VirtualBox

source: vbox/trunk/src/VBox/Debugger/DBGCEmulateCodeView.cpp@ 96407

Last change on this file since 96407 was 96407, checked in by vboxsync, 2 years ago

scm copyright and license note update

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 312.5 KB
Line 
1/* $Id: DBGCEmulateCodeView.cpp 96407 2022-08-22 17:43:14Z vboxsync $ */
2/** @file
3 * DBGC - Debugger Console, CodeView / WinDbg Emulation.
4 */
5
6/*
7 * Copyright (C) 2006-2022 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_DBGC
33#include <VBox/dbg.h>
34#include <VBox/vmm/dbgf.h>
35#include <VBox/vmm/dbgfflowtrace.h>
36#include <VBox/vmm/pgm.h>
37#include <VBox/vmm/cpum.h>
38#include <VBox/dis.h>
39#include <VBox/param.h>
40#include <VBox/err.h>
41#include <VBox/log.h>
42
43#include <iprt/asm.h>
44#include <iprt/mem.h>
45#include <iprt/string.h>
46#include <iprt/assert.h>
47#include <iprt/ctype.h>
48#include <iprt/time.h>
49
50#include <stdlib.h>
51#include <stdio.h>
52
53#include "DBGCInternal.h"
54
55
56/*********************************************************************************************************************************
57* Internal Functions *
58*********************************************************************************************************************************/
59static FNDBGCCMD dbgcCmdBrkAccess;
60static FNDBGCCMD dbgcCmdBrkClear;
61static FNDBGCCMD dbgcCmdBrkDisable;
62static FNDBGCCMD dbgcCmdBrkEnable;
63static FNDBGCCMD dbgcCmdBrkList;
64static FNDBGCCMD dbgcCmdBrkSet;
65static FNDBGCCMD dbgcCmdBrkREM;
66static FNDBGCCMD dbgcCmdDumpMem;
67static FNDBGCCMD dbgcCmdDumpDT;
68static FNDBGCCMD dbgcCmdDumpIDT;
69static FNDBGCCMD dbgcCmdDumpPageDir;
70static FNDBGCCMD dbgcCmdDumpPageDirBoth;
71static FNDBGCCMD dbgcCmdDumpPageHierarchy;
72static FNDBGCCMD dbgcCmdDumpPageTable;
73static FNDBGCCMD dbgcCmdDumpPageTableBoth;
74static FNDBGCCMD dbgcCmdDumpTSS;
75static FNDBGCCMD dbgcCmdDumpTypeInfo;
76static FNDBGCCMD dbgcCmdDumpTypedVal;
77static FNDBGCCMD dbgcCmdEditMem;
78static FNDBGCCMD dbgcCmdGo;
79static FNDBGCCMD dbgcCmdGoUp;
80static FNDBGCCMD dbgcCmdListModules;
81static FNDBGCCMD dbgcCmdListNear;
82static FNDBGCCMD dbgcCmdListSource;
83static FNDBGCCMD dbgcCmdListSymbols;
84static FNDBGCCMD dbgcCmdMemoryInfo;
85static FNDBGCCMD dbgcCmdReg;
86static FNDBGCCMD dbgcCmdRegGuest;
87static FNDBGCCMD dbgcCmdRegTerse;
88static FNDBGCCMD dbgcCmdSearchMem;
89static FNDBGCCMD dbgcCmdSearchMemType;
90static FNDBGCCMD dbgcCmdStepTrace;
91static FNDBGCCMD dbgcCmdStepTraceTo;
92static FNDBGCCMD dbgcCmdStepTraceToggle;
93static FNDBGCCMD dbgcCmdEventCtrl;
94static FNDBGCCMD dbgcCmdEventCtrlList;
95static FNDBGCCMD dbgcCmdEventCtrlReset;
96static FNDBGCCMD dbgcCmdStack;
97static FNDBGCCMD dbgcCmdUnassemble;
98static FNDBGCCMD dbgcCmdUnassembleCfg;
99static FNDBGCCMD dbgcCmdTraceFlowClear;
100static FNDBGCCMD dbgcCmdTraceFlowDisable;
101static FNDBGCCMD dbgcCmdTraceFlowEnable;
102static FNDBGCCMD dbgcCmdTraceFlowPrint;
103static FNDBGCCMD dbgcCmdTraceFlowReset;
104
105
106/*********************************************************************************************************************************
107* Global Variables *
108*********************************************************************************************************************************/
109/** 'ba' arguments. */
110static const DBGCVARDESC g_aArgBrkAcc[] =
111{
112 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
113 { 1, 1, DBGCVAR_CAT_STRING, 0, "access", "The access type: x=execute, rw=read/write (alias r), w=write, i=not implemented." },
114 { 1, 1, DBGCVAR_CAT_NUMBER, 0, "size", "The access size: 1, 2, 4, or 8. 'x' access requires 1, and 8 requires amd64 long mode." },
115 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
116 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
117 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
118 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
119};
120
121
122/** 'bc', 'bd', 'be' arguments. */
123static const DBGCVARDESC g_aArgBrks[] =
124{
125 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
126 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#bp", "Breakpoint number." },
127 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All breakpoints." },
128};
129
130
131/** 'bp' arguments. */
132static const DBGCVARDESC g_aArgBrkSet[] =
133{
134 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
135 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
136 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
137 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
138 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
139};
140
141
142/** 'br' arguments. */
143static const DBGCVARDESC g_aArgBrkREM[] =
144{
145 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
146 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
147 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
148 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
149 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
150};
151
152
153/** 'd?' arguments. */
154static const DBGCVARDESC g_aArgDumpMem[] =
155{
156 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
157 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start dumping memory." },
158};
159
160
161/** 'dg', 'dga', 'dl', 'dla' arguments. */
162static const DBGCVARDESC g_aArgDumpDT[] =
163{
164 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
165 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "sel", "Selector or selector range." },
166 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Far address which selector should be dumped." },
167};
168
169
170/** 'di', 'dia' arguments. */
171static const DBGCVARDESC g_aArgDumpIDT[] =
172{
173 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
174 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "int", "The interrupt vector or interrupt vector range." },
175};
176
177
178/** 'dpd*' arguments. */
179static const DBGCVARDESC g_aArgDumpPD[] =
180{
181 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
182 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "index", "Index into the page directory." },
183 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from. Range is applied to the page directory." },
184};
185
186
187/** 'dpda' arguments. */
188static const DBGCVARDESC g_aArgDumpPDAddr[] =
189{
190 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
191 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page directory entry to start dumping from." },
192};
193
194
195/** 'dph*' arguments. */
196static const DBGCVARDESC g_aArgDumpPH[] =
197{
198 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
199 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "Where in the address space to start dumping and for how long (range). The default address/range will be used if omitted." },
200 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "cr3", "The CR3 value to use. The current CR3 of the context will be used if omitted." },
201 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "mode", "The paging mode: legacy, pse, pae, long, ept. Append '-np' for nested paging and '-nx' for no-execute. The current mode will be used if omitted." },
202};
203
204
205/** 'dpt?' arguments. */
206static const DBGCVARDESC g_aArgDumpPT[] =
207{
208 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
209 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from." },
210};
211
212
213/** 'dpta' arguments. */
214static const DBGCVARDESC g_aArgDumpPTAddr[] =
215{
216 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
217 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page table entry to start dumping from." },
218};
219
220
221/** 'dt' arguments. */
222static const DBGCVARDESC g_aArgDumpTSS[] =
223{
224 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
225 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "tss", "TSS selector number." },
226 { 0, 1, DBGCVAR_CAT_POINTER, 0, "tss:ign|addr", "TSS address. If the selector is a TSS selector, the offset will be ignored." }
227};
228
229
230/** 'dti' arguments. */
231static const DBGCVARDESC g_aArgDumpTypeInfo[] =
232{
233 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
234 { 1, 1, DBGCVAR_CAT_STRING, 0, "type", "The type to dump" },
235 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "levels", "How many levels to dump the type information" }
236};
237
238
239/** 'dtv' arguments. */
240static const DBGCVARDESC g_aArgDumpTypedVal[] =
241{
242 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
243 { 1, 1, DBGCVAR_CAT_STRING, 0, "type", "The type to use" },
244 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address to start dumping from." },
245 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "levels", "How many levels to dump" }
246};
247
248
249/** 'e?' arguments. */
250static const DBGCVARDESC g_aArgEditMem[] =
251{
252 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
253 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to write." },
254 { 1, ~0U, DBGCVAR_CAT_NUMBER, 0, "value", "Value to write." },
255};
256
257
258/** 'g' arguments. */
259static const DBGCVARDESC g_aArgGo[] =
260{
261 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
262 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "idCpu", "CPU ID." },
263};
264
265
266/** 'lm' arguments. */
267static const DBGCVARDESC g_aArgListMods[] =
268{
269 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
270 { 0, ~0U, DBGCVAR_CAT_STRING, 0, "module", "Module name." },
271};
272
273
274/** 'ln' arguments. */
275static const DBGCVARDESC g_aArgListNear[] =
276{
277 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
278 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Address of the symbol to look up." },
279 { 0, ~0U, DBGCVAR_CAT_SYMBOL, 0, "symbol", "Symbol to lookup." },
280};
281
282
283/** 'ls' arguments. */
284static const DBGCVARDESC g_aArgListSource[] =
285{
286 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
287 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start looking for source lines." },
288};
289
290
291/** 'm' argument. */
292static const DBGCVARDESC g_aArgMemoryInfo[] =
293{
294 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
295 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Pointer to obtain info about." },
296};
297
298
299/** 'p', 'pc', 'pt', 't', 'tc' and 'tt' arguments. */
300static const DBGCVARDESC g_aArgStepTrace[] =
301{
302 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
303 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "count", "Number of instructions or source lines to step." },
304 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed afterwards. Quote it!" },
305};
306
307
308/** 'pa' and 'ta' arguments. */
309static const DBGCVARDESC g_aArgStepTraceTo[] =
310{
311 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
312 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Where to stop" },
313 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed afterwards. Quote it!" },
314};
315
316
317/** 'r' arguments. */
318static const DBGCVARDESC g_aArgReg[] =
319{
320 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
321 { 0, 1, DBGCVAR_CAT_SYMBOL, 0, "register", "Register to show or set." },
322 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "=", "Equal sign." },
323 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "value", "New register value." },
324};
325
326
327/** 's' arguments. */
328static const DBGCVARDESC g_aArgSearchMem[] =
329{
330 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
331 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-b", "Byte string." },
332 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-w", "Word string." },
333 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-d", "DWord string." },
334 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-q", "QWord string." },
335 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-a", "ASCII string." },
336 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-u", "Unicode string." },
337 { 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "-n <Hits>", "Maximum number of hits." },
338 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
339 { 0, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
340};
341
342
343/** 's?' arguments. */
344static const DBGCVARDESC g_aArgSearchMemType[] =
345{
346 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
347 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
348 { 1, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
349};
350
351
352/** 'sxe', 'sxn', 'sxi', 'sx-' arguments. */
353static const DBGCVARDESC g_aArgEventCtrl[] =
354{
355 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
356 { 0, 1, DBGCVAR_CAT_STRING, 0, "-c", "The -c option, requires <cmds>." },
357 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "cmds", "Command to execute on this event." },
358 { 0 /*weird*/, ~0U, DBGCVAR_CAT_STRING, 0, "event", "One or more events, 'all' refering to all events." },
359};
360
361/** 'sx' and 'sr' arguments. */
362static const DBGCVARDESC g_aArgEventCtrlOpt[] =
363{
364 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
365 { 0, ~0U, DBGCVAR_CAT_STRING, 0, "event", "Zero or more events, 'all' refering to all events and being the default." },
366};
367
368/** 'u' arguments. */
369static const DBGCVARDESC g_aArgUnassemble[] =
370{
371 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
372 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." },
373};
374
375/** 'ucfg' arguments. */
376static const DBGCVARDESC g_aArgUnassembleCfg[] =
377{
378 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
379 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." },
380};
381
382/** 'x' arguments. */
383static const DBGCVARDESC g_aArgListSyms[] =
384{
385 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
386 { 1, 1, DBGCVAR_CAT_STRING, 0, "symbols", "The symbols to list, format is Module!Symbol with wildcards being supoprted." }
387};
388
389/** 'tflowc' arguments. */
390static const DBGCVARDESC g_aArgTraceFlowClear[] =
391{
392 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
393 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." },
394 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." },
395};
396
397/** 'tflowd' arguments. */
398static const DBGCVARDESC g_aArgTraceFlowDisable[] =
399{
400 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
401 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." },
402 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." },
403};
404
405/** 'tflowe' arguments. */
406static const DBGCVARDESC g_aArgTraceFlowEnable[] =
407{
408 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
409 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start tracing." },
410 { 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "<Hits>", "Maximum number of hits before the module is disabled." }
411};
412
413/** 'tflowp', 'tflowr' arguments. */
414static const DBGCVARDESC g_aArgTraceFlowPrintReset[] =
415{
416 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
417 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#tf", "Trace flow module number." },
418 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All trace flow modules." },
419};
420
421/** Command descriptors for the CodeView / WinDbg emulation.
422 * The emulation isn't attempting to be identical, only somewhat similar.
423 */
424const DBGCCMD g_aCmdsCodeView[] =
425{
426 /* pszCmd, cArgsMin, cArgsMax, paArgDescs, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
427 { "ba", 3, 6, &g_aArgBrkAcc[0], RT_ELEMENTS(g_aArgBrkAcc), 0, dbgcCmdBrkAccess, "<access> <size> <address> [passes [max passes]] [cmds]",
428 "Sets a data access breakpoint." },
429 { "bc", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkClear, "all | <bp#> [bp# []]", "Deletes a set of breakpoints." },
430 { "bd", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkDisable, "all | <bp#> [bp# []]", "Disables a set of breakpoints." },
431 { "be", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkEnable, "all | <bp#> [bp# []]", "Enables a set of breakpoints." },
432 { "bl", 0, 0, NULL, 0, 0, dbgcCmdBrkList, "", "Lists all the breakpoints." },
433 { "bp", 1, 4, &g_aArgBrkSet[0], RT_ELEMENTS(g_aArgBrkSet), 0, dbgcCmdBrkSet, "<address> [passes [max passes]] [cmds]",
434 "Sets a breakpoint (int 3)." },
435 { "br", 1, 4, &g_aArgBrkREM[0], RT_ELEMENTS(g_aArgBrkREM), 0, dbgcCmdBrkREM, "<address> [passes [max passes]] [cmds]",
436 "Sets a recompiler specific breakpoint." },
437 { "d", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory using last element size and type." },
438 { "dF", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as far 16:16." },
439 { "dFs", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as far 16:16 with near symbols." },
440 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
441 { "db", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in bytes." },
442 { "dd", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in double words." },
443 { "dds", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as double words with near symbols." },
444 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
445 { "dg", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT)." },
446 { "dga", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT) including not-present entries." },
447 { "di", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT)." },
448 { "dia", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT) including not-present entries." },
449 { "dl", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT)." },
450 { "dla", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT) including not-present entries." },
451 { "dpd", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the default context." },
452 { "dpda", 0, 1, &g_aArgDumpPDAddr[0],RT_ELEMENTS(g_aArgDumpPDAddr), 0, dbgcCmdDumpPageDir, "[addr]", "Dumps memory at given address as a page directory." },
453 { "dpdb", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDirBoth, "[addr|index]", "Dumps page directory entries of the guest and the hypervisor. " },
454 { "dpdg", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the guest." },
455 { "dpdh", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the hypervisor. " },
456 { "dph", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Default context." },
457 { "dphg", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Guest context." },
458 { "dphh", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Hypervisor context." },
459 { "dp", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in mode sized words." },
460 { "dps", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in mode sized words with near symbols." },
461 { "dpt", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the default context." },
462 { "dpta", 1, 1, &g_aArgDumpPTAddr[0],RT_ELEMENTS(g_aArgDumpPTAddr), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps memory at given address as a page table." },
463 { "dptb", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTableBoth,"<addr>", "Dumps page table entries of the guest and the hypervisor." },
464 { "dptg", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the guest." },
465 { "dpth", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the hypervisor." },
466 { "dq", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in quad words." },
467 { "dqs", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as quad words with near symbols." },
468 { "dt", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the task state segment (TSS)." },
469 { "dt16", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 16-bit task state segment (TSS)." },
470 { "dt32", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 32-bit task state segment (TSS)." },
471 { "dt64", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 64-bit task state segment (TSS)." },
472 { "dti", 1, 2, &g_aArgDumpTypeInfo[0],RT_ELEMENTS(g_aArgDumpTypeInfo), 0, dbgcCmdDumpTypeInfo,"<type> [levels]", "Dump type information." },
473 { "dtv", 2, 3, &g_aArgDumpTypedVal[0],RT_ELEMENTS(g_aArgDumpTypedVal), 0, dbgcCmdDumpTypedVal,"<type> <addr> [levels]", "Dump a memory buffer using the information in the given type." },
474 { "du", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as unicode string (little endian)." },
475 { "dw", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in words." },
476 /** @todo add 'e', 'ea str', 'eza str', 'eu str' and 'ezu str'. See also
477 * dbgcCmdSearchMem and its dbgcVarsToBytes usage. */
478 { "eb", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 1-byte value to memory." },
479 { "ew", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 2-byte value to memory." },
480 { "ed", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 4-byte value to memory." },
481 { "eq", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 8-byte value to memory." },
482 { "g", 0, 1, &g_aArgGo[0], RT_ELEMENTS(g_aArgGo), 0, dbgcCmdGo, "[idCpu]", "Continue execution of all or the specified CPU. (The latter is not recommended unless you know exactly what you're doing.)" },
483 { "gu", 0, 0, NULL, 0, 0, dbgcCmdGoUp, "", "Go up - continue execution till after return." },
484 { "k", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack." },
485 { "kv", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Verbose callstack." },
486 { "kg", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - guest." },
487 { "kgv", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Verbose callstack - guest." },
488 { "kh", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - hypervisor." },
489 { "lm", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules." },
490 { "lmv", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules, verbose." },
491 { "lmo", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments." },
492 { "lmov", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments, verbose." },
493 { "ln", 0, ~0U, &g_aArgListNear[0], RT_ELEMENTS(g_aArgListNear), 0, dbgcCmdListNear, "[addr/sym [..]]", "List symbols near to the address. Default address is CS:EIP." },
494 { "ls", 0, 1, &g_aArgListSource[0],RT_ELEMENTS(g_aArgListSource), 0, dbgcCmdListSource, "[addr]", "Source." },
495 { "m", 1, 1, &g_aArgMemoryInfo[0],RT_ELEMENTS(g_aArgMemoryInfo), 0, dbgcCmdMemoryInfo, "<addr>", "Display information about that piece of memory." },
496 { "p", 0, 2, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step over." },
497 { "pr", 0, 0, NULL, 0, 0, dbgcCmdStepTraceToggle, "", "Toggle displaying registers for tracing & stepping (no code executed)." },
498 { "pa", 1, 1, &g_aArgStepTraceTo[0], RT_ELEMENTS(g_aArgStepTraceTo), 0, dbgcCmdStepTraceTo, "<addr> [count] [cmds]","Step to the given address." },
499 { "pc", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step to the next call instruction." },
500 { "pt", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Step to the next return instruction." },
501 { "r", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdReg, "[reg [[=] newval]]", "Show or set register(s) - active reg set." },
502 { "rg", 0, 3, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdRegGuest, "[reg [[=] newval]]", "Show or set register(s) - guest reg set." },
503 { "rg32", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 32-bit guest registers." },
504 { "rg64", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 64-bit guest registers." },
505 { "rt", 0, 0, NULL, 0, 0, dbgcCmdRegTerse, "", "Toggles terse / verbose register info." },
506 { "s", 0, ~0U, &g_aArgSearchMem[0], RT_ELEMENTS(g_aArgSearchMem), 0, dbgcCmdSearchMem, "[options] <range> <pattern>", "Continue last search." },
507 { "sa", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an ascii string." },
508 { "sb", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more bytes." },
509 { "sd", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more double words." },
510 { "sq", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more quad words." },
511 { "su", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an unicode string." },
512 { "sw", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more words." },
513 { "sx", 0, ~0U, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlList, "[<event> [..]]", "Lists settings for exceptions, exits and other events. All if no filter is specified." },
514 { "sx-", 3, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "-c <cmd> <event> [..]", "Modifies the command for one or more exceptions, exits or other event. 'all' addresses all." },
515 { "sxe", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Enable: Break into the debugger on the specified exceptions, exits and other events. 'all' addresses all." },
516 { "sxn", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Notify: Display info in the debugger and continue on the specified exceptions, exits and other events. 'all' addresses all." },
517 { "sxi", 1, ~0U, &g_aArgEventCtrl[0], RT_ELEMENTS(g_aArgEventCtrl), 0, dbgcCmdEventCtrl, "[-c <cmd>] <event> [..]", "Ignore: Ignore the specified exceptions, exits and other events ('all' = all of them). Without the -c option, the guest runs like normal." },
518 { "sxr", 0, 0, &g_aArgEventCtrlOpt[0], RT_ELEMENTS(g_aArgEventCtrlOpt), 0, dbgcCmdEventCtrlReset, "", "Reset the settings to default for exceptions, exits and other events. All if no filter is specified." },
519 { "t", 0, 2, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace ." },
520 { "tflowc", 1, ~0U, &g_aArgTraceFlowClear[0], RT_ELEMENTS(g_aArgTraceFlowClear), 0, dbgcCmdTraceFlowClear, "all | <tf#> [tf# []]", "Clears trace execution flow for the given method." },
521 { "tflowd", 0, 1, &g_aArgTraceFlowDisable[0], RT_ELEMENTS(g_aArgTraceFlowDisable), 0, dbgcCmdTraceFlowDisable, "all | <tf#> [tf# []]", "Disables trace execution flow for the given method." },
522 { "tflowe", 0, 2, &g_aArgTraceFlowEnable[0], RT_ELEMENTS(g_aArgTraceFlowEnable), 0, dbgcCmdTraceFlowEnable, "<addr> <hits>", "Enable trace execution flow of the given method." },
523 { "tflowp", 0, 1, &g_aArgTraceFlowPrintReset[0], RT_ELEMENTS(g_aArgTraceFlowPrintReset), 0, dbgcCmdTraceFlowPrint, "all | <tf#> [tf# []]", "Prints the collected trace data of the given method." },
524 { "tflowr", 0, 1, &g_aArgTraceFlowPrintReset[0], RT_ELEMENTS(g_aArgTraceFlowPrintReset), 0, dbgcCmdTraceFlowReset, "all | <tf#> [tf# []]", "Resets the collected trace data of the given trace flow module." },
525 { "tr", 0, 0, NULL, 0, 0, dbgcCmdStepTraceToggle, "", "Toggle displaying registers for tracing & stepping (no code executed)." },
526 { "ta", 1, 1, &g_aArgStepTraceTo[0], RT_ELEMENTS(g_aArgStepTraceTo), 0, dbgcCmdStepTraceTo, "<addr> [count] [cmds]","Trace to the given address." },
527 { "tc", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace to the next call instruction." },
528 { "tt", 0, 0, &g_aArgStepTrace[0], RT_ELEMENTS(g_aArgStepTrace), 0, dbgcCmdStepTrace, "[count] [cmds]", "Trace to the next return instruction." },
529 { "u", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble." },
530 { "u64", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 64-bit code." },
531 { "u32", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 32-bit code." },
532 { "u16", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code." },
533 { "uv86", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code with v8086/real mode addressing." },
534 { "ucfg", 0, 1, &g_aArgUnassembleCfg[0], RT_ELEMENTS(g_aArgUnassembleCfg), 0, dbgcCmdUnassembleCfg, "[addr]", "Unassemble creating a control flow graph." },
535 { "ucfgc", 0, 1, &g_aArgUnassembleCfg[0], RT_ELEMENTS(g_aArgUnassembleCfg), 0, dbgcCmdUnassembleCfg, "[addr]", "Unassemble creating a control flow graph with colors." },
536 { "x", 1, 1, &g_aArgListSyms[0], RT_ELEMENTS(g_aArgListSyms), 0, dbgcCmdListSymbols, "* | <Module!Symbol>", "Examine symbols." },
537};
538
539/** The number of commands in the CodeView/WinDbg emulation. */
540const uint32_t g_cCmdsCodeView = RT_ELEMENTS(g_aCmdsCodeView);
541
542
543/**
544 * Selectable debug event descriptors.
