VirtualBox

source: vbox/trunk/src/VBox/Devices/PC/DevDMA.cpp@ 38188

Last change on this file since 38188 was 38188, checked in by vboxsync, 13 years ago

DMA: Handle word access to page registers.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 30.9 KB
Line 
1/* $Id: DevDMA.cpp 38188 2011-07-26 14:41:26Z vboxsync $ */
2/** @file
3 * DevDMA - DMA Controller Device.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 * --------------------------------------------------------------------
17 *
18 * This code is loosely based on:
19 *
20 * QEMU DMA emulation
21 *
22 * Copyright (c) 2003 Vassili Karpov (malc)
23 *
24 * Permission is hereby granted, free of charge, to any person obtaining a copy
25 * of this software and associated documentation files (the "Software"), to deal
26 * in the Software without restriction, including without limitation the rights
27 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
28 * copies of the Software, and to permit persons to whom the Software is
29 * furnished to do so, subject to the following conditions:
30 *
31 * The above copyright notice and this permission notice shall be included in
32 * all copies or substantial portions of the Software.
33 *
34 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
35 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
36 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
37 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
38 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
39 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
40 * THE SOFTWARE.
41 */
42
43/*******************************************************************************
44* Header Files *
45*******************************************************************************/
46#define LOG_GROUP LOG_GROUP_DEV_DMA
47#include <VBox/vmm/pdmdev.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/assert.h>
52#include <iprt/string.h>
53
54#include <stdio.h>
55#include <stdlib.h>
56
57#include "VBoxDD.h"
58
59
60/* DMA Overview and notes
61 *
62 * Modern PCs typically emulate AT-compatible DMA. The IBM PC/AT used dual
63 * cascaded 8237A DMA controllers, augmented with a 74LS612 memory mapper.
64 * The 8237As are 8-bit parts, only capable of addressing up to 64KB; the
65 * 74LS612 extends addressing to 24 bits. That leads to well known and
66 * inconvenient DMA limitations:
67 * - DMA can only access physical memory under the 16MB line
68 * - DMA transfers must occur within a 64KB/128KB 'page'
69 *
70 * The 16-bit DMA controller added in the PC/AT shifts all 8237A addresses
71 * left by one, including the control registers addresses. The DMA register
72 * offsets (except for the page registers) are therefore "double spaced".
73 *
74 * Due to the address shifting, the DMA controller decodes more addresses
75 * than are usually documented, with aliasing. See the ICH8 datasheet.
76 *
77 * In the IBM PC and PC/XT, DMA channel 0 was used for memory refresh, thus
78 * preventing the use of memory-to-memory DMA transfers (which use channels
79 * 0 and 1). In the PC/AT, memory-to-memory DMA was theoretically possible.
80 * However, it would transfer a single byte at a time, while the CPU can
81 * transfer two (on a 286) or four (on a 386+) bytes at a time. On many
82 * compatibles, memory-to-memory DMA is not even implemented at all, and
83 * therefore has no practical use.
84 *
85 * Auto-init mode is handled implicitly; a device's transfer handler may
86 * return an end count lower than the start count.
87 *
88 * Naming convention: 'channel' refers to a system-wide DMA channel (0-7)
89 * while 'chidx' refers to a DMA channel index within a controller (0-3).
90 *
91 * References:
92 * - IBM Personal Computer AT Technical Reference, 1984
93 * - Intel 8237A-5 Datasheet, 1993
94 * - Frank van Gilluwe, The Undocumented PC, 1994
