdToSetIndex(pDevExt->idCpuInvarTscRefine)),
983 supdrvGipInitRefineInvariantTscFreqTimer, pDevExt);
984 if (RT_SUCCESS(rc))
985 {
986 rc = RTTimerStart(pDevExt->pInvarTscRefineTimer, 2*RT_NS_100MS);
987 if (RT_SUCCESS(rc))
988 return;
989 RTTimerDestroy(pDevExt->pInvarTscRefineTimer);
990 }
991
992 if (rc == VERR_CPU_OFFLINE || rc == VERR_NOT_SUPPORTED)
993 {
994 rc = RTTimerCreateEx(&pDevExt->pInvarTscRefineTimer, RT_NS_1SEC, RTTIMER_FLAGS_CPU_ANY,
995 supdrvGipInitRefineInvariantTscFreqTimer, pDevExt);
996 if (RT_SUCCESS(rc))
997 {
998 rc = RTTimerStart(pDevExt->pInvarTscRefineTimer, 2*RT_NS_100MS);
999 if (RT_SUCCESS(rc))
1000 return;
1001 RTTimerDestroy(pDevExt->pInvarTscRefineTimer);
1002 }
1003 }
1004
1005 pDevExt->pInvarTscRefineTimer = NULL;
1006 OSDBGPRINT(("vboxdrv: Failed to create or start TSC frequency refinement timer: rc=%Rrc\n", rc));
1007}
1008
1009
1010/**
1011 * @callback_method_impl{PFNRTMPWORKER,
1012 * RTMpOnSpecific callback for reading TSC and time on the CPU we started
1013 * the measurements on.}
1014 */
1015DECLCALLBACK(void) supdrvGipInitReadTscAndNanoTsOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1016{
1017 RTCCUINTREG fEFlags = ASMIntDisableFlags();
1018 uint64_t *puTscStop = (uint64_t *)pvUser1;
1019 uint64_t *pnsStop = (uint64_t *)pvUser2;
1020 RT_NOREF1(idCpu);
1021
1022 *puTscStop = ASMReadTSC();
1023 *pnsStop = RTTimeSystemNanoTS();
1024
1025 ASMSetFlags(fEFlags);
1026}
1027
1028
1029/**
1030 * Measures the TSC frequency of the system.
1031 *
1032 * The TSC frequency can vary on systems which are not reported as invariant.
1033 * On such systems the object of this function is to find out what the nominal,
1034 * maximum TSC frequency under 'normal' CPU operation.
1035 *
1036 * @returns VBox status code.
1037 * @param pGip Pointer to the GIP.
1038 * @param fRough Set if we're doing the rough calculation that the
1039 * TSC measuring code needs, where accuracy isn't all
1040 * that important (too high is better than too low).
1041 * When clear we try for best accuracy that we can
1042 * achieve in reasonably short time.
1043 */
1044static int supdrvGipInitMeasureTscFreq(PSUPGLOBALINFOPAGE pGip, bool fRough)
1045{
1046 uint32_t nsTimerIncr = RTTimerGetSystemGranularity();
1047 int cTriesLeft = fRough ? 4 : 2;
1048 while (cTriesLeft-- > 0)
1049 {
1050 RTCCUINTREG fEFlags;
1051 uint64_t nsStart;
1052 uint64_t nsStop;
1053 uint64_t uTscStart;
1054 uint64_t uTscStop;
1055 RTCPUID idCpuStart;
1056 RTCPUID idCpuStop;
1057
1058 /*
1059 * Synchronize with the host OS clock tick on systems without high
1060 * resolution time API (older Windows version for example).
1061 */
1062 nsStart = RTTimeSystemNanoTS();
1063 while (RTTimeSystemNanoTS() == nsStart)
1064 ASMNopPause();
1065
1066 /*
1067 * Read the TSC and current time, noting which CPU we're on.
1068 */
1069 fEFlags = ASMIntDisableFlags();
1070 uTscStart = ASMReadTSC();
1071 nsStart = RTTimeSystemNanoTS();
1072 idCpuStart = RTMpCpuId();
1073 ASMSetFlags(fEFlags);
1074
1075 /*
1076 * Delay for a while.
1077 */
1078 if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
1079 {
1080 /*
1081 * Sleep-wait since the TSC frequency is constant, it eases host load.
1082 * Shorter interval produces more variance in the frequency (esp. Windows).
1083 */
1084 uint64_t msElapsed = 0;
1085 uint64_t msDelay = ( ((fRough ? 16 : 200) * RT_NS_1MS + nsTimerIncr - 1) / nsTimerIncr * nsTimerIncr - RT_NS_100US )
1086 / RT_NS_1MS;
1087 do
1088 {
1089 RTThreadSleep((RTMSINTERVAL)(msDelay - msElapsed));
1090 nsStop = RTTimeSystemNanoTS();
1091 msElapsed = (nsStop - nsStart) / RT_NS_1MS;
1092 } while (msElapsed < msDelay);
1093
1094 while (RTTimeSystemNanoTS() == nsStop)
1095 ASMNopPause();
1096 }
1097 else
1098 {
1099 /*
1100 * Busy-wait keeping the frequency up.
1101 */
1102 do
1103 {
1104 ASMNopPause();
1105 nsStop = RTTimeSystemNanoTS();
1106 } while (nsStop - nsStart < RT_NS_100MS);
1107 }
1108
1109 /*
1110 * Read the TSC and time again.
1111 */
1112 fEFlags = ASMIntDisableFlags();
1113 uTscStop = ASMReadTSC();
1114 nsStop = RTTimeSystemNanoTS();
1115 idCpuStop = RTMpCpuId();
1116 ASMSetFlags(fEFlags);
1117
1118 /*
1119 * If the CPU changes, things get a bit complicated and what we
1120 * can get away with depends on the GIP mode / TSC reliability.
1121 */
1122 if (idCpuStop != idCpuStart)
1123 {
1124 bool fDoXCall = false;
1125
1126 /*
1127 * Synchronous TSC mode: we're probably fine as it's unlikely
1128 * that we were rescheduled because of TSC throttling or power
1129 * management reasons, so just go ahead.
1130 */
1131 if (pGip->u32Mode == SUPGIPMODE_SYNC_TSC)
1132 {
1133 /* Probably ok, maybe we should retry once?. */
1134 Assert(pGip->enmUseTscDelta == SUPGIPUSETSCDELTA_NOT_APPLICABLE);
1135 }
1136 /*
1137 * If we're just doing the rough measurement, do the cross call and
1138 * get on with things (we don't have deltas!).
1139 */
1140 else if (fRough)
1141 fDoXCall = true;
1142 /*
1143 * Invariant TSC mode: It doesn't matter if we have delta available
1144 * for both CPUs. That is not something we can assume at this point.
1145 *
1146 * Note! We cannot necessarily trust enmUseTscDelta here because it's
1147 * downgraded after each delta calculation and the delta
1148 * calculations may not be complete yet.
1149 */
1150 else if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
1151 {
1152/** @todo This section of code is never reached atm, consider dropping it later on... */
1153 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1154 {
1155 uint32_t iStartCpuSet = RTMpCpuIdToSetIndex(idCpuStart);
1156 uint32_t iStopCpuSet = RTMpCpuIdToSetIndex(idCpuStop);
1157 uint16_t iStartGipCpu = iStartCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
1158 ? pGip->aiCpuFromCpuSetIdx[iStartCpuSet] : UINT16_MAX;
1159 uint16_t iStopGipCpu = iStopCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
1160 ? pGip->aiCpuFromCpuSetIdx[iStopCpuSet] : UINT16_MAX;
1161 int64_t iStartTscDelta = iStartGipCpu < pGip->cCpus ? pGip->aCPUs[iStartGipCpu].i64TSCDelta : INT64_MAX;
1162 int64_t iStopTscDelta = iStopGipCpu < pGip->cCpus ? pGip->aCPUs[iStopGipCpu].i64TSCDelta : INT64_MAX;
1163 if (RT_LIKELY(iStartTscDelta != INT64_MAX && iStopTscDelta != INT64_MAX))
1164 {
1165 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_PRACTICALLY_ZERO)
1166 {
1167 uTscStart -= iStartTscDelta;
1168 uTscStop -= iStopTscDelta;
1169 }
1170 }
1171 /*
1172 * Invalid CPU indexes are not caused by online/offline races, so
1173 * we have to trigger driver load failure if that happens as GIP
1174 * and IPRT assumptions are busted on this system.
1175 */
1176 else if (iStopGipCpu >= pGip->cCpus || iStartGipCpu >= pGip->cCpus)
1177 {
1178 SUPR0Printf("vboxdrv: Unexpected CPU index in supdrvGipInitMeasureTscFreq.\n");
1179 SUPR0Printf("vboxdrv: start: %u, %u, %#llx stop: %u, %u, %#llx\n",
1180 iStartCpuSet, iStartGipCpu, iStartTscDelta, iStopCpuSet, iStopGipCpu, iStopTscDelta);
1181 return VERR_INVALID_CPU_INDEX;
1182 }
1183 /*
1184 * No valid deltas. We retry, if we're on our last retry
1185 * we do the cross call instead just to get a result. The
1186 * frequency will be refined in a few seconds anyway.
1187 */
1188 else if (cTriesLeft > 0)
1189 continue;
1190 else
1191 fDoXCall = true;
1192 }
1193 }
1194 /*
1195 * Asynchronous TSC mode: This is bad, as the reason we usually
1196 * use this mode is to deal with variable TSC frequencies and
1197 * deltas. So, we need to get the TSC from the same CPU as
1198 * started it, we also need to keep that CPU busy. So, retry
1199 * and fall back to the cross call on the last attempt.
1200 */
1201 else
1202 {
1203 Assert(pGip->u32Mode == SUPGIPMODE_ASYNC_TSC);
1204 if (cTriesLeft > 0)
1205 continue;
1206 fDoXCall = true;
1207 }
1208
1209 if (fDoXCall)
1210 {
1211 /*
1212 * Try read the TSC and timestamp on the start CPU.
1213 */
1214 int rc = RTMpOnSpecific(idCpuStart, supdrvGipInitReadTscAndNanoTsOnCpu, &uTscStop, &nsStop);
1215 if (RT_FAILURE(rc) && (!fRough || cTriesLeft > 0))
1216 continue;
1217 }
1218 }
1219
1220 /*
1221 * Calculate the TSC frequency and update it (shared with the refinement timer).
1222 */
1223 supdrvGipInitSetCpuFreq(pGip, nsStop - nsStart, uTscStop - uTscStart, 0);
1224 return VINF_SUCCESS;
1225 }
1226
1227 Assert(!fRough);
1228 return VERR_SUPDRV_TSC_FREQ_MEASUREMENT_FAILED;
1229}
1230
1231
1232/**
1233 * Finds our (@a idCpu) entry, or allocates a new one if not found.
1234 *
1235 * @returns Index of the CPU in the cache set.
1236 * @param pGip The GIP.
1237 * @param idCpu The CPU ID.
1238 */
1239static uint32_t supdrvGipFindOrAllocCpuIndexForCpuId(PSUPGLOBALINFOPAGE pGip, RTCPUID idCpu)
1240{
1241 uint32_t i, cTries;
1242
1243 /*
1244 * ASSUMES that CPU IDs are constant.
1245 */
1246 for (i = 0; i < pGip->cCpus; i++)
1247 if (pGip->aCPUs[i].idCpu == idCpu)
1248 return i;
1249
1250 cTries = 0;
1251 do
1252 {
1253 for (i = 0; i < pGip->cCpus; i++)
1254 {
1255 bool fRc;
1256 ASMAtomicCmpXchgSize(&pGip->aCPUs[i].idCpu, idCpu, NIL_RTCPUID, fRc);
1257 if (fRc)
1258 return i;
1259 }
1260 } while (cTries++ < 32);
1261 AssertReleaseFailed();
1262 return i - 1;
1263}
1264
1265
1266/**
1267 * The calling CPU should be accounted as online, update GIP accordingly.
1268 *
1269 * This is used by supdrvGipCreate() as well as supdrvGipMpEvent().
1270 *
1271 * @param pDevExt The device extension.
1272 * @param idCpu The CPU ID.
1273 */
1274static void supdrvGipMpEventOnlineOrInitOnCpu(PSUPDRVDEVEXT pDevExt, RTCPUID idCpu)
1275{
1276 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
1277 int iCpuSet = 0;
1278 uint16_t idApic = UINT16_MAX;
1279 uint32_t i = 0;
1280 uint64_t u64NanoTS = 0;
1281
1282 AssertPtrReturnVoid(pGip);
1283 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1284 AssertRelease(idCpu == RTMpCpuId());
1285 Assert(pGip->cPossibleCpus == RTMpGetCount());
1286
1287 /*
1288 * Do this behind a spinlock with interrupts disabled as this can fire
1289 * on all CPUs simultaneously, see @bugref{6110}.
1290 */
1291 RTSpinlockAcquire(pDevExt->hGipSpinlock);
1292
1293 /*
1294 * Update the globals.
1295 */
1296 ASMAtomicWriteU16(&pGip->cPresentCpus, RTMpGetPresentCount());
1297 ASMAtomicWriteU16(&pGip->cOnlineCpus, RTMpGetOnlineCount());
1298 iCpuSet = RTMpCpuIdToSetIndex(idCpu);
1299 if (iCpuSet >= 0)
1300 {
1301 Assert(RTCpuSetIsMemberByIndex(&pGip->PossibleCpuSet, iCpuSet));
1302 RTCpuSetAddByIndex(&pGip->OnlineCpuSet, iCpuSet);
1303 RTCpuSetAddByIndex(&pGip->PresentCpuSet, iCpuSet);
1304 }
1305
1306 /*
1307 * Update the entry.
1308 */
1309 u64NanoTS = RTTimeSystemNanoTS() - pGip->u32UpdateIntervalNS;
1310 i = supdrvGipFindOrAllocCpuIndexForCpuId(pGip, idCpu);
1311
1312 supdrvGipInitCpu(pGip, &pGip->aCPUs[i], u64NanoTS, pGip->u64CpuHz);
1313
1314 idApic = ASMGetApicId();
1315 ASMAtomicWriteU16(&pGip->aCPUs[i].idApic, idApic);
1316 ASMAtomicWriteS16(&pGip->aCPUs[i].iCpuSet, (int16_t)iCpuSet);
1317 ASMAtomicWriteSize(&pGip->aCPUs[i].idCpu, idCpu);
1318
1319 pGip->aCPUs[i].iCpuGroup = 0;
1320 pGip->aCPUs[i].iCpuGroupMember = iCpuSet;
1321#ifdef RT_OS_WINDOWS
1322 supdrvOSGipInitGroupBitsForCpu(pDevExt, pGip, &pGip->aCPUs[i]);
1323#endif
1324
1325 /*
1326 * Update the APIC ID and CPU set index mappings.
1327 */
1328 ASMAtomicWriteU16(&pGip->aiCpuFromApicId[idApic], i);
1329 ASMAtomicWriteU16(&pGip->aiCpuFromCpuSetIdx[iCpuSet], i);
1330
1331 /* Add this CPU to this set of CPUs we need to calculate the TSC-delta for. */
1332 RTCpuSetAddByIndex(&pDevExt->TscDeltaCpuSet, RTMpCpuIdToSetIndex(idCpu));
1333
1334 /* Update the Mp online/offline counter. */
1335 ASMAtomicIncU32(&pDevExt->cMpOnOffEvents);
1336
1337 /* Commit it. */
1338 ASMAtomicWriteSize(&pGip->aCPUs[i].enmState, SUPGIPCPUSTATE_ONLINE);
1339
1340 RTSpinlockRelease(pDevExt->hGipSpinlock);
1341}
1342
1343
1344/**
1345 * RTMpOnSpecific callback wrapper for supdrvGipMpEventOnlineOrInitOnCpu().
1346 *
1347 * @param idCpu The CPU ID we are running on.
1348 * @param pvUser1 Opaque pointer to the device instance data.
1349 * @param pvUser2 Not used.
1350 */
1351static DECLCALLBACK(void) supdrvGipMpEventOnlineCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1352{
1353 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser1;
1354 NOREF(pvUser2);
1355 supdrvGipMpEventOnlineOrInitOnCpu(pDevExt, idCpu);
1356}
1357
1358
1359/**
1360 * The CPU should be accounted as offline, update the GIP accordingly.
1361 *
1362 * This is used by supdrvGipMpEvent.
1363 *
1364 * @param pDevExt The device extension.
1365 * @param idCpu The CPU ID.
1366 */
1367static void supdrvGipMpEventOffline(PSUPDRVDEVEXT pDevExt, RTCPUID idCpu)
1368{
1369 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
1370 int iCpuSet;
1371 unsigned i;
1372
1373 AssertPtrReturnVoid(pGip);
1374 RTSpinlockAcquire(pDevExt->hGipSpinlock);
1375
1376 iCpuSet = RTMpCpuIdToSetIndex(idCpu);
1377 AssertReturnVoid(iCpuSet >= 0);
1378
1379 i = pGip->aiCpuFromCpuSetIdx[iCpuSet];
1380 AssertReturnVoid(i < pGip->cCpus);
1381 AssertReturnVoid(pGip->aCPUs[i].idCpu == idCpu);
1382
1383 Assert(RTCpuSetIsMemberByIndex(&pGip->PossibleCpuSet, iCpuSet));
1384 RTCpuSetDelByIndex(&pGip->OnlineCpuSet, iCpuSet);
1385
1386 /* Update the Mp online/offline counter. */
1387 ASMAtomicIncU32(&pDevExt->cMpOnOffEvents);
1388
1389 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1390 {
1391 /* Reset the TSC delta, we will recalculate it lazily. */
1392 ASMAtomicWriteS64(&pGip->aCPUs[i].i64TSCDelta, INT64_MAX);
1393 /* Remove this CPU from the set of CPUs that we have obtained the TSC deltas. */
1394 RTCpuSetDelByIndex(&pDevExt->TscDeltaObtainedCpuSet, iCpuSet);
1395 }
1396
1397 /* Commit it. */
1398 ASMAtomicWriteSize(&pGip->aCPUs[i].enmState, SUPGIPCPUSTATE_OFFLINE);
1399
1400 RTSpinlockRelease(pDevExt->hGipSpinlock);
1401}
1402
1403
1404/**
1405 * Multiprocessor event notification callback.
1406 *
1407 * This is used to make sure that the GIP master gets passed on to
1408 * another CPU. It also updates the associated CPU data.
1409 *
1410 * @param enmEvent The event.
1411 * @param idCpu The cpu it applies to.
1412 * @param pvUser Pointer to the device extension.
1413 */
1414static DECLCALLBACK(void) supdrvGipMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser)
1415{
1416 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
1417 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
1418
1419 if (pGip)
1420 {
1421 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1422 switch (enmEvent)
1423 {
1424 case RTMPEVENT_ONLINE:
1425 {
1426 RTThreadPreemptDisable(&PreemptState);
1427 if (idCpu == RTMpCpuId())
1428 {
1429 supdrvGipMpEventOnlineOrInitOnCpu(pDevExt, idCpu);
1430 RTThreadPreemptRestore(&PreemptState);
1431 }
1432 else
1433 {
1434 RTThreadPreemptRestore(&PreemptState);
1435 RTMpOnSpecific(idCpu, supdrvGipMpEventOnlineCallback, pDevExt, NULL /* pvUser2 */);
1436 }
1437
1438 /*
1439 * Recompute TSC-delta for the newly online'd CPU.
1440 */
1441 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1442 {
1443#ifdef SUPDRV_USE_TSC_DELTA_THREAD
1444 supdrvTscDeltaThreadStartMeasurement(pDevExt, false /* fForceAll */);
1445#else
1446 uint32_t iCpu = supdrvGipFindOrAllocCpuIndexForCpuId(pGip, idCpu);
1447 supdrvTscMeasureDeltaOne(pDevExt, iCpu);
1448#endif
1449 }
1450 break;
1451 }
1452
1453 case RTMPEVENT_OFFLINE:
1454 supdrvGipMpEventOffline(pDevExt, idCpu);
1455 break;
1456 }
1457 }
1458
1459 /*
1460 * Make sure there is a master GIP.
1461 */
1462 if (enmEvent == RTMPEVENT_OFFLINE)
1463 {
1464 RTCPUID idGipMaster = ASMAtomicReadU32(&pDevExt->idGipMaster);
1465 if (idGipMaster == idCpu)
1466 {
1467 /*
1468 * The GIP master is going offline, find a new one.
1469 */
1470 bool fIgnored;
1471 unsigned i;
1472 RTCPUID idNewGipMaster = NIL_RTCPUID;
1473 RTCPUSET OnlineCpus;
1474 RTMpGetOnlineSet(&OnlineCpus);
1475
1476 for (i = 0; i < RTCPUSET_MAX_CPUS; i++)
1477 if (RTCpuSetIsMemberByIndex(&OnlineCpus, i))
1478 {
1479 RTCPUID idCurCpu = RTMpCpuIdFromSetIndex(i);
1480 if (idCurCpu != idGipMaster)
1481 {
1482 idNewGipMaster = idCurCpu;
1483 break;
1484 }
1485 }
1486
1487 Log(("supdrvGipMpEvent: Gip master %#lx -> %#lx\n", (long)idGipMaster, (long)idNewGipMaster));
1488 ASMAtomicCmpXchgSize(&pDevExt->idGipMaster, idNewGipMaster, idGipMaster, fIgnored);
1489 NOREF(fIgnored);
1490 }
1491 }
1492}
1493
1494
1495/**
1496 * On CPU initialization callback for RTMpOnAll.
1497 *
1498 * @param idCpu The CPU ID.
1499 * @param pvUser1 The device extension.
1500 * @param pvUser2 The GIP.
1501 */
1502static DECLCALLBACK(void) supdrvGipInitOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1503{
1504 /* This is good enough, even though it will update some of the globals a
1505 bit to much. */
1506 supdrvGipMpEventOnlineOrInitOnCpu((PSUPDRVDEVEXT)pvUser1, idCpu);
1507 NOREF(pvUser2);
1508}
1509
1510
1511/**
1512 * Callback used by supdrvDetermineAsyncTSC to read the TSC on a CPU.