545 *
546 * @remarks Sorted by DBGCSXEVT::enmType value.
547 */
548const DBGCSXEVT g_aDbgcSxEvents[] =
549{
550 { DBGFEVENT_INTERRUPT_HARDWARE, "hwint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Hardware interrupt" },
551 { DBGFEVENT_INTERRUPT_SOFTWARE, "swint", NULL, kDbgcSxEventKind_Interrupt, kDbgcEvtState_Disabled, 0, "Software interrupt" },
552 { DBGFEVENT_TRIPLE_FAULT, "triplefault", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Enabled, 0, "Triple fault "},
553 { DBGFEVENT_XCPT_DE, "xcpt_de", "de", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DE (integer divide error)" },
554 { DBGFEVENT_XCPT_DB, "xcpt_db", "db", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DB (debug)" },
555 { DBGFEVENT_XCPT_02, "xcpt_02", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
556 { DBGFEVENT_XCPT_BP, "xcpt_bp", "bp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BP (breakpoint)" },
557 { DBGFEVENT_XCPT_OF, "xcpt_of", "of", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#OF (overflow (INTO))" },
558 { DBGFEVENT_XCPT_BR, "xcpt_br", "br", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#BR (bound range exceeded)" },
559 { DBGFEVENT_XCPT_UD, "xcpt_ud", "ud", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#UD (undefined opcode)" },
560 { DBGFEVENT_XCPT_NM, "xcpt_nm", "nm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#NM (FPU not available)" },
561 { DBGFEVENT_XCPT_DF, "xcpt_df", "df", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#DF (double fault)" },
562 { DBGFEVENT_XCPT_09, "xcpt_09", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "Coprocessor segment overrun" },
563 { DBGFEVENT_XCPT_TS, "xcpt_ts", "ts", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#TS (task switch)" },
564 { DBGFEVENT_XCPT_NP, "xcpt_np", "np", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#NP (segment not present)" },
565 { DBGFEVENT_XCPT_SS, "xcpt_ss", "ss", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SS (stack segment fault)" },
566 { DBGFEVENT_XCPT_GP, "xcpt_gp", "gp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#GP (general protection fault)" },
567 { DBGFEVENT_XCPT_PF, "xcpt_pf", "pf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#PF (page fault)" },
568 { DBGFEVENT_XCPT_0f, "xcpt_0f", "xcpt0f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
569 { DBGFEVENT_XCPT_MF, "xcpt_mf", "mf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MF (math fault)" },
570 { DBGFEVENT_XCPT_AC, "xcpt_ac", "ac", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#AC (alignment check)" },
571 { DBGFEVENT_XCPT_MC, "xcpt_mc", "mc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#MC (machine check)" },
572 { DBGFEVENT_XCPT_XF, "xcpt_xf", "xf", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#XF (SIMD floating-point exception)" },
573 { DBGFEVENT_XCPT_VE, "xcpt_vd", "ve", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, "#VE (virtualization exception)" },
574 { DBGFEVENT_XCPT_15, "xcpt_15", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
575 { DBGFEVENT_XCPT_16, "xcpt_16", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
576 { DBGFEVENT_XCPT_17, "xcpt_17", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
577 { DBGFEVENT_XCPT_18, "xcpt_18", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
578 { DBGFEVENT_XCPT_19, "xcpt_19", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
579 { DBGFEVENT_XCPT_1a, "xcpt_1a", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
580 { DBGFEVENT_XCPT_1b, "xcpt_1b", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
581 { DBGFEVENT_XCPT_1c, "xcpt_1c", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
582 { DBGFEVENT_XCPT_1d, "xcpt_1d", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
583 { DBGFEVENT_XCPT_SX, "xcpt_sx", "sx", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, "#SX (security exception)" },
584 { DBGFEVENT_XCPT_1f, "xcpt_1f", "xcpt1f", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
585 { DBGFEVENT_INSTR_HALT, "instr_halt", "hlt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
586 { DBGFEVENT_INSTR_MWAIT, "instr_mwait", "mwait", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
587 { DBGFEVENT_INSTR_MONITOR, "instr_monitor", "monitor", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
588 { DBGFEVENT_INSTR_CPUID, "instr_cpuid", "cpuid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
589 { DBGFEVENT_INSTR_INVD, "instr_invd", "invd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
590 { DBGFEVENT_INSTR_WBINVD, "instr_wbinvd", "wbinvd", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
591 { DBGFEVENT_INSTR_INVLPG, "instr_invlpg", "invlpg", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
592 { DBGFEVENT_INSTR_RDTSC, "instr_rdtsc", "rdtsc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
593 { DBGFEVENT_INSTR_RDTSCP, "instr_rdtscp", "rdtscp", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
594 { DBGFEVENT_INSTR_RDPMC, "instr_rdpmc", "rdpmc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
595 { DBGFEVENT_INSTR_RDMSR, "instr_rdmsr", "rdmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
596 { DBGFEVENT_INSTR_WRMSR, "instr_wrmsr", "wrmsr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
597 { DBGFEVENT_INSTR_CRX_READ, "instr_crx_read", "crx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
598 { DBGFEVENT_INSTR_CRX_WRITE, "instr_crx_write", "crx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
599 { DBGFEVENT_INSTR_DRX_READ, "instr_drx_read", "drx_read", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
600 { DBGFEVENT_INSTR_DRX_WRITE, "instr_drx_write", "drx_write",kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_TAKE_ARG, NULL },
601 { DBGFEVENT_INSTR_PAUSE, "instr_pause", "pause", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
602 { DBGFEVENT_INSTR_XSETBV, "instr_xsetbv", "xsetbv", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
603 { DBGFEVENT_INSTR_SIDT, "instr_sidt", "sidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
604 { DBGFEVENT_INSTR_LIDT, "instr_lidt", "lidt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
605 { DBGFEVENT_INSTR_SGDT, "instr_sgdt", "sgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
606 { DBGFEVENT_INSTR_LGDT, "instr_lgdt", "lgdt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
607 { DBGFEVENT_INSTR_SLDT, "instr_sldt", "sldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
608 { DBGFEVENT_INSTR_LLDT, "instr_lldt", "lldt", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
609 { DBGFEVENT_INSTR_STR, "instr_str", "str", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
610 { DBGFEVENT_INSTR_LTR, "instr_ltr", "ltr", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
611 { DBGFEVENT_INSTR_GETSEC, "instr_getsec", "getsec", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
612 { DBGFEVENT_INSTR_RSM, "instr_rsm", "rsm", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
613 { DBGFEVENT_INSTR_RDRAND, "instr_rdrand", "rdrand", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
614 { DBGFEVENT_INSTR_RDSEED, "instr_rdseed", "rdseed", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
615 { DBGFEVENT_INSTR_XSAVES, "instr_xsaves", "xsaves", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
616 { DBGFEVENT_INSTR_XRSTORS, "instr_xrstors", "xrstors", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
617 { DBGFEVENT_INSTR_VMM_CALL, "instr_vmm_call", "vmm_call", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
618 { DBGFEVENT_INSTR_VMX_VMCLEAR, "instr_vmx_vmclear", "vmclear", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
619 { DBGFEVENT_INSTR_VMX_VMLAUNCH, "instr_vmx_vmlaunch", "vmlaunch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
620 { DBGFEVENT_INSTR_VMX_VMPTRLD, "instr_vmx_vmptrld", "vmptrld", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
621 { DBGFEVENT_INSTR_VMX_VMPTRST, "instr_vmx_vmptrst", "vmptrst", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
622 { DBGFEVENT_INSTR_VMX_VMREAD, "instr_vmx_vmread", "vmread", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
623 { DBGFEVENT_INSTR_VMX_VMRESUME, "instr_vmx_vmresume", "vmresume", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
624 { DBGFEVENT_INSTR_VMX_VMWRITE, "instr_vmx_vmwrite", "vmwrite", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
625 { DBGFEVENT_INSTR_VMX_VMXOFF, "instr_vmx_vmxoff", "vmxoff", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
626 { DBGFEVENT_INSTR_VMX_VMXON, "instr_vmx_vmxon", "vmxon", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
627 { DBGFEVENT_INSTR_VMX_VMFUNC, "instr_vmx_vmfunc", "vmfunc", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
628 { DBGFEVENT_INSTR_VMX_INVEPT, "instr_vmx_invept", "invept", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
629 { DBGFEVENT_INSTR_VMX_INVVPID, "instr_vmx_invvpid", "invvpid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
630 { DBGFEVENT_INSTR_VMX_INVPCID, "instr_vmx_invpcid", "invpcid", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
631 { DBGFEVENT_INSTR_SVM_VMRUN, "instr_svm_vmrun", "vmrun", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
632 { DBGFEVENT_INSTR_SVM_VMLOAD, "instr_svm_vmload", "vmload", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
633 { DBGFEVENT_INSTR_SVM_VMSAVE, "instr_svm_vmsave", "vmsave", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
634 { DBGFEVENT_INSTR_SVM_STGI, "instr_svm_stgi", "stgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
635 { DBGFEVENT_INSTR_SVM_CLGI, "instr_svm_clgi", "clgi", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
636 { DBGFEVENT_EXIT_TASK_SWITCH, "exit_task_switch", "task_switch", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
637 { DBGFEVENT_EXIT_HALT, "exit_halt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
638 { DBGFEVENT_EXIT_MWAIT, "exit_mwait", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
639 { DBGFEVENT_EXIT_MONITOR, "exit_monitor", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
640 { DBGFEVENT_EXIT_CPUID, "exit_cpuid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
641 { DBGFEVENT_EXIT_INVD, "exit_invd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
642 { DBGFEVENT_EXIT_WBINVD, "exit_wbinvd", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
643 { DBGFEVENT_EXIT_INVLPG, "exit_invlpg", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
644 { DBGFEVENT_EXIT_RDTSC, "exit_rdtsc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
645 { DBGFEVENT_EXIT_RDTSCP, "exit_rdtscp", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
646 { DBGFEVENT_EXIT_RDPMC, "exit_rdpmc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
647 { DBGFEVENT_EXIT_RDMSR, "exit_rdmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
648 { DBGFEVENT_EXIT_WRMSR, "exit_wrmsr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
649 { DBGFEVENT_EXIT_CRX_READ, "exit_crx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
650 { DBGFEVENT_EXIT_CRX_WRITE, "exit_crx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
651 { DBGFEVENT_EXIT_DRX_READ, "exit_drx_read", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
652 { DBGFEVENT_EXIT_DRX_WRITE, "exit_drx_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
653 { DBGFEVENT_EXIT_PAUSE, "exit_pause", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
654 { DBGFEVENT_EXIT_XSETBV, "exit_xsetbv", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
655 { DBGFEVENT_EXIT_SIDT, "exit_sidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
656 { DBGFEVENT_EXIT_LIDT, "exit_lidt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
657 { DBGFEVENT_EXIT_SGDT, "exit_sgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
658 { DBGFEVENT_EXIT_LGDT, "exit_lgdt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
659 { DBGFEVENT_EXIT_SLDT, "exit_sldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
660 { DBGFEVENT_EXIT_LLDT, "exit_lldt", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
661 { DBGFEVENT_EXIT_STR, "exit_str", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
662 { DBGFEVENT_EXIT_LTR, "exit_ltr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
663 { DBGFEVENT_EXIT_GETSEC, "exit_getsec", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
664 { DBGFEVENT_EXIT_RSM, "exit_rsm", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
665 { DBGFEVENT_EXIT_RDRAND, "exit_rdrand", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
666 { DBGFEVENT_EXIT_RDSEED, "exit_rdseed", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
667 { DBGFEVENT_EXIT_XSAVES, "exit_xsaves", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
668 { DBGFEVENT_EXIT_XRSTORS, "exit_xrstors", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
669 { DBGFEVENT_EXIT_VMM_CALL, "exit_vmm_call", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
670 { DBGFEVENT_EXIT_VMX_VMCLEAR, "exit_vmx_vmclear", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
671 { DBGFEVENT_EXIT_VMX_VMLAUNCH, "exit_vmx_vmlaunch", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
672 { DBGFEVENT_EXIT_VMX_VMPTRLD, "exit_vmx_vmptrld", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
673 { DBGFEVENT_EXIT_VMX_VMPTRST, "exit_vmx_vmptrst", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
674 { DBGFEVENT_EXIT_VMX_VMREAD, "exit_vmx_vmread", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
675 { DBGFEVENT_EXIT_VMX_VMRESUME, "exit_vmx_vmresume", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
676 { DBGFEVENT_EXIT_VMX_VMWRITE, "exit_vmx_vmwrite", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
677 { DBGFEVENT_EXIT_VMX_VMXOFF, "exit_vmx_vmxoff", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
678 { DBGFEVENT_EXIT_VMX_VMXON, "exit_vmx_vmxon", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
679 { DBGFEVENT_EXIT_VMX_VMFUNC, "exit_vmx_vmfunc", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
680 { DBGFEVENT_EXIT_VMX_INVEPT, "exit_vmx_invept", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
681 { DBGFEVENT_EXIT_VMX_INVVPID, "exit_vmx_invvpid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
682 { DBGFEVENT_EXIT_VMX_INVPCID, "exit_vmx_invpcid", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
683 { DBGFEVENT_EXIT_VMX_EPT_VIOLATION, "exit_vmx_ept_violation", "eptvio", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
684 { DBGFEVENT_EXIT_VMX_EPT_MISCONFIG, "exit_vmx_ept_misconfig", "eptmis", kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
685 { DBGFEVENT_EXIT_VMX_VAPIC_ACCESS, "exit_vmx_vapic_access", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
686 { DBGFEVENT_EXIT_VMX_VAPIC_WRITE, "exit_vmx_vapic_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
687 { DBGFEVENT_EXIT_SVM_VMRUN, "exit_svm_vmrun", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
688 { DBGFEVENT_EXIT_SVM_VMLOAD, "exit_svm_vmload", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
689 { DBGFEVENT_EXIT_SVM_VMSAVE, "exit_svm_vmsave", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
690 { DBGFEVENT_EXIT_SVM_STGI, "exit_svm_stgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
691 { DBGFEVENT_EXIT_SVM_CLGI, "exit_svm_clgi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
692 { DBGFEVENT_VMX_SPLIT_LOCK, "vmx_split_lock", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
693 { DBGFEVENT_IOPORT_UNASSIGNED, "pio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
694 { DBGFEVENT_IOPORT_UNUSED, "pio_unused", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
695 { DBGFEVENT_MEMORY_UNASSIGNED, "mmio_unassigned", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
696 { DBGFEVENT_MEMORY_ROM_WRITE, "rom_write", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, 0, NULL },
697 { DBGFEVENT_BSOD_MSR, "bsod_msr", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
698 { DBGFEVENT_BSOD_EFI, "bsod_efi", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
699 { DBGFEVENT_BSOD_VMMDEV, "bsod_vmmdev", NULL, kDbgcSxEventKind_Plain, kDbgcEvtState_Disabled, DBGCSXEVT_F_BUGCHECK, NULL },
700};
701/** Number of entries in g_aDbgcSxEvents. */
702const uint32_t g_cDbgcSxEvents = RT_ELEMENTS(g_aDbgcSxEvents);
703
704
705
706/**
707 * @callback_method_impl{FNDBGCCMD, The 'g' command.}
708 */
709static DECLCALLBACK(int) dbgcCmdGo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
710{
711 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
712
713 /*
714 * Parse arguments.