95 * - OPTi 82C206 Data Book, 1996 (or Chips & Tech 82C206)
96 * - Intel ICH8 Datasheet, 2007
97 */
98
99
100/* Saved state versions. */
101#define DMA_SAVESTATE_OLD 1 /* The original saved state. */
102#define DMA_SAVESTATE_CURRENT 2 /* The new and improved saved state. */
103
104/* State information for a single DMA channel. */
105typedef struct {
106 void *pvUser; /* User specific context. */
107 PFNDMATRANSFERHANDLER pfnXferHandler; /* Transfer handler for channel. */
108 uint16_t u16BaseAddr; /* Base address for transfers. */
109 uint16_t u16BaseCount; /* Base count for transfers. */
110 uint16_t u16CurAddr; /* Current address. */
111 uint16_t u16CurCount; /* Current count. */
112 uint8_t u8Mode; /* Channel mode. */
113} DMAChannel;
114
115/* State information for a DMA controller (DMA8 or DMA16). */
116typedef struct {
117 DMAChannel ChState[4]; /* Per-channel state. */
118 uint8_t au8Page[8]; /* Page registers (A16-A23). */
119 uint8_t au8PageHi[8]; /* High page registers (A24-A31). */
120 uint8_t u8Command; /* Command register. */
121 uint8_t u8Status; /* Status register. */
122 uint8_t u8Mask; /* Mask register. */
123 uint8_t u8Temp; /* Temporary (mem/mem) register. */
124 uint8_t u8ModeCtr; /* Mode register counter for reads. */
125 bool bHiByte; /* Byte pointer (T/F -> high/low). */
126 uint32_t is16bit; /* True for 16-bit DMA. */
127} DMAControl;
128
129/* Complete DMA state information. */
130typedef struct {
131 PPDMDEVINS pDevIns; /* Device instance. */
132 PCPDMDMACHLP pHlp; /* PDM DMA helpers. */
133 DMAControl DMAC[2]; /* Two DMA controllers. */
134} DMAState;
135
136/* DMA command register bits. */
137enum {
138 CMD_MEMTOMEM = 0x01, /* Enable mem-to-mem trasfers. */
139 CMD_ADRHOLD = 0x02, /* Address hold for mem-to-mem. */
140 CMD_DISABLE = 0x04, /* Disable controller. */
141 CMD_COMPRTIME = 0x08, /* Compressed timing. */
142 CMD_ROTPRIO = 0x10, /* Rotating priority. */
143 CMD_EXTWR = 0x20, /* Extended write. */
144 CMD_DREQHI = 0x40, /* DREQ is active high if set. */
145 CMD_DACKHI = 0x80, /* DACK is active high if set. */
146 CMD_UNSUPPORTED = CMD_MEMTOMEM | CMD_ADRHOLD | CMD_COMPRTIME
147 | CMD_EXTWR | CMD_DREQHI | CMD_DACKHI
148};
149
150/* DMA control register offsets for read accesses. */
151enum {
152 CTL_R_STAT, /* Read status registers. */
153 CTL_R_DMAREQ, /* Read DRQ register. */
154 CTL_R_CMD, /* Read command register. */
155 CTL_R_MODE, /* Read mode register. */
156 CTL_R_SETBPTR, /* Set byte pointer flip-flop. */
157 CTL_R_TEMP, /* Read temporary register. */
158 CTL_R_CLRMODE, /* Clear mode register counter. */
159 CTL_R_MASK /* Read all DRQ mask bits. */
160};
161
162/* DMA control register offsets for read accesses. */
163enum {
164 CTL_W_CMD, /* Write command register. */
165 CTL_W_DMAREQ, /* Write DRQ register. */
166 CTL_W_MASKONE, /* Write single DRQ mask bit. */
167 CTL_W_MODE, /* Write mode register. */
168 CTL_W_CLRBPTR, /* Clear byte pointer flip-flop. */
169 CTL_W_MASTRCLR, /* Master clear. */
170 CTL_W_CLRMASK, /* Clear all DRQ mask bits. */
171 CTL_W_MASK /* Write all DRQ mask bits. */
172};
173
174/* Convert DMA channel number (0-7) to controller number (0-1). */
175#define DMACH2C(c) (c < 4 ? 0 : 1)
176
177static int dmaChannelMap[8] = {-1, 2, 3, 1, -1, -1, -1, 0};
178/* Map a DMA page register offset (0-7) to channel index (0-3). */
179#define DMAPG2CX(c) (dmaChannelMap[c])
180
181static int dmaMapChannel[4] = {7, 3, 1, 2};
182/* Map a channel index (0-3) to DMA page register offset (0-7). */
183#define DMACX2PG(c) (dmaMapChannel[c])
184/* Map a channel number (0-7) to DMA page register offset (0-7). */
185#define DMACH2PG(c) (dmaMapChannel[c & 3])
186
187/* Test the decrement bit of mode register. */
188#define IS_MODE_DEC(c) ((c) & 0x20)
189/* Test the auto-init bit of mode register. */