1513 *
1514 * @param idCpu Ignored.
1515 * @param pvUser1 Where to put the TSC.
1516 * @param pvUser2 Ignored.
1517 */
1518static DECLCALLBACK(void) supdrvGipInitDetermineAsyncTscWorker(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1519{
1520 Assert(RTMpCpuIdToSetIndex(idCpu) == (intptr_t)pvUser2);
1521 ASMAtomicWriteU64((uint64_t volatile *)pvUser1, ASMReadTSC());
1522 RT_NOREF2(idCpu, pvUser2);
1523}
1524
1525
1526/**
1527 * Determine if Async GIP mode is required because of TSC drift.
1528 *
1529 * When using the default/normal timer code it is essential that the time stamp counter
1530 * (TSC) runs never backwards, that is, a read operation to the counter should return
1531 * a bigger value than any previous read operation. This is guaranteed by the latest
1532 * AMD CPUs and by newer Intel CPUs which never enter the C2 state (P4). In any other
1533 * case we have to choose the asynchronous timer mode.
1534 *
1535 * @param poffMin Pointer to the determined difference between different
1536 * cores (optional, can be NULL).
1537 * @return false if the time stamp counters appear to be synchronized, true otherwise.
1538 */
1539static bool supdrvGipInitDetermineAsyncTsc(uint64_t *poffMin)
1540{
1541 /*
1542 * Just iterate all the cpus 8 times and make sure that the TSC is
1543 * ever increasing. We don't bother taking TSC rollover into account.
1544 */
1545 int iEndCpu = RTMpGetArraySize();
1546 int iCpu;
1547 int cLoops = 8;
1548 bool fAsync = false;
1549 int rc = VINF_SUCCESS;
1550 uint64_t offMax = 0;
1551 uint64_t offMin = ~(uint64_t)0;
1552 uint64_t PrevTsc = ASMReadTSC();
1553
1554 while (cLoops-- > 0)
1555 {
1556 for (iCpu = 0; iCpu < iEndCpu; iCpu++)
1557 {
1558 uint64_t CurTsc;
1559 rc = RTMpOnSpecific(RTMpCpuIdFromSetIndex(iCpu), supdrvGipInitDetermineAsyncTscWorker,
1560 &CurTsc, (void *)(uintptr_t)iCpu);
1561 if (RT_SUCCESS(rc))
1562 {
1563 if (CurTsc <= PrevTsc)
1564 {
1565 fAsync = true;
1566 offMin = offMax = PrevTsc - CurTsc;
1567 Log(("supdrvGipInitDetermineAsyncTsc: iCpu=%d cLoops=%d CurTsc=%llx PrevTsc=%llx\n",
1568 iCpu, cLoops, CurTsc, PrevTsc));
1569 break;
1570 }
1571
1572 /* Gather statistics (except the first time). */
1573 if (iCpu != 0 || cLoops != 7)
1574 {
1575 uint64_t off = CurTsc - PrevTsc;
1576 if (off < offMin)
1577 offMin = off;
1578 if (off > offMax)
1579 offMax = off;
1580 Log2(("%d/%d: off=%llx\n", cLoops, iCpu, off));
1581 }
1582
1583 /* Next */
1584 PrevTsc = CurTsc;
1585 }
1586 else if (rc == VERR_NOT_SUPPORTED)
1587 break;
1588 else
1589 AssertMsg(rc == VERR_CPU_NOT_FOUND || rc == VERR_CPU_OFFLINE, ("%d\n", rc));
1590 }
1591
1592 /* broke out of the loop. */
1593 if (iCpu < iEndCpu)
1594 break;
1595 }
1596
1597 if (poffMin)
1598 *poffMin = offMin; /* Almost RTMpOnSpecific profiling. */
1599 Log(("supdrvGipInitDetermineAsyncTsc: returns %d; iEndCpu=%d rc=%d offMin=%llx offMax=%llx\n",
1600 fAsync, iEndCpu, rc, offMin, offMax));
1601#if !defined(RT_OS_SOLARIS) && !defined(RT_OS_OS2) && !defined(RT_OS_WINDOWS)
1602 OSDBGPRINT(("vboxdrv: fAsync=%d offMin=%#lx offMax=%#lx\n", fAsync, (long)offMin, (long)offMax));
1603#endif
1604 return fAsync;
1605}
1606
1607
1608/**
1609 * supdrvGipInit() worker that determines the GIP TSC mode.
1610 *
1611 * @returns The most suitable TSC mode.
1612 * @param pDevExt Pointer to the device instance data.
1613 */
1614static SUPGIPMODE supdrvGipInitDetermineTscMode(PSUPDRVDEVEXT pDevExt)
1615{
1616 uint64_t u64DiffCoresIgnored;
1617 uint32_t uEAX, uEBX, uECX, uEDX;
1618
1619 /*
1620 * Establish whether the CPU advertises TSC as invariant, we need that in
1621 * a couple of places below.
1622 */
1623 bool fInvariantTsc = false;
1624 if (ASMHasCpuId())
1625 {
1626 uEAX = ASMCpuId_EAX(0x80000000);
1627 if (ASMIsValidExtRange(uEAX) && uEAX >= 0x80000007)
1628 {
1629 uEDX = ASMCpuId_EDX(0x80000007);
1630 if (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR)
1631 fInvariantTsc = true;
1632 }
1633 }
1634
1635 /*
1636 * On single CPU systems, we don't need to consider ASYNC mode.
1637 */
1638 if (RTMpGetCount() <= 1)
1639 return fInvariantTsc ? SUPGIPMODE_INVARIANT_TSC : SUPGIPMODE_SYNC_TSC;
1640
1641 /*
1642 * Allow the user and/or OS specific bits to force async mode.
1643 */
1644 if (supdrvOSGetForcedAsyncTscMode(pDevExt))
1645 return SUPGIPMODE_ASYNC_TSC;
1646
1647 /*
1648 * Use invariant mode if the CPU says TSC is invariant.
1649 */
1650 if (fInvariantTsc)
1651 return SUPGIPMODE_INVARIANT_TSC;
1652
1653 /*
1654 * TSC is not invariant and we're on SMP, this presents two problems:
1655 *
1656 * (1) There might be a skew between the CPU, so that cpu0
1657 * returns a TSC that is slightly different from cpu1.
1658 * This screw may be due to (2), bad TSC initialization
1659 * or slightly different TSC rates.
1660 *
1661 * (2) Power management (and other things) may cause the TSC
1662 * to run at a non-constant speed, and cause the speed
1663 * to be different on the cpus. This will result in (1).
1664 *
1665 * If any of the above is detected, we will have to use ASYNC mode.
1666 */
1667 /* (1). Try check for current differences between the cpus. */
1668 if (supdrvGipInitDetermineAsyncTsc(&u64DiffCoresIgnored))
1669 return SUPGIPMODE_ASYNC_TSC;
1670
1671 /* (2) If it's an AMD CPU with power management, we won't trust its TSC. */
1672 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
1673 if ( ASMIsValidStdRange(uEAX)
1674 && ASMIsAmdCpuEx(uEBX, uECX, uEDX))
1675 {
1676 /* Check for APM support. */
1677 uEAX = ASMCpuId_EAX(0x80000000);
1678 if (ASMIsValidExtRange(uEAX) && uEAX >= 0x80000007)
1679 {
1680 uEDX = ASMCpuId_EDX(0x80000007);
1681 if (uEDX & 0x3e) /* STC|TM|THERMTRIP|VID|FID. Ignore TS. */
1682 return SUPGIPMODE_ASYNC_TSC;
1683 }
1684 }
1685
1686 return SUPGIPMODE_SYNC_TSC;
1687}
1688
1689
1690/**
1691 * Initializes per-CPU GIP information.
1692 *
1693 * @param pGip Pointer to the GIP.
1694 * @param pCpu Pointer to which GIP CPU to initialize.
1695 * @param u64NanoTS The current nanosecond timestamp.
1696 * @param uCpuHz The CPU frequency to set, 0 if the caller doesn't know.
1697 */
1698static void supdrvGipInitCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pCpu, uint64_t u64NanoTS, uint64_t uCpuHz)
1699{
1700 pCpu->u32TransactionId = 2;
1701 pCpu->u64NanoTS = u64NanoTS;
1702 pCpu->u64TSC = ASMReadTSC();
1703 pCpu->u64TSCSample = GIP_TSC_DELTA_RSVD;
1704 pCpu->i64TSCDelta = pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED ? INT64_MAX : 0;
1705
1706 ASMAtomicWriteSize(&pCpu->enmState, SUPGIPCPUSTATE_INVALID);
1707 ASMAtomicWriteU32(&pCpu->idCpu, NIL_RTCPUID);
1708 ASMAtomicWriteS16(&pCpu->iCpuSet, -1);
1709 ASMAtomicWriteU16(&pCpu->iCpuGroup, 0);
1710 ASMAtomicWriteU16(&pCpu->iCpuGroupMember, UINT16_MAX);
1711 ASMAtomicWriteU16(&pCpu->idApic, UINT16_MAX);
1712 ASMAtomicWriteU32(&pCpu->iReservedForNumaNode, 0);
1713
1714 /*
1715 * The first time we're called, we don't have a CPU frequency handy,
1716 * so pretend it's a 4 GHz CPU. On CPUs that are online, we'll get
1717 * called again and at that point we have a more plausible CPU frequency
1718 * value handy. The frequency history will also be adjusted again on
1719 * the 2nd timer callout (maybe we can skip that now?).
1720 */
1721 if (!uCpuHz)
1722 {
1723 pCpu->u64CpuHz = _4G - 1;
1724 pCpu->u32UpdateIntervalTSC = (uint32_t)((_4G - 1) / pGip->u32UpdateHz);
1725 }
1726 else
1727 {
1728 pCpu->u64CpuHz = uCpuHz;
1729 pCpu->u32UpdateIntervalTSC = (uint32_t)(uCpuHz / pGip->u32UpdateHz);
1730 }
1731 pCpu->au32TSCHistory[0]
1732 = pCpu->au32TSCHistory[1]
1733 = pCpu->au32TSCHistory[2]
1734 = pCpu->au32TSCHistory[3]
1735 = pCpu->au32TSCHistory[4]
1736 = pCpu->au32TSCHistory[5]
1737 = pCpu->au32TSCHistory[6]
1738 = pCpu->au32TSCHistory[7]
1739 = pCpu->u32UpdateIntervalTSC;
1740}
1741
1742
1743/**
1744 * Initializes the GIP data.
1745 *
1746 * @returns VBox status code.
1747 * @param pDevExt Pointer to the device instance data.
1748 * @param pGip Pointer to the read-write kernel mapping of the GIP.
1749 * @param HCPhys The physical address of the GIP.
1750 * @param u64NanoTS The current nanosecond timestamp.
1751 * @param uUpdateHz The update frequency.
1752 * @param uUpdateIntervalNS The update interval in nanoseconds.
1753 * @param cCpus The CPU count.
1754 * @param cbGipCpuGroups The supdrvOSGipGetGroupTableSize return value we
1755 * used when allocating the GIP structure.
1756 */
1757static int supdrvGipInit(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip, RTHCPHYS HCPhys,
1758 uint64_t u64NanoTS, unsigned uUpdateHz, unsigned uUpdateIntervalNS,
1759 unsigned cCpus, size_t cbGipCpuGroups)
1760{
1761 size_t const cbGip = RT_ALIGN_Z(RT_OFFSETOF(SUPGLOBALINFOPAGE, aCPUs[cCpus]) + cbGipCpuGroups, PAGE_SIZE);
1762 unsigned i;
1763#ifdef DEBUG_DARWIN_GIP
1764 OSDBGPRINT(("supdrvGipInit: pGip=%p HCPhys=%lx u64NanoTS=%llu uUpdateHz=%d cCpus=%u\n", pGip, (long)HCPhys, u64NanoTS, uUpdateHz, cCpus));
1765#else
1766 LogFlow(("supdrvGipInit: pGip=%p HCPhys=%lx u64NanoTS=%llu uUpdateHz=%d cCpus=%u\n", pGip, (long)HCPhys, u64NanoTS, uUpdateHz, cCpus));
1767#endif
1768
1769 /*
1770 * Initialize the structure.
1771 */
1772 memset(pGip, 0, cbGip);
1773
1774 pGip->u32Magic = SUPGLOBALINFOPAGE_MAGIC;
1775 pGip->u32Version = SUPGLOBALINFOPAGE_VERSION;
1776 pGip->u32Mode = supdrvGipInitDetermineTscMode(pDevExt);
1777 if ( pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC
1778 /*|| pGip->u32Mode == SUPGIPMODE_SYNC_TSC */)
1779 pGip->enmUseTscDelta = supdrvOSAreTscDeltasInSync() /* Allow OS override (windows). */
1780 ? SUPGIPUSETSCDELTA_ZERO_CLAIMED : SUPGIPUSETSCDELTA_PRACTICALLY_ZERO /* downgrade later */;
1781 else
1782 pGip->enmUseTscDelta = SUPGIPUSETSCDELTA_NOT_APPLICABLE;
1783 pGip->cCpus = (uint16_t)cCpus;
1784 pGip->cPages = (uint16_t)(cbGip / PAGE_SIZE);
1785 pGip->u32UpdateHz = uUpdateHz;
1786 pGip->u32UpdateIntervalNS = uUpdateIntervalNS;
1787 pGip->fGetGipCpu = SUPGIPGETCPU_APIC_ID;
1788 RTCpuSetEmpty(&pGip->OnlineCpuSet);
1789 RTCpuSetEmpty(&pGip->PresentCpuSet);
1790 RTMpGetSet(&pGip->PossibleCpuSet);
1791 pGip->cOnlineCpus = RTMpGetOnlineCount();
1792 pGip->cPresentCpus = RTMpGetPresentCount();
1793 pGip->cPossibleCpus = RTMpGetCount();
1794 pGip->cPossibleCpuGroups = 1;
1795 pGip->idCpuMax = RTMpGetMaxCpuId();
1796 for (i = 0; i < RT_ELEMENTS(pGip->aiCpuFromApicId); i++)
1797 pGip->aiCpuFromApicId[i] = UINT16_MAX;
1798 for (i = 0; i < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx); i++)
1799 pGip->aiCpuFromCpuSetIdx[i] = UINT16_MAX;
1800 for (i = 0; i < RT_ELEMENTS(pGip->aoffCpuGroup); i++)
1801 pGip->aoffCpuGroup[i] = UINT16_MAX;
1802 for (i = 0; i < cCpus; i++)
1803 supdrvGipInitCpu(pGip, &pGip->aCPUs[i], u64NanoTS, 0 /*uCpuHz*/);
1804#ifdef RT_OS_WINDOWS
1805 int rc = supdrvOSInitGipGroupTable(pDevExt, pGip, cbGipCpuGroups);
1806 AssertRCReturn(rc, rc);
1807#endif
1808
1809 /*
1810 * Link it to the device extension.
1811 */
1812 pDevExt->pGip = pGip;
1813 pDevExt->HCPhysGip = HCPhys;
1814 pDevExt->cGipUsers = 0;
1815
1816 return VINF_SUCCESS;
1817}
1818
1819
1820/**
1821 * Creates the GIP.
1822 *
1823 * @returns VBox status code.
1824 * @param pDevExt Instance data. GIP stuff may be updated.
1825 */
1826int VBOXCALL supdrvGipCreate(PSUPDRVDEVEXT pDevExt)
1827{
1828 PSUPGLOBALINFOPAGE pGip;
1829 size_t cbGip;
1830 size_t cbGipCpuGroups;
1831 RTHCPHYS HCPhysGip;
1832 uint32_t u32SystemResolution;
1833 uint32_t u32Interval;
1834 uint32_t u32MinInterval;
1835 uint32_t uMod;
1836 unsigned cCpus;
1837 int rc;
1838
1839 LogFlow(("supdrvGipCreate:\n"));
1840
1841 /*
1842 * Assert order.
1843 */
1844 Assert(pDevExt->u32SystemTimerGranularityGrant == 0);
1845 Assert(pDevExt->GipMemObj == NIL_RTR0MEMOBJ);
1846 Assert(!pDevExt->pGipTimer);
1847#ifdef SUPDRV_USE_MUTEX_FOR_GIP
1848 Assert(pDevExt->mtxGip != NIL_RTSEMMUTEX);
1849 Assert(pDevExt->mtxTscDelta != NIL_RTSEMMUTEX);
1850#else
1851 Assert(pDevExt->mtxGip != NIL_RTSEMFASTMUTEX);
1852 Assert(pDevExt->mtxTscDelta != NIL_RTSEMFASTMUTEX);
1853#endif
1854
1855 /*
1856 * Check the CPU count.
1857 */
1858 cCpus = RTMpGetArraySize();
1859 if ( cCpus > RTCPUSET_MAX_CPUS
1860#if RTCPUSET_MAX_CPUS != 256
1861 || cCpus > 256 /* ApicId is used for the mappings */
1862#endif
1863 )
1864 {
1865 SUPR0Printf("VBoxDrv: Too many CPUs (%u) for the GIP (max %u)\n", cCpus, RT_MIN(RTCPUSET_MAX_CPUS, 256));
1866 return VERR_TOO_MANY_CPUS;
1867 }
1868
1869 /*
1870 * Allocate a contiguous set of pages with a default kernel mapping.
1871 */
1872 cbGipCpuGroups = supdrvOSGipGetGroupTableSize(pDevExt);
1873 cbGip = RT_UOFFSETOF(SUPGLOBALINFOPAGE, aCPUs[cCpus]) + cbGipCpuGroups;
1874 rc = RTR0MemObjAllocCont(&pDevExt->GipMemObj, cbGip, false /*fExecutable*/);
1875 if (RT_FAILURE(rc))
1876 {
1877 OSDBGPRINT(("supdrvGipCreate: failed to allocate the GIP page. rc=%d\n", rc));
1878 return rc;
1879 }
1880 pGip = (PSUPGLOBALINFOPAGE)RTR0MemObjAddress(pDevExt->GipMemObj); AssertPtr(pGip);
1881 HCPhysGip = RTR0MemObjGetPagePhysAddr(pDevExt->GipMemObj, 0); Assert(HCPhysGip != NIL_RTHCPHYS);
1882
1883 /*
1884 * Find a reasonable update interval and initialize the structure.
1885 */
1886 supdrvGipRequestHigherTimerFrequencyFromSystem(pDevExt);
1887 /** @todo figure out why using a 100Ms interval upsets timekeeping in VMs.
1888 * See @bugref{6710}. */
1889 u32MinInterval = RT_NS_10MS;
1890 u32SystemResolution = RTTimerGetSystemGranularity();
1891 u32Interval = u32MinInterval;
1892 uMod = u32MinInterval % u32SystemResolution;
1893 if (uMod)
1894 u32Interval += u32SystemResolution - uMod;
1895
1896 rc = supdrvGipInit(pDevExt, pGip, HCPhysGip, RTTimeSystemNanoTS(), RT_NS_1SEC / u32Interval /*=Hz*/, u32Interval,
1897 cCpus, cbGipCpuGroups);
1898
1899 /*
1900 * Important sanity check... (Sets rc)
1901 */
1902 if (RT_UNLIKELY( pGip->enmUseTscDelta == SUPGIPUSETSCDELTA_ZERO_CLAIMED
1903 && pGip->u32Mode == SUPGIPMODE_ASYNC_TSC
1904 && !supdrvOSGetForcedAsyncTscMode(pDevExt)))
1905 {
1906 OSDBGPRINT(("supdrvGipCreate: Host-OS/user claims the TSC-deltas are zero but we detected async. TSC! Bad.\n"));
1907 rc = VERR_INTERNAL_ERROR_2;
1908 }
1909
1910 /* It doesn't make sense to do TSC-delta detection on systems we detect as async. */
1911 AssertStmt( pGip->u32Mode != SUPGIPMODE_ASYNC_TSC
1912 || pGip->enmUseTscDelta <= SUPGIPUSETSCDELTA_ZERO_CLAIMED,
1913 rc = VERR_INTERNAL_ERROR_3);
1914
1915 /*
1916 * Do the TSC frequency measurements.
1917 *
1918 * If we're in invariant TSC mode, just to a quick preliminary measurement
1919 * that the TSC-delta measurement code can use to yield cross calls.
1920 *
1921 * If we're in any of the other two modes, neither which require MP init,
1922 * notifications or deltas for the job, do the full measurement now so
1923 * that supdrvGipInitOnCpu() can populate the TSC interval and history
1924 * array with more reasonable values.
1925 */
1926 if (RT_SUCCESS(rc))
1927 {
1928 if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
1929 {
1930 rc = supdrvGipInitMeasureTscFreq(pGip, true /*fRough*/); /* cannot fail */
1931 supdrvGipInitStartTimerForRefiningInvariantTscFreq(pDevExt);
1932 }
1933 else
1934 rc = supdrvGipInitMeasureTscFreq(pGip, false /*fRough*/);
1935 if (RT_SUCCESS(rc))
1936 {
1937 /*
1938 * Start TSC-delta measurement thread before we start getting MP
1939 * events that will try kick it into action (includes the
1940 * RTMpOnAll/supdrvGipInitOnCpu call below).
1941 */
1942 RTCpuSetEmpty(&pDevExt->TscDeltaCpuSet);
1943 RTCpuSetEmpty(&pDevExt->TscDeltaObtainedCpuSet);
1944 #ifdef SUPDRV_USE_TSC_DELTA_THREAD
1945 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1946 rc = supdrvTscDeltaThreadInit(pDevExt);
1947 #endif
1948 if (RT_SUCCESS(rc))
1949 {
1950 rc = RTMpNotificationRegister(supdrvGipMpEvent, pDevExt);
1951 if (RT_SUCCESS(rc))
1952 {
1953 /*
1954 * Do GIP initialization on all online CPUs. Wake up the
1955 * TSC-delta thread afterwards.
1956 */
1957 rc = RTMpOnAll(supdrvGipInitOnCpu, pDevExt, pGip);
1958 if (RT_SUCCESS(rc))
1959 {
1960 #ifdef SUPDRV_USE_TSC_DELTA_THREAD
1961 supdrvTscDeltaThreadStartMeasurement(pDevExt, true /* fForceAll */);
1962 #else
1963 uint16_t iCpu;
1964 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1965 {
1966 /*
1967 * Measure the TSC deltas now that we have MP notifications.
