1 | /* $Id: DevXHCI.cpp 106061 2024-09-16 14:03:52Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * DevXHCI - eXtensible Host Controller Interface for USB.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2012-2024 Oracle and/or its affiliates.
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox base platform packages, as
|
---|
10 | * available from https://www.virtualbox.org.
|
---|
11 | *
|
---|
12 | * This program is free software; you can redistribute it and/or
|
---|
13 | * modify it under the terms of the GNU General Public License
|
---|
14 | * as published by the Free Software Foundation, in version 3 of the
|
---|
15 | * License.
|
---|
16 | *
|
---|
17 | * This program is distributed in the hope that it will be useful, but
|
---|
18 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
20 | * General Public License for more details.
|
---|
21 | *
|
---|
22 | * You should have received a copy of the GNU General Public License
|
---|
23 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
24 | *
|
---|
25 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
26 | */
|
---|
27 |
|
---|
28 | /** @page pg_dev_xhci xHCI - eXtensible Host Controller Interface Emulation.
|
---|
29 | *
|
---|
30 | * This component implements an xHCI USB controller.
|
---|
31 | *
|
---|
32 | * The xHCI device is significantly different from the EHCI and OHCI
|
---|
33 | * controllers in that it is not timer driven. A worker thread is responsible
|
---|
34 | * for transferring data between xHCI and VUSB.
|
---|
35 | *
|
---|
36 | * Since there can be dozens or even hundreds of USB devices, and because USB
|
---|
37 | * transfers must share the same bus, only one worker thread is created (per
|
---|
38 | * host controller).
|
---|
39 | *
|
---|
40 | *
|
---|
41 | * The xHCI operational model is heavily based around a producer/consumer
|
---|
42 | * model utilizing rings -- Command, Event, and Transfer rings. The Event ring
|
---|
43 | * is only written by the xHC and is read-only for the HCD (Host Controller
|
---|
44 | * Driver). The Command/Transfer rings are only written by the HCD and are
|
---|
45 | * read-only for the xHC.
|
---|
46 | *
|
---|
47 | * The rings contain TRBs (Transfer Request Blocks). The TRBs represent not
|
---|
48 | * only data transfers but also commands and status information. Each type of
|
---|
49 | * ring only produces/consumes specific TRB types.
|
---|
50 | *
|
---|
51 | * When processing a ring, the xHC simply keeps advancing an internal pointer.
|
---|
52 | * For the Command/Transfer rings, the HCD uses Link TRBs to manage the ring
|
---|
53 | * storage in a fairly arbitrary manner. Since the HCD cannot write to the
|
---|
54 | * Event ring, the Event Ring Segment Table (ERST) is used to manage the ring
|
---|
55 | * storage instead.
|
---|
56 | *
|
---|
57 | * The Cycle bit is used to manage the ring buffer full/empty condition. The
|
---|
58 | * Producer and Consumer both have their own Cycle State (PCS/CCS). The Cycle
|
---|
59 | * bit of each TRB determines who owns it. The consumer only processes TRBs
|
---|
60 | * whose Cycle bit matches the CCS. HCD software typically toggles the Cycle
|
---|
61 | * bit on each pass through the ring. The Link TRB can be used to toggle the
|
---|
62 | * CCS accordingly.
|
---|
63 | *
|
---|
64 | * Multiple Transfer TRBs can be chained together (via the Chain bit) into a
|
---|
65 | * single Transfer Descriptor (TD). This provides a convenient capability for
|
---|
66 | * the HCD to turn a URB into a single TD regardless of how the URB is laid
|
---|
67 | * out in physical memory. If a transfer encounters an error or is terminated
|
---|
68 | * by a short packet, the entire TD (i.e. chain of TRBs) is retired.
|
---|
69 | *
|
---|
70 | * Note that the xHC detects and handles short packets on its own. Backends
|
---|
71 | * are always asked not to consider a short packet to be an error condition.
|
---|
72 | *
|
---|
73 | * Command and Event TRBs cannot be chained, thus an ED (Event Descriptor)
|
---|
74 | * or a Command Descriptor (CD) always consists of a single TRB.
|
---|
75 | *
|
---|
76 | * There is one Command ring per xHC, one Event ring per interrupter (one or
|
---|
77 | * more), and a potentially very large number of Transfer rings. There is a
|
---|
78 | * 1:1 mapping between Transfer Rings and USB pipes, hence each USB device
|
---|
79 | * uses 1-31 Transfer rings (at least one for the default control endpoint,
|
---|
80 | * up to 31 if all IN/OUT endpoints are used). USB 3.0 devices may also use
|
---|
81 | * up to 64K streams per endpoint, each with its Transfer ring, massively
|
---|
82 | * increasing the potential number of Transfer rings in use.
|
---|
83 | *
|
---|
84 | * When building a Transfer ring, it's possible to queue up a large number
|
---|
85 | * of TDs and as soon as the oldest ones are retired, queue up new TDs. The
|
---|
86 | * Transfer ring might thus never be empty.
|
---|
87 | *
|
---|
88 | * For tracking ring buffer position, the TRDP and TREP fields in an endpoint
|
---|
89 | * context are used. The TRDP is the 'TR Dequeue Pointer', i.e. the position
|
---|
90 | * of the next TRB to be completed. This field is visible by the HCD when the
|
---|
91 | * endpoint isn't running. It reflects TRBs completely processed by the xHC
|
---|
92 | * and hence no longer owned by the xHC.
|
---|
93 | *
|
---|
94 | * The TREP field is the 'TR Enqueue Pointer' and tracks the position of the
|
---|
95 | * next TRB to start processing (submit). This is purely internal to the
|
---|
96 | * xHC. The TREP can potentially get far ahead of the TRDP, but only in the
|
---|
97 | * part of the ring owned by the xHC (i.e. with matching DCS bit).
|
---|
98 | *
|
---|
99 | * Unlike most other xHCI data structures, transfer TRBs may describe memory
|
---|
100 | * buffers with no alignment restrictions (both starting position and size).
|
---|
101 | * In addition, there is no relationship between TRB boundaries and USB
|
---|
102 | * packet boundaries.
|
---|
103 | *
|
---|
104 | *
|
---|
105 | * Typically an event would be generated via the IOC bit (Interrupt On
|
---|
106 | * Completion) when the last TRB of a TD is completed. However, multiple IOC
|
---|
107 | * bits may be set per TD. This may be required when a TD equal or larger
|
---|
108 | * than 16MB is used, since transfer events utilize a 24-bit length field.
|
---|
109 | *
|
---|
110 | * There is also the option of using Transfer Event TRBs to report TRB
|
---|
111 | * completion. Transfer Event TRBs may be freely intermixed with transfer
|
---|
112 | * TRBs. Note that an event TRB will produce an event reporting the size of
|
---|
113 | * data transferred since the last event TRB or since the beginning of a TD.
|
---|
114 | * The xHC submits URBs such that they either comprise the entire TD or end
|
---|
115 | * at a Transfer Event TRB, thus there is no need to track the EDTLA
|
---|
116 | * separately.
|
---|
117 | *
|
---|
118 | * Transfer errors always generate events, irrespective of IOC settings. The
|
---|
119 | * xHC has always the option to generate events at implementation-specific
|
---|
120 | * points so that the HCD does not fall too far behind.
|
---|
121 | *
|
---|
122 | * Control transfers use special TDs. A Setup Stage TD consists of only a
|
---|
123 | * single Setup Stage TRB (there's no Chain bit). The optional Data Stage
|
---|
124 | * TD consists of a Data Stage TRB chained to zero or more Normal TRBs
|
---|
125 | * and/or Event Data TRBs. The Status Stage TD then consists of a Status
|
---|
126 | * Stage TRB optionally chained to an Event Data TRB. The HCD is responsible
|
---|
127 | * for building the TDs correctly.
|
---|
128 | *
|
---|
129 | * For isochronous transfers, only the first TRB of a TD is actually an
|
---|
130 | * isochronous TRB. If the TD is chained, it will contain Normal TRBs (and
|
---|
131 | * possibly Event Data TRBs).
|
---|
132 | *
|
---|
133 | *
|
---|
134 | * Isochronous transfers require multiple TDs/URBs to be in flight at a
|
---|
135 | * time. This complicates dealing with non-data TRBs (such as link or event
|
---|
136 | * data TRBs). These TRBs cannot be completed while a previous TRB is still
|
---|
137 | * in flight. They are completed either: a) when submitting URBs and there
|
---|
138 | * are no in-flight URBs, or b) just prior to completing an URB.
|
---|
139 | *
|
---|
140 | * This approach works because URBs must be completed strictly in-order. The
|
---|
141 | * TRDP and TREP determine whether there are in-flight TRBs (TREP equals
|
---|
142 | * TRDP if and only if there are no in-flight TRBs).
|
---|
143 | *
|
---|
144 | * When submitting TRBs and there is in-flight traffic, non-data TRBs must
|
---|
145 | * be examined and skipped over. Link TRBs need to be taken into account.
|
---|
146 | *
|
---|
147 | * Unfortunately, certain HCDs (looking at you, Microsoft!) violate the xHCI
|
---|
148 | * specification and make assumptions about how far ahead of the TRDP the
|
---|
149 | * xHC can get. We have to artificially limit the number of in-flight TDs
|
---|
150 | * for this reason.
|
---|
151 | *
|
---|
152 | * Non-isochronous TRBs do not require this treatment for correct function
|
---|
153 | * but are likely to benefit performance-wise from the pipelining.
|
---|
154 | *
|
---|
155 | * With high-speed and faster transfers, there is an added complication for
|
---|
156 | * endpoints with more than one transfer per frame, i.e. short intervals. At
|
---|
157 | * least some host USB stacks require URBs to cover an entire frame, which
|
---|
158 | * means we may have to glue together several TDs into a single URB.
|
---|
159 | *
|
---|
160 | *
|
---|
161 | * A buggy or malicious guest can create a transfer or command ring that
|
---|
162 | * loops in on itself (in the simplest case using a sequence of one or more
|
---|
163 | * link TRBs where the last TRB points to the beginning of the sequence).
|
---|
164 | * Such a loop would effectively hang the processing thread. Since we cannot
|
---|
165 | * easily detect a generic loop, and because even non-looped TRB/command
|
---|
166 | * rings might contain extremely large number of items, we limit the number
|
---|
167 | * of entries that we are willing to process at once. If the limit is
|
---|
168 | * crossed, the xHC reports a host controller error and shuts itself down
|
---|
169 | * until it's reset.
|
---|
170 | *
|
---|
171 | * Note that for TRB lists, both URB submission and completion must protect
|
---|
172 | * against loops because the lists in guest memory are not guaranteed to stay
|
---|
173 | * unchanged between submitting and completing URBs.
|
---|
174 | *
|
---|
175 | * The event ring is not susceptible to loops because the xHC is the producer,
|
---|
176 | * not consumer. The event ring can run out of space but that is not a fatal
|
---|
177 | * problem.
|
---|
178 | *
|
---|
179 | *
|
---|
180 | * The interrupt logic uses an internal IPE (Interrupt Pending Enable) bit
|
---|
181 | * which controls whether the register-visible IP (Interrupt Pending) bit
|
---|
182 | * can be set. The IPE bit is set when a non-blocking event (BEI bit clear)
|
---|
183 | * is enqueued. The IPE bit is cleared when the event ring is initialized or
|
---|
184 | * transitions to empty (i.e. ERDP == EREP). When IPE transtitions to set,
|
---|
185 | * it will set IP unless the EHB (Event Handler Busy) bit is set or IMODC
|
---|
186 | * (Interrupt Moderation Counter) is non-zero. When IMODC counts down to
|
---|
187 | * zero, it sets the IP bit if IPE is set and EHB is not. Setting the IP bit
|
---|
188 | * triggers interrupt delivery. Note that clearing the IPE bit does not
|
---|
189 | * change the IP bit state.
|
---|
190 | *
|
---|
191 | * Interrupt delivery depends on whether MSI/MSI-X is in use or not. With MSI,
|
---|
192 | * an interrupter's IP (Interrupt Pending) bit is cleared as soon as the MSI
|
---|
193 | * message is written; with classic PCI interrupt delivery, the HCD must clear
|
---|
194 | * the IP bit. However, the EHB (Event Handler Busy) bit is always set, which
|
---|
195 | * causes further interrupts to be blocked on the interrupter until the HCD
|
---|
196 | * processes pending events and clears the EHB bit.
|
---|
197 | *
|
---|
198 | * Note that clearing the EHB bit may immediately trigger an interrupt if
|
---|
199 | * additional event TRBs were queued up while the HCD was processing previous
|
---|
200 | * ones.
|
---|
201 | *
|
---|
202 | *
|
---|
203 | * Each enabled USB device has a corresponding slot ID, a doorbell, as well as
|
---|
204 | * a device context which can be accessed through the DCBAA (Device Context
|
---|
205 | * Base Address Array). Valid slot IDs are in the 1-255 range; the first entry
|
---|
206 | * (i.e. index 0) in the DCBAA may optionally point to the Scratchpad Buffer
|
---|
207 | * Array, while doorbell 0 is associated with the Command Ring.
|
---|
208 | *
|
---|
209 | * While 255 valid slot IDs is an xHCI architectural limit, existing xHC
|
---|
210 | * implementations usually set a considerably lower limit, such as 32. See
|
---|
211 | * the XHCI_NDS constant.
|
---|
212 | *
|
---|
213 | * It would be tempting to use the DCBAA to determine which slots are free.
|
---|
214 | * Unfortunately the xHC is not allowed to access DCBAA entries which map to
|
---|
215 | * disabled slots (see section 6.1). A parallel aSlotState array is hence used
|
---|
216 | * to internally track the slot state and find available slots. Once a slot
|
---|
217 | * is enabled, the slot context entry in the DCBAA is used to track the
|
---|
218 | * slot state.
|
---|
219 | *
|
---|
220 | *
|
---|
221 | * Unlike OHCI/UHCI/EHCI, the xHC much more closely tracks USB device state.
|
---|
222 | * HCDs are not allowed to issue SET_ADDRESS requests at all and must use
|
---|
223 | * the Address Device xHCI command instead.
|
---|
224 | *
|
---|
225 | * HCDs can use SET_CONFIGURATION and SET_INTERFACE requests normally, but
|
---|
226 | * must inform the xHC of the changes via Configure Endpoint and Evaluate
|
---|
227 | * Context commands. Similarly there are Reset Endpoint and Stop Endpoint
|
---|
228 | * commands to manage endpoint state.
|
---|
229 | *
|
---|
230 | * A corollary of the above is that unlike OHCI/UHCI/EHCI, with xHCI there
|
---|
231 | * are very clear rules and a straightforward protocol for managing
|
---|
232 | * ownership of structures in physical memory. During normal operation, the
|
---|
233 | * xHC owns all device context memory and the HCD must explicitly ask the xHC
|
---|
234 | * to relinquish the ownership.
|
---|
235 | *
|
---|
236 | * The xHCI architecture offers an interesting feature in that it reserves
|
---|
237 | * opaque fields for xHCI use in certain data structures (slot and endpoint
|
---|
238 | * contexts) and gives the xHC an option to request scratchpad buffers that
|
---|
239 | * a HCD must provide. The xHC may use the opaque storage and/or scratchpad
|
---|
240 | * buffers for saving internal state.
|
---|
241 | *
|
---|
242 | * For implementation reasons, the xHCI device creates two root hubs on the
|
---|
243 | * VUSB level; one for USB2 devices (USB 1.x and 2.0), one for USB3. The
|
---|
244 | * behavior of USB2 vs. USB3 ports is different, and a device can only be
|
---|
245 | * attached to either one or the other hub. However, there is a single array
|
---|
246 | * of ports to avoid overly complicating the code, given that port numbering
|
---|
247 | * is linear and encompasses both USB2 and USB3 ports.
|
---|
248 | *
|
---|
249 | *
|
---|
250 | * The default emulated device is an Intel 7-Series xHC aka Panther Point.
|
---|
251 | * This was Intel's first xHC and is widely supported. It is also possible
|
---|
252 | * to select an Intel 8-Series xHC aka Lynx Point; this is only useful for
|
---|
253 | * debugging and requires the 'other' set of Windows 7 drivers.
|
---|
254 | *
|
---|
255 | * For Windows XP guest support, it is possible to emulate a Renesas
|
---|
256 | * (formerly NEC) uPD720201 xHC. It would be possible to emulate the earlier
|
---|
257 | * NEC chips but those a) only support xHCI 0.96, and b) their drivers
|
---|
258 | * require a reboot during installation. Renesas' drivers also support
|
---|
259 | * Windows Vista and 7.
|
---|
260 | *
|
---|
261 | *
|
---|
262 | * NB: Endpoints are addressed differently in xHCI and USB. In USB,
|
---|
263 | * endpoint addresses are 8-bit values with the low four bits identifying
|
---|
264 | * the endpoint number and the high bit indicating the direction (0=OUT,
|
---|
265 | * 1=IN); see e.g. 9.3.4 in USB 2.0 spec. In xHCI, endpoint addresses are
|
---|
266 | * used as DCIs (Device Context Index) and for that reason, they're
|
---|
267 | * compressed into 5 bits where the lowest bit(!) indicates direction (again
|
---|
268 | * 1=IN) and bits 1-4 designate the endpoint number. Endpoint 0 is somewhat
|
---|
269 | * special and uses DCI 1. See 4.8.1 in xHCI spec.
|
---|
270 | *
|
---|
271 | *
|
---|
272 | * NB: A variable named iPort is a zero-based index into the port array.
|
---|
273 | * On the other hand, a variable named uPort is a one-based port number!
|
---|
274 | * The implementation (obviously) uses zero-based indexing, but USB ports
|
---|
275 | * are numbered starting with 1. The same is true of xHCI slot numbering.
|
---|
276 | * The macros IDX_TO_ID() and ID_TO_IDX(a) should be used to convert between
|
---|
277 | * the two numbering conventions to make the intent clear.
|
---|
278 | *
|
---|
279 | */
|
---|
280 |
|
---|
281 |
|
---|
282 | /*********************************************************************************************************************************
|
---|
283 | * Header Files *
|
---|
284 | *********************************************************************************************************************************/
|
---|
285 | #define LOG_GROUP LOG_GROUP_DEV_XHCI
|
---|
286 | #include <VBox/pci.h>
|
---|
287 | #include <VBox/msi.h>
|
---|
288 | #include <VBox/vmm/pdm.h>
|
---|
289 | #include <VBox/err.h>
|
---|
290 | #include <VBox/log.h>
|
---|
291 | #include <iprt/assert.h>
|
---|
292 | #ifdef IN_RING3
|
---|
293 | # include <iprt/uuid.h>
|
---|
294 | # include <iprt/critsect.h>
|
---|
295 | #endif
|
---|
296 | #include <VBox/vusb.h>
|
---|
297 | #ifdef VBOX_IN_EXTPACK_R3
|
---|
298 | # include <VBox/version.h>
|
---|
299 | #endif
|
---|
300 | #ifndef VBOX_IN_EXTPACK
|
---|
301 | # include "VBoxDD.h"
|
---|
302 | #endif
|
---|
303 |
|
---|
304 |
|
---|
305 | /*********************************************************************************************************************************
|
---|
306 | * (Most of the) Defined Constants, Macros and Structures *
|
---|
307 | *********************************************************************************************************************************/
|
---|
308 |
|
---|
309 | /* Optional error injection support via DBGF. */
|
---|
310 | //#define XHCI_ERROR_INJECTION
|
---|
311 |
|
---|
312 | /** The saved state version. */
|
---|
313 | #define XHCI_SAVED_STATE_VERSION 1
|
---|
314 |
|
---|
315 |
|
---|
316 | /** Convert a zero-based index to a 1-based ID. */
|
---|
317 | #define IDX_TO_ID(a) (a + 1)
|
---|
318 | /** Convert a 1-based ID to a zero-based index. */
|
---|
319 | #define ID_TO_IDX(a) (a - 1)
|
---|
320 |
|
---|
321 | /** PCI device related constants. */
|
---|
322 | #define XHCI_PCI_MSI_CAP_OFS 0x80
|
---|
323 |
|
---|
324 | /** Number of LUNs/root hubs. One each for USB2/USB3. */
|
---|
325 | #define XHCI_NUM_LUNS 2
|
---|
326 |
|
---|
327 | /** @name The following two constants were determined experimentally.
|
---|
328 | * They determine the maximum number of TDs allowed to be in flight.
|
---|
329 | * NB: For isochronous TDs, the number *must* be limited because
|
---|
330 | * Windows 8+ violates the xHCI specification and does not keep
|
---|
331 | * the transfer rings consistent.
|
---|
332 | * @{
|
---|
333 | */
|
---|
334 | //#define XHCI_MAX_ISOC_IN_FLIGHT 3 /* Scarlett needs 3; was 12 */
|
---|
335 | #define XHCI_MAX_ISOC_IN_FLIGHT 12
|
---|
336 | #define XHCI_MAX_BULK_IN_FLIGHT 8
|
---|
337 | /** @} */
|
---|
338 |
|
---|
339 | /** @name Implementation limit on the number of TRBs and commands
|
---|
340 | * the xHC is willing to process at once. A larger number is taken
|
---|
341 | * to indicate a broken or malicious guest, and causes a HC error.
|
---|
342 | * @{
|
---|
343 | */
|
---|
344 | #define XHCI_MAX_NUM_CMDS 128
|
---|
345 | #define XHCI_MAX_NUM_TRBS 1024
|
---|
346 | /** @} */
|
---|
347 |
|
---|
348 | /** Implementation TD size limit. Prevents EDTLA wrap-around. */
|
---|
349 | #define XHCI_MAX_TD_SIZE (16 * _1M - 1)
|
---|
350 |
|
---|
351 | /** Special value to prevent further queuing. */
|
---|
352 | #define XHCI_NO_QUEUING_IN_FLIGHT (XHCI_MAX_BULK_IN_FLIGHT * 2)
|
---|
353 |
|
---|
354 | /* Structural Parameters #1 (HCSPARAMS1) values. */
|
---|
355 |
|
---|
356 | /** Maximum allowed Number of Downstream Ports on the root hub. Careful
|
---|
357 | * when changing -- other structures may need adjusting!
|
---|
358 | */
|
---|
359 | #define XHCI_NDP_MAX 32
|
---|
360 |
|
---|
361 | /** Default number of USB 2.0 ports.
|
---|
362 | *
|
---|
363 | * @note AppleUSBXHCI does not handle more than 15 ports. At least OS X
|
---|
364 | * 10.8.2 crashes if we report more than 15 ports! Hence the default
|
---|
365 | * is 8 USB2 + 6 USB3 ports for a total of 14 so that OS X is happy.
|
---|
366 | */
|
---|
367 | #define XHCI_NDP_20_DEFAULT 8
|
---|
368 |
|
---|
369 | /** Default number of USB 3.0 ports. */
|
---|
370 | #define XHCI_NDP_30_DEFAULT 6
|
---|
371 |
|
---|
372 | /** Number of interrupters. */
|
---|
373 | #define XHCI_NINTR 8
|
---|
374 |
|
---|
375 | /** Mask for interrupter indexing. */
|
---|
376 | #define XHCI_INTR_MASK (XHCI_NINTR - 1)
|
---|
377 |
|
---|
378 | /* The following is only true if XHCI_NINTR is a (non-zero) power of two. */
|
---|
379 | AssertCompile((XHCI_NINTR & XHCI_INTR_MASK) == 0);
|
---|
380 |
|
---|
381 | /** Number of Device Slots. Determines the number of doorbell
|
---|
382 | * registers and device slots, among other things. */
|
---|
383 | #define XHCI_NDS 32
|
---|
384 |
|
---|
385 | /* Enforce xHCI architectural limits on HCSPARAMS1. */
|
---|
386 | AssertCompile(XHCI_NDP_MAX < 255 && XHCI_NINTR < 1024 && XHCI_NDS < 255);
|
---|
387 | AssertCompile(XHCI_NDP_20_DEFAULT + XHCI_NDP_30_DEFAULT <= XHCI_NDP_MAX);
|
---|
388 | AssertCompile(XHCI_NDP_MAX <= XHCI_NDS);
|
---|
389 |
|
---|
390 | /* Structural Parameters #2 (HCSPARAMS2) values. */
|
---|
391 |
|
---|
392 | /** Isochronous Scheduling Threshold. */
|
---|
393 | #define XHCI_IST (RT_BIT(3) | 1) /* One frame. */
|
---|
394 |
|
---|
395 | /** Max number of Event Ring Segment Table entries as a power of two. */
|
---|
396 | #define XHCI_ERSTMAX_LOG2 5
|
---|
397 | /** Max number of Event Ring Segment Table entries. */
|
---|
398 | #define XHCI_ERSTMAX RT_BIT(XHCI_ERSTMAX_LOG2)
|
---|
399 |
|
---|
400 | /* Enforce xHCI architectural limits on HCSPARAMS2. */
|
---|
401 | AssertCompile(XHCI_ERSTMAX_LOG2 < 16);
|
---|
402 |
|
---|
403 |
|
---|
404 | /** Size of the xHCI memory-mapped I/O region. */
|
---|
405 | #define XHCI_MMIO_SIZE _64K
|
---|
406 |
|
---|
407 | /** Size of the capability part of the MMIO region. */
|
---|
408 | #define XHCI_CAPS_REG_SIZE 0x80
|
---|
409 |
|
---|
410 | /** Offset of the port registers in operational register space. */
|
---|
411 | #define XHCI_PORT_REG_OFFSET 0x400
|
---|
412 |
|
---|
413 | /** Offset of xHCI extended capabilities in MMIO region. */
|
---|
414 | #define XHCI_XECP_OFFSET 0x1000
|
---|
415 |
|
---|
416 | /** Offset of the run-time registers in MMIO region. */
|
---|
417 | #define XHCI_RTREG_OFFSET 0x2000
|
---|
418 |
|
---|
419 | /** Offset of the doorbell registers in MMIO region. */
|
---|
420 | #define XHCI_DOORBELL_OFFSET 0x3000
|
---|
421 |
|
---|
422 | /** Size of the extended capability area. */
|
---|
423 | #define XHCI_EXT_CAP_SIZE 1024
|
---|
424 |
|
---|
425 | /* Make sure we can identify MMIO register accesses properly. */
|
---|
426 | AssertCompile(XHCI_DOORBELL_OFFSET > XHCI_RTREG_OFFSET);
|
---|
427 | AssertCompile(XHCI_XECP_OFFSET > XHCI_PORT_REG_OFFSET + XHCI_CAPS_REG_SIZE);
|
---|
428 | AssertCompile(XHCI_RTREG_OFFSET > XHCI_XECP_OFFSET + XHCI_EXT_CAP_SIZE);
|
---|
429 |
|
---|
430 |
|
---|
431 | /** Maximum size of a single extended capability. */
|
---|
432 | #define MAX_XCAP_SIZE 256
|
---|
433 |
|
---|
434 | /** @name xHCI Extended capability types.
|
---|
435 | * @{ */
|
---|
436 | #define XHCI_XCP_USB_LEGACY 1 /**< USB legacy support. */
|
---|
437 | #define XHCI_XCP_PROTOCOL 2 /**< Protocols supported by ports. */
|
---|
438 | #define XHCI_XCP_EXT_PM 3 /**< Extended power management (non-PCI). */
|
---|
439 | #define XHCI_XCP_IOVIRT 4 /**< Hardware xHCI virtualization support. */
|
---|
440 | #define XHCI_XCP_MSI 5 /**< Message interrupts (non-PCI). */
|
---|
441 | #define XHCI_XCP_LOCAL_MEM 6 /**< Local memory (for debug support). */
|
---|
442 | #define XHCI_XCP_USB_DEBUG 10 /**< USB debug capability. */
|
---|
443 | #define XHCI_XCP_EXT_MSI 17 /**< MSI-X (non-PCI). */
|
---|
444 | /** @} */
|
---|
445 |
|
---|
446 |
|
---|
447 | /* xHCI Register Bits. */
|
---|
448 |
|
---|
449 |
|
---|
450 | /** @name Capability Parameters (HCCPARAMS) bits
|
---|
451 | * @{ */
|
---|
452 | #define XHCI_HCC_AC64 RT_BIT(0) /**< RO */
|
---|
453 | #define XHCI_HCC_BNC RT_BIT(1) /**< RO */
|
---|
454 | #define XHCI_HCC_CSZ RT_BIT(2) /**< RO */
|
---|
455 | #define XHCI_HCC_PPC RT_BIT(3) /**< RO */
|
---|
456 | #define XHCI_HCC_PIND RT_BIT(4) /**< RO */
|
---|
457 | #define XHCI_HCC_LHRC RT_BIT(5) /**< RO */
|
---|
458 | #define XHCI_HCC_LTC RT_BIT(6) /**< RO */
|
---|
459 | #define XHCI_HCC_NSS RT_BIT(7) /**< RO */
|
---|
460 | #define XHCI_HCC_MAXPSA_MASK (RT_BIT(12)|RT_BIT(13)|RT_BIT(14)| RT_BIT(15)) /**< RO */
|
---|
461 | #define XHCI_HCC_MAXPSA_SHIFT 12
|
---|
462 | #define XHCI_HCC_XECP_MASK 0xFFFF0000 /**< RO */
|
---|
463 | #define XHCI_HCC_XECP_SHIFT 16
|
---|
464 | /** @} */
|
---|
465 |
|
---|
466 |
|
---|
467 | /** @name Command Register (USBCMD) bits
|
---|
468 | * @{ */
|
---|
469 | #define XHCI_CMD_RS RT_BIT(0) /**< RW - Run/Stop */
|
---|
470 | #define XHCI_CMD_HCRST RT_BIT(1) /**< RW - Host Controller Reset */
|
---|
471 | #define XHCI_CMD_INTE RT_BIT(2) /**< RW - Interrupter Enable */
|
---|
472 | #define XHCI_CMD_HSEE RT_BIT(3) /**< RW - Host System Error Enable */
|
---|
473 | #define XHCI_CMD_LCRST RT_BIT(7) /**< RW - Light HC Reset */
|
---|
474 | #define XHCI_CMD_CSS RT_BIT(8) /**< RW - Controller Save State */
|
---|
475 | #define XHCI_CMD_CRS RT_BIT(9) /**< RW - Controller Restore State */
|
---|
476 | #define XHCI_CMD_EWE RT_BIT(10) /**< RW - Enable Wrap Event */
|
---|
477 | #define XHCI_CMD_EU3S RT_BIT(11) /**< RW - Enable U3 MFINDEX Stop */
|
---|
478 |
|
---|
479 | #define XHCI_CMD_MASK ( XHCI_CMD_RS | XHCI_CMD_HCRST | XHCI_CMD_INTE | XHCI_CMD_HSEE | XHCI_CMD_LCRST \
|
---|
480 | | XHCI_CMD_CSS | XHCI_CMD_CRS | XHCI_CMD_EWE | XHCI_CMD_EU3S)
|
---|
481 | /** @} */
|
---|
482 |
|
---|
483 |
|
---|
484 | /** @name Status Register (USBSTS) bits
|
---|
485 | * @{ */
|
---|
486 | #define XHCI_STATUS_HCH RT_BIT(0) /**< RO - HC Halted */
|
---|
487 | #define XHCI_STATUS_HSE RT_BIT(2) /**< RW1C - Host System Error */
|
---|
488 | #define XHCI_STATUS_EINT RT_BIT(3) /**< RW1C - Event Interrupt */
|
---|
489 | #define XHCI_STATUS_PCD RT_BIT(4) /**< RW1C - Port Change Detect */
|
---|
490 | #define XHCI_STATUS_SSS RT_BIT(8) /**< RO - Save State Status */
|
---|
491 | #define XHCI_STATUS_RSS RT_BIT(9) /**< RO - Resture State Status */
|
---|
492 | #define XHCI_STATUS_SRE RT_BIT(10) /**< RW1C - Save/Restore Error */
|
---|
493 | #define XHCI_STATUS_CNR RT_BIT(11) /**< RO - Controller Not Ready */
|
---|
494 | #define XHCI_STATUS_HCE RT_BIT(12) /**< RO - Host Controller Error */
|
---|
495 |
|
---|
496 | #define XHCI_STATUS_WRMASK (XHCI_STATUS_HSE | XHCI_STATUS_EINT | XHCI_STATUS_PCD | XHCI_STATUS_SRE)
|
---|
497 | /** @} */
|
---|
498 |
|
---|
499 |
|
---|
500 | /** @name Default xHCI speed definitions (7.2.2.1.1)
|
---|
501 | * @{ */
|
---|
502 | #define XHCI_SPD_FULL 1
|
---|
503 | #define XHCI_SPD_LOW 2
|
---|
504 | #define XHCI_SPD_HIGH 3
|
---|
505 | #define XHCI_SPD_SUPER 4
|
---|
506 | /** @} */
|
---|
507 |
|
---|
508 | /** @name Port Status and Control Register bits (PORTSCUSB2/PORTSCUSB3)
|
---|
509 | * @{ */
|
---|
510 | #define XHCI_PORT_CCS RT_BIT(0) /**< ROS - Current Connection Status */
|
---|
511 | #define XHCI_PORT_PED RT_BIT(1) /**< RW1S - Port Enabled/Disabled */
|
---|
512 | #define XHCI_PORT_OCA RT_BIT(3) /**< RO - Over-current Active */
|
---|
513 | #define XHCI_PORT_PR RT_BIT(4) /**< RW1S - Port Reset */
|
---|
514 | #define XHCI_PORT_PLS_MASK (RT_BIT(5) | RT_BIT(6) | RT_BIT(7) | RT_BIT(8)) /**< RWS */
|
---|
515 | #define XHCI_PORT_PLS_SHIFT 5
|
---|
516 | #define XHCI_PORT_PP RT_BIT(9) /**< RWS - Port Power */
|
---|
517 | #define XHCI_PORT_SPD_MASK (RT_BIT(10) | RT_BIT(11) | RT_BIT(12) | RT_BIT(13)) /**< ROS */
|
---|
518 | #define XHCI_PORT_SPD_SHIFT 10
|
---|
519 | #define XHCI_PORT_LWS RT_BIT(16) /**< RW - Link State Write Strobe */
|
---|
520 | #define XHCI_PORT_CSC RT_BIT(17) /**< RW1CS - Connect Status Change */
|
---|
521 | #define XHCI_PORT_PEC RT_BIT(18) /**< RW1CS - Port Enabled/Disabled Change */
|
---|
522 | #define XHCI_PORT_WRC RT_BIT(19) /**< RW1CS - Warm Port Reset Change */
|
---|
523 | #define XHCI_PORT_OCC RT_BIT(20) /**< RW1CS - Over-current Change */
|
---|
524 | #define XHCI_PORT_PRC RT_BIT(21) /**< RW1CS - Port Reset Change */
|
---|
525 | #define XHCI_PORT_PLC RT_BIT(22) /**< RW1CS - Port Link State Change */
|
---|
526 | #define XHCI_PORT_CEC RT_BIT(23) /**< RW1CS - Port Config Error Change */
|
---|
527 | #define XHCI_PORT_CAS RT_BIT(24) /**< RO - Cold Attach Status */
|
---|
528 | #define XHCI_PORT_WCE RT_BIT(25) /**< RWS - Wake on Connect Enable */
|
---|
529 | #define XHCI_PORT_WDE RT_BIT(26) /**< RWS - Wake on Disconnect Enable */
|
---|
530 | #define XHCI_PORT_WOE RT_BIT(27) /**< RWS - Wake on Over-current Enable */
|
---|
531 | #define XHCI_PORT_DR RT_BIT(30) /**< RO - Device (Not) Removable */
|
---|
532 | #define XHCI_PORT_WPR RT_BIT(31) /**< RW1S - Warm Port Reset */
|
---|
533 |
|
---|
534 | #define XHCI_PORT_RESERVED (RT_BIT(2) | RT_BIT(14) | RT_BIT(15) | RT_BIT(28) | RT_BIT(29))
|
---|
535 |
|
---|
536 | #define XHCI_PORT_WAKE_MASK (XHCI_PORT_WCE|XHCI_PORT_WDE|XHCI_PORT_WOE)
|
---|
537 | #define XHCI_PORT_CHANGE_MASK (XHCI_PORT_CSC|XHCI_PORT_PEC|XHCI_PORT_WRC|XHCI_PORT_OCC|XHCI_PORT_PRC|XHCI_PORT_PLC|XHCI_PORT_CEC)
|
---|
538 | #define XHCI_PORT_CTL_RW_MASK (XHCI_PORT_PP|XHCI_PORT_LWS)
|
---|
539 | #define XHCI_PORT_CTL_W1_MASK (XHCI_PORT_PED|XHCI_PORT_PR|XHCI_PORT_WPR)
|
---|
540 | #define XHCI_PORT_RO_MASK (XHCI_PORT_CCS|XHCI_PORT_OCA|XHCI_PORT_SPD_MASK|XHCI_PORT_CAS|XHCI_PORT_DR)
|
---|
541 | /** @} */
|
---|
542 |
|
---|
543 | /** @name Port Link State values
|
---|
544 | * @{ */
|
---|
545 | #define XHCI_PLS_U0 0 /**< U0 State. */
|
---|
546 | #define XHCI_PLS_U1 1 /**< U1 State. */
|
---|
547 | #define XHCI_PLS_U2 2 /**< U2 State. */
|
---|
548 | #define XHCI_PLS_U3 3 /**< U3 State (Suspended). */
|
---|
549 | #define XHCI_PLS_DISABLED 4 /**< Disabled. */
|
---|
550 | #define XHCI_PLS_RXDETECT 5 /**< RxDetect. */
|
---|
551 | #define XHCI_PLS_INACTIVE 6 /**< Inactive. */
|
---|
552 | #define XHCI_PLS_POLLING 7 /**< Polling. */
|
---|
553 | #define XHCI_PLS_RECOVERY 8 /**< Recovery. */
|
---|
554 | #define XHCI_PLS_HOTRST 9 /**< Hot Reset. */
|
---|
555 | #define XHCI_PLS_CMPLMODE 10 /**< Compliance Mode. */
|
---|
556 | #define XHCI_PLS_TSTMODE 11 /**< Test Mode. */
|
---|
557 | /* Values 12-14 are reserved. */
|
---|
558 | #define XHCI_PLS_RESUME 15 /**< Resume. */
|
---|
559 | /** @} */
|
---|
560 |
|
---|
561 |
|
---|
562 | /** @name Command Ring Control Register (CRCR) bits
|
---|
563 | * @{ */
|
---|
564 | #define XHCI_CRCR_RCS RT_BIT(0) /**< RW - Ring Cycle State */
|
---|
565 | #define XHCI_CRCR_CS RT_BIT(1) /**< RW1S - Command Stop */
|
---|
566 | #define XHCI_CRCR_CA RT_BIT(2) /**< RW1S - Command Abort */
|
---|
567 | #define XHCI_CRCR_CRR RT_BIT(3) /**< RO - Command Ring Running */
|
---|
568 |
|
---|
569 | #define XHCI_CRCR_RD_MASK UINT64_C(0xFFFFFFFFFFFFFFF8) /* Mask off bits always read as zero. */
|
---|
570 | #define XHCI_CRCR_ADDR_MASK UINT64_C(0xFFFFFFFFFFFFFFC0)
|
---|
571 | #define XHCI_CRCR_UPD_MASK (XHCI_CRCR_ADDR_MASK | XHCI_CRCR_RCS)
|
---|
572 | /** @} */
|
---|
573 |
|
---|
574 |
|
---|
575 | /** @name Interrupter Management Register (IMAN) bits
|
---|
576 | * @{ */
|
---|
577 | #define XHCI_IMAN_IP RT_BIT(0) /**< RW1C - Interrupt Pending */
|
---|
578 | #define XHCI_IMAN_IE RT_BIT(1) /**< RW - Interrupt Enable */
|
---|
579 |
|
---|
580 | #define XHCI_IMAN_VALID_MASK (XHCI_IMAN_IP | XHCI_IMAN_IE)
|
---|
581 | /** @} */
|
---|
582 |
|
---|
583 |
|
---|
584 | /** @name Interrupter Moderation Register (IMOD) bits
|
---|
585 | * @{ */
|
---|
586 | #define XHCI_IMOD_IMODC_MASK 0xFFFF0000 /**< RW */
|
---|
587 | #define XHCI_IMOD_IMODC_SHIFT 16
|
---|
588 | #define XHCI_IMOD_IMODI_MASK 0x0000FFFF /**< RW */
|
---|
589 | /** @} */
|
---|
590 |
|
---|
591 |
|
---|
592 | /** @name Event Ring Segment Table Size Register (ERSTSZ) bits
|
---|
593 | * @{ */
|
---|
594 | #define XHCI_ERSTSZ_MASK 0x0000FFFF /**< RW */
|
---|
595 | /** @} */
|
---|
596 |
|
---|
597 | /** @name Event Ring Segment Table Base Address Register (ERSTBA) bits
|
---|
598 | * @{ */
|
---|
599 | #define XHCI_ERST_ADDR_MASK UINT64_C(0xFFFFFFFFFFFFFFC0)
|
---|
600 | /** @} */
|
---|
601 |
|
---|
602 | /** For reasons that are not obvious, NEC/Renesas xHCs only require 16-bit
|
---|
603 | * alignment for the ERST base. This is not in line with the xHCI spec
|
---|
604 | * (which requires 64-bit alignment) but is clearly documented by NEC.
|
---|
605 | */
|
---|
606 | #define NEC_ERST_ADDR_MASK UINT64_C(0xFFFFFFFFFFFFFFF0)
|
---|
607 |
|
---|
608 | /** Firmware revision reported in NEC/Renesas mode. Value chosen based on
|
---|
609 | * OS X driver check (OS X supports these chips since they're commonly
|
---|
610 | * found in ExpressCards).