190#define IS_MODE_AI(c) ((c) & 0x10)
191
192/* Perform a master clear (reset) on a DMA controller. */
193static void dmaClear(DMAControl *dc)
194{
195 dc->u8Command = 0;
196 dc->u8Status = 0;
197 dc->u8Temp = 0;
198 dc->u8ModeCtr = 0;
199 dc->bHiByte = false;
200 dc->u8Mask = ~0;
201}
202
203/* Read the byte pointer and flip it. */
204static inline bool dmaReadBytePtr(DMAControl *dc)
205{
206 bool bHighByte;
207
208 bHighByte = !!dc->bHiByte;
209 dc->bHiByte ^= 1;
210 return bHighByte;
211}
212
213/* DMA address registers writes and reads. */
214
215static DECLCALLBACK(int) dmaWriteAddr(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port,
216 uint32_t u32, unsigned cb)
217{
218 if (cb == 1)
219 {
220 DMAControl *dc = (DMAControl *)pvUser;
221 DMAChannel *ch;
222 int chidx, reg, is_count;
223
224 Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */
225 reg = (port >> dc->is16bit) & 0x0f;
226 chidx = reg >> 1;
227 is_count = reg & 1;
228 ch = &dc->ChState[chidx];
229 if (dmaReadBytePtr(dc))
230 {
231 /* Write the high byte. */
232 if (is_count)
233 ch->u16BaseCount = RT_MAKE_U16(ch->u16BaseCount, u32);
234 else
235 ch->u16BaseAddr = RT_MAKE_U16(ch->u16BaseAddr, u32);
236
237 ch->u16CurCount = 0;
238 ch->u16CurAddr = ch->u16BaseAddr;
239 }
240 else
241 {
242 /* Write the low byte. */
243 if (is_count)
244 ch->u16BaseCount = RT_MAKE_U16(u32, RT_HIBYTE(ch->u16BaseCount));
245 else
246 ch->u16BaseAddr = RT_MAKE_U16(u32, RT_HIBYTE(ch->u16BaseAddr));
247 }
248 Log2(("dmaWriteAddr: port %#06x, chidx %d, data %#02x\n",
249 port, chidx, u32));
250 }
251 else
252 {
253 /* Likely a guest bug. */
254 Log(("Bad size write to count register %#x (size %d, data %#x)\n",
255 port, cb, u32));
256 }
257 return VINF_SUCCESS;
258}
259
260static DECLCALLBACK(int) dmaReadAddr(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port,
261 uint32_t *pu32, unsigned cb)
262{
263 if (cb == 1)
264 {
265 DMAControl *dc = (DMAControl *)pvUser;
266 DMAChannel *ch;
267 int chidx, reg, val, dir;
268 int bptr;
269
270 reg = (port >> dc->is16bit) & 0x0f;
271 chidx = reg >> 1;
272 ch = &dc->ChState[chidx];
273
274 dir = IS_MODE_DEC(ch->u8Mode) ? -1 : 1;
275 if (reg & 1)
276 val = ch->u16BaseCount - ch->u16CurCount;
277 else
278 val = ch->u16CurAddr + ch->u16CurCount * dir;
279
280 bptr = dmaReadBytePtr(dc);
281 *pu32 = RT_LOBYTE(val >> (bptr * 8));
282
283 Log(("Count read: port %#06x, reg %#04x, data %#x\n", port, reg, val));
284 return VINF_SUCCESS;
285 }
286 else
287 return VERR_IOM_IOPORT_UNUSED;
288}
289
290/* DMA control registers writes and reads. */
291
292static DECLCALLBACK(int) dmaWriteCtl(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port,
293 uint32_t u32, unsigned cb)
294{
295 if (cb == 1)
296 {
297 DMAControl *dc = (DMAControl *)pvUser;
298 int chidx = 0;
299 int reg;
300
301 reg = ((port >> dc->is16bit) & 0x0f) - 8;
302 Assert((reg >= CTL_W_CMD && reg <= CTL_W_MASK));
303 Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */
304
305 switch (reg) {
306 case CTL_W_CMD:
307 /* Unsupported commands are entirely ignored. */
308 if (u32 & CMD_UNSUPPORTED)
309 {
310 Log(("DMA command %#x is not supported, ignoring!\n", u32));
311 break;
312 }
313 dc->u8Command = u32;
314 break;
315 case CTL_W_DMAREQ:
316 chidx = u32 & 3;
317 if (u32 & 4)
318 dc->u8Status |= 1 << (chidx + 4);
319 else
320 dc->u8Status &= ~(1 << (chidx + 4));
321 dc->u8Status &= ~(1 << chidx); /* Clear TC for channel. */
322 break;
323 case CTL_W_MASKONE:
324 chidx = u32 & 3;
325 if (u32 & 4)
326 dc->u8Mask |= 1 << chidx;
327 else
328 dc->u8Mask &= ~(1 << chidx);
329 break;
330 case CTL_W_MODE:
331 {
332 int op, opmode;
333
334 chidx = u32 & 3;
335 op = (u32 >> 2) & 3;
336 opmode = (u32 >> 6) & 3;
337 Log2(("chidx %d, op %d, %sauto-init, %screment, opmode %d\n",
338 chidx, op, IS_MODE_AI(u32) ? "" : "no ",
339 IS_MODE_DEC(u32) ? "de" : "in", opmode));