1968 */
1969 int cTries = 5;
1970 do
1971 {
1972 rc = supdrvTscMeasureInitialDeltas(pDevExt);
1973 if ( rc != VERR_TRY_AGAIN
1974 && rc != VERR_CPU_OFFLINE)
1975 break;
1976 } while (--cTries > 0);
1977 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
1978 Log(("supdrvTscDeltaInit: cpu[%u] delta %lld\n", iCpu, pGip->aCPUs[iCpu].i64TSCDelta));
1979 }
1980 else
1981 {
1982 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
1983 AssertMsg(!pGip->aCPUs[iCpu].i64TSCDelta, ("iCpu=%u %lld mode=%d\n", iCpu, pGip->aCPUs[iCpu].i64TSCDelta, pGip->u32Mode));
1984 }
1985 if (RT_SUCCESS(rc))
1986 #endif
1987 {
1988 /*
1989 * Create the timer.
1990 * If CPU_ALL isn't supported we'll have to fall back to synchronous mode.
1991 */
1992 if (pGip->u32Mode == SUPGIPMODE_ASYNC_TSC)
1993 {
1994 rc = RTTimerCreateEx(&pDevExt->pGipTimer, u32Interval, RTTIMER_FLAGS_CPU_ALL,
1995 supdrvGipAsyncTimer, pDevExt);
1996 if (rc == VERR_NOT_SUPPORTED)
1997 {
1998 OSDBGPRINT(("supdrvGipCreate: omni timer not supported, falling back to synchronous mode\n"));
1999 pGip->u32Mode = SUPGIPMODE_SYNC_TSC;
2000 }
2001 }
2002 if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
2003 rc = RTTimerCreateEx(&pDevExt->pGipTimer, u32Interval, 0 /* fFlags */,
2004 supdrvGipSyncAndInvariantTimer, pDevExt);
2005 if (RT_SUCCESS(rc))
2006 {
2007 /*
2008 * We're good.
2009 */
2010 Log(("supdrvGipCreate: %u ns interval.\n", u32Interval));
2011 supdrvGipReleaseHigherTimerFrequencyFromSystem(pDevExt);
2012
2013 g_pSUPGlobalInfoPage = pGip;
2014 return VINF_SUCCESS;
2015 }
2016
2017 OSDBGPRINT(("supdrvGipCreate: failed create GIP timer at %u ns interval. rc=%Rrc\n", u32Interval, rc));
2018 Assert(!pDevExt->pGipTimer);
2019 }
2020 }
2021 else
2022 OSDBGPRINT(("supdrvGipCreate: RTMpOnAll failed. rc=%Rrc\n", rc));
2023 }
2024 else
2025 OSDBGPRINT(("supdrvGipCreate: failed to register MP event notfication. rc=%Rrc\n", rc));
2026 }
2027 else
2028 OSDBGPRINT(("supdrvGipCreate: supdrvTscDeltaInit failed. rc=%Rrc\n", rc));
2029 }
2030 else
2031 OSDBGPRINT(("supdrvGipCreate: supdrvTscMeasureInitialDeltas failed. rc=%Rrc\n", rc));
2032 }
2033
2034 /* Releases timer frequency increase too. */
2035 supdrvGipDestroy(pDevExt);
2036 return rc;
2037}
2038
2039
2040/**
2041 * Invalidates the GIP data upon termination.
2042 *
2043 * @param pGip Pointer to the read-write kernel mapping of the GIP.
2044 */
2045static void supdrvGipTerm(PSUPGLOBALINFOPAGE pGip)
2046{
2047 unsigned i;
2048 pGip->u32Magic = 0;
2049 for (i = 0; i < pGip->cCpus; i++)
2050 {
2051 pGip->aCPUs[i].u64NanoTS = 0;
2052 pGip->aCPUs[i].u64TSC = 0;
2053 pGip->aCPUs[i].iTSCHistoryHead = 0;
2054 pGip->aCPUs[i].u64TSCSample = 0;
2055 pGip->aCPUs[i].i64TSCDelta = INT64_MAX;
2056 }
2057}
2058
2059
2060/**
2061 * Terminates the GIP.
2062 *
2063 * @param pDevExt Instance data. GIP stuff may be updated.
2064 */
2065void VBOXCALL supdrvGipDestroy(PSUPDRVDEVEXT pDevExt)
2066{
2067 int rc;
2068#ifdef DEBUG_DARWIN_GIP
2069 OSDBGPRINT(("supdrvGipDestroy: pDevExt=%p pGip=%p pGipTimer=%p GipMemObj=%p\n", pDevExt,
2070 pDevExt->GipMemObj != NIL_RTR0MEMOBJ ? RTR0MemObjAddress(pDevExt->GipMemObj) : NULL,
2071 pDevExt->pGipTimer, pDevExt->GipMemObj));
2072#endif
2073
2074 /*
2075 * Stop receiving MP notifications before tearing anything else down.
2076 */
2077 RTMpNotificationDeregister(supdrvGipMpEvent, pDevExt);
2078
2079#ifdef SUPDRV_USE_TSC_DELTA_THREAD
2080 /*
2081 * Terminate the TSC-delta measurement thread and resources.
2082 */
2083 supdrvTscDeltaTerm(pDevExt);
2084#endif
2085
2086 /*
2087 * Destroy the TSC-refinement timer.
2088 */
2089 if (pDevExt->pInvarTscRefineTimer)
2090 {
2091 RTTimerDestroy(pDevExt->pInvarTscRefineTimer);
2092 pDevExt->pInvarTscRefineTimer = NULL;
2093 }
2094
2095 /*
2096 * Invalid the GIP data.
2097 */
2098 if (pDevExt->pGip)
2099 {
2100 supdrvGipTerm(pDevExt->pGip);
2101 pDevExt->pGip = NULL;
2102 }
2103 g_pSUPGlobalInfoPage = NULL;
2104
2105 /*
2106 * Destroy the timer and free the GIP memory object.
2107 */
2108 if (pDevExt->pGipTimer)
2109 {
2110 rc = RTTimerDestroy(pDevExt->pGipTimer); AssertRC(rc);
2111 pDevExt->pGipTimer = NULL;
2112 }
2113
2114 if (pDevExt->GipMemObj != NIL_RTR0MEMOBJ)
2115 {
2116 rc = RTR0MemObjFree(pDevExt->GipMemObj, true /* free mappings */); AssertRC(rc);
2117 pDevExt->GipMemObj = NIL_RTR0MEMOBJ;
2118 }
2119
2120 /*
2121 * Finally, make sure we've release the system timer resolution request
2122 * if one actually succeeded and is still pending.
2123 */
2124 supdrvGipReleaseHigherTimerFrequencyFromSystem(pDevExt);
2125}
2126
2127
2128
2129
2130/*
2131 *
2132 *
2133 * GIP Update Timer Related Code
2134 * GIP Update Timer Related Code
2135 * GIP Update Timer Related Code
2136 *
2137 *
2138 */
2139
2140
2141/**
2142 * Worker routine for supdrvGipUpdate() and supdrvGipUpdatePerCpu() that
2143 * updates all the per cpu data except the transaction id.
2144 *
2145 * @param pDevExt The device extension.
2146 * @param pGipCpu Pointer to the per cpu data.
2147 * @param u64NanoTS The current time stamp.
2148 * @param u64TSC The current TSC.
2149 * @param iTick The current timer tick.
2150 *
2151 * @remarks Can be called with interrupts disabled!
2152 */
2153static void supdrvGipDoUpdateCpu(PSUPDRVDEVEXT pDevExt, PSUPGIPCPU pGipCpu, uint64_t u64NanoTS, uint64_t u64TSC, uint64_t iTick)
2154{
2155 uint64_t u64TSCDelta;
2156 bool fUpdateCpuHz;
2157 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
2158 AssertPtrReturnVoid(pGip);
2159
2160 /* Delta between this and the previous update. */
2161 ASMAtomicUoWriteU32(&pGipCpu->u32PrevUpdateIntervalNS, (uint32_t)(u64NanoTS - pGipCpu->u64NanoTS));
2162
2163 /*
2164 * Update the NanoTS.
2165 */
2166 ASMAtomicWriteU64(&pGipCpu->u64NanoTS, u64NanoTS);
2167
2168 /*
2169 * Calc TSC delta.
2170 */
2171 u64TSCDelta = u64TSC - pGipCpu->u64TSC;
2172 ASMAtomicWriteU64(&pGipCpu->u64TSC, u64TSC);
2173
2174 /*
2175 * Determine if we need to update the CPU (TSC) frequency calculation.
2176 *
2177 * We don't need to keep recalculating the frequency when it's invariant,
2178 * unless the special tstGIP-2 testing mode is enabled.
2179 */
2180 fUpdateCpuHz = pGip->u32Mode != SUPGIPMODE_INVARIANT_TSC;
2181 if (!(pGip->fFlags & SUPGIP_FLAGS_TESTING))
2182 { /* likely*/ }
2183 else
2184 {
2185 uint32_t fGipFlags = pGip->fFlags;
2186 if (fGipFlags & (SUPGIP_FLAGS_TESTING_ENABLE | SUPGIP_FLAGS_TESTING_START))
2187 {
2188 if (fGipFlags & SUPGIP_FLAGS_TESTING_START)
2189 {
2190 /* Cache the TSC frequency before forcing updates due to test mode. */
2191 if (!fUpdateCpuHz)
2192 pDevExt->uGipTestModeInvariantCpuHz = pGip->aCPUs[0].u64CpuHz;
2193 ASMAtomicAndU32(&pGip->fFlags, ~SUPGIP_FLAGS_TESTING_START);
2194 }
2195 fUpdateCpuHz = true;
2196 }
2197 else if (fGipFlags & SUPGIP_FLAGS_TESTING_STOP)
2198 {
2199 /* Restore the cached TSC frequency if any. */
2200 if (!fUpdateCpuHz)
2201 {
2202 Assert(pDevExt->uGipTestModeInvariantCpuHz);
2203 ASMAtomicWriteU64(&pGip->aCPUs[0].u64CpuHz, pDevExt->uGipTestModeInvariantCpuHz);
2204 }
2205 ASMAtomicAndU32(&pGip->fFlags, ~(SUPGIP_FLAGS_TESTING_STOP | SUPGIP_FLAGS_TESTING));
2206 }
2207 }
2208
2209 /*
2210 * Calculate the CPU (TSC) frequency if necessary.
2211 */
2212 if (fUpdateCpuHz)
2213 {
2214 uint64_t u64CpuHz;
2215 uint32_t u32UpdateIntervalTSC;
2216 uint32_t u32UpdateIntervalTSCSlack;
2217 uint32_t u32TransactionId;
2218 unsigned iTSCHistoryHead;
2219
2220 if (u64TSCDelta >> 32)
2221 {
2222 u64TSCDelta = pGipCpu->u32UpdateIntervalTSC;
2223 pGipCpu->cErrors++;
2224 }
2225
2226 /*
2227 * On the 2nd and 3rd callout, reset the history with the current TSC
2228 * interval since the values entered by supdrvGipInit are totally off.
2229 * The interval on the 1st callout completely unreliable, the 2nd is a bit
2230 * better, while the 3rd should be most reliable.
2231 */
2232 /** @todo Could we drop this now that we initializes the history
2233 * with nominal TSC frequency values? */
2234 u32TransactionId = pGipCpu->u32TransactionId;
2235 if (RT_UNLIKELY( ( u32TransactionId == 5
2236 || u32TransactionId == 7)
2237 && ( iTick == 2
2238 || iTick == 3) ))
2239 {
2240 unsigned i;
2241 for (i = 0; i < RT_ELEMENTS(pGipCpu->au32TSCHistory); i++)
2242 ASMAtomicUoWriteU32(&pGipCpu->au32TSCHistory[i], (uint32_t)u64TSCDelta);
2243 }
2244
2245 /*
2246 * Validate the NanoTS deltas between timer fires with an arbitrary threshold of 0.5%.
2247 * Wait until we have at least one full history since the above history reset. The
2248 * assumption is that the majority of the previous history values will be tolerable.
2249 * See @bugref{6710#c67}.
2250 */
2251 /** @todo Could we drop the fudging there now that we initializes the history
2252 * with nominal TSC frequency values? */
2253 if ( u32TransactionId > 23 /* 7 + (8 * 2) */
2254 && pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
2255 {
2256 uint32_t uNanoTsThreshold = pGip->u32UpdateIntervalNS / 200;
2257 if ( pGipCpu->u32PrevUpdateIntervalNS > pGip->u32UpdateIntervalNS + uNanoTsThreshold
2258 || pGipCpu->u32PrevUpdateIntervalNS < pGip->u32UpdateIntervalNS - uNanoTsThreshold)
2259 {
2260 uint32_t u32;
2261 u32 = pGipCpu->au32TSCHistory[0];
2262 u32 += pGipCpu->au32TSCHistory[1];
2263 u32 += pGipCpu->au32TSCHistory[2];
2264 u32 += pGipCpu->au32TSCHistory[3];
2265 u32 >>= 2;
2266 u64TSCDelta = pGipCpu->au32TSCHistory[4];
2267 u64TSCDelta += pGipCpu->au32TSCHistory[5];
2268 u64TSCDelta += pGipCpu->au32TSCHistory[6];
2269 u64TSCDelta += pGipCpu->au32TSCHistory[7];
2270 u64TSCDelta >>= 2;
2271 u64TSCDelta += u32;
2272 u64TSCDelta >>= 1;
2273 }
2274 }
2275
2276 /*
2277 * TSC History.
2278 */
2279 Assert(RT_ELEMENTS(pGipCpu->au32TSCHistory) == 8);
2280 iTSCHistoryHead = (pGipCpu->iTSCHistoryHead + 1) & 7;
2281 ASMAtomicWriteU32(&pGipCpu->iTSCHistoryHead, iTSCHistoryHead);
2282 ASMAtomicWriteU32(&pGipCpu->au32TSCHistory[iTSCHistoryHead], (uint32_t)u64TSCDelta);
2283
2284 /*
2285 * UpdateIntervalTSC = average of last 8,2,1 intervals depending on update HZ.
2286 *
2287 * On Windows, we have an occasional (but recurring) sour value that messed up
2288 * the history but taking only 1 interval reduces the precision overall.
2289 */
2290 if ( pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC
2291 || pGip->u32UpdateHz >= 1000)
2292 {
2293 uint32_t u32;
2294 u32 = pGipCpu->au32TSCHistory[0];
2295 u32 += pGipCpu->au32TSCHistory[1];
2296 u32 += pGipCpu->au32TSCHistory[2];
2297 u32 += pGipCpu->au32TSCHistory[3];
2298 u32 >>= 2;
2299 u32UpdateIntervalTSC = pGipCpu->au32TSCHistory[4];
2300 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[5];
2301 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[6];
2302 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[7];
2303 u32UpdateIntervalTSC >>= 2;
2304 u32UpdateIntervalTSC += u32;
2305 u32UpdateIntervalTSC >>= 1;
2306
2307 /* Value chosen for a 2GHz Athlon64 running linux 2.6.10/11. */
2308 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 14;
2309 }
2310 else if (pGip->u32UpdateHz >= 90)
2311 {
2312 u32UpdateIntervalTSC = (uint32_t)u64TSCDelta;
2313 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[(iTSCHistoryHead - 1) & 7];
2314 u32UpdateIntervalTSC >>= 1;
2315
2316 /* value chosen on a 2GHz thinkpad running windows */
2317 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 7;
2318 }
2319 else
2320 {
2321 u32UpdateIntervalTSC = (uint32_t)u64TSCDelta;
2322
2323 /* This value hasn't be checked yet.. waiting for OS/2 and 33Hz timers.. :-) */
2324 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 6;
2325 }
2326 ASMAtomicWriteU32(&pGipCpu->u32UpdateIntervalTSC, u32UpdateIntervalTSC + u32UpdateIntervalTSCSlack);
2327
2328 /*
2329 * CpuHz.
2330 */
2331 u64CpuHz = ASMMult2xU32RetU64(u32UpdateIntervalTSC, RT_NS_1SEC);
2332 u64CpuHz /= pGip->u32UpdateIntervalNS;
2333 ASMAtomicWriteU64(&pGipCpu->u64CpuHz, u64CpuHz);
2334 }
2335}
2336
2337
2338/**
2339 * Updates the GIP.
2340 *
2341 * @param pDevExt The device extension.
2342 * @param u64NanoTS The current nanosecond timestamp.
2343 * @param u64TSC The current TSC timestamp.
2344 * @param idCpu The CPU ID.
2345 * @param iTick The current timer tick.
2346 *
2347 * @remarks Can be called with interrupts disabled!
2348 */
2349static void supdrvGipUpdate(PSUPDRVDEVEXT pDevExt, uint64_t u64NanoTS, uint64_t u64TSC, RTCPUID idCpu, uint64_t iTick)
2350{
2351 /*
2352 * Determine the relevant CPU data.
2353 */
2354 PSUPGIPCPU pGipCpu;
2355 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
2356 AssertPtrReturnVoid(pGip);
2357
2358 if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
2359 pGipCpu = &pGip->aCPUs[0];
2360 else
2361 {
2362 unsigned iCpu = pGip->aiCpuFromApicId[ASMGetApicId()];
2363 if (RT_UNLIKELY(iCpu >= pGip->cCpus))
2364 return;
2365 pGipCpu = &pGip->aCPUs[iCpu];
2366 if (RT_UNLIKELY(pGipCpu->idCpu != idCpu))
2367 return;
2368 }
2369
2370 /*
2371 * Start update transaction.
2372 */
2373 if (!(ASMAtomicIncU32(&pGipCpu->u32TransactionId) & 1))
2374 {
2375 /* this can happen on win32 if we're taking to long and there are more CPUs around. shouldn't happen though. */
2376 AssertMsgFailed(("Invalid transaction id, %#x, not odd!\n", pGipCpu->u32TransactionId));
2377 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
2378 pGipCpu->cErrors++;
2379 return;
2380 }
2381
2382 /*
2383 * Recalc the update frequency every 0x800th time.
2384 */
2385 if ( pGip->u32Mode != SUPGIPMODE_INVARIANT_TSC /* cuz we're not recalculating the frequency on invariant hosts. */
2386 && !(pGipCpu->u32TransactionId & (GIP_UPDATEHZ_RECALC_FREQ * 2 - 2)))
2387 {
2388 if (pGip->u64NanoTSLastUpdateHz)
2389 {
2390#ifdef RT_ARCH_AMD64 /** @todo fix 64-bit div here to work on x86 linux. */
2391 uint64_t u64Delta = u64NanoTS - pGip->u64NanoTSLastUpdateHz;
2392 uint32_t u32UpdateHz = (uint32_t)((RT_NS_1SEC_64 * GIP_UPDATEHZ_RECALC_FREQ) / u64Delta);
2393 if (u32UpdateHz <= 2000 && u32UpdateHz >= 30)
2394 {
2395 /** @todo r=ramshankar: Changing u32UpdateHz might screw up TSC frequency
2396 * calculation on non-invariant hosts if it changes the history decision
2397 * taken in supdrvGipDoUpdateCpu(). */
2398 uint64_t u64Interval = u64Delta / GIP_UPDATEHZ_RECALC_FREQ;
2399 ASMAtomicWriteU32(&pGip->u32UpdateHz, u32UpdateHz);
2400 ASMAtomicWriteU32(&pGip->u32UpdateIntervalNS, (uint32_t)u64Interval);
2401 }
2402#endif
2403 }
2404 ASMAtomicWriteU64(&pGip->u64NanoTSLastUpdateHz, u64NanoTS | 1);
2405 }
2406
2407 /*
2408 * Update the data.
2409 */
2410 supdrvGipDoUpdateCpu(pDevExt, pGipCpu, u64NanoTS, u64TSC, iTick);
2411
2412 /*
2413 * Complete transaction.
2414 */
2415 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
2416}
2417
2418
2419/**
2420 * Updates the per cpu GIP data for the calling cpu.
2421 *
2422 * @param pDevExt The device extension.
2423 * @param u64NanoTS The current nanosecond timestamp.
2424 * @param u64TSC The current TSC timesaver.
2425 * @param idCpu The CPU ID.
2426 * @param idApic The APIC id for the CPU index.
2427 * @param iTick The current timer tick.
2428 *
2429 * @remarks Can be called with interrupts disabled!
2430 */
2431static void supdrvGipUpdatePerCpu(PSUPDRVDEVEXT pDevExt, uint64_t u64NanoTS, uint64_t u64TSC,
2432 RTCPUID idCpu, uint8_t idApic, uint64_t iTick)
2433{
2434 uint32_t iCpu;
2435 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
2436
2437 /*
2438 * Avoid a potential race when a CPU online notification doesn't fire on
2439 * the onlined CPU but the tick creeps in before the event notification is
2440 * run.
2441 */
2442 if (RT_LIKELY(iTick != 1))
2443 { /* likely*/ }
2444 else
2445 {
2446 iCpu = supdrvGipFindOrAllocCpuIndexForCpuId(pGip, idCpu);
2447 if (pGip->aCPUs[iCpu].enmState == SUPGIPCPUSTATE_OFFLINE)
2448 supdrvGipMpEventOnlineOrInitOnCpu(pDevExt, idCpu);
2449 }
2450
2451 iCpu = pGip->aiCpuFromApicId[idApic];
2452 if (RT_LIKELY(iCpu < pGip->cCpus))
2453 {
2454 PSUPGIPCPU pGipCpu = &pGip->aCPUs[iCpu];
2455 if (pGipCpu->idCpu == idCpu)
2456 {
2457 /*
2458 * Start update transaction.
2459 */
2460 if (!(ASMAtomicIncU32(&pGipCpu->u32TransactionId) & 1))
2461 {
2462 AssertMsgFailed(("Invalid transaction id, %#x, not odd!\n", pGipCpu->u32TransactionId));
2463 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
2464 pGipCpu->cErrors++;
2465 return;
2466 }
2467
2468 /*
2469 * Update the data.