|
---|
611 | */
|
---|
612 | #define NEC_FW_REV 0x3028
|
---|
613 |
|
---|
614 | /** @name Event Ring Deqeue Pointer Register (ERDP) bits
|
---|
615 | * @{ */
|
---|
616 | #define XHCI_ERDP_DESI_MASK 0x00000007 /**< RW - Dequeue ERST Segment Index */
|
---|
617 | #define XHCI_ERDP_EHB RT_BIT(3) /**< RW1C - Event Handler Busy */
|
---|
618 | #define XHCI_ERDP_ADDR_MASK UINT64_C(0xFFFFFFFFFFFFFFF0) /**< RW - ERDP address mask */
|
---|
619 | /** @} */
|
---|
620 |
|
---|
621 | /** @name Device Context Base Address Array (DCBAA) definitions
|
---|
622 | * @{ */
|
---|
623 | #define XHCI_DCBAA_ADDR_MASK UINT64_C(0xFFFFFFFFFFFFFFC0) /**< Applies to DCBAAP and its entries. */
|
---|
624 | /** @} */
|
---|
625 |
|
---|
626 | /** @name Doorbell Register bits
|
---|
627 | * @{ */
|
---|
628 | #define XHCI_DB_TGT_MASK 0x000000FF /**< DB Target mask. */
|
---|
629 | #define XHCI_DB_STRMID_SHIFT 16 /**< DB Stream ID shift. */
|
---|
630 | #define XHCI_DB_STRMID_MASK 0xFFFF0000 /**< DB Stream ID mask. */
|
---|
631 | /** @} */
|
---|
632 |
|
---|
633 | /** Address mask for device/endpoint/input contexts. */
|
---|
634 | #define XHCI_CTX_ADDR_MASK UINT64_C(0xFFFFFFFFFFFFFFF0)
|
---|
635 |
|
---|
636 | /** @name TRB Completion Codes
|
---|
637 | * @{ */
|
---|
638 | #define XHCI_TCC_INVALID 0 /**< CC field not updated. */
|
---|
639 | #define XHCI_TCC_SUCCESS 1 /**< Successful TRB completion. */
|
---|
640 | #define XHCI_TCC_DATA_BUF_ERR 2 /**< Overrun/underrun. */
|
---|
641 | #define XHCI_TCC_BABBLE 3 /**< Babble detected. */
|
---|
642 | #define XHCI_TCC_USB_XACT_ERR 4 /**< USB transaction error. */
|
---|
643 | #define XHCI_TCC_TRB_ERR 5 /**< TRB error detected. */
|
---|
644 | #define XHCI_TCC_STALL 6 /**< USB Stall detected. */
|
---|
645 | #define XHCI_TCC_RSRC_ERR 7 /**< Inadequate xHC resources. */
|
---|
646 | #define XHCI_TCC_BWIDTH_ERR 8 /**< Unable to allocate bandwidth. */
|
---|
647 | #define XHCI_TCC_NO_SLOTS 9 /**< MaxSlots (NDS) exceeded. */
|
---|
648 | #define XHCI_TCC_INV_STRM_TYP 10 /**< Invalid stream context type. */
|
---|
649 | #define XHCI_TCC_SLOT_NOT_ENB 11 /**< Slot not enabled. */
|
---|
650 | #define XHCI_TCC_EP_NOT_ENB 12 /**< Endpoint not enabled. */
|
---|
651 | #define XHCI_TCC_SHORT_PKT 13 /**< Short packet detected. */
|
---|
652 | #define XHCI_TCC_RING_UNDERRUN 14 /**< Transfer ring underrun. */
|
---|
653 | #define XHCI_TCC_RING_OVERRUN 15 /**< Transfer ring overrun. */
|
---|
654 | #define XHCI_TCC_VF_RING_FULL 16 /**< VF event ring full. */
|
---|
655 | #define XHCI_TCC_PARM_ERR 17 /**< Invalid context parameter. */
|
---|
656 | #define XHCI_TCC_BWIDTH_OVER 18 /**< Isoc bandwidth overrun. */
|
---|
657 | #define XHCI_TCC_CTX_STATE_ERR 19 /**< Transition from illegal context state. */
|
---|
658 | #define XHCI_TCC_NO_PING 20 /**< No ping response in time. */
|
---|
659 | #define XHCI_TCC_EVT_RING_FULL 21 /**< Event Ring full. */
|
---|
660 | #define XHCI_TCC_DEVICE_COMPAT 22 /**< Incompatible device detected. */
|
---|
661 | #define XHCI_TCC_MISS_SVC 23 /**< Missed isoc service. */
|
---|
662 | #define XHCI_TCC_CMDR_STOPPED 24 /**< Command ring stopped. */
|
---|
663 | #define XHCI_TCC_CMD_ABORTED 25 /**< Command aborted. */
|
---|
664 | #define XHCI_TCC_STOPPED 26 /**< Endpoint stopped. */
|
---|
665 | #define XHCI_TCC_STP_INV_LEN 27 /**< EP stopped, invalid transfer length. */
|
---|
666 | /* 28 Reserved. */
|
---|
667 | #define XHCI_TCC_MAX_EXIT_LAT 29 /**< Max exit latency too large. */
|
---|
668 | /* 30 Reserved. */
|
---|
669 | #define XHCI_TCC_ISOC_OVERRUN 31 /**< Isochronous buffer overrun. */
|
---|
670 | #define XHCI_TCC_EVT_LOST 32 /**< Event lost due to overrun. */
|
---|
671 | #define XHCI_TCC_ERR_OTHER 33 /**< Implementation specific error. */
|
---|
672 | #define XHCI_TCC_INV_STRM_ID 34 /**< Invalid stream ID. */
|
---|
673 | #define XHCI_TCC_SEC_BWIDTH_ERR 35 /**< Secondary bandwidth error. */
|
---|
674 | #define XHCI_TCC_SPLIT_ERR 36 /**< Split transaction error. */
|
---|
675 | /** @} */
|
---|
676 |
|
---|
677 | #if defined(IN_RING3) && defined(LOG_ENABLED)
|
---|
678 | /** Human-readable completion code descriptions for debugging. */
|
---|
679 | static const char * const g_apszCmplCodes[] = {
|
---|
680 | "CC field not updated", "Successful TRB completion", "Overrun/underrun", "Babble detected", /* 0-3 */
|
---|
681 | "USB transaction error", "TRB error detected", "USB Stall detected", "Inadequate xHC resources", /* 4-7 */
|
---|
682 | "Unable to allocate bandwidth", "MaxSlots (NDS) exceeded", "Invalid stream context type", "Slot not enabled", /* 8-11 */
|
---|
683 | "Endpoint not enabled", "Short packet detected", "Transfer ring underrun", "Transfer ring overrun", /* 12-15 */
|
---|
684 | "VF event ring full", "Invalid context param", "Isoc bandwidth overrun", "Transition from illegal ctx state", /* 16-19 */
|
---|
685 | "No ping response in time", "Event Ring full", "Incompatible device detected", "Missed isoc service", /* 20-23 */
|
---|
686 | "Command ring stopped", "Command aborted", "Endpoint stopped", "EP stopped, invalid transfer length", /* 24-27 */
|
---|
687 | "Reserved", "Max exit latency too large", "Reserved", "Isochronous buffer overrun", /* 28-31 */
|
---|
688 | "Event lost due to overrun", "Implementation specific error", "Invalid stream ID", "Secondary bandwidth error", /* 32-35 */
|
---|
689 | "Split transaction error" /* 36 */
|
---|
690 | };
|
---|
691 | #endif
|
---|
692 |
|
---|
693 |
|
---|
694 | /* TRBs marked as 'TRB' are only valid in the transfer ring. TRBs marked
|
---|
695 | * as 'Command' are only valid in the command ring. TRBs marked as 'Event'
|
---|
696 | * are the only ones generated in the event ring. The Link TRB is valid
|
---|
697 | * in both the transfer and command rings.
|
---|
698 | */
|
---|
699 |
|
---|
700 | /** @name TRB Types
|
---|
701 | * @{ */
|
---|
702 | #define XHCI_TRB_INVALID 0 /**< Reserved/unused TRB type. */
|
---|
703 | #define XHCI_TRB_NORMAL 1 /**< Normal TRB. */
|
---|
704 | #define XHCI_TRB_SETUP_STG 2 /**< Setup Stage TRB. */
|
---|
705 | #define XHCI_TRB_DATA_STG 3 /**< Data Stage TRB. */
|
---|
706 | #define XHCI_TRB_STATUS_STG 4 /**< Status Stage TRB. */
|
---|
707 | #define XHCI_TRB_ISOCH 5 /**< Isochronous TRB. */
|
---|
708 | #define XHCI_TRB_LINK 6 /**< Link. */
|
---|
709 | #define XHCI_TRB_EVT_DATA 7 /**< Event Data TRB. */
|
---|
710 | #define XHCI_TRB_NOOP_XFER 8 /**< No-op transfer TRB. */
|
---|
711 | #define XHCI_TRB_ENB_SLOT 9 /**< Enable Slot Command. */
|
---|
712 | #define XHCI_TRB_DIS_SLOT 10 /**< Disable Slot Command. */
|
---|
713 | #define XHCI_TRB_ADDR_DEV 11 /**< Address Device Command. */
|
---|
714 | #define XHCI_TRB_CFG_EP 12 /**< Configure Endpoint Command. */
|
---|
715 | #define XHCI_TRB_EVAL_CTX 13 /**< Evaluate Context Command. */
|
---|
716 | #define XHCI_TRB_RESET_EP 14 /**< Reset Endpoint Command. */
|
---|
717 | #define XHCI_TRB_STOP_EP 15 /**< Stop Endpoint Command. */
|
---|
718 | #define XHCI_TRB_SET_DEQ_PTR 16 /**< Set TR Dequeue Pointer Command. */
|
---|
719 | #define XHCI_TRB_RESET_DEV 17 /**< Reset Device Command. */
|
---|
720 | #define XHCI_TRB_FORCE_EVT 18 /**< Force Event Command. */
|
---|
721 | #define XHCI_TRB_NEG_BWIDTH 19 /**< Negotiate Bandwidth Command. */
|
---|
722 | #define XHCI_TRB_SET_LTV 20 /**< Set Latency Tolerate Value Command. */
|
---|
723 | #define XHCI_TRB_GET_PORT_BW 21 /**< Get Port Bandwidth Command. */
|
---|
724 | #define XHCI_TRB_FORCE_HDR 22 /**< Force Header Command. */
|
---|
725 | #define XHCI_TRB_NOOP_CMD 23 /**< No-op Command. */
|
---|
726 | /* 24-31 Reserved. */
|
---|
727 | #define XHCI_TRB_XFER 32 /**< Transfer Event. */
|
---|
728 | #define XHCI_TRB_CMD_CMPL 33 /**< Command Completion Event. */
|
---|
729 | #define XHCI_TRB_PORT_SC 34 /**< Port Status Change Event. */
|
---|
730 | #define XHCI_TRB_BW_REQ 35 /**< Bandwidth Request Event. */
|
---|
731 | #define XHCI_TRB_DBELL 36 /**< Doorbell Event. */
|
---|
732 | #define XHCI_TRB_HC_EVT 37 /**< Host Controller Event. */
|
---|
733 | #define XHCI_TRB_DEV_NOTIFY 38 /**< Device Notification Event. */
|
---|
734 | #define XHCI_TRB_MFIDX_WRAP 39 /**< MFINDEX Wrap Event. */
|
---|
735 | /* 40-47 Reserved. */
|
---|
736 | #define NEC_TRB_CMD_CMPL 48 /**< Command Completion Event, NEC specific. */
|
---|
737 | #define NEC_TRB_GET_FW_VER 49 /**< Get Firmware Version Command, NEC specific. */
|
---|
738 | #define NEC_TRB_AUTHENTICATE 50 /**< Authenticate Command, NEC specific. */
|
---|
739 | /** @} */
|
---|
740 |
|
---|
741 | #if defined(IN_RING3) && defined(LOG_ENABLED)
|
---|
742 | /** Human-readable TRB names for debugging. */
|
---|
743 | static const char * const g_apszTrbNames[] = {
|
---|
744 | "Reserved/unused TRB!!", "Normal TRB", "Setup Stage TRB", "Data Stage TRB", /* 0-3 */
|
---|
745 | "Status Stage TRB", "Isochronous TRB", "Link", "Event Data TRB", /* 4-7 */
|
---|
746 | "No-op transfer TRB", "Enable Slot", "Disable Slot", "Address Device", /* 8-11 */
|
---|
747 | "Configure Endpoint", "Evaluate Context", "Reset Endpoint", "Stop Endpoint", /* 12-15 */
|
---|
748 | "Set TR Dequeue Pointer", "Reset Device", "Force Event", "Negotiate Bandwidth", /* 16-19 */
|
---|
749 | "Set Latency Tolerate Value", "Get Port Bandwidth", "Force Header", "No-op", /* 20-23 */
|
---|
750 | "UNDEF", "UNDEF", "UNDEF", "UNDEF", "UNDEF", "UNDEF", "UNDEF", "UNDEF", /* 24-31 */
|
---|
751 | "Transfer", "Command Completion", "Port Status Change", "BW Request", /* 32-35 */
|
---|
752 | "Doorbell", "Host Controller", "Device Notification", "MFINDEX Wrap", /* 36-39 */
|
---|
753 | "UNDEF", "UNDEF", "UNDEF", "UNDEF", "UNDEF", "UNDEF", "UNDEF", "UNDEF", /* 40-47 */
|
---|
754 | "NEC FW Version Completion", "NEC Get FW Version", "NEC Authenticate" /* 48-50 */
|
---|
755 | };
|
---|
756 | #endif
|
---|
757 |
|
---|
758 | /** Generic TRB template. */
|
---|
759 | typedef struct sXHCI_TRB_G {
|
---|
760 | uint32_t resvd0;
|
---|
761 | uint32_t resvd1;
|
---|
762 | uint32_t resvd2 : 24;
|
---|
763 | uint32_t cc : 8; /**< Completion Code. */
|
---|
764 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
765 | uint32_t resvd3 : 9;
|
---|
766 | uint32_t type : 6; /**< TRB Type. */
|
---|
767 | uint32_t resvd4 : 16;
|
---|
768 | } XHCI_TRB_G;
|
---|
769 | AssertCompile(sizeof(XHCI_TRB_G) == 0x10);
|
---|
770 |
|
---|
771 | /** Generic transfer TRB template. */
|
---|
772 | typedef struct sXHCI_TRB_GX {
|
---|
773 | uint32_t resvd0;
|
---|
774 | uint32_t resvd1;
|
---|
775 | uint32_t xfr_len : 17; /**< Transfer length. */
|
---|
776 | uint32_t resvd2 : 5;
|
---|
777 | uint32_t int_tgt : 10; /**< Interrupter target. */
|
---|
778 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
779 | uint32_t ent : 1; /**< Evaluate Next TRB. */
|
---|
780 | uint32_t isp : 1; /**< Interrupt on Short Packet. */
|
---|
781 | uint32_t ns : 1; /**< No Snoop. */
|
---|
782 | uint32_t ch : 1; /**< Chain bit. */
|
---|
783 | uint32_t ioc : 1; /**< Interrupt On Completion. */
|
---|
784 | uint32_t idt : 1; /**< Immediate Data. */
|
---|
785 | uint32_t resvd3 : 3;
|
---|
786 | uint32_t type : 6; /**< TRB Type. */
|
---|
787 | uint32_t resvd4 : 16;
|
---|
788 | } XHCI_TRB_GX;
|
---|
789 | AssertCompile(sizeof(XHCI_TRB_GX) == 0x10);
|
---|
790 |
|
---|
791 |
|
---|
792 | /* -= Transfer TRB types =- */
|
---|
793 |
|
---|
794 |
|
---|
795 | /** Normal Transfer TRB. */
|
---|
796 | typedef struct sXHCI_TRB_NORM {
|
---|
797 | uint64_t data_ptr; /**< Pointer or data. */
|
---|
798 | uint32_t xfr_len : 17; /**< Transfer length. */
|
---|
799 | uint32_t td_size : 5; /**< Remaining packets. */
|
---|
800 | uint32_t int_tgt : 10; /**< Interrupter target. */
|
---|
801 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
802 | uint32_t ent : 1; /**< Evaluate Next TRB. */
|
---|
803 | uint32_t isp : 1; /**< Interrupt on Short Packet. */
|
---|
804 | uint32_t ns : 1; /**< No Snoop. */
|
---|
805 | uint32_t ch : 1; /**< Chain bit. */
|
---|
806 | uint32_t ioc : 1; /**< Interrupt On Completion. */
|
---|
807 | uint32_t idt : 1; /**< Immediate Data. */
|
---|
808 | uint32_t resvd0 : 2;
|
---|
809 | uint32_t bei : 1; /**< Block Event Interrupt. */
|
---|
810 | uint32_t type : 6; /**< TRB Type. */
|
---|
811 | uint32_t resvd1 : 16;
|
---|
812 | } XHCI_TRB_NORM;
|
---|
813 | AssertCompile(sizeof(XHCI_TRB_NORM) == 0x10);
|
---|
814 |
|
---|
815 | /** Control Transfer - Setup Stage TRB. */
|
---|
816 | typedef struct sXHCI_TRB_CTSP {
|
---|
817 | uint8_t bmRequestType; /**< See the USB spec. */
|
---|
818 | uint8_t bRequest;
|
---|
819 | uint16_t wValue;
|
---|
820 | uint16_t wIndex;
|
---|
821 | uint16_t wLength;
|
---|
822 | uint32_t xfr_len : 17; /**< Transfer length (8). */
|
---|
823 | uint32_t resvd0 : 5;
|
---|
824 | uint32_t int_tgt : 10; /**< Interrupter target. */
|
---|
825 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
826 | uint32_t resvd1 : 4;
|
---|
827 | uint32_t ioc : 1; /**< Interrupt On Completion. */
|
---|
828 | uint32_t idt : 1; /**< Immediate Data. */
|
---|
829 | uint32_t resvd2 : 2;
|
---|
830 | uint32_t bei : 1; /**< Block Event Interrupt. */
|
---|
831 | uint32_t type : 6; /**< TRB Type. */
|
---|
832 | uint32_t trt : 2; /**< Transfer Type. */
|
---|
833 | uint32_t resvd3 : 14;
|
---|
834 | } XHCI_TRB_CTSP;
|
---|
835 | AssertCompile(sizeof(XHCI_TRB_CTSP) == 0x10);
|
---|
836 |
|
---|
837 | /** Control Transfer - Data Stage TRB. */
|
---|
838 | typedef struct sXHCI_TRB_CTDT {
|
---|
839 | uint64_t data_ptr; /**< Pointer or data. */
|
---|
840 | uint32_t xfr_len : 17; /**< Transfer length. */
|
---|
841 | uint32_t td_size : 5; /**< Remaining packets. */
|
---|
842 | uint32_t int_tgt : 10; /**< Interrupter target. */
|
---|
843 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
844 | uint32_t ent : 1; /**< Evaluate Next TRB. */
|
---|
845 | uint32_t isp : 1; /**< Interrupt on Short Packet. */
|
---|
846 | uint32_t ns : 1; /**< No Snoop. */
|
---|
847 | uint32_t ch : 1; /**< Chain bit. */
|
---|
848 | uint32_t ioc : 1; /**< Interrupt On Completion. */
|
---|
849 | uint32_t idt : 1; /**< Immediate Data. */
|
---|
850 | uint32_t resvd0 : 3;
|
---|
851 | uint32_t type : 6; /**< TRB Type. */
|
---|
852 | uint32_t dir : 1; /**< Direction (1=IN). */
|
---|
853 | uint32_t resvd1 : 15;
|
---|
854 | } XHCI_TRB_CTDT;
|
---|
855 | AssertCompile(sizeof(XHCI_TRB_CTDT) == 0x10);
|
---|
856 |
|
---|
857 | /** Control Transfer - Status Stage TRB. */
|
---|
858 | typedef struct sXHCI_TRB_CTSS {
|
---|
859 | uint64_t resvd0;
|
---|
860 | uint32_t resvd1 : 22;
|
---|
861 | uint32_t int_tgt : 10; /**< Interrupter target. */
|
---|
862 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
863 | uint32_t ent : 1; /**< Evaluate Next TRB. */
|
---|
864 | uint32_t resvd2 : 2;
|
---|
865 | uint32_t ch : 1; /**< Chain bit. */
|
---|
866 | uint32_t ioc : 1; /**< Interrupt On Completion. */
|
---|
867 | uint32_t resvd3 : 4;
|
---|
868 | uint32_t type : 6; /**< TRB Type. */
|
---|
869 | uint32_t dir : 1; /**< Direction (1=IN). */
|
---|
870 | uint32_t resvd4 : 15;
|
---|
871 | } XHCI_TRB_CTSS;
|
---|
872 | AssertCompile(sizeof(XHCI_TRB_CTSS) == 0x10);
|
---|
873 |
|
---|
874 | /** Isochronous Transfer TRB. */
|
---|
875 | typedef struct sXHCI_TRB_ISOC {
|
---|
876 | uint64_t data_ptr; /**< Pointer or data. */
|
---|
877 | uint32_t xfr_len : 17; /**< Transfer length. */
|
---|
878 | uint32_t td_size : 5; /**< Remaining packets. */
|
---|
879 | uint32_t int_tgt : 10; /**< Interrupter target. */
|
---|
880 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
881 | uint32_t ent : 1; /**< Evaluate Next TRB. */
|
---|
882 | uint32_t isp : 1; /**< Interrupt on Short Packet. */
|
---|
883 | uint32_t ns : 1; /**< No Snoop. */
|
---|
884 | uint32_t ch : 1; /**< Chain bit. */
|
---|
885 | uint32_t ioc : 1; /**< Interrupt On Completion. */
|
---|
886 | uint32_t idt : 1; /**< Immediate Data. */
|
---|
887 | uint32_t tbc : 2; /**< Transfer Burst Count. */
|
---|
888 | uint32_t bei : 1; /**< Block Event Interrupt. */
|
---|
889 | uint32_t type : 6; /**< TRB Type. */
|
---|
890 | uint32_t tlbpc : 4; /**< Transfer Last Burst Packet Count. */
|
---|
891 | uint32_t frm_id : 11; /**< Frame ID. */
|
---|
892 | uint32_t sia : 1; /**< Start Isoch ASAP. */
|
---|
893 | } XHCI_TRB_ISOC;
|
---|
894 | AssertCompile(sizeof(XHCI_TRB_ISOC) == 0x10);
|
---|
895 |
|
---|
896 | /* Number of bits in the frame ID. */
|
---|
897 | #define XHCI_FRAME_ID_BITS 11
|
---|
898 |
|
---|
899 | /** No Op Transfer TRB. */
|
---|
900 | typedef struct sXHCI_TRB_NOPT {
|
---|
901 | uint64_t resvd0;
|
---|
902 | uint32_t resvd1 : 22;
|
---|
903 | uint32_t int_tgt : 10; /**< Interrupter target. */
|
---|
904 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
905 | uint32_t ent : 1; /**< Evaluate Next TRB. */
|
---|
906 | uint32_t resvd2 : 2;
|
---|
907 | uint32_t ch : 1; /**< Chain bit. */
|
---|
908 | uint32_t ioc : 1; /**< Interrupt On Completion. */
|
---|
909 | uint32_t resvd3 : 4;
|
---|
910 | uint32_t type : 6; /**< TRB Type. */
|
---|
911 | uint32_t resvd4 : 16;
|
---|
912 | } XHCI_TRB_NOPT;
|
---|
913 | AssertCompile(sizeof(XHCI_TRB_NOPT) == 0x10);
|
---|
914 |
|
---|
915 |
|
---|
916 | /* -= Event TRB types =- */
|
---|
917 |
|
---|
918 |
|
---|
919 | /** Transfer Event TRB. */
|
---|
920 | typedef struct sXHCI_TRB_TE {
|
---|
921 | uint64_t trb_ptr; /**< TRB pointer. */
|
---|
922 | uint32_t xfr_len : 24; /**< Transfer length. */
|
---|
923 | uint32_t cc : 8; /**< Completion Code. */
|
---|
924 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
925 | uint32_t resvd0 : 1;
|
---|
926 | uint32_t ed : 1; /**< Event Data flag. */
|
---|
927 | uint32_t resvd1 : 7;
|
---|
928 | uint32_t type : 6; /**< TRB Type. */
|
---|
929 | uint32_t ep_id : 5; /**< Endpoint ID. */
|
---|
930 | uint32_t resvd2 : 3;
|
---|
931 | uint32_t slot_id : 8; /**< Slot ID. */
|
---|
932 | } XHCI_TRB_TE;
|
---|
933 | AssertCompile(sizeof(XHCI_TRB_TE) == 0x10);
|
---|
934 |
|
---|
935 | /** Command Completion Event TRB. */
|
---|
936 | typedef struct sXHCI_TRB_CCE {
|
---|
937 | uint64_t trb_ptr; /**< Command TRB pointer. */
|
---|
938 | uint32_t resvd0 : 24;
|
---|
939 | uint32_t cc : 8; /**< Completion Code. */
|
---|
940 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
941 | uint32_t resvd1 : 9;
|
---|
942 | uint32_t type : 6; /**< TRB Type. */
|
---|
943 | uint32_t vf_id : 8; /**< Virtual Function ID. */
|
---|
944 | uint32_t slot_id : 8; /**< Slot ID. */
|
---|
945 | } XHCI_TRB_CCE;
|
---|
946 | AssertCompile(sizeof(XHCI_TRB_CCE) == 0x10);
|
---|
947 |
|
---|
948 | /** Port Staus Change Event TRB. */
|
---|
949 | typedef struct sXHCI_TRB_PSCE {
|
---|
950 | uint32_t resvd0 : 24;
|
---|
951 | uint32_t port_id : 8; /**< Port ID. */
|
---|
952 | uint32_t resvd1;
|
---|
953 | uint32_t resvd2 : 24;
|
---|
954 | uint32_t cc : 8; /**< Completion Code. */
|
---|
955 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
956 | uint32_t resvd3 : 9;
|
---|
957 | uint32_t type : 6; /**< TRB Type. */
|
---|
958 | uint32_t resvd4 : 16;
|
---|
959 | } XHCI_TRB_PSCE;
|
---|
960 | AssertCompile(sizeof(XHCI_TRB_PSCE) == 0x10);
|
---|
961 |
|
---|
962 | /** Bandwidth Request Event TRB. */
|
---|
963 | typedef struct sXHCI_TRB_BRE {
|
---|
964 | uint32_t resvd0;
|
---|
965 | uint32_t resvd1;
|
---|
966 | uint32_t resvd2 : 24;
|
---|
967 | uint32_t cc : 8; /**< Completion Code. */
|
---|
968 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
969 | uint32_t resvd3 : 9;
|
---|
970 | uint32_t type : 6; /**< TRB Type. */
|
---|
971 | uint32_t resvd4 : 8;
|
---|
972 | uint32_t slot_id : 8; /**< Slot ID. */
|
---|
973 | } XHCI_TRB_BRE;
|
---|
974 | AssertCompile(sizeof(XHCI_TRB_BRE) == 0x10);
|
---|
975 |
|
---|
976 | /** Doorbell Event TRB. */
|
---|
977 | typedef struct sXHCI_TRB_DBE {
|
---|
978 | uint32_t reason : 5; /**< DB Reason/target. */
|
---|
979 | uint32_t resvd0 : 27;
|
---|
980 | uint32_t resvd1;
|
---|
981 | uint32_t resvd2 : 24;
|
---|
982 | uint32_t cc : 8; /**< Completion Code. */
|
---|
983 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
984 | uint32_t resvd3 : 9;
|
---|
985 | uint32_t type : 6; /**< TRB Type. */
|
---|
986 | uint32_t vf_id : 8; /**< Virtual Function ID. */
|
---|
987 | uint32_t slot_id : 8; /**< Slot ID. */
|
---|
988 | } XHCI_TRB_DBE;
|
---|
989 | AssertCompile(sizeof(XHCI_TRB_DBE) == 0x10);
|
---|
990 |
|
---|
991 | /** Host Controller Event TRB. */
|
---|
992 | typedef struct sXHCI_TRB_HCE {
|
---|
993 | uint32_t resvd0;
|
---|
994 | uint32_t resvd1;
|
---|
995 | uint32_t resvd2 : 24;
|
---|
996 | uint32_t cc : 8; /**< Completion Code. */
|
---|
997 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
998 | uint32_t resvd3 : 9;
|
---|
999 | uint32_t type : 6; /**< TRB Type. */
|
---|
1000 | uint32_t resvd4 : 16;
|
---|
1001 | } XHCI_TRB_HCE;
|
---|
1002 | AssertCompile(sizeof(XHCI_TRB_HCE) == 0x10);
|
---|
1003 |
|
---|
1004 | /** Device Notification Event TRB. */
|
---|
1005 | typedef struct sXHCI_TRB_DNE {
|
---|
1006 | uint32_t resvd0 : 4;
|
---|
1007 | uint32_t dn_type : 4; /**< Device Notification Type. */
|
---|
1008 | uint32_t dnd_lo : 5; /**< Device Notification Data Lo. */
|
---|
1009 | uint32_t dnd_hi; /**< Device Notification Data Hi. */
|
---|
1010 | uint32_t resvd1 : 24;
|
---|
1011 | uint32_t cc : 8; /**< Completion Code. */
|
---|
1012 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
1013 | uint32_t resvd2 : 9;
|
---|
1014 | uint32_t type : 6; /**< TRB Type. */
|
---|
1015 | uint32_t resvd3 : 8;
|
---|
1016 | uint32_t slot_id : 8; /**< Slot ID. */
|
---|
1017 | } XHCI_TRB_DNE;
|
---|
1018 | AssertCompile(sizeof(XHCI_TRB_DNE) == 0x10);
|
---|
1019 |
|
---|
1020 | /** MFINDEX Wrap Event TRB. */
|
---|
1021 | typedef struct sXHCI_TRB_MWE {
|
---|
1022 | uint32_t resvd0;
|
---|
1023 | uint32_t resvd1;
|
---|
1024 | uint32_t resvd2 : 24;
|
---|
1025 | uint32_t cc : 8; /**< Completion Code. */
|
---|
1026 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
1027 | uint32_t resvd3 : 9;
|
---|
1028 | uint32_t type : 6; /**< TRB Type. */
|
---|
1029 | uint32_t resvd4 : 16;
|
---|
1030 | } XHCI_TRB_MWE;
|
---|
1031 | AssertCompile(sizeof(XHCI_TRB_MWE) == 0x10);
|
---|
1032 |
|
---|
1033 | /** NEC Specific Command Completion Event TRB. */
|
---|
1034 | typedef struct sXHCI_TRB_NCE {
|
---|
1035 | uint64_t trb_ptr; /**< Command TRB pointer. */
|
---|
1036 | uint32_t word1 : 16; /**< First result word. */
|
---|
1037 | uint32_t resvd0 : 8;
|
---|
1038 | uint32_t cc : 8; /**< Completion Code. */
|
---|
1039 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
1040 | uint32_t resvd1 : 9;
|
---|
1041 | uint32_t type : 6; /**< TRB Type. */
|
---|
1042 | uint32_t word2 : 16; /**< Second result word. */
|
---|
1043 | } XHCI_TRB_NCE;
|
---|
1044 | AssertCompile(sizeof(XHCI_TRB_NCE) == 0x10);
|
---|
1045 |
|
---|
1046 |
|
---|
1047 |
|
---|
1048 | /* -= Command TRB types =- */
|
---|
1049 |
|
---|
1050 |
|
---|
1051 | /** No Op Command TRB. */
|
---|
1052 | typedef struct sXHCI_TRB_NOPC {
|
---|
1053 | uint32_t resvd0;
|
---|
1054 | uint32_t resvd1;
|
---|
1055 | uint32_t resvd2;
|
---|
1056 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
1057 | uint32_t resvd3 : 9;
|
---|
1058 | uint32_t type : 6; /**< TRB Type. */
|
---|
1059 | uint32_t resvd4 : 16;
|
---|
1060 | } XHCI_TRB_NOPC;
|
---|
1061 | AssertCompile(sizeof(XHCI_TRB_NOPC) == 0x10);
|
---|
1062 |
|
---|
1063 | /** Enable Slot Command TRB. */
|
---|
1064 | typedef struct sXHCI_TRB_ESL {
|
---|
1065 | uint32_t resvd0;
|
---|
1066 | uint32_t resvd1;
|
---|
1067 | uint32_t resvd2;
|
---|
1068 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
1069 | uint32_t resvd3 : 9;
|
---|
1070 | uint32_t type : 6; /**< TRB Type. */
|
---|
1071 | uint32_t resvd4 : 16;
|
---|
1072 | } XHCI_TRB_ESL;
|
---|
1073 | AssertCompile(sizeof(XHCI_TRB_ESL) == 0x10);
|
---|
1074 |
|
---|
1075 | /** Disable Slot Command TRB. */
|
---|
1076 | typedef struct sXHCI_TRB_DSL {
|
---|
1077 | uint32_t resvd0;
|
---|
1078 | uint32_t resvd1;
|
---|
1079 | uint32_t resvd2;
|
---|
1080 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
1081 | uint32_t resvd3 : 9;
|
---|
1082 | uint32_t type : 6; /**< TRB Type. */
|
---|
1083 | uint32_t resvd4 : 8;
|
---|
1084 | uint32_t slot_id : 8; /**< Slot ID. */
|
---|
1085 | } XHCI_TRB_DSL;
|
---|
1086 | AssertCompile(sizeof(XHCI_TRB_DSL) == 0x10);
|
---|
1087 |
|
---|
1088 | /** Address Device Command TRB. */
|
---|
1089 | typedef struct sXHCI_TRB_ADR {
|
---|
1090 | uint64_t ctx_ptr; /**< Input Context pointer. */
|
---|
1091 | uint32_t resvd0;
|
---|
1092 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
1093 | uint32_t resvd1 : 8;
|
---|
1094 | uint32_t bsr : 1; /**< Block Set Address Request. */
|
---|
1095 | uint32_t type : 6; /**< TRB Type. */
|
---|
1096 | uint32_t resvd2 : 8;
|
---|
1097 | uint32_t slot_id : 8; /**< Slot ID. */
|
---|
1098 | } XHCI_TRB_ADR;
|
---|
1099 | AssertCompile(sizeof(XHCI_TRB_ADR) == 0x10);
|
---|
1100 |
|
---|
1101 | /** Configure Endpoint Command TRB. */
|
---|
1102 | typedef struct sXHCI_TRB_CFG {
|
---|
1103 | uint64_t ctx_ptr; /**< Input Context pointer. */
|
---|
1104 | uint32_t resvd0;
|
---|
1105 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
1106 | uint32_t resvd1 : 8;
|
---|
1107 | uint32_t dc : 1; /**< Deconfigure. */
|
---|
1108 | uint32_t type : 6; /**< TRB Type. */
|
---|
1109 | uint32_t resvd2 : 8;
|
---|
1110 | uint32_t slot_id : 8; /**< Slot ID. */
|
---|
1111 | } XHCI_TRB_CFG;
|
---|
1112 | AssertCompile(sizeof(XHCI_TRB_CFG) == 0x10);
|
---|
1113 |
|
---|
1114 | /** Evaluate Context Command TRB. */
|
---|
1115 | typedef struct sXHCI_TRB_EVC {
|
---|
1116 | uint64_t ctx_ptr; /**< Input Context pointer. */
|
---|
1117 | uint32_t resvd0;
|
---|
1118 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
1119 | uint32_t resvd1 : 9;
|
---|
1120 | uint32_t type : 6; /**< TRB Type. */
|
---|
1121 | uint32_t resvd2 : 8;
|
---|
1122 | uint32_t slot_id : 8; /**< Slot ID. */
|
---|
1123 | } XHCI_TRB_EVC;
|
---|
1124 | AssertCompile(sizeof(XHCI_TRB_EVC) == 0x10);
|
---|
1125 |
|
---|
1126 | /** Reset Endpoint Command TRB. */
|
---|
1127 | typedef struct sXHCI_TRB_RSE {
|
---|
1128 | uint32_t resvd0;
|
---|
1129 | uint32_t resvd1;
|
---|
1130 | uint32_t resvd2;
|
---|
1131 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
1132 | uint32_t resvd3 : 8;
|
---|
1133 | uint32_t tsp : 1; /**< Transfer State Preserve. */
|
---|
1134 | uint32_t type : 6; /**< TRB Type. */
|
---|
1135 | uint32_t ep_id : 5; /**< Endpoint ID. */
|
---|
1136 | uint32_t resvd4 : 3;
|
---|
1137 | uint32_t slot_id : 8; /**< Slot ID. */
|
---|
1138 | } XHCI_TRB_RSE;
|
---|
1139 | AssertCompile(sizeof(XHCI_TRB_RSE) == 0x10);
|
---|
1140 |
|
---|
1141 | /** Stop Endpoint Command TRB. */
|
---|
1142 | typedef struct sXHCI_TRB_STP {
|
---|
1143 | uint32_t resvd0;
|
---|
1144 | uint32_t resvd1;
|
---|
1145 | uint32_t resvd2;
|
---|
1146 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
1147 | uint32_t resvd3 : 9;
|
---|
1148 | uint32_t type : 6; /**< TRB Type. */
|
---|
1149 | uint32_t ep_id : 5; /**< Endpoint ID. */
|
---|
1150 | uint32_t resvd4 : 2;
|
---|
1151 | uint32_t sp : 1; /**< Suspend. */
|
---|
1152 | uint32_t slot_id : 8; /**< Slot ID. */
|
---|
1153 | } XHCI_TRB_STP;
|
---|
1154 | AssertCompile(sizeof(XHCI_TRB_STP) == 0x10);
|
---|
1155 |
|
---|
1156 | /** Set TR Dequeue Pointer Command TRB. */
|
---|
1157 | typedef struct sXHCI_TRB_STDP {
|
---|
1158 | #if 0
|
---|
1159 | uint64_t dcs : 1; /**< Dequeue Cycle State. */
|
---|
1160 | uint64_t sct : 3; /**< Stream Context Type. */
|
---|
1161 | uint64_t tr_dqp : 60; /**< New TR Dequeue Pointer (63:4). */
|
---|
1162 | #else
|
---|
1163 | uint64_t tr_dqp;
|
---|
1164 | #endif
|
---|
1165 | uint16_t resvd0;
|
---|
1166 | uint16_t strm_id; /**< Stream ID. */
|
---|
1167 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
1168 | uint32_t resvd1 : 9;
|
---|
1169 | uint32_t type : 6; /**< TRB Type. */
|
---|
1170 | uint32_t ep_id : 5; /**< Endpoint ID. */
|
---|
1171 | uint32_t resvd2 : 3;
|
---|
1172 | uint32_t slot_id : 8; /**< Slot ID. */
|
---|
1173 | } XHCI_TRB_STDP;
|
---|
1174 | AssertCompile(sizeof(XHCI_TRB_STDP) == 0x10);
|
---|
1175 |
|
---|
1176 | /** Reset Device Command TRB. */
|
---|
1177 | typedef struct sXHCI_TRB_RSD {
|
---|
1178 | uint32_t resvd0;
|
---|
1179 | uint32_t resvd1;
|
---|
1180 | uint32_t resvd2;
|
---|
1181 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
1182 | uint32_t resvd3 : 9;
|
---|
1183 | uint32_t type : 6; /**< TRB Type. */
|
---|
1184 | uint32_t resvd4 : 8;
|
---|
1185 | uint32_t slot_id : 8; /**< Slot ID. */
|
---|
1186 | } XHCI_TRB_RSD;
|
---|
1187 | AssertCompile(sizeof(XHCI_TRB_RSD) == 0x10);
|
---|
1188 |
|
---|
1189 | /** Get Port Bandwidth Command TRB. */
|
---|
1190 | typedef struct sXHCI_TRB_GPBW {
|
---|
1191 | uint64_t pbctx_ptr; /**< Port Bandwidth Context pointer. */
|
---|
1192 | uint32_t resvd0;
|
---|
1193 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
1194 | uint32_t resvd1 : 9;
|
---|
1195 | uint32_t type : 6; /**< TRB Type. */
|
---|
1196 | uint32_t spd : 4; /**< Dev Speed. */
|
---|
1197 | uint32_t resvd2 : 4;
|
---|
1198 | uint32_t slot_id : 8; /**< Slot ID. */
|
---|
1199 | } XHCI_TRB_GPBW;
|
---|
1200 | AssertCompile(sizeof(XHCI_TRB_GPBW) == 0x10);
|
---|
1201 |
|
---|
1202 | /** Force Header Command TRB. */
|
---|
1203 | typedef struct sXHCI_TRB_FHD {
|
---|
1204 | uint32_t pkt_typ : 5; /**< Packet Type. */
|
---|
1205 | uint32_t hdr_lo : 27; /**< Header Info Lo. */
|
---|
1206 | uint32_t hdr_mid; /**< Header Info Mid. */
|
---|
1207 | uint32_t hdr_hi; /**< Header Info Hi. */
|
---|
1208 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
1209 | uint32_t resvd0 : 9;
|
---|
1210 | uint32_t type : 6; /**< TRB Type. */
|
---|
1211 | uint32_t resvd1 : 8;
|
---|
1212 | uint32_t slot_id : 8; /**< Slot ID. */
|
---|
1213 | } XHCI_TRB_FHD;
|
---|
1214 | AssertCompile(sizeof(XHCI_TRB_FHD) == 0x10);
|
---|
1215 |
|
---|
1216 | /** NEC Specific Authenticate Command TRB. */
|
---|
1217 | typedef struct sXHCI_TRB_NAC {
|
---|
1218 | uint64_t cookie; /**< Cookie to munge. */
|
---|
1219 | uint32_t resvd0;
|
---|
1220 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
1221 | uint32_t resvd1 : 9;
|
---|
1222 | uint32_t type : 6; /**< TRB Type. */
|
---|
1223 | uint32_t resvd2 : 8;
|
---|
1224 | uint32_t slot_id : 8; /**< Slot ID. */
|
---|
1225 | } XHCI_TRB_NAC;
|
---|
1226 | AssertCompile(sizeof(XHCI_TRB_NAC) == 0x10);
|
---|
1227 |
|
---|
1228 |
|
---|
1229 | /* -= Other TRB types =- */
|
---|
1230 |
|
---|
1231 |
|
---|
1232 | /** Link TRB. */
|
---|
1233 | typedef struct sXHCI_TRB_LNK {
|
---|
1234 | uint64_t rseg_ptr; /**< Ring Segment Pointer. */
|
---|
1235 | uint32_t resvd0 : 22;
|
---|
1236 | uint32_t int_tgt : 10; /**< Interrupter target. */
|
---|
1237 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
1238 | uint32_t toggle : 1; /**< Toggle Cycle flag. */
|
---|
1239 | uint32_t resvd1 : 2;
|
---|
1240 | uint32_t chain : 1; /**< Chain flag. */
|
---|
1241 | uint32_t ioc : 1; /**< Interrupt On Completion flag. */
|
---|
1242 | uint32_t resvd2 : 4;
|
---|
1243 | uint32_t type : 6; /**< TRB Type. */
|
---|
1244 | uint32_t resvd3 : 16;
|
---|
1245 | } XHCI_TRB_LNK;
|
---|
1246 | AssertCompile(sizeof(XHCI_TRB_LNK) == 0x10);
|
---|
1247 |
|
---|
1248 | /** Event Data TRB. */
|
---|
1249 | typedef struct sXHCI_TRB_EVTD {
|
---|
1250 | uint64_t evt_data; /**< Event Data. */
|
---|
1251 | uint32_t resvd0 : 22;
|
---|
1252 | uint32_t int_tgt : 10; /**< Interrupter target. */
|
---|
1253 | uint32_t cycle : 1; /**< Cycle bit. */
|
---|
1254 | uint32_t ent : 1; /**< Evaluate Next Target flag. */
|
---|
1255 | uint32_t resvd1 : 2;
|
---|
1256 | uint32_t chain : 1; /**< Chain flag. */
|
---|
1257 | uint32_t ioc : 1; /**< Interrupt On Completion flag. */
|
---|
1258 | uint32_t resvd2 : 3;
|
---|
1259 | uint32_t bei : 1; /**< Block Event Interrupt flag. */
|
---|
1260 | uint32_t type : 6; /**< TRB Type. */
|
---|
1261 | uint32_t resvd3 : 16;
|
---|
1262 | } XHCI_TRB_EVTD;
|
---|
1263 | AssertCompile(sizeof(XHCI_TRB_EVTD) == 0x10);
|
---|
1264 |
|
---|
1265 |
|
---|
1266 | /* -= Union TRB types for the three rings =- */
|
---|
1267 |
|
---|
1268 |
|
---|
1269 | typedef union sXHCI_XFER_TRB {
|
---|
1270 | XHCI_TRB_NORM norm;
|
---|
1271 | XHCI_TRB_CTSP setup;
|
---|
1272 | XHCI_TRB_CTDT data;
|
---|
1273 | XHCI_TRB_CTSS status;
|
---|
1274 | XHCI_TRB_ISOC isoc;
|
---|
1275 | XHCI_TRB_EVTD evtd;
|
---|
1276 | XHCI_TRB_NOPT nop;
|
---|
1277 | XHCI_TRB_LNK link;
|
---|
1278 | XHCI_TRB_GX gen;
|
---|
1279 | } XHCI_XFER_TRB;
|
---|
1280 | AssertCompile(sizeof(XHCI_XFER_TRB) == 0x10);
|
---|
1281 |
|
---|
1282 | typedef union sXHCI_COMMAND_TRB {
|
---|
1283 | XHCI_TRB_ESL esl;
|
---|
1284 | XHCI_TRB_DSL dsl;
|
---|
1285 | XHCI_TRB_ADR adr;
|
---|
1286 | XHCI_TRB_CFG cfg;
|
---|
1287 | XHCI_TRB_EVC evc;
|
---|
1288 | XHCI_TRB_RSE rse;
|
---|
1289 | XHCI_TRB_STP stp;
|
---|
1290 | XHCI_TRB_STDP stdp;
|
---|
1291 | XHCI_TRB_RSD rsd;
|
---|
1292 | XHCI_TRB_GPBW gpbw;
|
---|
1293 | XHCI_TRB_FHD fhd;
|
---|
1294 | XHCI_TRB_NAC nac;
|
---|
1295 | XHCI_TRB_NOPC nopc;
|
---|
1296 | XHCI_TRB_LNK link;
|
---|
1297 | XHCI_TRB_G gen;
|
---|
1298 | } XHCI_COMMAND_TRB;
|
---|
1299 | AssertCompile(sizeof(XHCI_COMMAND_TRB) == 0x10);
|
---|
1300 |
|
---|
1301 | typedef union sXHCI_EVENT_TRB {
|
---|
1302 | XHCI_TRB_TE te;
|
---|
1303 | XHCI_TRB_CCE cce;
|
---|
1304 | XHCI_TRB_PSCE psce;
|
---|
1305 | XHCI_TRB_BRE bre;
|
---|
1306 | XHCI_TRB_DBE dbe;
|
---|
1307 | XHCI_TRB_HCE hce;
|
---|
1308 | XHCI_TRB_DNE dne;
|
---|
1309 | XHCI_TRB_MWE mwe;
|
---|
1310 | XHCI_TRB_NCE nce;
|
---|
1311 | XHCI_TRB_G gen;
|
---|
1312 | } XHCI_EVENT_TRB;
|
---|
1313 | AssertCompile(sizeof(XHCI_EVENT_TRB) == 0x10);
|
---|
1314 |
|
---|
1315 |
|
---|
1316 |
|
---|
1317 | /* -=-=-= Contexts =-=-=- */
|
---|
1318 |
|
---|
1319 | /** Slot Context. */
|
---|
1320 | typedef struct sXHCI_SLOT_CTX {
|
---|
1321 | uint32_t route_str : 20; /**< Route String. */
|
---|
1322 | uint32_t speed : 4; /**< Device speed. */
|
---|
1323 | uint32_t resvd0 : 1;
|
---|
1324 | uint32_t mtt : 1; /**< Multi-TT flag. */
|
---|
1325 | uint32_t hub : 1; /**< Hub flag. */
|
---|
1326 | uint32_t ctx_ent : 5; /**< Context entries. */
|
---|
1327 | uint32_t max_lat : 16; /**< Max exit latency in usec. */
|
---|
1328 | uint32_t rh_port : 8; /**< Root hub port number (1-based). */
|
---|
1329 | uint32_t n_ports : 8; /**< No. of ports for hubs. */
|
---|
1330 | uint32_t tt_slot : 8; /**< TT hub slot ID. */
|
---|
1331 | uint32_t tt_port : 8; /**< TT port number. */
|
---|
1332 | uint32_t ttt : 2; /**< TT Think Time. */
|
---|
1333 | uint32_t resvd1 : 4;
|
---|
1334 | uint32_t intr_tgt : 10; /**< Interrupter Target. */
|
---|
1335 | uint32_t dev_addr : 8; /**< Device Address. */
|
---|
1336 | uint32_t resvd2 : 19;
|
---|
1337 | uint32_t slot_state : 5; /**< Slot State. */
|
---|
1338 | uint32_t opaque[4]; /**< For xHC (i.e. our own) use. */
|
---|
1339 | } XHCI_SLOT_CTX;
|
---|
1340 | AssertCompile(sizeof(XHCI_SLOT_CTX) == 0x20);
|
---|
1341 |
|
---|
1342 | /** @name Slot Context states
|
---|
1343 | * @{ */
|
---|
1344 | #define XHCI_SLTST_ENDIS 0 /**< Enabled/Disabled. */
|
---|
1345 | #define XHCI_SLTST_DEFAULT 1 /**< Default. */
|
---|
1346 | #define XHCI_SLTST_ADDRESSED 2 /**< Addressed. */
|
---|
1347 | #define XHCI_SLTST_CONFIGURED 3 /**< Configured. */
|
---|
1348 | /** @} */
|
---|
1349 |
|
---|
1350 | #ifdef IN_RING3
|
---|
1351 | /** Human-readable slot state descriptions for debugging. */
|
---|
1352 | static const char * const g_apszSltStates[] = {
|
---|
1353 | "Enabled/Disabled", "Default", "Addressed", "Configured" /* 0-3 */
|
---|
1354 | };
|
---|
1355 | #endif
|
---|
1356 |
|
---|
1357 | /** Endpoint Context. */
|
---|
1358 | typedef struct sXHCI_EP_CTX {
|
---|
1359 | uint32_t ep_state : 3; /**< Endpoint state. */
|
---|
1360 | uint32_t resvd0 : 5;
|
---|
1361 | uint32_t mult : 2; /**< SS isoc burst count. */
|
---|
1362 | uint32_t maxps : 5; /**< Max Primary Streams. */
|
---|
1363 | uint32_t lsa : 1; /**< Linear Stream Array. */
|
---|
1364 | uint32_t interval : 8; /**< USB request interval. */
|
---|
1365 | uint32_t resvd1 : 8;
|
---|
1366 | uint32_t resvd2 : 1;
|
---|
1367 | uint32_t c_err : 2; /**< Error count. */
|
---|
1368 | uint32_t ep_type : 3; /**< Endpoint type. */
|
---|
1369 | uint32_t resvd3 : 1;
|
---|
1370 | uint32_t hid : 1; /**< Host Initiate Disable. */
|
---|
1371 | uint32_t max_brs_sz : 8; /**< Max Burst Size. */
|
---|
1372 | uint32_t max_pkt_sz : 16; /**< Max Packet Size. */
|
---|
1373 | uint64_t trdp; /**< TR Dequeue Pointer. */
|
---|
1374 | uint32_t avg_trb_len : 16; /**< Average TRB Length. */
|
---|
1375 | uint32_t max_esit : 16; /**< Max EP Service Interval Time Payload. */
|
---|
1376 | /**< The rest for xHC (i.e. our own) use. */
|
---|
1377 | uint32_t last_frm : 16; /**< Last isochronous frame used (opaque). */
|
---|
1378 | uint32_t ifc : 8; /**< isoch in-flight TD count (opaque). */
|
---|
1379 | uint32_t last_cc : 8; /**< Last TRB completion code (opaque). */
|
---|
1380 | uint64_t trep; /**< TR Enqueue Pointer (opaque). */
|
---|
1381 | } XHCI_EP_CTX;
|
---|
1382 | AssertCompile(sizeof(XHCI_EP_CTX) == 0x20);
|
---|
1383 |
|
---|
1384 | /** @name Endpoint Context states
|
---|
1385 | * @{ */
|
---|
1386 | #define XHCI_EPST_DISABLED 0 /**< Disabled. */
|
---|
1387 | #define XHCI_EPST_RUNNING 1 /**< Running. */
|
---|
1388 | #define XHCI_EPST_HALTED 2 /**< Halted. */
|
---|
1389 | #define XHCI_EPST_STOPPED 3 /**< Not running/stopped. */
|
---|
1390 | #define XHCI_EPST_ERROR 4 /**< Not running/error. */
|
---|
1391 | /** @} */
|
---|
1392 |
|
---|
1393 | /** @name Endpoint Type values
|
---|
1394 | * @{ */
|
---|
1395 | #define XHCI_EPTYPE_INVALID 0 /**< Not valid. */
|
---|
1396 | #define XHCI_EPTYPE_ISOCH_OUT 1 /**< Isochronous Out. */
|
---|
1397 | #define XHCI_EPTYPE_BULK_OUT 2 /**< Bulk Out. */
|
---|
1398 | #define XHCI_EPTYPE_INTR_OUT 3 /**< Interrupt Out. */
|
---|
1399 | #define XHCI_EPTYPE_CONTROL 4 /**< Control Bidi. */
|
---|
1400 | #define XHCI_EPTYPE_ISOCH_IN 5 /**< Isochronous In. */
|
---|
1401 | #define XHCI_EPTYPE_BULK_IN 6 /**< Bulk In. */
|
---|
1402 | #define XHCI_EPTYPE_INTR_IN 7 /**< Interrupt In. */
|
---|
1403 | /** @} */
|
---|
1404 |
|
---|
1405 | /* Pick out transfer type from endpoint. */
|
---|
1406 | #define XHCI_EP_XTYPE(a) (a & 3)
|
---|
1407 |
|
---|
1408 | /* Endpoint transfer types. */
|
---|
1409 | #define XHCI_XFTYPE_CONTROL 0
|
---|
1410 | #define XHCI_XFTYPE_ISOCH XHCI_EPTYPE_ISOCH_OUT
|
---|
1411 | #define XHCI_XFTYPE_BULK XHCI_EPTYPE_BULK_OUT
|
---|
1412 | #define XHCI_XFTYPE_INTR XHCI_EPTYPE_INTR_OUT
|
---|
1413 |
|
---|
1414 | /* Transfer Ring Dequeue Pointer address mask. */
|
---|
1415 | #define XHCI_TRDP_ADDR_MASK UINT64_C(0xFFFFFFFFFFFFFFF0)
|
---|
1416 | #define XHCI_TRDP_DCS_MASK RT_BIT(0) /* Dequeue Cycle State bit. */
|
---|
1417 |
|
---|
1418 |
|
---|
1419 | #ifdef IN_RING3
|
---|
1420 |
|
---|
1421 | /* Human-readable endpoint state descriptions for debugging. */
|
---|
1422 | static const char * const g_apszEpStates[] = {
|
---|
1423 | "Disabled", "Running", "Halted", "Stopped", "Error" /* 0-4 */
|
---|
1424 | };
|
---|
1425 |
|
---|
1426 | /* Human-readable endpoint type descriptions for debugging. */
|
---|
1427 | static const char * const g_apszEpTypes[] = {
|
---|
1428 | "Not Valid", "Isoch Out", "Bulk Out", "Interrupt Out", /* 0-3 */
|
---|
1429 | "Control", "Isoch In", "Bulk In", "Interrupt In" /* 4-7 */
|
---|
1430 | };
|
---|
1431 |
|
---|
1432 | #endif /* IN_RING3 */
|
---|
1433 |
|
---|
1434 | /* Input Control Context. */
|
---|
1435 | typedef struct sXHCI_INPC_CTX {
|
---|
1436 | uint32_t drop_flags; /* Drop Context flags (2-31). */
|
---|
1437 | uint32_t add_flags; /* Add Context flags (0-31). */
|
---|
1438 | uint32_t resvd[6];
|
---|
1439 | } XHCI_INPC_CTX;
|
---|
1440 | AssertCompile(sizeof(XHCI_INPC_CTX) == 0x20);
|
---|
1441 |
|
---|
1442 | /* Make sure all contexts are the same size. */
|
---|
1443 | AssertCompile(sizeof(XHCI_EP_CTX) == sizeof(XHCI_SLOT_CTX));
|
---|
1444 | AssertCompile(sizeof(XHCI_EP_CTX) == sizeof(XHCI_INPC_CTX));
|
---|
1445 |
|
---|
1446 | /* -= Event Ring Segment Table =- */
|
---|
1447 |
|
---|
1448 | /** Event Ring Segment Table Entry. */
|
---|
1449 | typedef struct sXHCI_ERSTE {
|
---|
1450 | uint64_t addr;
|
---|
1451 | uint16_t size;
|
---|
1452 | uint16_t resvd0;
|
---|
1453 | uint32_t resvd1;
|
---|
1454 | } XHCI_ERSTE;
|
---|
1455 | AssertCompile(sizeof(XHCI_ERSTE) == 0x10);
|
---|
1456 |
|
---|
1457 |
|
---|
1458 | /* -=-= Internal data structures not defined by xHCI =-=- */
|
---|
1459 |
|
---|
1460 |
|
---|
1461 | /** Device slot entry -- either slot context or endpoint context. */
|
---|
1462 | typedef union sXHCI_DS_ENTRY {
|
---|
1463 | XHCI_SLOT_CTX sc; /**< Slot context. */
|
---|
1464 | XHCI_EP_CTX ep; /**< Endpoint context. */
|
---|
1465 | } XHCI_DS_ENTRY;
|
---|
1466 |
|
---|
1467 | /** Full device context (slot context + 31 endpoint contexts). */
|
---|
1468 | typedef struct sXHCI_DEV_CTX {
|
---|
1469 | XHCI_DS_ENTRY entry[32];
|
---|
1470 | } XHCI_DEV_CTX;
|
---|
1471 | AssertCompile(sizeof(XHCI_DEV_CTX) == 32 * sizeof(XHCI_EP_CTX));
|
---|
1472 | AssertCompile(sizeof(XHCI_DEV_CTX) == 32 * sizeof(XHCI_SLOT_CTX));
|
---|
1473 |
|
---|
1474 | /** Pointer to the xHCI device state. */
|
---|
1475 | typedef struct XHCI *PXHCI;
|
---|
1476 |
|
---|
1477 | #ifndef VBOX_DEVICE_STRUCT_TESTCASE
|
---|
1478 | /**
|
---|
1479 | * The xHCI controller data associated with each URB.