715 */
716 VMCPUID idCpu = VMCPUID_ALL;
717 if (cArgs == 1)
718 {
719 VMCPUID cCpus = DBGFR3CpuGetCount(pUVM);
720 if (paArgs[0].u.u64Number >= cCpus)
721 return DBGCCmdHlpFail(pCmdHlp, pCmd, "idCpu %RU64 is out of range! Highest valid ID is %u.\n",
722 paArgs[0].u.u64Number, cCpus - 1);
723 idCpu = (VMCPUID)paArgs[0].u.u64Number;
724 }
725 else
726 Assert(cArgs == 0);
727
728 /*
729 * Try resume the VM or CPU.
730 */
731 int rc = DBGFR3Resume(pUVM, idCpu);
732 if (RT_SUCCESS(rc))
733 {
734 Assert(rc == VINF_SUCCESS || rc == VWRN_DBGF_ALREADY_RUNNING);
735 if (rc != VWRN_DBGF_ALREADY_RUNNING)
736 return VINF_SUCCESS;
737 if (idCpu == VMCPUID_ALL)
738 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The VM is already running");
739 return DBGCCmdHlpFail(pCmdHlp, pCmd, "CPU %u is already running", idCpu);
740 }
741 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3Resume");
742}
743
744
745/**
746 * @callback_method_impl{FNDBGCCMD, The 'gu' command.}
747 */
748static DECLCALLBACK(int) dbgcCmdGoUp(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
749{
750 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
751 RT_NOREF(pCmd, paArgs, cArgs);
752
753 /* The simple way out. */
754 PDBGFADDRESS pStackPop = NULL; /** @todo try set up some stack limitations */
755 RTGCPTR cbStackPop = 0;
756 int rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, DBGF_STEP_F_OVER | DBGF_STEP_F_STOP_AFTER_RET, NULL, pStackPop, cbStackPop, _512K);
757 if (RT_SUCCESS(rc))
758 pDbgc->fReady = false;
759 else
760 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,DBGF_STEP_F_OVER | DBGF_STEP_F_STOP_AFTER_RET,) failed");
761 return rc;
762}
763
764
765/**
766 * @callback_method_impl{FNDBGCCMD, The 'ba' command.}
767 */
768static DECLCALLBACK(int) dbgcCmdBrkAccess(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
769{
770 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
771
772 /*
773 * Interpret access type.
774 */
775 if ( !strchr("xrwi", paArgs[0].u.pszString[0])
776 || paArgs[0].u.pszString[1])
777 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access type '%s' for '%s'. Valid types are 'e', 'r', 'w' and 'i'",
778 paArgs[0].u.pszString, pCmd->pszCmd);
779 uint8_t fType = 0;
780 switch (paArgs[0].u.pszString[0])
781 {
782 case 'x': fType = X86_DR7_RW_EO; break;
783 case 'r': fType = X86_DR7_RW_RW; break;
784 case 'w': fType = X86_DR7_RW_WO; break;
785 case 'i': fType = X86_DR7_RW_IO; break;
786 }
787
788 /*
789 * Validate size.
790 */
791 if (fType == X86_DR7_RW_EO && paArgs[1].u.u64Number != 1)
792 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 'x' access type requires size 1!",
793 paArgs[1].u.u64Number, pCmd->pszCmd);
794 switch (paArgs[1].u.u64Number)
795 {
796 case 1:
797 case 2:
798 case 4:
799 break;
800 /*case 8: - later*/
801 default:
802 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 1, 2 or 4!",
803 paArgs[1].u.u64Number, pCmd->pszCmd);
804 }
805 uint8_t cb = (uint8_t)paArgs[1].u.u64Number;
806
807 /*
808 * Convert the pointer to a DBGF address.
809 */
810 DBGFADDRESS Address;
811 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[2], &Address);
812 if (RT_FAILURE(rc))
813 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%DV,)", &paArgs[2]);
814
815 /*
816 * Pick out the optional arguments.
817 */
818 uint64_t iHitTrigger = 0;
819 uint64_t iHitDisable = UINT64_MAX;
820 const char *pszCmds = NULL;
821 unsigned iArg = 3;
822 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
823 {
824 iHitTrigger = paArgs[iArg].u.u64Number;
825 iArg++;
826 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
827 {
828 iHitDisable = paArgs[iArg].u.u64Number;
829 iArg++;
830 }
831 }
832 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
833 {
834 pszCmds = paArgs[iArg].u.pszString;
835 iArg++;
836 }
837
838 /*
839 * Try set the breakpoint.
840 */
841 uint32_t iBp;
842 rc = DBGFR3BpSetReg(pUVM, &Address, iHitTrigger, iHitDisable, fType, cb, &iBp);
843 if (RT_SUCCESS(rc))
844 {
845 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
846 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
847 if (RT_SUCCESS(rc))
848 return DBGCCmdHlpPrintf(pCmdHlp, "Set access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
849 if (rc == VERR_DBGC_BP_EXISTS)
850 {
851 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
852 if (RT_SUCCESS(rc))
853 return DBGCCmdHlpPrintf(pCmdHlp, "Updated access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
854 }
855 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
856 AssertRC(rc2);
857 }
858 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set access breakpoint at %RGv", Address.FlatPtr);
859}
860
861
862/**
863 * @callback_method_impl{FNDBGCCMD, The 'bc' command.}
864 */
865static DECLCALLBACK(int) dbgcCmdBrkClear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
866{
867 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
868
869 /*
870 * Enumerate the arguments.
871 */
872 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
873 int rc = VINF_SUCCESS;
874 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
875 {
876 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
877 {
878 /* one */
879 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
880 if (iBp == paArgs[iArg].u.u64Number)
881 {
882 int rc2 = DBGFR3BpClear(pUVM, iBp);
883 if (RT_FAILURE(rc2))
884 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
885 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
886 dbgcBpDelete(pDbgc, iBp);
887 }
888 else
889 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
890 }
891 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
892 {
893 /* all */
894 PDBGCBP pBp = pDbgc->pFirstBp;
895 while (pBp)
896 {
897 uint32_t iBp = pBp->iBp;
898 pBp = pBp->pNext;
899
900 int rc2 = DBGFR3BpClear(pUVM, iBp);
901 if (RT_FAILURE(rc2))
902 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
903 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
904 dbgcBpDelete(pDbgc, iBp);
905 }
906 }
907 else
908 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
909 }
910 return rc;
911}
912
913
914/**
915 * @callback_method_impl{FNDBGCCMD, The 'bd' command.}
916 */
917static DECLCALLBACK(int) dbgcCmdBrkDisable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
918{
919 /*
920 * Enumerate the arguments.
921 */
922 int rc = VINF_SUCCESS;
923 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
924 {
925 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
926 {
927 /* one */
928 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
929 if (iBp == paArgs[iArg].u.u64Number)
930 {
931 rc = DBGFR3BpDisable(pUVM, iBp);
932 if (RT_FAILURE(rc))
933 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpDisable failed for breakpoint %#x", iBp);
934 }
935 else
936 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
937 }
938 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
939 {
940 /* all */
941 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
942 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
943 {
944 int rc2 = DBGFR3BpDisable(pUVM, pBp->iBp);
945 if (RT_FAILURE(rc2))
946 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpDisable failed for breakpoint %#x", pBp->iBp);
947 }
948 }
949 else
950 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
951 }
952 return rc;
953}
954
955
956/**
957 * @callback_method_impl{FNDBGCCMD, The 'be' command.}
958 */
959static DECLCALLBACK(int) dbgcCmdBrkEnable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
960{
961 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
962
963 /*
964 * Enumerate the arguments.
965 */
966 int rc = VINF_SUCCESS;
967 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
968 {
969 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
970 {
971 /* one */
972 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
973 if (iBp == paArgs[iArg].u.u64Number)
974 {
975 rc = DBGFR3BpEnable(pUVM, iBp);
976 if (RT_FAILURE(rc))
977 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnable failed for breakpoint %#x", iBp);
978 }
979 else
980 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
981 }
982 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
983 {
984 /* all */
985 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
986 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
987 {
988 int rc2 = DBGFR3BpEnable(pUVM, pBp->iBp);
989 if (RT_FAILURE(rc2))
990 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpEnable failed for breakpoint %#x", pBp->iBp);
991 }
992 }
993 else
994 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
995 }
996 return rc;
997}
998
999
1000/**
1001 * Breakpoint enumeration callback function.
1002 *
1003 * @returns VBox status code. Any failure will stop the enumeration.
1004 * @param pUVM The user mode VM handle.
1005 * @param pvUser The user argument.
1006 * @param hBp The DBGF breakpoint handle.
1007 * @param pBp Pointer to the breakpoint information. (readonly)
1008 */
1009static DECLCALLBACK(int) dbgcEnumBreakpointsCallback(PUVM pUVM, void *pvUser, DBGFBP hBp, PCDBGFBPPUB pBp)
1010{
1011 PDBGC pDbgc = (PDBGC)pvUser;
1012 PDBGCBP pDbgcBp = dbgcBpGet(pDbgc, hBp);
1013
1014 /*
1015 * BP type and size.
1016 */
1017 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%#4x %c ", hBp, DBGF_BP_PUB_IS_ENABLED(pBp) ? 'e' : 'd');
1018 bool fHasAddress = false;
1019 switch (DBGF_BP_PUB_GET_TYPE(pBp))
1020 {
1021 case DBGFBPTYPE_INT3:
1022 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " p %RGv", pBp->u.Int3.GCPtr);
1023 fHasAddress = true;
1024 break;
1025 case DBGFBPTYPE_REG:
1026 {
1027 char chType;
1028 switch (pBp->u.Reg.fType)
1029 {
1030 case X86_DR7_RW_EO: chType = 'x'; break;
1031 case X86_DR7_RW_WO: chType = 'w'; break;
1032 case X86_DR7_RW_IO: chType = 'i'; break;
1033 case X86_DR7_RW_RW: chType = 'r'; break;
1034 default: chType = '?'; break;
1035
1036 }
1037 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%d %c %RGv", pBp->u.Reg.cb, chType, pBp->u.Reg.GCPtr);
1038 fHasAddress = true;
1039 break;
1040 }
1041
1042/** @todo realign the list when I/O and MMIO breakpoint command have been added and it's possible to test this code. */
1043 case DBGFBPTYPE_PORT_IO:
1044 case DBGFBPTYPE_MMIO:
1045 {
1046 uint32_t fAccess = DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO ? pBp->u.PortIo.fAccess : pBp->u.Mmio.fAccess;
1047 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO ? " i" : " m");
1048 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c",
1049 fAccess & DBGFBPIOACCESS_READ_MASK ? 'r' : '-',
1050 fAccess & DBGFBPIOACCESS_READ_BYTE ? '1' : '-',
1051 fAccess & DBGFBPIOACCESS_READ_WORD ? '2' : '-',
1052 fAccess & DBGFBPIOACCESS_READ_DWORD ? '4' : '-',
1053 fAccess & DBGFBPIOACCESS_READ_QWORD ? '8' : '-',
1054 fAccess & DBGFBPIOACCESS_READ_OTHER ? '+' : '-');
1055 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %c%c%c%c%c%c",
1056 fAccess & DBGFBPIOACCESS_WRITE_MASK ? 'w' : '-',
1057 fAccess & DBGFBPIOACCESS_WRITE_BYTE ? '1' : '-',
1058 fAccess & DBGFBPIOACCESS_WRITE_WORD ? '2' : '-',
1059 fAccess & DBGFBPIOACCESS_WRITE_DWORD ? '4' : '-',
1060 fAccess & DBGFBPIOACCESS_WRITE_QWORD ? '8' : '-',
1061 fAccess & DBGFBPIOACCESS_WRITE_OTHER ? '+' : '-');
1062 if (DBGF_BP_PUB_GET_TYPE(pBp) == DBGFBPTYPE_PORT_IO)
1063 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04x-%04x",
1064 pBp->u.PortIo.uPort, pBp->u.PortIo.uPort + pBp->u.PortIo.cPorts - 1);
1065 else
1066 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%RGp LB %03x", pBp->u.Mmio.PhysAddr, pBp->u.Mmio.cb);
1067 break;
1068 }
1069
1070 default:
1071 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " unknown type %d!!", DBGF_BP_PUB_GET_TYPE(pBp));
1072 AssertFailed();
1073 break;
1074
1075 }
1076 if (pBp->iHitDisable == ~(uint64_t)0)
1077 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to ~0) ", pBp->cHits, pBp->iHitTrigger);
1078 else
1079 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " %04RX64 (%04RX64 to %04RX64)", pBp->cHits, pBp->iHitTrigger, pBp->iHitDisable);
1080
1081 /*
1082 * Try resolve the address if it has one.
1083 */
1084 if (fHasAddress)
1085 {
1086 RTDBGSYMBOL Sym;
1087 RTINTPTR off;
1088 DBGFADDRESS Addr;
1089 int rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, pBp->u.GCPtr),
1090 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1091 &off, &Sym, NULL);
1092 if (RT_SUCCESS(rc))
1093 {
1094 if (!off)
1095 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s", Sym.szName);
1096 else if (off > 0)
1097 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s+%RGv", Sym.szName, off);
1098 else
1099 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s-%RGv", Sym.szName, -off);
1100 }
1101 }
1102
1103 /*
1104 * The commands.
1105 */
1106 if (pDbgcBp)
1107 {
1108 if (pDbgcBp->cchCmd)
1109 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n cmds: '%s'\n", pDbgcBp->szCmd);
1110 else
1111 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n");
1112 }
1113 else
1114 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " [unknown bp]\n");
1115
1116 return VINF_SUCCESS;
1117}
1118
1119
1120/**
1121 * @callback_method_impl{FNDBGCCMD, The 'bl' command.}
1122 */
1123static DECLCALLBACK(int) dbgcCmdBrkList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1124{
1125 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
1126 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0);
1127 NOREF(paArgs);
1128
1129 /*
1130 * Enumerate the breakpoints.
1131 */
1132 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1133 int rc = DBGFR3BpEnum(pUVM, dbgcEnumBreakpointsCallback, pDbgc);
1134 if (RT_FAILURE(rc))
1135 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnum");
1136 return rc;
1137}
1138
1139
1140/**
1141 * @callback_method_impl{FNDBGCCMD, The 'bp' command.}
1142 */
1143static DECLCALLBACK(int) dbgcCmdBrkSet(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1144{
1145 /*
1146 * Convert the pointer to a DBGF address.
1147 */
1148 DBGFADDRESS Address;
1149 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
1150 if (RT_FAILURE(rc))
1151 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
1152
1153 /*
1154 * Pick out the optional arguments.
1155 */
1156 uint64_t iHitTrigger = 0;
1157 uint64_t iHitDisable = UINT64_MAX;
1158 const char *pszCmds = NULL;
1159 unsigned iArg = 1;
1160 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1161 {
1162 iHitTrigger = paArgs[iArg].u.u64Number;
1163 iArg++;
1164 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1165 {
1166 iHitDisable = paArgs[iArg].u.u64Number;
1167 iArg++;
1168 }
1169 }
1170 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
1171 {
1172 pszCmds = paArgs[iArg].u.pszString;
1173 iArg++;
1174 }
1175
1176 /*
1177 * Try set the breakpoint.
1178 */
1179 uint32_t iBp;
1180 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1181 rc = DBGFR3BpSetInt3(pUVM, pDbgc->idCpu, &Address, iHitTrigger, iHitDisable, &iBp);
1182 if (RT_SUCCESS(rc))
1183 {
1184 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
1185 if (RT_SUCCESS(rc))
1186 return DBGCCmdHlpPrintf(pCmdHlp, "Set breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1187 if (rc == VERR_DBGC_BP_EXISTS)
1188 {
1189 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
1190 if (RT_SUCCESS(rc))
1191 return DBGCCmdHlpPrintf(pCmdHlp, "Updated breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1192 }
1193 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
1194 AssertRC(rc2);
1195 }
1196 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set breakpoint at %RGv", Address.FlatPtr);
1197}
1198
1199
1200/**
1201 * @callback_method_impl{FNDBGCCMD, The 'br' command.}
1202 */
1203static DECLCALLBACK(int) dbgcCmdBrkREM(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1204{
1205 /*
1206 * Convert the pointer to a DBGF address.
1207 */
1208 DBGFADDRESS Address;
1209 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
1210 if (RT_FAILURE(rc))
1211 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
1212
1213 /*
1214 * Pick out the optional arguments.
1215 */
1216 uint64_t iHitTrigger = 0;
1217 uint64_t iHitDisable = UINT64_MAX;
1218 const char *pszCmds = NULL;
1219 unsigned iArg = 1;
1220 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1221 {
1222 iHitTrigger = paArgs[iArg].u.u64Number;
1223 iArg++;
1224 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
1225 {
1226 iHitDisable = paArgs[iArg].u.u64Number;
1227 iArg++;
1228 }
1229 }
1230 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
1231 {
1232 pszCmds = paArgs[iArg].u.pszString;
1233 iArg++;
1234 }
1235
1236 /*
1237 * Try set the breakpoint.
1238 */
1239 uint32_t iBp;
1240 rc = DBGFR3BpSetREM(pUVM, &Address, iHitTrigger, iHitDisable, &iBp);
1241 if (RT_SUCCESS(rc))
1242 {
1243 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1244 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
1245 if (RT_SUCCESS(rc))
1246 return DBGCCmdHlpPrintf(pCmdHlp, "Set REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1247 if (rc == VERR_DBGC_BP_EXISTS)
1248 {
1249 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
1250 if (RT_SUCCESS(rc))
1251 return DBGCCmdHlpPrintf(pCmdHlp, "Updated REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
1252 }
1253 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
1254 AssertRC(rc2);
1255 }
1256 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set REM breakpoint at %RGv", Address.FlatPtr);
1257}
1258
1259
1260/**
1261 * Helps the unassmble ('u') command display symbols it starts at and passes.