2470 */
2471 supdrvGipDoUpdateCpu(pDevExt, pGipCpu, u64NanoTS, u64TSC, iTick);
2472
2473 /*
2474 * Complete transaction.
2475 */
2476 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
2477 }
2478 }
2479}
2480
2481
2482/**
2483 * Timer callback function for the sync and invariant GIP modes.
2484 *
2485 * @param pTimer The timer.
2486 * @param pvUser Opaque pointer to the device extension.
2487 * @param iTick The timer tick.
2488 */
2489static DECLCALLBACK(void) supdrvGipSyncAndInvariantTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
2490{
2491 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
2492 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
2493 RTCCUINTREG fEFlags = ASMIntDisableFlags(); /* No interruptions please (real problem on S10). */
2494 uint64_t u64TSC = ASMReadTSC();
2495 uint64_t u64NanoTS = RTTimeSystemNanoTS();
2496 RT_NOREF1(pTimer);
2497
2498 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_PRACTICALLY_ZERO)
2499 {
2500 /*
2501 * The calculations in supdrvGipUpdate() is somewhat timing sensitive,
2502 * missing timer ticks is not an option for GIP because the GIP users
2503 * will end up incrementing the time in 1ns per time getter call until
2504 * there is a complete timer update. So, if the delta has yet to be
2505 * calculated, we just pretend it is zero for now (the GIP users
2506 * probably won't have it for a wee while either and will do the same).
2507 *
2508 * We could maybe on some platforms try cross calling a CPU with a
2509 * working delta here, but it's not worth the hassle since the
2510 * likelihood of this happening is really low. On Windows, Linux, and
2511 * Solaris timers fire on the CPU they were registered/started on.
2512 * Darwin timers doesn't necessarily (they are high priority threads).
2513 */
2514 uint32_t iCpuSet = RTMpCpuIdToSetIndex(RTMpCpuId());
2515 uint16_t iGipCpu = RT_LIKELY(iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx))
2516 ? pGip->aiCpuFromCpuSetIdx[iCpuSet] : UINT16_MAX;
2517 Assert(!ASMIntAreEnabled());
2518 if (RT_LIKELY(iGipCpu < pGip->cCpus))
2519 {
2520 int64_t iTscDelta = pGip->aCPUs[iGipCpu].i64TSCDelta;
2521 if (iTscDelta != INT64_MAX)
2522 u64TSC -= iTscDelta;
2523 }
2524 }
2525
2526 supdrvGipUpdate(pDevExt, u64NanoTS, u64TSC, NIL_RTCPUID, iTick);
2527
2528 ASMSetFlags(fEFlags);
2529}
2530
2531
2532/**
2533 * Timer callback function for async GIP mode.
2534 * @param pTimer The timer.
2535 * @param pvUser Opaque pointer to the device extension.
2536 * @param iTick The timer tick.
2537 */
2538static DECLCALLBACK(void) supdrvGipAsyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
2539{
2540 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
2541 RTCCUINTREG fEFlags = ASMIntDisableFlags(); /* No interruptions please (real problem on S10). */
2542 RTCPUID idCpu = RTMpCpuId();
2543 uint64_t u64TSC = ASMReadTSC();
2544 uint64_t NanoTS = RTTimeSystemNanoTS();
2545 RT_NOREF1(pTimer);
2546
2547 /** @todo reset the transaction number and whatnot when iTick == 1. */
2548 if (pDevExt->idGipMaster == idCpu)
2549 supdrvGipUpdate(pDevExt, NanoTS, u64TSC, idCpu, iTick);
2550 else
2551 supdrvGipUpdatePerCpu(pDevExt, NanoTS, u64TSC, idCpu, ASMGetApicId(), iTick);
2552
2553 ASMSetFlags(fEFlags);
2554}
2555
2556
2557
2558
2559/*
2560 *
2561 *
2562 * TSC Delta Measurements And Related Code
2563 * TSC Delta Measurements And Related Code
2564 * TSC Delta Measurements And Related Code
2565 *
2566 *
2567 */
2568
2569
2570/*
2571 * Select TSC delta measurement algorithm.
2572 */
2573#if 0
2574# define GIP_TSC_DELTA_METHOD_1
2575#else
2576# define GIP_TSC_DELTA_METHOD_2
2577#endif
2578
2579/** For padding variables to keep them away from other cache lines. Better too
2580 * large than too small!
2581 * @remarks Current AMD64 and x86 CPUs seems to use 64 bytes. There are claims
2582 * that NetBurst had 128 byte cache lines while the 486 thru Pentium
2583 * III had 32 bytes cache lines. */
2584#define GIP_TSC_DELTA_CACHE_LINE_SIZE 128
2585
2586
2587/**
2588 * TSC delta measurement algorithm \#2 result entry.
2589 */
2590typedef struct SUPDRVTSCDELTAMETHOD2ENTRY
2591{
2592 uint32_t iSeqMine;
2593 uint32_t iSeqOther;
2594 uint64_t uTsc;
2595} SUPDRVTSCDELTAMETHOD2ENTRY;
2596
2597/**
2598 * TSC delta measurement algorithm \#2 Data.
2599 */
2600typedef struct SUPDRVTSCDELTAMETHOD2
2601{
2602 /** Padding to make sure the iCurSeqNo is in its own cache line. */
2603 uint64_t au64CacheLinePaddingBefore[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)];
2604 /** The current sequence number of this worker. */
2605 uint32_t volatile iCurSeqNo;
2606 /** Padding to make sure the iCurSeqNo is in its own cache line. */
2607 uint32_t au64CacheLinePaddingAfter[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint32_t) - 1];
2608 /** Result table. */
2609 SUPDRVTSCDELTAMETHOD2ENTRY aResults[64];
2610} SUPDRVTSCDELTAMETHOD2;
2611/** Pointer to the data for TSC delta measurement algorithm \#2 .*/
2612typedef SUPDRVTSCDELTAMETHOD2 *PSUPDRVTSCDELTAMETHOD2;
2613
2614
2615/**
2616 * The TSC delta synchronization struct, version 2.
2617 *
2618 * The synchronization variable is completely isolated in its own cache line
2619 * (provided our max cache line size estimate is correct).
2620 */
2621typedef struct SUPTSCDELTASYNC2
2622{
2623 /** Padding to make sure the uVar1 is in its own cache line. */
2624 uint64_t au64CacheLinePaddingBefore[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)];
2625
2626 /** The synchronization variable, holds values GIP_TSC_DELTA_SYNC_*. */
2627 volatile uint32_t uSyncVar;
2628 /** Sequence synchronizing variable used for post 'GO' synchronization. */
2629 volatile uint32_t uSyncSeq;
2630
2631 /** Padding to make sure the uVar1 is in its own cache line. */
2632 uint64_t au64CacheLinePaddingAfter[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t) - 2];
2633
2634 /** Start RDTSC value. Put here mainly to save stack space. */
2635 uint64_t uTscStart;
2636 /** Copy of SUPDRVGIPTSCDELTARGS::cMaxTscTicks. */
2637 uint64_t cMaxTscTicks;
2638} SUPTSCDELTASYNC2;
2639AssertCompileSize(SUPTSCDELTASYNC2, GIP_TSC_DELTA_CACHE_LINE_SIZE * 2 + sizeof(uint64_t));
2640typedef SUPTSCDELTASYNC2 *PSUPTSCDELTASYNC2;
2641
2642/** Prestart wait. */
2643#define GIP_TSC_DELTA_SYNC2_PRESTART_WAIT UINT32_C(0x0ffe)
2644/** Prestart aborted. */
2645#define GIP_TSC_DELTA_SYNC2_PRESTART_ABORT UINT32_C(0x0fff)
2646/** Ready (on your mark). */
2647#define GIP_TSC_DELTA_SYNC2_READY UINT32_C(0x1000)
2648/** Steady (get set). */
2649#define GIP_TSC_DELTA_SYNC2_STEADY UINT32_C(0x1001)
2650/** Go! */
2651#define GIP_TSC_DELTA_SYNC2_GO UINT32_C(0x1002)
2652/** Used by the verification test. */
2653#define GIP_TSC_DELTA_SYNC2_GO_GO UINT32_C(0x1003)
2654
2655/** We reached the time limit. */
2656#define GIP_TSC_DELTA_SYNC2_TIMEOUT UINT32_C(0x1ffe)
2657/** The other party won't touch the sync struct ever again. */
2658#define GIP_TSC_DELTA_SYNC2_FINAL UINT32_C(0x1fff)
2659
2660
2661/**
2662 * Argument package/state passed by supdrvTscMeasureDeltaOne() to the RTMpOn
2663 * callback worker.
2664 * @todo add
2665 */
2666typedef struct SUPDRVGIPTSCDELTARGS
2667{
2668 /** The device extension. */
2669 PSUPDRVDEVEXT pDevExt;
2670 /** Pointer to the GIP CPU array entry for the worker. */
2671 PSUPGIPCPU pWorker;
2672 /** Pointer to the GIP CPU array entry for the master. */
2673 PSUPGIPCPU pMaster;
2674 /** The maximum number of ticks to spend in supdrvTscMeasureDeltaCallback.
2675 * (This is what we need a rough TSC frequency for.) */
2676 uint64_t cMaxTscTicks;
2677 /** Used to abort synchronization setup. */
2678 bool volatile fAbortSetup;
2679
2680 /** Padding to make sure the master variables live in its own cache lines. */
2681 uint64_t au64CacheLinePaddingBefore[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)];
2682
2683 /** @name Master
2684 * @{ */
2685 /** The time the master spent in the MP worker. */
2686 uint64_t cElapsedMasterTscTicks;
2687 /** The iTry value when stopped at. */
2688 uint32_t iTry;
2689 /** Set if the run timed out. */
2690 bool volatile fTimedOut;
2691 /** Pointer to the master's synchronization struct (on stack). */
2692 PSUPTSCDELTASYNC2 volatile pSyncMaster;
2693 /** Master data union. */
2694 union
2695 {
2696 /** Data (master) for delta verification. */
2697 struct
2698 {
2699 /** Verification test TSC values for the master. */
2700 uint64_t volatile auTscs[32];
2701 } Verify;
2702 /** Data (master) for measurement method \#2. */
2703 struct
2704 {
2705 /** Data and sequence number. */
2706 SUPDRVTSCDELTAMETHOD2 Data;
2707 /** The lag setting for the next run. */
2708 bool fLag;
2709 /** Number of hits. */
2710 uint32_t cHits;
2711 } M2;
2712 } uMaster;
2713 /** The verifier verdict, VINF_SUCCESS if ok, VERR_OUT_OF_RANGE if not,
2714 * VERR_TRY_AGAIN on timeout. */
2715 int32_t rcVerify;
2716#ifdef TSCDELTA_VERIFY_WITH_STATS
2717 /** The maximum difference between TSC read during delta verification. */
2718 int64_t cMaxVerifyTscTicks;
2719 /** The minimum difference between two TSC reads during verification. */
2720 int64_t cMinVerifyTscTicks;
2721 /** The bad TSC diff, worker relative to master (= worker - master).
2722 * Negative value means the worker is behind the master. */
2723 int64_t iVerifyBadTscDiff;
2724#endif
2725 /** @} */
2726
2727 /** Padding to make sure the worker variables live is in its own cache line. */
2728 uint64_t au64CacheLinePaddingBetween[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)];
2729
2730 /** @name Proletarian
2731 * @{ */
2732 /** Pointer to the worker's synchronization struct (on stack). */
2733 PSUPTSCDELTASYNC2 volatile pSyncWorker;
2734 /** The time the worker spent in the MP worker. */
2735 uint64_t cElapsedWorkerTscTicks;
2736 /** Worker data union. */
2737 union
2738 {
2739 /** Data (worker) for delta verification. */
2740 struct
2741 {
2742 /** Verification test TSC values for the worker. */
2743 uint64_t volatile auTscs[32];
2744 } Verify;
2745 /** Data (worker) for measurement method \#2. */
2746 struct
2747 {
2748 /** Data and sequence number. */
2749 SUPDRVTSCDELTAMETHOD2 Data;
2750 /** The lag setting for the next run (set by master). */
2751 bool fLag;
2752 } M2;
2753 } uWorker;
2754 /** @} */
2755
2756 /** Padding to make sure the above is in its own cache line. */
2757 uint64_t au64CacheLinePaddingAfter[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)];
2758} SUPDRVGIPTSCDELTARGS;
2759typedef SUPDRVGIPTSCDELTARGS *PSUPDRVGIPTSCDELTARGS;
2760
2761
2762/** @name Macros that implements the basic synchronization steps common to
2763 * the algorithms.
2764 *
2765 * Must be used from loop as the timeouts are implemented via 'break' statements
2766 * at the moment.
2767 *
2768 * @{
2769 */
2770#if defined(DEBUG_bird) /* || defined(VBOX_STRICT) */
2771# define TSCDELTA_DBG_VARS() uint32_t iDbgCounter
2772# define TSCDELTA_DBG_START_LOOP() do { iDbgCounter = 0; } while (0)
2773# define TSCDELTA_DBG_CHECK_LOOP() \
2774 do { iDbgCounter++; if ((iDbgCounter & UINT32_C(0x01ffffff)) == 0) RT_BREAKPOINT(); } while (0)
2775#else
2776# define TSCDELTA_DBG_VARS() ((void)0)
2777# define TSCDELTA_DBG_START_LOOP() ((void)0)
2778# define TSCDELTA_DBG_CHECK_LOOP() ((void)0)
2779#endif
2780#if 0
2781# define TSCDELTA_DBG_SYNC_MSG(a_Args) SUPR0Printf a_Args
2782#else
2783# define TSCDELTA_DBG_SYNC_MSG(a_Args) ((void)0)
2784#endif
2785#if 0
2786# define TSCDELTA_DBG_SYNC_MSG2(a_Args) SUPR0Printf a_Args
2787#else
2788# define TSCDELTA_DBG_SYNC_MSG2(a_Args) ((void)0)
2789#endif
2790#if 0
2791# define TSCDELTA_DBG_SYNC_MSG9(a_Args) SUPR0Printf a_Args
2792#else
2793# define TSCDELTA_DBG_SYNC_MSG9(a_Args) ((void)0)
2794#endif
2795
2796
2797static bool supdrvTscDeltaSync2_Before(PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync,
2798 bool fIsMaster, PRTCCUINTREG pfEFlags, PSUPDRVGIPTSCDELTARGS pArgs)
2799{
2800 uint32_t iMySeq = fIsMaster ? 0 : 256;
2801 uint32_t const iMaxSeq = iMySeq + 16; /* For the last loop, darn linux/freebsd C-ishness. */
2802 uint32_t u32Tmp;
2803 uint32_t iSync2Loops = 0;
2804 RTCCUINTREG fEFlags;
2805 TSCDELTA_DBG_VARS();
2806
2807 *pfEFlags = X86_EFL_IF | X86_EFL_1; /* should shut up most nagging compilers. */
2808
2809 /*
2810 * The master tells the worker to get on it's mark.
2811 */
2812 if (fIsMaster)
2813 {
2814 if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_STEADY, GIP_TSC_DELTA_SYNC2_READY)))
2815 { /* likely*/ }
2816 else
2817 {
2818 TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #1 uSyncVar=%#x\n", fIsMaster ? "master" : "worker", pOtherSync->uSyncVar));
2819 return false;
2820 }
2821 }
2822
2823 /*
2824 * Wait for the on your mark signal (ack in the master case). We process timeouts here.
2825 */
2826 ASMAtomicWriteU32(&(pMySync)->uSyncSeq, 0);
2827 for (;;)
2828 {
2829 fEFlags = ASMIntDisableFlags();
2830 u32Tmp = ASMAtomicReadU32(&pMySync->uSyncVar);
2831 if (u32Tmp == GIP_TSC_DELTA_SYNC2_STEADY)
2832 break;
2833 ASMSetFlags(fEFlags);
2834 ASMNopPause();
2835
2836 /* Abort? */
2837 if (u32Tmp != GIP_TSC_DELTA_SYNC2_READY)
2838 {
2839 TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #2 u32Tmp=%#x\n", fIsMaster ? "master" : "worker", u32Tmp));
2840 return false;
2841 }
2842
2843 /* Check for timeouts every so often (not every loop in case RDTSC is
2844 trapping or something). Must check the first time around. */
2845#if 0 /* For debugging the timeout paths. */
2846 static uint32_t volatile xxx;
2847#endif
2848 if ( ( (iSync2Loops & 0x3ff) == 0
2849 && ASMReadTSC() - pMySync->uTscStart > pMySync->cMaxTscTicks)
2850#if 0 /* This is crazy, I know, but enable this code and the results are markedly better when enabled on the 1.4GHz AMD (debug). */
2851 || (!fIsMaster && (++xxx & 0xf) == 0)
2852#endif
2853 )
2854 {
2855 /* Try switch our own state into timeout mode so the master cannot tell us to 'GO',
2856 ignore the timeout if we've got the go ahead already (simpler). */
2857 if (ASMAtomicCmpXchgU32(&pMySync->uSyncVar, GIP_TSC_DELTA_SYNC2_TIMEOUT, GIP_TSC_DELTA_SYNC2_READY))
2858 {
2859 TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: timeout\n", fIsMaster ? "master" : "worker"));
2860 ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_TIMEOUT, GIP_TSC_DELTA_SYNC2_STEADY);
2861 ASMAtomicWriteBool(&pArgs->fTimedOut, true);
2862 return false;
2863 }
2864 }
2865 iSync2Loops++;
2866 }
2867
2868 /*
2869 * Interrupts are now disabled and will remain disabled until we do
2870 * TSCDELTA_MASTER_SYNC_AFTER / TSCDELTA_OTHER_SYNC_AFTER.
2871 */
2872 *pfEFlags = fEFlags;
2873
2874 /*
2875 * The worker tells the master that it is on its mark and that the master
2876 * need to get into position as well.
2877 */
2878 if (!fIsMaster)
2879 {
2880 if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_STEADY, GIP_TSC_DELTA_SYNC2_READY)))
2881 { /* likely */ }
2882 else
2883 {
2884 ASMSetFlags(fEFlags);
2885 TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #3 uSyncVar=%#x\n", fIsMaster ? "master" : "worker", pOtherSync->uSyncVar));
2886 return false;
2887 }
2888 }
2889
2890 /*
2891 * The master sends the 'go' to the worker and wait for ACK.
2892 */
2893 if (fIsMaster)
2894 {
2895 if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO, GIP_TSC_DELTA_SYNC2_STEADY)))
2896 { /* likely */ }
2897 else
2898 {
2899 ASMSetFlags(fEFlags);
2900 TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #4 uSyncVar=%#x\n", fIsMaster ? "master" : "worker", pOtherSync->uSyncVar));
2901 return false;
2902 }
2903 }
2904
2905 /*
2906 * Wait for the 'go' signal (ack in the master case).
2907 */
2908 TSCDELTA_DBG_START_LOOP();
2909 for (;;)
2910 {
2911 u32Tmp = ASMAtomicReadU32(&pMySync->uSyncVar);
2912 if (u32Tmp == GIP_TSC_DELTA_SYNC2_GO)
2913 break;
2914 if (RT_LIKELY(u32Tmp == GIP_TSC_DELTA_SYNC2_STEADY))
2915 { /* likely */ }
2916 else
2917 {
2918 ASMSetFlags(fEFlags);
2919 TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #5 u32Tmp=%#x\n", fIsMaster ? "master" : "worker", u32Tmp));
2920 return false;
2921 }
2922
2923 TSCDELTA_DBG_CHECK_LOOP();
2924 ASMNopPause();
2925 }
2926
2927 /*
2928 * The worker acks the 'go' (shouldn't fail).
2929 */
2930 if (!fIsMaster)
2931 {
2932 if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO, GIP_TSC_DELTA_SYNC2_STEADY)))
2933 { /* likely */ }
2934 else
2935 {
2936 ASMSetFlags(fEFlags);
2937 TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #6 uSyncVar=%#x\n", fIsMaster ? "master" : "worker", pOtherSync->uSyncVar));
2938 return false;
2939 }
2940 }
2941
2942 /*
2943 * Try enter mostly lockstep execution with it.
2944 */
2945 for (;;)
2946 {
2947 uint32_t iOtherSeq1, iOtherSeq2;
2948 ASMCompilerBarrier();
2949 ASMSerializeInstruction();
2950
2951 ASMAtomicWriteU32(&pMySync->uSyncSeq, iMySeq);
2952 ASMNopPause();
2953 iOtherSeq1 = ASMAtomicXchgU32(&pOtherSync->uSyncSeq, iMySeq);
2954 ASMNopPause();
2955 iOtherSeq2 = ASMAtomicReadU32(&pMySync->uSyncSeq);
2956
2957 ASMCompilerBarrier();
2958 if (iOtherSeq1 == iOtherSeq2)
2959 return true;
2960
2961 /* Did the other guy give up? Should we give up? */
2962 if ( iOtherSeq1 == UINT32_MAX
2963 || iOtherSeq2 == UINT32_MAX)
2964 return true;
2965 if (++iMySeq >= iMaxSeq)
2966 {
2967 ASMAtomicWriteU32(&pMySync->uSyncSeq, UINT32_MAX);
2968 return true;
2969 }
2970 ASMNopPause();
2971 }
2972}
2973
2974#define TSCDELTA_MASTER_SYNC_BEFORE(a_pMySync, a_pOtherSync, a_pfEFlags, a_pArgs) \
2975 if (RT_LIKELY(supdrvTscDeltaSync2_Before(a_pMySync, a_pOtherSync, true /*fIsMaster*/, a_pfEFlags, a_pArgs))) \
2976 { /*likely*/ } \
2977 else if (true) \
2978 { \
2979 TSCDELTA_DBG_SYNC_MSG9(("sync/before/master: #89\n")); \
2980 break; \
2981 } else do {} while (0)
2982#define TSCDELTA_OTHER_SYNC_BEFORE(a_pMySync, a_pOtherSync, a_pfEFlags, a_pArgs) \
2983 if (RT_LIKELY(supdrvTscDeltaSync2_Before(a_pMySync, a_pOtherSync, false /*fIsMaster*/, a_pfEFlags, a_pArgs))) \
2984 { /*likely*/ } \
2985 else if (true) \
2986 { \
2987 TSCDELTA_DBG_SYNC_MSG9(("sync/before/other: #89\n")); \
2988 break; \
2989 } else do {} while (0)
2990
2991
2992static bool supdrvTscDeltaSync2_After(PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync,
2993 bool fIsMaster, RTCCUINTREG fEFlags)
2994{
2995 TSCDELTA_DBG_VARS();
2996 RT_NOREF1(pOtherSync);
2997
2998 /*
2999 * Wait for the 'ready' signal. In the master's case, this means the
3000 * worker has completed its data collection, while in the worker's case it
3001 * means the master is done processing the data and it's time for the next
3002 * loop iteration (or whatever).