|
---|
1480 | */
|
---|
1481 | typedef struct VUSBURBHCIINT
|
---|
1482 | {
|
---|
1483 | /** The slot index. */
|
---|
1484 | uint8_t uSlotID;
|
---|
1485 | /** Number of Tds in the array. */
|
---|
1486 | uint32_t cTRB;
|
---|
1487 | } VUSBURBHCIINT;
|
---|
1488 | #endif
|
---|
1489 |
|
---|
1490 | /**
|
---|
1491 | * An xHCI root hub port, shared.
|
---|
1492 | */
|
---|
1493 | typedef struct XHCIHUBPORT
|
---|
1494 | {
|
---|
1495 | /** PORTSC: Port status/control register (R/W). */
|
---|
1496 | uint32_t portsc;
|
---|
1497 | /** PORTPM: Power management status/control register (R/W). */
|
---|
1498 | uint32_t portpm;
|
---|
1499 | /** PORTLI: USB3 port link information (R/O). */
|
---|
1500 | uint32_t portli;
|
---|
1501 | } XHCIHUBPORT;
|
---|
1502 | /** Pointer to a shared xHCI root hub port. */
|
---|
1503 | typedef XHCIHUBPORT *PXHCIHUBPORT;
|
---|
1504 |
|
---|
1505 | /**
|
---|
1506 | * An xHCI root hub port, ring-3.
|
---|
1507 | */
|
---|
1508 | typedef struct XHCIHUBPORTR3
|
---|
1509 | {
|
---|
1510 | /** Flag whether there is a device attached to the port. */
|
---|
1511 | bool fAttached;
|
---|
1512 | } XHCIHUBPORTR3;
|
---|
1513 | /** Pointer to a ring-3 xHCI root hub port. */
|
---|
1514 | typedef XHCIHUBPORTR3 *PXHCIHUBPORTR3;
|
---|
1515 |
|
---|
1516 | /**
|
---|
1517 | * The xHCI root hub, ring-3 only.
|
---|
1518 | *
|
---|
1519 | * @implements PDMIBASE
|
---|
1520 | * @implements VUSBIROOTHUBPORT
|
---|
1521 | */
|
---|
1522 | typedef struct XHCIROOTHUBR3
|
---|
1523 | {
|
---|
1524 | /** Pointer to the parent xHC. */
|
---|
1525 | R3PTRTYPE(struct XHCIR3 *) pXhciR3;
|
---|
1526 | /** Pointer to the base interface of the VUSB RootHub. */
|
---|
1527 | R3PTRTYPE(PPDMIBASE) pIBase;
|
---|
1528 | /** Pointer to the connector interface of the VUSB RootHub. */
|
---|
1529 | R3PTRTYPE(PVUSBIROOTHUBCONNECTOR) pIRhConn;
|
---|
1530 | /** The base interface exposed to the roothub driver. */
|
---|
1531 | PDMIBASE IBase;
|
---|
1532 | /** The roothub port interface exposed to the roothub driver. */
|
---|
1533 | VUSBIROOTHUBPORT IRhPort;
|
---|
1534 |
|
---|
1535 | /** The LED for this hub. */
|
---|
1536 | PDMLED Led;
|
---|
1537 |
|
---|
1538 | /** Number of actually implemented ports. */
|
---|
1539 | uint8_t cPortsImpl;
|
---|
1540 | /** Index of first port for this hub. */
|
---|
1541 | uint8_t uPortBase;
|
---|
1542 |
|
---|
1543 | uint16_t Alignment0; /**< Force alignment. */
|
---|
1544 | #if HC_ARCH_BITS == 64
|
---|
1545 | uint32_t Alignment1;
|
---|
1546 | #endif
|
---|
1547 | } XHCIROOTHUBR3;
|
---|
1548 | /** Pointer to a xHCI root hub (ring-3 only). */
|
---|
1549 | typedef XHCIROOTHUBR3 *PXHCIROOTHUBR3;
|
---|
1550 |
|
---|
1551 | /**
|
---|
1552 | * An xHCI interrupter.
|
---|
1553 | */
|
---|
1554 | typedef struct sXHCIINTRPTR
|
---|
1555 | {
|
---|
1556 | /* Registers defined by xHCI. */
|
---|
1557 | /** IMAN: Interrupt Management Register (R/W). */
|
---|
1558 | uint32_t iman;
|
---|
1559 | /** IMOD: Interrupt Moderation Register (R/W). */
|
---|
1560 | uint32_t imod;
|
---|
1561 | /** ERSTSZ: Event Ring Segment Table Size (R/W). */
|
---|
1562 | uint32_t erstsz;
|
---|
1563 | /* Reserved/padding. */
|
---|
1564 | uint32_t reserved;
|
---|
1565 | /** ERSTBA: Event Ring Segment Table Base Address (R/W). */
|
---|
1566 | uint64_t erstba;
|
---|
1567 | /** ERDP: Event Ring Dequeue Pointer (R/W). */
|
---|
1568 | uint64_t erdp;
|
---|
1569 | /* Interrupter lock. */
|
---|
1570 | PDMCRITSECT lock;
|
---|
1571 | /* Internal xHCI non-register state. */
|
---|
1572 | /** Internal Event Ring enqueue pointer. */
|
---|
1573 | uint64_t erep;
|
---|
1574 | /** Internal ERDP re-write counter. */
|
---|
1575 | uint32_t erdp_rewrites;
|
---|
1576 | /** This interrupter's index (for logging). */
|
---|
1577 | uint32_t index;
|
---|
1578 | /** Internal index into Event Ring Segment Table. */
|
---|
1579 | uint16_t erst_idx;
|
---|
1580 | /** Internal index into Event Ring Segment. */
|
---|
1581 | uint16_t trb_count;
|
---|
1582 | /** Internal Event Ring Producer Cycle State. */
|
---|
1583 | bool evtr_pcs;
|
---|
1584 | /** Internal Interrupt Pending Enable flag. */
|
---|
1585 | bool ipe;
|
---|
1586 | } XHCIINTRPTR, *PXHCIINTRPTR;
|
---|
1587 |
|
---|
1588 | /**
|
---|
1589 | * xHCI device state.
|
---|
1590 | * @implements PDMILEDPORTS
|
---|
1591 | */
|
---|
1592 | typedef struct XHCI
|
---|
1593 | {
|
---|
1594 | /** MFINDEX wraparound timer. */
|
---|
1595 | TMTIMERHANDLE hWrapTimer;
|
---|
1596 |
|
---|
1597 | #ifdef XHCI_ERROR_INJECTION
|
---|
1598 | bool fDropIntrHw;
|
---|
1599 | bool fDropIntrIpe;
|
---|
1600 | bool fDropUrb;
|
---|
1601 | uint8_t Alignment00[1];
|
---|
1602 | #else
|
---|
1603 | uint32_t Alignment00; /**< Force alignment. */
|
---|
1604 | #endif
|
---|
1605 |
|
---|
1606 | /** Flag indicating a pending worker thread notification. */
|
---|
1607 | volatile bool fNotificationSent;
|
---|
1608 | volatile bool afPadding[3];
|
---|
1609 |
|
---|
1610 | /** The event semaphore the worker thread waits on. */
|
---|
1611 | SUPSEMEVENT hEvtProcess;
|
---|
1612 |
|
---|
1613 | /** Bitmap for finished tasks (R3 -> Guest). */
|
---|
1614 | volatile uint32_t u32TasksFinished;
|
---|
1615 | /** Bitmap for finished queued tasks (R3 -> Guest). */
|
---|
1616 | volatile uint32_t u32QueuedTasksFinished;
|
---|
1617 | /** Bitmap for new queued tasks (Guest -> R3). */
|
---|
1618 | volatile uint32_t u32TasksNew;
|
---|
1619 |
|
---|
1620 | /** Copy of XHCIR3::RootHub2::cPortsImpl. */
|
---|
1621 | uint8_t cUsb2Ports;
|
---|
1622 | /** Copy of XHCIR3::RootHub3::cPortsImpl. */
|
---|
1623 | uint8_t cUsb3Ports;
|
---|
1624 | /** Sum of cUsb2Ports and cUsb3Ports. */
|
---|
1625 | uint8_t cTotalPorts;
|
---|
1626 | /** Explicit padding. */
|
---|
1627 | uint8_t bPadding;
|
---|
1628 |
|
---|
1629 | /** Start of current frame. */
|
---|
1630 | uint64_t SofTime;
|
---|
1631 | /** State of the individual ports. */
|
---|
1632 | XHCIHUBPORT aPorts[XHCI_NDP_MAX];
|
---|
1633 | /** Interrupters array. */
|
---|
1634 | XHCIINTRPTR aInterrupters[XHCI_NINTR];
|
---|
1635 |
|
---|
1636 | /** @name Host Controller Capability Registers
|
---|
1637 | * @{ */
|
---|
1638 | /** CAPLENGTH: base + CAPLENGTH = operational register start (R/O). */
|
---|
1639 | uint32_t cap_length;
|
---|
1640 | /** HCIVERSION: host controller interface version (R/O). */
|
---|
1641 | uint32_t hci_version;
|
---|
1642 | /** HCSPARAMS: Structural parameters 1 (R/O). */
|
---|
1643 | uint32_t hcs_params1;
|
---|
1644 | /** HCSPARAMS: Structural parameters 2 (R/O). */
|
---|
1645 | uint32_t hcs_params2;
|
---|
1646 | /** HCSPARAMS: Structural parameters 3 (R/O). */
|
---|
1647 | uint32_t hcs_params3;
|
---|
1648 | /** HCCPARAMS: Capability parameters (R/O). */
|
---|
1649 | uint32_t hcc_params;
|
---|
1650 | /** DBOFF: Doorbell offset (R/O). */
|
---|
1651 | uint32_t dbell_off;
|
---|
1652 | /** RTSOFF: Run-time register space offset (R/O). */
|
---|
1653 | uint32_t rts_off;
|
---|
1654 | /** @} */
|
---|
1655 |
|
---|
1656 | /** @name Host Controller Operational Registers
|
---|
1657 | * @{ */
|
---|
1658 | /** USB command register - USBCMD (R/W). */
|
---|
1659 | uint32_t cmd;
|
---|
1660 | /** USB status register - USBSTS (R/W).*/
|
---|
1661 | uint32_t status;
|
---|
1662 | /** Device Control Notification register - DNCTRL (R/W). */
|
---|
1663 | uint32_t dnctrl;
|
---|
1664 | /** Configure Register (R/W). */
|
---|
1665 | uint32_t config;
|
---|
1666 | /** Command Ring Control Register - CRCR (R/W). */
|
---|
1667 | uint64_t crcr;
|
---|
1668 | /** Device Context Base Address Array Pointer (R/W). */
|
---|
1669 | uint64_t dcbaap;
|
---|
1670 | /** @} */
|
---|
1671 |
|
---|
1672 | /** Extended Capabilities storage. */
|
---|
1673 | uint8_t abExtCap[XHCI_EXT_CAP_SIZE];
|
---|
1674 | /** Size of valid extended capabilities. */
|
---|
1675 | uint32_t cbExtCap;
|
---|
1676 |
|
---|
1677 | uint32_t Alignment1; /**< Align cmdr_dqp. */
|
---|
1678 |
|
---|
1679 | /** @name Internal xHCI non-register state
|
---|
1680 | * @{ */
|
---|
1681 | /** Internal Command Ring dequeue pointer. */
|
---|
1682 | uint64_t cmdr_dqp;
|
---|
1683 | /** Internal Command Ring Consumer Cycle State. */
|
---|
1684 | bool cmdr_ccs;
|
---|
1685 | uint8_t aAlignment2[7]; /**< Force alignment. */
|
---|
1686 | /** Internal Device Slot states. */
|
---|
1687 | uint8_t aSlotState[XHCI_NDS];
|
---|
1688 | /** Internal doorbell states. Each bit corresponds to an endpoint. */
|
---|
1689 | uint32_t aBellsRung[XHCI_NDS];
|
---|
1690 | /** @} */
|
---|
1691 |
|
---|
1692 | /** @name Model specific configuration
|
---|
1693 | * @{ */
|
---|
1694 | /** ERST address mask. */
|
---|
1695 | uint64_t erst_addr_mask;
|
---|
1696 | /** @} */
|
---|
1697 |
|
---|
1698 | /** The MMIO region. */
|
---|
1699 | IOMMMIOHANDLE hMmio;
|
---|
1700 |
|
---|
1701 | /** Detected isochronous URBs completed with error. */
|
---|
1702 | STAMCOUNTER StatErrorIsocUrbs;
|
---|
1703 | /** Detected isochronous packets (not URBs!) with error. */
|
---|
1704 | STAMCOUNTER StatErrorIsocPkts;
|
---|
1705 |
|
---|
1706 | /** Event TRBs written to event ring(s). */
|
---|
1707 | STAMCOUNTER StatEventsWritten;
|
---|
1708 | /** Event TRBs not written to event ring(s) due to HC being stopped. */
|
---|
1709 | STAMCOUNTER StatEventsDropped;
|
---|
1710 | /** Requests to set the IP bit. */
|
---|
1711 | STAMCOUNTER StatIntrsPending;
|
---|
1712 | /** Actual interrupt deliveries. */
|
---|
1713 | STAMCOUNTER StatIntrsSet;
|
---|
1714 | /** Interrupts not raised because they were disabled. */
|
---|
1715 | STAMCOUNTER StatIntrsNotSet;
|
---|
1716 | /** A pending interrupt was cleared. */
|
---|
1717 | STAMCOUNTER StatIntrsCleared;
|
---|
1718 | /** Number of TRBs that formed a single control URB. */
|
---|
1719 | STAMCOUNTER StatTRBsPerCtlUrb;
|
---|
1720 | /** Number of TRBs that formed a single data (bulk/interrupt) URB. */
|
---|
1721 | STAMCOUNTER StatTRBsPerDtaUrb;
|
---|
1722 | /** Number of TRBs that formed a single isochronous URB. */
|
---|
1723 | STAMCOUNTER StatTRBsPerIsoUrb;
|
---|
1724 | /** Size of a control URB in bytes. */
|
---|
1725 | STAMCOUNTER StatUrbSizeCtrl;
|
---|
1726 | /** Size of a data URB in bytes. */
|
---|
1727 | STAMCOUNTER StatUrbSizeData;
|
---|
1728 | /** Size of an isochronous URB in bytes. */
|
---|
1729 | STAMCOUNTER StatUrbSizeIsoc;
|
---|
1730 |
|
---|
1731 | #ifdef VBOX_WITH_STATISTICS
|
---|
1732 | /** @name Register access counters.
|
---|
1733 | * @{ */
|
---|
1734 | STAMCOUNTER StatRdCaps;
|
---|
1735 | STAMCOUNTER StatRdCmdRingCtlHi;
|
---|
1736 | STAMCOUNTER StatRdCmdRingCtlLo;
|
---|
1737 | STAMCOUNTER StatRdConfig;
|
---|
1738 | STAMCOUNTER StatRdDevCtxBaapHi;
|
---|
1739 | STAMCOUNTER StatRdDevCtxBaapLo;
|
---|
1740 | STAMCOUNTER StatRdDevNotifyCtrl;
|
---|
1741 | STAMCOUNTER StatRdDoorBell;
|
---|
1742 | STAMCOUNTER StatRdEvtRingDeqPtrHi;
|
---|
1743 | STAMCOUNTER StatRdEvtRingDeqPtrLo;
|
---|
1744 | STAMCOUNTER StatRdEvtRsTblBaseHi;
|
---|
1745 | STAMCOUNTER StatRdEvtRsTblBaseLo;
|
---|
1746 | STAMCOUNTER StatRdEvtRstblSize;
|
---|
1747 | STAMCOUNTER StatRdEvtRsvd;
|
---|
1748 | STAMCOUNTER StatRdIntrMgmt;
|
---|
1749 | STAMCOUNTER StatRdIntrMod;
|
---|
1750 | STAMCOUNTER StatRdMfIndex;
|
---|
1751 | STAMCOUNTER StatRdPageSize;
|
---|
1752 | STAMCOUNTER StatRdPortLinkInfo;
|
---|
1753 | STAMCOUNTER StatRdPortPowerMgmt;
|
---|
1754 | STAMCOUNTER StatRdPortRsvd;
|
---|
1755 | STAMCOUNTER StatRdPortStatusCtrl;
|
---|
1756 | STAMCOUNTER StatRdUsbCmd;
|
---|
1757 | STAMCOUNTER StatRdUsbSts;
|
---|
1758 | STAMCOUNTER StatRdUnknown;
|
---|
1759 |
|
---|
1760 | STAMCOUNTER StatWrCmdRingCtlHi;
|
---|
1761 | STAMCOUNTER StatWrCmdRingCtlLo;
|
---|
1762 | STAMCOUNTER StatWrConfig;
|
---|
1763 | STAMCOUNTER StatWrDevCtxBaapHi;
|
---|
1764 | STAMCOUNTER StatWrDevCtxBaapLo;
|
---|
1765 | STAMCOUNTER StatWrDevNotifyCtrl;
|
---|
1766 | STAMCOUNTER StatWrDoorBell0;
|
---|
1767 | STAMCOUNTER StatWrDoorBellN;
|
---|
1768 | STAMCOUNTER StatWrEvtRingDeqPtrHi;
|
---|
1769 | STAMCOUNTER StatWrEvtRingDeqPtrLo;
|
---|
1770 | STAMCOUNTER StatWrEvtRsTblBaseHi;
|
---|
1771 | STAMCOUNTER StatWrEvtRsTblBaseLo;
|
---|
1772 | STAMCOUNTER StatWrEvtRstblSize;
|
---|
1773 | STAMCOUNTER StatWrIntrMgmt;
|
---|
1774 | STAMCOUNTER StatWrIntrMod;
|
---|
1775 | STAMCOUNTER StatWrPortPowerMgmt;
|
---|
1776 | STAMCOUNTER StatWrPortStatusCtrl;
|
---|
1777 | STAMCOUNTER StatWrUsbCmd;
|
---|
1778 | STAMCOUNTER StatWrUsbSts;
|
---|
1779 | STAMCOUNTER StatWrUnknown;
|
---|
1780 | /** @} */
|
---|
1781 | #endif
|
---|
1782 | } XHCI;
|
---|
1783 |
|
---|
1784 | /**
|
---|
1785 | * xHCI device state, ring-3 edition.
|
---|
1786 | * @implements PDMILEDPORTS
|
---|
1787 | */
|
---|
1788 | typedef struct XHCIR3
|
---|
1789 | {
|
---|
1790 | /** The async worker thread. */
|
---|
1791 | R3PTRTYPE(PPDMTHREAD) pWorkerThread;
|
---|
1792 | /** The device instance.
|
---|
1793 | * @note This is only so interface functions can get their bearings. */
|
---|
1794 | PPDMDEVINSR3 pDevIns;
|
---|
1795 |
|
---|
1796 | /** Status LUN: The base interface. */
|
---|
1797 | PDMIBASE IBase;
|
---|
1798 | /** Status LUN: Leds interface. */
|
---|
1799 | PDMILEDPORTS ILeds;
|
---|
1800 | /** Status LUN: Partner of ILeds. */
|
---|
1801 | R3PTRTYPE(PPDMILEDCONNECTORS) pLedsConnector;
|
---|
1802 |
|
---|
1803 | /** USB 2.0 Root hub device. */
|
---|
1804 | XHCIROOTHUBR3 RootHub2;
|
---|
1805 | /** USB 3.0 Root hub device. */
|
---|
1806 | XHCIROOTHUBR3 RootHub3;
|
---|
1807 |
|
---|
1808 | /** State of the individual ports. */
|
---|
1809 | XHCIHUBPORTR3 aPorts[XHCI_NDP_MAX];
|
---|
1810 |
|
---|
1811 | /** Critsect to synchronize worker and I/O completion threads. */
|
---|
1812 | RTCRITSECT CritSectThrd;
|
---|
1813 | } XHCIR3;
|
---|
1814 | /** Pointer to ring-3 xHCI device state. */
|
---|
1815 | typedef XHCIR3 *PXHCIR3;
|
---|
1816 |
|
---|
1817 | /**
|
---|
1818 | * xHCI device data, ring-0 edition.
|
---|
1819 | */
|
---|
1820 | typedef struct XHCIR0
|
---|
1821 | {
|
---|
1822 | uint32_t uUnused;
|
---|
1823 | } XHCIR0;
|
---|
1824 | /** Pointer to ring-0 xHCI device data. */
|
---|
1825 | typedef struct XHCIR0 *PXHCIR0;
|
---|
1826 |
|
---|
1827 |
|
---|
1828 | /**
|
---|
1829 | * xHCI device data, raw-mode edition.
|
---|
1830 | */
|
---|
1831 | typedef struct XHCIRC
|
---|
1832 | {
|
---|
1833 | uint32_t uUnused;
|
---|
1834 | } XHCIRC;
|
---|
1835 | /** Pointer to raw-mode xHCI device data. */
|
---|
1836 | typedef struct XHCIRC *PXHCIRC;
|
---|
1837 |
|
---|
1838 |
|
---|
1839 | /** @typedef XHCICC
|
---|
1840 | * The xHCI device data for the current context. */
|
---|
1841 | typedef CTX_SUFF(XHCI) XHCICC;
|
---|
1842 | /** @typedef PXHCICC
|
---|
1843 | * Pointer to the xHCI device for the current context. */
|
---|
1844 | typedef CTX_SUFF(PXHCI) PXHCICC;
|
---|
1845 |
|
---|
1846 |
|
---|
1847 | /* -=-= Local implementation details =-=- */
|
---|
1848 |
|
---|
1849 | typedef enum sXHCI_JOB {
|
---|
1850 | XHCI_JOB_PROCESS_CMDRING, /**< Process the command ring. */
|
---|
1851 | XHCI_JOB_DOORBELL, /**< A doorbell (other than DB0) was rung. */
|
---|
1852 | XHCI_JOB_XFER_DONE, /**< Transfer completed, look for more work. */
|
---|
1853 | XHCI_JOB_MAX
|
---|
1854 | } XHCI_JOB;
|
---|
1855 |
|
---|
1856 | /* -=-=- Local xHCI definitions -=-=- */
|
---|
1857 |
|
---|
1858 | /** @name USB states.
|
---|
1859 | * @{ */
|
---|
1860 | #define XHCI_USB_RESET 0x00
|
---|
1861 | #define XHCI_USB_RESUME 0x40
|
---|
1862 | #define XHCI_USB_OPERATIONAL 0x80
|
---|
1863 | #define XHCI_USB_SUSPEND 0xc0
|
---|
1864 | /** @} */
|
---|
1865 |
|
---|
1866 | /* Primary interrupter (for readability). */
|
---|
1867 | #define XHCI_PRIMARY_INTERRUPTER 0
|
---|
1868 |
|
---|
1869 | /** @name Device Slot states.
|
---|
1870 | * @{ */
|
---|
1871 | #define XHCI_DEVSLOT_EMPTY 0
|
---|
1872 | #define XHCI_DEVSLOT_ENABLED 1
|
---|
1873 | #define XHCI_DEVSLOT_DEFAULT 2
|
---|
1874 | #define XHCI_DEVSLOT_ADDRESSED 3
|
---|
1875 | #define XHCI_DEVSLOT_CONFIGURED 4
|
---|
1876 | /** @} */
|
---|
1877 |
|
---|
1878 | /** Get the pointer to a root hub corresponding to given port index. */
|
---|
1879 | #define GET_PORT_PRH(a_pThisCC, a_uPort) \
|
---|
1880 | ((a_uPort) >= (a_pThisCC)->RootHub2.cPortsImpl ? &(a_pThisCC)->RootHub3 : &(a_pThisCC)->RootHub2)
|
---|
1881 | #define GET_VUSB_PORT_FROM_XHCI_PORT(a_pRh, a_iPort) \
|
---|
1882 | (((a_iPort) - (a_pRh)->uPortBase) + 1)
|
---|
1883 | #define GET_XHCI_PORT_FROM_VUSB_PORT(a_pRh, a_uPort) \
|
---|
1884 | ((a_pRh)->uPortBase + (a_uPort) - 1)
|
---|
1885 |
|
---|
1886 | /** Check if port corresponding to index is USB3, using shared data. */
|
---|
1887 | #define IS_USB3_PORT_IDX_SHR(a_pThis, a_uPort) ((a_uPort) >= (a_pThis)->cUsb2Ports)
|
---|
1888 |
|
---|
1889 | /** Check if port corresponding to index is USB3, using ring-3 data. */
|
---|
1890 | #define IS_USB3_PORT_IDX_R3(a_pThisCC, a_uPort) ((a_uPort) >= (a_pThisCC)->RootHub2.cPortsImpl)
|
---|
1891 |
|
---|
1892 | /** Query the number of configured USB2 ports. */
|
---|
1893 | #define XHCI_NDP_USB2(a_pThisCC) ((unsigned)(a_pThisCC)->RootHub2.cPortsImpl)
|
---|
1894 |
|
---|
1895 | /** Query the number of configured USB3 ports. */
|
---|
1896 | #define XHCI_NDP_USB3(a_pThisCC) ((unsigned)(a_pThisCC)->RootHub3.cPortsImpl)
|
---|
1897 |
|
---|
1898 | /** Query the total number of configured ports. */
|
---|
1899 | #define XHCI_NDP_CFG(a_pThis) ((unsigned)RT_MIN((a_pThis)->cTotalPorts, XHCI_NDP_MAX))
|
---|
1900 |
|
---|
1901 |
|
---|
1902 | #ifndef VBOX_DEVICE_STRUCT_TESTCASE
|
---|
1903 |
|
---|
1904 |
|
---|
1905 | /*********************************************************************************************************************************
|
---|
1906 | * Internal Functions *
|
---|
1907 | *********************************************************************************************************************************/
|
---|
1908 |
|
---|
1909 | #ifdef IN_RING3
|
---|
1910 |
|
---|
1911 | /** Build a Protocol extended capability. */
|
---|
1912 | static uint32_t xhciR3BuildProtocolCaps(uint8_t *pbCap, uint32_t cbMax, int cPorts, int nPortOfs, int ver)
|
---|
1913 | {
|
---|
1914 | uint32_t *pu32Cap = (uint32_t *)pbCap;
|
---|
1915 | unsigned cPsi;
|
---|
1916 |
|
---|
1917 | Assert(nPortOfs + cPorts < 255);
|
---|
1918 | Assert(ver == 2 || ver == 3);
|
---|
1919 |
|
---|
1920 | cPsi = 0; /* Currently only implied port speed IDs. */
|
---|
1921 |
|
---|
1922 | /* Make sure there's enough room. */
|
---|
1923 | if (cPsi * 4 + 16 > cbMax)
|
---|
1924 | return 0;
|
---|
1925 |
|
---|
1926 | /* Header - includes (USB) specification version. */
|
---|
1927 | *pu32Cap++ = (ver << 24) | (0 << 16) | XHCI_XCP_PROTOCOL;
|
---|
1928 | /* Specification - 'USB ' */
|
---|
1929 | *pu32Cap++ = 0x20425355;
|
---|
1930 | /* Port offsets and counts. 1-based! */
|
---|
1931 | *pu32Cap++ = (cPsi << 28) | (cPorts << 8) | (nPortOfs + 1);
|
---|
1932 | /* Reserved dword. */
|
---|
1933 | *pu32Cap++ = 0;
|
---|
1934 |
|
---|
1935 | return (uint8_t *)pu32Cap - pbCap;
|
---|
1936 | }
|
---|
1937 |
|
---|
1938 |
|
---|
1939 | /** Add an extended capability and link it into the chain. */
|
---|
1940 | static int xhciR3AddExtCap(PXHCI pThis, const uint8_t *pCap, uint32_t cbCap, uint32_t *puPrevOfs)
|
---|
1941 | {
|
---|
1942 | Assert(*puPrevOfs <= pThis->cbExtCap);
|
---|
1943 | Assert(!(cbCap & 3));
|
---|
1944 |
|
---|
1945 | /* Check that the extended capability is sane. */
|
---|
1946 | if (cbCap == 0)
|
---|
1947 | return VERR_BUFFER_UNDERFLOW;
|
---|
1948 | if (pThis->cbExtCap + cbCap > XHCI_EXT_CAP_SIZE)
|
---|
1949 | return VERR_BUFFER_OVERFLOW;
|
---|
1950 | if (cbCap > 255 * 4) /* Size must fit into 8-bit dword count. */
|
---|
1951 | return VERR_BUFFER_OVERFLOW;
|
---|
1952 |
|
---|
1953 | /* Copy over the capability data and update offsets. */
|
---|
1954 | memcpy(pThis->abExtCap + pThis->cbExtCap, pCap, cbCap);
|
---|
1955 | pThis->abExtCap[*puPrevOfs + 1] = cbCap >> 2;
|
---|
1956 | pThis->abExtCap[pThis->cbExtCap + 1] = 0;
|
---|
1957 | *puPrevOfs = pThis->cbExtCap;
|
---|
1958 | pThis->cbExtCap += cbCap;
|
---|
1959 | return VINF_SUCCESS;
|
---|
1960 | }
|
---|
1961 |
|
---|
1962 | /** Build the xHCI Extended Capabilities region. */
|
---|
1963 | static int xhciR3BuildExtCaps(PXHCI pThis, PXHCICC pThisCC)
|
---|
1964 | {
|
---|
1965 | int rc;
|
---|
1966 | uint8_t abXcp[MAX_XCAP_SIZE];
|
---|
1967 | uint32_t cbXcp;
|
---|
1968 | uint32_t uPrevOfs = 0;
|
---|
1969 |
|
---|
1970 | Assert(XHCI_NDP_USB2(pThisCC));
|
---|
1971 | Assert(XHCI_NDP_USB3(pThisCC));
|
---|
1972 |
|
---|
1973 | /* Most of the extended capabilities are optional or not relevant for PCI
|
---|
1974 | * implementations. However, the Supported Protocol caps are required.
|
---|
1975 | */
|
---|
1976 | cbXcp = xhciR3BuildProtocolCaps(abXcp, sizeof(abXcp), XHCI_NDP_USB2(pThisCC), 0, 2);
|
---|
1977 | rc = xhciR3AddExtCap(pThis, abXcp, cbXcp, &uPrevOfs);
|
---|
1978 | AssertReturn(RT_SUCCESS(rc), rc);
|
---|
1979 |
|
---|
1980 | cbXcp = xhciR3BuildProtocolCaps(abXcp, sizeof(abXcp), XHCI_NDP_USB3(pThisCC), XHCI_NDP_USB2(pThisCC), 3);
|
---|
1981 | rc = xhciR3AddExtCap(pThis, abXcp, cbXcp, &uPrevOfs);
|
---|
1982 | AssertReturn(RT_SUCCESS(rc), rc);
|
---|
1983 |
|
---|
1984 | return VINF_SUCCESS;
|
---|
1985 | }
|
---|
1986 |
|
---|
1987 |
|
---|
1988 | /**
|
---|
1989 | * Select an unused device address. Note that this may fail in the unlikely
|
---|
1990 | * case where all possible addresses are exhausted.
|
---|
1991 | */
|
---|
1992 | static uint8_t xhciR3SelectNewAddress(PXHCI pThis, uint8_t uSlotID)
|
---|
1993 | {
|
---|
1994 | RT_NOREF(pThis, uSlotID);
|
---|
1995 |
|
---|
1996 | /*
|
---|
1997 | * Since there is a 1:1 mapping between USB devices and device slots, we
|
---|
1998 | * should be able to assign a USB address which equals slot ID to any USB
|
---|
1999 | * device. However, the address selection algorithm could be completely
|
---|
2000 | * different (it is not defined by the xHCI spec).
|
---|
2001 | */
|
---|
2002 | return uSlotID;
|
---|
2003 | }
|
---|
2004 |
|
---|
2005 |
|
---|
2006 | /**
|
---|
2007 | * Read the address of a device context for a slot from the DCBAA.
|
---|
2008 | *
|
---|
2009 | * @returns Given slot's device context base address.
|
---|
2010 | * @param pDevIns The device instance.
|
---|
2011 | * @param pThis Pointer to the xHCI state.
|
---|
2012 | * @param uSlotID Slot ID to get the context address of.
|
---|
2013 | */
|
---|
2014 | static uint64_t xhciR3FetchDevCtxAddr(PPDMDEVINS pDevIns, PXHCI pThis, uint8_t uSlotID)
|
---|
2015 | {
|
---|
2016 | uint64_t uCtxAddr;
|
---|
2017 | RTGCPHYS GCPhysDCBAAE;
|
---|
2018 |
|
---|
2019 | Assert(uSlotID > 0);
|
---|
2020 | Assert(uSlotID < XHCI_NDS);
|
---|
2021 |
|
---|
2022 | /* Fetch the address of the output slot context from the DCBAA. */
|
---|
2023 | GCPhysDCBAAE = pThis->dcbaap + uSlotID * sizeof(uint64_t);
|
---|
2024 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysDCBAAE, &uCtxAddr, sizeof(uCtxAddr));
|
---|
2025 | LogFlowFunc(("Slot ID %u, device context @ %RGp\n", uSlotID, uCtxAddr));
|
---|
2026 | Assert(uCtxAddr);
|
---|
2027 |
|
---|
2028 | return uCtxAddr & XHCI_CTX_ADDR_MASK;
|
---|
2029 | }
|
---|
2030 |
|
---|
2031 |
|
---|
2032 | /**
|
---|
2033 | * Fetch a device's slot or endpoint context from memory.
|
---|
2034 | *
|
---|
2035 | * @param pDevIns The device instance.
|
---|
2036 | * @param pThis The xHCI device state.
|
---|
2037 | * @param uSlotID Slot ID to access.
|
---|
2038 | * @param uDCI Device Context Index.
|
---|
2039 | * @param pCtx Pointer to storage for the context.
|
---|
2040 | */
|
---|
2041 | static int xhciR3FetchDevCtx(PPDMDEVINS pDevIns, PXHCI pThis, uint8_t uSlotID, uint8_t uDCI, void *pCtx)
|
---|
2042 | {
|
---|
2043 | RTGCPHYS GCPhysCtx;
|
---|
2044 |
|
---|
2045 | GCPhysCtx = xhciR3FetchDevCtxAddr(pDevIns, pThis, uSlotID);
|
---|
2046 | LogFlowFunc(("Reading device context @ %RGp, DCI %u\n", GCPhysCtx, uDCI));
|
---|
2047 | GCPhysCtx += uDCI * sizeof(XHCI_SLOT_CTX);
|
---|
2048 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysCtx, pCtx, sizeof(XHCI_SLOT_CTX));
|
---|
2049 | return VINF_SUCCESS;
|
---|
2050 | }
|
---|
2051 |
|
---|
2052 |
|
---|
2053 | /**
|
---|
2054 | * Fetch a device's slot and endpoint contexts from guest memory.