1262 *
1263 * @param pUVM The user mode VM handle.
1264 * @param pCmdHlp The command helpers for printing via.
1265 * @param hDbgAs The address space to look up addresses in.
1266 * @param pAddress The current address.
1267 * @param pcbCallAgain Where to return the distance to the next check (in
1268 * instruction bytes).
1269 */
1270static void dbgcCmdUnassambleHelpListNear(PUVM pUVM, PDBGCCMDHLP pCmdHlp, RTDBGAS hDbgAs, PCDBGFADDRESS pAddress,
1271 PRTUINTPTR pcbCallAgain)
1272{
1273 RTDBGSYMBOL Symbol;
1274 RTGCINTPTR offDispSym;
1275 int rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress,
1276 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1277 &offDispSym, &Symbol, NULL);
1278 if (RT_FAILURE(rc) || offDispSym > _1G)
1279 rc = DBGFR3AsSymbolByAddr(pUVM, hDbgAs, pAddress,
1280 RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
1281 &offDispSym, &Symbol, NULL);
1282 if (RT_SUCCESS(rc) && offDispSym < _1G)
1283 {
1284 if (!offDispSym)
1285 {
1286 DBGCCmdHlpPrintf(pCmdHlp, "%s:\n", Symbol.szName);
1287 *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb;
1288 }
1289 else if (offDispSym > 0)
1290 {
1291 DBGCCmdHlpPrintf(pCmdHlp, "%s+%#llx:\n", Symbol.szName, (uint64_t)offDispSym);
1292 *pcbCallAgain = !Symbol.cb ? 64 : Symbol.cb > (RTGCUINTPTR)offDispSym ? Symbol.cb - (RTGCUINTPTR)offDispSym : 1;
1293 }
1294 else
1295 {
1296 DBGCCmdHlpPrintf(pCmdHlp, "%s-%#llx:\n", Symbol.szName, (uint64_t)-offDispSym);
1297 *pcbCallAgain = !Symbol.cb ? 64 : (RTGCUINTPTR)-offDispSym + Symbol.cb;
1298 }
1299 }
1300 else
1301 *pcbCallAgain = UINT32_MAX;
1302}
1303
1304
1305/**
1306 * @callback_method_impl{FNDBGCCMD, The 'u' command.}
1307 */
1308static DECLCALLBACK(int) dbgcCmdUnassemble(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1309{
1310 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1311
1312 /*
1313 * Validate input.
1314 */
1315 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
1316 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1);
1317 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
1318
1319 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1320 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
1321
1322 /*
1323 * Check the desired mode.
1324 */
1325 unsigned fFlags = DBGF_DISAS_FLAGS_NO_ADDRESS | DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED;
1326 switch (pCmd->pszCmd[1])
1327 {
1328 default: AssertFailed(); RT_FALL_THRU();
1329 case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break;
1330 case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
1331 case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
1332 case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break;
1333 case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break;
1334 }
1335
1336 /** @todo should use DBGFADDRESS for everything */
1337
1338 /*
1339 * Find address.
1340 */
1341 if (!cArgs)
1342 {
1343 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
1344 {
1345 /** @todo Batch query CS, RIP, CPU mode and flags. */
1346 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
1347 if (CPUMIsGuestIn64BitCode(pVCpu))
1348 {
1349 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
1350 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
1351 }
1352 else
1353 {
1354 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
1355 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
1356 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
1357 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
1358 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
1359 {
1360 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1361 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
1362 }
1363 }
1364
1365 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
1366 }
1367 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
1368 {
1369 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
1370 fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK;
1371 }
1372 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
1373 }
1374 else
1375 pDbgc->DisasmPos = paArgs[0];
1376 pDbgc->pLastPos = &pDbgc->DisasmPos;
1377
1378 /*
1379 * Range.
1380 */
1381 switch (pDbgc->DisasmPos.enmRangeType)
1382 {
1383 case DBGCVAR_RANGE_NONE:
1384 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
1385 pDbgc->DisasmPos.u64Range = 10;
1386 break;
1387
1388 case DBGCVAR_RANGE_ELEMENTS:
1389 if (pDbgc->DisasmPos.u64Range > 2048)
1390 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines");
1391 break;
1392
1393 case DBGCVAR_RANGE_BYTES:
1394 if (pDbgc->DisasmPos.u64Range > 65536)
1395 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB");
1396 break;
1397
1398 default:
1399 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType);
1400 }
1401
1402 /*
1403 * Convert physical and host addresses to guest addresses.
1404 */
1405 RTDBGAS hDbgAs = pDbgc->hDbgAs;
1406 int rc;
1407 switch (pDbgc->DisasmPos.enmType)
1408 {
1409 case DBGCVAR_TYPE_GC_FLAT:
1410 case DBGCVAR_TYPE_GC_FAR:
1411 break;
1412 case DBGCVAR_TYPE_GC_PHYS:
1413 hDbgAs = DBGF_AS_PHYS;
1414 RT_FALL_THRU();
1415 case DBGCVAR_TYPE_HC_FLAT:
1416 case DBGCVAR_TYPE_HC_PHYS:
1417 {
1418 DBGCVAR VarTmp;
1419 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
1420 if (RT_FAILURE(rc))
1421 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
1422 pDbgc->DisasmPos = VarTmp;
1423 break;
1424 }
1425 default: AssertFailed(); break;
1426 }
1427
1428 DBGFADDRESS CurAddr;
1429 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
1430 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
1431 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
1432 else
1433 {
1434 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
1435 if (RT_FAILURE(rc))
1436 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
1437 }
1438
1439 pDbgc->fDisasm = fFlags;
1440
1441 /*
1442 * Figure out where we are and display it. Also calculate when we need to
1443 * check for a new symbol if possible.
1444 */
1445 RTGCUINTPTR cbCheckSymbol;
1446 dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
1447
1448 /*
1449 * Do the disassembling.
1450 */
1451 unsigned cTries = 32;
1452 int iRangeLeft = (int)pDbgc->DisasmPos.u64Range;
1453 if (iRangeLeft == 0) /* kludge for 'r'. */
1454 iRangeLeft = -1;
1455 for (;;)
1456 {
1457 /*
1458 * Disassemble the instruction.
1459 */
1460 char szDis[256];
1461 uint32_t cbInstr = 1;
1462 if (pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FLAT)
1463 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, DBGF_SEL_FLAT, pDbgc->DisasmPos.u.GCFlat, fFlags,
1464 &szDis[0], sizeof(szDis), &cbInstr);
1465 else
1466 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, pDbgc->DisasmPos.u.GCFar.sel, pDbgc->DisasmPos.u.GCFar.off, fFlags,
1467 &szDis[0], sizeof(szDis), &cbInstr);
1468 if (RT_SUCCESS(rc))
1469 {
1470 /* print it */
1471 rc = DBGCCmdHlpPrintf(pCmdHlp, "%-16DV %s\n", &pDbgc->DisasmPos, &szDis[0]);
1472 if (RT_FAILURE(rc))
1473 return rc;
1474 }
1475 else
1476 {
1477 /* bitch. */
1478 int rc2 = DBGCCmdHlpPrintf(pCmdHlp, "Failed to disassemble instruction, skipping one byte.\n");
1479 if (RT_FAILURE(rc2))
1480 return rc2;
1481 if (cTries-- > 0)
1482 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Too many disassembly failures. Giving up");
1483 cbInstr = 1;
1484 }
1485
1486 /* advance */
1487 if (iRangeLeft < 0) /* 'r' */
1488 break;
1489 if (pDbgc->DisasmPos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
1490 iRangeLeft--;
1491 else
1492 iRangeLeft -= cbInstr;
1493 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DisasmPos, "(%Dv) + %x", &pDbgc->DisasmPos, cbInstr);
1494 if (RT_FAILURE(rc))
1495 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpEval(,,'(%Dv) + %x')", &pDbgc->DisasmPos, cbInstr);
1496 if (iRangeLeft <= 0)
1497 break;
1498 fFlags &= ~DBGF_DISAS_FLAGS_CURRENT_GUEST;
1499
1500 /* Print next symbol? */
1501 if (cbCheckSymbol <= cbInstr)
1502 {
1503 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
1504 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
1505 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
1506 else
1507 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
1508 if (RT_SUCCESS(rc))
1509 dbgcCmdUnassambleHelpListNear(pUVM, pCmdHlp, hDbgAs, &CurAddr, &cbCheckSymbol);
1510 else
1511 cbCheckSymbol = UINT32_MAX;
1512 }
1513 else
1514 cbCheckSymbol -= cbInstr;
1515 }
1516
1517 NOREF(pCmd);
1518 return VINF_SUCCESS;
1519}
1520
1521
1522/**
1523 * @callback_method_impl{FNDGCSCREENBLIT}
1524 */
1525static DECLCALLBACK(int) dbgcCmdUnassembleCfgBlit(const char *psz, void *pvUser)
1526{
1527 PDBGCCMDHLP pCmdHlp = (PDBGCCMDHLP)pvUser;
1528 return DBGCCmdHlpPrintf(pCmdHlp, "%s", psz);
1529}
1530
1531
1532/**
1533 * Checks whether both addresses are equal.
1534 *
1535 * @returns true if both addresses point to the same location, false otherwise.
1536 * @param pAddr1 First address.
1537 * @param pAddr2 Second address.
1538 */
1539static bool dbgcCmdUnassembleCfgAddrEqual(PDBGFADDRESS pAddr1, PDBGFADDRESS pAddr2)
1540{
1541 return pAddr1->Sel == pAddr2->Sel
1542 && pAddr1->off == pAddr2->off;
1543}
1544
1545
1546/**
1547 * Checks whether the first given address is lower than the second one.
1548 *
1549 * @returns true if both addresses point to the same location, false otherwise.
1550 * @param pAddr1 First address.
1551 * @param pAddr2 Second address.
1552 */
1553static bool dbgcCmdUnassembleCfgAddrLower(PDBGFADDRESS pAddr1, PDBGFADDRESS pAddr2)
1554{
1555 return pAddr1->Sel == pAddr2->Sel
1556 && pAddr1->off < pAddr2->off;
1557}
1558
1559
1560/**
1561 * Calculates the size required for the given basic block including the
1562 * border and spacing on the edges.
1563 *
1564 * @returns nothing.
1565 * @param hFlowBb The basic block handle.
1566 * @param pDumpBb The dumper state to fill in for the basic block.
1567 */
1568static void dbgcCmdUnassembleCfgDumpCalcBbSize(DBGFFLOWBB hFlowBb, PDBGCFLOWBBDUMP pDumpBb)
1569{
1570 uint32_t fFlags = DBGFR3FlowBbGetFlags(hFlowBb);
1571 uint32_t cInstr = DBGFR3FlowBbGetInstrCount(hFlowBb);
1572
1573 pDumpBb->hFlowBb = hFlowBb;
1574 pDumpBb->cchHeight = cInstr + 4; /* Include spacing and border top and bottom. */
1575 pDumpBb->cchWidth = 0;
1576 DBGFR3FlowBbGetStartAddress(hFlowBb, &pDumpBb->AddrStart);
1577
1578 DBGFFLOWBBENDTYPE enmType = DBGFR3FlowBbGetType(hFlowBb);
1579 if ( enmType == DBGFFLOWBBENDTYPE_COND
1580 || enmType == DBGFFLOWBBENDTYPE_UNCOND_JMP
1581 || enmType == DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP)
1582 DBGFR3FlowBbGetBranchAddress(hFlowBb, &pDumpBb->AddrTarget);
1583
1584 if (fFlags & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1585 {
1586 const char *pszErr = NULL;
1587 DBGFR3FlowBbQueryError(hFlowBb, &pszErr);
1588 if (pszErr)
1589 {
1590 pDumpBb->cchHeight++;
1591 pDumpBb->cchWidth = RT_MAX(pDumpBb->cchWidth, (uint32_t)strlen(pszErr));
1592 }
1593 }
1594 for (unsigned i = 0; i < cInstr; i++)
1595 {
1596 const char *pszInstr = NULL;
1597 int rc = DBGFR3FlowBbQueryInstr(hFlowBb, i, NULL, NULL, &pszInstr);
1598 AssertRC(rc);
1599 pDumpBb->cchWidth = RT_MAX(pDumpBb->cchWidth, (uint32_t)strlen(pszInstr));
1600 }
1601 pDumpBb->cchWidth += 4; /* Include spacing and border left and right. */
1602}
1603
1604
1605/**
1606 * Dumps a top or bottom boundary line.
1607 *
1608 * @returns nothing.
1609 * @param hScreen The screen to draw to.
1610 * @param uStartX Where to start drawing the boundary.
1611 * @param uStartY Y coordinate.
1612 * @param cchWidth Width of the boundary.
1613 * @param enmColor The color to use for drawing.
1614 */
1615static void dbgcCmdUnassembleCfgDumpBbBoundary(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY, uint32_t cchWidth,
1616 DBGCSCREENCOLOR enmColor)
1617{
1618 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '+', enmColor);
1619 dbgcScreenAsciiDrawLineHorizontal(hScreen, uStartX + 1, uStartX + 1 + cchWidth - 2,
1620 uStartY, '-', enmColor);
1621 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '+', enmColor);
1622}
1623
1624
1625/**
1626 * Dumps a spacing line between the top or bottom boundary and the actual disassembly.
1627 *
1628 * @returns nothing.
1629 * @param hScreen The screen to draw to.
1630 * @param uStartX Where to start drawing the spacing.
1631 * @param uStartY Y coordinate.
1632 * @param cchWidth Width of the spacing.
1633 * @param enmColor The color to use for drawing.
1634 */
1635static void dbgcCmdUnassembleCfgDumpBbSpacing(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY, uint32_t cchWidth,
1636 DBGCSCREENCOLOR enmColor)
1637{
1638 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '|', enmColor);
1639 dbgcScreenAsciiDrawLineHorizontal(hScreen, uStartX + 1, uStartX + 1 + cchWidth - 2,
1640 uStartY, ' ', enmColor);
1641 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '|', enmColor);
1642}
1643
1644
1645/**
1646 * Writes a given text to the screen.
1647 *
1648 * @returns nothing.
1649 * @param hScreen The screen to draw to.
1650 * @param uStartX Where to start drawing the line.
1651 * @param uStartY Y coordinate.
1652 * @param cchWidth Maximum width of the text.
1653 * @param pszText The text to write.
1654 * @param enmTextColor The color to use for drawing the text.
1655 * @param enmBorderColor The color to use for drawing the border.
1656 */
1657static void dbgcCmdUnassembleCfgDumpBbText(DBGCSCREEN hScreen, uint32_t uStartX, uint32_t uStartY,
1658 uint32_t cchWidth, const char *pszText,
1659 DBGCSCREENCOLOR enmTextColor, DBGCSCREENCOLOR enmBorderColor)
1660{
1661 dbgcScreenAsciiDrawCharacter(hScreen, uStartX, uStartY, '|', enmBorderColor);
1662 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + 1, uStartY, ' ', enmTextColor);
1663 dbgcScreenAsciiDrawString(hScreen, uStartX + 2, uStartY, pszText, enmTextColor);
1664 dbgcScreenAsciiDrawCharacter(hScreen, uStartX + cchWidth - 1, uStartY, '|', enmBorderColor);
1665}
1666
1667
1668/**
1669 * Dumps one basic block using the dumper callback.
1670 *
1671 * @returns nothing.
1672 * @param pDumpBb The basic block dump state to dump.
1673 * @param hScreen The screen to draw to.
1674 */
1675static void dbgcCmdUnassembleCfgDumpBb(PDBGCFLOWBBDUMP pDumpBb, DBGCSCREEN hScreen)
1676{
1677 uint32_t uStartY = pDumpBb->uStartY;
1678 bool fError = RT_BOOL(DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR);
1679 DBGCSCREENCOLOR enmColor = fError ? DBGCSCREENCOLOR_RED_BRIGHT : DBGCSCREENCOLOR_DEFAULT;
1680
1681 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1682 uStartY++;
1683 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1684 uStartY++;
1685
1686 uint32_t cInstr = DBGFR3FlowBbGetInstrCount(pDumpBb->hFlowBb);
1687 for (unsigned i = 0; i < cInstr; i++)
1688 {
1689 const char *pszInstr = NULL;
1690 DBGFR3FlowBbQueryInstr(pDumpBb->hFlowBb, i, NULL, NULL, &pszInstr);
1691 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBb->uStartX, uStartY + i,
1692 pDumpBb->cchWidth, pszInstr, DBGCSCREENCOLOR_DEFAULT,
1693 enmColor);
1694 }
1695 uStartY += cInstr;
1696
1697 if (fError)
1698 {
1699 const char *pszErr = NULL;
1700 DBGFR3FlowBbQueryError(pDumpBb->hFlowBb, &pszErr);
1701 if (pszErr)
1702 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBb->uStartX, uStartY,
1703 pDumpBb->cchWidth, pszErr, enmColor,
1704 enmColor);
1705 uStartY++;
1706 }
1707
1708 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1709 uStartY++;
1710 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBb->uStartX, uStartY, pDumpBb->cchWidth, enmColor);
1711 uStartY++;
1712}
1713
1714
1715/**
1716 * Dumps one branch table using the dumper callback.
1717 *
1718 * @returns nothing.
1719 * @param pDumpBranchTbl The basic block dump state to dump.
1720 * @param hScreen The screen to draw to.
1721 */
1722static void dbgcCmdUnassembleCfgDumpBranchTbl(PDBGCFLOWBRANCHTBLDUMP pDumpBranchTbl, DBGCSCREEN hScreen)
1723{
1724 uint32_t uStartY = pDumpBranchTbl->uStartY;
1725 DBGCSCREENCOLOR enmColor = DBGCSCREENCOLOR_CYAN_BRIGHT;
1726
1727 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1728 uStartY++;
1729 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1730 uStartY++;
1731
1732 uint32_t cSlots = DBGFR3FlowBranchTblGetSlots(pDumpBranchTbl->hFlowBranchTbl);
1733 for (unsigned i = 0; i < cSlots; i++)
1734 {
1735 DBGFADDRESS Addr;
1736 char szAddr[128];
1737
1738 RT_ZERO(szAddr);
1739 DBGFR3FlowBranchTblGetAddrAtSlot(pDumpBranchTbl->hFlowBranchTbl, i, &Addr);
1740
1741 if (Addr.Sel == DBGF_SEL_FLAT)
1742 RTStrPrintf(&szAddr[0], sizeof(szAddr), "%RGv", Addr.FlatPtr);
1743 else
1744 RTStrPrintf(&szAddr[0], sizeof(szAddr), "%04x:%RGv", Addr.Sel, Addr.off);
1745
1746 dbgcCmdUnassembleCfgDumpBbText(hScreen, pDumpBranchTbl->uStartX, uStartY + i,
1747 pDumpBranchTbl->cchWidth, &szAddr[0], DBGCSCREENCOLOR_DEFAULT,
1748 enmColor);
1749 }
1750 uStartY += cSlots;
1751
1752 dbgcCmdUnassembleCfgDumpBbSpacing(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1753 uStartY++;
1754 dbgcCmdUnassembleCfgDumpBbBoundary(hScreen, pDumpBranchTbl->uStartX, uStartY, pDumpBranchTbl->cchWidth, enmColor);
1755 uStartY++;
1756}
1757
1758
1759/**
1760 * Fills in the dump states for the basic blocks and branch tables.