340
341 dc->ChState[chidx].u8Mode = u32;
342 break;
343 }
344 case CTL_W_CLRBPTR:
345 dc->bHiByte = false;
346 break;
347 case CTL_W_MASTRCLR:
348 dmaClear(dc);
349 break;
350 case CTL_W_CLRMASK:
351 dc->u8Mask = 0;
352 break;
353 case CTL_W_MASK:
354 dc->u8Mask = u32;
355 break;
356 default:
357 Assert(0);
358 break;
359 }
360 Log(("dmaWriteCtl: port %#06x, chidx %d, data %#02x\n",
361 port, chidx, u32));
362 }
363 else
364 {
365 /* Likely a guest bug. */
366 Log(("Bad size write to controller register %#x (size %d, data %#x)\n",
367 port, cb, u32));
368 }
369 return VINF_SUCCESS;
370}
371
372static DECLCALLBACK(int) dmaReadCtl(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port,
373 uint32_t *pu32, unsigned cb)
374{
375 if (cb == 1)
376 {
377 DMAControl *dc = (DMAControl *)pvUser;
378 uint8_t val = 0;
379 int reg;
380
381 reg = ((port >> dc->is16bit) & 0x0f) - 8;
382 Assert((reg >= CTL_R_STAT && reg <= CTL_R_MASK));
383
384 switch (reg) {
385 case CTL_R_STAT:
386 val = dc->u8Status;
387 dc->u8Status &= 0xf0; /* A read clears all TCs. */
388 break;
389 case CTL_R_DMAREQ:
390 val = (dc->u8Status >> 4) | 0xf0;
391 break;
392 case CTL_R_CMD:
393 val = dc->u8Command;
394 break;
395 case CTL_R_MODE:
396 val = dc->ChState[dc->u8ModeCtr].u8Mode | 3;
397 dc->u8ModeCtr = (dc->u8ModeCtr + 1) & 3;
398 case CTL_R_SETBPTR:
399 dc->bHiByte = true;
400 break;
401 case CTL_R_TEMP:
402 val = dc->u8Temp;
403 break;
404 case CTL_R_CLRMODE:
405 dc->u8ModeCtr = 0;
406 break;
407 case CTL_R_MASK:
408 val = dc->u8Mask;
409 break;
410 default:
411 Assert(0);
412 break;
413 }
414
415 Log(("Ctrl read: port %#06x, reg %#04x, data %#x\n", port, reg, val));
416 *pu32 = val;
417
418 return VINF_SUCCESS;
419 }
420 else
421 return VERR_IOM_IOPORT_UNUSED;
422}
423
424/* DMA page registers. There are 16 R/W page registers for compatibility with
425 * the IBM PC/AT; only some of those registers are used for DMA. The page register
426 * accessible via port 80h may be read to insert small delays or used as a scratch
427 * register by a BIOS.
428 */
429static DECLCALLBACK(int) dmaReadPage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port,
430 uint32_t *pu32, unsigned cb)
431{
432 DMAControl *dc = (DMAControl *)pvUser;
433 int reg;
434
435 if (cb == 1)
436 {
437 reg = port & 7;
438 *pu32 = dc->au8Page[reg];
439 Log2(("Read %#x (byte) from page register %#x (channel %d)\n",
440 *pu32, port, DMAPG2CX(reg)));
441 return VINF_SUCCESS;
442 }
443 else if (cb == 2)
444 {
445 reg = port & 7;
446 *pu32 = dc->au8Page[reg] | (dc->au8Page[(reg + 1) & 7] << 8);
447 Log2(("Read %#x (word) from page register %#x (channel %d)\n",
448 *pu32, port, DMAPG2CX(reg)));
449 return VINF_SUCCESS;
450 }
451 else
452 return VERR_IOM_IOPORT_UNUSED;
453}
454
455static DECLCALLBACK(int) dmaWritePage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port,
456 uint32_t u32, unsigned cb)
457{
458 DMAControl *dc = (DMAControl *)pvUser;
459 int reg;
460
461 Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */
462 if (cb == 1)
463 {
464 reg = port & 7;
465 dc->au8Page[reg] = u32;
466 dc->au8PageHi[reg] = 0; /* Corresponding high page cleared. */
467 Log2(("Wrote %#x to page register %#x (channel %d)\n",
468 u32, port, DMAPG2CX(reg)));
469 }
470 else if (cb == 2)
471 {
472 reg = port & 7;
473 dc->au8Page[reg] = u32;
474 dc->au8PageHi[reg] = 0; /* Corresponding high page cleared. */
475 reg = (port + 1) & 7;
476 dc->au8Page[reg] = u32 >> 8;
477 dc->au8PageHi[reg] = 0; /* Corresponding high page cleared. */
478 }
479 else
480 {
481 /* Likely a guest bug. */
482 Log(("Bad size write to page register %#x (size %d, data %#x)\n",
483 port, cb, u32));
484 }
485 return VINF_SUCCESS;
486}
487
488/* EISA style high page registers, for extending the DMA addresses to cover
489 * the entire 32-bit address space.