|
---|
2055 | *
|
---|
2056 | * @param pDevIns The device instance.
|
---|
2057 | * @param pThis The xHCI device state.
|
---|
2058 | * @param uSlotID Slot ID to access.
|
---|
2059 | * @param uDCI Endpoint Device Context Index.
|
---|
2060 | * @param pSlot Pointer to storage for the slot context.
|
---|
2061 | * @param pEp Pointer to storage for the endpoint context.
|
---|
2062 | */
|
---|
2063 | static int xhciR3FetchCtxAndEp(PPDMDEVINS pDevIns, PXHCI pThis, uint8_t uSlotID, uint8_t uDCI, XHCI_SLOT_CTX *pSlot, XHCI_EP_CTX *pEp)
|
---|
2064 | {
|
---|
2065 | AssertPtr(pSlot);
|
---|
2066 | AssertPtr(pEp);
|
---|
2067 | Assert(uDCI); /* Can't be 0 -- that's the device context. */
|
---|
2068 |
|
---|
2069 | /* Load the slot context. */
|
---|
2070 | xhciR3FetchDevCtx(pDevIns, pThis, uSlotID, 0, pSlot);
|
---|
2071 | /// @todo sanity check the slot context here?
|
---|
2072 | Assert(pSlot->ctx_ent >= uDCI);
|
---|
2073 |
|
---|
2074 | /* Load the endpoint context. */
|
---|
2075 | xhciR3FetchDevCtx(pDevIns, pThis, uSlotID, uDCI, pEp);
|
---|
2076 | /// @todo sanity check the endpoint context here?
|
---|
2077 |
|
---|
2078 | return VINF_SUCCESS;
|
---|
2079 | }
|
---|
2080 |
|
---|
2081 |
|
---|
2082 | /**
|
---|
2083 | * Update an endpoint context in guest memory.
|
---|
2084 | *
|
---|
2085 | * @param pDevIns The device instance.
|
---|
2086 | * @param pThis The xHCI device state.
|
---|
2087 | * @param uSlotID Slot ID to access.
|
---|
2088 | * @param uDCI Endpoint Device Context Index.
|
---|
2089 | * @param pEp Pointer to storage of the endpoint context.
|
---|
2090 | */
|
---|
2091 | static int xhciR3WriteBackEp(PPDMDEVINS pDevIns, PXHCI pThis, uint8_t uSlotID, uint8_t uDCI, XHCI_EP_CTX *pEp)
|
---|
2092 | {
|
---|
2093 | RTGCPHYS GCPhysCtx;
|
---|
2094 |
|
---|
2095 | AssertPtr(pEp);
|
---|
2096 | Assert(uDCI); /* Can't be 0 -- that's the device context. */
|
---|
2097 |
|
---|
2098 | /// @todo sanity check the endpoint context here?
|
---|
2099 | /* Find the physical address. */
|
---|
2100 | GCPhysCtx = xhciR3FetchDevCtxAddr(pDevIns, pThis, uSlotID);
|
---|
2101 | LogFlowFunc(("Writing device context @ %RGp, DCI %u\n", GCPhysCtx, uDCI));
|
---|
2102 | GCPhysCtx += uDCI * sizeof(XHCI_SLOT_CTX);
|
---|
2103 | /* Write the updated context. */
|
---|
2104 | PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysCtx, pEp, sizeof(XHCI_EP_CTX));
|
---|
2105 |
|
---|
2106 | return VINF_SUCCESS;
|
---|
2107 | }
|
---|
2108 |
|
---|
2109 |
|
---|
2110 | /**
|
---|
2111 | * Modify an endpoint context such that it enters the running state.
|
---|
2112 | *
|
---|
2113 | * @param pEpCtx Pointer to the endpoint context.
|
---|
2114 | */
|
---|
2115 | static void xhciR3EnableEP(XHCI_EP_CTX *pEpCtx)
|
---|
2116 | {
|
---|
2117 | LogFlow(("Enabling EP, TRDP @ %RGp, DCS=%u\n", pEpCtx->trdp & XHCI_TRDP_ADDR_MASK, pEpCtx->trdp & XHCI_TRDP_DCS_MASK));
|
---|
2118 | pEpCtx->ep_state = XHCI_EPST_RUNNING;
|
---|
2119 | pEpCtx->trep = pEpCtx->trdp;
|
---|
2120 | }
|
---|
2121 |
|
---|
2122 | #endif /* IN_RING3 */
|
---|
2123 |
|
---|
2124 | #define MFIND_PERIOD_NS (UINT64_C(2048) * 1000000)
|
---|
2125 |
|
---|
2126 | /**
|
---|
2127 | * Set up the MFINDEX wrap timer.
|
---|
2128 | */
|
---|
2129 | static void xhciSetWrapTimer(PPDMDEVINS pDevIns, PXHCI pThis)
|
---|
2130 | {
|
---|
2131 | uint64_t u64Now;
|
---|
2132 | uint64_t u64LastWrap;
|
---|
2133 | uint64_t u64Expire;
|
---|
2134 | int rc;
|
---|
2135 |
|
---|
2136 | /* Try to avoid drift. */
|
---|
2137 | u64Now = PDMDevHlpTimerGet(pDevIns, pThis->hWrapTimer);
|
---|
2138 | // u64LastWrap = u64Now - (u64Now % (0x3FFF * 125000));
|
---|
2139 | u64LastWrap = u64Now / MFIND_PERIOD_NS * MFIND_PERIOD_NS;
|
---|
2140 | /* The MFINDEX counter wraps around every 2048 milliseconds. */
|
---|
2141 | u64Expire = u64LastWrap + (uint64_t)2048 * 1000000;
|
---|
2142 | rc = PDMDevHlpTimerSet(pDevIns, pThis->hWrapTimer, u64Expire);
|
---|
2143 | AssertRC(rc);
|
---|
2144 | }
|
---|
2145 |
|
---|
2146 | /**
|
---|
2147 | * Determine whether MSI/MSI-X is enabled for this PCI device.
|
---|
2148 | *
|
---|
2149 | * This influences interrupt handling in xHCI. NB: There should be a PCIDevXxx
|
---|
2150 | * function for this.
|
---|
2151 | */
|
---|
2152 | static bool xhciIsMSIEnabled(PPDMPCIDEV pDevIns)
|
---|
2153 | {
|
---|
2154 | uint16_t uMsgCtl;
|
---|
2155 |
|
---|
2156 | uMsgCtl = PDMPciDevGetWord(pDevIns, XHCI_PCI_MSI_CAP_OFS + VBOX_MSI_CAP_MESSAGE_CONTROL);
|
---|
2157 | return !!(uMsgCtl & VBOX_PCI_MSI_FLAGS_ENABLE);
|
---|
2158 | }
|
---|
2159 |
|
---|
2160 | /**
|
---|
2161 | * Get the worker thread going -- there's something to do.
|
---|
2162 | */
|
---|
2163 | static void xhciKickWorker(PPDMDEVINS pDevIns, PXHCI pThis, XHCI_JOB enmJob, uint32_t uWorkDesc)
|
---|
2164 | {
|
---|
2165 | RT_NOREF(enmJob, uWorkDesc);
|
---|
2166 |
|
---|
2167 | /* Tell the worker thread there's something to do. */
|
---|
2168 | if (!ASMAtomicXchgBool(&pThis->fNotificationSent, true))
|
---|
2169 | {
|
---|
2170 | LogFlowFunc(("Signal event semaphore\n"));
|
---|
2171 | int rc = PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtProcess);
|
---|
2172 | AssertRC(rc);
|
---|
2173 | }
|
---|
2174 | }
|
---|
2175 |
|
---|
2176 | /**
|
---|
2177 | * Fetch the current ERST entry from guest memory.
|
---|
2178 | */
|
---|
2179 | static void xhciFetchErstEntry(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR ip)
|
---|
2180 | {
|
---|
2181 | RTGCPHYS GCPhysErste;
|
---|
2182 | XHCI_ERSTE entry;
|
---|
2183 |
|
---|
2184 | Assert(ip->erst_idx < ip->erstsz);
|
---|
2185 | GCPhysErste = ip->erstba + ip->erst_idx * sizeof(XHCI_ERSTE);
|
---|
2186 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysErste, &entry, sizeof(entry));
|
---|
2187 |
|
---|
2188 | /*
|
---|
2189 | * 6.5 claims values in 16-4096 range are valid, but does not say what
|
---|
2190 | * happens for values outside of that range...
|
---|
2191 | */
|
---|
2192 | Assert((pThis->status & XHCI_STATUS_HCH) || (entry.size >= 16 && entry.size <= 4096));
|
---|
2193 |
|
---|
2194 | /* Cache the entry data internally. */
|
---|
2195 | ip->erep = entry.addr & pThis->erst_addr_mask;
|
---|
2196 | ip->trb_count = entry.size;
|
---|
2197 | Log(("Fetched ERST Entry at %RGp: %u entries at %RGp\n", GCPhysErste, ip->trb_count, ip->erep));
|
---|
2198 | }
|
---|
2199 |
|
---|
2200 | /**
|
---|
2201 | * Set the interrupter's IP and EHB bits and trigger an interrupt if required.
|
---|
2202 | *
|
---|
2203 | * @param pDevIns The PDM device instance.
|
---|
2204 | * @param pThis Pointer to the xHCI state.
|
---|
2205 | * @param ip Pointer to the interrupter structure.
|
---|
2206 | *
|
---|
2207 | */
|
---|
2208 | static void xhciSetIntr(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR ip)
|
---|
2209 | {
|
---|
2210 | Assert(pThis && ip);
|
---|
2211 | LogFlowFunc(("old IP: %u\n", !!(ip->iman & XHCI_IMAN_IP)));
|
---|
2212 |
|
---|
2213 | if (!(ip->iman & XHCI_IMAN_IP))
|
---|
2214 | {
|
---|
2215 | /// @todo assert that we own the interrupter lock
|
---|
2216 | ASMAtomicOrU32(&pThis->status, XHCI_STATUS_EINT);
|
---|
2217 | ASMAtomicOrU64(&ip->erdp, XHCI_ERDP_EHB);
|
---|
2218 | ASMAtomicOrU32(&ip->iman, XHCI_IMAN_IP);
|
---|
2219 | if ((ip->iman & XHCI_IMAN_IE) && (pThis->cmd & XHCI_CMD_INTE))
|
---|
2220 | {
|
---|
2221 | #ifdef XHCI_ERROR_INJECTION
|
---|
2222 | if (pThis->fDropIntrHw)
|
---|
2223 | {
|
---|
2224 | pThis->fDropIntrHw = false;
|
---|
2225 | ASMAtomicAndU32(&ip->iman, ~XHCI_IMAN_IP);
|
---|
2226 | }
|
---|
2227 | else
|
---|
2228 | #endif
|
---|
2229 | {
|
---|
2230 | Log2(("Triggering interrupt on interrupter %u\n", ip->index));
|
---|
2231 | PDMDevHlpPCISetIrq(pDevIns, 0, PDM_IRQ_LEVEL_HIGH);
|
---|
2232 | STAM_COUNTER_INC(&pThis->StatIntrsSet);
|
---|
2233 | }
|
---|
2234 | }
|
---|
2235 | else
|
---|
2236 | {
|
---|
2237 | Log2(("Not triggering interrupt on interrupter %u (interrupts disabled)\n", ip->index));
|
---|
2238 | STAM_COUNTER_INC(&pThis->StatIntrsNotSet);
|
---|
2239 | }
|
---|
2240 |
|
---|
2241 | /* If MSI/MSI-X is in use, the IP bit is immediately cleared again. */
|
---|
2242 | if (xhciIsMSIEnabled(pDevIns->apPciDevs[0]))
|
---|
2243 | ASMAtomicAndU32(&ip->iman, ~XHCI_IMAN_IP);
|
---|
2244 | }
|
---|
2245 | }
|
---|
2246 |
|
---|
2247 | #ifdef IN_RING3
|
---|
2248 |
|
---|
2249 | /**
|
---|
2250 | * Set the interrupter's IPE bit. If this causes a 0->1 transition, an
|
---|
2251 | * interrupt may be triggered.
|
---|
2252 | *
|
---|
2253 | * @param pDevIns The PDM device instance.
|
---|
2254 | * @param pThis Pointer to the xHCI state.
|
---|
2255 | * @param ip Pointer to the interrupter structure.
|
---|
2256 | */
|
---|
2257 | static void xhciR3SetIntrPending(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR ip)
|
---|
2258 | {
|
---|
2259 | uint16_t imodc = (ip->imod >> XHCI_IMOD_IMODC_SHIFT) & XHCI_IMOD_IMODC_MASK;
|
---|
2260 |
|
---|
2261 | Assert(pThis && ip);
|
---|
2262 | LogFlowFunc(("old IPE: %u, IMODC: %u, EREP: %RGp, EHB: %u\n", ip->ipe, imodc, (RTGCPHYS)ip->erep, !!(ip->erdp & XHCI_ERDP_EHB)));
|
---|
2263 | STAM_COUNTER_INC(&pThis->StatIntrsPending);
|
---|
2264 |
|
---|
2265 | if (!ip->ipe)
|
---|
2266 | {
|
---|
2267 | #ifdef XHCI_ERROR_INJECTION
|
---|
2268 | if (pThis->fDropIntrIpe)
|
---|
2269 | {
|
---|
2270 | pThis->fDropIntrIpe = false;
|
---|
2271 | }
|
---|
2272 | else
|
---|
2273 | #endif
|
---|
2274 | {
|
---|
2275 | ip->ipe = true;
|
---|
2276 | if (!(ip->erdp & XHCI_ERDP_EHB) && (imodc == 0))
|
---|
2277 | xhciSetIntr(pDevIns, pThis, ip);
|
---|
2278 | }
|
---|
2279 | }
|
---|
2280 | }
|
---|
2281 |
|
---|
2282 |
|
---|
2283 | /**
|
---|
2284 | * Check if there is space available for writing at least two events on the
|
---|
2285 | * event ring. See 4.9.4 for the state machine (right hand side of diagram).
|
---|
2286 | * If there's only room for one event, the Event Ring Full TRB will need to
|
---|
2287 | * be written out, hence the ring is considered full.
|
---|
2288 | *
|
---|
2289 | * @returns True if space is available, false otherwise.
|
---|
2290 | * @param pDevIns The PDM device instance.
|
---|
2291 | * @param pThis Pointer to the xHCI state.
|
---|
2292 | * @param pIntr Pointer to the interrupter structure.
|
---|
2293 | */
|
---|
2294 | static bool xhciR3IsEvtRingFull(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR pIntr)
|
---|
2295 | {
|
---|
2296 | uint64_t next_ptr;
|
---|
2297 | uint64_t erdp = pIntr->erdp & XHCI_ERDP_ADDR_MASK;
|
---|
2298 |
|
---|
2299 | if (pIntr->trb_count > 1)
|
---|
2300 | {
|
---|
2301 | /* Check the current segment. */
|
---|
2302 | next_ptr = pIntr->erep + sizeof(XHCI_EVENT_TRB);
|
---|
2303 | }
|
---|
2304 | else
|
---|
2305 | {
|
---|
2306 | uint16_t erst_idx;
|
---|
2307 | XHCI_ERSTE entry;
|
---|
2308 | RTGCPHYS GCPhysErste;
|
---|
2309 |
|
---|
2310 | /* Need to check the next segment. */
|
---|
2311 | erst_idx = pIntr->erst_idx + 1;
|
---|
2312 | if (erst_idx == pIntr->erstsz)
|
---|
2313 | erst_idx = 0;
|
---|
2314 | GCPhysErste = pIntr->erstba + erst_idx * sizeof(XHCI_ERSTE);
|
---|
2315 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysErste, &entry, sizeof(entry));
|
---|
2316 | next_ptr = entry.addr & pThis->erst_addr_mask;
|
---|
2317 | }
|
---|
2318 |
|
---|
2319 | /// @todo We'll have to remember somewhere that the ring is full
|
---|
2320 | return erdp == next_ptr;
|
---|
2321 | }
|
---|
2322 |
|
---|
2323 | /**
|
---|
2324 | * Write an event to the given Event Ring. This implements a good chunk of
|
---|
2325 | * the event ring state machine in section 4.9.4 of the xHCI spec.
|
---|
2326 | *
|
---|
2327 | * @returns VBox status code. Error if event could not be enqueued.
|
---|
2328 | * @param pDevIns The PDM device instance.
|
---|
2329 | * @param pThis Pointer to the xHCI state.
|
---|
2330 | * @param pEvent Pointer to the Event TRB to be enqueued.
|
---|
2331 | * @param iIntr Index of the interrupter to write to.
|
---|
2332 | * @param fBlockInt Set if interrupt should be blocked (BEI bit).
|
---|
2333 | */
|
---|
2334 | static int xhciR3WriteEvent(PPDMDEVINS pDevIns, PXHCI pThis, XHCI_EVENT_TRB *pEvent, unsigned iIntr, bool fBlockInt)
|
---|
2335 | {
|
---|
2336 | PXHCIINTRPTR pIntr;
|
---|
2337 | int rc = VINF_SUCCESS;
|
---|
2338 |
|
---|
2339 | LogFlowFunc(("Interrupter: %u\n", iIntr));
|
---|
2340 |
|
---|
2341 | /* If the HC isn't running, events can not be generated. However,
|
---|
2342 | * especially port change events can be triggered at any time. We just
|
---|
2343 | * drop them here -- it's often not an error condition.
|
---|
2344 | */
|
---|
2345 | if (pThis->cmd & XHCI_CMD_RS)
|
---|
2346 | {
|
---|
2347 | STAM_COUNTER_INC(&pThis->StatEventsWritten);
|
---|
2348 | Assert(iIntr < XHCI_NINTR); /* Supplied by guest, potentially invalid. */
|
---|
2349 | pIntr = &pThis->aInterrupters[iIntr & XHCI_INTR_MASK];
|
---|
2350 |
|
---|
2351 | /*
|
---|
2352 | * If the interrupter/event ring isn't in a sane state, just
|
---|
2353 | * give up and report Host Controller Error (HCE).
|
---|
2354 | */
|
---|
2355 | // pIntr->erst_idx
|
---|
2356 |
|
---|
2357 | int const rcLock = PDMDevHlpCritSectEnter(pDevIns, &pIntr->lock, VERR_IGNORED); /* R3 only, no rcBusy. */
|
---|
2358 | PDM_CRITSECT_RELEASE_ASSERT_RC_DEV(pDevIns, &pIntr->lock, rcLock); /* eventually, most call chains ignore the status. */
|
---|
2359 |
|
---|
2360 | if (xhciR3IsEvtRingFull(pDevIns, pThis, pIntr))
|
---|
2361 | {
|
---|
2362 | LogRel(("xHCI: Event ring full!\n"));
|
---|
2363 | }
|
---|
2364 |
|
---|
2365 | /* Set the TRB's Cycle bit as appropriate. */
|
---|
2366 | pEvent->gen.cycle = pIntr->evtr_pcs;
|
---|
2367 |
|
---|
2368 | /* Write out the TRB and advance the EREP. */
|
---|
2369 | /// @todo This either has to be atomic from the guest's POV or the cycle bit needs to be toggled last!!
|
---|
2370 | PDMDevHlpPCIPhysWriteMeta(pDevIns, pIntr->erep, pEvent, sizeof(*pEvent));
|
---|
2371 | pIntr->erep += sizeof(*pEvent);
|
---|
2372 | --pIntr->trb_count;
|
---|
2373 |
|
---|
2374 | /* Advance to the next ERST entry if necessary. */
|
---|
2375 | if (pIntr->trb_count == 0)
|
---|
2376 | {
|
---|
2377 | ++pIntr->erst_idx;
|
---|
2378 | /* If necessary, roll over back to the beginning. */
|
---|
2379 | if (pIntr->erst_idx == pIntr->erstsz)
|
---|
2380 | {
|
---|
2381 | pIntr->erst_idx = 0;
|
---|
2382 | pIntr->evtr_pcs = !pIntr->evtr_pcs;
|
---|
2383 | }
|
---|
2384 | xhciFetchErstEntry(pDevIns, pThis, pIntr);
|
---|
2385 | }
|
---|
2386 |
|
---|
2387 | /* Set the IPE bit unless interrupts are blocked. */
|
---|
2388 | if (!fBlockInt)
|
---|
2389 | xhciR3SetIntrPending(pDevIns, pThis, pIntr);
|
---|
2390 |
|
---|
2391 | PDMDevHlpCritSectLeave(pDevIns, &pIntr->lock);
|
---|
2392 | }
|
---|
2393 | else
|
---|
2394 | {
|
---|
2395 | STAM_COUNTER_INC(&pThis->StatEventsDropped);
|
---|
2396 | Log(("Event dropped because HC is not running.\n"));
|
---|
2397 | }
|
---|
2398 |
|
---|
2399 | return rc;
|
---|
2400 | }
|
---|
2401 |
|
---|
2402 |
|
---|
2403 | /**
|
---|
2404 | * Post a port change TRB to an Event Ring.
|
---|
2405 | */
|
---|
2406 | static int xhciR3GenPortChgEvent(PPDMDEVINS pDevIns, PXHCI pThis, uint8_t uPort)
|
---|
2407 | {
|
---|
2408 | XHCI_EVENT_TRB ed; /* Event Descriptor */
|
---|
2409 | LogFlowFunc(("Port ID: %u\n", uPort));
|
---|
2410 |
|
---|
2411 | /*
|
---|
2412 | * Devices can be "physically" attached/detached regardless of whether
|
---|
2413 | * the HC is running or not, but the port status change events can only
|
---|
2414 | * be generated when R/S is set; xhciR3WriteEvent() takes care of that.
|
---|
2415 | */
|
---|
2416 | RT_ZERO(ed);
|
---|
2417 | ed.psce.cc = XHCI_TCC_SUCCESS;
|
---|
2418 | ed.psce.port_id = uPort;
|
---|
2419 | ed.psce.type = XHCI_TRB_PORT_SC;
|
---|
2420 | return xhciR3WriteEvent(pDevIns, pThis, &ed, XHCI_PRIMARY_INTERRUPTER, false);
|
---|
2421 | }
|
---|
2422 |
|
---|
2423 |
|
---|
2424 | /**
|
---|
2425 | * Post a command completion TRB to an Event Ring.
|
---|
2426 | */
|
---|
2427 | static int xhciR3PostCmdCompletion(PPDMDEVINS pDevIns, PXHCI pThis, unsigned cc, unsigned uSlotID)
|
---|
2428 | {
|
---|
2429 | XHCI_EVENT_TRB ed; /* Event Descriptor */
|
---|
2430 | LogFlowFunc(("Cmd @ %RGp, Completion Code: %u (%s), Slot ID: %u\n", (RTGCPHYS)pThis->cmdr_dqp, cc,
|
---|
2431 | cc < RT_ELEMENTS(g_apszCmplCodes) ? g_apszCmplCodes[cc] : "WHAT?!!", uSlotID));
|
---|
2432 |
|
---|
2433 | /* The Command Ring dequeue pointer still holds the address of the current
|
---|
2434 | * command TRB. It is written to the completion event TRB as the command
|
---|
2435 | * TRB pointer.
|
---|
2436 | */
|
---|
2437 | RT_ZERO(ed);
|
---|
2438 | ed.cce.trb_ptr = pThis->cmdr_dqp;
|
---|
2439 | ed.cce.cc = cc;
|
---|
2440 | ed.cce.type = XHCI_TRB_CMD_CMPL;
|
---|
2441 | ed.cce.slot_id = uSlotID;
|
---|
2442 | return xhciR3WriteEvent(pDevIns, pThis, &ed, XHCI_PRIMARY_INTERRUPTER, false);
|
---|
2443 | }
|
---|
2444 |
|
---|
2445 |
|
---|
2446 | /**
|
---|
2447 | * Post a transfer event TRB to an Event Ring.
|
---|
2448 | */
|
---|
2449 | static int xhciR3PostXferEvent(PPDMDEVINS pDevIns, PXHCI pThis, unsigned uIntTgt, unsigned uXferLen, unsigned cc,
|
---|
2450 | unsigned uSlotID, unsigned uEpDCI, uint64_t uEvtData, bool fBlockInt, bool fEvent)
|
---|
2451 | {
|
---|
2452 | XHCI_EVENT_TRB ed; /* Event Descriptor */
|
---|
2453 | LogFlowFunc(("Xfer @ %RGp, Completion Code: %u (%s), Slot ID=%u DCI=%u Target=%u EvtData=%RX64 XfrLen=%u BEI=%u ED=%u\n",
|
---|
2454 | (RTGCPHYS)pThis->cmdr_dqp, cc, cc < RT_ELEMENTS(g_apszCmplCodes) ? g_apszCmplCodes[cc] : "WHAT?!!",
|
---|
2455 | uSlotID, uEpDCI, uIntTgt, uEvtData, uXferLen, fBlockInt, fEvent));
|
---|
2456 |
|
---|
2457 | /* A transfer event may be either generated by TRB completion (in case
|
---|
2458 | * fEvent=false) or by a special transfer event TRB (fEvent=true). In
|
---|
2459 | * either case, interrupts may be suppressed.
|
---|
2460 | */
|
---|
2461 | RT_ZERO(ed);
|
---|
2462 | ed.te.trb_ptr = uEvtData;
|
---|
2463 | ed.te.xfr_len = uXferLen;
|
---|
2464 | ed.te.cc = cc;
|
---|
2465 | ed.te.ed = fEvent;
|
---|
2466 | ed.te.type = XHCI_TRB_XFER;
|
---|
2467 | ed.te.ep_id = uEpDCI;
|
---|
2468 | ed.te.slot_id = uSlotID;
|
---|
2469 | return xhciR3WriteEvent(pDevIns, pThis, &ed, uIntTgt, fBlockInt); /* Sets the cycle bit, too. */
|
---|
2470 | }
|
---|
2471 |
|
---|
2472 |
|
---|
2473 | static int xhciR3FindRhDevBySlot(PPDMDEVINS pDevIns, PXHCI pThis, PXHCICC pThisCC, uint8_t uSlotID, PXHCIROOTHUBR3 *ppRh, uint32_t *puPort)
|
---|
2474 | {
|
---|
2475 | XHCI_SLOT_CTX slot_ctx;
|
---|
2476 | PXHCIROOTHUBR3 pRh;
|
---|
2477 | unsigned iPort;
|
---|
2478 | int rc;
|
---|
2479 |
|
---|
2480 | /// @todo Do any of these need to be release assertions?
|
---|
2481 | Assert(uSlotID <= RT_ELEMENTS(pThis->aSlotState));
|
---|
2482 | Assert(pThis->aSlotState[ID_TO_IDX(uSlotID)] > XHCI_DEVSLOT_EMPTY);
|
---|
2483 |
|
---|
2484 | /* Load the slot context. */
|
---|
2485 | xhciR3FetchDevCtx(pDevIns, pThis, uSlotID, 0, &slot_ctx);
|
---|
2486 |
|
---|
2487 | /* The port ID is stored in the slot context. */
|
---|
2488 | iPort = ID_TO_IDX(slot_ctx.rh_port);
|
---|
2489 | if (iPort < XHCI_NDP_CFG(pThis))
|
---|
2490 | {
|
---|
2491 | /* Find the corresponding root hub. */
|
---|
2492 | pRh = GET_PORT_PRH(pThisCC, iPort);
|
---|
2493 | Assert(pRh);
|
---|
2494 |
|
---|
2495 | /* And the device; if the device was ripped out fAttached will be false. */
|
---|
2496 | if (pThisCC->aPorts[iPort].fAttached)
|
---|
2497 | {
|
---|
2498 | /* Provide the information the caller asked for. */
|
---|
2499 | if (ppRh)
|
---|
2500 | *ppRh = pRh;
|
---|
2501 | if (puPort)
|
---|
2502 | *puPort = GET_VUSB_PORT_FROM_XHCI_PORT(pRh, iPort);
|
---|
2503 | rc = VINF_SUCCESS;
|
---|
2504 | }
|
---|
2505 | else
|
---|
2506 | {
|
---|
2507 | LogFunc(("No device attached (port index %u)!\n", iPort));
|
---|
2508 | rc = VERR_VUSB_DEVICE_NOT_ATTACHED;
|
---|
2509 | }
|
---|
2510 | }
|
---|
2511 | else
|
---|
2512 | {
|
---|
2513 | LogFunc(("Port out of range (index %u)!\n", iPort));
|
---|
2514 | rc = VERR_INVALID_PARAMETER;
|
---|
2515 | }
|
---|
2516 | return rc;
|
---|
2517 | }
|
---|
2518 |
|
---|
2519 |
|
---|
2520 | static void xhciR3EndlessTrbError(PPDMDEVINS pDevIns, PXHCI pThis)
|
---|
2521 | {
|
---|
2522 | /* Clear the R/S bit and indicate controller error. */
|
---|
2523 | ASMAtomicAndU32(&pThis->cmd, ~XHCI_CMD_RS);
|
---|
2524 | ASMAtomicOrU32(&pThis->status, XHCI_STATUS_HCE);
|
---|
2525 |
|
---|
2526 | /* Ensure that XHCI_STATUS_HCH gets set by the worker thread. */
|
---|
2527 | xhciKickWorker(pDevIns, pThis, XHCI_JOB_XFER_DONE, 0);
|
---|
2528 |
|
---|
2529 | LogRelMax(10, ("xHCI: Attempted to process too many TRBs, stopping xHC!\n"));
|
---|
2530 | }
|
---|
2531 |
|
---|
2532 | /**
|
---|
2533 | * TRB walker callback prototype.
|
---|
2534 | *
|
---|
2535 | * @returns true if walking should continue.
|
---|
2536 | * @returns false if walking should be terminated.
|
---|
2537 | * @param pDevIns The device instance.
|
---|
2538 | * @param pThis The xHCI device state.
|
---|
2539 | * @param pXferTRB Pointer to the transfer TRB to handle.
|
---|
2540 | * @param GCPhysXfrTRB Physical address of the TRB.
|
---|
2541 | * @param pvContext User-defined walk context.
|
---|
2542 | * @remarks We don't need to use DECLCALLBACKPTR here, since all users are in
|
---|
2543 | * the same source file, but having the functions marked with
|
---|
2544 | * DECLCALLBACK helps readability.
|
---|
2545 | */
|
---|
2546 | typedef DECLCALLBACKPTR(bool, PFNTRBWALKCB,(PPDMDEVINS pDevIns, PXHCI pThis, const XHCI_XFER_TRB *pXferTRB,
|
---|
2547 | RTGCPHYS GCPhysXfrTRB, void *pvContext));
|
---|
2548 |
|
---|
2549 |
|
---|
2550 | /**
|
---|
2551 | * Walk a chain of TRBs which comprise a single TD.
|
---|
2552 | *
|
---|
2553 | * This is something we need to do potentially more than once when submitting a
|
---|
2554 | * URB and then often again when completing the URB. Note that the walker does
|
---|
2555 | * not update the endpoint state (TRDP/TREP/DCS) so that it can be re-run
|
---|
2556 | * multiple times.
|
---|
2557 | *
|
---|
2558 | * @param pDevIns The device instance.
|
---|
2559 | * @param pThis The xHCI device state.
|
---|
2560 | * @param uTRP Initial TR pointer and DCS.
|
---|
2561 | * @param pfnCbk Callback routine.
|
---|
2562 | * @param pvContext User-defined walk context.
|
---|
2563 | * @param pTREP Pointer to storage for final TR Enqueue Pointer/DCS.
|
---|
2564 | */
|
---|
2565 | static int xhciR3WalkXferTrbChain(PPDMDEVINS pDevIns, PXHCI pThis, uint64_t uTRP,
|
---|
2566 | PFNTRBWALKCB pfnCbk, void *pvContext, uint64_t *pTREP)
|
---|
2567 | {
|
---|
2568 | RTGCPHYS GCPhysXfrTRB;
|
---|
2569 | uint64_t uTREP;
|
---|
2570 | XHCI_XFER_TRB XferTRB;
|
---|
2571 | bool fContinue = true;
|
---|
2572 | bool dcs;
|
---|
2573 | int rc = VINF_SUCCESS;
|
---|
2574 | unsigned cTrbs = 0;
|
---|
2575 |
|
---|
2576 | AssertPtr(pvContext);
|
---|
2577 | AssertPtr(pTREP);
|
---|
2578 | Assert(uTRP);
|
---|
2579 |
|
---|
2580 | /* Find the transfer TRB address and the DCS. */
|
---|
2581 | GCPhysXfrTRB = uTRP & XHCI_TRDP_ADDR_MASK;
|
---|
2582 | dcs = !!(uTRP & XHCI_TRDP_DCS_MASK); /* MSC upgrades bool to signed something when comparing with a uint8_t:1. */
|
---|
2583 | LogFlowFunc(("Walking Transfer Ring, TREP:%RGp DCS=%u\n", GCPhysXfrTRB, dcs));
|
---|
2584 |
|
---|
2585 | do {
|
---|
2586 | /* Fetch the transfer TRB. */
|
---|
2587 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysXfrTRB, &XferTRB, sizeof(XferTRB));
|
---|
2588 |
|
---|
2589 | if ((bool)XferTRB.gen.cycle == dcs)
|
---|
2590 | {
|
---|
2591 | Log2(("Walking TRB@%RGp, type %u (%s) %u bytes ENT=%u ISP=%u NS=%u CH=%u IOC=%u IDT=%u\n", GCPhysXfrTRB, XferTRB.gen.type,
|
---|
2592 | XferTRB.gen.type < RT_ELEMENTS(g_apszTrbNames) ? g_apszTrbNames[XferTRB.gen.type] : "WHAT?!!",
|
---|
2593 | XferTRB.gen.xfr_len, XferTRB.gen.ent, XferTRB.gen.isp, XferTRB.gen.ns, XferTRB.gen.ch, XferTRB.gen.ioc, XferTRB.gen.idt));
|
---|
2594 |
|
---|
2595 | /* DCS matches, the TRB is ours to process. */
|
---|
2596 | switch (XferTRB.gen.type) {
|
---|
2597 | case XHCI_TRB_LINK:
|
---|
2598 | Log2(("Link intra-TD: Ptr=%RGp IOC=%u TC=%u CH=%u\n", XferTRB.link.rseg_ptr, XferTRB.link.ioc, XferTRB.link.toggle, XferTRB.link.chain));
|
---|
2599 | Assert(XferTRB.link.chain);
|
---|
2600 | /* Do not update the actual TRDP/TREP and DCS yet, just the temporary images. */
|
---|
2601 | GCPhysXfrTRB = XferTRB.link.rseg_ptr & XHCI_TRDP_ADDR_MASK;
|
---|
2602 | if (XferTRB.link.toggle)
|
---|
2603 | dcs = !dcs;
|
---|
2604 | Assert(!XferTRB.link.ioc); /// @todo Needs to be reported.
|
---|
2605 | break;
|
---|
2606 | case XHCI_TRB_NORMAL:
|
---|
2607 | case XHCI_TRB_ISOCH:
|
---|
2608 | case XHCI_TRB_SETUP_STG:
|
---|
2609 | case XHCI_TRB_DATA_STG:
|
---|
2610 | case XHCI_TRB_STATUS_STG:
|
---|
2611 | case XHCI_TRB_EVT_DATA:
|
---|
2612 | fContinue = pfnCbk(pDevIns, pThis, &XferTRB, GCPhysXfrTRB, pvContext);
|
---|
2613 | GCPhysXfrTRB += sizeof(XferTRB);
|
---|
2614 | break;
|
---|
2615 | default:
|
---|
2616 | /* NB: No-op TRBs are not allowed within TDs (4.11.7). */
|
---|
2617 | Log(("Bad TRB type %u found within TD!!\n", XferTRB.gen.type));
|
---|
2618 | fContinue = false;
|
---|
2619 | /// @todo Stop EP etc.?
|
---|
2620 | }
|
---|
2621 | }
|
---|
2622 | else
|
---|
2623 | {
|
---|
2624 | /* We don't have a complete TD. Interesting times. */
|
---|
2625 | Log2(("DCS mismatch, no more TRBs available.\n"));
|
---|
2626 | fContinue = false;
|
---|
2627 | rc = VERR_TRY_AGAIN;
|
---|
2628 | }
|
---|
2629 |
|
---|
2630 | /* Kill the xHC if the TRB list has no end in sight. */
|
---|
2631 | if (++cTrbs > XHCI_MAX_NUM_TRBS)
|
---|
2632 | {
|
---|
2633 | /* Stop the xHC with an error. */
|
---|
2634 | xhciR3EndlessTrbError(pDevIns, pThis);
|
---|
2635 |
|
---|
2636 | /* Get out of the loop. */
|
---|
2637 | fContinue = false;
|
---|
2638 | rc = VERR_NOT_SUPPORTED; /* No good error code really... */
|
---|
2639 | }
|
---|
2640 | } while (fContinue);
|
---|
2641 |
|
---|
2642 | /* Inform caller of the new TR Enqueue Pointer/DCS (not necessarily changed). */
|
---|
2643 | Assert(!(GCPhysXfrTRB & ~XHCI_TRDP_ADDR_MASK));
|
---|
2644 | uTREP = GCPhysXfrTRB | (unsigned)dcs;
|
---|
2645 | Log2(("Final TRP after walk: %RGp\n", uTREP));
|
---|
2646 | *pTREP = uTREP;
|
---|
2647 |
|
---|
2648 | return rc;
|
---|
2649 | }
|
---|
2650 |
|
---|
2651 |
|
---|
2652 | /** Context for probing TD size. */
|
---|
2653 | typedef struct {
|
---|
2654 | uint32_t uXferLen;
|
---|
2655 | uint32_t cTRB;
|
---|
2656 | uint32_t uXfrLenLastED;
|
---|
2657 | uint32_t cTRBLastED;
|
---|
2658 | } XHCI_CTX_XFER_PROBE;
|
---|
2659 |
|
---|
2660 |
|
---|
2661 | /** Context for submitting 'out' TDs. */
|
---|
2662 | typedef struct {
|
---|
2663 | PVUSBURB pUrb;
|
---|
2664 | uint32_t uXferPos;
|
---|
2665 | unsigned cTRB;
|
---|
2666 | } XHCI_CTX_XFER_SUBMIT;
|
---|
2667 |
|
---|
2668 |
|
---|
2669 | /** Context for completing TDs. */
|
---|
2670 | typedef struct {
|
---|
2671 | PVUSBURB pUrb;
|
---|
2672 | uint32_t uXferPos;
|
---|
2673 | uint32_t uXferLeft;
|
---|
2674 | unsigned cTRB;
|
---|
2675 | uint32_t uEDTLA : 24;
|
---|
2676 | uint32_t uLastCC : 8;
|
---|
2677 | uint8_t uSlotID;
|
---|
2678 | uint8_t uEpDCI;
|
---|
2679 | bool fMaxCount;
|
---|
2680 | } XHCI_CTX_XFER_COMPLETE;
|
---|
2681 |
|
---|
2682 |
|
---|
2683 | /** Context for building isochronous URBs. */
|
---|
2684 | typedef struct {
|
---|
2685 | PVUSBURB pUrb;
|
---|
2686 | unsigned iPkt;
|
---|
2687 | uint32_t offCur;
|
---|
2688 | uint64_t uInitTREP;
|
---|
2689 | bool fSubmitFailed;
|
---|
2690 | } XHCI_CTX_ISOCH;
|
---|
2691 |
|
---|
2692 |
|
---|
2693 | /**
|
---|
2694 | * @callback_method_impl{PFNTRBWALKCB,
|
---|
2695 | * Probe a TD and figure out how big it is so that a URB can be allocated to back it.}
|
---|
2696 | */
|
---|
2697 | static DECLCALLBACK(bool)
|
---|
2698 | xhciR3WalkDataTRBsProbe(PPDMDEVINS pDevIns, PXHCI pThis, const XHCI_XFER_TRB *pXferTRB, RTGCPHYS GCPhysXfrTRB, void *pvContext)
|
---|
2699 | {
|
---|
2700 | RT_NOREF(pDevIns, pThis, GCPhysXfrTRB);
|
---|
2701 | XHCI_CTX_XFER_PROBE *pCtx = (XHCI_CTX_XFER_PROBE *)pvContext;
|
---|
2702 |
|
---|
2703 | pCtx->cTRB++;
|
---|
2704 |
|
---|
2705 | /* Only consider TRBs which transfer data. */
|
---|
2706 | switch (pXferTRB->gen.type)
|
---|
2707 | {
|
---|
2708 | case XHCI_TRB_NORMAL:
|
---|
2709 | case XHCI_TRB_ISOCH:
|
---|
2710 | case XHCI_TRB_SETUP_STG:
|
---|
2711 | case XHCI_TRB_DATA_STG:
|
---|
2712 | case XHCI_TRB_STATUS_STG:
|
---|
2713 | pCtx->uXferLen += pXferTRB->norm.xfr_len;
|
---|
2714 | if (RT_UNLIKELY(pCtx->uXferLen > XHCI_MAX_TD_SIZE))
|
---|
2715 | {
|
---|
2716 | /* NB: We let the TD size get a bit past the max so that we don't lose anything,
|
---|
2717 | * but the EDTLA will wrap around.
|
---|
2718 | */
|
---|
2719 | LogRelMax(10, ("xHCI: TD size (%u) too big, not continuing!\n", pCtx->uXferLen));
|
---|
2720 | return false;
|
---|
2721 | }
|
---|
2722 | break;
|
---|
2723 | case XHCI_TRB_EVT_DATA:
|
---|
2724 | /* Remember where the last seen Event Data TRB was. */
|
---|
2725 | pCtx->cTRBLastED = pCtx->cTRB;
|
---|
2726 | pCtx->uXfrLenLastED = pCtx->uXferLen;
|
---|
2727 | break;
|
---|
2728 | default: /* Could be a link TRB, too. */
|
---|
2729 | break;
|
---|
2730 | }
|
---|
2731 |
|
---|
2732 | return pXferTRB->gen.ch;
|
---|
2733 | }
|
---|
2734 |
|
---|
2735 |
|
---|
2736 | /**
|
---|
2737 | * @callback_method_impl{PFNTRBWALKCB,
|
---|
2738 | * Copy data from a TD (TRB chain) into the corresponding TD. OUT direction only.}
|
---|
2739 | */
|
---|
2740 | static DECLCALLBACK(bool)
|
---|
2741 | xhciR3WalkDataTRBsSubmit(PPDMDEVINS pDevIns, PXHCI pThis, const XHCI_XFER_TRB *pXferTRB, RTGCPHYS GCPhysXfrTRB, void *pvContext)
|
---|
2742 | {
|
---|
2743 | RT_NOREF(pThis, GCPhysXfrTRB);
|
---|
2744 | XHCI_CTX_XFER_SUBMIT *pCtx = (XHCI_CTX_XFER_SUBMIT *)pvContext;
|
---|
2745 | uint32_t uXferLen = pXferTRB->norm.xfr_len;
|
---|
2746 |
|
---|
2747 |
|
---|
2748 | /* Only consider TRBs which transfer data. */
|
---|
2749 | switch (pXferTRB->gen.type)
|
---|
2750 | {
|
---|
2751 | case XHCI_TRB_NORMAL:
|
---|
2752 | case XHCI_TRB_ISOCH:
|
---|
2753 | case XHCI_TRB_SETUP_STG:
|
---|
2754 | case XHCI_TRB_DATA_STG:
|
---|
2755 | case XHCI_TRB_STATUS_STG:
|
---|
2756 | /* NB: Transfer length may be zero! */
|
---|
2757 | /// @todo explain/verify abuse of various TRB types here (data stage mapped to normal etc.).
|
---|
2758 | if (uXferLen)
|
---|
2759 | {
|
---|
2760 | /* Sanity check for broken guests (TRBs may have changed since probing). */
|
---|
2761 | if (pCtx->uXferPos + uXferLen <= pCtx->pUrb->cbData)
|
---|
2762 | {
|
---|
2763 | /* Data might be immediate or elsewhere in memory. */
|
---|
2764 | if (pXferTRB->norm.idt)
|
---|
2765 | {
|
---|
2766 | /* If an immediate data TRB claims there's more than 8 bytes, we have a problem. */
|
---|
2767 | if (uXferLen > 8)
|
---|
2768 | {
|
---|
2769 | LogRelMax(10, ("xHCI: Immediate data TRB length %u bytes, ignoring!\n", uXferLen));
|
---|
2770 | return false; /* Stop walking the chain immediately. */
|
---|
2771 | }
|
---|
2772 |
|
---|
2773 | Assert(uXferLen >= 1 && uXferLen <= 8);
|
---|
2774 | Log2(("Copying %u bytes to URB offset %u (immediate data)\n", uXferLen, pCtx->uXferPos));
|
---|
2775 | memcpy(pCtx->pUrb->abData + pCtx->uXferPos, pXferTRB, uXferLen);
|
---|
2776 | }
|
---|
2777 | else
|
---|
2778 | {
|
---|
2779 | PDMDevHlpPCIPhysReadUser(pDevIns, pXferTRB->norm.data_ptr, pCtx->pUrb->abData + pCtx->uXferPos, uXferLen);
|
---|
2780 | Log2(("Copying %u bytes to URB offset %u (from %RGp)\n", uXferLen, pCtx->uXferPos, pXferTRB->norm.data_ptr));
|
---|
2781 | }
|
---|
2782 | pCtx->uXferPos += uXferLen;
|
---|
2783 | }
|
---|
2784 | else
|
---|
2785 | {
|
---|
2786 | LogRelMax(10, ("xHCI: Attempted to submit too much data, ignoring!\n"));
|
---|
2787 | return false; /* Stop walking the chain immediately. */
|
---|
2788 | }
|
---|
2789 |
|
---|
2790 | }
|
---|
2791 | break;
|
---|
2792 | default: /* Could be an event or status stage TRB, too. */
|
---|
2793 | break;
|
---|
2794 | }
|
---|
2795 | pCtx->cTRB++;
|
---|
2796 |
|
---|
2797 | /// @todo Maybe have to make certain that the number of probed TRBs matches? Potentially
|
---|
2798 | /// by the time TRBs get submitted, there might be more of them available if the TD was
|
---|
2799 | /// initially not fully written by HCD.