3003 */
3004 ASMSetFlags(fEFlags);
3005 TSCDELTA_DBG_START_LOOP();
3006 for (;;)
3007 {
3008 uint32_t u32Tmp = ASMAtomicReadU32(&pMySync->uSyncVar);
3009 if ( u32Tmp == GIP_TSC_DELTA_SYNC2_READY
3010 || (u32Tmp == GIP_TSC_DELTA_SYNC2_STEADY && !fIsMaster) /* kicked twice => race */ )
3011 return true;
3012 ASMNopPause();
3013 if (RT_LIKELY(u32Tmp == GIP_TSC_DELTA_SYNC2_GO))
3014 { /* likely */}
3015 else
3016 {
3017 TSCDELTA_DBG_SYNC_MSG(("sync/after/other: #1 u32Tmp=%#x\n", u32Tmp));
3018 return false; /* shouldn't ever happen! */
3019 }
3020 TSCDELTA_DBG_CHECK_LOOP();
3021 ASMNopPause();
3022 }
3023}
3024
3025#define TSCDELTA_MASTER_SYNC_AFTER(a_pMySync, a_pOtherSync, a_fEFlags) \
3026 if (RT_LIKELY(supdrvTscDeltaSync2_After(a_pMySync, a_pOtherSync, true /*fIsMaster*/, a_fEFlags))) \
3027 { /* likely */ } \
3028 else if (true) \
3029 { \
3030 TSCDELTA_DBG_SYNC_MSG9(("sync/after/master: #97\n")); \
3031 break; \
3032 } else do {} while (0)
3033
3034#define TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(a_pMySync, a_pOtherSync) \
3035 /* \
3036 * Tell the worker that we're done processing the data and ready for the next round. \
3037 */ \
3038 if (RT_LIKELY(ASMAtomicCmpXchgU32(&(a_pOtherSync)->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_GO))) \
3039 { /* likely */ } \
3040 else if (true)\
3041 { \
3042 TSCDELTA_DBG_SYNC_MSG(("sync/after/master: #99 uSyncVar=%#x\n", (a_pOtherSync)->uSyncVar)); \
3043 break; \
3044 } else do {} while (0)
3045
3046#define TSCDELTA_OTHER_SYNC_AFTER(a_pMySync, a_pOtherSync, a_fEFlags) \
3047 if (true) { \
3048 /* \
3049 * Tell the master that we're done collecting data and wait for the next round to start. \
3050 */ \
3051 if (RT_LIKELY(ASMAtomicCmpXchgU32(&(a_pOtherSync)->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_GO))) \
3052 { /* likely */ } \
3053 else \
3054 { \
3055 ASMSetFlags(a_fEFlags); \
3056 TSCDELTA_DBG_SYNC_MSG(("sync/after/other: #0 uSyncVar=%#x\n", (a_pOtherSync)->uSyncVar)); \
3057 break; \
3058 } \
3059 if (RT_LIKELY(supdrvTscDeltaSync2_After(a_pMySync, a_pOtherSync, false /*fIsMaster*/, a_fEFlags))) \
3060 { /* likely */ } \
3061 else \
3062 { \
3063 TSCDELTA_DBG_SYNC_MSG9(("sync/after/other: #98\n")); \
3064 break; \
3065 } \
3066 } else do {} while (0)
3067/** @} */
3068
3069
3070#ifdef GIP_TSC_DELTA_METHOD_1
3071/**
3072 * TSC delta measurement algorithm \#1 (GIP_TSC_DELTA_METHOD_1).
3073 *
3074 *
3075 * We ignore the first few runs of the loop in order to prime the
3076 * cache. Also, we need to be careful about using 'pause' instruction
3077 * in critical busy-wait loops in this code - it can cause undesired
3078 * behaviour with hyperthreading.
3079 *
3080 * We try to minimize the measurement error by computing the minimum
3081 * read time of the compare statement in the worker by taking TSC
3082 * measurements across it.
3083 *
3084 * It must be noted that the computed minimum read time is mostly to
3085 * eliminate huge deltas when the worker is too early and doesn't by
3086 * itself help produce more accurate deltas. We allow two times the
3087 * computed minimum as an arbitrary acceptable threshold. Therefore,
3088 * it is still possible to get negative deltas where there are none
3089 * when the worker is earlier. As long as these occasional negative
3090 * deltas are lower than the time it takes to exit guest-context and
3091 * the OS to reschedule EMT on a different CPU, we won't expose a TSC
3092 * that jumped backwards. It is due to the existence of the negative
3093 * deltas that we don't recompute the delta with the master and
3094 * worker interchanged to eliminate the remaining measurement error.
3095 *
3096 *
3097 * @param pArgs The argument/state data.
3098 * @param pMySync My synchronization structure.
3099 * @param pOtherSync My partner's synchronization structure.
3100 * @param fIsMaster Set if master, clear if worker.
3101 * @param iTry The attempt number.
3102 */
3103static void supdrvTscDeltaMethod1Loop(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync,
3104 bool fIsMaster, uint32_t iTry)
3105{
3106 PSUPGIPCPU pGipCpuWorker = pArgs->pWorker;
3107 PSUPGIPCPU pGipCpuMaster = pArgs->pMaster;
3108 uint64_t uMinCmpReadTime = UINT64_MAX;
3109 unsigned iLoop;
3110 NOREF(iTry);
3111
3112 for (iLoop = 0; iLoop < GIP_TSC_DELTA_LOOPS; iLoop++)
3113 {
3114 RTCCUINTREG fEFlags;
3115 if (fIsMaster)
3116 {
3117 /*
3118 * The master.
3119 */
3120 AssertMsg(pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD,
3121 ("%#llx idMaster=%#x idWorker=%#x (idGipMaster=%#x)\n",
3122 pGipCpuMaster->u64TSCSample, pGipCpuMaster->idCpu, pGipCpuWorker->idCpu, pArgs->pDevExt->idGipMaster));
3123 TSCDELTA_MASTER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs);
3124
3125 do
3126 {
3127 ASMSerializeInstruction();
3128 ASMAtomicWriteU64(&pGipCpuMaster->u64TSCSample, ASMReadTSC());
3129 } while (pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD);
3130
3131 TSCDELTA_MASTER_SYNC_AFTER(pMySync, pOtherSync, fEFlags);
3132
3133 /* Process the data. */
3134 if (iLoop > GIP_TSC_DELTA_PRIMER_LOOPS + GIP_TSC_DELTA_READ_TIME_LOOPS)
3135 {
3136 if (pGipCpuWorker->u64TSCSample != GIP_TSC_DELTA_RSVD)
3137 {
3138 int64_t iDelta = pGipCpuWorker->u64TSCSample
3139 - (pGipCpuMaster->u64TSCSample - pGipCpuMaster->i64TSCDelta);
3140 if ( iDelta >= GIP_TSC_DELTA_INITIAL_MASTER_VALUE
3141 ? iDelta < pGipCpuWorker->i64TSCDelta
3142 : iDelta > pGipCpuWorker->i64TSCDelta || pGipCpuWorker->i64TSCDelta == INT64_MAX)
3143 pGipCpuWorker->i64TSCDelta = iDelta;
3144 }
3145 }
3146
3147 /* Reset our TSC sample and tell the worker to move on. */
3148 ASMAtomicWriteU64(&pGipCpuMaster->u64TSCSample, GIP_TSC_DELTA_RSVD);
3149 TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(pMySync, pOtherSync);
3150 }
3151 else
3152 {
3153 /*
3154 * The worker.
3155 */
3156 uint64_t uTscWorker;
3157 uint64_t uTscWorkerFlushed;
3158 uint64_t uCmpReadTime;
3159
3160 ASMAtomicReadU64(&pGipCpuMaster->u64TSCSample); /* Warm the cache line. */
3161 TSCDELTA_OTHER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs);
3162
3163 /*
3164 * Keep reading the TSC until we notice that the master has read his. Reading
3165 * the TSC -after- the master has updated the memory is way too late. We thus
3166 * compensate by trying to measure how long it took for the worker to notice
3167 * the memory flushed from the master.
3168 */
3169 do
3170 {
3171 ASMSerializeInstruction();
3172 uTscWorker = ASMReadTSC();
3173 } while (pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD);
3174 ASMSerializeInstruction();
3175 uTscWorkerFlushed = ASMReadTSC();
3176
3177 uCmpReadTime = uTscWorkerFlushed - uTscWorker;
3178 if (iLoop > GIP_TSC_DELTA_PRIMER_LOOPS + GIP_TSC_DELTA_READ_TIME_LOOPS)
3179 {
3180 /* This is totally arbitrary a.k.a I don't like it but I have no better ideas for now. */
3181 if (uCmpReadTime < (uMinCmpReadTime << 1))
3182 {
3183 ASMAtomicWriteU64(&pGipCpuWorker->u64TSCSample, uTscWorker);
3184 if (uCmpReadTime < uMinCmpReadTime)
3185 uMinCmpReadTime = uCmpReadTime;
3186 }
3187 else
3188 ASMAtomicWriteU64(&pGipCpuWorker->u64TSCSample, GIP_TSC_DELTA_RSVD);
3189 }
3190 else if (iLoop > GIP_TSC_DELTA_PRIMER_LOOPS)
3191 {
3192 if (uCmpReadTime < uMinCmpReadTime)
3193 uMinCmpReadTime = uCmpReadTime;
3194 }
3195
3196 TSCDELTA_OTHER_SYNC_AFTER(pMySync, pOtherSync, fEFlags);
3197 }
3198 }
3199
3200 TSCDELTA_DBG_SYNC_MSG9(("sync/method1loop/%s: #92 iLoop=%u MyState=%#x\n", fIsMaster ? "master" : "worker", iLoop,
3201 pMySync->uSyncVar));
3202
3203 /*
3204 * We must reset the worker TSC sample value in case it gets picked as a
3205 * GIP master later on (it's trashed above, naturally).
3206 */
3207 if (!fIsMaster)
3208 ASMAtomicWriteU64(&pGipCpuWorker->u64TSCSample, GIP_TSC_DELTA_RSVD);
3209}
3210#endif /* GIP_TSC_DELTA_METHOD_1 */
3211
3212
3213#ifdef GIP_TSC_DELTA_METHOD_2
3214/*
3215 * TSC delta measurement algorithm \#2 configuration and code - Experimental!!
3216 */
3217
3218# define GIP_TSC_DELTA_M2_LOOPS (7 + GIP_TSC_DELTA_M2_PRIMER_LOOPS)
3219# define GIP_TSC_DELTA_M2_PRIMER_LOOPS 0
3220
3221
3222static void supdrvTscDeltaMethod2ProcessDataOnMaster(PSUPDRVGIPTSCDELTARGS pArgs)
3223{
3224 int64_t iMasterTscDelta = pArgs->pMaster->i64TSCDelta;
3225 int64_t iBestDelta = pArgs->pWorker->i64TSCDelta;
3226 uint32_t idxResult;
3227 uint32_t cHits = 0;
3228
3229 /*
3230 * Look for matching entries in the master and worker tables.
3231 */
3232 for (idxResult = 0; idxResult < RT_ELEMENTS(pArgs->uMaster.M2.Data.aResults); idxResult++)
3233 {
3234 uint32_t idxOther = pArgs->uMaster.M2.Data.aResults[idxResult].iSeqOther;
3235 if (idxOther & 1)
3236 {
3237 idxOther >>= 1;
3238 if (idxOther < RT_ELEMENTS(pArgs->uWorker.M2.Data.aResults))
3239 {
3240 if (pArgs->uWorker.M2.Data.aResults[idxOther].iSeqOther == pArgs->uMaster.M2.Data.aResults[idxResult].iSeqMine)
3241 {
3242 int64_t iDelta;
3243 iDelta = pArgs->uWorker.M2.Data.aResults[idxOther].uTsc
3244 - (pArgs->uMaster.M2.Data.aResults[idxResult].uTsc - iMasterTscDelta);
3245 if ( iDelta >= GIP_TSC_DELTA_INITIAL_MASTER_VALUE
3246 ? iDelta < iBestDelta
3247 : iDelta > iBestDelta || iBestDelta == INT64_MAX)
3248 iBestDelta = iDelta;
3249 cHits++;
3250 }
3251 }
3252 }
3253 }
3254
3255 /*
3256 * Save the results.
3257 */
3258 if (cHits > 2)
3259 pArgs->pWorker->i64TSCDelta = iBestDelta;
3260 pArgs->uMaster.M2.cHits += cHits;
3261}
3262
3263
3264/**
3265 * The core function of the 2nd TSC delta measurement algorithm.
3266 *
3267 * The idea here is that we have the two CPUs execute the exact same code
3268 * collecting a largish set of TSC samples. The code has one data dependency on
3269 * the other CPU which intention it is to synchronize the execution as well as
3270 * help cross references the two sets of TSC samples (the sequence numbers).
3271 *
3272 * The @a fLag parameter is used to modify the execution a tiny bit on one or
3273 * both of the CPUs. When @a fLag differs between the CPUs, it is thought that
3274 * it will help with making the CPUs enter lock step execution occasionally.
3275 *
3276 */
3277static void supdrvTscDeltaMethod2CollectData(PSUPDRVTSCDELTAMETHOD2 pMyData, uint32_t volatile *piOtherSeqNo, bool fLag)
3278{
3279 SUPDRVTSCDELTAMETHOD2ENTRY *pEntry = &pMyData->aResults[0];
3280 uint32_t cLeft = RT_ELEMENTS(pMyData->aResults);
3281
3282 ASMAtomicWriteU32(&pMyData->iCurSeqNo, 0);
3283 ASMSerializeInstruction();
3284 while (cLeft-- > 0)
3285 {
3286 uint64_t uTsc;
3287 uint32_t iSeqMine = ASMAtomicIncU32(&pMyData->iCurSeqNo);
3288 uint32_t iSeqOther = ASMAtomicReadU32(piOtherSeqNo);
3289 ASMCompilerBarrier();
3290 ASMSerializeInstruction(); /* Way better result than with ASMMemoryFenceSSE2() in this position! */
3291 uTsc = ASMReadTSC();
3292 ASMAtomicIncU32(&pMyData->iCurSeqNo);
3293 ASMCompilerBarrier();
3294 ASMSerializeInstruction();
3295 pEntry->iSeqMine = iSeqMine;
3296 pEntry->iSeqOther = iSeqOther;
3297 pEntry->uTsc = uTsc;
3298 pEntry++;
3299 ASMSerializeInstruction();
3300 if (fLag)
3301 ASMNopPause();
3302 }
3303}
3304
3305
3306/**
3307 * TSC delta measurement algorithm \#2 (GIP_TSC_DELTA_METHOD_2).
3308 *
3309 * See supdrvTscDeltaMethod2CollectData for algorithm details.
3310 *
3311 * @param pArgs The argument/state data.
3312 * @param pMySync My synchronization structure.
3313 * @param pOtherSync My partner's synchronization structure.
3314 * @param fIsMaster Set if master, clear if worker.
3315 * @param iTry The attempt number.
3316 */
3317static void supdrvTscDeltaMethod2Loop(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync,
3318 bool fIsMaster, uint32_t iTry)
3319{
3320 unsigned iLoop;
3321 RT_NOREF1(iTry);
3322
3323 for (iLoop = 0; iLoop < GIP_TSC_DELTA_M2_LOOPS; iLoop++)
3324 {
3325 RTCCUINTREG fEFlags;
3326 if (fIsMaster)
3327 {
3328 /*
3329 * Adjust the loop lag fudge.
3330 */
3331# if GIP_TSC_DELTA_M2_PRIMER_LOOPS > 0
3332 if (iLoop < GIP_TSC_DELTA_M2_PRIMER_LOOPS)
3333 {
3334 /* Lag during the priming to be nice to everyone.. */
3335 pArgs->uMaster.M2.fLag = true;
3336 pArgs->uWorker.M2.fLag = true;
3337 }
3338 else
3339# endif
3340 if (iLoop < (GIP_TSC_DELTA_M2_LOOPS - GIP_TSC_DELTA_M2_PRIMER_LOOPS) / 4)
3341 {
3342 /* 25 % of the body without lagging. */
3343 pArgs->uMaster.M2.fLag = false;
3344 pArgs->uWorker.M2.fLag = false;
3345 }
3346 else if (iLoop < (GIP_TSC_DELTA_M2_LOOPS - GIP_TSC_DELTA_M2_PRIMER_LOOPS) / 4 * 2)
3347 {
3348 /* 25 % of the body with both lagging. */
3349 pArgs->uMaster.M2.fLag = true;
3350 pArgs->uWorker.M2.fLag = true;
3351 }
3352 else
3353 {
3354 /* 50% of the body with alternating lag. */
3355 pArgs->uMaster.M2.fLag = (iLoop & 1) == 0;
3356 pArgs->uWorker.M2.fLag= (iLoop & 1) == 1;
3357 }
3358
3359 /*
3360 * Sync up with the worker and collect data.
3361 */
3362 TSCDELTA_MASTER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs);
3363 supdrvTscDeltaMethod2CollectData(&pArgs->uMaster.M2.Data, &pArgs->uWorker.M2.Data.iCurSeqNo, pArgs->uMaster.M2.fLag);
3364 TSCDELTA_MASTER_SYNC_AFTER(pMySync, pOtherSync, fEFlags);
3365
3366 /*
3367 * Process the data.
3368 */
3369# if GIP_TSC_DELTA_M2_PRIMER_LOOPS > 0
3370 if (iLoop >= GIP_TSC_DELTA_M2_PRIMER_LOOPS)
3371# endif
3372 supdrvTscDeltaMethod2ProcessDataOnMaster(pArgs);
3373
3374 TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(pMySync, pOtherSync);
3375 }
3376 else
3377 {
3378 /*
3379 * The worker.
3380 */
3381 TSCDELTA_OTHER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs);
3382 supdrvTscDeltaMethod2CollectData(&pArgs->uWorker.M2.Data, &pArgs->uMaster.M2.Data.iCurSeqNo, pArgs->uWorker.M2.fLag);
3383 TSCDELTA_OTHER_SYNC_AFTER(pMySync, pOtherSync, fEFlags);
3384 }
3385 }
3386}
3387
3388#endif /* GIP_TSC_DELTA_METHOD_2 */
3389
3390
3391
3392static int supdrvTscDeltaVerify(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync,
3393 PSUPTSCDELTASYNC2 pOtherSync, bool fIsMaster, int64_t iWorkerTscDelta)
3394{
3395 /*PSUPGIPCPU pGipCpuWorker = pArgs->pWorker; - unused */
3396 PSUPGIPCPU pGipCpuMaster = pArgs->pMaster;
3397 uint32_t i;
3398 TSCDELTA_DBG_VARS();
3399
3400 for (;;)
3401 {
3402 RTCCUINTREG fEFlags;
3403 AssertCompile((RT_ELEMENTS(pArgs->uMaster.Verify.auTscs) & 1) == 0);
3404 AssertCompile(RT_ELEMENTS(pArgs->uMaster.Verify.auTscs) == RT_ELEMENTS(pArgs->uWorker.Verify.auTscs));
3405
3406 if (fIsMaster)
3407 {
3408 uint64_t uTscWorker;
3409 TSCDELTA_MASTER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs);
3410
3411 /*
3412 * Collect TSC, master goes first.
3413 */
3414 for (i = 0; i < RT_ELEMENTS(pArgs->uMaster.Verify.auTscs); i += 2)
3415 {
3416 /* Read, kick & wait #1. */
3417 uint64_t register uTsc = ASMReadTSC();
3418 ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO_GO);
3419 ASMSerializeInstruction();
3420 pArgs->uMaster.Verify.auTscs[i] = uTsc;
3421 TSCDELTA_DBG_START_LOOP();
3422 while (ASMAtomicReadU32(&pMySync->uSyncVar) == GIP_TSC_DELTA_SYNC2_GO)
3423 {
3424 TSCDELTA_DBG_CHECK_LOOP();
3425 ASMNopPause();
3426 }
3427
3428 /* Read, kick & wait #2. */
3429 uTsc = ASMReadTSC();
3430 ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO);
3431 ASMSerializeInstruction();
3432 pArgs->uMaster.Verify.auTscs[i + 1] = uTsc;
3433 TSCDELTA_DBG_START_LOOP();
3434 while (ASMAtomicReadU32(&pMySync->uSyncVar) == GIP_TSC_DELTA_SYNC2_GO_GO)
3435 {
3436 TSCDELTA_DBG_CHECK_LOOP();
3437 ASMNopPause();
3438 }
3439 }
3440
3441 TSCDELTA_MASTER_SYNC_AFTER(pMySync, pOtherSync, fEFlags);
3442
3443 /*
3444 * Process the data.