1761 *
1762 * @returns VBox status code.
1763 * @param hFlowIt The control flow graph iterator handle.
1764 * @param hFlowBranchTblIt The control flow graph branch table iterator handle.
1765 * @param paDumpBb The array of basic block dump states.
1766 * @param paDumpBranchTbl The array of branch table dump states.
1767 * @param cBbs Number of basic blocks.
1768 * @param cBranchTbls Number of branch tables.
1769 */
1770static int dbgcCmdUnassembleCfgDumpCalcDimensions(DBGFFLOWIT hFlowIt, DBGFFLOWBRANCHTBLIT hFlowBranchTblIt,
1771 PDBGCFLOWBBDUMP paDumpBb, PDBGCFLOWBRANCHTBLDUMP paDumpBranchTbl,
1772 uint32_t cBbs, uint32_t cBranchTbls)
1773{
1774 RT_NOREF2(cBbs, cBranchTbls);
1775
1776 /* Calculate the sizes of each basic block first. */
1777 DBGFFLOWBB hFlowBb = DBGFR3FlowItNext(hFlowIt);
1778 uint32_t idx = 0;
1779 while (hFlowBb)
1780 {
1781 dbgcCmdUnassembleCfgDumpCalcBbSize(hFlowBb, &paDumpBb[idx]);
1782 idx++;
1783 hFlowBb = DBGFR3FlowItNext(hFlowIt);
1784 }
1785
1786 if (paDumpBranchTbl)
1787 {
1788 idx = 0;
1789 DBGFFLOWBRANCHTBL hFlowBranchTbl = DBGFR3FlowBranchTblItNext(hFlowBranchTblIt);
1790 while (hFlowBranchTbl)
1791 {
1792 paDumpBranchTbl[idx].hFlowBranchTbl = hFlowBranchTbl;
1793 paDumpBranchTbl[idx].cchHeight = DBGFR3FlowBranchTblGetSlots(hFlowBranchTbl) + 4; /* Spacing and border. */
1794 paDumpBranchTbl[idx].cchWidth = 25 + 4; /* Spacing and border. */
1795 idx++;
1796 hFlowBranchTbl = DBGFR3FlowBranchTblItNext(hFlowBranchTblIt);
1797 }
1798 }
1799
1800 return VINF_SUCCESS;
1801}
1802
1803/**
1804 * Dumps the given control flow graph to the output.
1805 *
1806 * @returns VBox status code.
1807 * @param hCfg The control flow graph handle.
1808 * @param fUseColor Flag whether the output should be colorized.
1809 * @param pCmdHlp The command helper callback table.
1810 */
1811static int dbgcCmdUnassembleCfgDump(DBGFFLOW hCfg, bool fUseColor, PDBGCCMDHLP pCmdHlp)
1812{
1813 int rc = VINF_SUCCESS;
1814 DBGFFLOWIT hCfgIt = NULL;
1815 DBGFFLOWBRANCHTBLIT hFlowBranchTblIt = NULL;
1816 uint32_t cBbs = DBGFR3FlowGetBbCount(hCfg);
1817 uint32_t cBranchTbls = DBGFR3FlowGetBranchTblCount(hCfg);
1818 PDBGCFLOWBBDUMP paDumpBb = (PDBGCFLOWBBDUMP)RTMemTmpAllocZ(cBbs * sizeof(DBGCFLOWBBDUMP));
1819 PDBGCFLOWBRANCHTBLDUMP paDumpBranchTbl = NULL;
1820
1821 if (cBranchTbls)
1822 paDumpBranchTbl = (PDBGCFLOWBRANCHTBLDUMP)RTMemAllocZ(cBranchTbls * sizeof(DBGCFLOWBRANCHTBLDUMP));
1823
1824 if (RT_UNLIKELY(!paDumpBb || (!paDumpBranchTbl && cBranchTbls > 0)))
1825 rc = VERR_NO_MEMORY;
1826 if (RT_SUCCESS(rc))
1827 rc = DBGFR3FlowItCreate(hCfg, DBGFFLOWITORDER_BY_ADDR_LOWEST_FIRST, &hCfgIt);
1828 if (RT_SUCCESS(rc) && cBranchTbls > 0)
1829 rc = DBGFR3FlowBranchTblItCreate(hCfg, DBGFFLOWITORDER_BY_ADDR_LOWEST_FIRST, &hFlowBranchTblIt);
1830
1831 if (RT_SUCCESS(rc))
1832 {
1833 rc = dbgcCmdUnassembleCfgDumpCalcDimensions(hCfgIt, hFlowBranchTblIt, paDumpBb, paDumpBranchTbl,
1834 cBbs, cBranchTbls);
1835
1836 /* Calculate the ASCII screen dimensions and create one. */
1837 uint32_t cchWidth = 0;
1838 uint32_t cchLeftExtra = 5;
1839 uint32_t cchRightExtra = 5;
1840 uint32_t cchHeight = 0;
1841 for (unsigned i = 0; i < cBbs; i++)
1842 {
1843 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
1844 cchWidth = RT_MAX(cchWidth, pDumpBb->cchWidth);
1845 cchHeight += pDumpBb->cchHeight;
1846
1847 /* Incomplete blocks don't have a successor. */
1848 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1849 continue;
1850
1851 switch (DBGFR3FlowBbGetType(pDumpBb->hFlowBb))
1852 {
1853 case DBGFFLOWBBENDTYPE_EXIT:
1854 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1855 break;
1856 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1857 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1858 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1859 cchLeftExtra++;
1860 else
1861 cchRightExtra++;
1862 break;
1863 case DBGFFLOWBBENDTYPE_UNCOND:
1864 cchHeight += 2; /* For the arrow down to the next basic block. */
1865 break;
1866 case DBGFFLOWBBENDTYPE_COND:
1867 cchHeight += 2; /* For the arrow down to the next basic block. */
1868 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1869 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1870 cchLeftExtra++;
1871 else
1872 cchRightExtra++;
1873 break;
1874 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
1875 default:
1876 AssertFailed();
1877 }
1878 }
1879
1880 for (unsigned i = 0; i < cBranchTbls; i++)
1881 {
1882 PDBGCFLOWBRANCHTBLDUMP pDumpBranchTbl = &paDumpBranchTbl[i];
1883 cchWidth = RT_MAX(cchWidth, pDumpBranchTbl->cchWidth);
1884 cchHeight += pDumpBranchTbl->cchHeight;
1885 }
1886
1887 cchWidth += 2;
1888
1889 DBGCSCREEN hScreen = NULL;
1890 rc = dbgcScreenAsciiCreate(&hScreen, cchWidth + cchLeftExtra + cchRightExtra, cchHeight);
1891 if (RT_SUCCESS(rc))
1892 {
1893 uint32_t uY = 0;
1894
1895 /* Dump the branch tables first. */
1896 for (unsigned i = 0; i < cBranchTbls; i++)
1897 {
1898 paDumpBranchTbl[i].uStartX = cchLeftExtra + (cchWidth - paDumpBranchTbl[i].cchWidth) / 2;
1899 paDumpBranchTbl[i].uStartY = uY;
1900 dbgcCmdUnassembleCfgDumpBranchTbl(&paDumpBranchTbl[i], hScreen);
1901 uY += paDumpBranchTbl[i].cchHeight;
1902 }
1903
1904 /* Dump the basic blocks and connections to the immediate successor. */
1905 for (unsigned i = 0; i < cBbs; i++)
1906 {
1907 paDumpBb[i].uStartX = cchLeftExtra + (cchWidth - paDumpBb[i].cchWidth) / 2;
1908 paDumpBb[i].uStartY = uY;
1909 dbgcCmdUnassembleCfgDumpBb(&paDumpBb[i], hScreen);
1910 uY += paDumpBb[i].cchHeight;
1911
1912 /* Incomplete blocks don't have a successor. */
1913 if (DBGFR3FlowBbGetFlags(paDumpBb[i].hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1914 continue;
1915
1916 switch (DBGFR3FlowBbGetType(paDumpBb[i].hFlowBb))
1917 {
1918 case DBGFFLOWBBENDTYPE_EXIT:
1919 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1920 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1921 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
1922 break;
1923 case DBGFFLOWBBENDTYPE_UNCOND:
1924 /* Draw the arrow down to the next block. */
1925 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1926 '|', DBGCSCREENCOLOR_BLUE_BRIGHT);
1927 uY++;
1928 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1929 'V', DBGCSCREENCOLOR_BLUE_BRIGHT);
1930 uY++;
1931 break;
1932 case DBGFFLOWBBENDTYPE_COND:
1933 /* Draw the arrow down to the next block. */
1934 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1935 '|', DBGCSCREENCOLOR_RED_BRIGHT);
1936 uY++;
1937 dbgcScreenAsciiDrawCharacter(hScreen, cchLeftExtra + cchWidth / 2, uY,
1938 'V', DBGCSCREENCOLOR_RED_BRIGHT);
1939 uY++;
1940 break;
1941 default:
1942 AssertFailed();
1943 }
1944 }
1945
1946 /* Last pass, connect all remaining branches. */
1947 uint32_t uBackConns = 0;
1948 uint32_t uFwdConns = 0;
1949 for (unsigned i = 0; i < cBbs; i++)
1950 {
1951 PDBGCFLOWBBDUMP pDumpBb = &paDumpBb[i];
1952 DBGFFLOWBBENDTYPE enmEndType = DBGFR3FlowBbGetType(pDumpBb->hFlowBb);
1953
1954 /* Incomplete blocks don't have a successor. */
1955 if (DBGFR3FlowBbGetFlags(pDumpBb->hFlowBb) & DBGF_FLOW_BB_F_INCOMPLETE_ERR)
1956 continue;
1957
1958 switch (enmEndType)
1959 {
1960 case DBGFFLOWBBENDTYPE_EXIT:
1961 case DBGFFLOWBBENDTYPE_LAST_DISASSEMBLED:
1962 case DBGFFLOWBBENDTYPE_UNCOND:
1963 break;
1964 case DBGFFLOWBBENDTYPE_COND:
1965 case DBGFFLOWBBENDTYPE_UNCOND_JMP:
1966 {
1967 /* Find the target first to get the coordinates. */
1968 PDBGCFLOWBBDUMP pDumpBbTgt = NULL;
1969 for (unsigned idxDumpBb = 0; idxDumpBb < cBbs; idxDumpBb++)
1970 {
1971 pDumpBbTgt = &paDumpBb[idxDumpBb];
1972 if (dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBbTgt->AddrStart))
1973 break;
1974 }
1975
1976 DBGCSCREENCOLOR enmColor = enmEndType == DBGFFLOWBBENDTYPE_UNCOND_JMP
1977 ? DBGCSCREENCOLOR_YELLOW_BRIGHT
1978 : DBGCSCREENCOLOR_GREEN_BRIGHT;
1979
1980 /*
1981 * Use the right side for targets with higher addresses,
1982 * left when jumping backwards.
1983 */
1984 if ( dbgcCmdUnassembleCfgAddrLower(&pDumpBb->AddrTarget, &pDumpBb->AddrStart)
1985 || dbgcCmdUnassembleCfgAddrEqual(&pDumpBb->AddrTarget, &pDumpBb->AddrStart))
1986 {
1987 /* Going backwards. */
1988 uint32_t uXVerLine = /*cchLeftExtra - 1 -*/ uBackConns + 1;
1989 uint32_t uYHorLine = pDumpBb->uStartY + pDumpBb->cchHeight - 1 - 2;
1990 uBackConns++;
1991
1992 /* Draw the arrow pointing to the target block. */
1993 dbgcScreenAsciiDrawCharacter(hScreen, pDumpBbTgt->uStartX - 1, pDumpBbTgt->uStartY,
1994 '>', enmColor);
1995 /* Draw the horizontal line. */
1996 dbgcScreenAsciiDrawLineHorizontal(hScreen, uXVerLine + 1, pDumpBbTgt->uStartX - 2,
1997 pDumpBbTgt->uStartY, '-', enmColor);
1998 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, pDumpBbTgt->uStartY, '+',
1999 enmColor);
2000 /* Draw the vertical line down to the source block. */
2001 dbgcScreenAsciiDrawLineVertical(hScreen, uXVerLine, pDumpBbTgt->uStartY + 1, uYHorLine - 1,
2002 '|', enmColor);
2003 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, uYHorLine, '+', enmColor);
2004 /* Draw the horizontal connection between the source block and vertical part. */
2005 dbgcScreenAsciiDrawLineHorizontal(hScreen, uXVerLine + 1, pDumpBb->uStartX - 1,
2006 uYHorLine, '-', enmColor);
2007
2008 }
2009 else
2010 {
2011 /* Going forward. */
2012 uint32_t uXVerLine = cchWidth + cchLeftExtra + (cchRightExtra - uFwdConns) - 1;
2013 uint32_t uYHorLine = pDumpBb->uStartY + pDumpBb->cchHeight - 1 - 2;
2014 uFwdConns++;
2015
2016 /* Draw the horizontal line. */
2017 dbgcScreenAsciiDrawLineHorizontal(hScreen, pDumpBb->uStartX + pDumpBb->cchWidth,
2018 uXVerLine - 1, uYHorLine, '-', enmColor);
2019 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, uYHorLine, '+', enmColor);
2020 /* Draw the vertical line down to the target block. */
2021 dbgcScreenAsciiDrawLineVertical(hScreen, uXVerLine, uYHorLine + 1, pDumpBbTgt->uStartY - 1,
2022 '|', enmColor);
2023 /* Draw the horizontal connection between the target block and vertical part. */
2024 dbgcScreenAsciiDrawLineHorizontal(hScreen, pDumpBbTgt->uStartX + pDumpBbTgt->cchWidth,
2025 uXVerLine, pDumpBbTgt->uStartY, '-', enmColor);
2026 dbgcScreenAsciiDrawCharacter(hScreen, uXVerLine, pDumpBbTgt->uStartY, '+',
2027 enmColor);
2028 /* Draw the arrow pointing to the target block. */
2029 dbgcScreenAsciiDrawCharacter(hScreen, pDumpBbTgt->uStartX + pDumpBbTgt->cchWidth,
2030 pDumpBbTgt->uStartY, '<', enmColor);
2031 }
2032 break;
2033 }
2034 case DBGFFLOWBBENDTYPE_UNCOND_INDIRECT_JMP:
2035 default:
2036 AssertFailed();
2037 }
2038 }
2039
2040 rc = dbgcScreenAsciiBlit(hScreen, dbgcCmdUnassembleCfgBlit, pCmdHlp, fUseColor);
2041 dbgcScreenAsciiDestroy(hScreen);
2042 }
2043 }
2044
2045 if (paDumpBb)
2046 {
2047 for (unsigned i = 0; i < cBbs; i++)
2048 DBGFR3FlowBbRelease(paDumpBb[i].hFlowBb);
2049 RTMemTmpFree(paDumpBb);
2050 }
2051
2052 if (paDumpBranchTbl)
2053 {
2054 for (unsigned i = 0; i < cBranchTbls; i++)
2055 DBGFR3FlowBranchTblRelease(paDumpBranchTbl[i].hFlowBranchTbl);
2056 RTMemTmpFree(paDumpBranchTbl);
2057 }
2058
2059 if (hCfgIt)
2060 DBGFR3FlowItDestroy(hCfgIt);
2061 if (hFlowBranchTblIt)
2062 DBGFR3FlowBranchTblItDestroy(hFlowBranchTblIt);
2063
2064 return rc;
2065}
2066
2067
2068/**
2069 * @callback_method_impl{FNDBGCCMD, The 'ucfg' command.}
2070 */
2071static DECLCALLBACK(int) dbgcCmdUnassembleCfg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2072{
2073 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2074
2075 /*
2076 * Validate input.
2077 */
2078 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2079 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1);
2080 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
2081
2082 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
2083 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
2084
2085 /*
2086 * Check the desired mode.
2087 */
2088 unsigned fFlags = DBGF_DISAS_FLAGS_UNPATCHED_BYTES | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED;
2089 bool fUseColor = false;
2090 switch (pCmd->pszCmd[4])
2091 {
2092 default: AssertFailed(); RT_FALL_THRU();
2093 case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break;
2094 case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
2095 case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
2096 case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break;
2097 case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break;
2098 case 'c': fUseColor = true; break;
2099 }
2100
2101 /** @todo should use DBGFADDRESS for everything */
2102
2103 /*
2104 * Find address.
2105 */
2106 if (!cArgs)
2107 {
2108 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
2109 {
2110 /** @todo Batch query CS, RIP, CPU mode and flags. */
2111 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
2112 if (CPUMIsGuestIn64BitCode(pVCpu))
2113 {
2114 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
2115 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
2116 }
2117 else
2118 {
2119 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
2120 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
2121 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
2122 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE
2123 && (CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM))
2124 {
2125 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
2126 fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
2127 }
2128 }
2129
2130 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
2131 }
2132 else if ((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_DEFAULT_MODE && pDbgc->fDisasm)
2133 {
2134 fFlags &= ~DBGF_DISAS_FLAGS_MODE_MASK;
2135 fFlags |= pDbgc->fDisasm & DBGF_DISAS_FLAGS_MODE_MASK;
2136 }
2137 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
2138 }
2139 else
2140 pDbgc->DisasmPos = paArgs[0];
2141 pDbgc->pLastPos = &pDbgc->DisasmPos;
2142
2143 /*
2144 * Range.
2145 */
2146 switch (pDbgc->DisasmPos.enmRangeType)
2147 {
2148 case DBGCVAR_RANGE_NONE:
2149 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2150 pDbgc->DisasmPos.u64Range = 10;
2151 break;
2152
2153 case DBGCVAR_RANGE_ELEMENTS:
2154 if (pDbgc->DisasmPos.u64Range > 2048)
2155 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines");
2156 break;
2157
2158 case DBGCVAR_RANGE_BYTES:
2159 if (pDbgc->DisasmPos.u64Range > 65536)
2160 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB");
2161 break;
2162
2163 default:
2164 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType);
2165 }
2166
2167 /*
2168 * Convert physical and host addresses to guest addresses.