|
---|
2800 |
|
---|
2801 | return pXferTRB->gen.ch;
|
---|
2802 | }
|
---|
2803 |
|
---|
2804 |
|
---|
2805 | /**
|
---|
2806 | * Perform URB completion processing.
|
---|
2807 | *
|
---|
2808 | * Figure out how much data was really transferred, post events if required, and
|
---|
2809 | * for IN transfers, copy data from the URB.
|
---|
2810 | *
|
---|
2811 | * @callback_method_impl{PFNTRBWALKCB}
|
---|
2812 | */
|
---|
2813 | static DECLCALLBACK(bool)
|
---|
2814 | xhciR3WalkDataTRBsComplete(PPDMDEVINS pDevIns, PXHCI pThis, const XHCI_XFER_TRB *pXferTRB, RTGCPHYS GCPhysXfrTRB, void *pvContext)
|
---|
2815 | {
|
---|
2816 | XHCI_CTX_XFER_COMPLETE *pCtx = (XHCI_CTX_XFER_COMPLETE *)pvContext;
|
---|
2817 | int rc;
|
---|
2818 | unsigned uXferLen;
|
---|
2819 | unsigned uResidue;
|
---|
2820 | uint8_t cc;
|
---|
2821 | bool fKeepGoing = true;
|
---|
2822 |
|
---|
2823 | switch (pXferTRB->gen.type)
|
---|
2824 | {
|
---|
2825 | case XHCI_TRB_NORMAL:
|
---|
2826 | case XHCI_TRB_ISOCH:
|
---|
2827 | case XHCI_TRB_SETUP_STG:
|
---|
2828 | case XHCI_TRB_DATA_STG: /// @todo document abuse; esp. check BEI bit
|
---|
2829 | case XHCI_TRB_STATUS_STG:
|
---|
2830 | /* Assume successful transfer. */
|
---|
2831 | uXferLen = pXferTRB->norm.xfr_len;
|
---|
2832 | cc = XHCI_TCC_SUCCESS;
|
---|
2833 |
|
---|
2834 | /* If there was a short packet, handle it accordingly. */
|
---|
2835 | if (pCtx->uXferLeft < uXferLen)
|
---|
2836 | {
|
---|
2837 | /* The completion code is set regardless of IOC/ISP. It may be
|
---|
2838 | * reported later via an Event Data TRB (4.10.1.1)
|
---|
2839 | */
|
---|
2840 | uXferLen = pCtx->uXferLeft;
|
---|
2841 | cc = XHCI_TCC_SHORT_PKT;
|
---|
2842 | }
|
---|
2843 |
|
---|
2844 | if (pCtx->pUrb->enmDir == VUSBDIRECTION_IN)
|
---|
2845 | {
|
---|
2846 | Assert(!pXferTRB->norm.idt);
|
---|
2847 |
|
---|
2848 | /* NB: Transfer length may be zero! */
|
---|
2849 | if (uXferLen)
|
---|
2850 | {
|
---|
2851 | if (uXferLen <= pCtx->uXferLeft)
|
---|
2852 | {
|
---|
2853 | Log2(("Writing %u bytes to %RGp from URB offset %u (TRB@%RGp)\n", uXferLen, pXferTRB->norm.data_ptr, pCtx->uXferPos, GCPhysXfrTRB));
|
---|
2854 | PDMDevHlpPCIPhysWriteUser(pDevIns, pXferTRB->norm.data_ptr, pCtx->pUrb->abData + pCtx->uXferPos, uXferLen);
|
---|
2855 | }
|
---|
2856 | else
|
---|
2857 | {
|
---|
2858 | LogRelMax(10, ("xHCI: Attempted to read too much data, ignoring!\n"));
|
---|
2859 | }
|
---|
2860 | }
|
---|
2861 | }
|
---|
2862 |
|
---|
2863 | /* Update position within TD. */
|
---|
2864 | pCtx->uXferLeft -= uXferLen;
|
---|
2865 | pCtx->uXferPos += uXferLen;
|
---|
2866 | Log2(("Current uXferLeft=%u, uXferPos=%u (length was %u)\n", pCtx->uXferLeft, pCtx->uXferPos, uXferLen));
|
---|
2867 |
|
---|
2868 | /* Keep track of the EDTLA and last completion status. */
|
---|
2869 | pCtx->uEDTLA += uXferLen; /* May wrap around! */
|
---|
2870 | pCtx->uLastCC = cc;
|
---|
2871 |
|
---|
2872 | /* Report events as required. */
|
---|
2873 | uResidue = pXferTRB->norm.xfr_len - uXferLen;
|
---|
2874 | if (pXferTRB->norm.ioc || (pXferTRB->norm.isp && uResidue))
|
---|
2875 | {
|
---|
2876 | rc = xhciR3PostXferEvent(pDevIns, pThis, pXferTRB->norm.int_tgt, uResidue, cc,
|
---|
2877 | pCtx->uSlotID, pCtx->uEpDCI, GCPhysXfrTRB, pXferTRB->norm.bei, false);
|
---|
2878 | }
|
---|
2879 | break;
|
---|
2880 | case XHCI_TRB_EVT_DATA:
|
---|
2881 | if (pXferTRB->evtd.ioc)
|
---|
2882 | {
|
---|
2883 | rc = xhciR3PostXferEvent(pDevIns, pThis, pXferTRB->evtd.int_tgt, pCtx->uEDTLA, pCtx->uLastCC,
|
---|
2884 | pCtx->uSlotID, pCtx->uEpDCI, pXferTRB->evtd.evt_data, pXferTRB->evtd.bei, true);
|
---|
2885 | }
|
---|
2886 | /* Clear the EDTLA. */
|
---|
2887 | pCtx->uEDTLA = 0;
|
---|
2888 | break;
|
---|
2889 | default:
|
---|
2890 | AssertMsgFailed(("%#x\n", pXferTRB->gen.type));
|
---|
2891 | break;
|
---|
2892 | }
|
---|
2893 |
|
---|
2894 | pCtx->cTRB--;
|
---|
2895 | /* For TD fragments, enforce the maximum count, but only as long as the transfer
|
---|
2896 | * is successful. In case of error we have to complete the entire TD! */
|
---|
2897 | if (!pCtx->cTRB && pCtx->fMaxCount && pCtx->uLastCC == XHCI_TCC_SUCCESS)
|
---|
2898 | {
|
---|
2899 | Log2(("Stopping at the end of TD Fragment.\n"));
|
---|
2900 | fKeepGoing = false;
|
---|
2901 | }
|
---|
2902 |
|
---|
2903 | /* NB: We currently do not enforce that the number of TRBs can't change between
|
---|
2904 | * submission and completion. If we do, we'll have to store it somewhere for
|
---|
2905 | * isochronous URBs.
|
---|
2906 | */
|
---|
2907 | return pXferTRB->gen.ch && fKeepGoing;
|
---|
2908 | }
|
---|
2909 |
|
---|
2910 | /**
|
---|
2911 | * Process (consume) non-data TRBs on a transfer ring. This function
|
---|
2912 | * completes TRBs which do not have any URB associated with them. Only
|
---|
2913 | * used with running endpoints. Usable regardless of whether there are
|
---|
2914 | * in-flight TRBs or not. Returns the next TRB and its address to the
|
---|
2915 | * caller. May modify the endpoint context!
|
---|
2916 | *
|
---|
2917 | * @param pDevIns The device instance.
|
---|
2918 | * @param pThis The xHCI device state.
|
---|
2919 | * @param uSlotID The slot corresponding to this USB device.
|
---|
2920 | * @param uEpDCI The DCI of this endpoint.
|
---|
2921 | * @param pEpCtx Endpoint context. May be modified.
|
---|
2922 | * @param pXfer Storage for returning the next TRB to caller.
|
---|
2923 | * @param pGCPhys Storage for returning the physical address of TRB.
|
---|
2924 | */
|
---|
2925 | static int xhciR3ConsumeNonXferTRBs(PPDMDEVINS pDevIns, PXHCI pThis, uint8_t uSlotID, uint8_t uEpDCI,
|
---|
2926 | XHCI_EP_CTX *pEpCtx, XHCI_XFER_TRB *pXfer, RTGCPHYS *pGCPhys)
|
---|
2927 | {
|
---|
2928 | XHCI_XFER_TRB xfer;
|
---|
2929 | RTGCPHYS GCPhysXfrTRB = 0;
|
---|
2930 | bool dcs;
|
---|
2931 | bool fInFlight;
|
---|
2932 | bool fContinue = true;
|
---|
2933 | int rc;
|
---|
2934 | unsigned cTrbs = 0;
|
---|
2935 |
|
---|
2936 | LogFlowFunc(("Slot ID: %u, EP DCI %u\n", uSlotID, uEpDCI));
|
---|
2937 | Assert(uSlotID > 0);
|
---|
2938 | Assert(uSlotID <= XHCI_NDS);
|
---|
2939 |
|
---|
2940 | Assert(pEpCtx->ep_state == XHCI_EPST_RUNNING);
|
---|
2941 | do
|
---|
2942 | {
|
---|
2943 | /* Find the transfer TRB address. */
|
---|
2944 | GCPhysXfrTRB = pEpCtx->trdp & XHCI_TRDP_ADDR_MASK;
|
---|
2945 | dcs = !!(pEpCtx->trdp & XHCI_TRDP_DCS_MASK);
|
---|
2946 |
|
---|
2947 | /* Determine whether there are any in-flight TRBs or not. This affects TREP
|
---|
2948 | * processing -- when nothing is in flight, we have to move both TREP and TRDP;
|
---|
2949 | * otherwise only the TRDP must be updated.
|
---|
2950 | */
|
---|
2951 | fInFlight = pEpCtx->trep != pEpCtx->trdp;
|
---|
2952 | LogFlowFunc(("Skipping non-data TRBs, TREP:%RGp, TRDP:%RGp, in-flight: %RTbool\n", pEpCtx->trep, pEpCtx->trdp, fInFlight));
|
---|
2953 |
|
---|
2954 | /* Fetch the transfer TRB. */
|
---|
2955 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysXfrTRB, &xfer, sizeof(xfer));
|
---|
2956 |
|
---|
2957 | /* Make sure the Cycle State matches. */
|
---|
2958 | if ((bool)xfer.gen.cycle == dcs)
|
---|
2959 | {
|
---|
2960 | Log2(("TRB @ %RGp, type %u (%s) %u bytes ENT=%u ISP=%u NS=%u CH=%u IOC=%u IDT=%u\n", GCPhysXfrTRB, xfer.gen.type,
|
---|
2961 | xfer.gen.type < RT_ELEMENTS(g_apszTrbNames) ? g_apszTrbNames[xfer.gen.type] : "WHAT?!!",
|
---|
2962 | xfer.gen.xfr_len, xfer.gen.ent, xfer.gen.isp, xfer.gen.ns, xfer.gen.ch, xfer.gen.ioc, xfer.gen.idt));
|
---|
2963 |
|
---|
2964 | switch (xfer.gen.type) {
|
---|
2965 | case XHCI_TRB_LINK:
|
---|
2966 | Log2(("Link extra-TD: Ptr=%RGp IOC=%u TC=%u CH=%u\n", xfer.link.rseg_ptr, xfer.link.ioc, xfer.link.toggle, xfer.link.chain));
|
---|
2967 | Assert(!xfer.link.chain);
|
---|
2968 | AssertCompile(XHCI_TRDP_DCS_MASK == 1); /* link.toggle is 0 or 1, can be used as XHCI_TRDP_DCS_MASK */
|
---|
2969 | /* Set new TRDP but leave DCS bit alone... */
|
---|
2970 | pEpCtx->trdp = (xfer.link.rseg_ptr & XHCI_TRDP_ADDR_MASK) | (pEpCtx->trdp & XHCI_TRDP_DCS_MASK);
|
---|
2971 | /* ...and flip the DCS bit if required. Then update the TREP. */
|
---|
2972 | pEpCtx->trdp = pEpCtx->trdp ^ xfer.link.toggle;
|
---|
2973 | if (!fInFlight)
|
---|
2974 | pEpCtx->trep = pEpCtx->trdp;
|
---|
2975 | if (xfer.link.ioc)
|
---|
2976 | rc = xhciR3PostXferEvent(pDevIns, pThis, xfer.link.int_tgt, 0, XHCI_TCC_SUCCESS, uSlotID, uEpDCI,
|
---|
2977 | GCPhysXfrTRB, false, false);
|
---|
2978 | break;
|
---|
2979 | case XHCI_TRB_NOOP_XFER:
|
---|
2980 | Log2(("No op xfer: IOC=%u CH=%u ENT=%u\n", xfer.nop.ioc, xfer.nop.ch, xfer.nop.ent));
|
---|
2981 | /* A no-op transfer TRB must not be part of a chain. See 4.11.7. */
|
---|
2982 | Assert(!xfer.link.chain);
|
---|
2983 | /* Update enqueue/dequeue pointers. */
|
---|
2984 | pEpCtx->trdp += sizeof(XHCI_XFER_TRB);
|
---|
2985 | if (!fInFlight)
|
---|
2986 | pEpCtx->trep += sizeof(XHCI_XFER_TRB);
|
---|
2987 | if (xfer.nop.ioc)
|
---|
2988 | rc = xhciR3PostXferEvent(pDevIns, pThis, xfer.nop.int_tgt, 0, XHCI_TCC_SUCCESS, uSlotID, uEpDCI,
|
---|
2989 | GCPhysXfrTRB, false, false);
|
---|
2990 | break;
|
---|
2991 | default:
|
---|
2992 | fContinue = false;
|
---|
2993 | break;
|
---|
2994 | }
|
---|
2995 | }
|
---|
2996 | else
|
---|
2997 | {
|
---|
2998 | LogFunc(("Transfer Ring empty\n"));
|
---|
2999 | fContinue = false;
|
---|
3000 | }
|
---|
3001 |
|
---|
3002 | /* Kill the xHC if the TRB list has no end in sight. */
|
---|
3003 | /* NB: The limit here could perhaps be much lower because a sequence of Link
|
---|
3004 | * and No-op TRBs with no real work to be done would be highly suspect.
|
---|
3005 | */
|
---|
3006 | if (++cTrbs > XHCI_MAX_NUM_TRBS)
|
---|
3007 | {
|
---|
3008 | /* Stop the xHC with an error. */
|
---|
3009 | xhciR3EndlessTrbError(pDevIns, pThis);
|
---|
3010 |
|
---|
3011 | /* Get out of the loop. */
|
---|
3012 | fContinue = false;
|
---|
3013 | rc = VERR_NOT_SUPPORTED; /* No good error code really... */
|
---|
3014 | }
|
---|
3015 | } while (fContinue);
|
---|
3016 |
|
---|
3017 | /* The caller will need the next TRB. Hand it over. */
|
---|
3018 | Assert(GCPhysXfrTRB);
|
---|
3019 | *pGCPhys = GCPhysXfrTRB;
|
---|
3020 | *pXfer = xfer;
|
---|
3021 | LogFlowFunc(("Final TREP:%RGp, TRDP:%RGp GCPhysXfrTRB:%RGp\n", pEpCtx->trep, pEpCtx->trdp, GCPhysXfrTRB));
|
---|
3022 |
|
---|
3023 | return VINF_SUCCESS;
|
---|
3024 | }
|
---|
3025 |
|
---|
3026 | /**
|
---|
3027 | * Transfer completion callback routine.
|
---|
3028 | *
|
---|
3029 | * VUSB will call this when a transfer have been completed
|
---|
3030 | * in a one or another way.
|
---|
3031 | *
|
---|
3032 | * @param pInterface Pointer to XHCI::ROOTHUB::IRhPort.
|
---|
3033 | * @param pUrb Pointer to the URB in question.
|
---|
3034 | */
|
---|
3035 | static DECLCALLBACK(void) xhciR3RhXferCompletion(PVUSBIROOTHUBPORT pInterface, PVUSBURB pUrb)
|
---|
3036 | {
|
---|
3037 | PXHCIROOTHUBR3 pRh = RT_FROM_MEMBER(pInterface, XHCIROOTHUBR3, IRhPort);
|
---|
3038 | PXHCICC pThisCC = pRh->pXhciR3;
|
---|
3039 | PPDMDEVINS pDevIns = pThisCC->pDevIns;
|
---|
3040 | PXHCI pThis = PDMDEVINS_2_DATA(pDevIns, PXHCI);
|
---|
3041 | XHCI_SLOT_CTX slot_ctx;
|
---|
3042 | XHCI_EP_CTX ep_ctx;
|
---|
3043 | XHCI_XFER_TRB xfer;
|
---|
3044 | RTGCPHYS GCPhysXfrTRB;
|
---|
3045 | int rc;
|
---|
3046 | unsigned uResidue = 0;
|
---|
3047 | uint8_t uSlotID = pUrb->pHci->uSlotID;
|
---|
3048 | uint8_t cc = XHCI_TCC_SUCCESS;
|
---|
3049 | uint8_t uEpDCI;
|
---|
3050 |
|
---|
3051 | /* Check for URBs completed synchronously as part of xHCI command execution.
|
---|
3052 | * The URB will have zero cTRB as it's not associated with a TD.
|
---|
3053 | */
|
---|
3054 | if (!pUrb->pHci->cTRB)
|
---|
3055 | {
|
---|
3056 | LogFlow(("%s: xhciR3RhXferCompletion: uSlotID=%u EP=%u cTRB=%d cbData=%u status=%u\n",
|
---|
3057 | pUrb->pszDesc, uSlotID, pUrb->EndPt, pUrb->pHci->cTRB, pUrb->cbData, pUrb->enmStatus));
|
---|
3058 | LogFlow(("%s: xhciR3RhXferCompletion: Completing xHCI-generated request\n", pUrb->pszDesc));
|
---|
3059 | return;
|
---|
3060 | }
|
---|
3061 |
|
---|
3062 | /* If the xHC isn't running, just drop the URB right here. */
|
---|
3063 | if (pThis->status & XHCI_STATUS_HCH)
|
---|
3064 | {
|
---|
3065 | LogFlow(("%s: xhciR3RhXferCompletion: uSlotID=%u EP=%u cTRB=%d cbData=%u status=%u\n",
|
---|
3066 | pUrb->pszDesc, uSlotID, pUrb->EndPt, pUrb->pHci->cTRB, pUrb->cbData, pUrb->enmStatus));
|
---|
3067 | LogFlow(("%s: xhciR3RhXferCompletion: xHC halted, skipping URB completion\n", pUrb->pszDesc));
|
---|
3068 | return;
|
---|
3069 | }
|
---|
3070 |
|
---|
3071 | #ifdef XHCI_ERROR_INJECTION
|
---|
3072 | if (pThis->fDropUrb)
|
---|
3073 | {
|
---|
3074 | LogFlow(("%s: xhciR3RhXferCompletion: Error injection, dropping URB!\n", pUrb->pszDesc));
|
---|
3075 | pThis->fDropUrb = false;
|
---|
3076 | return;
|
---|
3077 | }
|
---|
3078 | #endif
|
---|
3079 |
|
---|
3080 | RTCritSectEnter(&pThisCC->CritSectThrd);
|
---|
3081 |
|
---|
3082 | /* Convert USB endpoint address to xHCI format. */
|
---|
3083 | if (pUrb->EndPt)
|
---|
3084 | uEpDCI = pUrb->EndPt * 2 + (pUrb->enmDir == VUSBDIRECTION_IN ? 1 : 0);
|
---|
3085 | else
|
---|
3086 | uEpDCI = 1; /* EP 0 */
|
---|
3087 |
|
---|
3088 | LogFlow(("%s: xhciR3RhXferCompletion: uSlotID=%u EP=%u cTRB=%d\n",
|
---|
3089 | pUrb->pszDesc, uSlotID, pUrb->EndPt, pUrb->pHci->cTRB));
|
---|
3090 | LogFlow(("%s: xhciR3RhXferCompletion: EP DCI=%u, cbData=%u status=%u\n", pUrb->pszDesc, uEpDCI, pUrb->cbData, pUrb->enmStatus));
|
---|
3091 |
|
---|
3092 | /* Load the slot/endpoint contexts from guest memory. */
|
---|
3093 | xhciR3FetchCtxAndEp(pDevIns, pThis, uSlotID, uEpDCI, &slot_ctx, &ep_ctx);
|
---|
3094 |
|
---|
3095 | /* If the EP is disabled, we don't own it so we can't complete the URB.
|
---|
3096 | * Leave this EP alone and drop the URB.
|
---|
3097 | */
|
---|
3098 | if (ep_ctx.ep_state != XHCI_EPST_RUNNING)
|
---|
3099 | {
|
---|
3100 | Log(("EP DCI %u not running (state %u), skipping URB completion\n", uEpDCI, ep_ctx.ep_state));
|
---|
3101 | RTCritSectLeave(&pThisCC->CritSectThrd);
|
---|
3102 | return;
|
---|
3103 | }
|
---|
3104 |
|
---|
3105 | /* Now complete any non-transfer TRBs that might be on the transfer ring before
|
---|
3106 | * the TRB(s) corresponding to this URB. Preloads the TRB as a side effect.
|
---|
3107 | * Endpoint state now must be written back in case it was modified!
|
---|
3108 | */
|
---|
3109 | xhciR3ConsumeNonXferTRBs(pDevIns, pThis, uSlotID, uEpDCI, &ep_ctx, &xfer, &GCPhysXfrTRB);
|
---|
3110 |
|
---|
3111 | /* Deal with failures which halt the EP first. */
|
---|
3112 | if (RT_UNLIKELY(pUrb->enmStatus != VUSBSTATUS_OK))
|
---|
3113 | {
|
---|
3114 | switch(pUrb->enmStatus)
|
---|
3115 | {
|
---|
3116 | case VUSBSTATUS_STALL:
|
---|
3117 | /* Halt the endpoint and inform the HCD.
|
---|
3118 | * NB: The TRDP is NOT advanced in case of error.
|
---|
3119 | */
|
---|
3120 | ep_ctx.ep_state = XHCI_EPST_HALTED;
|
---|
3121 | cc = XHCI_TCC_STALL;
|
---|
3122 | rc = xhciR3PostXferEvent(pDevIns, pThis, xfer.gen.int_tgt, uResidue, cc,
|
---|
3123 | uSlotID, uEpDCI, GCPhysXfrTRB, false, false);
|
---|
3124 | break;
|
---|
3125 | case VUSBSTATUS_DNR:
|
---|
3126 | /* Halt the endpoint and inform the HCD.
|
---|
3127 | * NB: The TRDP is NOT advanced in case of error.
|
---|
3128 | */
|
---|
3129 | ep_ctx.ep_state = XHCI_EPST_HALTED;
|
---|
3130 | cc = XHCI_TCC_USB_XACT_ERR;
|
---|
3131 | rc = xhciR3PostXferEvent(pDevIns, pThis, xfer.gen.int_tgt, uResidue, cc,
|
---|
3132 | uSlotID, uEpDCI, GCPhysXfrTRB, false, false);
|
---|
3133 | break;
|
---|
3134 | case VUSBSTATUS_CRC: /// @todo Separate status for canceling?!
|
---|
3135 | ep_ctx.ep_state = XHCI_EPST_HALTED;
|
---|
3136 | cc = XHCI_TCC_USB_XACT_ERR;
|
---|
3137 | rc = xhciR3PostXferEvent(pDevIns, pThis, xfer.gen.int_tgt, uResidue, cc,
|
---|
3138 | uSlotID, uEpDCI, GCPhysXfrTRB, false, false);
|
---|
3139 |
|
---|
3140 | /* NB: The TRDP is *not* advanced and TREP is reset. */
|
---|
3141 | ep_ctx.trep = ep_ctx.trdp;
|
---|
3142 | break;
|
---|
3143 | case VUSBSTATUS_DATA_OVERRUN:
|
---|
3144 | case VUSBSTATUS_DATA_UNDERRUN:
|
---|
3145 | /* Halt the endpoint and inform the HCD.
|
---|
3146 | * NB: The TRDP is NOT advanced in case of error.
|
---|
3147 | */
|
---|
3148 | ep_ctx.ep_state = XHCI_EPST_HALTED;
|
---|
3149 | cc = XHCI_TCC_DATA_BUF_ERR;
|
---|
3150 | rc = xhciR3PostXferEvent(pDevIns, pThis, xfer.gen.int_tgt, uResidue, cc,
|
---|
3151 | uSlotID, uEpDCI, GCPhysXfrTRB, false, false);
|
---|
3152 | break;
|
---|
3153 | default:
|
---|
3154 | AssertMsgFailed(("Unexpected URB status %u\n", pUrb->enmStatus));
|
---|
3155 | }
|
---|
3156 |
|
---|
3157 | if (pUrb->enmType == VUSBXFERTYPE_ISOC)
|
---|
3158 | STAM_COUNTER_INC(&pThis->StatErrorIsocUrbs);
|
---|
3159 | }
|
---|
3160 | else if (xfer.gen.type == XHCI_TRB_NORMAL)
|
---|
3161 | {
|
---|
3162 | XHCI_CTX_XFER_COMPLETE ctxComplete;
|
---|
3163 | uint64_t uTRDP;
|
---|
3164 |
|
---|
3165 | ctxComplete.pUrb = pUrb;
|
---|
3166 | ctxComplete.uXferPos = 0;
|
---|
3167 | ctxComplete.uXferLeft = pUrb->cbData;
|
---|
3168 | ctxComplete.cTRB = pUrb->pHci->cTRB;
|
---|
3169 | ctxComplete.uSlotID = uSlotID;
|
---|
3170 | ctxComplete.uEpDCI = uEpDCI;
|
---|
3171 | ctxComplete.uEDTLA = 0; // Always zero at the beginning of a new TD.
|
---|
3172 | ctxComplete.uLastCC = cc;
|
---|
3173 | ctxComplete.fMaxCount = ep_ctx.ifc >= XHCI_NO_QUEUING_IN_FLIGHT;
|
---|
3174 | xhciR3WalkXferTrbChain(pDevIns, pThis, ep_ctx.trdp, xhciR3WalkDataTRBsComplete, &ctxComplete, &uTRDP);
|
---|
3175 | ep_ctx.last_cc = ctxComplete.uLastCC;
|
---|
3176 | ep_ctx.trdp = uTRDP;
|
---|
3177 |
|
---|
3178 | if (ep_ctx.ifc >= XHCI_NO_QUEUING_IN_FLIGHT)
|
---|
3179 | ep_ctx.ifc -= XHCI_NO_QUEUING_IN_FLIGHT; /* TD fragment done, allow further queuing. */
|
---|
3180 | else
|
---|
3181 | ep_ctx.ifc--; /* TD done, decrement in-flight counter. */
|
---|
3182 | }
|
---|
3183 | else if (xfer.gen.type == XHCI_TRB_ISOCH)
|
---|
3184 | {
|
---|
3185 | XHCI_CTX_XFER_COMPLETE ctxComplete;
|
---|
3186 | uint64_t uTRDP;
|
---|
3187 | unsigned iPkt;
|
---|
3188 |
|
---|
3189 | ctxComplete.pUrb = pUrb;
|
---|
3190 | ctxComplete.uSlotID = uSlotID;
|
---|
3191 | ctxComplete.uEpDCI = uEpDCI;
|
---|
3192 |
|
---|
3193 | for (iPkt = 0; iPkt < pUrb->cIsocPkts; ++iPkt) {
|
---|
3194 | ctxComplete.uXferPos = pUrb->aIsocPkts[iPkt].off;
|
---|
3195 | ctxComplete.uXferLeft = pUrb->aIsocPkts[iPkt].cb;
|
---|
3196 | ctxComplete.cTRB = pUrb->pHci->cTRB;
|
---|
3197 | ctxComplete.uEDTLA = 0; // Zero at TD start.
|
---|
3198 | ctxComplete.uLastCC = cc;
|
---|
3199 | ctxComplete.fMaxCount = false;
|
---|
3200 | if (pUrb->aIsocPkts[iPkt].enmStatus != VUSBSTATUS_OK)
|
---|
3201 | STAM_COUNTER_INC(&pThis->StatErrorIsocPkts);
|
---|
3202 | xhciR3WalkXferTrbChain(pDevIns, pThis, ep_ctx.trdp, xhciR3WalkDataTRBsComplete, &ctxComplete, &uTRDP);
|
---|
3203 | ep_ctx.last_cc = ctxComplete.uLastCC;
|
---|
3204 | ep_ctx.trdp = uTRDP;
|
---|
3205 | xhciR3ConsumeNonXferTRBs(pDevIns, pThis, uSlotID, uEpDCI, &ep_ctx, &xfer, &GCPhysXfrTRB);
|
---|
3206 | }
|
---|
3207 | ep_ctx.ifc--; /* TD done, decrement in-flight counter. */
|
---|
3208 | }
|
---|
3209 | else if (xfer.gen.type == XHCI_TRB_SETUP_STG || xfer.gen.type == XHCI_TRB_DATA_STG || xfer.gen.type == XHCI_TRB_STATUS_STG)
|
---|
3210 | {
|
---|
3211 | XHCI_CTX_XFER_COMPLETE ctxComplete;
|
---|
3212 | uint64_t uTRDP;
|
---|
3213 |
|
---|
3214 | ctxComplete.pUrb = pUrb;
|
---|
3215 | ctxComplete.uXferPos = 0;
|
---|
3216 | ctxComplete.uXferLeft = pUrb->cbData;
|
---|
3217 | ctxComplete.cTRB = pUrb->pHci->cTRB;
|
---|
3218 | ctxComplete.uSlotID = uSlotID;
|
---|
3219 | ctxComplete.uEpDCI = uEpDCI;
|
---|
3220 | ctxComplete.uEDTLA = 0; // Always zero at the beginning of a new TD.
|
---|
3221 | ctxComplete.uLastCC = cc;
|
---|
3222 | ctxComplete.fMaxCount = ep_ctx.ifc >= XHCI_NO_QUEUING_IN_FLIGHT;
|
---|
3223 | xhciR3WalkXferTrbChain(pDevIns, pThis, ep_ctx.trdp, xhciR3WalkDataTRBsComplete, &ctxComplete, &uTRDP);
|
---|
3224 | ep_ctx.last_cc = ctxComplete.uLastCC;
|
---|
3225 | ep_ctx.trdp = uTRDP;
|
---|
3226 | }
|
---|
3227 | else
|
---|
3228 | {
|
---|
3229 | AssertMsgFailed(("Unexpected TRB type %u\n", xfer.gen.type));
|
---|
3230 | Log2(("TRB @ %RGp, type %u unexpected!\n", GCPhysXfrTRB, xfer.gen.type));
|
---|
3231 | /* Advance the TRDP anyway so that the endpoint isn't completely stuck. */
|
---|
3232 | ep_ctx.trdp += sizeof(XHCI_XFER_TRB);
|
---|
3233 | }
|
---|
3234 |
|
---|
3235 | /* Update the endpoint state. */
|
---|
3236 | xhciR3WriteBackEp(pDevIns, pThis, uSlotID, uEpDCI, &ep_ctx);
|
---|
3237 |
|
---|
3238 | RTCritSectLeave(&pThisCC->CritSectThrd);
|
---|
3239 |
|
---|
3240 | if (pUrb->enmStatus == VUSBSTATUS_OK)
|
---|
3241 | {
|
---|
3242 | /* Completion callback usually runs on a separate thread. Let the worker do more. */
|
---|
3243 | Log2(("Ring bell for slot %u, DCI %u\n", uSlotID, uEpDCI));
|
---|
3244 | ASMAtomicOrU32(&pThis->aBellsRung[ID_TO_IDX(uSlotID)], 1 << uEpDCI);
|
---|
3245 | xhciKickWorker(pDevIns, pThis, XHCI_JOB_XFER_DONE, 0);
|
---|
3246 | }
|
---|
3247 | }
|
---|
3248 |
|
---|
3249 |
|
---|
3250 | /**
|
---|
3251 | * Handle transfer errors.
|
---|
3252 | *
|
---|
3253 | * VUSB calls this when a transfer attempt failed. This function will respond
|
---|
3254 | * indicating whether to retry or complete the URB with failure.
|
---|
3255 | *
|
---|
3256 | * @returns true if the URB should be retired.
|
---|
3257 | * @returns false if the URB should be re-tried.
|
---|
3258 | * @param pInterface Pointer to XHCI::ROOTHUB::IRhPort.
|
---|
3259 | * @param pUrb Pointer to the URB in question.
|
---|
3260 | */
|
---|
3261 | static DECLCALLBACK(bool) xhciR3RhXferError(PVUSBIROOTHUBPORT pInterface, PVUSBURB pUrb)
|
---|
3262 | {
|
---|
3263 | PXHCIROOTHUBR3 pRh = RT_FROM_MEMBER(pInterface, XHCIROOTHUBR3, IRhPort);
|
---|
3264 | PXHCICC pThisCC = pRh->pXhciR3;
|
---|
3265 | PXHCI pThis = PDMDEVINS_2_DATA(pThisCC->pDevIns, PXHCI);
|
---|
3266 | bool fRetire = true;
|
---|
3267 |
|
---|
3268 | /* If the xHC isn't running, get out of here immediately. */
|
---|
3269 | if (pThis->status & XHCI_STATUS_HCH)
|
---|
3270 | {
|
---|
3271 | Log(("xHC halted, skipping URB error handling\n"));
|
---|
3272 | return fRetire;
|
---|
3273 | }
|
---|
3274 |
|
---|
3275 | RTCritSectEnter(&pThisCC->CritSectThrd);
|
---|
3276 |
|
---|
3277 | Assert(pUrb->pHci->cTRB); /* xHCI-generated URBs should not fail! */
|
---|
3278 | if (!pUrb->pHci->cTRB)
|
---|
3279 | {
|
---|
3280 | Log(("%s: Failing xHCI-generated request!\n", pUrb->pszDesc));
|
---|
3281 | }
|
---|
3282 | else if (pUrb->enmStatus == VUSBSTATUS_STALL)
|
---|
3283 | {
|
---|
3284 | /* Don't retry on stall. */
|
---|
3285 | Log2(("%s: xhciR3RhXferError: STALL, giving up.\n", pUrb->pszDesc));
|
---|
3286 | } else if (pUrb->enmStatus == VUSBSTATUS_CRC) {
|
---|
3287 | /* Don't retry on CRC errors either. These indicate canceled URBs, among others. */
|
---|
3288 | Log2(("%s: xhciR3RhXferError: CRC, giving up.\n", pUrb->pszDesc));
|
---|
3289 | } else if (pUrb->enmStatus == VUSBSTATUS_DNR) {
|
---|
3290 | /* Don't retry on DNR errors. These indicate the device vanished. */
|
---|
3291 | Log2(("%s: xhciR3RhXferError: DNR, giving up.\n", pUrb->pszDesc));
|
---|
3292 | } else if (pUrb->enmStatus == VUSBSTATUS_DATA_OVERRUN) {
|
---|
3293 | /* Don't retry on OVERRUN errors. These indicate a fatal error. */
|
---|
3294 | Log2(("%s: xhciR3RhXferError: OVERRUN, giving up.\n", pUrb->pszDesc));
|
---|
3295 | } else if (pUrb->enmStatus == VUSBSTATUS_DATA_UNDERRUN) {
|
---|
3296 | /* Don't retry on UNDERRUN errors. These indicate a fatal error. */
|
---|
3297 | Log2(("%s: xhciR3RhXferError: UNDERRUN, giving up.\n", pUrb->pszDesc));
|
---|
3298 | } else {
|
---|
3299 | /// @todo
|
---|
3300 | AssertMsgFailed(("%#x\n", pUrb->enmStatus));
|
---|
3301 | }
|
---|
3302 |
|
---|
3303 | RTCritSectLeave(&pThisCC->CritSectThrd);
|
---|
3304 | return fRetire;
|
---|
3305 | }
|
---|
3306 |
|
---|
3307 |
|
---|
3308 | /**
|
---|
3309 | * Queue a TD composed of normal TRBs, event data TRBs, and suchlike.
|
---|
3310 | *
|
---|
3311 | * @returns VBox status code.
|
---|
3312 | * @param pDevIns The device instance.
|
---|
3313 | * @param pThis The xHCI device state, shared edition.
|
---|
3314 | * @param pThisCC The xHCI device state, ring-3 edition.
|
---|
3315 | * @param pRh Root hub for the device.
|
---|
3316 | * @param GCPhysTRB Physical gues address of the TRB.
|
---|
3317 | * @param pTrb Pointer to the contents of the first TRB.
|
---|
3318 | * @param pEpCtx Pointer to the cached EP context.
|
---|
3319 | * @param uSlotID ID of the associated slot context.
|
---|
3320 | * @param uAddr The device address.
|
---|
3321 | * @param uEpDCI The DCI(!) of the endpoint.
|
---|
3322 | */
|
---|
3323 | static int xhciR3QueueDataTD(PPDMDEVINS pDevIns, PXHCI pThis, PXHCICC pThisCC, PXHCIROOTHUBR3 pRh, RTGCPHYS GCPhysTRB,
|
---|
3324 | XHCI_XFER_TRB *pTrb, XHCI_EP_CTX *pEpCtx, uint8_t uSlotID, uint8_t uAddr, uint8_t uEpDCI)
|
---|
3325 | {
|
---|
3326 | RT_NOREF(GCPhysTRB);
|
---|
3327 | XHCI_CTX_XFER_PROBE ctxProbe;
|
---|
3328 | XHCI_CTX_XFER_SUBMIT ctxSubmit;
|
---|
3329 | uint64_t uTREP;
|
---|
3330 | bool fFragOnly = false;
|
---|
3331 | int rc;
|
---|
3332 | VUSBXFERTYPE enmType;
|
---|
3333 | VUSBDIRECTION enmDir;
|
---|
3334 |
|
---|
3335 | /* Discover how big this TD is. */
|
---|
3336 | RT_ZERO(ctxProbe);
|
---|
3337 | rc = xhciR3WalkXferTrbChain(pDevIns, pThis, pEpCtx->trep, xhciR3WalkDataTRBsProbe, &ctxProbe, &uTREP);
|
---|
3338 | if (RT_SUCCESS(rc))
|
---|
3339 | LogFlowFunc(("Probed %u TRBs, %u bytes total, TREP@%RX64\n", ctxProbe.cTRB, ctxProbe.uXferLen, uTREP));
|
---|
3340 | else
|
---|
3341 | {
|
---|
3342 | LogFlowFunc(("Probing failed after %u TRBs, %u bytes total (last ED after %u TRBs and %u bytes), TREP@%RX64\n", ctxProbe.cTRB, ctxProbe.uXferLen, ctxProbe.cTRBLastED, ctxProbe.uXfrLenLastED, uTREP));
|
---|
3343 | if (rc == VERR_TRY_AGAIN && pTrb->gen.type == XHCI_TRB_NORMAL && ctxProbe.cTRBLastED)
|
---|
3344 | {
|
---|
3345 | /* The TD is incomplete, but we have at least one TD fragment. We can create a URB for
|
---|
3346 | * what we have but we can't safely queue any more because if any error occurs, the
|
---|
3347 | * TD needs to fail as a whole.
|
---|
3348 | * OS X Mavericks and Yosemite tend to trigger this case when reading from USB 3.0
|
---|
3349 | * MSDs (transfers up to 1MB).
|
---|
3350 | */
|
---|
3351 | fFragOnly = true;
|
---|
3352 |
|
---|
3353 | /* Because we currently do not maintain the EDTLA across URBs, we have to only submit
|
---|
3354 | * TD fragments up to where we last saw an Event Data TRB. If there was no Event Data
|
---|
3355 | * TRB, we'll just try waiting a bit longer for the TD to be complete or an Event Data
|
---|
3356 | * TRB to show up. The guest is extremely likely to do one or the other, since otherwise
|
---|
3357 | * it has no way to tell when the transfer completed.
|
---|
3358 | */
|
---|
3359 | ctxProbe.cTRB = ctxProbe.cTRBLastED;
|
---|
3360 | ctxProbe.uXferLen = ctxProbe.uXfrLenLastED;
|
---|
3361 | }
|
---|
3362 | else
|
---|
3363 | return rc;
|
---|
3364 | }
|
---|
3365 |
|
---|
3366 | /* Determine the transfer kind based on endpoint type. */
|
---|
3367 | switch (pEpCtx->ep_type)
|
---|
3368 | {
|
---|
3369 | case XHCI_EPTYPE_BULK_IN:
|
---|
3370 | case XHCI_EPTYPE_BULK_OUT:
|
---|
3371 | enmType = VUSBXFERTYPE_BULK;
|
---|
3372 | break;
|
---|
3373 | case XHCI_EPTYPE_INTR_IN:
|
---|
3374 | case XHCI_EPTYPE_INTR_OUT:
|
---|
3375 | enmType = VUSBXFERTYPE_INTR;
|
---|
3376 | break;
|
---|
3377 | case XHCI_EPTYPE_CONTROL:
|
---|
3378 | enmType = VUSBXFERTYPE_CTRL;
|
---|
3379 | break;
|
---|
3380 | case XHCI_EPTYPE_ISOCH_IN:
|
---|
3381 | case XHCI_EPTYPE_ISOCH_OUT:
|
---|
3382 | default:
|
---|
3383 | enmType = VUSBXFERTYPE_INVALID;
|
---|
3384 | AssertMsgFailed(("%#x\n", pEpCtx->ep_type));
|
---|
3385 | }
|
---|
3386 |
|
---|
3387 | /* Determine the direction based on endpoint type. */
|
---|
3388 | switch (pEpCtx->ep_type)
|
---|
3389 | {
|
---|
3390 | case XHCI_EPTYPE_BULK_IN:
|
---|
3391 | case XHCI_EPTYPE_INTR_IN:
|
---|
3392 | enmDir = VUSBDIRECTION_IN;
|
---|
3393 | break;
|
---|
3394 | case XHCI_EPTYPE_BULK_OUT:
|
---|
3395 | case XHCI_EPTYPE_INTR_OUT:
|
---|
3396 | enmDir = VUSBDIRECTION_OUT;
|
---|
3397 | break;
|
---|
3398 | default:
|
---|
3399 | enmDir = VUSBDIRECTION_INVALID;
|
---|
3400 | AssertMsgFailed(("%#x\n", pEpCtx->ep_type));
|
---|
3401 | }
|
---|
3402 |
|
---|
3403 | /* Allocate and initialize a URB. */
|
---|
3404 | PVUSBURB pUrb = VUSBIRhNewUrb(pRh->pIRhConn, uAddr, VUSB_DEVICE_PORT_INVALID, enmType, enmDir, ctxProbe.uXferLen, ctxProbe.cTRB, NULL);
|
---|
3405 | if (!pUrb)
|
---|
3406 | return VERR_OUT_OF_RESOURCES; /// @todo handle error!
|
---|
3407 |
|
---|
3408 | STAM_COUNTER_ADD(&pThis->StatTRBsPerDtaUrb, ctxProbe.cTRB);
|
---|
3409 |
|
---|
3410 | /* See 4.5.1 about xHCI vs. USB endpoint addressing. */
|
---|
3411 | Assert(uEpDCI);
|
---|
3412 |
|
---|
3413 | pUrb->EndPt = uEpDCI / 2; /* DCI = EP * 2 + direction */
|
---|
3414 | pUrb->fShortNotOk = false; /* We detect short packets ourselves. */
|
---|
3415 | pUrb->enmStatus = VUSBSTATUS_OK;
|
---|
3416 |
|
---|
3417 | /// @todo Cross check that the EP type corresponds to direction. Probably
|
---|
3418 | //should check when configuring device?
|
---|
3419 | pUrb->pHci->uSlotID = uSlotID;
|
---|
3420 |
|
---|
3421 | /* For OUT transfers, copy the TD data into the URB. */
|
---|
3422 | if (pUrb->enmDir == VUSBDIRECTION_OUT)
|
---|
3423 | {
|
---|
3424 | ctxSubmit.pUrb = pUrb;
|
---|
3425 | ctxSubmit.uXferPos = 0;
|
---|
3426 | ctxSubmit.cTRB = 0;
|
---|
3427 | xhciR3WalkXferTrbChain(pDevIns, pThis, pEpCtx->trep, xhciR3WalkDataTRBsSubmit, &ctxSubmit, &uTREP);
|
---|
3428 | Assert(ctxProbe.cTRB == ctxSubmit.cTRB);
|
---|
3429 | ctxProbe.cTRB = ctxSubmit.cTRB;
|
---|
3430 | }
|
---|
3431 |
|
---|
3432 | /* If only completing a fragment, remember the TRB count and increase
|
---|
3433 | * the in-flight count past the limit so we won't queue any more.