3445 */
3446#ifdef TSCDELTA_VERIFY_WITH_STATS
3447 pArgs->cMaxVerifyTscTicks = INT64_MIN;
3448 pArgs->cMinVerifyTscTicks = INT64_MAX;
3449 pArgs->iVerifyBadTscDiff = 0;
3450#endif
3451 ASMAtomicWriteS32(&pArgs->rcVerify, VINF_SUCCESS);
3452 uTscWorker = 0;
3453 for (i = 0; i < RT_ELEMENTS(pArgs->uMaster.Verify.auTscs); i++)
3454 {
3455 /* Master vs previous worker entry. */
3456 uint64_t uTscMaster = pArgs->uMaster.Verify.auTscs[i] - pGipCpuMaster->i64TSCDelta;
3457 int64_t iDiff;
3458 if (i > 0)
3459 {
3460 iDiff = uTscMaster - uTscWorker;
3461#ifdef TSCDELTA_VERIFY_WITH_STATS
3462 if (iDiff > pArgs->cMaxVerifyTscTicks)
3463 pArgs->cMaxVerifyTscTicks = iDiff;
3464 if (iDiff < pArgs->cMinVerifyTscTicks)
3465 pArgs->cMinVerifyTscTicks = iDiff;
3466#endif
3467 if (iDiff < 0)
3468 {
3469#ifdef TSCDELTA_VERIFY_WITH_STATS
3470 pArgs->iVerifyBadTscDiff = -iDiff;
3471#endif
3472 ASMAtomicWriteS32(&pArgs->rcVerify, VERR_OUT_OF_RANGE);
3473 break;
3474 }
3475 }
3476
3477 /* Worker vs master. */
3478 uTscWorker = pArgs->uWorker.Verify.auTscs[i] - iWorkerTscDelta;
3479 iDiff = uTscWorker - uTscMaster;
3480#ifdef TSCDELTA_VERIFY_WITH_STATS
3481 if (iDiff > pArgs->cMaxVerifyTscTicks)
3482 pArgs->cMaxVerifyTscTicks = iDiff;
3483 if (iDiff < pArgs->cMinVerifyTscTicks)
3484 pArgs->cMinVerifyTscTicks = iDiff;
3485#endif
3486 if (iDiff < 0)
3487 {
3488#ifdef TSCDELTA_VERIFY_WITH_STATS
3489 pArgs->iVerifyBadTscDiff = iDiff;
3490#endif
3491 ASMAtomicWriteS32(&pArgs->rcVerify, VERR_OUT_OF_RANGE);
3492 break;
3493 }
3494 }
3495
3496 /* Done. */
3497 TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(pMySync, pOtherSync);
3498 }
3499 else
3500 {
3501 /*
3502 * The worker, master leads.
3503 */
3504 TSCDELTA_OTHER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs);
3505
3506 for (i = 0; i < RT_ELEMENTS(pArgs->uWorker.Verify.auTscs); i += 2)
3507 {
3508 uint64_t register uTsc;
3509
3510 /* Wait, Read and Kick #1. */
3511 TSCDELTA_DBG_START_LOOP();
3512 while (ASMAtomicReadU32(&pMySync->uSyncVar) == GIP_TSC_DELTA_SYNC2_GO)
3513 {
3514 TSCDELTA_DBG_CHECK_LOOP();
3515 ASMNopPause();
3516 }
3517 uTsc = ASMReadTSC();
3518 ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO_GO);
3519 ASMSerializeInstruction();
3520 pArgs->uWorker.Verify.auTscs[i] = uTsc;
3521
3522 /* Wait, Read and Kick #2. */
3523 TSCDELTA_DBG_START_LOOP();
3524 while (ASMAtomicReadU32(&pMySync->uSyncVar) == GIP_TSC_DELTA_SYNC2_GO_GO)
3525 {
3526 TSCDELTA_DBG_CHECK_LOOP();
3527 ASMNopPause();
3528 }
3529 uTsc = ASMReadTSC();
3530 ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO);
3531 ASMSerializeInstruction();
3532 pArgs->uWorker.Verify.auTscs[i + 1] = uTsc;
3533 }
3534
3535 TSCDELTA_OTHER_SYNC_AFTER(pMySync, pOtherSync, fEFlags);
3536 }
3537 return pArgs->rcVerify;
3538 }
3539
3540 /*
3541 * Timed out, please retry.
3542 */
3543 ASMAtomicWriteS32(&pArgs->rcVerify, VERR_TRY_AGAIN);
3544 return VERR_TIMEOUT;
3545}
3546
3547
3548
3549/**
3550 * Handles the special abort procedure during synchronization setup in
3551 * supdrvTscMeasureDeltaCallbackUnwrapped().
3552 *
3553 * @returns 0 (dummy, ignored)
3554 * @param pArgs Pointer to argument/state data.
3555 * @param pMySync Pointer to my sync structure.
3556 * @param fIsMaster Set if we're the master, clear if worker.
3557 * @param fTimeout Set if it's a timeout.
3558 */
3559DECL_NO_INLINE(static, int)
3560supdrvTscMeasureDeltaCallbackAbortSyncSetup(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync, bool fIsMaster, bool fTimeout)
3561{
3562 PSUPTSCDELTASYNC2 volatile *ppMySync = fIsMaster ? &pArgs->pSyncMaster : &pArgs->pSyncWorker;
3563 PSUPTSCDELTASYNC2 volatile *ppOtherSync = fIsMaster ? &pArgs->pSyncWorker : &pArgs->pSyncMaster;
3564 TSCDELTA_DBG_VARS();
3565 RT_NOREF1(pMySync);
3566
3567 /*
3568 * Clear our sync pointer and make sure the abort flag is set.
3569 */
3570 ASMAtomicWriteNullPtr(ppMySync);
3571 ASMAtomicWriteBool(&pArgs->fAbortSetup, true);
3572 if (fTimeout)
3573 ASMAtomicWriteBool(&pArgs->fTimedOut, true);
3574
3575 /*
3576 * Make sure the other party is out of there and won't be touching our
3577 * sync state again (would cause stack corruption).
3578 */
3579 TSCDELTA_DBG_START_LOOP();
3580 while (ASMAtomicReadPtrT(ppOtherSync, PSUPTSCDELTASYNC2) != NULL)
3581 {
3582 ASMNopPause();
3583 ASMNopPause();
3584 ASMNopPause();
3585 TSCDELTA_DBG_CHECK_LOOP();
3586 }
3587
3588 return 0;
3589}
3590
3591
3592/**
3593 * This is used by supdrvTscMeasureInitialDeltas() to read the TSC on two CPUs
3594 * and compute the delta between them.
3595 *
3596 * To reduce code size a good when timeout handling was added, a dummy return
3597 * value had to be added (saves 1-3 lines per timeout case), thus this
3598 * 'Unwrapped' function and the dummy 0 return value.
3599 *
3600 * @returns 0 (dummy, ignored)
3601 * @param idCpu The CPU we are current scheduled on.
3602 * @param pArgs Pointer to a parameter package.
3603 *
3604 * @remarks Measuring TSC deltas between the CPUs is tricky because we need to
3605 * read the TSC at exactly the same time on both the master and the
3606 * worker CPUs. Due to DMA, bus arbitration, cache locality,
3607 * contention, SMI, pipelining etc. there is no guaranteed way of
3608 * doing this on x86 CPUs.
3609 */
3610static int supdrvTscMeasureDeltaCallbackUnwrapped(RTCPUID idCpu, PSUPDRVGIPTSCDELTARGS pArgs)
3611{
3612 PSUPDRVDEVEXT pDevExt = pArgs->pDevExt;
3613 PSUPGIPCPU pGipCpuWorker = pArgs->pWorker;
3614 PSUPGIPCPU pGipCpuMaster = pArgs->pMaster;
3615 bool const fIsMaster = idCpu == pGipCpuMaster->idCpu;
3616 uint32_t iTry;
3617 PSUPTSCDELTASYNC2 volatile *ppMySync = fIsMaster ? &pArgs->pSyncMaster : &pArgs->pSyncWorker;
3618 PSUPTSCDELTASYNC2 volatile *ppOtherSync = fIsMaster ? &pArgs->pSyncWorker : &pArgs->pSyncMaster;
3619 SUPTSCDELTASYNC2 MySync;
3620 PSUPTSCDELTASYNC2 pOtherSync;
3621 int rc;
3622 TSCDELTA_DBG_VARS();
3623
3624 /* A bit of paranoia first. */
3625 if (!pGipCpuMaster || !pGipCpuWorker)
3626 return 0;
3627
3628 /*
3629 * If the CPU isn't part of the measurement, return immediately.
3630 */
3631 if ( !fIsMaster
3632 && idCpu != pGipCpuWorker->idCpu)
3633 return 0;
3634
3635 /*
3636 * Set up my synchronization stuff and wait for the other party to show up.
3637 *
3638 * We don't wait forever since the other party may be off fishing (offline,
3639 * spinning with ints disables, whatever), we must play nice to the rest of
3640 * the system as this context generally isn't one in which we will get
3641 * preempted and we may hold up a number of lower priority interrupts.
3642 */
3643 ASMAtomicWriteU32(&MySync.uSyncVar, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT);
3644 ASMAtomicWritePtr(ppMySync, &MySync);
3645 MySync.uTscStart = ASMReadTSC();
3646 MySync.cMaxTscTicks = pArgs->cMaxTscTicks;
3647
3648 /* Look for the partner, might not be here yet... Special abort considerations. */
3649 iTry = 0;
3650 TSCDELTA_DBG_START_LOOP();
3651 while ((pOtherSync = ASMAtomicReadPtrT(ppOtherSync, PSUPTSCDELTASYNC2)) == NULL)
3652 {
3653 ASMNopPause();
3654 if ( ASMAtomicReadBool(&pArgs->fAbortSetup)
3655 || !RTMpIsCpuOnline(fIsMaster ? pGipCpuWorker->idCpu : pGipCpuMaster->idCpu) )
3656 return supdrvTscMeasureDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/);
3657 if ( (iTry++ & 0xff) == 0
3658 && ASMReadTSC() - MySync.uTscStart > pArgs->cMaxTscTicks)
3659 return supdrvTscMeasureDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, true /*fTimeout*/);
3660 TSCDELTA_DBG_CHECK_LOOP();
3661 ASMNopPause();
3662 }
3663
3664 /* I found my partner, waiting to be found... Special abort considerations. */
3665 if (fIsMaster)
3666 if (!ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT)) /* parnaoia */
3667 return supdrvTscMeasureDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/);
3668
3669 iTry = 0;
3670 TSCDELTA_DBG_START_LOOP();
3671 while (ASMAtomicReadU32(&MySync.uSyncVar) == GIP_TSC_DELTA_SYNC2_PRESTART_WAIT)
3672 {
3673 ASMNopPause();
3674 if (ASMAtomicReadBool(&pArgs->fAbortSetup))
3675 return supdrvTscMeasureDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/);
3676 if ( (iTry++ & 0xff) == 0
3677 && ASMReadTSC() - MySync.uTscStart > pArgs->cMaxTscTicks)
3678 {
3679 if ( fIsMaster
3680 && !ASMAtomicCmpXchgU32(&MySync.uSyncVar, GIP_TSC_DELTA_SYNC2_PRESTART_ABORT, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT))
3681 break; /* race #1: slave has moved on, handle timeout in loop instead. */
3682 return supdrvTscMeasureDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, true /*fTimeout*/);
3683 }
3684 TSCDELTA_DBG_CHECK_LOOP();
3685 }
3686
3687 if (!fIsMaster)
3688 if (!ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT)) /* race #1 */
3689 return supdrvTscMeasureDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/);
3690
3691/** @todo Add a resumable state to pArgs so we don't waste time if we time
3692 * out or something. Timeouts are legit, any of the two CPUs may get
3693 * interrupted. */
3694
3695 /*
3696 * Start by seeing if we have a zero delta between the two CPUs.
3697 * This should normally be the case.
3698 */
3699 rc = supdrvTscDeltaVerify(pArgs, &MySync, pOtherSync, fIsMaster, GIP_TSC_DELTA_INITIAL_MASTER_VALUE);
3700 if (RT_SUCCESS(rc))
3701 {
3702 if (fIsMaster)
3703 {
3704 ASMAtomicWriteS64(&pGipCpuWorker->i64TSCDelta, GIP_TSC_DELTA_INITIAL_MASTER_VALUE);
3705 RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet);
3706 RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuWorker->iCpuSet);
3707 }
3708 }
3709 /*
3710 * If the verification didn't time out, do regular delta measurements.
3711 * We retry this until we get a reasonable value.
3712 */
3713 else if (rc != VERR_TIMEOUT)
3714 {
3715 Assert(pGipCpuWorker->i64TSCDelta == INT64_MAX);
3716 for (iTry = 0; iTry < 12; iTry++)
3717 {
3718 /*
3719 * Check the state before we start.
3720 */
3721 uint32_t u32Tmp = ASMAtomicReadU32(&MySync.uSyncVar);
3722 if ( u32Tmp != GIP_TSC_DELTA_SYNC2_READY
3723 && (fIsMaster || u32Tmp != GIP_TSC_DELTA_SYNC2_STEADY) /* worker may be late prepping for the next round */ )
3724 {
3725 TSCDELTA_DBG_SYNC_MSG(("sync/loop/%s: #0 iTry=%u MyState=%#x\n", fIsMaster ? "master" : "worker", iTry, u32Tmp));
3726 break;
3727 }
3728
3729 /*
3730 * Do the measurements.
3731 */
3732#ifdef GIP_TSC_DELTA_METHOD_1
3733 supdrvTscDeltaMethod1Loop(pArgs, &MySync, pOtherSync, fIsMaster, iTry);
3734#elif defined(GIP_TSC_DELTA_METHOD_2)
3735 supdrvTscDeltaMethod2Loop(pArgs, &MySync, pOtherSync, fIsMaster, iTry);
3736#else
3737# error "huh??"
3738#endif
3739
3740 /*
3741 * Check the state.
3742 */
3743 u32Tmp = ASMAtomicReadU32(&MySync.uSyncVar);
3744 if ( u32Tmp != GIP_TSC_DELTA_SYNC2_READY
3745 && (fIsMaster || u32Tmp != GIP_TSC_DELTA_SYNC2_STEADY) /* worker may be late prepping for the next round */ )
3746 {
3747 if (fIsMaster)
3748 TSCDELTA_DBG_SYNC_MSG(("sync/loop/master: #1 iTry=%u MyState=%#x\n", iTry, u32Tmp));
3749 else
3750 TSCDELTA_DBG_SYNC_MSG2(("sync/loop/worker: #1 iTry=%u MyState=%#x\n", iTry, u32Tmp));
3751 break;
3752 }
3753
3754 /*
3755 * Success? If so, stop trying. Master decides.
3756 */
3757 if (fIsMaster)
3758 {
3759 if (pGipCpuWorker->i64TSCDelta != INT64_MAX)
3760 {
3761 RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet);
3762 RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuWorker->iCpuSet);
3763 TSCDELTA_DBG_SYNC_MSG2(("sync/loop/master: #9 iTry=%u MyState=%#x\n", iTry, MySync.uSyncVar));
3764 break;
3765 }
3766 }
3767 }
3768 if (fIsMaster)
3769 pArgs->iTry = iTry;
3770 }
3771
3772 /*
3773 * End the synchronization dance. We tell the other that we're done,
3774 * then wait for the same kind of reply.
3775 */
3776 ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_FINAL);
3777 ASMAtomicWriteNullPtr(ppMySync);
3778 iTry = 0;
3779 TSCDELTA_DBG_START_LOOP();
3780 while (ASMAtomicReadU32(&MySync.uSyncVar) != GIP_TSC_DELTA_SYNC2_FINAL)
3781 {
3782 iTry++;
3783 if ( iTry == 0
3784 && !RTMpIsCpuOnline(fIsMaster ? pGipCpuWorker->idCpu : pGipCpuMaster->idCpu))
3785 break; /* this really shouldn't happen. */
3786 TSCDELTA_DBG_CHECK_LOOP();
3787 ASMNopPause();
3788 }
3789
3790 /*
3791 * Collect some runtime stats.
3792 */
3793 if (fIsMaster)
3794 pArgs->cElapsedMasterTscTicks = ASMReadTSC() - MySync.uTscStart;
3795 else
3796 pArgs->cElapsedWorkerTscTicks = ASMReadTSC() - MySync.uTscStart;
3797 return 0;
3798}
3799
3800/**
3801 * Callback used by supdrvTscMeasureInitialDeltas() to read the TSC on two CPUs
3802 * and compute the delta between them.
3803 *
3804 * @param idCpu The CPU we are current scheduled on.
3805 * @param pvUser1 Pointer to a parameter package (SUPDRVGIPTSCDELTARGS).
3806 * @param pvUser2 Unused.
3807 */
3808static DECLCALLBACK(void) supdrvTscMeasureDeltaCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
3809{
3810 supdrvTscMeasureDeltaCallbackUnwrapped(idCpu, (PSUPDRVGIPTSCDELTARGS)pvUser1);
3811 RT_NOREF1(pvUser2);
3812}
3813
3814
3815/**
3816 * Measures the TSC delta between the master GIP CPU and one specified worker
3817 * CPU.
3818 *
3819 * @returns VBox status code.
3820 * @retval VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED on pure measurement
3821 * failure.
3822 * @param pDevExt Pointer to the device instance data.
3823 * @param idxWorker The index of the worker CPU from the GIP's array of
3824 * CPUs.
3825 *
3826 * @remarks This must be called with preemption enabled!
3827 */
3828static int supdrvTscMeasureDeltaOne(PSUPDRVDEVEXT pDevExt, uint32_t idxWorker)
3829{
3830 int rc;
3831 int rc2;
3832 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
3833 RTCPUID idMaster = pDevExt->idGipMaster;
3834 PSUPGIPCPU pGipCpuWorker = &pGip->aCPUs[idxWorker];
3835 PSUPGIPCPU pGipCpuMaster;
3836 uint32_t iGipCpuMaster;
3837 uint32_t u32Tmp;
3838
3839 /* Validate input a bit. */
3840 AssertReturn(pGip, VERR_INVALID_PARAMETER);
3841 Assert(pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED);
3842 Assert(RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3843
3844 /*
3845 * Don't attempt measuring the delta for the GIP master.
3846 */
3847 if (pGipCpuWorker->idCpu == idMaster)
3848 {
3849 if (pGipCpuWorker->i64TSCDelta == INT64_MAX) /* This shouldn't happen, but just in case. */
3850 ASMAtomicWriteS64(&pGipCpuWorker->i64TSCDelta, GIP_TSC_DELTA_INITIAL_MASTER_VALUE);
3851 return VINF_SUCCESS;
3852 }
3853
3854 /*
3855 * One measurement at a time, at least for now. We might be using
3856 * broadcast IPIs so, so be nice to the rest of the system.
3857 */
3858#ifdef SUPDRV_USE_MUTEX_FOR_GIP
3859 rc = RTSemMutexRequest(pDevExt->mtxTscDelta, RT_INDEFINITE_WAIT);
3860#else
3861 rc = RTSemFastMutexRequest(pDevExt->mtxTscDelta);
3862#endif
3863 if (RT_FAILURE(rc))
3864 return rc;
3865
3866 /*
3867 * If the CPU has hyper-threading and the APIC IDs of the master and worker are adjacent,
3868 * try pick a different master. (This fudge only works with multi core systems.)
3869 * ASSUMES related threads have adjacent APIC IDs. ASSUMES two threads per core.
3870 *
3871 * We skip this on AMDs for now as their HTT is different from Intel's and
3872 * it doesn't seem to have any favorable effect on the results.
3873 *
3874 * If the master is offline, we need a new master too, so share the code.
3875 */
3876 iGipCpuMaster = supdrvGipFindCpuIndexForCpuId(pGip, idMaster);
3877 AssertReturn(iGipCpuMaster < pGip->cCpus, VERR_INVALID_CPU_ID);
3878 pGipCpuMaster = &pGip->aCPUs[iGipCpuMaster];
3879 if ( ( (pGipCpuMaster->idApic & ~1) == (pGipCpuWorker->idApic & ~1)
3880 && pGip->cOnlineCpus > 2
3881 && ASMHasCpuId()
3882 && ASMIsValidStdRange(ASMCpuId_EAX(0))
3883 && (ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_HTT)
3884 && ( !ASMIsAmdCpu()
3885 || ASMGetCpuFamily(u32Tmp = ASMCpuId_EAX(1)) > 0x15
3886 || ( ASMGetCpuFamily(u32Tmp) == 0x15 /* Piledriver+, not bulldozer (FX-4150 didn't like it). */
3887 && ASMGetCpuModelAMD(u32Tmp) >= 0x02) ) )
3888 || !RTMpIsCpuOnline(idMaster) )
3889 {
3890 uint32_t i;
3891 for (i = 0; i < pGip->cCpus; i++)
3892 if ( i != iGipCpuMaster
3893 && i != idxWorker
3894 && pGip->aCPUs[i].enmState == SUPGIPCPUSTATE_ONLINE
3895 && pGip->aCPUs[i].i64TSCDelta != INT64_MAX
3896 && pGip->aCPUs[i].idCpu != NIL_RTCPUID
3897 && pGip->aCPUs[i].idCpu != idMaster /* paranoia starts here... */
3898 && pGip->aCPUs[i].idCpu != pGipCpuWorker->idCpu
3899 && pGip->aCPUs[i].idApic != pGipCpuWorker->idApic
3900 && pGip->aCPUs[i].idApic != pGipCpuMaster->idApic
3901 && RTMpIsCpuOnline(pGip->aCPUs[i].idCpu))
3902 {
3903 iGipCpuMaster = i;
3904 pGipCpuMaster = &pGip->aCPUs[i];
3905 idMaster = pGipCpuMaster->idCpu;
3906 break;
3907 }
3908 }
3909
3910 if (RTCpuSetIsMemberByIndex(&pGip->OnlineCpuSet, pGipCpuWorker->iCpuSet))
3911 {
3912 /*
3913 * Initialize data package for the RTMpOnPair callback.
3914 */
3915 PSUPDRVGIPTSCDELTARGS pArgs = (PSUPDRVGIPTSCDELTARGS)RTMemAllocZ(sizeof(*pArgs));
3916 if (pArgs)
3917 {
3918 pArgs->pWorker = pGipCpuWorker;
3919 pArgs->pMaster = pGipCpuMaster;
3920 pArgs->pDevExt = pDevExt;
3921 pArgs->pSyncMaster = NULL;
3922 pArgs->pSyncWorker = NULL;
3923 pArgs->cMaxTscTicks = ASMAtomicReadU64(&pGip->u64CpuHz) / 512; /* 1953 us */
3924
3925 /*
3926 * Do the RTMpOnPair call. We reset i64TSCDelta first so we
3927 * and supdrvTscMeasureDeltaCallback can use it as a success check.