490 */
491static DECLCALLBACK(int) dmaReadHiPage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port,
492 uint32_t *pu32, unsigned cb)
493{
494 if (cb == 1)
495 {
496 DMAControl *dc = (DMAControl *)pvUser;
497 int reg;
498
499 reg = port & 7;
500 *pu32 = dc->au8PageHi[reg];
501 Log2(("Read %#x to from high page register %#x (channel %d)\n",
502 *pu32, port, DMAPG2CX(reg)));
503 return VINF_SUCCESS;
504 }
505 else
506 return VERR_IOM_IOPORT_UNUSED;
507}
508
509static DECLCALLBACK(int) dmaWriteHiPage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port,
510 uint32_t u32, unsigned cb)
511{
512 if (cb == 1)
513 {
514 DMAControl *dc = (DMAControl *)pvUser;
515 int reg;
516
517 Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */
518 reg = port & 7;
519 dc->au8PageHi[reg] = u32;
520 Log2(("Wrote %#x to high page register %#x (channel %d)\n",
521 u32, port, DMAPG2CX(reg)));
522 }
523 else
524 {
525 /* Likely a guest bug. */
526 Log(("Bad size write to high page register %#x (size %d, data %#x)\n",
527 port, cb, u32));
528 }
529 return VINF_SUCCESS;
530}
531
532/* Perform any pending transfers on a single DMA channel. */
533static void dmaRunChannel(DMAState *s, int ctlidx, int chidx)
534{
535 DMAControl *dc = &s->DMAC[ctlidx];
536 DMAChannel *ch = &dc->ChState[chidx];
537 uint32_t start_cnt, end_cnt;
538 int opmode;
539
540 opmode = (ch->u8Mode >> 6) & 3;
541
542 Log3(("DMA address %screment, mode %d\n",
543 IS_MODE_DEC(ch->u8Mode) ? "de" : "in",
544 ch->u8Mode >> 6));
545
546 /* Addresses and counts are shifted for 16-bit channels. */
547 start_cnt = ch->u16CurCount << dc->is16bit;
548 end_cnt = ch->pfnXferHandler(s->pDevIns, ch->pvUser, (ctlidx * 4) + chidx,
549 start_cnt, (ch->u16BaseCount + 1) << dc->is16bit);
550 ch->u16CurCount = end_cnt >> dc->is16bit;
551 Log3(("DMA position %d, size %d\n", end_cnt, (ch->u16BaseCount + 1) << dc->is16bit));
552}
553
554static bool dmaRun(PPDMDEVINS pDevIns)
555{
556 DMAState *s = PDMINS_2_DATA(pDevIns, DMAState *);
557 DMAControl *dc;
558 int ctlidx, chidx, mask;
559
560 /* Run all controllers and channels. */
561 for (ctlidx = 0; ctlidx < 2; ++ctlidx)
562 {
563 dc = &s->DMAC[ctlidx];
564
565 /* If controller is disabled, don't even bother. */
566 if (dc->u8Command & CMD_DISABLE)
567 continue;
568
569 for (chidx = 0; chidx < 4; ++chidx)
570 {
571 mask = 1 << chidx;
572 if (!(dc->u8Mask & mask) && (dc->u8Status & (mask << 4)))
573 dmaRunChannel(s, ctlidx, chidx);
574 }
575 }
576 return 0;
577}
578
579static void dmaRegister(PPDMDEVINS pDevIns, unsigned channel,
580 PFNDMATRANSFERHANDLER handler, void *pvUser)
581{
582 DMAState *s = PDMINS_2_DATA(pDevIns, DMAState *);
583 DMAChannel *ch = &s->DMAC[DMACH2C(channel)].ChState[channel & 3];
584
585 LogFlow(("dmaRegister: s=%p channel=%u XferHandler=%p pvUser=%p\n",
586 s, channel, handler, pvUser));
587
588 ch->pfnXferHandler = handler;
589 ch->pvUser = pvUser;
590}
591
592/* Reverse the order of bytes in a memory buffer. */
593static void dmaReverseBuf8(void *buf, unsigned len)
594{
595 uint8_t *pBeg, *pEnd;
596 uint8_t temp;
597
598 pBeg = (uint8_t *)buf;
599 pEnd = pBeg + len - 1;
600 for (len = len / 2; len; --len)
601 {
602 temp = *pBeg;
603 *pBeg++ = *pEnd;
604 *pEnd-- = temp;
605 }
606}
607
608/* Reverse the order of words in a memory buffer. */