2169 */
2170 RTDBGAS hDbgAs = pDbgc->hDbgAs;
2171 int rc;
2172 switch (pDbgc->DisasmPos.enmType)
2173 {
2174 case DBGCVAR_TYPE_GC_FLAT:
2175 case DBGCVAR_TYPE_GC_FAR:
2176 break;
2177 case DBGCVAR_TYPE_GC_PHYS:
2178 hDbgAs = DBGF_AS_PHYS;
2179 RT_FALL_THRU();
2180 case DBGCVAR_TYPE_HC_FLAT:
2181 case DBGCVAR_TYPE_HC_PHYS:
2182 {
2183 DBGCVAR VarTmp;
2184 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
2185 if (RT_FAILURE(rc))
2186 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
2187 pDbgc->DisasmPos = VarTmp;
2188 break;
2189 }
2190 default: AssertFailed(); break;
2191 }
2192
2193 DBGFADDRESS CurAddr;
2194 if ( (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
2195 && pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FAR)
2196 DBGFR3AddrFromFlat(pUVM, &CurAddr, ((uint32_t)pDbgc->DisasmPos.u.GCFar.sel << 4) + pDbgc->DisasmPos.u.GCFar.off);
2197 else
2198 {
2199 rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->DisasmPos, &CurAddr);
2200 if (RT_FAILURE(rc))
2201 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr failed on '%Dv'", &pDbgc->DisasmPos);
2202 }
2203
2204 DBGFFLOW hCfg;
2205 rc = DBGFR3FlowCreate(pUVM, pDbgc->idCpu, &CurAddr, 0 /*cbDisasmMax*/,
2206 DBGF_FLOW_CREATE_F_TRY_RESOLVE_INDIRECT_BRANCHES, fFlags, &hCfg);
2207 if (RT_SUCCESS(rc))
2208 {
2209 /* Dump the graph. */
2210 rc = dbgcCmdUnassembleCfgDump(hCfg, fUseColor, pCmdHlp);
2211 DBGFR3FlowRelease(hCfg);
2212 }
2213 else
2214 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3FlowCreate failed on '%Dv'", &pDbgc->DisasmPos);
2215
2216 NOREF(pCmd);
2217 return rc;
2218}
2219
2220
2221/**
2222 * @callback_method_impl{FNDBGCCMD, The 'ls' command.}
2223 */
2224static DECLCALLBACK(int) dbgcCmdListSource(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2225{
2226 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2227
2228 /*
2229 * Validate input.
2230 */
2231 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
2232 if (cArgs == 1)
2233 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
2234 if (!pUVM && !cArgs && !DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
2235 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start listing...");
2236 if (!pUVM && cArgs && DBGCVAR_ISGCPOINTER(paArgs[0].enmType))
2237 return DBGCCmdHlpFail(pCmdHlp, pCmd, "GC address but no VM");
2238
2239 /*
2240 * Find address.
2241 */
2242 if (!cArgs)
2243 {
2244 if (!DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
2245 {
2246 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
2247 pDbgc->SourcePos.enmType = DBGCVAR_TYPE_GC_FAR;
2248 pDbgc->SourcePos.u.GCFar.off = CPUMGetGuestEIP(pVCpu);
2249 pDbgc->SourcePos.u.GCFar.sel = CPUMGetGuestCS(pVCpu);
2250 }
2251 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_NONE;
2252 }
2253 else
2254 pDbgc->SourcePos = paArgs[0];
2255 pDbgc->pLastPos = &pDbgc->SourcePos;
2256
2257 /*
2258 * Ensure the source address is flat GC.
2259 */
2260 switch (pDbgc->SourcePos.enmType)
2261 {
2262 case DBGCVAR_TYPE_GC_FLAT:
2263 break;
2264 case DBGCVAR_TYPE_GC_PHYS:
2265 case DBGCVAR_TYPE_GC_FAR:
2266 case DBGCVAR_TYPE_HC_FLAT:
2267 case DBGCVAR_TYPE_HC_PHYS:
2268 {
2269 int rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "%%(%Dv)", &pDbgc->SourcePos);
2270 if (RT_FAILURE(rc))
2271 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid address or address type. (rc=%d)\n", rc);
2272 break;
2273 }
2274 default: AssertFailed(); break;
2275 }
2276
2277 /*
2278 * Range.
2279 */
2280 switch (pDbgc->SourcePos.enmRangeType)
2281 {
2282 case DBGCVAR_RANGE_NONE:
2283 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2284 pDbgc->SourcePos.u64Range = 10;
2285 break;
2286
2287 case DBGCVAR_RANGE_ELEMENTS:
2288 if (pDbgc->SourcePos.u64Range > 2048)
2289 return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many lines requested. Max is 2048 lines.\n");
2290 break;
2291
2292 case DBGCVAR_RANGE_BYTES:
2293 if (pDbgc->SourcePos.u64Range > 65536)
2294 return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
2295 break;
2296
2297 default:
2298 return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->SourcePos.enmRangeType);
2299 }
2300
2301 /*
2302 * Do the disassembling.
2303 */
2304 bool fFirst = 1;
2305 RTDBGLINE LinePrev = { 0, 0, 0, 0, 0, "" };
2306 int iRangeLeft = (int)pDbgc->SourcePos.u64Range;
2307 if (iRangeLeft == 0) /* kludge for 'r'. */
2308 iRangeLeft = -1;
2309 for (;;)
2310 {
2311 /*
2312 * Get line info.
2313 */
2314 RTDBGLINE Line;
2315 RTGCINTPTR off;
2316 DBGFADDRESS SourcePosAddr;
2317 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &pDbgc->SourcePos, &SourcePosAddr);
2318 if (RT_FAILURE(rc))
2319 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%Dv)", &pDbgc->SourcePos);
2320 rc = DBGFR3AsLineByAddr(pUVM, pDbgc->hDbgAs, &SourcePosAddr, &off, &Line, NULL);
2321 if (RT_FAILURE(rc))
2322 return VINF_SUCCESS;
2323
2324 unsigned cLines = 0;
2325 if (memcmp(&Line, &LinePrev, sizeof(Line)))
2326 {
2327 /*
2328 * Print filenamename
2329 */
2330 if (!fFirst && strcmp(Line.szFilename, LinePrev.szFilename))
2331 fFirst = true;
2332 if (fFirst)
2333 {
2334 rc = DBGCCmdHlpPrintf(pCmdHlp, "[%s @ %d]\n", Line.szFilename, Line.uLineNo);
2335 if (RT_FAILURE(rc))
2336 return rc;
2337 }
2338
2339 /*
2340 * Try open the file and read the line.
2341 */
2342 FILE *phFile = fopen(Line.szFilename, "r");
2343 if (phFile)
2344 {
2345 /* Skip ahead to the desired line. */
2346 char szLine[4096];
2347 unsigned cBefore = fFirst ? RT_MIN(2, Line.uLineNo - 1) : Line.uLineNo - LinePrev.uLineNo - 1;
2348 if (cBefore > 7)
2349 cBefore = 0;
2350 unsigned cLeft = Line.uLineNo - cBefore;
2351 while (cLeft > 0)
2352 {
2353 szLine[0] = '\0';
2354 if (!fgets(szLine, sizeof(szLine), phFile))
2355 break;
2356 cLeft--;
2357 }
2358 if (!cLeft)
2359 {
2360 /* print the before lines */
2361 for (;;)
2362 {
2363 size_t cch = strlen(szLine);
2364 while (cch > 0 && (szLine[cch - 1] == '\r' || szLine[cch - 1] == '\n' || RT_C_IS_SPACE(szLine[cch - 1])) )
2365 szLine[--cch] = '\0';
2366 if (cBefore-- <= 0)
2367 break;
2368
2369 rc = DBGCCmdHlpPrintf(pCmdHlp, " %4d: %s\n", Line.uLineNo - cBefore - 1, szLine);
2370 szLine[0] = '\0';
2371 const char *pszShutUpGcc = fgets(szLine, sizeof(szLine), phFile); NOREF(pszShutUpGcc);
2372 cLines++;
2373 }
2374 /* print the actual line */
2375 rc = DBGCCmdHlpPrintf(pCmdHlp, "%08llx %4d: %s\n", Line.Address, Line.uLineNo, szLine);
2376 }
2377 fclose(phFile);
2378 if (RT_FAILURE(rc))
2379 return rc;
2380 fFirst = false;
2381 }
2382 else
2383 return DBGCCmdHlpPrintf(pCmdHlp, "Warning: couldn't open source file '%s'\n", Line.szFilename);
2384
2385 LinePrev = Line;
2386 }
2387
2388
2389 /*
2390 * Advance
2391 */
2392 if (iRangeLeft < 0) /* 'r' */
2393 break;
2394 if (pDbgc->SourcePos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
2395 iRangeLeft -= cLines;
2396 else
2397 iRangeLeft -= 1;
2398 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "(%Dv) + %x", &pDbgc->SourcePos, 1);
2399 if (RT_FAILURE(rc))
2400 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->SourcePos, 1);
2401 if (iRangeLeft <= 0)
2402 break;
2403 }
2404
2405 NOREF(pCmd);
2406 return 0;
2407}
2408
2409
2410/**
2411 * @callback_method_impl{FNDBGCCMD, The 'r' command.}
2412 */
2413static DECLCALLBACK(int) dbgcCmdReg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2414{
2415 return dbgcCmdRegGuest(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
2416}
2417
2418
2419/**
2420 * @callback_method_impl{FNDBGCCMD, Common worker for the dbgcCmdReg*()
2421 * commands.}
2422 */
2423static DECLCALLBACK(int) dbgcCmdRegCommon(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs,
2424 const char *pszPrefix)
2425{
2426 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2427 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2 || cArgs == 3);
2428 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING
2429 || paArgs[0].enmType == DBGCVAR_TYPE_SYMBOL);
2430
2431 /*
2432 * Parse the register name and kind.
2433 */
2434 const char *pszReg = paArgs[0].u.pszString;
2435 if (*pszReg == '@')
2436 pszReg++;
2437 VMCPUID idCpu = pDbgc->idCpu;
2438 if (*pszPrefix)
2439 idCpu |= DBGFREG_HYPER_VMCPUID;
2440 if (*pszReg == '.')
2441 {
2442 pszReg++;
2443 idCpu |= DBGFREG_HYPER_VMCPUID;
2444 }
2445 const char * const pszActualPrefix = idCpu & DBGFREG_HYPER_VMCPUID ? "." : "";
2446
2447 /*
2448 * Query the register type & value (the setter needs the type).
2449 */
2450 DBGFREGVALTYPE enmType;
2451 DBGFREGVAL Value;
2452 int rc = DBGFR3RegNmQuery(pUVM, idCpu, pszReg, &Value, &enmType);
2453 if (RT_FAILURE(rc))
2454 {
2455 if (rc == VERR_DBGF_REGISTER_NOT_FOUND)
2456 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n",
2457 pszActualPrefix, pszReg);
2458 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQuery failed querying '%s%s': %Rrc.\n",
2459 pszActualPrefix, pszReg, rc);
2460 }
2461 if (cArgs == 1)
2462 {
2463 /*
2464 * Show the register.
2465 */
2466 char szValue[160];
2467 rc = DBGFR3RegFormatValue(szValue, sizeof(szValue), &Value, enmType, true /*fSpecial*/);
2468 if (RT_SUCCESS(rc))
2469 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s%s=%s\n", pszActualPrefix, pszReg, szValue);
2470 else
2471 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
2472 }
2473 else
2474 {
2475 DBGCVAR NewValueTmp;
2476 PCDBGCVAR pNewValue;
2477 if (cArgs == 3)
2478 {
2479 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
2480 if (strcmp(paArgs[1].u.pszString, "="))
2481 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Second argument must be '='.");
2482 pNewValue = &paArgs[2];
2483 }
2484 else
2485 {
2486 /* Not possible to convince the parser to support both codeview and
2487 windbg syntax and make the equal sign optional. Try help it. */
2488 /** @todo make DBGCCmdHlpConvert do more with strings. */
2489 rc = DBGCCmdHlpConvert(pCmdHlp, &paArgs[1], DBGCVAR_TYPE_NUMBER, true /*fConvSyms*/, &NewValueTmp);
2490 if (RT_FAILURE(rc))
2491 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "The last argument must be a value or valid symbol.");
2492 pNewValue = &NewValueTmp;
2493 }
2494
2495 /*
2496 * Modify the register.
2497 */
2498 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, pNewValue->enmType == DBGCVAR_TYPE_NUMBER);
2499 if (enmType != DBGFREGVALTYPE_DTR)
2500 {
2501 enmType = DBGFREGVALTYPE_U64;
2502 rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.u64);
2503 }
2504 else
2505 {
2506 enmType = DBGFREGVALTYPE_DTR;
2507 rc = DBGCCmdHlpVarToNumber(pCmdHlp, pNewValue, &Value.dtr.u64Base);
2508 if (RT_SUCCESS(rc) && pNewValue->enmRangeType != DBGCVAR_RANGE_NONE)
2509 Value.dtr.u32Limit = (uint32_t)pNewValue->u64Range;
2510 }
2511 if (RT_SUCCESS(rc))
2512 {
2513 rc = DBGFR3RegNmSet(pUVM, idCpu, pszReg, &Value, enmType);
2514 if (RT_FAILURE(rc))
2515 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmSet failed settings '%s%s': %Rrc\n",
2516 pszActualPrefix, pszReg, rc);
2517 if (rc != VINF_SUCCESS)
2518 DBGCCmdHlpPrintf(pCmdHlp, "%s: warning: %Rrc\n", pCmd->pszCmd, rc);
2519 }
2520 else
2521 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
2522 }
2523 return rc;
2524}
2525
2526
2527/**
2528 * @callback_method_impl{FNDBGCCMD,
2529 * The 'rg'\, 'rg64' and 'rg32' commands\, worker for 'r'.}
2530 */
2531static DECLCALLBACK(int) dbgcCmdRegGuest(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2532{
2533 /*
2534 * Show all registers our selves.
2535 */
2536 if (cArgs == 0)
2537 {
2538 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2539 bool const f64BitMode = !strcmp(pCmd->pszCmd, "rg64")
2540 || ( strcmp(pCmd->pszCmd, "rg32") != 0
2541 && DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu));
2542 return DBGCCmdHlpRegPrintf(pCmdHlp, pDbgc->idCpu, f64BitMode, pDbgc->fRegTerse);
2543 }
2544 return dbgcCmdRegCommon(pCmd, pCmdHlp, pUVM, paArgs, cArgs, "");
2545}
2546
2547
2548/**
2549 * @callback_method_impl{FNDBGCCMD, The 'rt' command.}
2550 */
2551static DECLCALLBACK(int) dbgcCmdRegTerse(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2552{
2553 NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs);
2554
2555 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2556 pDbgc->fRegTerse = !pDbgc->fRegTerse;
2557 return DBGCCmdHlpPrintf(pCmdHlp, pDbgc->fRegTerse ? "info: Terse register info.\n" : "info: Verbose register info.\n");
2558}
2559
2560
2561/**
2562 * @callback_method_impl{FNDBGCCMD, The 'pr' and 'tr' commands.}
2563 */
2564static DECLCALLBACK(int) dbgcCmdStepTraceToggle(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2565{
2566 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2567 Assert(cArgs == 0); NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs);
2568
2569 /* Note! windbg accepts 'r' as a flag to 'p', 'pa', 'pc', 'pt', 't',
2570 'ta', 'tc' and 'tt'. We've simplified it. */
2571 pDbgc->fStepTraceRegs = !pDbgc->fStepTraceRegs;
2572 return VINF_SUCCESS;
2573}
2574
2575
2576/**
2577 * @callback_method_impl{FNDBGCCMD, The 'p'\, 'pc'\, 'pt'\, 't'\, 'tc'\, and 'tt' commands.}
2578 */
2579static DECLCALLBACK(int) dbgcCmdStepTrace(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2580{
2581 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2582 if (cArgs != 0)
2583 return DBGCCmdHlpFail(pCmdHlp, pCmd,
2584 "Sorry, but the '%s' command does not currently implement any arguments.\n", pCmd->pszCmd);
2585
2586 /* The 'count' has to be implemented by DBGC, whereas the
2587 filtering is taken care of by DBGF. */
2588
2589 /*
2590 * Convert the command to DBGF_STEP_F_XXX and other API input.
2591 */
2592 //DBGFADDRESS StackPop;
2593 PDBGFADDRESS pStackPop = NULL;
2594 RTGCPTR cbStackPop = 0;
2595 uint32_t cMaxSteps = pCmd->pszCmd[0] == 'p' ? _512K : _64K;
2596 uint32_t fFlags = pCmd->pszCmd[0] == 'p' ? DBGF_STEP_F_OVER : DBGF_STEP_F_INTO;
2597 if (pCmd->pszCmd[1] == 'c')
2598 fFlags |= DBGF_STEP_F_STOP_ON_CALL;
2599 else if (pCmd->pszCmd[1] == 't')
2600 fFlags |= DBGF_STEP_F_STOP_ON_RET;
2601 else if (pCmd->pszCmd[0] != 'p')
2602 cMaxSteps = 1;
2603 else
2604 {
2605 /** @todo consider passing RSP + 1 in for 'p' and something else sensible for
2606 * the 'pt' command. */
2607 }
2608
2609 int rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, fFlags, NULL, pStackPop, cbStackPop, cMaxSteps);
2610 if (RT_SUCCESS(rc))
2611 pDbgc->fReady = false;
2612 else
2613 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,%#x,) failed", fFlags);
2614
2615 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2616 return rc;
2617}
2618
2619
2620/**
2621 * @callback_method_impl{FNDBGCCMD, The 'pa' and 'ta' commands.}
2622 */
2623static DECLCALLBACK(int) dbgcCmdStepTraceTo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2624{
2625 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2626 if (cArgs != 1)
2627 return DBGCCmdHlpFail(pCmdHlp, pCmd,
2628 "Sorry, but the '%s' command only implements a single argument at present.\n", pCmd->pszCmd);
2629 DBGFADDRESS Address;
2630 int rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
2631 if (RT_FAILURE(rc))
2632 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", &paArgs[0]);
2633
2634 uint32_t cMaxSteps = pCmd->pszCmd[0] == 'p' ? _512K : 1;
2635 uint32_t fFlags = pCmd->pszCmd[0] == 'p' ? DBGF_STEP_F_OVER : DBGF_STEP_F_INTO;
2636 rc = DBGFR3StepEx(pUVM, pDbgc->idCpu, fFlags, &Address, NULL, 0, cMaxSteps);
2637 if (RT_SUCCESS(rc))
2638 pDbgc->fReady = false;
2639 else
2640 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3StepEx(,,%#x,) failed", fFlags);
2641 return rc;
2642}
2643
2644
2645/**
2646 * Helper that tries to resolve a far address to a symbol and formats it.
2647 *
2648 * @returns Pointer to symbol string on success, NULL if not resolved.
2649 * Free using RTStrFree.
2650 * @param pCmdHlp The command helper structure.
2651 * @param hAs The address space to use. NIL_RTDBGAS means no symbol resolving.
2652 * @param sel The selector part of the address.
2653 * @param off The offset part of the address.
2654 * @param pszPrefix How to prefix the symbol string.
2655 * @param pszSuffix How to suffix the symbol string.