3928 */
3929 /** @todo Store the i64TSCDelta result in pArgs first? Perhaps deals with
3930 * that when doing the restart loop reorg. */
3931 ASMAtomicWriteS64(&pGipCpuWorker->i64TSCDelta, INT64_MAX);
3932 rc = RTMpOnPair(pGipCpuMaster->idCpu, pGipCpuWorker->idCpu, RTMPON_F_CONCURRENT_EXEC,
3933 supdrvTscMeasureDeltaCallback, pArgs, NULL);
3934 if (RT_SUCCESS(rc))
3935 {
3936#if 0
3937 SUPR0Printf("mponpair ticks: %9llu %9llu max: %9llu iTry: %u%s\n", pArgs->cElapsedMasterTscTicks,
3938 pArgs->cElapsedWorkerTscTicks, pArgs->cMaxTscTicks, pArgs->iTry,
3939 pArgs->fTimedOut ? " timed out" :"");
3940#endif
3941#if 0
3942 SUPR0Printf("rcVerify=%d iVerifyBadTscDiff=%lld cMinVerifyTscTicks=%lld cMaxVerifyTscTicks=%lld\n",
3943 pArgs->rcVerify, pArgs->iVerifyBadTscDiff, pArgs->cMinVerifyTscTicks, pArgs->cMaxVerifyTscTicks);
3944#endif
3945 if (RT_LIKELY(pGipCpuWorker->i64TSCDelta != INT64_MAX))
3946 {
3947 /*
3948 * Work the TSC delta applicability rating. It starts
3949 * optimistic in supdrvGipInit, we downgrade it here.
3950 */
3951 SUPGIPUSETSCDELTA enmRating;
3952 if ( pGipCpuWorker->i64TSCDelta > GIP_TSC_DELTA_THRESHOLD_ROUGHLY_ZERO
3953 || pGipCpuWorker->i64TSCDelta < -GIP_TSC_DELTA_THRESHOLD_ROUGHLY_ZERO)
3954 enmRating = SUPGIPUSETSCDELTA_NOT_ZERO;
3955 else if ( pGipCpuWorker->i64TSCDelta > GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO
3956 || pGipCpuWorker->i64TSCDelta < -GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO)
3957 enmRating = SUPGIPUSETSCDELTA_ROUGHLY_ZERO;
3958 else
3959 enmRating = SUPGIPUSETSCDELTA_PRACTICALLY_ZERO;
3960 if (pGip->enmUseTscDelta < enmRating)
3961 {
3962 AssertCompile(sizeof(pGip->enmUseTscDelta) == sizeof(uint32_t));
3963 ASMAtomicWriteU32((uint32_t volatile *)&pGip->enmUseTscDelta, enmRating);
3964 }
3965 }
3966 else
3967 rc = VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED;
3968 }
3969 /** @todo return try-again if we get an offline CPU error. */
3970
3971 RTMemFree(pArgs);
3972 }
3973 else
3974 rc = VERR_NO_MEMORY;
3975 }
3976 else
3977 rc = VERR_CPU_OFFLINE;
3978
3979 /*
3980 * We're done now.
3981 */
3982#ifdef SUPDRV_USE_MUTEX_FOR_GIP
3983 rc2 = RTSemMutexRelease(pDevExt->mtxTscDelta); AssertRC(rc2);
3984#else
3985 rc2 = RTSemFastMutexRelease(pDevExt->mtxTscDelta); AssertRC(rc2);
3986#endif
3987 return rc;
3988}
3989
3990
3991/**
3992 * Resets the TSC-delta related TSC samples and optionally the deltas
3993 * themselves.
3994 *
3995 * @param pDevExt Pointer to the device instance data.
3996 * @param fResetTscDeltas Whether the TSC-deltas are also to be reset.
3997 *
3998 * @remarks This might be called while holding a spinlock!
3999 */
4000static void supdrvTscResetSamples(PSUPDRVDEVEXT pDevExt, bool fResetTscDeltas)
4001{
4002 unsigned iCpu;
4003 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
4004 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
4005 {
4006 PSUPGIPCPU pGipCpu = &pGip->aCPUs[iCpu];
4007 ASMAtomicWriteU64(&pGipCpu->u64TSCSample, GIP_TSC_DELTA_RSVD);
4008 if (fResetTscDeltas)
4009 {
4010 RTCpuSetDelByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpu->iCpuSet);
4011 ASMAtomicWriteS64(&pGipCpu->i64TSCDelta, INT64_MAX);
4012 }
4013 }
4014}
4015
4016
4017/**
4018 * Picks an online CPU as the master TSC for TSC-delta computations.
4019 *
4020 * @returns VBox status code.
4021 * @param pDevExt Pointer to the device instance data.
4022 * @param pidxMaster Where to store the CPU array index of the chosen
4023 * master. Optional, can be NULL.
4024 */
4025static int supdrvTscPickMaster(PSUPDRVDEVEXT pDevExt, uint32_t *pidxMaster)
4026{
4027 /*
4028 * Pick the first CPU online as the master TSC and make it the new GIP master based
4029 * on the APIC ID.
4030 *
4031 * Technically we can simply use "idGipMaster" but doing this gives us master as CPU 0
4032 * in most cases making it nicer/easier for comparisons. It is safe to update the GIP
4033 * master as this point since the sync/async timer isn't created yet.
4034 */
4035 unsigned iCpu;
4036 uint32_t idxMaster = UINT32_MAX;
4037 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
4038 for (iCpu = 0; iCpu < RT_ELEMENTS(pGip->aiCpuFromApicId); iCpu++)
4039 {
4040 uint16_t idxCpu = pGip->aiCpuFromApicId[iCpu];
4041 if (idxCpu != UINT16_MAX)
4042 {
4043 PSUPGIPCPU pGipCpu = &pGip->aCPUs[idxCpu];
4044 if (RTCpuSetIsMemberByIndex(&pGip->OnlineCpuSet, pGipCpu->iCpuSet))
4045 {
4046 idxMaster = idxCpu;
4047 pGipCpu->i64TSCDelta = GIP_TSC_DELTA_INITIAL_MASTER_VALUE;
4048 ASMAtomicWriteSize(&pDevExt->idGipMaster, pGipCpu->idCpu);
4049 if (pidxMaster)
4050 *pidxMaster = idxMaster;
4051 return VINF_SUCCESS;
4052 }
4053 }
4054 }
4055 return VERR_CPU_OFFLINE;
4056}
4057
4058
4059/**
4060 * Performs the initial measurements of the TSC deltas between CPUs.
4061 *
4062 * This is called by supdrvGipCreate(), supdrvGipPowerNotificationCallback() or
4063 * triggered by it if threaded.
4064 *
4065 * @returns VBox status code.
4066 * @param pDevExt Pointer to the device instance data.
4067 *
4068 * @remarks Must be called only after supdrvGipInitOnCpu() as this function uses
4069 * idCpu, GIP's online CPU set which are populated in
4070 * supdrvGipInitOnCpu().
4071 */
4072static int supdrvTscMeasureInitialDeltas(PSUPDRVDEVEXT pDevExt)
4073{
4074 PSUPGIPCPU pGipCpuMaster;
4075 unsigned iCpu;
4076 unsigned iOddEven;
4077 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
4078 uint32_t idxMaster = UINT32_MAX;
4079 uint32_t cMpOnOffEvents = ASMAtomicReadU32(&pDevExt->cMpOnOffEvents);
4080
4081 Assert(pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED);
4082 supdrvTscResetSamples(pDevExt, true /* fClearDeltas */);
4083 int rc = supdrvTscPickMaster(pDevExt, &idxMaster);
4084 if (RT_FAILURE(rc))
4085 {
4086 SUPR0Printf("Failed to pick a CPU master for TSC-delta measurements rc=%Rrc\n", rc);
4087 return rc;
4088 }
4089 AssertReturn(idxMaster < pGip->cCpus, VERR_INVALID_CPU_INDEX);
4090 pGipCpuMaster = &pGip->aCPUs[idxMaster];
4091 Assert(pDevExt->idGipMaster == pGipCpuMaster->idCpu);
4092
4093 /*
4094 * If there is only a single CPU online we have nothing to do.
4095 */
4096 if (pGip->cOnlineCpus <= 1)
4097 {
4098 AssertReturn(pGip->cOnlineCpus > 0, VERR_INTERNAL_ERROR_5);
4099 return VINF_SUCCESS;
4100 }
4101
4102 /*
4103 * Loop thru the GIP CPU array and get deltas for each CPU (except the
4104 * master). We do the CPUs with the even numbered APIC IDs first so that
4105 * we've got alternative master CPUs to pick from on hyper-threaded systems.
4106 */
4107 for (iOddEven = 0; iOddEven < 2; iOddEven++)
4108 {
4109 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
4110 {
4111 PSUPGIPCPU pGipCpuWorker = &pGip->aCPUs[iCpu];
4112 if ( iCpu != idxMaster
4113 && (iOddEven > 0 || (pGipCpuWorker->idApic & 1) == 0)
4114 && RTCpuSetIsMemberByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet))
4115 {
4116 rc = supdrvTscMeasureDeltaOne(pDevExt, iCpu);
4117 if (RT_FAILURE(rc))
4118 {
4119 SUPR0Printf("supdrvTscMeasureDeltaOne failed. rc=%d CPU[%u].idCpu=%u Master[%u].idCpu=%u\n", rc, iCpu,
4120 pGipCpuWorker->idCpu, idxMaster, pDevExt->idGipMaster, pGipCpuMaster->idCpu);
4121 break;
4122 }
4123
4124 if (ASMAtomicReadU32(&pDevExt->cMpOnOffEvents) != cMpOnOffEvents)
4125 {
4126 SUPR0Printf("One or more CPUs transitioned between online & offline states. I'm confused, retry...\n");
4127 rc = VERR_TRY_AGAIN;
4128 break;
4129 }
4130 }
4131 }
4132 }
4133
4134 return rc;
4135}
4136
4137
4138#ifdef SUPDRV_USE_TSC_DELTA_THREAD
4139
4140/**
4141 * Switches the TSC-delta measurement thread into the butchered state.
4142 *
4143 * @returns VBox status code.
4144 * @param pDevExt Pointer to the device instance data.
4145 * @param fSpinlockHeld Whether the TSC-delta spinlock is held or not.
4146 * @param pszFailed An error message to log.
4147 * @param rcFailed The error code to exit the thread with.
4148 */
4149static int supdrvTscDeltaThreadButchered(PSUPDRVDEVEXT pDevExt, bool fSpinlockHeld, const char *pszFailed, int rcFailed)
4150{
4151 if (!fSpinlockHeld)
4152 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4153
4154 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Butchered;
4155 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4156 OSDBGPRINT(("supdrvTscDeltaThreadButchered: %s. rc=%Rrc\n", pszFailed, rcFailed));
4157 return rcFailed;
4158}
4159
4160
4161/**
4162 * The TSC-delta measurement thread.
4163 *
4164 * @returns VBox status code.
4165 * @param hThread The thread handle.
4166 * @param pvUser Opaque pointer to the device instance data.
4167 */
4168static DECLCALLBACK(int) supdrvTscDeltaThread(RTTHREAD hThread, void *pvUser)
4169{
4170 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
4171 uint32_t cConsecutiveTimeouts = 0;
4172 int rc = VERR_INTERNAL_ERROR_2;
4173 for (;;)
4174 {
4175 /*
4176 * Switch on the current state.
4177 */
4178 SUPDRVTSCDELTATHREADSTATE enmState;
4179 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4180 enmState = pDevExt->enmTscDeltaThreadState;
4181 switch (enmState)
4182 {
4183 case kTscDeltaThreadState_Creating:
4184 {
4185 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Listening;
4186 rc = RTSemEventSignal(pDevExt->hTscDeltaEvent);
4187 if (RT_FAILURE(rc))
4188 return supdrvTscDeltaThreadButchered(pDevExt, true /* fSpinlockHeld */, "RTSemEventSignal", rc);
4189 /* fall thru */
4190 }
4191
4192 case kTscDeltaThreadState_Listening:
4193 {
4194 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4195
4196 /*
4197 * Linux counts uninterruptible sleeps as load, hence we shall do a
4198 * regular, interruptible sleep here and ignore wake ups due to signals.
4199 * See task_contributes_to_load() in include/linux/sched.h in the Linux sources.
4200 */
4201 rc = RTThreadUserWaitNoResume(hThread, pDevExt->cMsTscDeltaTimeout);
4202 if ( RT_FAILURE(rc)
4203 && rc != VERR_TIMEOUT
4204 && rc != VERR_INTERRUPTED)
4205 return supdrvTscDeltaThreadButchered(pDevExt, false /* fSpinlockHeld */, "RTThreadUserWait", rc);
4206 RTThreadUserReset(hThread);
4207 break;
4208 }
4209
4210 case kTscDeltaThreadState_WaitAndMeasure:
4211 {
4212 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Measuring;
4213 rc = RTSemEventSignal(pDevExt->hTscDeltaEvent); /* (Safe on windows as long as spinlock isn't IRQ safe.) */
4214 if (RT_FAILURE(rc))
4215 return supdrvTscDeltaThreadButchered(pDevExt, true /* fSpinlockHeld */, "RTSemEventSignal", rc);
4216 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4217 RTThreadSleep(1);
4218 /* fall thru */
4219 }
4220
4221 case kTscDeltaThreadState_Measuring:
4222 {
4223 cConsecutiveTimeouts = 0;
4224 if (pDevExt->fTscThreadRecomputeAllDeltas)
4225 {
4226 int cTries = 8;
4227 int cMsWaitPerTry = 10;
4228 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
4229 Assert(pGip);
4230 do
4231 {
4232 RTCpuSetCopy(&pDevExt->TscDeltaCpuSet, &pGip->OnlineCpuSet);
4233 rc = supdrvTscMeasureInitialDeltas(pDevExt);
4234 if ( RT_SUCCESS(rc)
4235 || ( RT_FAILURE(rc)
4236 && rc != VERR_TRY_AGAIN
4237 && rc != VERR_CPU_OFFLINE))
4238 {
4239 break;
4240 }
4241 RTThreadSleep(cMsWaitPerTry);
4242 } while (cTries-- > 0);
4243 pDevExt->fTscThreadRecomputeAllDeltas = false;
4244 }
4245 else
4246 {
4247 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
4248 unsigned iCpu;
4249
4250 /* Measure TSC-deltas only for the CPUs that are in the set. */
4251 rc = VINF_SUCCESS;
4252 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
4253 {
4254 PSUPGIPCPU pGipCpuWorker = &pGip->aCPUs[iCpu];
4255 if (RTCpuSetIsMemberByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet))
4256 {
4257 if (pGipCpuWorker->i64TSCDelta == INT64_MAX)
4258 {
4259 int rc2 = supdrvTscMeasureDeltaOne(pDevExt, iCpu);
4260 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
4261 rc = rc2;
4262 }
4263 else
4264 {
4265 /*
4266 * The thread/someone must've called SUPR0TscDeltaMeasureBySetIndex(),
4267 * mark the delta as fine to get the timer thread off our back.
4268 */
4269 RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet);
4270 RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuWorker->iCpuSet);
4271 }
4272 }
4273 }
4274 }
4275 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4276 if (pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring)
4277 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Listening;
4278 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4279 Assert(rc != VERR_NOT_AVAILABLE); /* VERR_NOT_AVAILABLE is used as init value, see supdrvTscDeltaThreadInit(). */
4280 ASMAtomicWriteS32(&pDevExt->rcTscDelta, rc);
4281 break;
4282 }
4283
4284 case kTscDeltaThreadState_Terminating:
4285 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Destroyed;
4286 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4287 return VINF_SUCCESS;
4288
4289 case kTscDeltaThreadState_Butchered:
4290 default:
4291 return supdrvTscDeltaThreadButchered(pDevExt, true /* fSpinlockHeld */, "Invalid state", VERR_INVALID_STATE);
4292 }
4293 }
4294 /* not reached */
4295}
4296
4297
4298/**
4299 * Waits for the TSC-delta measurement thread to respond to a state change.
4300 *
4301 * @returns VINF_SUCCESS on success, VERR_TIMEOUT if it doesn't respond in time,
4302 * other error code on internal error.
4303 *
4304 * @param pDevExt The device instance data.
4305 * @param enmCurState The current state.
4306 * @param enmNewState The new state we're waiting for it to enter.
4307 */
4308static int supdrvTscDeltaThreadWait(PSUPDRVDEVEXT pDevExt, SUPDRVTSCDELTATHREADSTATE enmCurState,
4309 SUPDRVTSCDELTATHREADSTATE enmNewState)
4310{
4311 SUPDRVTSCDELTATHREADSTATE enmActualState;
4312 int rc;
4313
4314 /*
4315 * Wait a short while for the expected state transition.
4316 */
4317 RTSemEventWait(pDevExt->hTscDeltaEvent, RT_MS_1SEC);
4318 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4319 enmActualState = pDevExt->enmTscDeltaThreadState;
4320 if (enmActualState == enmNewState)
4321 {
4322 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4323 rc = VINF_SUCCESS;
4324 }
4325 else if (enmActualState == enmCurState)
4326 {
4327 /*
4328 * Wait longer if the state has not yet transitioned to the one we want.
4329 */
4330 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4331 rc = RTSemEventWait(pDevExt->hTscDeltaEvent, 50 * RT_MS_1SEC);
4332 if ( RT_SUCCESS(rc)
4333 || rc == VERR_TIMEOUT)
4334 {
4335 /*
4336 * Check the state whether we've succeeded.
4337 */
4338 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4339 enmActualState = pDevExt->enmTscDeltaThreadState;
4340 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4341 if (enmActualState == enmNewState)
4342 rc = VINF_SUCCESS;
4343 else if (enmActualState == enmCurState)
4344 {
4345 rc = VERR_TIMEOUT;
4346 OSDBGPRINT(("supdrvTscDeltaThreadWait: timed out state transition. enmActualState=%d enmNewState=%d\n",
4347 enmActualState, enmNewState));
4348 }
4349 else
4350 {
4351 rc = VERR_INTERNAL_ERROR;
4352 OSDBGPRINT(("supdrvTscDeltaThreadWait: invalid state transition from %d to %d, expected %d\n", enmCurState,
4353 enmActualState, enmNewState));
4354 }
4355 }
4356 else
4357 OSDBGPRINT(("supdrvTscDeltaThreadWait: RTSemEventWait failed. rc=%Rrc\n", rc));
4358 }
4359 else
4360 {
4361 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4362 OSDBGPRINT(("supdrvTscDeltaThreadWait: invalid state %d when transitioning from %d to %d\n",
4363 enmActualState, enmCurState, enmNewState));
4364 rc = VERR_INTERNAL_ERROR;
4365 }
4366
4367 return rc;
4368}
4369
4370
4371/**
4372 * Signals the TSC-delta thread to start measuring TSC-deltas.
4373 *
4374 * @param pDevExt Pointer to the device instance data.
4375 * @param fForceAll Force re-calculating TSC-deltas on all CPUs.
4376 */
4377static void supdrvTscDeltaThreadStartMeasurement(PSUPDRVDEVEXT pDevExt, bool fForceAll)
4378{
4379 if (pDevExt->hTscDeltaThread != NIL_RTTHREAD)
4380 {
4381 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4382 if ( pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Listening
4383 || pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring)
4384 {
4385 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_WaitAndMeasure;
4386 if (fForceAll)
4387 pDevExt->fTscThreadRecomputeAllDeltas = true;
4388 }
4389 else if ( pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_WaitAndMeasure
4390 && fForceAll)
4391 pDevExt->fTscThreadRecomputeAllDeltas = true;
4392 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4393 RTThreadUserSignal(pDevExt->hTscDeltaThread);
4394 }
4395}
4396
4397
4398/**
4399 * Terminates the actual thread running supdrvTscDeltaThread().
4400 *
4401 * This is an internal worker function for supdrvTscDeltaThreadInit() and
4402 * supdrvTscDeltaTerm().
4403 *
4404 * @param pDevExt Pointer to the device instance data.
4405 */
4406static void supdrvTscDeltaThreadTerminate(PSUPDRVDEVEXT pDevExt)
4407{
4408 int rc;
4409 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4410 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Terminating;
4411 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4412 RTThreadUserSignal(pDevExt->hTscDeltaThread);
4413 rc = RTThreadWait(pDevExt->hTscDeltaThread, 50 * RT_MS_1SEC, NULL /* prc */);
4414 if (RT_FAILURE(rc))
4415 {
4416 /* Signal a few more times before giving up. */
4417 int cTriesLeft = 5;
4418 while (--cTriesLeft > 0)
4419 {
4420 RTThreadUserSignal(pDevExt->hTscDeltaThread);
4421 rc = RTThreadWait(pDevExt->hTscDeltaThread, 2 * RT_MS_1SEC, NULL /* prc */);
4422 if (rc != VERR_TIMEOUT)
4423 break;
4424 }
4425 }
4426}
4427
4428
4429/**
4430 * Initializes and spawns the TSC-delta measurement thread.
4431 *
4432 * A thread is required for servicing re-measurement requests from events like
4433 * CPUs coming online, suspend/resume etc. as it cannot be done synchronously
4434 * under all contexts on all OSs.
4435 *
4436 * @returns VBox status code.
4437 * @param pDevExt Pointer to the device instance data.
4438 *
4439 * @remarks Must only be called -after- initializing GIP and setting up MP
4440 * notifications!