609static void dmaReverseBuf16(void *buf, unsigned len)
610{
611 uint16_t *pBeg, *pEnd;
612 uint16_t temp;
613
614 Assert(!(len & 1));
615 len /= 2; /* Convert to word count. */
616 pBeg = (uint16_t *)buf;
617 pEnd = pBeg + len - 1;
618 for (len = len / 2; len; --len)
619 {
620 temp = *pBeg;
621 *pBeg++ = *pEnd;
622 *pEnd-- = temp;
623 }
624}
625
626static uint32_t dmaReadMemory(PPDMDEVINS pDevIns, unsigned channel,
627 void *buf, uint32_t pos, uint32_t len)
628{
629 DMAState *s = PDMINS_2_DATA(pDevIns, DMAState *);
630 DMAControl *dc = &s->DMAC[DMACH2C(channel)];
631 DMAChannel *ch = &dc->ChState[channel & 3];
632 uint32_t page, pagehi;
633 uint32_t addr;
634
635 LogFlow(("dmaReadMemory: s=%p channel=%u buf=%p pos=%u len=%u\n",
636 s, channel, buf, pos, len));
637
638 /* Build the address for this transfer. */
639 page = dc->au8Page[DMACH2PG(channel)] & ~dc->is16bit;
640 pagehi = dc->au8PageHi[DMACH2PG(channel)];
641 addr = (pagehi << 24) | (page << 16) | (ch->u16CurAddr << dc->is16bit);
642
643 if (IS_MODE_DEC(ch->u8Mode))
644 {
645 PDMDevHlpPhysRead(s->pDevIns, addr - pos - len, buf, len);
646 if (dc->is16bit)
647 dmaReverseBuf16(buf, len);
648 else
649 dmaReverseBuf8(buf, len);
650 }
651 else
652 PDMDevHlpPhysRead(s->pDevIns, addr + pos, buf, len);
653
654 return len;
655}
656
657static uint32_t dmaWriteMemory(PPDMDEVINS pDevIns, unsigned channel,
658 const void *buf, uint32_t pos, uint32_t len)
659{
660 DMAState *s = PDMINS_2_DATA(pDevIns, DMAState *);
661 DMAControl *dc = &s->DMAC[DMACH2C(channel)];
662 DMAChannel *ch = &dc->ChState[channel & 3];
663 uint32_t page, pagehi;
664 uint32_t addr;
665
666 LogFlow(("dmaWriteMemory: s=%p channel=%u buf=%p pos=%u len=%u\n",
667 s, channel, buf, pos, len));
668
669 /* Build the address for this transfer. */
670 page = dc->au8Page[DMACH2PG(channel)] & ~dc->is16bit;
671 pagehi = dc->au8PageHi[DMACH2PG(channel)];
672 addr = (pagehi << 24) | (page << 16) | (ch->u16CurAddr << dc->is16bit);
673
674 if (IS_MODE_DEC(ch->u8Mode))
675 {
676 //@todo: This would need a temporary buffer.
677 Assert(0);
678#if 0
679 if (dc->is16bit)
680 dmaReverseBuf16(buf, len);
681 else
682 dmaReverseBuf8(buf, len);
683#endif
684 PDMDevHlpPhysWrite(s->pDevIns, addr - pos - len, buf, len);
685 }
686 else
687 PDMDevHlpPhysWrite(s->pDevIns, addr + pos, buf, len);
688
689 return len;
690}
691
692static void dmaSetDREQ(PPDMDEVINS pDevIns, unsigned channel, unsigned level)
693{
694 DMAState *s = PDMINS_2_DATA(pDevIns, DMAState *);
695 DMAControl *dc = &s->DMAC[DMACH2C(channel)];
696 int chidx;
697
698 LogFlow(("dmaSetDREQ: s=%p channel=%u level=%u\n", s, channel, level));
699
700 chidx = channel & 3;
701 if (level)
702 dc->u8Status |= 1 << (chidx + 4);
703 else
704 dc->u8Status &= ~(1 << (chidx + 4));
705}
706
707static uint8_t dmaGetChannelMode(PPDMDEVINS pDevIns, unsigned channel)
708{
709 DMAState *s = PDMINS_2_DATA(pDevIns, DMAState *);
710
711 LogFlow(("dmaGetChannelMode: s=%p channel=%u\n", s, channel));
712
713 return s->DMAC[DMACH2C(channel)].ChState[channel & 3].u8Mode;
714}
715
716static void dmaReset(PPDMDEVINS pDevIns)
717{
718 DMAState *s = PDMINS_2_DATA(pDevIns, DMAState *);
719
720 LogFlow(("dmaReset: s=%p\n", s));
721
722 /* NB: The page and address registers are unaffected by a reset
723 * and in an undefined state after power-up.