2656 */
2657static char *dbgcCmdHlpFarAddrToSymbol(PDBGCCMDHLP pCmdHlp, RTDBGAS hAs, RTSEL sel, uint64_t off,
2658 const char *pszPrefix, const char *pszSuffix)
2659{
2660 char *pszRet = NULL;
2661 if (hAs != NIL_RTDBGAS)
2662 {
2663 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2664 DBGFADDRESS Addr;
2665 int rc = DBGFR3AddrFromSelOff(pDbgc->pUVM, pDbgc->idCpu, &Addr, sel, off);
2666 if (RT_SUCCESS(rc))
2667 {
2668 RTGCINTPTR offDispSym = 0;
2669 PRTDBGSYMBOL pSymbol = DBGFR3AsSymbolByAddrA(pDbgc->pUVM, hAs, &Addr,
2670 RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL
2671 | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
2672 &offDispSym, NULL);
2673 if (pSymbol)
2674 {
2675 if (offDispSym == 0)
2676 pszRet = RTStrAPrintf2("%s%s%s", pszPrefix, pSymbol->szName, pszSuffix);
2677 else if (offDispSym > 0)
2678 pszRet = RTStrAPrintf2("%s%s+%llx%s", pszPrefix, pSymbol->szName, (int64_t)offDispSym, pszSuffix);
2679 else
2680 pszRet = RTStrAPrintf2("%s%s-%llx%s", pszPrefix, pSymbol->szName, -(int64_t)offDispSym, pszSuffix);
2681 RTDbgSymbolFree(pSymbol);
2682 }
2683 }
2684 }
2685 return pszRet;
2686}
2687
2688
2689/**
2690 * @callback_method_impl{FNDBGCCMD, The 'k'\, 'kg' and 'kh' commands.}
2691 */
2692static DECLCALLBACK(int) dbgcCmdStack(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2693{
2694 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2695
2696 /*
2697 * Figure which context we're called for and start walking that stack.
2698 */
2699 int rc;
2700 PCDBGFSTACKFRAME pFirstFrame;
2701 bool const fGuest = true;
2702 bool const fVerbose = pCmd->pszCmd[1] == 'v'
2703 || (pCmd->pszCmd[1] != '\0' && pCmd->pszCmd[2] == 'v');
2704 rc = DBGFR3StackWalkBegin(pUVM, pDbgc->idCpu, fGuest ? DBGFCODETYPE_GUEST : DBGFCODETYPE_HYPER, &pFirstFrame);
2705 if (RT_FAILURE(rc))
2706 return DBGCCmdHlpPrintf(pCmdHlp, "Failed to begin stack walk, rc=%Rrc\n", rc);
2707
2708 /*
2709 * Print the frames.
2710 */
2711 char szTmp[1024];
2712 uint32_t fBitFlags = 0;
2713 for (PCDBGFSTACKFRAME pFrame = pFirstFrame;
2714 pFrame;
2715 pFrame = DBGFR3StackWalkNext(pFrame))
2716 {
2717 uint32_t const fCurBitFlags = pFrame->fFlags & (DBGFSTACKFRAME_FLAGS_16BIT | DBGFSTACKFRAME_FLAGS_32BIT | DBGFSTACKFRAME_FLAGS_64BIT);
2718 if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_16BIT)
2719 {
2720 if (fCurBitFlags != fBitFlags)
2721 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# SS:BP Ret SS:BP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
2722 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %04RX16:%04RX16 %04RX16:%04RX16 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2723 pFrame->iFrame,
2724 pFrame->AddrFrame.Sel,
2725 (uint16_t)pFrame->AddrFrame.off,
2726 pFrame->AddrReturnFrame.Sel,
2727 (uint16_t)pFrame->AddrReturnFrame.off,
2728 (uint32_t)pFrame->AddrReturnPC.Sel,
2729 (uint32_t)pFrame->AddrReturnPC.off,
2730 pFrame->Args.au32[0],
2731 pFrame->Args.au32[1],
2732 pFrame->Args.au32[2],
2733 pFrame->Args.au32[3]);
2734 }
2735 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT)
2736 {
2737 if (fCurBitFlags != fBitFlags)
2738 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
2739 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2740 pFrame->iFrame,
2741 (uint32_t)pFrame->AddrFrame.off,
2742 (uint32_t)pFrame->AddrReturnFrame.off,
2743 (uint32_t)pFrame->AddrReturnPC.Sel,
2744 (uint32_t)pFrame->AddrReturnPC.off,
2745 pFrame->Args.au32[0],
2746 pFrame->Args.au32[1],
2747 pFrame->Args.au32[2],
2748 pFrame->Args.au32[3]);
2749 }
2750 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT)
2751 {
2752 if (fCurBitFlags != fBitFlags)
2753 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "# RBP Ret SS:RBP Ret RIP CS:RIP / Symbol [line]\n");
2754 rc = DBGCCmdHlpPrintf(pCmdHlp, "%02x %016RX64 %04RX16:%016RX64 %016RX64",
2755 pFrame->iFrame,
2756 (uint64_t)pFrame->AddrFrame.off,
2757 pFrame->AddrReturnFrame.Sel,
2758 (uint64_t)pFrame->AddrReturnFrame.off,
2759 (uint64_t)pFrame->AddrReturnPC.off);
2760 }
2761 if (RT_FAILURE(rc))
2762 break;
2763 if (!pFrame->pSymPC)
2764 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
2765 fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT
2766 ? " %RTsel:%016RGv"
2767 : fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT
2768 ? " %RTsel:%08RGv"
2769 : " %RTsel:%04RGv"
2770 , pFrame->AddrPC.Sel, pFrame->AddrPC.off);
2771 else
2772 {
2773 RTGCINTPTR offDisp = pFrame->AddrPC.FlatPtr - pFrame->pSymPC->Value; /** @todo this isn't 100% correct for segmented stuff. */
2774 if (offDisp > 0)
2775 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s+%llx", pFrame->pSymPC->szName, (int64_t)offDisp);
2776 else if (offDisp < 0)
2777 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s-%llx", pFrame->pSymPC->szName, -(int64_t)offDisp);
2778 else
2779 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", pFrame->pSymPC->szName);
2780 }
2781 if (RT_SUCCESS(rc) && pFrame->pLinePC)
2782 rc = DBGCCmdHlpPrintf(pCmdHlp, " [%s @ 0i%d]", pFrame->pLinePC->szFilename, pFrame->pLinePC->uLineNo);
2783 if (RT_SUCCESS(rc))
2784 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2785
2786 if (fVerbose && RT_SUCCESS(rc))
2787 {
2788 /*
2789 * Display verbose frame info.
2790 */
2791 const char *pszRetType = "invalid";
2792 switch (pFrame->enmReturnType)
2793 {
2794 case RTDBGRETURNTYPE_NEAR16: pszRetType = "retn/16"; break;
2795 case RTDBGRETURNTYPE_NEAR32: pszRetType = "retn/32"; break;
2796 case RTDBGRETURNTYPE_NEAR64: pszRetType = "retn/64"; break;
2797 case RTDBGRETURNTYPE_FAR16: pszRetType = "retf/16"; break;
2798 case RTDBGRETURNTYPE_FAR32: pszRetType = "retf/32"; break;
2799 case RTDBGRETURNTYPE_FAR64: pszRetType = "retf/64"; break;
2800 case RTDBGRETURNTYPE_IRET16: pszRetType = "iret-16"; break;
2801 case RTDBGRETURNTYPE_IRET32: pszRetType = "iret/32s"; break;
2802 case RTDBGRETURNTYPE_IRET32_PRIV: pszRetType = "iret/32p"; break;
2803 case RTDBGRETURNTYPE_IRET32_V86: pszRetType = "iret/v86"; break;
2804 case RTDBGRETURNTYPE_IRET64: pszRetType = "iret/64"; break;
2805
2806 case RTDBGRETURNTYPE_END:
2807 case RTDBGRETURNTYPE_INVALID:
2808 case RTDBGRETURNTYPE_32BIT_HACK:
2809 break;
2810 }
2811 size_t cchLine = DBGCCmdHlpPrintfLen(pCmdHlp, " %s", pszRetType);
2812 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_USED_UNWIND_INFO)
2813 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " used-unwind-info");
2814 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_USED_ODD_EVEN)
2815 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " used-odd-even");
2816 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_REAL_V86)
2817 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " real-v86");
2818 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_MAX_DEPTH)
2819 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " max-depth");
2820 if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_TRAP_FRAME)
2821 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " trap-frame");
2822
2823 if (pFrame->cSureRegs > 0)
2824 {
2825 cchLine = 1024; /* force new line */
2826 for (uint32_t i = 0; i < pFrame->cSureRegs; i++)
2827 {
2828 if (cchLine > 80)
2829 {
2830 DBGCCmdHlpPrintf(pCmdHlp, "\n ");
2831 cchLine = 2;
2832 }
2833
2834 szTmp[0] = '\0';
2835 DBGFR3RegFormatValue(szTmp, sizeof(szTmp), &pFrame->paSureRegs[i].Value,
2836 pFrame->paSureRegs[i].enmType, false);
2837 const char *pszName = pFrame->paSureRegs[i].enmReg != DBGFREG_END
2838 ? DBGFR3RegCpuName(pUVM, pFrame->paSureRegs[i].enmReg, pFrame->paSureRegs[i].enmType)
2839 : pFrame->paSureRegs[i].pszName;
2840 cchLine += DBGCCmdHlpPrintfLen(pCmdHlp, " %s=%s", pszName, szTmp);
2841 }
2842 }
2843
2844 if (RT_SUCCESS(rc))
2845 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2846 }
2847
2848 if (RT_FAILURE(rc))
2849 break;
2850
2851 fBitFlags = fCurBitFlags;
2852 }
2853
2854 DBGFR3StackWalkEnd(pFirstFrame);
2855
2856 NOREF(paArgs); NOREF(cArgs);
2857 return rc;
2858}
2859
2860
2861/**
2862 * Worker function that displays one descriptor entry (GDT, LDT, IDT).
2863 *
2864 * @returns pfnPrintf status code.
2865 * @param pCmdHlp The DBGC command helpers.
2866 * @param pDesc The descriptor to display.
2867 * @param iEntry The descriptor entry number.
2868 * @param fHyper Whether the selector belongs to the hypervisor or not.
2869 * @param hAs Address space to use when resolving symbols.
2870 * @param pfDblEntry Where to indicate whether the entry is two entries wide.
2871 * Optional.
2872 */
2873static int dbgcCmdDumpDTWorker64(PDBGCCMDHLP pCmdHlp, PCX86DESC64 pDesc, unsigned iEntry, bool fHyper, RTDBGAS hAs,
2874 bool *pfDblEntry)
2875{
2876 /* GUEST64 */
2877 int rc;
2878
2879 const char *pszHyper = fHyper ? " HYPER" : "";
2880 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
2881 if (pDesc->Gen.u1DescType)
2882 {
2883 static const char * const s_apszTypes[] =
2884 {
2885 "DataRO", /* 0 Read-Only */
2886 "DataRO", /* 1 Read-Only - Accessed */
2887 "DataRW", /* 2 Read/Write */
2888 "DataRW", /* 3 Read/Write - Accessed */
2889 "DownRO", /* 4 Expand-down, Read-Only */
2890 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
2891 "DownRW", /* 6 Expand-down, Read/Write */
2892 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
2893 "CodeEO", /* 8 Execute-Only */
2894 "CodeEO", /* 9 Execute-Only - Accessed */
2895 "CodeER", /* A Execute/Readable */
2896 "CodeER", /* B Execute/Readable - Accessed */
2897 "ConfE0", /* C Conforming, Execute-Only */
2898 "ConfE0", /* D Conforming, Execute-Only - Accessed */
2899 "ConfER", /* E Conforming, Execute/Readable */
2900 "ConfER" /* F Conforming, Execute/Readable - Accessed */
2901 };
2902 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
2903 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
2904 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
2905 uint32_t u32Base = X86DESC_BASE(pDesc);
2906 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
2907
2908 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
2909 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
2910 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
2911 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
2912 }
2913 else
2914 {
2915 static const char * const s_apszTypes[] =
2916 {
2917 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
2918 "Ill-1 ", /* 1 0001 Available 16-bit TSS */
2919 "LDT ", /* 2 0010 LDT */
2920 "Ill-3 ", /* 3 0011 Busy 16-bit TSS */
2921 "Ill-4 ", /* 4 0100 16-bit Call Gate */
2922 "Ill-5 ", /* 5 0101 Task Gate */
2923 "Ill-6 ", /* 6 0110 16-bit Interrupt Gate */
2924 "Ill-7 ", /* 7 0111 16-bit Trap Gate */
2925 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
2926 "Tss64A", /* 9 1001 Available 32-bit TSS */
2927 "Ill-A ", /* A 1010 Reserved (Illegal) */
2928 "Tss64B", /* B 1011 Busy 32-bit TSS */
2929 "Call64", /* C 1100 32-bit Call Gate */
2930 "Ill-D ", /* D 1101 Reserved (Illegal) */
2931 "Int64 ", /* E 1110 32-bit Interrupt Gate */
2932 "Trap64" /* F 1111 32-bit Trap Gate */
2933 };
2934 switch (pDesc->Gen.u4Type)
2935 {
2936 /* raw */
2937 case X86_SEL_TYPE_SYS_UNDEFINED:
2938 case X86_SEL_TYPE_SYS_UNDEFINED2:
2939 case X86_SEL_TYPE_SYS_UNDEFINED4:
2940 case X86_SEL_TYPE_SYS_UNDEFINED3:
2941 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
2942 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
2943 case X86_SEL_TYPE_SYS_286_CALL_GATE:
2944 case X86_SEL_TYPE_SYS_286_INT_GATE:
2945 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
2946 case X86_SEL_TYPE_SYS_TASK_GATE:
2947 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
2948 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
2949 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
2950 break;
2951
2952 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
2953 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
2954 case X86_SEL_TYPE_SYS_LDT:
2955 {
2956 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
2957 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
2958 const char *pszLong = pDesc->Gen.u1Long ? "LONG" : " ";
2959
2960 uint64_t u64Base = X86DESC64_BASE(pDesc);
2961 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
2962
2963 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%016RX64 Lim=%08x DPL=%d %s %s %s %sAVL=%d R=%d%s\n",
2964 iEntry, s_apszTypes[pDesc->Gen.u4Type], u64Base, cbLimit,
2965 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszLong, pszBig,
2966 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
2967 pszHyper);
2968 if (pfDblEntry)
2969 *pfDblEntry = true;
2970 break;
2971 }
2972
2973 case X86_SEL_TYPE_SYS_386_CALL_GATE:
2974 {
2975 unsigned cParams = pDesc->au8[4] & 0x1f;
2976 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
2977 RTSEL sel = pDesc->au16[1];
2978 uint64_t off = pDesc->au16[0]
2979 | ((uint64_t)pDesc->au16[3] << 16)
2980 | ((uint64_t)pDesc->Gen.u32BaseHigh3 << 32);
2981 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
2982 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%d %s %s=%d%s%s\n",
2983 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
2984 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper, pszSymbol ? pszSymbol : "");
2985 RTStrFree(pszSymbol);
2986 if (pfDblEntry)
2987 *pfDblEntry = true;
2988 break;
2989 }
2990
2991 case X86_SEL_TYPE_SYS_386_INT_GATE:
2992 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
2993 {
2994 RTSEL sel = pDesc->Gate.u16Sel;
2995 uint64_t off = pDesc->Gate.u16OffsetLow
2996 | ((uint64_t)pDesc->Gate.u16OffsetHigh << 16)
2997 | ((uint64_t)pDesc->Gate.u32OffsetTop << 32);
2998 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
2999 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%016RX64 DPL=%u %s IST=%u%s%s\n",
3000 iEntry, s_apszTypes[pDesc->Gate.u4Type], sel, off,
3001 pDesc->Gate.u2Dpl, pszPresent, pDesc->Gate.u3IST, pszHyper, pszSymbol ? pszSymbol : "");
3002 RTStrFree(pszSymbol);
3003 if (pfDblEntry)
3004 *pfDblEntry = true;
3005 break;
3006 }
3007
3008 /* impossible, just it's necessary to keep gcc happy. */
3009 default:
3010 return VINF_SUCCESS;
3011 }
3012 }
3013 return VINF_SUCCESS;
3014}
3015
3016
3017/**
3018 * Worker function that displays one descriptor entry (GDT, LDT, IDT).
3019 *
3020 * @returns pfnPrintf status code.
3021 * @param pCmdHlp The DBGC command helpers.
3022 * @param pDesc The descriptor to display.
3023 * @param iEntry The descriptor entry number.
3024 * @param fHyper Whether the selector belongs to the hypervisor or not.
3025 * @param hAs Address space to use when resolving symbols.
3026 */
3027static int dbgcCmdDumpDTWorker32(PDBGCCMDHLP pCmdHlp, PCX86DESC pDesc, unsigned iEntry, bool fHyper, RTDBGAS hAs)
3028{
3029 int rc;
3030
3031 const char *pszHyper = fHyper ? " HYPER" : "";
3032 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
3033 if (pDesc->Gen.u1DescType)
3034 {
3035 static const char * const s_apszTypes[] =
3036 {
3037 "DataRO", /* 0 Read-Only */
3038 "DataRO", /* 1 Read-Only - Accessed */
3039 "DataRW", /* 2 Read/Write */
3040 "DataRW", /* 3 Read/Write - Accessed */
3041 "DownRO", /* 4 Expand-down, Read-Only */
3042 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
3043 "DownRW", /* 6 Expand-down, Read/Write */
3044 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
3045 "CodeEO", /* 8 Execute-Only */
3046 "CodeEO", /* 9 Execute-Only - Accessed */
3047 "CodeER", /* A Execute/Readable */
3048 "CodeER", /* B Execute/Readable - Accessed */
3049 "ConfE0", /* C Conforming, Execute-Only */
3050 "ConfE0", /* D Conforming, Execute-Only - Accessed */
3051 "ConfER", /* E Conforming, Execute/Readable */
3052 "ConfER" /* F Conforming, Execute/Readable - Accessed */
3053 };
3054 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
3055 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
3056 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3057 uint32_t u32Base = pDesc->Gen.u16BaseLow
3058 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
3059 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
3060 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
3061 if (pDesc->Gen.u1Granularity)
3062 cbLimit <<= PAGE_SHIFT;
3063
3064 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
3065 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
3066 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
3067 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
3068 }
3069 else
3070 {
3071 static const char * const s_apszTypes[] =
3072 {
3073 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
3074 "Tss16A", /* 1 0001 Available 16-bit TSS */
3075 "LDT ", /* 2 0010 LDT */
3076 "Tss16B", /* 3 0011 Busy 16-bit TSS */
3077 "Call16", /* 4 0100 16-bit Call Gate */
3078 "TaskG ", /* 5 0101 Task Gate */
3079 "Int16 ", /* 6 0110 16-bit Interrupt Gate */
3080 "Trap16", /* 7 0111 16-bit Trap Gate */
3081 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
3082 "Tss32A", /* 9 1001 Available 32-bit TSS */
3083 "Ill-A ", /* A 1010 Reserved (Illegal) */
3084 "Tss32B", /* B 1011 Busy 32-bit TSS */
3085 "Call32", /* C 1100 32-bit Call Gate */
3086 "Ill-D ", /* D 1101 Reserved (Illegal) */
3087 "Int32 ", /* E 1110 32-bit Interrupt Gate */
3088 "Trap32" /* F 1111 32-bit Trap Gate */
3089 };
3090 switch (pDesc->Gen.u4Type)
3091 {
3092 /* raw */
3093 case X86_SEL_TYPE_SYS_UNDEFINED:
3094 case X86_SEL_TYPE_SYS_UNDEFINED2:
3095 case X86_SEL_TYPE_SYS_UNDEFINED4:
3096 case X86_SEL_TYPE_SYS_UNDEFINED3:
3097 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s %.8Rhxs DPL=%d %s%s\n",
3098 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
3099 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
3100 break;
3101
3102 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
3103 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
3104 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
3105 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
3106 case X86_SEL_TYPE_SYS_LDT:
3107 {
3108 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
3109 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
3110 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
3111 uint32_t u32Base = pDesc->Gen.u16BaseLow
3112 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
3113 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
3114 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
3115 if (pDesc->Gen.u1Granularity)
3116 cbLimit <<= PAGE_SHIFT;
3117
3118 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d R=%d%s\n",
3119 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
3120 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszGranularity, pszBig,
3121 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
3122 pszHyper);
3123 break;
3124 }
3125
3126 case X86_SEL_TYPE_SYS_TASK_GATE:
3127 {
3128 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s TSS=%04x DPL=%d %s%s\n",
3129 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc->au16[1],
3130 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
3131 break;
3132 }
3133
3134 case X86_SEL_TYPE_SYS_286_CALL_GATE:
3135 case X86_SEL_TYPE_SYS_386_CALL_GATE:
3136 {
3137 unsigned cParams = pDesc->au8[4] & 0x1f;
3138 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
3139 RTSEL sel = pDesc->au16[1];
3140 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
3141 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3142 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s %s=%d%s%s\n",
3143 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
3144 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper, pszSymbol ? pszSymbol : "");
3145 RTStrFree(pszSymbol);
3146 break;
3147 }
3148
3149 case X86_SEL_TYPE_SYS_286_INT_GATE:
3150 case X86_SEL_TYPE_SYS_386_INT_GATE:
3151 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
3152 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
3153 {
3154 RTSEL sel = pDesc->au16[1];
3155 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
3156 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, hAs, sel, off, " (", ")");
3157 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %s Sel:Off=%04x:%08x DPL=%d %s%s%s\n",
3158 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
3159 pDesc->Gen.u2Dpl, pszPresent, pszHyper, pszSymbol ? pszSymbol : "");
3160 RTStrFree(pszSymbol);
3161 break;
3162 }
3163
3164 /* impossible, just it's necessary to keep gcc happy. */
3165 default:
3166 return VINF_SUCCESS;
3167 }
3168 }
3169 return rc;
3170}
3171
3172
3173/**
3174 * @callback_method_impl{FNDBGCCMD, The 'dg'\, 'dga'\, 'dl' and 'dla' commands.}
3175 */
3176static DECLCALLBACK(int) dbgcCmdDumpDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3177{
3178 /*
3179 * Validate input.