4441 */
4442static int supdrvTscDeltaThreadInit(PSUPDRVDEVEXT pDevExt)
4443{
4444 int rc;
4445 Assert(pDevExt->pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED);
4446 rc = RTSpinlockCreate(&pDevExt->hTscDeltaSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_UNSAFE, "VBoxTscSpnLck");
4447 if (RT_SUCCESS(rc))
4448 {
4449 rc = RTSemEventCreate(&pDevExt->hTscDeltaEvent);
4450 if (RT_SUCCESS(rc))
4451 {
4452 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Creating;
4453 pDevExt->cMsTscDeltaTimeout = 60000;
4454 rc = RTThreadCreate(&pDevExt->hTscDeltaThread, supdrvTscDeltaThread, pDevExt, 0 /* cbStack */,
4455 RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "VBoxTscThread");
4456 if (RT_SUCCESS(rc))
4457 {
4458 rc = supdrvTscDeltaThreadWait(pDevExt, kTscDeltaThreadState_Creating, kTscDeltaThreadState_Listening);
4459 if (RT_SUCCESS(rc))
4460 {
4461 ASMAtomicWriteS32(&pDevExt->rcTscDelta, VERR_NOT_AVAILABLE);
4462 return rc;
4463 }
4464
4465 OSDBGPRINT(("supdrvTscDeltaInit: supdrvTscDeltaThreadWait failed. rc=%Rrc\n", rc));
4466 supdrvTscDeltaThreadTerminate(pDevExt);
4467 }
4468 else
4469 OSDBGPRINT(("supdrvTscDeltaInit: RTThreadCreate failed. rc=%Rrc\n", rc));
4470 RTSemEventDestroy(pDevExt->hTscDeltaEvent);
4471 pDevExt->hTscDeltaEvent = NIL_RTSEMEVENT;
4472 }
4473 else
4474 OSDBGPRINT(("supdrvTscDeltaInit: RTSemEventCreate failed. rc=%Rrc\n", rc));
4475 RTSpinlockDestroy(pDevExt->hTscDeltaSpinlock);
4476 pDevExt->hTscDeltaSpinlock = NIL_RTSPINLOCK;
4477 }
4478 else
4479 OSDBGPRINT(("supdrvTscDeltaInit: RTSpinlockCreate failed. rc=%Rrc\n", rc));
4480
4481 return rc;
4482}
4483
4484
4485/**
4486 * Terminates the TSC-delta measurement thread and cleanup.
4487 *
4488 * @param pDevExt Pointer to the device instance data.
4489 */
4490static void supdrvTscDeltaTerm(PSUPDRVDEVEXT pDevExt)
4491{
4492 if ( pDevExt->hTscDeltaSpinlock != NIL_RTSPINLOCK
4493 && pDevExt->hTscDeltaEvent != NIL_RTSEMEVENT)
4494 {
4495 supdrvTscDeltaThreadTerminate(pDevExt);
4496 }
4497
4498 if (pDevExt->hTscDeltaSpinlock != NIL_RTSPINLOCK)
4499 {
4500 RTSpinlockDestroy(pDevExt->hTscDeltaSpinlock);
4501 pDevExt->hTscDeltaSpinlock = NIL_RTSPINLOCK;
4502 }
4503
4504 if (pDevExt->hTscDeltaEvent != NIL_RTSEMEVENT)
4505 {
4506 RTSemEventDestroy(pDevExt->hTscDeltaEvent);
4507 pDevExt->hTscDeltaEvent = NIL_RTSEMEVENT;
4508 }
4509
4510 ASMAtomicWriteS32(&pDevExt->rcTscDelta, VERR_NOT_AVAILABLE);
4511}
4512
4513#endif /* SUPDRV_USE_TSC_DELTA_THREAD */
4514
4515/**
4516 * Measure the TSC delta for the CPU given by its CPU set index.
4517 *
4518 * @returns VBox status code.
4519 * @retval VERR_INTERRUPTED if interrupted while waiting.
4520 * @retval VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED if we were unable to get a
4521 * measurement.
4522 * @retval VERR_CPU_OFFLINE if the specified CPU is offline.
4523 *
4524 * @param pSession The caller's session. GIP must've been mapped.
4525 * @param iCpuSet The CPU set index of the CPU to measure.
4526 * @param fFlags Flags, SUP_TSCDELTA_MEASURE_F_XXX.
4527 * @param cMsWaitRetry Number of milliseconds to wait between each retry.
4528 * @param cMsWaitThread Number of milliseconds to wait for the thread to get
4529 * ready.
4530 * @param cTries Number of times to try, pass 0 for the default.
4531 */
4532SUPR0DECL(int) SUPR0TscDeltaMeasureBySetIndex(PSUPDRVSESSION pSession, uint32_t iCpuSet, uint32_t fFlags,
4533 RTMSINTERVAL cMsWaitRetry, RTMSINTERVAL cMsWaitThread, uint32_t cTries)
4534{
4535 PSUPDRVDEVEXT pDevExt;
4536 PSUPGLOBALINFOPAGE pGip;
4537 uint16_t iGipCpu;
4538 int rc;
4539#ifdef SUPDRV_USE_TSC_DELTA_THREAD
4540 uint64_t msTsStartWait;
4541 uint32_t iWaitLoop;
4542#endif
4543
4544 /*
4545 * Validate and adjust the input.
4546 */
4547 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
4548 if (!pSession->fGipReferenced)
4549 return VERR_WRONG_ORDER;
4550
4551 pDevExt = pSession->pDevExt;
4552 AssertReturn(SUP_IS_DEVEXT_VALID(pDevExt), VERR_INVALID_PARAMETER);
4553
4554 pGip = pDevExt->pGip;
4555 AssertPtrReturn(pGip, VERR_INTERNAL_ERROR_2);
4556
4557 AssertReturn(iCpuSet < RTCPUSET_MAX_CPUS, VERR_INVALID_CPU_INDEX);
4558 AssertReturn(iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx), VERR_INVALID_CPU_INDEX);
4559 iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet];
4560 AssertReturn(iGipCpu < pGip->cCpus, VERR_INVALID_CPU_INDEX);
4561
4562 if (fFlags & ~SUP_TSCDELTA_MEASURE_F_VALID_MASK)
4563 return VERR_INVALID_FLAGS;
4564
4565 /*
4566 * The request is a noop if the TSC delta isn't being used.
4567 */
4568 if (pGip->enmUseTscDelta <= SUPGIPUSETSCDELTA_ZERO_CLAIMED)
4569 return VINF_SUCCESS;
4570
4571 if (cTries == 0)
4572 cTries = 12;
4573 else if (cTries > 256)
4574 cTries = 256;
4575
4576 if (cMsWaitRetry == 0)
4577 cMsWaitRetry = 2;
4578 else if (cMsWaitRetry > 1000)
4579 cMsWaitRetry = 1000;
4580
4581#ifdef SUPDRV_USE_TSC_DELTA_THREAD
4582 /*
4583 * Has the TSC already been measured and we're not forced to redo it?
4584 */
4585 if ( pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX
4586 && !(fFlags & SUP_TSCDELTA_MEASURE_F_FORCE))
4587 return VINF_SUCCESS;
4588
4589 /*
4590 * Asynchronous request? Forward it to the thread, no waiting.
4591 */
4592 if (fFlags & SUP_TSCDELTA_MEASURE_F_ASYNC)
4593 {
4594 /** @todo Async. doesn't implement options like retries, waiting. We'll need
4595 * to pass those options to the thread somehow and implement it in the
4596 * thread. Check if anyone uses/needs fAsync before implementing this. */
4597 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4598 RTCpuSetAddByIndex(&pDevExt->TscDeltaCpuSet, iCpuSet);
4599 if ( pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Listening
4600 || pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring)
4601 {
4602 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_WaitAndMeasure;
4603 rc = VINF_SUCCESS;
4604 }
4605 else if (pDevExt->enmTscDeltaThreadState != kTscDeltaThreadState_WaitAndMeasure)
4606 rc = VERR_THREAD_IS_DEAD;
4607 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4608 RTThreadUserSignal(pDevExt->hTscDeltaThread);
4609 return VINF_SUCCESS;
4610 }
4611
4612 /*
4613 * If a TSC-delta measurement request is already being serviced by the thread,
4614 * wait 'cTries' times if a retry-timeout is provided, otherwise bail as busy.
4615 */
4616 msTsStartWait = RTTimeSystemMilliTS();
4617 for (iWaitLoop = 0;; iWaitLoop++)
4618 {
4619 uint64_t cMsElapsed;
4620 SUPDRVTSCDELTATHREADSTATE enmState;
4621 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4622 enmState = pDevExt->enmTscDeltaThreadState;
4623 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4624
4625 if (enmState == kTscDeltaThreadState_Measuring)
4626 { /* Must wait, the thread is busy. */ }
4627 else if (enmState == kTscDeltaThreadState_WaitAndMeasure)
4628 { /* Must wait, this state only says what will happen next. */ }
4629 else if (enmState == kTscDeltaThreadState_Terminating)
4630 { /* Must wait, this state only says what should happen next. */ }
4631 else
4632 break; /* All other states, the thread is either idly listening or dead. */
4633
4634 /* Wait or fail. */
4635 if (cMsWaitThread == 0)
4636 return VERR_SUPDRV_TSC_DELTA_MEASUREMENT_BUSY;
4637 cMsElapsed = RTTimeSystemMilliTS() - msTsStartWait;
4638 if (cMsElapsed >= cMsWaitThread)
4639 return VERR_SUPDRV_TSC_DELTA_MEASUREMENT_BUSY;
4640
4641 rc = RTThreadSleep(RT_MIN((RTMSINTERVAL)(cMsWaitThread - cMsElapsed), RT_MIN(iWaitLoop + 1, 10)));
4642 if (rc == VERR_INTERRUPTED)
4643 return rc;
4644 }
4645#endif /* SUPDRV_USE_TSC_DELTA_THREAD */
4646
4647 /*
4648 * Try measure the TSC delta the given number of times.
4649 */
4650 for (;;)
4651 {
4652 /* Unless we're forced to measure the delta, check whether it's done already. */
4653 if ( !(fFlags & SUP_TSCDELTA_MEASURE_F_FORCE)
4654 && pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX)
4655 {
4656 rc = VINF_SUCCESS;
4657 break;
4658 }
4659
4660 /* Measure it. */
4661 rc = supdrvTscMeasureDeltaOne(pDevExt, iGipCpu);
4662 if (rc != VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED)
4663 {
4664 Assert(pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX || RT_FAILURE_NP(rc));
4665 break;
4666 }
4667
4668 /* Retry? */
4669 if (cTries <= 1)
4670 break;
4671 cTries--;
4672
4673 /* Always delay between retries (be nice to the rest of the system
4674 and avoid the BSOD hounds). */
4675 rc = RTThreadSleep(cMsWaitRetry);
4676 if (rc == VERR_INTERRUPTED)
4677 break;
4678 }
4679
4680 return rc;
4681}
4682
4683
4684/**
4685 * Service a TSC-delta measurement request.
4686 *
4687 * @returns VBox status code.
4688 * @param pDevExt Pointer to the device instance data.
4689 * @param pSession The support driver session.
4690 * @param pReq Pointer to the TSC-delta measurement request.
4691 */
4692int VBOXCALL supdrvIOCtl_TscDeltaMeasure(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPTSCDELTAMEASURE pReq)
4693{
4694 uint32_t cTries;
4695 uint32_t iCpuSet;
4696 uint32_t fFlags;
4697 RTMSINTERVAL cMsWaitRetry;
4698 RT_NOREF1(pDevExt);
4699
4700 /*
4701 * Validate and adjust/resolve the input so they can be passed onto SUPR0TscDeltaMeasureBySetIndex.
4702 */
4703 AssertPtr(pDevExt); AssertPtr(pSession); AssertPtr(pReq); /* paranoia^2 */
4704
4705 if (pReq->u.In.idCpu == NIL_RTCPUID)
4706 return VERR_INVALID_CPU_ID;
4707 iCpuSet = RTMpCpuIdToSetIndex(pReq->u.In.idCpu);
4708 if (iCpuSet >= RTCPUSET_MAX_CPUS)
4709 return VERR_INVALID_CPU_ID;
4710
4711 cTries = pReq->u.In.cRetries == 0 ? 0 : (uint32_t)pReq->u.In.cRetries + 1;
4712
4713 cMsWaitRetry = RT_MAX(pReq->u.In.cMsWaitRetry, 5);
4714
4715 fFlags = 0;
4716 if (pReq->u.In.fAsync)
4717 fFlags |= SUP_TSCDELTA_MEASURE_F_ASYNC;
4718 if (pReq->u.In.fForce)
4719 fFlags |= SUP_TSCDELTA_MEASURE_F_FORCE;
4720
4721 return SUPR0TscDeltaMeasureBySetIndex(pSession, iCpuSet, fFlags, cMsWaitRetry,
4722 cTries == 0 ? 5 * RT_MS_1SEC : cMsWaitRetry * cTries /*cMsWaitThread*/,
4723 cTries);
4724}
4725
4726
4727/**
4728 * Reads TSC with delta applied.
4729 *
4730 * Will try to resolve delta value INT64_MAX before applying it. This is the
4731 * main purpose of this function, to handle the case where the delta needs to be
4732 * determined.
4733 *
4734 * @returns VBox status code.
4735 * @param pDevExt Pointer to the device instance data.
4736 * @param pSession The support driver session.
4737 * @param pReq Pointer to the TSC-read request.
4738 */
4739int VBOXCALL supdrvIOCtl_TscRead(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPTSCREAD pReq)
4740{
4741 PSUPGLOBALINFOPAGE pGip;
4742 int rc;
4743
4744 /*
4745 * Validate. We require the client to have mapped GIP (no asserting on
4746 * ring-3 preconditions).
4747 */
4748 AssertPtr(pDevExt); AssertPtr(pReq); AssertPtr(pSession); /* paranoia^2 */
4749 if (pSession->GipMapObjR3 == NIL_RTR0MEMOBJ)
4750 return VERR_WRONG_ORDER;
4751 pGip = pDevExt->pGip;
4752 AssertReturn(pGip, VERR_INTERNAL_ERROR_2);
4753
4754 /*
4755 * We're usually here because we need to apply delta, but we shouldn't be
4756 * upset if the GIP is some different mode.
4757 */
4758 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
4759 {
4760 uint32_t cTries = 0;
4761 for (;;)
4762 {
4763 /*
4764 * Start by gathering the data, using CLI for disabling preemption
4765 * while we do that.
4766 */
4767 RTCCUINTREG fEFlags = ASMIntDisableFlags();
4768 int iCpuSet = RTMpCpuIdToSetIndex(RTMpCpuId());
4769 int iGipCpu;
4770 if (RT_LIKELY( (unsigned)iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
4771 && (iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet]) < pGip->cCpus ))
4772 {
4773 int64_t i64Delta = pGip->aCPUs[iGipCpu].i64TSCDelta;
4774 pReq->u.Out.idApic = pGip->aCPUs[iGipCpu].idApic;
4775 pReq->u.Out.u64AdjustedTsc = ASMReadTSC();
4776 ASMSetFlags(fEFlags);
4777
4778 /*
4779 * If we're lucky we've got a delta, but no predictions here
4780 * as this I/O control is normally only used when the TSC delta
4781 * is set to INT64_MAX.
4782 */
4783 if (i64Delta != INT64_MAX)
4784 {
4785 pReq->u.Out.u64AdjustedTsc -= i64Delta;
4786 rc = VINF_SUCCESS;
4787 break;
4788 }
4789
4790 /* Give up after a few times. */
4791 if (cTries >= 4)
4792 {
4793 rc = VWRN_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED;
4794 break;
4795 }
4796
4797 /* Need to measure the delta an try again. */
4798 rc = supdrvTscMeasureDeltaOne(pDevExt, iGipCpu);
4799 Assert(pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX || RT_FAILURE_NP(rc));
4800 /** @todo should probably delay on failure... dpc watchdogs */
4801 }
4802 else
4803 {
4804 /* This really shouldn't happen. */
4805 AssertMsgFailed(("idCpu=%#x iCpuSet=%#x (%d)\n", RTMpCpuId(), iCpuSet, iCpuSet));
4806 pReq->u.Out.idApic = ASMGetApicId();
4807 pReq->u.Out.u64AdjustedTsc = ASMReadTSC();
4808 ASMSetFlags(fEFlags);
4809 rc = VERR_INTERNAL_ERROR_5; /** @todo change to warning. */
4810 break;
4811 }
4812 }
4813 }
4814 else
4815 {
4816 /*
4817 * No delta to apply. Easy. Deal with preemption the lazy way.
4818 */
4819 RTCCUINTREG fEFlags = ASMIntDisableFlags();
4820 int iCpuSet = RTMpCpuIdToSetIndex(RTMpCpuId());
4821 int iGipCpu;
4822 if (RT_LIKELY( (unsigned)iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
4823 && (iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet]) < pGip->cCpus ))
4824 pReq->u.Out.idApic = pGip->aCPUs[iGipCpu].idApic;
4825 else
4826 pReq->u.Out.idApic = ASMGetApicId();
4827 pReq->u.Out.u64AdjustedTsc = ASMReadTSC();
4828 ASMSetFlags(fEFlags);
4829 rc = VINF_SUCCESS;
4830 }
4831
4832 return rc;
4833}
4834
4835
4836/**
4837 * Worker for supdrvIOCtl_GipSetFlags.
4838 *
4839 * @returns VBox status code.
4840 * @retval VERR_WRONG_ORDER if an enable-once-per-session flag is set again for
4841 * a session.
4842 *
4843 * @param pDevExt Pointer to the device instance data.
4844 * @param pSession The support driver session.
4845 * @param fOrMask The OR mask of the GIP flags, see SUPGIP_FLAGS_XXX.
4846 * @param fAndMask The AND mask of the GIP flags, see SUPGIP_FLAGS_XXX.
4847 *
4848 * @remarks Caller must own the GIP mutex.
4849 *
4850 * @remarks This function doesn't validate any of the flags.
4851 */
4852static int supdrvGipSetFlags(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, uint32_t fOrMask, uint32_t fAndMask)
4853{
4854 uint32_t cRefs;
4855 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
4856 AssertMsg((fOrMask & fAndMask) == fOrMask, ("%#x & %#x\n", fOrMask, fAndMask)); /* ASSUMED by code below */
4857
4858 /*
4859 * Compute GIP test-mode flags.
4860 */
4861 if (fOrMask & SUPGIP_FLAGS_TESTING_ENABLE)
4862 {
4863 if (!pSession->fGipTestMode)
4864 {
4865 Assert(pDevExt->cGipTestModeRefs < _64K);
4866 pSession->fGipTestMode = true;
4867 cRefs = ++pDevExt->cGipTestModeRefs;
4868 if (cRefs == 1)
4869 {
4870 fOrMask |= SUPGIP_FLAGS_TESTING | SUPGIP_FLAGS_TESTING_START;
4871 fAndMask &= ~SUPGIP_FLAGS_TESTING_STOP;
4872 }
4873 }
4874 else
4875 {
4876 LogRelMax(10, ("supdrvGipSetFlags: SUPGIP_FLAGS_TESTING_ENABLE already set for this session\n"));
4877 return VERR_WRONG_ORDER;
4878 }
4879 }
4880 else if ( !(fAndMask & SUPGIP_FLAGS_TESTING_ENABLE)
4881 && pSession->fGipTestMode)
4882 {
4883 Assert(pDevExt->cGipTestModeRefs > 0);
4884 Assert(pDevExt->cGipTestModeRefs < _64K);
4885 pSession->fGipTestMode = false;
4886 cRefs = --pDevExt->cGipTestModeRefs;
4887 if (!cRefs)
4888 fOrMask |= SUPGIP_FLAGS_TESTING_STOP;
4889 else
4890 fAndMask |= SUPGIP_FLAGS_TESTING_ENABLE;
4891 }
4892
4893 /*
4894 * Commit the flags. This should be done as atomically as possible
4895 * since the flag consumers won't be holding the GIP mutex.
4896 */
4897 ASMAtomicOrU32(&pGip->fFlags, fOrMask);
4898 ASMAtomicAndU32(&pGip->fFlags, fAndMask);
4899
4900 return VINF_SUCCESS;
4901}
4902
4903
4904/**
4905 * Sets GIP test mode parameters.
4906 *
4907 * @returns VBox status code.
4908 * @param pDevExt Pointer to the device instance data.
4909 * @param pSession The support driver session.
4910 * @param fOrMask The OR mask of the GIP flags, see SUPGIP_FLAGS_XXX.
4911 * @param fAndMask The AND mask of the GIP flags, see SUPGIP_FLAGS_XXX.
4912 */
4913int VBOXCALL supdrvIOCtl_GipSetFlags(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, uint32_t fOrMask, uint32_t fAndMask)
4914{
4915 PSUPGLOBALINFOPAGE pGip;
4916 int rc;
4917
4918 /*
4919 * Validate. We require the client to have mapped GIP (no asserting on
4920 * ring-3 preconditions).
4921 */
4922 AssertPtr(pDevExt); AssertPtr(pSession); /* paranoia^2 */
4923 if (pSession->GipMapObjR3 == NIL_RTR0MEMOBJ)
4924 return VERR_WRONG_ORDER;
4925 pGip = pDevExt->pGip;
4926 AssertReturn(pGip, VERR_INTERNAL_ERROR_3);
4927
4928 if (fOrMask & ~SUPGIP_FLAGS_VALID_MASK)
4929 return VERR_INVALID_PARAMETER;
4930 if ((fAndMask & ~SUPGIP_FLAGS_VALID_MASK) != ~SUPGIP_FLAGS_VALID_MASK)
4931 return VERR_INVALID_PARAMETER;
4932
4933 /*
4934 * Don't confuse supdrvGipSetFlags or anyone else by both setting
4935 * and clearing the same flags. AND takes precedence.
4936 */
4937 fOrMask &= fAndMask;
4938
4939 /*
4940 * Take the loader lock to avoid having to think about races between two
4941 * clients changing the flags at the same time (state is not simple).
4942 */
4943#ifdef SUPDRV_USE_MUTEX_FOR_GIP
4944 RTSemMutexRequest(pDevExt->mtxGip, RT_INDEFINITE_WAIT);
4945#else
4946 RTSemFastMutexRequest(pDevExt->mtxGip);
4947#endif
4948
4949 rc = supdrvGipSetFlags(pDevExt, pSession, fOrMask, fAndMask);
4950
4951#ifdef SUPDRV_USE_MUTEX_FOR_GIP
4952 RTSemMutexRelease(pDevExt->mtxGip);
4953#else
4954 RTSemFastMutexRelease(pDevExt->mtxGip);
4955#endif
4956 return rc;
4957}
4958
Note: See TracBrowser for help on using the repository browser.

© 2023 Oracle
ContactPrivacy policyTerms of Use