724 */
725 dmaClear(&s->DMAC[0]);
726 dmaClear(&s->DMAC[1]);
727}
728
729/* Register DMA I/O port handlers. */
730static void dmaIORegister(PPDMDEVINS pDevIns, bool bHighPage)
731{
732 DMAState *s = PDMINS_2_DATA(pDevIns, DMAState *);
733 DMAControl *dc8;
734 DMAControl *dc16;
735
736 dc8 = &s->DMAC[0];
737 dc16 = &s->DMAC[1];
738
739 dc8->is16bit = false;
740 dc16->is16bit = true;
741
742 /* Base and current address for each channel. */
743 PDMDevHlpIOPortRegister(s->pDevIns, 0x00, 8, dc8,
744 dmaWriteAddr, dmaReadAddr, NULL, NULL, "DMA8 Address");
745 PDMDevHlpIOPortRegister(s->pDevIns, 0xC0, 16, dc16,
746 dmaWriteAddr, dmaReadAddr, NULL, NULL, "DMA16 Address");
747 /* Control registers for both DMA controllers. */
748 PDMDevHlpIOPortRegister(s->pDevIns, 0x08, 8, dc8,
749 dmaWriteCtl, dmaReadCtl, NULL, NULL, "DMA8 Control");
750 PDMDevHlpIOPortRegister(s->pDevIns, 0xD0, 16, dc16,
751 dmaWriteCtl, dmaReadCtl, NULL, NULL, "DMA16 Control");
752 /* Page registers for each channel (plus a few unused ones). */
753 PDMDevHlpIOPortRegister(s->pDevIns, 0x80, 8, dc8,
754 dmaWritePage, dmaReadPage, NULL, NULL, "DMA8 Page");
755 PDMDevHlpIOPortRegister(s->pDevIns, 0x88, 8, dc16,
756 dmaWritePage, dmaReadPage, NULL, NULL, "DMA16 Page");
757 /* Optional EISA style high page registers (address bits 24-31). */
758 if (bHighPage)
759 {
760 PDMDevHlpIOPortRegister(s->pDevIns, 0x480, 8, dc8,
761 dmaWriteHiPage, dmaReadHiPage, NULL, NULL, "DMA8 Page High");
762 PDMDevHlpIOPortRegister(s->pDevIns, 0x488, 8, dc16,
763 dmaWriteHiPage, dmaReadHiPage, NULL, NULL, "DMA16 Page High");
764 }
765}
766
767static void dmaSaveController(PSSMHANDLE pSSMHandle, DMAControl *dc)
768{
769 int chidx;
770
771 /* Save controller state... */
772 SSMR3PutU8(pSSMHandle, dc->u8Command);
773 SSMR3PutU8(pSSMHandle, dc->u8Mask);
774 SSMR3PutU8(pSSMHandle, dc->bHiByte);
775 SSMR3PutU32(pSSMHandle, dc->is16bit);
776 SSMR3PutU8(pSSMHandle, dc->u8Status);
777 SSMR3PutU8(pSSMHandle, dc->u8Temp);
778 SSMR3PutU8(pSSMHandle, dc->u8ModeCtr);
779 SSMR3PutMem(pSSMHandle, &dc->au8Page, sizeof(dc->au8Page));
780 SSMR3PutMem(pSSMHandle, &dc->au8PageHi, sizeof(dc->au8PageHi));
781
782 /* ...and all four of its channels. */
783 for (chidx = 0; chidx < 4; ++chidx)
784 {
785 DMAChannel *ch = &dc->ChState[chidx];
786
787 SSMR3PutU16(pSSMHandle, ch->u16CurAddr);
788 SSMR3PutU16(pSSMHandle, ch->u16CurCount);
789 SSMR3PutU16(pSSMHandle, ch->u16BaseAddr);
790 SSMR3PutU16(pSSMHandle, ch->u16BaseCount);
791 SSMR3PutU8(pSSMHandle, ch->u8Mode);
792 }
793}
794
795static int dmaLoadController(PSSMHANDLE pSSMHandle, DMAControl *dc, int version)
796{
797 uint8_t u8val;
798 uint32_t u32val;
799 int chidx;
800
801 SSMR3GetU8(pSSMHandle, &dc->u8Command);
802 SSMR3GetU8(pSSMHandle, &dc->u8Mask);
803 SSMR3GetU8(pSSMHandle, &u8val);
804 dc->bHiByte = !!u8val;
805 SSMR3GetU32(pSSMHandle, &dc->is16bit);
806 if (version > DMA_SAVESTATE_OLD)
807 {
808 SSMR3GetU8(pSSMHandle, &dc->u8Status);
809 SSMR3GetU8(pSSMHandle, &dc->u8Temp);
810 SSMR3GetU8(pSSMHandle, &dc->u8ModeCtr);
811 SSMR3GetMem(pSSMHandle, &dc->au8Page, sizeof(dc->au8Page));
812 SSMR3GetMem(pSSMHandle, &dc->au8PageHi, sizeof(dc->au8PageHi));
813 }
814
815 for (chidx = 0; chidx < 4; ++chidx)
816 {
817 DMAChannel *ch = &dc->ChState[chidx];
818
819 if (version == DMA_SAVESTATE_OLD)
820 {
821 /* Convert from 17-bit to 16-bit format. */
822 SSMR3GetU32(pSSMHandle, &u32val);
823 ch->u16CurAddr = u32val >> dc->is16bit;
824 SSMR3GetU32(pSSMHandle, &u32val);
825 ch->u16CurCount = u32val >> dc->is16bit;
826 }
827 else
828 {
829 SSMR3GetU16(pSSMHandle, &ch->u16CurAddr);
830 SSMR3GetU16(pSSMHandle, &ch->u16CurCount);