|
---|
3434 | */
|
---|
3435 | pUrb->pHci->cTRB = ctxProbe.cTRB;
|
---|
3436 | if (fFragOnly)
|
---|
3437 | /* Bit of a hack -- prevent further queuing. */
|
---|
3438 | pEpCtx->ifc += XHCI_NO_QUEUING_IN_FLIGHT;
|
---|
3439 | else
|
---|
3440 | /* Increment the in-flight counter before queuing more. */
|
---|
3441 | pEpCtx->ifc++;
|
---|
3442 |
|
---|
3443 | /* Commit the updated TREP; submitting the URB may already invoke completion callbacks. */
|
---|
3444 | pEpCtx->trep = uTREP;
|
---|
3445 | xhciR3WriteBackEp(pDevIns, pThis, uSlotID, uEpDCI, pEpCtx);
|
---|
3446 |
|
---|
3447 | /*
|
---|
3448 | * Submit the URB.
|
---|
3449 | */
|
---|
3450 | STAM_COUNTER_ADD(&pThis->StatUrbSizeData, pUrb->cbData);
|
---|
3451 | Log(("%s: xhciR3QueueDataTD: Addr=%u, EndPt=%u, enmDir=%u cbData=%u\n",
|
---|
3452 | pUrb->pszDesc, pUrb->DstAddress, pUrb->EndPt, pUrb->enmDir, pUrb->cbData));
|
---|
3453 | RTCritSectLeave(&pThisCC->CritSectThrd);
|
---|
3454 | rc = VUSBIRhSubmitUrb(pRh->pIRhConn, pUrb, &pRh->Led);
|
---|
3455 | RTCritSectEnter(&pThisCC->CritSectThrd);
|
---|
3456 | if (RT_SUCCESS(rc))
|
---|
3457 | return VINF_SUCCESS;
|
---|
3458 |
|
---|
3459 | /* Failure cleanup. Can happen if we're still resetting the device or out of resources,
|
---|
3460 | * or the user just ripped out the device.
|
---|
3461 | */
|
---|
3462 | /// @todo Mark the EP as halted and inactive and write back the changes.
|
---|
3463 |
|
---|
3464 | return VERR_OUT_OF_RESOURCES;
|
---|
3465 | }
|
---|
3466 |
|
---|
3467 |
|
---|
3468 | /**
|
---|
3469 | * Queue an isochronous TD composed of isochronous and normal TRBs, event
|
---|
3470 | * data TRBs, and suchlike. This TD may either correspond to a single URB or
|
---|
3471 | * form one packet of an isochronous URB.
|
---|
3472 | *
|
---|
3473 | * @returns VBox status code.
|
---|
3474 | * @param pDevIns The device instance.
|
---|
3475 | * @param pThis The xHCI device state, shared edition.
|
---|
3476 | * @param pThisCC The xHCI device state, ring-3 edition.
|
---|
3477 | * @param pRh Root hub for the device.
|
---|
3478 | * @param GCPhysTRB Physical guest address of the TRB.
|
---|
3479 | * @param pTrb Pointer to the contents of the first TRB.
|
---|
3480 | * @param pEpCtx Pointer to the cached EP context.
|
---|
3481 | * @param uSlotID ID of the associated slot context.
|
---|
3482 | * @param uAddr The device address.
|
---|
3483 | * @param uEpDCI The DCI(!) of the endpoint.
|
---|
3484 | * @param pCtxIso Additional isochronous URB context.
|
---|
3485 | */
|
---|
3486 | static int xhciR3QueueIsochTD(PPDMDEVINS pDevIns, PXHCI pThis, PXHCICC pThisCC, PXHCIROOTHUBR3 pRh, RTGCPHYS GCPhysTRB,
|
---|
3487 | XHCI_XFER_TRB *pTrb, XHCI_EP_CTX *pEpCtx, uint8_t uSlotID, uint8_t uAddr, uint8_t uEpDCI,
|
---|
3488 | XHCI_CTX_ISOCH *pCtxIso)
|
---|
3489 | {
|
---|
3490 | RT_NOREF(GCPhysTRB, pTrb);
|
---|
3491 | XHCI_CTX_XFER_PROBE ctxProbe;
|
---|
3492 | XHCI_CTX_XFER_SUBMIT ctxSubmit;
|
---|
3493 | uint64_t uTREP;
|
---|
3494 | PVUSBURB pUrb;
|
---|
3495 | unsigned cIsoPackets;
|
---|
3496 | uint32_t cbPktMax;
|
---|
3497 |
|
---|
3498 | /* Discover how big this TD is. */
|
---|
3499 | RT_ZERO(ctxProbe);
|
---|
3500 | xhciR3WalkXferTrbChain(pDevIns, pThis, pEpCtx->trep, xhciR3WalkDataTRBsProbe, &ctxProbe, &uTREP);
|
---|
3501 | LogFlowFunc(("Probed %u TRBs, %u bytes total, TREP@%RX64\n", ctxProbe.cTRB, ctxProbe.uXferLen, uTREP));
|
---|
3502 |
|
---|
3503 | /* See 4.5.1 about xHCI vs. USB endpoint addressing. */
|
---|
3504 | Assert(uEpDCI);
|
---|
3505 |
|
---|
3506 | /* For isochronous transfers, there's a bit of extra work to do. The interval
|
---|
3507 | * is key and determines whether the TD will directly correspond to a URB or
|
---|
3508 | * if it will only form part of a larger URB. In any case, one TD equals one
|
---|
3509 | * 'packet' of an isochronous URB.
|
---|
3510 | */
|
---|
3511 | switch (pEpCtx->interval)
|
---|
3512 | {
|
---|
3513 | case 0: /* Every 2^0 * 125us, i.e. 8 per frame. */
|
---|
3514 | cIsoPackets = 8;
|
---|
3515 | break;
|
---|
3516 | case 1: /* Every 2^1 * 125us, i.e. 4 per frame. */
|
---|
3517 | cIsoPackets = 4;
|
---|
3518 | break;
|
---|
3519 | case 2: /* Every 2^2 * 125us, i.e. 2 per frame. */
|
---|
3520 | cIsoPackets = 2;
|
---|
3521 | break;
|
---|
3522 | case 3: /* Every 2^3 * 125us, i.e. 1 per frame. */
|
---|
3523 | default:/* Or any larger interval (every n frames).*/
|
---|
3524 | cIsoPackets = 1;
|
---|
3525 | break;
|
---|
3526 | }
|
---|
3527 |
|
---|
3528 | /* We do not know exactly how much data might be transferred until we
|
---|
3529 | * look at all TDs/packets that constitute the URB. However, we do know
|
---|
3530 | * the maximum possible size even without probing any TDs at all.
|
---|
3531 | * The actual size is expected to be the same or at most slightly smaller,
|
---|
3532 | * hence it makes sense to allocate the URB right away and copy data into
|
---|
3533 | * it as we go, rather than doing complicated probing first.
|
---|
3534 | * The Max Endpoint Service Interval Time (ESIT) Payload defines the
|
---|
3535 | * maximum number of bytes that can be transferred per interval (4.14.2).
|
---|
3536 | * Unfortunately Apple was lazy and their driver leaves the Max ESIT
|
---|
3537 | * Payload as zero, so we have to do the math ourselves.
|
---|
3538 | */
|
---|
3539 |
|
---|
3540 | /* Calculate the maximum transfer size per (micro)frame. */
|
---|
3541 | /// @todo This ought to be stored within the URB somewhere.
|
---|
3542 | cbPktMax = pEpCtx->max_pkt_sz * (pEpCtx->max_brs_sz + 1) * (pEpCtx->mult + 1);
|
---|
3543 | if (!pCtxIso->pUrb)
|
---|
3544 | {
|
---|
3545 | uint32_t cbUrbMax = cIsoPackets * cbPktMax;
|
---|
3546 |
|
---|
3547 | /* Validate endpoint type. */
|
---|
3548 | AssertMsg(pEpCtx->ep_type == XHCI_EPTYPE_ISOCH_IN || pEpCtx->ep_type == XHCI_EPTYPE_ISOCH_OUT,
|
---|
3549 | ("%#x\n", pEpCtx->ep_type));
|
---|
3550 |
|
---|
3551 | /* Allocate and initialize a new URB. */
|
---|
3552 | pUrb = VUSBIRhNewUrb(pRh->pIRhConn, uAddr, VUSB_DEVICE_PORT_INVALID, VUSBXFERTYPE_ISOC,
|
---|
3553 | (pEpCtx->ep_type == XHCI_EPTYPE_ISOCH_IN) ? VUSBDIRECTION_IN : VUSBDIRECTION_OUT,
|
---|
3554 | cbUrbMax, ctxProbe.cTRB, NULL);
|
---|
3555 | if (!pUrb)
|
---|
3556 | return VERR_OUT_OF_RESOURCES; /// @todo handle error!
|
---|
3557 |
|
---|
3558 | STAM_COUNTER_ADD(&pThis->StatTRBsPerIsoUrb, ctxProbe.cTRB);
|
---|
3559 |
|
---|
3560 | LogFlowFunc(("Allocated URB with %u packets, %u bytes total (ESIT payload %u)\n", cIsoPackets, cbUrbMax, cbPktMax));
|
---|
3561 |
|
---|
3562 | pUrb->EndPt = uEpDCI / 2; /* DCI = EP * 2 + direction */
|
---|
3563 | pUrb->fShortNotOk = false; /* We detect short packets ourselves. */
|
---|
3564 | pUrb->enmStatus = VUSBSTATUS_OK;
|
---|
3565 | pUrb->cIsocPkts = cIsoPackets;
|
---|
3566 | pUrb->pHci->uSlotID = uSlotID;
|
---|
3567 | pUrb->pHci->cTRB = ctxProbe.cTRB;
|
---|
3568 |
|
---|
3569 | /* If TRB says so or if there are multiple packets per interval, don't even
|
---|
3570 | * bother with frame counting and schedule everything ASAP.
|
---|
3571 | */
|
---|
3572 | if (pTrb->isoc.sia || cIsoPackets != 1)
|
---|
3573 | pUrb->uStartFrameDelta = 0;
|
---|
3574 | else
|
---|
3575 | {
|
---|
3576 | uint16_t uFrameDelta;
|
---|
3577 | uint32_t uPort;
|
---|
3578 |
|
---|
3579 | /* Abort the endpoint, i.e. cancel any outstanding URBs. This needs to be done after
|
---|
3580 | * writing back the EP state so that the completion callback can operate.
|
---|
3581 | */
|
---|
3582 | if (RT_SUCCESS(xhciR3FindRhDevBySlot(pDevIns, pThis, pThisCC, uSlotID, NULL, &uPort)))
|
---|
3583 | {
|
---|
3584 |
|
---|
3585 | uFrameDelta = pRh->pIRhConn->pfnUpdateIsocFrameDelta(pRh->pIRhConn, uPort, uEpDCI / 2,
|
---|
3586 | uEpDCI & 1 ? VUSBDIRECTION_IN : VUSBDIRECTION_OUT,
|
---|
3587 | pTrb->isoc.frm_id, XHCI_FRAME_ID_BITS);
|
---|
3588 | pUrb->uStartFrameDelta = uFrameDelta;
|
---|
3589 | Log(("%s: Isoch frame delta set to %u\n", pUrb->pszDesc, uFrameDelta));
|
---|
3590 | }
|
---|
3591 | else
|
---|
3592 | {
|
---|
3593 | Log(("%s: Failed to find device for slot! Setting frame delta to zero.\n", pUrb->pszDesc));
|
---|
3594 | pUrb->uStartFrameDelta = 0;
|
---|
3595 | }
|
---|
3596 | }
|
---|
3597 |
|
---|
3598 | Log(("%s: Addr=%u, EndPt=%u, enmDir=%u cIsocPkts=%u cbData=%u FrmID=%u Isoch URB created\n",
|
---|
3599 | pUrb->pszDesc, pUrb->DstAddress, pUrb->EndPt, pUrb->enmDir, pUrb->cIsocPkts, pUrb->cbData, pTrb->isoc.frm_id));
|
---|
3600 |
|
---|
3601 | /* Set up the context for later use. */
|
---|
3602 | pCtxIso->pUrb = pUrb;
|
---|
3603 | /* Save the current TREP in case we need to rewind. */
|
---|
3604 | pCtxIso->uInitTREP = pEpCtx->trep;
|
---|
3605 | }
|
---|
3606 | else
|
---|
3607 | {
|
---|
3608 | Assert(cIsoPackets > 1);
|
---|
3609 | /* Grab the URB we initialized earlier. */
|
---|
3610 | pUrb = pCtxIso->pUrb;
|
---|
3611 | }
|
---|
3612 |
|
---|
3613 | /* Set up the packet corresponding to this TD. */
|
---|
3614 | pUrb->aIsocPkts[pCtxIso->iPkt].cb = RT_MIN(ctxProbe.uXferLen, cbPktMax);
|
---|
3615 | pUrb->aIsocPkts[pCtxIso->iPkt].off = pCtxIso->offCur;
|
---|
3616 | pUrb->aIsocPkts[pCtxIso->iPkt].enmStatus = VUSBSTATUS_NOT_ACCESSED;
|
---|
3617 |
|
---|
3618 | /* For OUT transfers, copy the TD data into the URB. */
|
---|
3619 | if (pUrb->enmDir == VUSBDIRECTION_OUT)
|
---|
3620 | {
|
---|
3621 | ctxSubmit.pUrb = pUrb;
|
---|
3622 | ctxSubmit.uXferPos = pCtxIso->offCur;
|
---|
3623 | ctxSubmit.cTRB = 0;
|
---|
3624 | xhciR3WalkXferTrbChain(pDevIns, pThis, pEpCtx->trep, xhciR3WalkDataTRBsSubmit, &ctxSubmit, &uTREP);
|
---|
3625 | Assert(ctxProbe.cTRB == ctxSubmit.cTRB);
|
---|
3626 | }
|
---|
3627 |
|
---|
3628 | /* Done preparing this packet. */
|
---|
3629 | Assert(pCtxIso->iPkt < 8);
|
---|
3630 | pCtxIso->iPkt++;
|
---|
3631 | pCtxIso->offCur += ctxProbe.uXferLen;
|
---|
3632 | Assert(pCtxIso->offCur <= pUrb->cbData);
|
---|
3633 |
|
---|
3634 | /* Increment the in-flight counter before queuing more. */
|
---|
3635 | if (pCtxIso->iPkt == pUrb->cIsocPkts)
|
---|
3636 | pEpCtx->ifc++;
|
---|
3637 |
|
---|
3638 | /* Commit the updated TREP; submitting the URB may already invoke completion callbacks. */
|
---|
3639 | pEpCtx->trep = uTREP;
|
---|
3640 | xhciR3WriteBackEp(pDevIns, pThis, uSlotID, uEpDCI, pEpCtx);
|
---|
3641 |
|
---|
3642 | /* If the URB is complete, submit it. */
|
---|
3643 | if (pCtxIso->iPkt == pUrb->cIsocPkts)
|
---|
3644 | {
|
---|
3645 | /* Change cbData to reflect how much data should be transferred. This can differ
|
---|
3646 | * from how much data was allocated for the URB.
|
---|
3647 | */
|
---|
3648 | pUrb->cbData = pCtxIso->offCur;
|
---|
3649 | STAM_COUNTER_ADD(&pThis->StatUrbSizeIsoc, pUrb->cbData);
|
---|
3650 | Log(("%s: Addr=%u, EndPt=%u, enmDir=%u cIsocPkts=%u cbData=%u Isoch URB being submitted\n",
|
---|
3651 | pUrb->pszDesc, pUrb->DstAddress, pUrb->EndPt, pUrb->enmDir, pUrb->cIsocPkts, pUrb->cbData));
|
---|
3652 | RTCritSectLeave(&pThisCC->CritSectThrd);
|
---|
3653 | int rc = VUSBIRhSubmitUrb(pRh->pIRhConn, pUrb, &pRh->Led);
|
---|
3654 | RTCritSectEnter(&pThisCC->CritSectThrd);
|
---|
3655 | if (RT_FAILURE(rc))
|
---|
3656 | {
|
---|
3657 | /* Failure cleanup. Can happen if we're still resetting the device or out of resources,
|
---|
3658 | * or the user just ripped out the device.
|
---|
3659 | */
|
---|
3660 | pCtxIso->fSubmitFailed = true;
|
---|
3661 | /// @todo Mark the EP as halted and inactive and write back the changes.
|
---|
3662 | return VERR_OUT_OF_RESOURCES;
|
---|
3663 | }
|
---|
3664 | /* Clear the isochronous URB context. */
|
---|
3665 | RT_ZERO(*pCtxIso);
|
---|
3666 | }
|
---|
3667 |
|
---|
3668 | return VINF_SUCCESS;
|
---|
3669 | }
|
---|
3670 |
|
---|
3671 |
|
---|
3672 | /**
|
---|
3673 | * Queue a control TD composed of setup/data/status stage TRBs, event data
|
---|
3674 | * TRBs, and suchlike.
|
---|
3675 | *
|
---|
3676 | * @returns VBox status code.
|
---|
3677 | * @param pDevIns The device instance.
|
---|
3678 | * @param pThis The xHCI device state, shared edition.
|
---|
3679 | * @param pThisCC The xHCI device state, ring-3 edition.
|
---|
3680 | * @param pRh Root hub for the device.
|
---|
3681 | * @param GCPhysTRB Physical guest address of th TRB.
|
---|
3682 | * @param pTrb Pointer to the contents of the first TRB.
|
---|
3683 | * @param pEpCtx Pointer to the cached EP context.
|
---|
3684 | * @param uSlotID ID of the associated slot context.
|
---|
3685 | * @param uAddr The device address.
|
---|
3686 | * @param uEpDCI The DCI(!) of the endpoint.
|
---|
3687 | */
|
---|
3688 | static int xhciR3QueueControlTD(PPDMDEVINS pDevIns, PXHCI pThis, PXHCICC pThisCC, PXHCIROOTHUBR3 pRh, RTGCPHYS GCPhysTRB,
|
---|
3689 | XHCI_XFER_TRB *pTrb, XHCI_EP_CTX *pEpCtx, uint8_t uSlotID, uint8_t uAddr, uint8_t uEpDCI)
|
---|
3690 | {
|
---|
3691 | RT_NOREF(GCPhysTRB);
|
---|
3692 | XHCI_CTX_XFER_PROBE ctxProbe;
|
---|
3693 | XHCI_CTX_XFER_SUBMIT ctxSubmit;
|
---|
3694 | uint64_t uTREP;
|
---|
3695 | int rc;
|
---|
3696 | VUSBDIRECTION enmDir;
|
---|
3697 |
|
---|
3698 | /* Discover how big this TD is. */
|
---|
3699 | RT_ZERO(ctxProbe);
|
---|
3700 | rc = xhciR3WalkXferTrbChain(pDevIns, pThis, pEpCtx->trep, xhciR3WalkDataTRBsProbe, &ctxProbe, &uTREP);
|
---|
3701 | if (RT_SUCCESS(rc))
|
---|
3702 | LogFlowFunc(("Probed %u TRBs, %u bytes total, TREP@%RX64\n", ctxProbe.cTRB, ctxProbe.uXferLen, uTREP));
|
---|
3703 | else
|
---|
3704 | {
|
---|
3705 | LogFlowFunc(("Probing failed after %u TRBs, %u bytes total (last ED after %u TRBs and %u bytes), TREP@%RX64\n", ctxProbe.cTRB, ctxProbe.uXferLen, ctxProbe.cTRBLastED, ctxProbe.uXfrLenLastED, uTREP));
|
---|
3706 | return rc;
|
---|
3707 | }
|
---|
3708 |
|
---|
3709 | /* Determine the transfer direction. */
|
---|
3710 | switch (pTrb->gen.type)
|
---|
3711 | {
|
---|
3712 | case XHCI_TRB_SETUP_STG:
|
---|
3713 | enmDir = VUSBDIRECTION_SETUP;
|
---|
3714 | /* For setup TRBs, there is always 8 bytes of immediate data. */
|
---|
3715 | Assert(sizeof(VUSBSETUP) == 8);
|
---|
3716 | Assert(ctxProbe.uXferLen == 8);
|
---|
3717 | Log2(("bmRequestType:%02X bRequest:%02X wValue:%04X wIndex:%04X wLength:%04X\n", pTrb->setup.bmRequestType,
|
---|
3718 | pTrb->setup.bRequest, pTrb->setup.wValue, pTrb->setup.wIndex, pTrb->setup.wLength));
|
---|
3719 | break;
|
---|
3720 | case XHCI_TRB_STATUS_STG:
|
---|
3721 | enmDir = pTrb->status.dir ? VUSBDIRECTION_IN : VUSBDIRECTION_OUT;
|
---|
3722 | break;
|
---|
3723 | case XHCI_TRB_DATA_STG:
|
---|
3724 | enmDir = pTrb->data.dir ? VUSBDIRECTION_IN : VUSBDIRECTION_OUT;
|
---|
3725 | break;
|
---|
3726 | default:
|
---|
3727 | AssertMsgFailed(("%#x\n", pTrb->gen.type)); /* Can't happen unless caller messed up. */
|
---|
3728 | return VERR_INTERNAL_ERROR;
|
---|
3729 | }
|
---|
3730 |
|
---|
3731 | /* Allocate and initialize a URB. */
|
---|
3732 | PVUSBURB pUrb = VUSBIRhNewUrb(pRh->pIRhConn, uAddr, VUSB_DEVICE_PORT_INVALID, VUSBXFERTYPE_CTRL, enmDir, ctxProbe.uXferLen, ctxProbe.cTRB,
|
---|
3733 | NULL);
|
---|
3734 | if (!pUrb)
|
---|
3735 | return VERR_OUT_OF_RESOURCES; /// @todo handle error!
|
---|
3736 |
|
---|
3737 | STAM_COUNTER_ADD(&pThis->StatTRBsPerCtlUrb, ctxProbe.cTRB);
|
---|
3738 |
|
---|
3739 | /* See 4.5.1 about xHCI vs. USB endpoint addressing. */
|
---|
3740 | Assert(uEpDCI);
|
---|
3741 |
|
---|
3742 | /* This had better be a control endpoint. */
|
---|
3743 | AssertMsg(pEpCtx->ep_type == XHCI_EPTYPE_CONTROL, ("%#x\n", pEpCtx->ep_type));
|
---|
3744 |
|
---|
3745 | pUrb->EndPt = uEpDCI / 2; /* DCI = EP * 2 + direction */
|
---|
3746 | pUrb->fShortNotOk = false; /* We detect short packets ourselves. */
|
---|
3747 | pUrb->enmStatus = VUSBSTATUS_OK;
|
---|
3748 | pUrb->pHci->uSlotID = uSlotID;
|
---|
3749 |
|
---|
3750 | /* For OUT/SETUP transfers, copy the TD data into the URB. */
|
---|
3751 | if (pUrb->enmDir == VUSBDIRECTION_OUT || pUrb->enmDir == VUSBDIRECTION_SETUP)
|
---|
3752 | {
|
---|
3753 | ctxSubmit.pUrb = pUrb;
|
---|
3754 | ctxSubmit.uXferPos = 0;
|
---|
3755 | ctxSubmit.cTRB = 0;
|
---|
3756 | xhciR3WalkXferTrbChain(pDevIns, pThis, pEpCtx->trep, xhciR3WalkDataTRBsSubmit, &ctxSubmit, &uTREP);
|
---|
3757 | Assert(ctxProbe.cTRB == ctxSubmit.cTRB);
|
---|
3758 | ctxProbe.cTRB = ctxSubmit.cTRB;
|
---|
3759 | }
|
---|
3760 |
|
---|
3761 | pUrb->pHci->cTRB = ctxProbe.cTRB;
|
---|
3762 |
|
---|
3763 | /* Commit the updated TREP; submitting the URB may already invoke completion callbacks. */
|
---|
3764 | pEpCtx->trep = uTREP;
|
---|
3765 | xhciR3WriteBackEp(pDevIns, pThis, uSlotID, uEpDCI, pEpCtx);
|
---|
3766 |
|
---|
3767 | /*
|
---|
3768 | * Submit the URB.
|
---|
3769 | */
|
---|
3770 | STAM_COUNTER_ADD(&pThis->StatUrbSizeCtrl, pUrb->cbData);
|
---|
3771 | Log(("%s: xhciR3QueueControlTD: Addr=%u, EndPt=%u, enmDir=%u cbData=%u\n",
|
---|
3772 | pUrb->pszDesc, pUrb->DstAddress, pUrb->EndPt, pUrb->enmDir, pUrb->cbData));
|
---|
3773 | RTCritSectLeave(&pThisCC->CritSectThrd);
|
---|
3774 | rc = VUSBIRhSubmitUrb(pRh->pIRhConn, pUrb, &pRh->Led);
|
---|
3775 | RTCritSectEnter(&pThisCC->CritSectThrd);
|
---|
3776 | if (RT_SUCCESS(rc))
|
---|
3777 | return VINF_SUCCESS;
|
---|
3778 |
|
---|
3779 | /* Failure cleanup. Can happen if we're still resetting the device or out of resources,
|
---|
3780 | * or the user just ripped out the device.
|
---|
3781 | */
|
---|
3782 | /// @todo Mark the EP as halted and inactive and write back the changes.
|
---|
3783 |
|
---|
3784 | return VERR_OUT_OF_RESOURCES;
|
---|
3785 | }
|
---|
3786 |
|
---|
3787 |
|
---|
3788 | /**
|
---|
3789 | * Process a device context (transfer data).
|
---|
3790 | *
|
---|
3791 | * @param pDevIns The device instance.
|
---|
3792 | * @param pThis The xHCI device state, shared edition.
|
---|
3793 | * @param pThisCC The xHCI device state, ring-3 edition.
|
---|
3794 | * @param uSlotID Slot/doorbell which had been rung.
|
---|
3795 | * @param uDBVal Value written to the doorbell.
|
---|
3796 | */
|
---|
3797 | static int xhciR3ProcessDevCtx(PPDMDEVINS pDevIns, PXHCI pThis, PXHCICC pThisCC, uint8_t uSlotID, uint32_t uDBVal)
|
---|
3798 | {
|
---|
3799 | uint8_t uDBTarget = uDBVal & XHCI_DB_TGT_MASK;
|
---|
3800 | XHCI_CTX_ISOCH ctxIsoch = {0};
|
---|
3801 | XHCI_SLOT_CTX slot_ctx;
|
---|
3802 | XHCI_EP_CTX ep_ctx;
|
---|
3803 | XHCI_XFER_TRB xfer;
|
---|
3804 | RTGCPHYS GCPhysXfrTRB;
|
---|
3805 | PXHCIROOTHUBR3 pRh;
|
---|
3806 | bool dcs;
|
---|
3807 | bool fContinue = true;
|
---|
3808 | int rc;
|
---|
3809 | unsigned cTrbs = 0;
|
---|
3810 |
|
---|
3811 | LogFlowFunc(("Slot ID: %u, DB target %u, DB stream ID %u\n", uSlotID, uDBTarget, (uDBVal & XHCI_DB_STRMID_MASK) >> XHCI_DB_STRMID_SHIFT));
|
---|
3812 | Assert(uSlotID > 0);
|
---|
3813 | Assert(uSlotID <= XHCI_NDS);
|
---|
3814 | /// @todo report errors for bogus DB targets
|
---|
3815 | Assert(uDBTarget > 0);
|
---|
3816 | Assert(uDBTarget < 32);
|
---|
3817 |
|
---|
3818 | /// @todo Check for aborts and the like?
|
---|
3819 |
|
---|
3820 | /* Load the slot and endpoint contexts. */
|
---|
3821 | xhciR3FetchCtxAndEp(pDevIns, pThis, uSlotID, uDBTarget, &slot_ctx, &ep_ctx);
|
---|
3822 | /// @todo sanity check the context in here?
|
---|
3823 |
|
---|
3824 | /* Select the root hub corresponding to the port. */
|
---|
3825 | pRh = GET_PORT_PRH(pThisCC, ID_TO_IDX(slot_ctx.rh_port));
|
---|
3826 |
|
---|
3827 | /* Stopped endpoints automatically transition to running state. */
|
---|
3828 | if (RT_UNLIKELY(ep_ctx.ep_state == XHCI_EPST_STOPPED))
|
---|
3829 | {
|
---|
3830 | Log(("EP DCI %u stopped -> running\n", uDBTarget));
|
---|
3831 | ep_ctx.ep_state = XHCI_EPST_RUNNING;
|
---|
3832 | /* Update EP right here. Theoretically could be postponed, but we
|
---|
3833 | * must ensure that the EP does get written back even if there is
|
---|
3834 | * no other work to do.
|
---|
3835 | */
|
---|
3836 | xhciR3WriteBackEp(pDevIns, pThis, uSlotID, uDBTarget, &ep_ctx);
|
---|
3837 | }
|
---|
3838 |
|
---|
3839 | /* If the EP isn't running, get outta here. */
|
---|
3840 | if (RT_UNLIKELY(ep_ctx.ep_state != XHCI_EPST_RUNNING))
|
---|
3841 | {
|
---|
3842 | Log2(("EP DCI %u not running (state %u), bail!\n", uDBTarget, ep_ctx.ep_state));
|
---|
3843 | return VINF_SUCCESS;
|
---|
3844 | }
|
---|
3845 |
|
---|
3846 | /* Get any non-transfer TRBs out of the way. */
|
---|
3847 | xhciR3ConsumeNonXferTRBs(pDevIns, pThis, uSlotID, uDBTarget, &ep_ctx, &xfer, &GCPhysXfrTRB);
|
---|
3848 | /// @todo This is inefficient.
|
---|
3849 | xhciR3WriteBackEp(pDevIns, pThis, uSlotID, uDBTarget, &ep_ctx);
|
---|
3850 |
|
---|
3851 | do
|
---|
3852 | {
|
---|
3853 | /* Fetch the contexts again and find the TRB address at enqueue point. */
|
---|
3854 | xhciR3FetchCtxAndEp(pDevIns, pThis, uSlotID, uDBTarget, &slot_ctx, &ep_ctx);
|
---|
3855 | GCPhysXfrTRB = ep_ctx.trep & XHCI_TRDP_ADDR_MASK;
|
---|
3856 | dcs = !!(ep_ctx.trep & XHCI_TRDP_DCS_MASK);
|
---|
3857 | LogFlowFunc(("Processing Transfer Ring, TREP: %RGp\n", GCPhysXfrTRB));
|
---|
3858 |
|
---|
3859 | /* Fetch the transfer TRB. */
|
---|
3860 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysXfrTRB, &xfer, sizeof(xfer));
|
---|
3861 |
|
---|
3862 | /* Make sure the Cycle State matches. */
|
---|
3863 | if ((bool)xfer.gen.cycle == dcs)
|
---|
3864 | {
|
---|
3865 | Log2(("TRB @ %RGp, type %u (%s) %u bytes ENT=%u ISP=%u NS=%u CH=%u IOC=%u IDT=%u\n", GCPhysXfrTRB, xfer.gen.type,
|
---|
3866 | xfer.gen.type < RT_ELEMENTS(g_apszTrbNames) ? g_apszTrbNames[xfer.gen.type] : "WHAT?!!",
|
---|
3867 | xfer.gen.xfr_len, xfer.gen.ent, xfer.gen.isp, xfer.gen.ns, xfer.gen.ch, xfer.gen.ioc, xfer.gen.idt));
|
---|
3868 |
|
---|
3869 | /* If there is an "in-flight" TRDP, check if we need to wait until the transfer completes. */
|
---|
3870 | if ((ep_ctx.trdp & XHCI_TRDP_ADDR_MASK) != GCPhysXfrTRB)
|
---|
3871 | {
|
---|
3872 | switch (xfer.gen.type) {
|
---|
3873 | case XHCI_TRB_ISOCH:
|
---|
3874 | if (ep_ctx.ifc >= XHCI_MAX_ISOC_IN_FLIGHT)
|
---|
3875 | {
|
---|
3876 | Log(("%u isoch URBs in flight, backing off\n", ep_ctx.ifc));
|
---|
3877 | fContinue = false;
|
---|
3878 | break;
|
---|
3879 | }
|
---|
3880 | RT_FALL_THRU();
|
---|
3881 | case XHCI_TRB_LINK:
|
---|
3882 | Log2(("TRB OK, continuing @ %RX64\n", GCPhysXfrTRB));
|
---|
3883 | break;
|
---|
3884 | case XHCI_TRB_NORMAL:
|
---|
3885 | if (XHCI_EP_XTYPE(ep_ctx.ep_type) != XHCI_XFTYPE_BULK)
|
---|
3886 | {
|
---|
3887 | Log2(("Normal TRB not bulk, not continuing @ %RX64\n", GCPhysXfrTRB));
|
---|
3888 | fContinue = false;
|
---|
3889 | break;
|
---|
3890 | }
|
---|
3891 | if (ep_ctx.ifc >= XHCI_MAX_BULK_IN_FLIGHT)
|
---|
3892 | {
|
---|
3893 | Log(("%u normal URBs in flight, backing off\n", ep_ctx.ifc));
|
---|
3894 | fContinue = false;
|
---|
3895 | break;
|
---|
3896 | }
|
---|
3897 | Log2(("Bulk TRB OK, continuing @ %RX64\n", GCPhysXfrTRB));
|
---|
3898 | break;
|
---|
3899 | case XHCI_TRB_EVT_DATA:
|
---|
3900 | case XHCI_TRB_NOOP_XFER:
|
---|
3901 | Log2(("TRB not OK, not continuing @ %RX64\n", GCPhysXfrTRB));
|
---|
3902 | fContinue = false;
|
---|
3903 | break;
|
---|
3904 | default:
|
---|
3905 | Log2(("Some other TRB (type %u), not continuing @ %RX64\n", xfer.gen.type, GCPhysXfrTRB));
|
---|
3906 | fContinue = false;
|
---|
3907 | break;
|
---|
3908 | }
|
---|
3909 | }
|
---|
3910 | if (!fContinue)
|
---|
3911 | break;
|
---|
3912 |
|
---|
3913 | switch (xfer.gen.type) {
|
---|
3914 | case XHCI_TRB_NORMAL:
|
---|
3915 | Log(("Normal TRB: Ptr=%RGp IOC=%u CH=%u\n", xfer.norm.data_ptr, xfer.norm.ioc, xfer.norm.ch));
|
---|
3916 | rc = xhciR3QueueDataTD(pDevIns, pThis, pThisCC, pRh, GCPhysXfrTRB, &xfer, &ep_ctx, uSlotID,
|
---|
3917 | slot_ctx.dev_addr, uDBTarget);
|
---|
3918 | break;
|
---|
3919 | case XHCI_TRB_SETUP_STG:
|
---|
3920 | Log(("Setup stage TRB: IOC=%u IDT=%u\n", xfer.setup.ioc, xfer.setup.idt));
|
---|
3921 | rc = xhciR3QueueControlTD(pDevIns, pThis, pThisCC, pRh, GCPhysXfrTRB, &xfer, &ep_ctx, uSlotID,
|
---|
3922 | slot_ctx.dev_addr, uDBTarget);
|
---|
3923 | break;
|
---|
3924 | case XHCI_TRB_DATA_STG:
|
---|
3925 | Log(("Data stage TRB: Ptr=%RGp IOC=%u CH=%u DIR=%u\n", xfer.data.data_ptr, xfer.data.ioc, xfer.data.ch, xfer.data.dir));
|
---|
3926 | rc = xhciR3QueueControlTD(pDevIns, pThis, pThisCC, pRh, GCPhysXfrTRB, &xfer, &ep_ctx, uSlotID,
|
---|
3927 | slot_ctx.dev_addr, uDBTarget);
|
---|
3928 | break;
|
---|
3929 | case XHCI_TRB_STATUS_STG:
|
---|
3930 | Log(("Status stage TRB: IOC=%u CH=%u DIR=%u\n", xfer.status.ioc, xfer.status.ch, xfer.status.dir));
|
---|
3931 | rc = xhciR3QueueControlTD(pDevIns, pThis, pThisCC, pRh, GCPhysXfrTRB, &xfer, &ep_ctx, uSlotID,
|
---|
3932 | slot_ctx.dev_addr, uDBTarget);
|
---|
3933 | break;
|
---|
3934 | case XHCI_TRB_ISOCH:
|
---|
3935 | Log(("Isoch TRB: Ptr=%RGp IOC=%u CH=%u TLBPC=%u TBC=%u SIA=%u FrmID=%u\n", xfer.isoc.data_ptr, xfer.isoc.ioc, xfer.isoc.ch, xfer.isoc.tlbpc, xfer.isoc.tbc, xfer.isoc.sia, xfer.isoc.frm_id));
|
---|
3936 | rc = xhciR3QueueIsochTD(pDevIns, pThis, pThisCC, pRh, GCPhysXfrTRB, &xfer, &ep_ctx, uSlotID,
|
---|
3937 | slot_ctx.dev_addr, uDBTarget, &ctxIsoch);
|
---|
3938 | break;
|
---|
3939 | case XHCI_TRB_LINK:
|
---|
3940 | Log2(("Link extra-TD: Ptr=%RGp IOC=%u TC=%u CH=%u\n", xfer.link.rseg_ptr, xfer.link.ioc, xfer.link.toggle, xfer.link.chain));
|
---|
3941 | Assert(!xfer.link.chain);
|
---|
3942 | /* Set new TREP but leave DCS bit alone... */
|
---|
3943 | ep_ctx.trep = (xfer.link.rseg_ptr & XHCI_TRDP_ADDR_MASK) | (ep_ctx.trep & XHCI_TRDP_DCS_MASK);
|
---|
3944 | /* ...and flip the DCS bit if required. Then update the TREP. */
|
---|
3945 | ep_ctx.trep = ep_ctx.trep ^ xfer.link.toggle;
|
---|
3946 | rc = xhciR3WriteBackEp(pDevIns, pThis, uSlotID, uDBTarget, &ep_ctx);
|
---|
3947 | break;
|
---|
3948 | case XHCI_TRB_NOOP_XFER:
|
---|
3949 | Log2(("No op xfer: IOC=%u CH=%u ENT=%u\n", xfer.nop.ioc, xfer.nop.ch, xfer.nop.ent));
|
---|
3950 | /* A no-op transfer TRB must not be part of a chain. See 4.11.7. */
|
---|
3951 | Assert(!xfer.link.chain);
|
---|
3952 | /* Update enqueue pointer (TRB was not yet completed). */
|
---|
3953 | ep_ctx.trep += sizeof(XHCI_XFER_TRB);
|
---|
3954 | rc = xhciR3WriteBackEp(pDevIns, pThis, uSlotID, uDBTarget, &ep_ctx);
|
---|
3955 | break;
|
---|
3956 | default:
|
---|
3957 | Log(("Unsupported TRB!!\n"));
|
---|
3958 | rc = VERR_NOT_SUPPORTED;
|
---|
3959 | break;
|
---|
3960 | }
|
---|
3961 | /* If queuing failed, stop right here. */
|
---|
3962 | if (RT_FAILURE(rc))
|
---|
3963 | fContinue = false;
|
---|
3964 | }
|
---|
3965 | else
|
---|
3966 | {
|
---|
3967 | LogFunc(("Transfer Ring empty\n"));
|
---|
3968 | fContinue = false;
|
---|
3969 |
|
---|
3970 | /* If an isochronous ring is empty, this is an overrun/underrun. At this point
|
---|
3971 | * the ring will no longer be scheduled (until the doorbell is rung again)
|
---|
3972 | * but it remains in the Running state. This error is only reported if someone
|
---|
3973 | * rang the doorbell and there are no TDs available or in-flight.
|
---|
3974 | */
|
---|
3975 | if ( (ep_ctx.trep == ep_ctx.trdp) /* Nothing in-flight? */
|
---|
3976 | && (ep_ctx.ep_type == XHCI_EPTYPE_ISOCH_IN || ep_ctx.ep_type == XHCI_EPTYPE_ISOCH_OUT))
|
---|
3977 | {
|
---|
3978 | /* There is no TRB associated with this error; the slot context
|
---|
3979 | * determines the interrupter.
|
---|
3980 | */
|
---|
3981 | Log(("Isochronous ring %s, TRDP:%RGp\n", ep_ctx.ep_type == XHCI_EPTYPE_ISOCH_IN ? "overrun" : "underrun", ep_ctx.trdp & XHCI_TRDP_ADDR_MASK));
|
---|
3982 | rc = xhciR3PostXferEvent(pDevIns, pThis, slot_ctx.intr_tgt, 0,
|
---|
3983 | ep_ctx.ep_type == XHCI_EPTYPE_ISOCH_IN ? XHCI_TCC_RING_OVERRUN : XHCI_TCC_RING_UNDERRUN,
|
---|
3984 | uSlotID, uDBTarget, 0, false, false);
|
---|
3985 | }
|
---|
3986 |
|
---|
3987 | }
|
---|
3988 |
|
---|
3989 | /* Kill the xHC if the TRB list has no end in sight. */
|
---|
3990 | if (++cTrbs > XHCI_MAX_NUM_TRBS)
|
---|
3991 | {
|
---|
3992 | /* Stop the xHC with an error. */
|
---|
3993 | xhciR3EndlessTrbError(pDevIns, pThis);
|
---|
3994 |
|
---|
3995 | /* Get out of the loop. */
|
---|
3996 | fContinue = false;
|
---|
3997 | rc = VERR_NOT_SUPPORTED; /* No good error code really... */
|
---|
3998 | }
|
---|
3999 | } while (fContinue);
|
---|
4000 |
|
---|
4001 | /* It can unfortunately happen that for endpoints with more than one
|
---|
4002 | * transfer per USB frame, there won't be a complete multi-packet URB ready
|
---|
4003 | * when we go looking for it. If that happens, we'll "rewind" the TREP and
|
---|
4004 | * try again later. Since the URB construction is done under a lock, this
|
---|
4005 | * is safe as we won't be accessing the endpoint concurrently.
|
---|
4006 | */
|
---|
4007 | if (ctxIsoch.pUrb)
|
---|
4008 | {
|
---|
4009 | Log(("Unfinished ISOC URB (%u packets out of %u)!\n", ctxIsoch.iPkt, ctxIsoch.pUrb->cIsocPkts));
|
---|
4010 | /* If submitting failed, the URB is already freed. */
|
---|
4011 | if (!ctxIsoch.fSubmitFailed)
|
---|
4012 | VUSBIRhFreeUrb(pRh->pIRhConn, ctxIsoch.pUrb);
|
---|
4013 | ep_ctx.trep = ctxIsoch.uInitTREP;
|
---|
4014 | xhciR3WriteBackEp(pDevIns, pThis, uSlotID, uDBTarget, &ep_ctx);
|
---|
4015 | }
|
---|
4016 | return VINF_SUCCESS;
|
---|
4017 | }
|
---|
4018 |
|
---|
4019 |
|
---|
4020 | /**
|
---|
4021 | * A worker routine for Address Device command. Builds a URB containing
|
---|
4022 | * a SET_ADDRESS requests and (synchronously) submits it to VUSB, then
|
---|
4023 | * follows up with a status stage URB.
|
---|
4024 | *
|
---|
4025 | * @returns true on success.
|
---|
4026 | * @returns false on failure to submit.
|
---|
4027 | * @param pThisCC The xHCI device state, ring-3 edition.
|
---|
4028 | * @param uSlotID Slot ID to assign address to.
|
---|
4029 | * @param uDevAddr New device address.
|
---|
4030 | * @param iPort The xHCI root hub port index.
|
---|
4031 | */
|
---|
4032 | static bool xhciR3IssueSetAddress(PXHCICC pThisCC, uint8_t uSlotID, uint8_t uDevAddr, unsigned iPort)
|
---|
4033 | {
|
---|
4034 | PXHCIROOTHUBR3 pRh = GET_PORT_PRH(pThisCC, iPort);
|
---|
4035 |
|
---|
4036 | Assert(uSlotID);
|
---|
4037 | LogFlowFunc(("Slot %u port idx %u: new address is %u\n", uSlotID, iPort, uDevAddr));
|
---|
4038 |
|
---|
4039 | /* For USB3 devices, force the port number. This simulates the fact that USB3 uses directed (unicast) traffic. */
|
---|
4040 | if (!IS_USB3_PORT_IDX_R3(pThisCC, iPort))
|
---|
4041 | iPort = VUSB_DEVICE_PORT_INVALID;
|
---|
4042 | else
|
---|
4043 | iPort = GET_VUSB_PORT_FROM_XHCI_PORT(pRh, iPort);
|
---|
4044 |
|
---|
4045 | /* Allocate and initialize a URB. NB: Zero cTds indicates a URB not submitted by guest. */
|
---|
4046 | PVUSBURB pUrb = VUSBIRhNewUrb(pRh->pIRhConn, 0 /* address */, iPort, VUSBXFERTYPE_CTRL, VUSBDIRECTION_SETUP,
|
---|
4047 | sizeof(VUSBSETUP), 0 /* cTds */, NULL);
|
---|
4048 | if (!pUrb)
|
---|
4049 | return false;
|
---|
4050 |
|
---|
4051 | pUrb->EndPt = 0;
|
---|
4052 | pUrb->fShortNotOk = true;
|
---|
4053 | pUrb->enmStatus = VUSBSTATUS_OK;
|
---|
4054 | pUrb->pHci->uSlotID = uSlotID;
|
---|
4055 | pUrb->pHci->cTRB = 0;
|
---|
4056 |
|
---|
4057 | /* Build the request. */
|
---|
4058 | PVUSBSETUP pSetup = (PVUSBSETUP)pUrb->abData;
|
---|
4059 | pSetup->bmRequestType = VUSB_DIR_TO_DEVICE | VUSB_REQ_STANDARD | VUSB_TO_DEVICE;
|
---|
4060 | pSetup->bRequest = VUSB_REQ_SET_ADDRESS;
|
---|
4061 | pSetup->wValue = uDevAddr;
|
---|
4062 | pSetup->wIndex = 0;
|
---|
4063 | pSetup->wLength = 0;
|
---|
4064 |
|
---|
4065 | /* NB: We assume the address assignment is a synchronous operation. */
|
---|
4066 |
|
---|
4067 | /* Submit the setup URB. */
|
---|
4068 | Log(("%s: xhciSetAddress setup: cbData=%u\n", pUrb->pszDesc, pUrb->cbData));
|
---|
4069 | RTCritSectLeave(&pThisCC->CritSectThrd);
|
---|
4070 | int rc = VUSBIRhSubmitUrb(pRh->pIRhConn, pUrb, &pRh->Led);
|
---|
4071 | RTCritSectEnter(&pThisCC->CritSectThrd);
|
---|
4072 | if (RT_FAILURE(rc))
|
---|
4073 | {
|
---|
4074 | Log(("xhciSetAddress: setup stage failed pUrb=%p!!\n", pUrb));
|
---|
4075 | return false;
|
---|
4076 | }
|
---|
4077 |
|
---|
4078 | /* To complete the SET_ADDRESS request, the status stage must succeed. */
|
---|
4079 | pUrb = VUSBIRhNewUrb(pRh->pIRhConn, 0 /* address */, iPort, VUSBXFERTYPE_CTRL, VUSBDIRECTION_IN, 0 /* cbData */, 0 /* cTds */,
|
---|
4080 | NULL);
|
---|
4081 | if (!pUrb)
|
---|
4082 | return false;
|
---|
4083 |
|
---|
4084 | pUrb->EndPt = 0;
|
---|
4085 | pUrb->fShortNotOk = true;
|
---|
4086 | pUrb->enmStatus = VUSBSTATUS_OK;
|
---|
4087 | pUrb->pHci->uSlotID = uSlotID;
|
---|
4088 | pUrb->pHci->cTRB = 0;
|
---|
4089 |
|
---|
4090 | /* Submit the setup URB. */
|
---|
4091 | Log(("%s: xhciSetAddress status: cbData=%u\n", pUrb->pszDesc, pUrb->cbData));
|
---|
4092 | RTCritSectLeave(&pThisCC->CritSectThrd);
|
---|
4093 | rc = VUSBIRhSubmitUrb(pRh->pIRhConn, pUrb, &pRh->Led);
|
---|
4094 | RTCritSectEnter(&pThisCC->CritSectThrd);
|
---|
4095 | if (RT_FAILURE(rc))
|
---|
4096 | {
|
---|
4097 | Log(("xhciSetAddress: status stage failed pUrb=%p!!\n", pUrb));
|
---|
4098 | return false;
|
---|
4099 | }
|
---|
4100 |
|
---|
4101 | Log(("xhciSetAddress: set address succeeded\n"));
|
---|
4102 | return true;
|
---|
4103 | }
|
---|
4104 |
|
---|
4105 |
|
---|
4106 | /**
|
---|
4107 | * Address a device.
|
---|
4108 | *
|
---|
4109 | * @returns TRB completion code.
|
---|
4110 | * @param pDevIns The device instance.
|
---|
4111 | * @param pThis The xHCI device state, shared edition.
|
---|
4112 | * @param pThisCC The xHCI device state, ring-3 edition.
|
---|
4113 | * @param uInpCtxAddr Address of the input context.
|
---|
4114 | * @param uSlotID Slot ID to assign address to.
|
---|
4115 | * @param fBSR Block Set address Request flag.
|
---|
4116 | */
|
---|
4117 | static unsigned xhciR3AddressDevice(PPDMDEVINS pDevIns, PXHCI pThis, PXHCICC pThisCC, uint64_t uInpCtxAddr,
|
---|
4118 | uint8_t uSlotID, bool fBSR)
|
---|
4119 | {
|
---|
4120 | RTGCPHYS GCPhysInpCtx = uInpCtxAddr & XHCI_CTX_ADDR_MASK;
|
---|
4121 | RTGCPHYS GCPhysInpSlot;
|
---|
4122 | RTGCPHYS GCPhysOutSlot;
|
---|
4123 | XHCI_INPC_CTX icc; /* Input Control Context (ICI=0). */
|
---|
4124 | XHCI_SLOT_CTX inp_slot_ctx; /* Input Slot Context (ICI=1). */
|
---|
4125 | XHCI_EP_CTX ep_ctx; /* Endpoint Context (ICI=2+). */
|
---|
4126 | XHCI_SLOT_CTX out_slot_ctx; /* Output Slot Context. */
|
---|
4127 | uint8_t dev_addr;
|
---|
4128 | unsigned cc = XHCI_TCC_SUCCESS;
|
---|
4129 |
|
---|
4130 | Assert(GCPhysInpCtx);
|
---|
4131 | Assert(uSlotID);
|
---|
4132 | LogFlowFunc(("Slot ID %u, input control context @ %RGp\n", uSlotID, GCPhysInpCtx));
|
---|
4133 |
|
---|
4134 | /* Determine the address of the output slot context. */
|
---|
4135 | GCPhysOutSlot = xhciR3FetchDevCtxAddr(pDevIns, pThis, uSlotID);
|
---|
4136 |
|
---|
4137 | /* Fetch the output slot context. */
|
---|
4138 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysOutSlot, &out_slot_ctx, sizeof(out_slot_ctx));
|
---|
4139 |
|
---|
4140 | /// @todo Check for valid context (6.2.2.1, 6.2.3.1)
|
---|
4141 |
|
---|
4142 | /* See 4.6.5 */
|
---|
4143 | do {
|
---|
4144 | /* Parameter validation depends on whether the BSR flag is set or not. */
|
---|
4145 | if (fBSR)
|
---|
4146 | {
|
---|
4147 | /* Check that the output slot context state is in Enabled state. */
|
---|
4148 | if (out_slot_ctx.slot_state >= XHCI_SLTST_DEFAULT)
|
---|
4149 | {
|
---|
4150 | Log(("Output slot context state (%u) wrong (BSR)!\n", out_slot_ctx.slot_state));
|
---|
4151 | cc = XHCI_TCC_CTX_STATE_ERR;
|
---|
4152 | break;
|
---|
4153 | }
|
---|
4154 | dev_addr = 0;
|
---|
4155 | }
|
---|
4156 | else
|
---|
4157 | {
|
---|
4158 | /* Check that the output slot context state is in Enabled or Default state. */
|
---|
4159 | if (out_slot_ctx.slot_state > XHCI_SLTST_DEFAULT)
|
---|
4160 | {
|
---|
4161 | Log(("Output slot context state (%u) wrong (no-BSR)!\n", out_slot_ctx.slot_state));
|
---|
4162 | cc = XHCI_TCC_CTX_STATE_ERR;
|
---|
4163 | break;
|
---|
4164 | }
|
---|
4165 | dev_addr = xhciR3SelectNewAddress(pThis, uSlotID);
|
---|
4166 | }
|
---|
4167 |
|
---|
4168 | /* Fetch the input control context. */
|
---|
4169 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysInpCtx, &icc, sizeof(icc));
|
---|
4170 | Assert(icc.add_flags == (RT_BIT(0) | RT_BIT(1))); /* Should have been already checked. */
|
---|
4171 | Assert(!icc.drop_flags);
|
---|
4172 |
|
---|
4173 | /* Calculate the address of the input slot context (ICI=1/DCI=0). */
|
---|
4174 | GCPhysInpSlot = GCPhysInpCtx + sizeof(XHCI_INPC_CTX);
|
---|
4175 |
|
---|
4176 | /* Read the input slot context. */
|
---|
4177 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysInpSlot, &inp_slot_ctx, sizeof(inp_slot_ctx));
|
---|
4178 |
|
---|
4179 | /* If BSR isn't set, issue the actual SET_ADDRESS request. */
|
---|
4180 | if (!fBSR) {
|
---|
4181 | unsigned iPort;
|
---|
4182 |
|
---|
4183 | /* We have to dig out the port number/index to determine which virtual root hub to use. */
|
---|
4184 | iPort = ID_TO_IDX(inp_slot_ctx.rh_port);
|
---|
4185 | if (iPort >= XHCI_NDP_CFG(pThis))
|
---|
4186 | {
|
---|
4187 | Log(("Port out of range (index %u)!\n", iPort));
|
---|
4188 | cc = XHCI_TCC_USB_XACT_ERR;
|
---|
4189 | break;
|
---|
4190 | }
|
---|
4191 | if (!xhciR3IssueSetAddress(pThisCC, uSlotID, dev_addr, iPort))
|
---|
4192 | {
|
---|
4193 | Log(("SET_ADDRESS failed!\n"));
|
---|
4194 | cc = XHCI_TCC_USB_XACT_ERR;
|
---|
4195 | break;
|
---|
4196 | }
|
---|
4197 | }
|
---|
4198 |
|
---|
4199 | /* Copy the slot context with appropriate modifications. */
|
---|
4200 | out_slot_ctx = inp_slot_ctx;
|
---|
4201 | if (fBSR)
|
---|
4202 | out_slot_ctx.slot_state = XHCI_SLTST_DEFAULT;
|
---|
4203 | else
|
---|
4204 | out_slot_ctx.slot_state = XHCI_SLTST_ADDRESSED;
|
---|
4205 | out_slot_ctx.dev_addr = dev_addr;
|
---|
4206 | PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysOutSlot, &out_slot_ctx, sizeof(out_slot_ctx));
|
---|
4207 |
|
---|
4208 | /* Point at the EP0 contexts. */
|
---|
4209 | GCPhysInpSlot += sizeof(inp_slot_ctx);
|
---|
4210 | GCPhysOutSlot += sizeof(out_slot_ctx);
|
---|
4211 |
|
---|
4212 | /* Copy EP0 context with appropriate modifications. */
|
---|
4213 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysInpSlot, &ep_ctx, sizeof(ep_ctx));
|
---|
4214 | xhciR3EnableEP(&ep_ctx);
|
---|
4215 | PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysOutSlot, &ep_ctx, sizeof(ep_ctx));
|
---|
4216 | } while (0);
|
---|
4217 |
|
---|
4218 | return cc;
|
---|
4219 | }
|
---|
4220 |
|
---|
4221 |
|
---|
4222 | /**
|
---|
4223 | * Reset a halted endpoint.
|
---|
4224 | *
|
---|
4225 | * @returns TRB completion code.
|
---|
4226 | * @param pDevIns The device instance.
|
---|
4227 | * @param pThis Pointer to the xHCI state.
|
---|
4228 | * @param uSlotID Slot ID to work with.
|
---|
4229 | * @param uDCI DCI of the endpoint to reset.
|
---|
4230 | * @param fTSP The Transfer State Preserve flag.
|
---|
4231 | */
|
---|
4232 | static unsigned xhciR3ResetEndpoint(PPDMDEVINS pDevIns, PXHCI pThis, uint8_t uSlotID, uint8_t uDCI, bool fTSP)
|
---|
4233 | {
|
---|
4234 | RT_NOREF(fTSP);
|
---|
4235 | RTGCPHYS GCPhysSlot;
|
---|
4236 | RTGCPHYS GCPhysEndp;
|
---|
4237 | XHCI_SLOT_CTX slot_ctx;
|
---|
4238 | XHCI_EP_CTX endp_ctx;
|
---|
4239 | unsigned cc = XHCI_TCC_SUCCESS;
|
---|
4240 |
|
---|
4241 | Assert(uSlotID);
|
---|
4242 |
|
---|
4243 | /* Determine the addresses of the contexts. */
|
---|
4244 | GCPhysSlot = xhciR3FetchDevCtxAddr(pDevIns, pThis, uSlotID);
|
---|
4245 | GCPhysEndp = GCPhysSlot + uDCI * sizeof(XHCI_EP_CTX);
|
---|
4246 |
|
---|
4247 | /* Fetch the slot context. */
|
---|
4248 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysSlot, &slot_ctx, sizeof(slot_ctx));
|
---|
4249 |
|
---|
4250 | /* See 4.6.8 */
|
---|
4251 | do {
|
---|
4252 | /* Check that the slot context state is Default, Addressed, or Configured. */
|
---|
4253 | if (slot_ctx.slot_state < XHCI_SLTST_DEFAULT)
|
---|
4254 | {
|
---|
4255 | Log(("Slot context state wrong (%u)!\n", slot_ctx.slot_state));
|
---|
4256 | cc = XHCI_TCC_CTX_STATE_ERR;
|
---|
4257 | break;
|
---|
4258 | }
|
---|
4259 |
|
---|
4260 | /* Fetch the endpoint context. */
|
---|
4261 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysEndp, &endp_ctx, sizeof(endp_ctx));
|
---|
4262 |
|
---|
4263 | /* Check that the endpoint context state is Halted. */
|
---|
4264 | if (endp_ctx.ep_state != XHCI_EPST_HALTED)
|
---|
4265 | {
|
---|
4266 | Log(("Endpoint context state wrong (%u)!\n", endp_ctx.ep_state));
|
---|
4267 | cc = XHCI_TCC_CTX_STATE_ERR;
|
---|
4268 | break;
|
---|
4269 | }
|
---|
4270 |
|
---|
4271 | /* Transition EP state. */
|
---|
4272 | endp_ctx.ep_state = XHCI_EPST_STOPPED;
|
---|
4273 |
|
---|
4274 | /// @todo What can we do with the TSP flag?
|
---|
4275 | /// @todo Anything to do WRT enabling the corresponding doorbell register?
|
---|
4276 |
|
---|
4277 | /* Write back the updated endpoint context. */
|
---|
4278 | PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysEndp, &endp_ctx, sizeof(endp_ctx));
|
---|
4279 | } while (0);
|
---|
4280 |
|
---|
4281 | return cc;
|
---|
4282 | }
|
---|
4283 |
|
---|
4284 |
|
---|
4285 | /**
|
---|
4286 | * Stop a running endpoint.
|
---|
4287 | *
|
---|
4288 | * @returns TRB completion code.
|
---|
4289 | * @param pDevIns The device instance.
|
---|
4290 | * @param pThis The xHCI device state, shared edition.
|
---|
4291 | * @param pThisCC The xHCI device state, ring-3 edition.
|
---|
4292 | * @param uSlotID Slot ID to work with.
|
---|
4293 | * @param uDCI DCI of the endpoint to stop.
|
---|
4294 | * @param fTSP The Suspend flag.
|
---|
4295 | */
|
---|
4296 | static unsigned xhciR3StopEndpoint(PPDMDEVINS pDevIns, PXHCI pThis, PXHCICC pThisCC, uint8_t uSlotID, uint8_t uDCI, bool fTSP)
|
---|
4297 | {
|
---|
4298 | RT_NOREF(fTSP);
|
---|
4299 | RTGCPHYS GCPhysSlot;
|
---|
4300 | RTGCPHYS GCPhysEndp;
|
---|
4301 | XHCI_SLOT_CTX slot_ctx;
|
---|
4302 | XHCI_EP_CTX endp_ctx;
|
---|
4303 | unsigned cc = XHCI_TCC_SUCCESS;
|
---|
4304 |
|
---|
4305 | Assert(uSlotID);
|
---|
4306 |
|
---|
4307 | /* Determine the addresses of the contexts. */
|
---|
4308 | GCPhysSlot = xhciR3FetchDevCtxAddr(pDevIns, pThis, uSlotID);
|
---|
4309 | GCPhysEndp = GCPhysSlot + uDCI * sizeof(XHCI_EP_CTX);
|
---|
4310 |
|
---|
4311 | /* Fetch the slot context. */
|
---|
4312 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysSlot, &slot_ctx, sizeof(slot_ctx));
|
---|
4313 |
|
---|
4314 | /* See 4.6.9 */
|
---|
4315 | do {
|
---|
4316 | /* Check that the slot context state is Default, Addressed, or Configured. */
|
---|
4317 | if (slot_ctx.slot_state < XHCI_SLTST_DEFAULT)
|
---|
4318 | {
|
---|
4319 | Log(("Slot context state wrong (%u)!\n", slot_ctx.slot_state));
|
---|
4320 | cc = XHCI_TCC_CTX_STATE_ERR;
|
---|
4321 | break;
|
---|
4322 | }
|
---|
4323 |
|
---|
4324 | /* The doorbell could be ringing; stop it if so. */
|
---|
4325 | if (pThis->aBellsRung[ID_TO_IDX(uSlotID)] & (1 << uDCI))
|
---|
4326 | {
|
---|
4327 | Log(("Unring bell for slot ID %u, DCI %u\n", uSlotID, uDCI));
|
---|
4328 | ASMAtomicAndU32(&pThis->aBellsRung[ID_TO_IDX(uSlotID)], ~(1 << uDCI));
|
---|
4329 | }
|
---|
4330 |
|
---|
4331 | /* Fetch the endpoint context. */
|
---|
4332 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysEndp, &endp_ctx, sizeof(endp_ctx));
|
---|
4333 |
|
---|
4334 | /* Check that the endpoint context state is Running. */
|
---|
4335 | if (endp_ctx.ep_state != XHCI_EPST_RUNNING)
|
---|
4336 | {
|
---|
4337 | Log(("Endpoint context state wrong (%u)!\n", endp_ctx.ep_state));
|
---|
4338 | cc = XHCI_TCC_CTX_STATE_ERR;
|
---|
4339 | break;
|
---|
4340 | }
|
---|
4341 |
|
---|
4342 | /* Transition EP state. */
|
---|
4343 | endp_ctx.ep_state = XHCI_EPST_STOPPED;
|
---|
4344 |
|
---|
4345 | /* Write back the updated endpoint context *now*, before actually canceling anyhing. */
|
---|
4346 | PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysEndp, &endp_ctx, sizeof(endp_ctx));
|
---|
4347 |
|
---|
4348 | /// @todo What can we do with the SP flag?
|
---|
4349 |
|
---|
4350 | PXHCIROOTHUBR3 pRh;
|
---|
4351 | uint32_t uPort;
|
---|
4352 |
|
---|
4353 | /* Abort the endpoint, i.e. cancel any outstanding URBs. This needs to be done after
|
---|
4354 | * writing back the EP state so that the completion callback can operate. Note that
|
---|
4355 | * the completion callback will not modify the TR when it sees that the EP is not in
|
---|
4356 | * the 'running' state.
|
---|
4357 | * NB: If a URB is canceled before it completed, we have no way to tell if any data
|
---|
4358 | * was already (partially) transferred.
|
---|
4359 | */
|
---|
4360 | if (RT_SUCCESS(xhciR3FindRhDevBySlot(pDevIns, pThis, pThisCC, uSlotID, &pRh, &uPort)))
|
---|
4361 | {
|
---|
4362 | /* Temporarily give up the lock so that the completion callbacks can run. */
|
---|
4363 | RTCritSectLeave(&pThisCC->CritSectThrd);
|
---|
4364 | Log(("Aborting DCI %u -> ep=%u d=%u\n", uDCI, uDCI / 2, uDCI & 1 ? VUSBDIRECTION_IN : VUSBDIRECTION_OUT));
|
---|
4365 | pRh->pIRhConn->pfnAbortEpByPort(pRh->pIRhConn, uPort, uDCI / 2, uDCI & 1 ? VUSBDIRECTION_IN : VUSBDIRECTION_OUT);
|
---|
4366 | RTCritSectEnter(&pThisCC->CritSectThrd);
|
---|
4367 | }
|
---|
4368 |
|
---|
4369 | /* Once the completion callbacks had a chance to run, we have to adjust
|
---|
4370 | * the endpoint state.
|
---|
4371 | * NB: The guest may just ring the doorbell to continue and not execute
|
---|
4372 | * 'Set TRDP' after stopping the endpoint.
|
---|
4373 | */
|
---|
4374 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysEndp, &endp_ctx, sizeof(endp_ctx));
|
---|
4375 |
|
---|
4376 | /* If the enqueue and dequeue pointers are different, a transfer was
|
---|
4377 | * in progress.
|
---|
4378 | */
|
---|
4379 | bool fXferWasInProgress = endp_ctx.trep != endp_ctx.trdp;
|
---|
4380 |
|
---|
4381 | /* Reset the TREP, but the EDTLA should be left alone. */
|
---|
4382 | endp_ctx.trep = endp_ctx.trdp;
|
---|
4383 |
|
---|
4384 | if (fXferWasInProgress)
|
---|
4385 | {
|
---|
4386 | /* Fetch the transfer TRB to see the length. */
|
---|
4387 | RTGCPHYS GCPhysXfrTRB = endp_ctx.trdp & XHCI_TRDP_ADDR_MASK;
|
---|
4388 | XHCI_XFER_TRB XferTRB;
|
---|
4389 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysXfrTRB, &XferTRB, sizeof(XferTRB));
|
---|
4390 |
|
---|
4391 | xhciR3PostXferEvent(pDevIns, pThis, slot_ctx.intr_tgt, XferTRB.gen.xfr_len, XHCI_TCC_STOPPED, uSlotID, uDCI,
|
---|
4392 | GCPhysXfrTRB, false, false);
|
---|
4393 | }
|
---|
4394 | else
|
---|
4395 | {
|
---|
4396 | /* We need to generate a Force Stopped Event or FSE. Note that FSEs were optional
|
---|
4397 | * in xHCI 0.96 but aren't in 1.0.
|
---|
4398 | */
|
---|
4399 | xhciR3PostXferEvent(pDevIns, pThis, slot_ctx.intr_tgt, 0, XHCI_TCC_STP_INV_LEN, uSlotID, uDCI,
|
---|
4400 | endp_ctx.trdp & XHCI_TRDP_ADDR_MASK, false, false);
|
---|
4401 | }
|
---|
4402 |
|
---|
4403 | /* Write back the updated endpoint context again. */
|
---|
4404 | PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysEndp, &endp_ctx, sizeof(endp_ctx));
|
---|
4405 |
|
---|
4406 | } while (0);
|
---|
4407 |
|
---|
4408 | return cc;
|
---|
4409 | }
|
---|
4410 |
|
---|
4411 |
|
---|
4412 | /**
|
---|
4413 | * Set a new TR Dequeue Pointer for an endpoint.
|
---|
4414 | *
|
---|
4415 | * @returns TRB completion code.
|
---|
4416 | * @param pDevIns The device instance.
|
---|
4417 | * @param pThis Pointer to the xHCI state.
|
---|
4418 | * @param uSlotID Slot ID to work with.
|
---|
4419 | * @param uDCI DCI of the endpoint to reset.
|
---|
4420 | * @param uTRDP The TRDP including DCS/ flag.
|
---|
4421 | */
|
---|
4422 | static unsigned xhciR3SetTRDP(PPDMDEVINS pDevIns, PXHCI pThis, uint8_t uSlotID, uint8_t uDCI, uint64_t uTRDP)
|
---|
4423 | {
|
---|
4424 | RTGCPHYS GCPhysSlot;
|
---|
4425 | RTGCPHYS GCPhysEndp;
|
---|
4426 | XHCI_SLOT_CTX slot_ctx;
|
---|
4427 | XHCI_EP_CTX endp_ctx;
|
---|
4428 | unsigned cc = XHCI_TCC_SUCCESS;
|
---|
4429 |
|
---|
4430 | Assert(uSlotID);
|
---|
4431 |
|
---|
4432 | /* Determine the addresses of the contexts. */
|
---|
4433 | GCPhysSlot = xhciR3FetchDevCtxAddr(pDevIns, pThis, uSlotID);
|
---|
4434 | GCPhysEndp = GCPhysSlot + uDCI * sizeof(XHCI_EP_CTX);
|
---|
4435 |
|
---|
4436 | /* Fetch the slot context. */
|
---|
4437 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysSlot, &slot_ctx, sizeof(slot_ctx));
|
---|
4438 |
|
---|
4439 | /* See 4.6.10 */
|
---|
4440 | do {
|
---|
4441 | /* Check that the slot context state is Default, Addressed, or Configured. */
|
---|
4442 | if (slot_ctx.slot_state < XHCI_SLTST_DEFAULT)
|
---|
4443 | {
|
---|
4444 | Log(("Slot context state wrong (%u)!\n", slot_ctx.slot_state));
|
---|
4445 | cc = XHCI_TCC_CTX_STATE_ERR;
|
---|
4446 | break;
|
---|
4447 | }
|
---|
4448 |
|
---|
4449 | /* Fetch the endpoint context. */
|
---|
4450 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysEndp, &endp_ctx, sizeof(endp_ctx));
|
---|
4451 |
|
---|
4452 | /* Check that the endpoint context state is Stopped or Error. */
|
---|
4453 | if (endp_ctx.ep_state != XHCI_EPST_STOPPED && endp_ctx.ep_state != XHCI_EPST_ERROR)
|
---|
4454 | {
|
---|
4455 | Log(("Endpoint context state wrong (%u)!\n", endp_ctx.ep_state));
|
---|
4456 | cc = XHCI_TCC_CTX_STATE_ERR;
|
---|
4457 | break;
|
---|
4458 | }
|
---|
4459 |
|
---|
4460 | /* Update the TRDP/TREP and DCS. */
|
---|
4461 | endp_ctx.trdp = uTRDP;
|
---|
4462 | endp_ctx.trep = uTRDP;
|
---|
4463 |
|
---|
4464 | /* Also clear the in-flight counter! */
|
---|
4465 | endp_ctx.ifc = 0;
|
---|
4466 |
|
---|
4467 | /// @todo Handle streams
|
---|
4468 |
|
---|
4469 | /* Write back the updated endpoint context. */
|
---|
4470 | PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysEndp, &endp_ctx, sizeof(endp_ctx));
|
---|
4471 | } while (0);
|
---|
4472 |
|
---|
4473 | return cc;
|
---|
4474 | }
|
---|
4475 |
|
---|
4476 |
|
---|
4477 | /**
|
---|
4478 | * Prepare for a device reset.
|
---|
4479 | *
|
---|
4480 | * @returns TRB completion code.
|
---|
4481 | * @param pDevIns The device instance.
|
---|
4482 | * @param pThis Pointer to the xHCI state.
|
---|
4483 | * @param uSlotID Slot ID to work with.
|
---|
4484 | */
|
---|
4485 | static unsigned xhciR3ResetDevice(PPDMDEVINS pDevIns, PXHCI pThis, uint8_t uSlotID)
|
---|
4486 | {
|
---|
4487 | RTGCPHYS GCPhysSlot;
|
---|
4488 | XHCI_SLOT_CTX slot_ctx;
|
---|
4489 | XHCI_DEV_CTX dc;
|
---|
4490 | unsigned num_ctx;
|
---|
4491 | unsigned i;
|
---|
4492 | unsigned cc = XHCI_TCC_SUCCESS;
|
---|
4493 |
|
---|
4494 | Assert(uSlotID);
|
---|
4495 |
|
---|
4496 | /* Determine the address of the slot/device context. */
|
---|
4497 | GCPhysSlot = xhciR3FetchDevCtxAddr(pDevIns, pThis, uSlotID);
|
---|
4498 |
|
---|
4499 | /* Fetch the slot context. */
|
---|
4500 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysSlot, &slot_ctx, sizeof(slot_ctx));
|
---|
4501 |
|
---|
4502 | /* See 4.6.11. */
|
---|
4503 | do {
|
---|
4504 | /* Check that the slot context state is Addressed or Configured. */
|
---|
4505 | if (slot_ctx.slot_state < XHCI_SLTST_ADDRESSED)
|
---|
4506 | {
|
---|
4507 | Log(("Slot context state wrong (%u)!\n", slot_ctx.slot_state));
|
---|
4508 | cc = XHCI_TCC_CTX_STATE_ERR;
|
---|
4509 | break;
|
---|
4510 | }
|
---|
4511 |
|
---|
4512 | /* Read the entire Device Context. */
|
---|
4513 | num_ctx = slot_ctx.ctx_ent + 1; /* Slot context plus EPs. */
|
---|
4514 | Assert(num_ctx);
|
---|
4515 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysSlot, &dc, num_ctx * sizeof(XHCI_SLOT_CTX));
|
---|
4516 |
|
---|
4517 | /// @todo Abort any outstanding transfers!
|
---|
4518 |
|
---|
4519 | /* Set slot state to Default and reset the USB device address. */
|
---|
4520 | dc.entry[0].sc.slot_state = XHCI_SLTST_DEFAULT;
|
---|
4521 | dc.entry[0].sc.dev_addr = 0;
|
---|
4522 |
|
---|
4523 | /* Disable all endpoints except for EP 0 (aka DCI 1). */
|
---|
4524 | for (i = 2; i < num_ctx; ++i)
|
---|
4525 | dc.entry[i].ep.ep_state = XHCI_EPST_DISABLED;
|
---|
4526 |
|
---|
4527 | /* Write back the updated device context. */
|
---|
4528 | PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysSlot, &dc, num_ctx * sizeof(XHCI_SLOT_CTX));
|
---|
4529 | } while (0);
|
---|
4530 |
|
---|
4531 | return cc;
|
---|
4532 | }
|
---|
4533 |
|
---|
4534 |
|
---|
4535 | /**
|
---|
4536 | * Configure a device (even though the relevant command is called 'Configure
|
---|
4537 | * Endpoint'. This includes adding/dropping endpoint contexts as directed by
|
---|
4538 | * the input control context bits.
|
---|
4539 | *
|
---|
4540 | * @returns TRB completion code.
|
---|
4541 | * @param pDevIns The device instance.
|
---|
4542 | * @param pThis Pointer to the xHCI state.
|
---|
4543 | * @param uInpCtxAddr Address of the input context.
|
---|
4544 | * @param uSlotID Slot ID associated with the context.
|
---|
4545 | * @param fDC Deconfigure flag set (input context unused).
|
---|
4546 | */
|
---|
4547 | static unsigned xhciR3ConfigureDevice(PPDMDEVINS pDevIns, PXHCI pThis, uint64_t uInpCtxAddr, uint8_t uSlotID, bool fDC)
|
---|
4548 | {
|
---|
4549 | RTGCPHYS GCPhysInpCtx = uInpCtxAddr & XHCI_CTX_ADDR_MASK;
|
---|
4550 | RTGCPHYS GCPhysInpSlot;
|
---|
4551 | RTGCPHYS GCPhysOutSlot;
|
---|
4552 | RTGCPHYS GCPhysOutEndp;
|
---|
4553 | XHCI_INPC_CTX icc; /* Input Control Context (ICI=0). */
|
---|
4554 | XHCI_SLOT_CTX out_slot_ctx; /* Slot context (DCI=0). */
|
---|
4555 | XHCI_EP_CTX out_endp_ctx; /* Endpoint Context (DCI=1). */
|
---|
4556 | unsigned cc = XHCI_TCC_SUCCESS;
|
---|
4557 | uint32_t uAddFlags;
|
---|
4558 | uint32_t uDropFlags;
|
---|
4559 | unsigned num_inp_ctx;
|
---|
4560 | unsigned num_out_ctx;
|
---|
4561 | XHCI_DEV_CTX dc_inp;
|
---|
4562 | XHCI_DEV_CTX dc_out;
|
---|
4563 | unsigned uDCI;
|
---|
4564 |
|
---|
4565 | RT_ZERO(dc_inp);
|
---|
4566 |
|
---|
4567 | Assert(uSlotID);
|
---|
4568 | LogFlowFunc(("Slot ID %u, input control context @ %RGp\n", uSlotID, GCPhysInpCtx));
|
---|
4569 |
|
---|
4570 | /* Determine the address of the output slot context. */
|
---|
4571 | GCPhysOutSlot = xhciR3FetchDevCtxAddr(pDevIns, pThis, uSlotID);
|
---|
4572 | Assert(GCPhysOutSlot);
|
---|
4573 |
|
---|
4574 | /* Fetch the output slot context. */
|
---|
4575 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysOutSlot, &out_slot_ctx, sizeof(out_slot_ctx));
|
---|
4576 |
|
---|
4577 | /* See 4.6.6 */
|
---|
4578 | do {
|
---|
4579 | /* Check that the output slot context state is Addressed, or Configured. */
|
---|
4580 | if (out_slot_ctx.slot_state < XHCI_SLTST_ADDRESSED)
|
---|
4581 | {
|
---|
4582 | Log(("Output slot context state wrong (%u)!\n", out_slot_ctx.slot_state));
|
---|
4583 | cc = XHCI_TCC_CTX_STATE_ERR;
|
---|
4584 | break;
|
---|
4585 | }
|
---|
4586 |
|
---|
4587 | /* Check for deconfiguration request. */
|
---|
4588 | if (fDC) {
|
---|
4589 | if (out_slot_ctx.slot_state == XHCI_SLTST_CONFIGURED) {
|
---|
4590 | /* Disable all enabled endpoints. */
|
---|
4591 | uDropFlags = 0xFFFFFFFC; /** @todo r=bird: Why do you set uDropFlags and uAddFlags in a code path that doesn't use
|
---|
4592 | * them? This is a _very_ difficult function to get the hang of the way it's written.
|
---|
4593 | * Stuff like this looks like there's a control flow flaw (as to the do-break-while-false
|
---|
4594 | * loop which doesn't do any clean up or logging at the end and seems only sever the very
|
---|
4595 | * dubious purpose of making sure ther's only one return statement). The insistance on
|
---|
4596 | * C-style variable declarations (top of function), makes checking state harder, which is
|
---|
4597 | * why it's discouraged. */
|
---|
4598 | uAddFlags = 0;
|
---|
4599 |
|
---|
4600 | /* Start with EP1. */
|
---|
4601 | GCPhysOutEndp = GCPhysOutSlot + sizeof(XHCI_SLOT_CTX) + sizeof(XHCI_EP_CTX);
|
---|
4602 |
|
---|
4603 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysOutEndp, &out_endp_ctx, sizeof(out_endp_ctx));
|
---|
4604 | out_endp_ctx.ep_state = XHCI_EPST_DISABLED;
|
---|
4605 | PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysOutEndp, &out_endp_ctx, sizeof(out_endp_ctx));
|
---|
4606 | GCPhysOutEndp += sizeof(XHCI_EP_CTX); /* Point to the next EP context. */
|
---|
4607 |
|
---|
4608 | /* Finally update the output slot context. */
|
---|
4609 | out_slot_ctx.ctx_ent = 1; /* Only EP0 left. */
|
---|
4610 | out_slot_ctx.slot_state = XHCI_SLTST_ADDRESSED;
|
---|
4611 | PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysOutSlot, &out_slot_ctx, sizeof(out_slot_ctx));
|
---|
4612 | LogFlow(("Setting Output Slot State to Addressed, Context Entries = %u\n", out_slot_ctx.ctx_ent));
|
---|
4613 | }
|
---|
4614 | else
|
---|
4615 | /* NB: Attempts to deconfigure a slot in Addressed state are ignored. */
|
---|
4616 | Log(("Ignoring attempt to deconfigure slot in Addressed state!\n"));
|
---|
4617 | break;
|
---|
4618 | }
|
---|
4619 |
|
---|
4620 | /* Fetch the input control context. */
|
---|
4621 | Assert(GCPhysInpCtx);
|
---|
4622 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysInpCtx, &icc, sizeof(icc));
|
---|
4623 | Assert(icc.add_flags || icc.drop_flags); /* Make sure there's something to do. */
|
---|
4624 |
|
---|
4625 | uAddFlags = icc.add_flags;
|
---|
4626 | uDropFlags = icc.drop_flags;
|
---|
4627 | LogFlowFunc(("Add Flags=%08X, Drop Flags=%08X\n", uAddFlags, uDropFlags));
|
---|
4628 |
|
---|
4629 | /* If and only if any 'add context' flag is set, fetch the corresponding
|
---|
4630 | * input device context.
|
---|
4631 | */
|
---|
4632 | if (uAddFlags) {
|
---|
4633 | /* Calculate the address of the input slot context (ICI=1/DCI=0). */
|
---|
4634 | GCPhysInpSlot = GCPhysInpCtx + sizeof(XHCI_INPC_CTX);
|
---|
4635 |
|
---|
4636 | /* Read the input Slot Context plus all Endpoint Contexts up to and
|
---|
4637 | * including the one with the highest 'add' bit set.
|
---|
4638 | */
|
---|
4639 | num_inp_ctx = ASMBitLastSetU32(uAddFlags);
|
---|
4640 | Assert(num_inp_ctx);
|
---|
4641 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysInpSlot, &dc_inp, num_inp_ctx * sizeof(XHCI_DS_ENTRY));
|
---|
4642 |
|
---|
4643 | /// @todo Check that the highest set add flag isn't beyond input slot Context Entries
|
---|
4644 |
|
---|
4645 | /// @todo Check input slot context according to 6.2.2.2
|
---|
4646 | /// @todo Check input EP contexts according to 6.2.3.2
|
---|
4647 | }
|
---|
4648 | /* Read the output Slot Context plus all Endpoint Contexts up to and
|
---|
4649 | * including the one with the highest 'add' or 'drop' bit set.
|
---|
4650 | */
|
---|
4651 | num_out_ctx = ASMBitLastSetU32(uAddFlags | uDropFlags);
|
---|
4652 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysOutSlot, &dc_out, num_out_ctx * sizeof(XHCI_DS_ENTRY));
|
---|
4653 |
|
---|
4654 | /* Drop contexts as directed by flags. */
|
---|
4655 | for (uDCI = 2; uDCI < 32; ++uDCI)
|
---|
4656 | {
|
---|
4657 | if (!((1 << uDCI) & uDropFlags))
|
---|
4658 | continue;
|
---|
4659 |
|
---|
4660 | Log2(("Dropping EP DCI %u\n", uDCI));
|
---|
4661 | dc_out.entry[uDCI].ep.ep_state = XHCI_EPST_DISABLED;
|
---|
4662 | /// @todo Do we need to bother tracking resources/bandwidth?
|
---|
4663 | }
|
---|
4664 |
|
---|
4665 | /* Now add contexts as directed by flags. */
|
---|
4666 | for (uDCI = 2; uDCI < 32; ++uDCI)
|
---|
4667 | {
|
---|
4668 | if (!((1 << uDCI) & uAddFlags))
|
---|
4669 | continue;
|
---|
4670 |
|
---|
4671 | Assert(!fDC);
|
---|
4672 | /* Copy over EP context, set to running. */
|
---|
4673 | Log2(("Adding EP DCI %u\n", uDCI));
|
---|
4674 | dc_out.entry[uDCI].ep = dc_inp.entry[uDCI].ep;
|
---|
4675 | xhciR3EnableEP(&dc_out.entry[uDCI].ep);
|
---|
4676 | /// @todo Do we need to bother tracking resources/bandwidth?
|
---|
4677 | }
|
---|
4678 |
|
---|
4679 | /* Finally update the device context. */
|
---|
4680 | if (fDC || dc_inp.entry[0].sc.ctx_ent == 1)
|
---|
4681 | {
|
---|
4682 | dc_out.entry[0].sc.slot_state = XHCI_SLTST_ADDRESSED;
|
---|
4683 | dc_out.entry[0].sc.ctx_ent = 1;
|
---|
4684 | LogFlow(("Setting Output Slot State to Addressed\n"));
|
---|
4685 | }
|
---|
4686 | else
|
---|
4687 | {
|
---|
4688 | uint32_t uKillFlags = uDropFlags & ~uAddFlags; /* Endpoints going away. */
|
---|
4689 |
|
---|
4690 | /* At least one EP enabled. Update Context Entries and state. */
|
---|
4691 | Assert(dc_inp.entry[0].sc.ctx_ent);
|
---|
4692 | dc_out.entry[0].sc.slot_state = XHCI_SLTST_CONFIGURED;
|
---|
4693 | if (ID_TO_IDX(ASMBitLastSetU32(uAddFlags)) > dc_out.entry[0].sc.ctx_ent)
|
---|
4694 | {
|
---|
4695 | /* Adding new endpoints. */
|
---|
4696 | dc_out.entry[0].sc.ctx_ent = ID_TO_IDX(ASMBitLastSetU32(uAddFlags));
|
---|
4697 | }
|
---|
4698 | else if (ID_TO_IDX(ASMBitLastSetU32(uKillFlags)) == dc_out.entry[0].sc.ctx_ent)
|
---|
4699 | {
|
---|
4700 | /* Removing the last endpoint, find the last non-disabled one. */
|
---|
4701 | unsigned num_ctx_ent;
|
---|
4702 |
|
---|
4703 | Assert(dc_out.entry[0].sc.ctx_ent + 1u == num_out_ctx);
|
---|
4704 | for (num_ctx_ent = dc_out.entry[0].sc.ctx_ent; num_ctx_ent > 1; --num_ctx_ent)
|
---|
4705 | if (dc_out.entry[num_ctx_ent].ep.ep_state != XHCI_EPST_DISABLED)
|
---|
4706 | break;
|
---|
4707 | dc_out.entry[0].sc.ctx_ent = num_ctx_ent; /* Last valid index to be precise. */
|
---|
4708 | }
|
---|
4709 | LogFlow(("Setting Output Slot State to Configured, Context Entries = %u\n", dc_out.entry[0].sc.ctx_ent));
|
---|
4710 | }
|
---|
4711 |
|
---|
4712 | /* If there were no errors, write back the updated output context. */
|
---|
4713 | LogFlow(("Success, updating Output Context @ %RGp\n", GCPhysOutSlot));
|
---|
4714 | PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysOutSlot, &dc_out, num_out_ctx * sizeof(XHCI_DS_ENTRY));
|
---|
4715 | } while (0);
|
---|
4716 |
|
---|
4717 | return cc;
|
---|
4718 | }
|
---|
4719 |
|
---|
4720 |
|
---|
4721 | /**
|
---|
4722 | * Evaluate an input context. This involves modifying device and endpoint
|
---|
4723 | * contexts as directed by the input control context add bits.
|
---|
4724 | *
|
---|
4725 | * @returns TRB completion code.
|
---|
4726 | * @param pDevIns The device instance.
|
---|
4727 | * @param pThis Pointer to the xHCI state.
|
---|
4728 | * @param uInpCtxAddr Address of the input context.
|
---|
4729 | * @param uSlotID Slot ID associated with the context.
|
---|
4730 | */
|
---|
4731 | static unsigned xhciR3EvalContext(PPDMDEVINS pDevIns, PXHCI pThis, uint64_t uInpCtxAddr, uint8_t uSlotID)
|
---|
4732 | {
|
---|
4733 | RTGCPHYS GCPhysInpCtx = uInpCtxAddr & XHCI_CTX_ADDR_MASK;
|
---|
4734 | RTGCPHYS GCPhysInpSlot;
|
---|
4735 | RTGCPHYS GCPhysOutSlot;
|
---|
4736 | XHCI_INPC_CTX icc; /* Input Control Context (ICI=0). */
|
---|
4737 | XHCI_SLOT_CTX out_slot_ctx; /* Slot context (DCI=0). */
|
---|
4738 | unsigned cc = XHCI_TCC_SUCCESS;
|
---|
4739 | uint32_t uAddFlags;
|
---|
4740 | uint32_t uDropFlags;
|
---|
4741 | unsigned num_inp_ctx;
|
---|
4742 | unsigned num_out_ctx;
|
---|
4743 | XHCI_DEV_CTX dc_inp;
|
---|
4744 | XHCI_DEV_CTX dc_out;
|
---|
4745 | unsigned uDCI;
|
---|
4746 |
|
---|
4747 | Assert(GCPhysInpCtx);
|
---|
4748 | Assert(uSlotID);
|
---|
4749 | LogFlowFunc(("Slot ID %u, input control context @ %RGp\n", uSlotID, GCPhysInpCtx));
|
---|
4750 |
|
---|
4751 | /* Determine the address of the output slot context. */
|
---|
4752 | GCPhysOutSlot = xhciR3FetchDevCtxAddr(pDevIns, pThis, uSlotID);
|
---|
4753 | Assert(GCPhysOutSlot);
|
---|
4754 |
|
---|
4755 | /* Fetch the output slot context. */
|
---|
4756 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysOutSlot, &out_slot_ctx, sizeof(out_slot_ctx));
|
---|
4757 |
|
---|
4758 | /* See 4.6.7 */
|
---|
4759 | do {
|
---|
4760 | /* Check that the output slot context state is Default, Addressed, or Configured. */
|
---|
4761 | if (out_slot_ctx.slot_state < XHCI_SLTST_DEFAULT)
|
---|
4762 | {
|
---|
4763 | Log(("Output slot context state wrong (%u)!\n", out_slot_ctx.slot_state));
|
---|
4764 | cc = XHCI_TCC_CTX_STATE_ERR;
|
---|
4765 | break;
|
---|
4766 | }
|
---|
4767 |
|
---|
4768 | /* Fetch the input control context. */
|
---|
4769 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysInpCtx, &icc, sizeof(icc));
|
---|
4770 | uAddFlags = icc.add_flags;
|
---|
4771 | uDropFlags = icc.drop_flags;
|
---|
4772 | LogFlowFunc(("Add Flags=%08X, Drop Flags=%08X\n", uAddFlags, uDropFlags));
|
---|
4773 |
|
---|
4774 | /* Drop flags "shall be cleared to 0" but also "do not apply" (4.6.7). Log & ignore. */
|
---|
4775 | if (uDropFlags)
|
---|
4776 | Log(("Drop flags set (%X) for evaluating context!\n", uDropFlags));
|
---|
4777 |
|
---|
4778 | /* If no add flags are set, nothing will be done but an error is not reported
|
---|
4779 | * according to the logic flow in 4.6.7.