831 }
832 SSMR3GetU16(pSSMHandle, &ch->u16BaseAddr);
833 SSMR3GetU16(pSSMHandle, &ch->u16BaseCount);
834 SSMR3GetU8(pSSMHandle, &ch->u8Mode);
835 /* Convert from old save state. */
836 if (version == DMA_SAVESTATE_OLD)
837 {
838 /* Remap page register contents. */
839 SSMR3GetU8(pSSMHandle, &u8val);
840 dc->au8Page[DMACX2PG(chidx)] = u8val;
841 SSMR3GetU8(pSSMHandle, &u8val);
842 dc->au8PageHi[DMACX2PG(chidx)] = u8val;
843 /* Throw away dack, eop. */
844 SSMR3GetU8(pSSMHandle, &u8val);
845 SSMR3GetU8(pSSMHandle, &u8val);
846 }
847 }
848 return 0;
849}
850
851static DECLCALLBACK(int) dmaSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle)
852{
853 DMAState *s = PDMINS_2_DATA(pDevIns, DMAState *);
854
855 dmaSaveController(pSSMHandle, &s->DMAC[0]);
856 dmaSaveController(pSSMHandle, &s->DMAC[1]);
857 return VINF_SUCCESS;
858}
859
860static DECLCALLBACK(int) dmaLoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle,
861 uint32_t uVersion, uint32_t uPass)
862{
863 DMAState *s = PDMINS_2_DATA(pDevIns, DMAState *);
864
865 AssertMsgReturn(uVersion <= DMA_SAVESTATE_CURRENT, ("%d\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
866 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
867
868 dmaLoadController(pSSMHandle, &s->DMAC[0], uVersion);
869 return dmaLoadController(pSSMHandle, &s->DMAC[1], uVersion);
870}
871
872/**
873 * @interface_method_impl{PDMDEVREG,pfnConstruct}
874 */
875static DECLCALLBACK(int) dmaConstruct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
876{
877 DMAState *s = PDMINS_2_DATA(pDevIns, DMAState *);
878 bool bHighPage = false;
879 PDMDMACREG reg;
880 int rc;
881
882 s->pDevIns = pDevIns;
883
884 /*
885 * Validate configuration.
886 */
887 if (!CFGMR3AreValuesValid(pCfg, "\0")) /* "HighPageEnable\0")) */
888 return VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES;
889
890#if 0
891 rc = CFGMR3QueryBool(pCfg, "HighPageEnable", &bHighPage);
892 if (RT_FAILURE (rc))
893 return rc;
894#endif
895
896 dmaIORegister(pDevIns, bHighPage);
897 dmaReset(pDevIns);
898
899 reg.u32Version = PDM_DMACREG_VERSION;
900 reg.pfnRun = dmaRun;
901 reg.pfnRegister = dmaRegister;
902 reg.pfnReadMemory = dmaReadMemory;
903 reg.pfnWriteMemory = dmaWriteMemory;
904 reg.pfnSetDREQ = dmaSetDREQ;
905 reg.pfnGetChannelMode = dmaGetChannelMode;
906
907 rc = PDMDevHlpDMACRegister(pDevIns, &reg, &s->pHlp);
908 if (RT_FAILURE (rc))
909 return rc;
910
911 rc = PDMDevHlpSSMRegister(pDevIns, DMA_SAVESTATE_CURRENT, sizeof(*s),
912 dmaSaveExec, dmaLoadExec);
913 if (RT_FAILURE(rc))
914 return rc;
915
916 return VINF_SUCCESS;
917}
918
919/**
920 * The device registration structure.
921 */
922const PDMDEVREG g_DeviceDMA =
923{
924 /* u32Version */
925 PDM_DEVREG_VERSION,
926 /* szName */
927 "8237A",
928 /* szRCMod */
929 "",
930 /* szR0Mod */
931 "",
932 /* pszDescription */
933 "DMA Controller Device",
934 /* fFlags */
935 PDM_DEVREG_FLAGS_DEFAULT_BITS,
936 /* fClass */
937 PDM_DEVREG_CLASS_DMA,
938 /* cMaxInstances */
939 1,
940 /* cbInstance */
941 sizeof(DMAState),
942 /* pfnConstruct */
943 dmaConstruct,
944 /* pfnDestruct */
945 NULL,
946 /* pfnRelocate */
947 NULL,
948 /* pfnIOCtl */
949 NULL,
950 /* pfnPowerOn */
951 NULL,
952 /* pfnReset */
953 dmaReset,
954 /* pfnSuspend */
955 NULL,
956 /* pfnResume */
957 NULL,
958 /* pfnAttach */
959 NULL,
960 /* pfnDetach */
961 NULL,
962 /* pfnQueryInterface. */
963 NULL,
964 /* pfnInitComplete */
965 NULL,
966 /* pfnPowerOff */
967 NULL,
968 /* pfnSoftReset */
969 NULL,
970 /* u32VersionEnd */
971 PDM_DEVREG_VERSION
972};
Note: See TracBrowser for help on using the repository browser.

© 2023 Oracle
ContactPrivacy policyTerms of Use