|
---|
4780 | */
|
---|
4781 | if (!uAddFlags)
|
---|
4782 | {
|
---|
4783 | Log(("Warning: no add flags set for evaluating context!\n"));
|
---|
4784 | break;
|
---|
4785 | }
|
---|
4786 |
|
---|
4787 | /* Calculate the address of the input slot context (ICI=1/DCI=0). */
|
---|
4788 | GCPhysInpSlot = GCPhysInpCtx + sizeof(XHCI_INPC_CTX);
|
---|
4789 |
|
---|
4790 | /* Read the output Slot Context plus all Endpoint Contexts up to and
|
---|
4791 | * including the one with the highest 'add' bit set.
|
---|
4792 | */
|
---|
4793 | num_inp_ctx = ASMBitLastSetU32(uAddFlags);
|
---|
4794 | Assert(num_inp_ctx);
|
---|
4795 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysInpSlot, &dc_inp, num_inp_ctx * sizeof(XHCI_DS_ENTRY));
|
---|
4796 |
|
---|
4797 | /* Read the output Slot Context plus all Endpoint Contexts up to and
|
---|
4798 | * including the one with the highest 'add' bit set.
|
---|
4799 | */
|
---|
4800 | num_out_ctx = ASMBitLastSetU32(uAddFlags);
|
---|
4801 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysOutSlot, &dc_out, num_out_ctx * sizeof(XHCI_DS_ENTRY));
|
---|
4802 |
|
---|
4803 | /// @todo Check input slot context according to 6.2.2.3
|
---|
4804 | /// @todo Check input EP contexts according to 6.2.3.3
|
---|
4805 | /// @todo Check that the highest set add flag isn't beyond input slot Context Entries
|
---|
4806 |
|
---|
4807 | /* Evaluate endpoint contexts as directed by add flags. */
|
---|
4808 | /// @todo 6.2.3.3 suggests only the A1 bit matters? Anything besides A0/A1 is ignored??
|
---|
4809 | for (uDCI = 1; uDCI < 32; ++uDCI)
|
---|
4810 | {
|
---|
4811 | if (!((1 << uDCI) & uAddFlags))
|
---|
4812 | continue;
|
---|
4813 |
|
---|
4814 | /* Evaluate Max Packet Size. */
|
---|
4815 | LogFunc(("DCI %u: Max Packet Size: %u -> %u\n", uDCI, dc_out.entry[uDCI].ep.max_pkt_sz, dc_inp.entry[uDCI].ep.max_pkt_sz));
|
---|
4816 | dc_out.entry[uDCI].ep.max_pkt_sz = dc_inp.entry[uDCI].ep.max_pkt_sz;
|
---|
4817 | }
|
---|
4818 |
|
---|
4819 | /* Finally update the device context if directed to do so (A0 flag set). */
|
---|
4820 | if (uAddFlags & RT_BIT(0))
|
---|
4821 | {
|
---|
4822 | /* 6.2.2.3 - evaluate Interrupter Target and Max Exit Latency. */
|
---|
4823 | Log(("Interrupter Target: %u -> %u\n", dc_out.entry[0].sc.intr_tgt, dc_inp.entry[0].sc.intr_tgt));
|
---|
4824 | Log(("Max Exit Latency : %u -> %u\n", dc_out.entry[0].sc.max_lat, dc_inp.entry[0].sc.max_lat));
|
---|
4825 |
|
---|
4826 | /// @todo Non-zero Max Exit Latency (see 4.6.7)
|
---|
4827 | dc_out.entry[0].sc.intr_tgt = dc_inp.entry[0].sc.intr_tgt;
|
---|
4828 | dc_out.entry[0].sc.max_lat = dc_inp.entry[0].sc.max_lat;
|
---|
4829 | }
|
---|
4830 |
|
---|
4831 | /* If there were no errors, write back the updated output context. */
|
---|
4832 | LogFlow(("Success, updating Output Context @ %RGp\n", GCPhysOutSlot));
|
---|
4833 | PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysOutSlot, &dc_out, num_out_ctx * sizeof(XHCI_DS_ENTRY));
|
---|
4834 | } while (0);
|
---|
4835 |
|
---|
4836 | return cc;
|
---|
4837 | }
|
---|
4838 |
|
---|
4839 |
|
---|
4840 | /**
|
---|
4841 | * Query available port bandwidth.
|
---|
4842 | *
|
---|
4843 | * @returns TRB completion code.
|
---|
4844 | * @param pDevIns The device instance.
|
---|
4845 | * @param pThis Pointer to the xHCI state.
|
---|
4846 | * @param uDevSpd Speed of not yet attached devices.
|
---|
4847 | * @param uHubSlotID Hub Slot ID to query (unsupported).
|
---|
4848 | * @param uBwCtx Bandwidth context physical address.
|
---|
4849 | */
|
---|
4850 | static unsigned xhciR3GetPortBandwidth(PPDMDEVINS pDevIns, PXHCI pThis, uint8_t uDevSpd, uint8_t uHubSlotID, uint64_t uBwCtx)
|
---|
4851 | {
|
---|
4852 | RT_NOREF(uHubSlotID);
|
---|
4853 | RTGCPHYS GCPhysBwCtx;
|
---|
4854 | unsigned cc = XHCI_TCC_SUCCESS;
|
---|
4855 | unsigned ctx_size;
|
---|
4856 | unsigned iPort;
|
---|
4857 | uint8_t bw_ctx[RT_ALIGN_32(XHCI_NDP_MAX + 1, 4)] = {0};
|
---|
4858 | uint8_t dev_spd;
|
---|
4859 | uint8_t avail_bw;
|
---|
4860 |
|
---|
4861 | Assert(!uHubSlotID);
|
---|
4862 | Assert(uBwCtx);
|
---|
4863 |
|
---|
4864 | /* See 4.6.15. */
|
---|
4865 |
|
---|
4866 | /* Hubs are not supported because guests will never see them. The
|
---|
4867 | * reported values are more or less dummy because we have no real
|
---|
4868 | * information about the bandwidth available on the host. The reported
|
---|
4869 | * values are optimistic, as if each port had its own separate Bus
|
---|
4870 | * Instance aka BI.
|
---|
4871 | */
|
---|
4872 |
|
---|
4873 | GCPhysBwCtx = uBwCtx & XHCI_CTX_ADDR_MASK;
|
---|
4874 |
|
---|
4875 | /* Number of ports + 1, rounded up to DWORDs. */
|
---|
4876 | ctx_size = RT_ALIGN_32(XHCI_NDP_CFG(pThis) + 1, 4);
|
---|
4877 | LogFlowFunc(("BW Context at %RGp, size %u\n", GCPhysBwCtx, ctx_size));
|
---|
4878 | Assert(ctx_size <= sizeof(bw_ctx));
|
---|
4879 |
|
---|
4880 | /* Go over all the ports. */
|
---|
4881 | for (iPort = 0; iPort < XHCI_NDP_CFG(pThis); ++iPort)
|
---|
4882 | {
|
---|
4883 | /* Get the device speed from the port... */
|
---|
4884 | dev_spd = (pThis->aPorts[iPort].portsc & XHCI_PORT_PLS_MASK) >> XHCI_PORT_PLS_SHIFT;
|
---|
4885 | /* ...and if nothing is attached, use the provided default. */
|
---|
4886 | if (!dev_spd)
|
---|
4887 | dev_spd = uDevSpd;
|
---|
4888 |
|
---|
4889 | /* For USB3 ports, report 90% available for SS devices (see 6.2.6). */
|
---|
4890 | if (IS_USB3_PORT_IDX_SHR(pThis, iPort))
|
---|
4891 | avail_bw = dev_spd == XHCI_SPD_SUPER ? 90 : 0;
|
---|
4892 | else
|
---|
4893 | /* For USB2 ports, report 80% available for HS and 90% for FS/LS. */
|
---|
4894 | switch (dev_spd)
|
---|
4895 | {
|
---|
4896 | case XHCI_SPD_HIGH:
|
---|
4897 | avail_bw = 80;
|
---|
4898 | break;
|
---|
4899 | case XHCI_SPD_FULL:
|
---|
4900 | case XHCI_SPD_LOW:
|
---|
4901 | avail_bw = 90;
|
---|
4902 | break;
|
---|
4903 | default:
|
---|
4904 | avail_bw = 0;
|
---|
4905 | }
|
---|
4906 |
|
---|
4907 | /* The first entry in the context is reserved. */
|
---|
4908 | bw_ctx[iPort + 1] = avail_bw;
|
---|
4909 | }
|
---|
4910 |
|
---|
4911 | /* Write back the bandwidth context. */
|
---|
4912 | PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysBwCtx, &bw_ctx, ctx_size);
|
---|
4913 |
|
---|
4914 | return cc;
|
---|
4915 | }
|
---|
4916 |
|
---|
4917 | #define NEC_MAGIC ('x' | ('H' << 8) | ('C' << 16) | ('I' << 24))
|
---|
4918 |
|
---|
4919 | /**
|
---|
4920 | * Take a 64-bit input, shake well, produce 32-bit token. This mechanism
|
---|
4921 | * prevents NEC/Renesas drivers from running on 3rd party hardware. Mirrors
|
---|
4922 | * code found in vendor's drivers.
|
---|
4923 | */
|
---|
4924 | static uint32_t xhciR3NecAuthenticate(uint64_t cookie)
|
---|
4925 | {
|
---|
4926 | uint32_t cookie_lo = RT_LODWORD(cookie);
|
---|
4927 | uint32_t cookie_hi = RT_HIDWORD(cookie);
|
---|
4928 | uint32_t shift_cnt;
|
---|
4929 | uint32_t token;
|
---|
4930 |
|
---|
4931 | shift_cnt = (cookie_hi >> 8) & 31;
|
---|
4932 | token = ASMRotateRightU32(cookie_lo - NEC_MAGIC, shift_cnt);
|
---|
4933 | shift_cnt = cookie_hi & 31;
|
---|
4934 | token += ASMRotateLeftU32(cookie_lo + NEC_MAGIC, shift_cnt);
|
---|
4935 | shift_cnt = (cookie_lo >> 16) & 31;
|
---|
4936 | token -= ASMRotateLeftU32(cookie_hi ^ NEC_MAGIC, shift_cnt);
|
---|
4937 |
|
---|
4938 | return ~token;
|
---|
4939 | }
|
---|
4940 |
|
---|
4941 | /**
|
---|
4942 | * Process a single command TRB and post completion information.
|
---|
4943 | */
|
---|
4944 | static int xhciR3ExecuteCommand(PPDMDEVINS pDevIns, PXHCI pThis, PXHCICC pThisCC, XHCI_COMMAND_TRB *pCmd)
|
---|
4945 | {
|
---|
4946 | XHCI_EVENT_TRB ed;
|
---|
4947 | uint32_t token;
|
---|
4948 | unsigned slot;
|
---|
4949 | unsigned cc;
|
---|
4950 | int rc = VINF_SUCCESS;
|
---|
4951 | LogFlowFunc(("Executing command %u (%s) @ %RGp\n", pCmd->gen.type,
|
---|
4952 | pCmd->gen.type < RT_ELEMENTS(g_apszTrbNames) ? g_apszTrbNames[pCmd->gen.type] : "WHAT?!!",
|
---|
4953 | (RTGCPHYS)pThis->cmdr_dqp));
|
---|
4954 |
|
---|
4955 | switch (pCmd->gen.type)
|
---|
4956 | {
|
---|
4957 | case XHCI_TRB_NOOP_CMD:
|
---|
4958 | /* No-op, slot ID is always zero. */
|
---|
4959 | rc = xhciR3PostCmdCompletion(pDevIns, pThis, XHCI_TCC_SUCCESS, 0);
|
---|
4960 | pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB);
|
---|
4961 | break;
|
---|
4962 |
|
---|
4963 | case XHCI_TRB_LINK:
|
---|
4964 | /* Link; set the dequeue pointer. CH bit is ignored. */
|
---|
4965 | Log(("Link: Ptr=%RGp IOC=%u TC=%u\n", pCmd->link.rseg_ptr, pCmd->link.ioc, pCmd->link.toggle));
|
---|
4966 | if (pCmd->link.ioc) /* Command completion event is optional! */
|
---|
4967 | rc = xhciR3PostCmdCompletion(pDevIns, pThis, XHCI_TCC_SUCCESS, 0);
|
---|
4968 | /* Update the dequeue pointer and flip DCS if required. */
|
---|
4969 | pThis->cmdr_dqp = pCmd->link.rseg_ptr & XHCI_TRDP_ADDR_MASK;
|
---|
4970 | pThis->cmdr_ccs = pThis->cmdr_ccs ^ pCmd->link.toggle;
|
---|
4971 | break;
|
---|
4972 |
|
---|
4973 | case XHCI_TRB_ENB_SLOT:
|
---|
4974 | /* Look for an empty device slot. */
|
---|
4975 | for (slot = 0; slot < RT_ELEMENTS(pThis->aSlotState); ++slot)
|
---|
4976 | {
|
---|
4977 | if (pThis->aSlotState[slot] == XHCI_DEVSLOT_EMPTY)
|
---|
4978 | {
|
---|
4979 | /* Found a slot - transition to enabled state. */
|
---|
4980 | pThis->aSlotState[slot] = XHCI_DEVSLOT_ENABLED;
|
---|
4981 | break;
|
---|
4982 | }
|
---|
4983 | }
|
---|
4984 | Log(("Enable Slot: found slot ID %u\n", IDX_TO_ID(slot)));
|
---|
4985 |
|
---|
4986 | /* Post command completion event. */
|
---|
4987 | if (slot == RT_ELEMENTS(pThis->aSlotState))
|
---|
4988 | xhciR3PostCmdCompletion(pDevIns, pThis, XHCI_TCC_NO_SLOTS, 0);
|
---|
4989 | else
|
---|
4990 | xhciR3PostCmdCompletion(pDevIns, pThis, XHCI_TCC_SUCCESS, IDX_TO_ID(slot));
|
---|
4991 |
|
---|
4992 | pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB);
|
---|
4993 | break;
|
---|
4994 |
|
---|
4995 | case XHCI_TRB_DIS_SLOT:
|
---|
4996 | /* Disable the given device slot. */
|
---|
4997 | Log(("Disable Slot: slot ID %u\n", pCmd->dsl.slot_id));
|
---|
4998 | cc = XHCI_TCC_SUCCESS;
|
---|
4999 | slot = ID_TO_IDX(pCmd->dsl.slot_id);
|
---|
5000 | if ((slot >= RT_ELEMENTS(pThis->aSlotState)) || (pThis->aSlotState[slot] == XHCI_DEVSLOT_EMPTY))
|
---|
5001 | cc = XHCI_TCC_SLOT_NOT_ENB;
|
---|
5002 | else
|
---|
5003 | {
|
---|
5004 | /// @todo set slot state of assoc. context to disabled
|
---|
5005 | pThis->aSlotState[slot] = XHCI_DEVSLOT_EMPTY;
|
---|
5006 | }
|
---|
5007 | xhciR3PostCmdCompletion(pDevIns, pThis, cc, pCmd->dsl.slot_id);
|
---|
5008 | pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB);
|
---|
5009 | break;
|
---|
5010 |
|
---|
5011 | case XHCI_TRB_ADDR_DEV:
|
---|
5012 | /* Address a device. */
|
---|
5013 | Log(("Address Device: slot ID %u, BSR=%u\n", pCmd->adr.slot_id, pCmd->adr.bsr));
|
---|
5014 | slot = ID_TO_IDX(pCmd->cfg.slot_id);
|
---|
5015 | if ((slot >= RT_ELEMENTS(pThis->aSlotState)) || (pThis->aSlotState[slot] == XHCI_DEVSLOT_EMPTY))
|
---|
5016 | cc = XHCI_TCC_SLOT_NOT_ENB;
|
---|
5017 | else
|
---|
5018 | cc = xhciR3AddressDevice(pDevIns, pThis, pThisCC, pCmd->adr.ctx_ptr, pCmd->adr.slot_id, pCmd->adr.bsr);
|
---|
5019 | xhciR3PostCmdCompletion(pDevIns, pThis, cc, pCmd->adr.slot_id);
|
---|
5020 | pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB);
|
---|
5021 | break;
|
---|
5022 |
|
---|
5023 | case XHCI_TRB_CFG_EP:
|
---|
5024 | /* Configure endpoint. */
|
---|
5025 | Log(("Configure endpoint: slot ID %u, DC=%u, Ctx @ %RGp\n", pCmd->cfg.slot_id, pCmd->cfg.dc, pCmd->cfg.ctx_ptr));
|
---|
5026 | slot = ID_TO_IDX(pCmd->cfg.slot_id);
|
---|
5027 | if ((slot >= RT_ELEMENTS(pThis->aSlotState)) || (pThis->aSlotState[slot] == XHCI_DEVSLOT_EMPTY))
|
---|
5028 | cc = XHCI_TCC_SLOT_NOT_ENB;
|
---|
5029 | else
|
---|
5030 | cc = xhciR3ConfigureDevice(pDevIns, pThis, pCmd->cfg.ctx_ptr, pCmd->cfg.slot_id, pCmd->cfg.dc);
|
---|
5031 | xhciR3PostCmdCompletion(pDevIns, pThis, cc, pCmd->cfg.slot_id);
|
---|
5032 | pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB);
|
---|
5033 | break;
|
---|
5034 |
|
---|
5035 | case XHCI_TRB_EVAL_CTX:
|
---|
5036 | /* Evaluate context. */
|
---|
5037 | Log(("Evaluate context: slot ID %u, Ctx @ %RGp\n", pCmd->evc.slot_id, pCmd->evc.ctx_ptr));
|
---|
5038 | slot = ID_TO_IDX(pCmd->evc.slot_id);
|
---|
5039 | if ((slot >= RT_ELEMENTS(pThis->aSlotState)) || (pThis->aSlotState[slot] == XHCI_DEVSLOT_EMPTY))
|
---|
5040 | cc = XHCI_TCC_SLOT_NOT_ENB;
|
---|
5041 | else
|
---|
5042 | cc = xhciR3EvalContext(pDevIns, pThis, pCmd->evc.ctx_ptr, pCmd->evc.slot_id);
|
---|
5043 | xhciR3PostCmdCompletion(pDevIns, pThis, cc, pCmd->evc.slot_id);
|
---|
5044 | pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB);
|
---|
5045 | break;
|
---|
5046 |
|
---|
5047 | case XHCI_TRB_RESET_EP:
|
---|
5048 | /* Reset the given endpoint. */
|
---|
5049 | Log(("Reset Endpoint: slot ID %u, EP ID %u, TSP=%u\n", pCmd->rse.slot_id, pCmd->rse.ep_id, pCmd->rse.tsp));
|
---|
5050 | cc = XHCI_TCC_SUCCESS;
|
---|
5051 | slot = ID_TO_IDX(pCmd->rse.slot_id);
|
---|
5052 | if ((slot >= RT_ELEMENTS(pThis->aSlotState)) || (pThis->aSlotState[slot] == XHCI_DEVSLOT_EMPTY))
|
---|
5053 | cc = XHCI_TCC_SLOT_NOT_ENB;
|
---|
5054 | else
|
---|
5055 | cc = xhciR3ResetEndpoint(pDevIns, pThis, pCmd->rse.slot_id, pCmd->rse.ep_id, pCmd->rse.tsp);
|
---|
5056 | xhciR3PostCmdCompletion(pDevIns, pThis, cc, pCmd->stp.slot_id);
|
---|
5057 | pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB);
|
---|
5058 | break;
|
---|
5059 |
|
---|
5060 | case XHCI_TRB_STOP_EP:
|
---|
5061 | /* Stop the given endpoint. */
|
---|
5062 | Log(("Stop Endpoint: slot ID %u, EP ID %u, SP=%u\n", pCmd->stp.slot_id, pCmd->stp.ep_id, pCmd->stp.sp));
|
---|
5063 | cc = XHCI_TCC_SUCCESS;
|
---|
5064 | slot = ID_TO_IDX(pCmd->stp.slot_id);
|
---|
5065 | if ((slot >= RT_ELEMENTS(pThis->aSlotState)) || (pThis->aSlotState[slot] == XHCI_DEVSLOT_EMPTY))
|
---|
5066 | cc = XHCI_TCC_SLOT_NOT_ENB;
|
---|
5067 | else
|
---|
5068 | cc = xhciR3StopEndpoint(pDevIns, pThis, pThisCC, pCmd->stp.slot_id, pCmd->stp.ep_id, pCmd->stp.sp);
|
---|
5069 | xhciR3PostCmdCompletion(pDevIns, pThis, cc, pCmd->stp.slot_id);
|
---|
5070 | pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB);
|
---|
5071 | break;
|
---|
5072 |
|
---|
5073 | case XHCI_TRB_SET_DEQ_PTR:
|
---|
5074 | /* Set TR Dequeue Pointer. */
|
---|
5075 | Log(("Set TRDP: slot ID %u, EP ID %u, TRDP=%RX64\n", pCmd->stdp.slot_id, pCmd->stdp.ep_id, pCmd->stdp.tr_dqp));
|
---|
5076 | cc = XHCI_TCC_SUCCESS;
|
---|
5077 | slot = ID_TO_IDX(pCmd->stdp.slot_id);
|
---|
5078 | if ((slot >= RT_ELEMENTS(pThis->aSlotState)) || (pThis->aSlotState[slot] == XHCI_DEVSLOT_EMPTY))
|
---|
5079 | cc = XHCI_TCC_SLOT_NOT_ENB;
|
---|
5080 | else
|
---|
5081 | cc = xhciR3SetTRDP(pDevIns, pThis, pCmd->stdp.slot_id, pCmd->stdp.ep_id, pCmd->stdp.tr_dqp);
|
---|
5082 | xhciR3PostCmdCompletion(pDevIns, pThis, cc, pCmd->stdp.slot_id);
|
---|
5083 | pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB);
|
---|
5084 | break;
|
---|
5085 |
|
---|
5086 | case XHCI_TRB_RESET_DEV:
|
---|
5087 | /* Reset a device. */
|
---|
5088 | Log(("Reset Device: slot ID %u\n", pCmd->rsd.slot_id));
|
---|
5089 | cc = XHCI_TCC_SUCCESS;
|
---|
5090 | slot = ID_TO_IDX(pCmd->rsd.slot_id);
|
---|
5091 | if ((slot >= RT_ELEMENTS(pThis->aSlotState)) || (pThis->aSlotState[slot] == XHCI_DEVSLOT_EMPTY))
|
---|
5092 | cc = XHCI_TCC_SLOT_NOT_ENB;
|
---|
5093 | else
|
---|
5094 | cc = xhciR3ResetDevice(pDevIns, pThis, pCmd->rsd.slot_id);
|
---|
5095 | xhciR3PostCmdCompletion(pDevIns, pThis, cc, pCmd->rsd.slot_id);
|
---|
5096 | pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB);
|
---|
5097 | break;
|
---|
5098 |
|
---|
5099 | case XHCI_TRB_GET_PORT_BW:
|
---|
5100 | /* Get port bandwidth. */
|
---|
5101 | Log(("Get Port Bandwidth: Dev Speed %u, Hub Slot ID %u, Context=%RX64\n", pCmd->gpbw.spd, pCmd->gpbw.slot_id, pCmd->gpbw.pbctx_ptr));
|
---|
5102 | cc = XHCI_TCC_SUCCESS;
|
---|
5103 | if (pCmd->gpbw.slot_id)
|
---|
5104 | cc = XHCI_TCC_PARM_ERR; /* Potential undefined behavior, see 4.6.15. */
|
---|
5105 | else
|
---|
5106 | cc = xhciR3GetPortBandwidth(pDevIns, pThis, pCmd->gpbw.spd, pCmd->gpbw.slot_id, pCmd->gpbw.pbctx_ptr);
|
---|
5107 | xhciR3PostCmdCompletion(pDevIns, pThis, cc, 0);
|
---|
5108 | pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB);
|
---|
5109 | break;
|
---|
5110 |
|
---|
5111 | case NEC_TRB_GET_FW_VER:
|
---|
5112 | /* Get NEC firmware version. */
|
---|
5113 | Log(("Get NEC firmware version\n"));
|
---|
5114 | cc = XHCI_TCC_SUCCESS;
|
---|
5115 |
|
---|
5116 | RT_ZERO(ed);
|
---|
5117 | ed.nce.word1 = NEC_FW_REV;
|
---|
5118 | ed.nce.trb_ptr = pThis->cmdr_dqp;
|
---|
5119 | ed.nce.cc = cc;
|
---|
5120 | ed.nce.type = NEC_TRB_CMD_CMPL;
|
---|
5121 |
|
---|
5122 | xhciR3WriteEvent(pDevIns, pThis, &ed, XHCI_PRIMARY_INTERRUPTER, false);
|
---|
5123 |
|
---|
5124 | pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB);
|
---|
5125 | break;
|
---|
5126 |
|
---|
5127 | case NEC_TRB_AUTHENTICATE:
|
---|
5128 | /* NEC authentication. */
|
---|
5129 | Log(("NEC authentication, cookie %RX64\n", pCmd->nac.cookie));
|
---|
5130 | cc = XHCI_TCC_SUCCESS;
|
---|
5131 |
|
---|
5132 | token = xhciR3NecAuthenticate(pCmd->nac.cookie);
|
---|
5133 | RT_ZERO(ed);
|
---|
5134 | ed.nce.word1 = RT_LOWORD(token);
|
---|
5135 | ed.nce.word2 = RT_HIWORD(token);
|
---|
5136 | ed.nce.trb_ptr = pThis->cmdr_dqp;
|
---|
5137 | ed.nce.cc = cc;
|
---|
5138 | ed.nce.type = NEC_TRB_CMD_CMPL;
|
---|
5139 |
|
---|
5140 | xhciR3WriteEvent(pDevIns, pThis, &ed, XHCI_PRIMARY_INTERRUPTER, false);
|
---|
5141 |
|
---|
5142 | pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB);
|
---|
5143 | break;
|
---|
5144 |
|
---|
5145 | default:
|
---|
5146 | Log(("Unsupported command!\n"));
|
---|
5147 | pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB);
|
---|
5148 | break;
|
---|
5149 | }
|
---|
5150 |
|
---|
5151 | return rc;
|
---|
5152 | }
|
---|
5153 |
|
---|
5154 |
|
---|
5155 | /**
|
---|
5156 | * Stop the Command Ring.
|
---|
5157 | */
|
---|
5158 | static int xhciR3StopCommandRing(PPDMDEVINS pDevIns, PXHCI pThis)
|
---|
5159 | {
|
---|
5160 | LogFlowFunc(("Command Ring stopping\n"));
|
---|
5161 |
|
---|
5162 | Assert(pThis->crcr & (XHCI_CRCR_CA | XHCI_CRCR_CS));
|
---|
5163 | Assert(pThis->crcr & XHCI_CRCR_CRR);
|
---|
5164 | ASMAtomicAndU64(&pThis->crcr, ~(XHCI_CRCR_CRR | XHCI_CRCR_CA | XHCI_CRCR_CS));
|
---|
5165 | return xhciR3PostCmdCompletion(pDevIns, pThis, XHCI_TCC_CMDR_STOPPED, 0);
|
---|
5166 | }
|
---|
5167 |
|
---|
5168 |
|
---|
5169 | /**
|
---|
5170 | * Process the xHCI command ring.
|
---|
5171 | */
|
---|
5172 | static int xhciR3ProcessCommandRing(PPDMDEVINS pDevIns, PXHCI pThis, PXHCICC pThisCC)
|
---|
5173 | {
|
---|
5174 | RTGCPHYS GCPhysCmdTRB;
|
---|
5175 | XHCI_COMMAND_TRB cmd; /* Command Descriptor */
|
---|
5176 | unsigned cCmds;
|
---|
5177 |
|
---|
5178 | Assert(pThis->crcr & XHCI_CRCR_CRR);
|
---|
5179 | LogFlowFunc(("Processing commands...\n"));
|
---|
5180 |
|
---|
5181 | for (cCmds = 0;; cCmds++)
|
---|
5182 | {
|
---|
5183 | /* First check if the xHC is running at all. */
|
---|
5184 | if (!(pThis->cmd & XHCI_CMD_RS))
|
---|
5185 | {
|
---|
5186 | /* Note that this will call xhciR3PostCmdCompletion() which will
|
---|
5187 | * end up doing nothing because R/S is clear.
|
---|
5188 | */
|
---|
5189 | xhciR3StopCommandRing(pDevIns, pThis);
|
---|
5190 | break;
|
---|
5191 | }
|
---|
5192 |
|
---|
5193 | /* Check if Command Ring was stopped in the meantime. */
|
---|
5194 | if (pThis->crcr & (XHCI_CRCR_CS | XHCI_CRCR_CA))
|
---|
5195 | {
|
---|
5196 | /* NB: We currently do not abort commands. If we did, we would
|
---|
5197 | * abort the currently running command and complete it with
|
---|
5198 | * the XHCI_TCC_CMD_ABORTED status.
|
---|
5199 | */
|
---|
5200 | xhciR3StopCommandRing(pDevIns, pThis);
|
---|
5201 | break;
|
---|
5202 | }
|
---|
5203 |
|
---|
5204 | /* Fetch the command TRB. */
|
---|
5205 | GCPhysCmdTRB = pThis->cmdr_dqp;
|
---|
5206 | PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysCmdTRB, &cmd, sizeof(cmd));
|
---|
5207 |
|
---|
5208 | /* Make sure the Cycle State matches. */
|
---|
5209 | if ((bool)cmd.gen.cycle == pThis->cmdr_ccs)
|
---|
5210 | xhciR3ExecuteCommand(pDevIns, pThis, pThisCC, &cmd);
|
---|
5211 | else
|
---|
5212 | {
|
---|
5213 | Log(("Command Ring empty\n"));
|
---|
5214 | break;
|
---|
5215 | }
|
---|
5216 |
|
---|
5217 | /* Check if we're being fed suspiciously many commands. */
|
---|
5218 | if (cCmds > XHCI_MAX_NUM_CMDS)
|
---|
5219 | {
|
---|
5220 | /* Clear the R/S bit and any command ring running bits.
|
---|
5221 | * Note that the caller (xhciR3WorkerLoop) will set XHCI_STATUS_HCH.
|
---|
5222 | */
|
---|
5223 | ASMAtomicAndU32(&pThis->cmd, ~XHCI_CMD_RS);
|
---|
5224 | ASMAtomicAndU64(&pThis->crcr, ~(XHCI_CRCR_CRR | XHCI_CRCR_CA | XHCI_CRCR_CS));
|
---|
5225 | ASMAtomicOrU32(&pThis->status, XHCI_STATUS_HCE);
|
---|
5226 | LogRelMax(10, ("xHCI: Attempted to execute too many commands, stopping xHC!\n"));
|
---|
5227 | break;
|
---|
5228 | }
|
---|
5229 | }
|
---|
5230 | return VINF_SUCCESS;
|
---|
5231 | }
|
---|
5232 |
|
---|
5233 |
|
---|
5234 | /**
|
---|
5235 | * The xHCI asynchronous worker thread.
|
---|
5236 | *
|
---|
5237 | * @returns VBox status code.
|
---|
5238 | * @param pDevIns The xHCI device instance.
|
---|
5239 | * @param pThread The worker thread.
|
---|
5240 | */
|
---|
5241 | static DECLCALLBACK(int) xhciR3WorkerLoop(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
|
---|
5242 | {
|
---|
5243 | PXHCI pThis = PDMDEVINS_2_DATA(pDevIns, PXHCI);
|
---|
5244 | PXHCICC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PXHCICC);
|
---|
5245 | int rc;
|
---|
5246 |
|
---|
5247 | LogFlow(("xHCI entering worker thread loop.\n"));
|
---|
5248 | if (pThread->enmState == PDMTHREADSTATE_INITIALIZING)
|
---|
5249 | return VINF_SUCCESS;
|
---|
5250 |
|
---|
5251 | while (pThread->enmState == PDMTHREADSTATE_RUNNING)
|
---|
5252 | {
|
---|
5253 | uint8_t uSlotID;
|
---|
5254 |
|
---|
5255 | bool fNotificationSent = ASMAtomicXchgBool(&pThis->fNotificationSent, false);
|
---|
5256 | if (!fNotificationSent)
|
---|
5257 | {
|
---|
5258 | rc = PDMDevHlpSUPSemEventWaitNoResume(pDevIns, pThis->hEvtProcess, RT_INDEFINITE_WAIT);
|
---|
5259 | AssertLogRelMsgReturn(RT_SUCCESS(rc) || rc == VERR_INTERRUPTED, ("%Rrc\n", rc), rc);
|
---|
5260 | if (RT_UNLIKELY(pThread->enmState != PDMTHREADSTATE_RUNNING))
|
---|
5261 | break;
|
---|
5262 | LogFlowFunc(("Woken up with rc=%Rrc\n", rc));
|
---|
5263 | ASMAtomicWriteBool(&pThis->fNotificationSent, false);
|
---|
5264 | }
|
---|
5265 |
|
---|
5266 | RTCritSectEnter(&pThisCC->CritSectThrd);
|
---|
5267 |
|
---|
5268 | if (pThis->crcr & XHCI_CRCR_CRR)
|
---|
5269 | xhciR3ProcessCommandRing(pDevIns, pThis, pThisCC);
|
---|
5270 |
|
---|
5271 | /* Run down the list of doorbells that are ringing. */
|
---|
5272 | for (uSlotID = 1; uSlotID < XHCI_NDS; ++uSlotID)
|
---|
5273 | {
|
---|
5274 | if (pThis->aSlotState[ID_TO_IDX(uSlotID)] >= XHCI_DEVSLOT_ENABLED)
|
---|
5275 | {
|
---|
5276 | while (pThis->aBellsRung[ID_TO_IDX(uSlotID)])
|
---|
5277 | {
|
---|
5278 | uint8_t bit;
|
---|
5279 | uint32_t uDBVal = 0;
|
---|
5280 |
|
---|
5281 | for (bit = 0; bit < 32; ++bit)
|
---|
5282 | if (pThis->aBellsRung[ID_TO_IDX(uSlotID)] & (1 << bit))
|
---|
5283 | {
|
---|
5284 | uDBVal = bit;
|
---|
5285 | break;
|
---|
5286 | }
|
---|
5287 |
|
---|
5288 | Log2(("Stop ringing bell for slot %u, DCI %u\n", uSlotID, uDBVal));
|
---|
5289 | ASMAtomicAndU32(&pThis->aBellsRung[ID_TO_IDX(uSlotID)], ~(1 << uDBVal));
|
---|
5290 | xhciR3ProcessDevCtx(pDevIns, pThis, pThisCC, uSlotID, uDBVal);
|
---|
5291 | }
|
---|
5292 | }
|
---|
5293 | }
|
---|
5294 |
|
---|
5295 | /* If the R/S bit is no longer set, halt the xHC. */
|
---|
5296 | if (!(pThis->cmd & XHCI_CMD_RS))
|
---|
5297 | {
|
---|
5298 | Log(("R/S clear, halting the xHC.\n"));
|
---|
5299 | ASMAtomicOrU32(&pThis->status, XHCI_STATUS_HCH);
|
---|
5300 | }
|
---|
5301 |
|
---|
5302 | RTCritSectLeave(&pThisCC->CritSectThrd);
|
---|
5303 | } /* While running */
|
---|
5304 |
|
---|
5305 | LogFlow(("xHCI worker thread exiting.\n"));
|
---|
5306 | return VINF_SUCCESS;
|
---|
5307 | }
|
---|
5308 |
|
---|
5309 |
|
---|
5310 | /**
|
---|
5311 | * Unblock the worker thread so it can respond to a state change.
|
---|
5312 | *
|
---|
5313 | * @returns VBox status code.
|
---|
5314 | * @param pDevIns The xHCI device instance.
|
---|
5315 | * @param pThread The worker thread.
|
---|
5316 | */
|
---|
5317 | static DECLCALLBACK(int) xhciR3WorkerWakeUp(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
|
---|
5318 | {
|
---|
5319 | NOREF(pThread);
|
---|
5320 | PXHCI pThis = PDMDEVINS_2_DATA(pDevIns, PXHCI);
|
---|
5321 |
|
---|
5322 | return PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtProcess);
|
---|
5323 | }
|
---|
5324 |
|
---|
5325 |
|
---|
5326 | /**
|
---|
5327 | * @interface_method_impl{PDMIBASE,pfnQueryInterface}
|
---|
5328 | */
|
---|
5329 | static DECLCALLBACK(void *) xhciR3RhQueryInterface(PPDMIBASE pInterface, const char *pszIID)
|
---|
5330 | {
|
---|
5331 | PXHCIROOTHUBR3 pRh = RT_FROM_MEMBER(pInterface, XHCIROOTHUBR3, IBase);
|
---|
5332 | PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pRh->IBase);
|
---|
5333 | PDMIBASE_RETURN_INTERFACE(pszIID, VUSBIROOTHUBPORT, &pRh->IRhPort);
|
---|
5334 | return NULL;
|
---|
5335 | }
|
---|
5336 |
|
---|
5337 | /**
|
---|
5338 | * @interface_method_impl{PDMIBASE,pfnQueryInterface}
|
---|
5339 | */
|
---|
5340 | static DECLCALLBACK(void *) xhciR3QueryStatusInterface(PPDMIBASE pInterface, const char *pszIID)
|
---|
5341 | {
|
---|
5342 | PXHCIR3 pThisCC = RT_FROM_MEMBER(pInterface, XHCIR3, IBase);
|
---|
5343 | PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThisCC->IBase);
|
---|
5344 | PDMIBASE_RETURN_INTERFACE(pszIID, PDMILEDPORTS, &pThisCC->ILeds);
|
---|
5345 | return NULL;
|
---|
5346 | }
|
---|
5347 |
|
---|
5348 | /**
|
---|
5349 | * Gets the pointer to the status LED of a unit.
|
---|
5350 | *
|
---|
5351 | * @returns VBox status code.
|
---|
5352 | * @param pInterface Pointer to the interface structure containing the called function pointer.
|
---|
5353 | * @param iLUN The unit which status LED we desire.
|
---|
5354 | * @param ppLed Where to store the LED pointer.
|
---|
5355 | */
|
---|
5356 | static DECLCALLBACK(int) xhciR3QueryStatusLed(PPDMILEDPORTS pInterface, unsigned iLUN, PPDMLED *ppLed)
|
---|
5357 | {
|
---|
5358 | PXHCICC pThisCC = RT_FROM_MEMBER(pInterface, XHCIR3, ILeds);
|
---|
5359 |
|
---|
5360 | if (iLUN < XHCI_NUM_LUNS)
|
---|
5361 | {
|
---|
5362 | *ppLed = iLUN ? &pThisCC->RootHub3.Led : &pThisCC->RootHub2.Led;
|
---|
5363 | Assert((*ppLed)->u32Magic == PDMLED_MAGIC);
|
---|
5364 | return VINF_SUCCESS;
|
---|
5365 | }
|
---|
5366 | return VERR_PDM_LUN_NOT_FOUND;
|
---|
5367 | }
|
---|
5368 |
|
---|
5369 |
|
---|
5370 | /**
|
---|
5371 | * Get the number of ports available in the hub.
|
---|
5372 | *
|
---|
5373 | * @returns The number of ports available.
|
---|
5374 | * @param pInterface Pointer to this structure.
|
---|
5375 | * @param pAvailable Bitmap indicating the available ports. Set bit == available port.
|
---|
5376 | */
|
---|
5377 | static DECLCALLBACK(unsigned) xhciR3RhGetAvailablePorts(PVUSBIROOTHUBPORT pInterface, PVUSBPORTBITMAP pAvailable)
|
---|
5378 | {
|
---|
5379 | PXHCIROOTHUBR3 pRh = RT_FROM_MEMBER(pInterface, XHCIROOTHUBR3, IRhPort);
|
---|
5380 | PXHCICC pThisCC = pRh->pXhciR3;
|
---|
5381 | PPDMDEVINS pDevIns = pThisCC->pDevIns;
|
---|
5382 | unsigned iPort;
|
---|
5383 | unsigned cPorts = 0;
|
---|
5384 | LogFlow(("xhciR3RhGetAvailablePorts\n"));
|
---|
5385 |
|
---|
5386 | memset(pAvailable, 0, sizeof(*pAvailable));
|
---|
5387 |
|
---|
5388 | int const rcLock = PDMDevHlpCritSectEnter(pDevIns, pDevIns->pCritSectRoR3, VERR_IGNORED);
|
---|
5389 | PDM_CRITSECT_RELEASE_ASSERT_RC_DEV(pDevIns, pDevIns->pCritSectRoR3, rcLock);
|
---|
5390 |
|
---|
5391 | for (iPort = pRh->uPortBase; iPort < (unsigned)pRh->uPortBase + pRh->cPortsImpl; iPort++)
|
---|
5392 | {
|
---|
5393 | Assert(iPort < XHCI_NDP_CFG(PDMDEVINS_2_DATA(pDevIns, PXHCI)));
|
---|
5394 | if (!pThisCC->aPorts[iPort].fAttached)
|
---|
5395 | {
|
---|
5396 | cPorts++;
|
---|
5397 | ASMBitSet(pAvailable, IDX_TO_ID(iPort - pRh->uPortBase));
|
---|
5398 | }
|
---|
5399 | }
|
---|
5400 |
|
---|
5401 | PDMDevHlpCritSectLeave(pDevIns, pDevIns->pCritSectRoR3);
|
---|
5402 | return cPorts;
|
---|
5403 | }
|
---|
5404 |
|
---|
5405 |
|
---|
5406 | /**
|
---|
5407 | * Get the supported USB versions for USB2 hubs.
|
---|
5408 | *
|
---|
5409 | * @returns The mask of supported USB versions.
|
---|
5410 | * @param pInterface Pointer to this structure.
|
---|
5411 | */
|
---|
5412 | static DECLCALLBACK(uint32_t) xhciR3RhGetUSBVersions2(PVUSBIROOTHUBPORT pInterface)
|
---|
5413 | {
|
---|
5414 | RT_NOREF(pInterface);
|
---|
5415 | return VUSB_STDVER_11 | VUSB_STDVER_20;
|
---|
5416 | }
|
---|
5417 |
|
---|
5418 |
|
---|
5419 | /**
|
---|
5420 | * Get the supported USB versions for USB2 hubs.
|
---|
5421 | *
|
---|
5422 | * @returns The mask of supported USB versions.
|
---|
5423 | * @param pInterface Pointer to this structure.
|
---|
5424 | */
|
---|
5425 | static DECLCALLBACK(uint32_t) xhciR3RhGetUSBVersions3(PVUSBIROOTHUBPORT pInterface)
|
---|
5426 | {
|
---|
5427 | RT_NOREF(pInterface);
|
---|
5428 | return VUSB_STDVER_30;
|
---|
5429 | }
|
---|
5430 |
|
---|
5431 |
|
---|
5432 | /**
|
---|
5433 | * Start sending SOF tokens across the USB bus, lists are processed in the
|
---|
5434 | * next frame.
|
---|
5435 | */
|
---|
5436 | static void xhciR3BusStart(PPDMDEVINS pDevIns, PXHCI pThis, PXHCICC pThisCC)
|
---|
5437 | {
|
---|
5438 | unsigned iPort;
|
---|
5439 |
|
---|
5440 | pThisCC->RootHub2.pIRhConn->pfnPowerOn(pThisCC->RootHub2.pIRhConn);
|
---|
5441 | pThisCC->RootHub3.pIRhConn->pfnPowerOn(pThisCC->RootHub3.pIRhConn);
|
---|
5442 | // xhciR3BumpFrameNumber(pThis);
|
---|
5443 |
|
---|
5444 | Log(("xHCI: Bus started\n"));
|
---|
5445 |
|
---|
5446 | Assert(pThis->status & |
---|