3180 */
3181 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3182
3183 /*
3184 * Get the CPU mode, check which command variation this is
3185 * and fix a default parameter if needed.
3186 */
3187 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3188 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
3189 CPUMMODE enmMode = CPUMGetGuestMode(pVCpu);
3190 bool fGdt = pCmd->pszCmd[1] == 'g';
3191 bool fAll = pCmd->pszCmd[2] == 'a';
3192 RTSEL SelTable = fGdt ? 0 : X86_SEL_LDT;
3193
3194 DBGCVAR Var;
3195 if (!cArgs)
3196 {
3197 cArgs = 1;
3198 paArgs = &Var;
3199 Var.enmType = DBGCVAR_TYPE_NUMBER;
3200 Var.u.u64Number = fGdt ? 0 : 4;
3201 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
3202 Var.u64Range = 1024;
3203 }
3204
3205 /*
3206 * Process the arguments.
3207 */
3208 for (unsigned i = 0; i < cArgs; i++)
3209 {
3210 /*
3211 * Retrieve the selector value from the argument.
3212 * The parser may confuse pointers and numbers if more than one
3213 * argument is given, that that into account.
3214 */
3215 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER || DBGCVAR_ISPOINTER(paArgs[i].enmType));
3216 uint64_t u64;
3217 unsigned cSels = 1;
3218 switch (paArgs[i].enmType)
3219 {
3220 case DBGCVAR_TYPE_NUMBER:
3221 u64 = paArgs[i].u.u64Number;
3222 if (paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE)
3223 cSels = RT_MIN(paArgs[i].u64Range, 1024);
3224 break;
3225 case DBGCVAR_TYPE_GC_FAR: u64 = paArgs[i].u.GCFar.sel; break;
3226 case DBGCVAR_TYPE_GC_FLAT: u64 = paArgs[i].u.GCFlat; break;
3227 case DBGCVAR_TYPE_GC_PHYS: u64 = paArgs[i].u.GCPhys; break;
3228 case DBGCVAR_TYPE_HC_FLAT: u64 = (uintptr_t)paArgs[i].u.pvHCFlat; break;
3229 case DBGCVAR_TYPE_HC_PHYS: u64 = paArgs[i].u.HCPhys; break;
3230 default: u64 = _64K; break;
3231 }
3232 if (u64 < _64K)
3233 {
3234 unsigned Sel = (RTSEL)u64;
3235
3236 /*
3237 * Dump the specified range.
3238 */
3239 bool fSingle = cSels == 1;
3240 while ( cSels-- > 0
3241 && Sel < _64K)
3242 {
3243 DBGFSELINFO SelInfo;
3244 int rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, Sel | SelTable, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
3245 if (RT_SUCCESS(rc))
3246 {
3247 if (SelInfo.fFlags & DBGFSELINFO_FLAGS_REAL_MODE)
3248 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x RealM Bas=%04x Lim=%04x\n",
3249 Sel, (unsigned)SelInfo.GCPtrBase, (unsigned)SelInfo.cbLimit);
3250 else if ( fAll
3251 || fSingle
3252 || SelInfo.u.Raw.Gen.u1Present)
3253 {
3254 if (enmMode == CPUMMODE_PROTECTED)
3255 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &SelInfo.u.Raw, Sel,
3256 !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), DBGF_AS_GLOBAL);
3257 else
3258 {
3259 bool fDblSkip = false;
3260 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &SelInfo.u.Raw64, Sel,
3261 !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), DBGF_AS_GLOBAL, &fDblSkip);
3262 if (fDblSkip)
3263 Sel += 4;
3264 }
3265 }
3266 }
3267 else
3268 {
3269 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %Rrc\n", Sel, rc);
3270 if (!fAll)
3271 return rc;
3272 }
3273 if (RT_FAILURE(rc))
3274 return rc;
3275
3276 /* next */
3277 Sel += 8;
3278 }
3279 }
3280 else
3281 DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds\n", u64);
3282 }
3283
3284 return VINF_SUCCESS;
3285}
3286
3287
3288/**
3289 * @callback_method_impl{FNDBGCCMD, The 'di' and 'dia' commands.}
3290 */
3291static DECLCALLBACK(int) dbgcCmdDumpIDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3292{
3293 /*
3294 * Validate input.
3295 */
3296 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3297
3298 /*
3299 * Establish some stuff like the current IDTR and CPU mode,
3300 * and fix a default parameter.
3301 */
3302 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3303 CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp);
3304 uint16_t cbLimit = 0;
3305 uint64_t GCFlat = 0;
3306 int rc = DBGFR3RegCpuQueryXdtr(pDbgc->pUVM, pDbgc->idCpu, DBGFREG_IDTR, &GCFlat, &cbLimit);
3307 if (RT_FAILURE(rc))
3308 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3RegCpuQueryXdtr/DBGFREG_IDTR");
3309 unsigned cbEntry;
3310 switch (enmMode)
3311 {
3312 case CPUMMODE_REAL: cbEntry = sizeof(RTFAR16); break;
3313 case CPUMMODE_PROTECTED: cbEntry = sizeof(X86DESC); break;
3314 case CPUMMODE_LONG: cbEntry = sizeof(X86DESC64); break;
3315 default:
3316 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid CPU mode %d.\n", enmMode);
3317 }
3318
3319 bool fAll = pCmd->pszCmd[2] == 'a';
3320 DBGCVAR Var;
3321 if (!cArgs)
3322 {
3323 cArgs = 1;
3324 paArgs = &Var;
3325 Var.enmType = DBGCVAR_TYPE_NUMBER;
3326 Var.u.u64Number = 0;
3327 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
3328 Var.u64Range = 256;
3329 }
3330
3331 /*
3332 * Process the arguments.
3333 */
3334 for (unsigned i = 0; i < cArgs; i++)
3335 {
3336 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER);
3337 if (paArgs[i].u.u64Number < 256)
3338 {
3339 RTGCUINTPTR iInt = (RTGCUINTPTR)paArgs[i].u.u64Number;
3340 unsigned cInts = paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE
3341 ? paArgs[i].u64Range
3342 : 1;
3343 bool fSingle = cInts == 1;
3344 while ( cInts-- > 0
3345 && iInt < 256)
3346 {
3347 /*
3348 * Try read it.
3349 */
3350 union
3351 {
3352 RTFAR16 Real;
3353 X86DESC Prot;
3354 X86DESC64 Long;
3355 } u;
3356 if (iInt * cbEntry + (cbEntry - 1) > cbLimit)
3357 {
3358 DBGCCmdHlpPrintf(pCmdHlp, "%04x not within the IDT\n", (unsigned)iInt);
3359 if (!fAll && !fSingle)
3360 return VINF_SUCCESS;
3361 }
3362 DBGCVAR AddrVar;
3363 AddrVar.enmType = DBGCVAR_TYPE_GC_FLAT;
3364 AddrVar.u.GCFlat = GCFlat + iInt * cbEntry;
3365 AddrVar.enmRangeType = DBGCVAR_RANGE_NONE;
3366 rc = pCmdHlp->pfnMemRead(pCmdHlp, &u, cbEntry, &AddrVar, NULL);
3367 if (RT_FAILURE(rc))
3368 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading IDT entry %#04x.\n", (unsigned)iInt);
3369
3370 /*
3371 * Display it.
3372 */
3373 switch (enmMode)
3374 {
3375 case CPUMMODE_REAL:
3376 {
3377 char *pszSymbol = dbgcCmdHlpFarAddrToSymbol(pCmdHlp, DBGF_AS_GLOBAL, u.Real.sel, u.Real.off, " (", ")");
3378 rc = DBGCCmdHlpPrintf(pCmdHlp, "%04x %RTfp16%s\n", (unsigned)iInt, u.Real, pszSymbol ? pszSymbol : "");
3379 RTStrFree(pszSymbol);
3380 break;
3381 }
3382 case CPUMMODE_PROTECTED:
3383 if (fAll || fSingle || u.Prot.Gen.u1Present)
3384 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &u.Prot, iInt, false, DBGF_AS_GLOBAL);
3385 break;
3386 case CPUMMODE_LONG:
3387 if (fAll || fSingle || u.Long.Gen.u1Present)
3388 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &u.Long, iInt, false, DBGF_AS_GLOBAL, NULL);
3389 break;
3390 default: break; /* to shut up gcc */
3391 }
3392 if (RT_FAILURE(rc))
3393 return rc;
3394
3395 /* next */
3396 iInt++;
3397 }
3398 }
3399 else
3400 DBGCCmdHlpPrintf(pCmdHlp, "error: %llx is out of bounds (max 256)\n", paArgs[i].u.u64Number);
3401 }
3402
3403 return VINF_SUCCESS;
3404}
3405
3406
3407/**
3408 * @callback_method_impl{FNDBGCCMD,
3409 * The 'da'\, 'dq'\, 'dqs'\, 'dd'\, 'dds'\, 'dw'\, 'db'\, 'dp'\, 'dps'\,
3410 * and 'du' commands.}
3411 */
3412static DECLCALLBACK(int) dbgcCmdDumpMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3413{
3414 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3415
3416 /*
3417 * Validate input.
3418 */
3419 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
3420 if (cArgs == 1)
3421 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3422 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3423
3424#define DBGC_DUMP_MEM_F_ASCII RT_BIT_32(31)
3425#define DBGC_DUMP_MEM_F_UNICODE RT_BIT_32(30)
3426#define DBGC_DUMP_MEM_F_FAR RT_BIT_32(29)
3427#define DBGC_DUMP_MEM_F_SYMBOLS RT_BIT_32(28)
3428#define DBGC_DUMP_MEM_F_SIZE UINT32_C(0x0000ffff)
3429
3430 /*
3431 * Figure out the element size.
3432 */
3433 unsigned cbElement;
3434 bool fAscii = false;
3435 bool fUnicode = false;
3436 bool fFar = false;
3437 bool fSymbols = pCmd->pszCmd[1] && pCmd->pszCmd[2] == 's';
3438 switch (pCmd->pszCmd[1])
3439 {
3440 default:
3441 case 'b': cbElement = 1; break;
3442 case 'w': cbElement = 2; break;
3443 case 'd': cbElement = 4; break;
3444 case 'q': cbElement = 8; break;
3445 case 'a':
3446 cbElement = 1;
3447 fAscii = true;
3448 break;
3449 case 'F':
3450 cbElement = 4;
3451 fFar = true;
3452 break;
3453 case 'p':
3454 cbElement = DBGFR3CpuIsIn64BitCode(pUVM, pDbgc->idCpu) ? 8 : 4;
3455 break;
3456 case 'u':
3457 cbElement = 2;
3458 fUnicode = true;
3459 break;
3460 case '\0':
3461 fAscii = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_ASCII);
3462 fSymbols = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_SYMBOLS);
3463 fUnicode = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_UNICODE);
3464 fFar = RT_BOOL(pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_FAR);
3465 cbElement = pDbgc->cbDumpElement & DBGC_DUMP_MEM_F_SIZE;
3466 if (!cbElement)
3467 cbElement = 1;
3468 break;
3469 }
3470 uint32_t const cbDumpElement = cbElement
3471 | (fSymbols ? DBGC_DUMP_MEM_F_SYMBOLS : 0)
3472 | (fFar ? DBGC_DUMP_MEM_F_FAR : 0)
3473 | (fUnicode ? DBGC_DUMP_MEM_F_UNICODE : 0)
3474 | (fAscii ? DBGC_DUMP_MEM_F_ASCII : 0);
3475 pDbgc->cbDumpElement = cbDumpElement;
3476
3477 /*
3478 * Find address.
3479 */
3480 if (!cArgs)
3481 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_NONE;
3482 else
3483 pDbgc->DumpPos = paArgs[0];
3484
3485 /*
3486 * Range.
3487 */
3488 switch (pDbgc->DumpPos.enmRangeType)
3489 {
3490 case DBGCVAR_RANGE_NONE:
3491 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
3492 pDbgc->DumpPos.u64Range = 0x60;
3493 break;
3494
3495 case DBGCVAR_RANGE_ELEMENTS:
3496 if (pDbgc->DumpPos.u64Range > 2048)
3497 return DBGCCmdHlpPrintf(pCmdHlp, "error: Too many elements requested. Max is 2048 elements.\n");
3498 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
3499 pDbgc->DumpPos.u64Range = (cbElement ? cbElement : 1) * pDbgc->DumpPos.u64Range;
3500 break;
3501
3502 case DBGCVAR_RANGE_BYTES:
3503 if (pDbgc->DumpPos.u64Range > 65536)
3504 return DBGCCmdHlpPrintf(pCmdHlp, "error: The requested range is too big. Max is 64KB.\n");
3505 break;
3506
3507 default:
3508 return DBGCCmdHlpPrintf(pCmdHlp, "internal error: Unknown range type %d.\n", pDbgc->DumpPos.enmRangeType);
3509 }
3510
3511 pDbgc->pLastPos = &pDbgc->DumpPos;
3512
3513 /*
3514 * Do the dumping.
3515 */
3516 int cbLeft = (int)pDbgc->DumpPos.u64Range;
3517 uint8_t u16Prev = '\0';
3518 for (;;)
3519 {
3520 /*
3521 * Read memory.
3522 */
3523 char achBuffer[16];
3524 size_t cbReq = RT_MIN((int)sizeof(achBuffer), cbLeft);
3525 size_t cb = RT_MIN((int)sizeof(achBuffer), cbLeft);
3526 int rc = pCmdHlp->pfnMemRead(pCmdHlp, &achBuffer, cbReq, &pDbgc->DumpPos, &cb);
3527 if (RT_FAILURE(rc))
3528 {
3529 if (u16Prev && u16Prev != '\n')
3530 DBGCCmdHlpPrintf(pCmdHlp, "\n");
3531 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading memory at %DV.\n", &pDbgc->DumpPos);
3532 }
3533
3534 /*
3535 * Display it.
3536 */
3537 memset(&achBuffer[cb], 0, sizeof(achBuffer) - cb);
3538 if (!fAscii && !fUnicode)
3539 {
3540 DBGCCmdHlpPrintf(pCmdHlp, "%DV:", &pDbgc->DumpPos);
3541 unsigned i;
3542 for (i = 0; i < cb; i += cbElement)
3543 {
3544 const char *pszSpace = " ";
3545 if (cbElement <= 2 && i == 8)
3546 pszSpace = "-";
3547 switch (cbElement)
3548 {
3549 case 1:
3550 DBGCCmdHlpPrintf(pCmdHlp, "%s%02x", pszSpace, *(uint8_t *)&achBuffer[i]);
3551 break;
3552 case 2:
3553 DBGCCmdHlpPrintf(pCmdHlp, "%s%04x", pszSpace, *(uint16_t *)&achBuffer[i]);
3554 break;
3555 case 4:
3556 if (!fFar)
3557 DBGCCmdHlpPrintf(pCmdHlp, "%s%08x", pszSpace, *(uint32_t *)&achBuffer[i]);
3558 else
3559 DBGCCmdHlpPrintf(pCmdHlp, "%s%04x:%04x:",
3560 pszSpace, *(uint16_t *)&achBuffer[i + 2], *(uint16_t *)&achBuffer[i]);
3561 break;
3562 case 8:
3563 DBGCCmdHlpPrintf(pCmdHlp, "%s%016llx", pszSpace, *(uint64_t *)&achBuffer[i]);
3564 break;
3565 }
3566
3567 if (fSymbols)
3568 {
3569 /* Try lookup symbol for the above address. */
3570 DBGFADDRESS Addr;
3571 rc = VINF_SUCCESS;
3572 if (cbElement == 8)
3573 DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, *(uint64_t *)&achBuffer[i]);
3574 else if (!fFar)
3575 DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, *(uint32_t *)&achBuffer[i]);
3576 else
3577 rc = DBGFR3AddrFromSelOff(pDbgc->pUVM, pDbgc->idCpu, &Addr,
3578 *(uint16_t *)&achBuffer[i + 2], *(uint16_t *)&achBuffer[i]);
3579 if (RT_SUCCESS(rc))
3580 {
3581 RTINTPTR offDisp;
3582 RTDBGSYMBOL Symbol;
3583 rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, &Addr,
3584 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
3585 &offDisp, &Symbol, NULL);
3586 if (RT_SUCCESS(rc))
3587 {
3588 if (!offDisp)
3589 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s", Symbol.szName);
3590 else if (offDisp > 0)
3591 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s + %RGv", Symbol.szName, offDisp);
3592 else
3593 rc = DBGCCmdHlpPrintf(pCmdHlp, " %s - %RGv", Symbol.szName, -offDisp);
3594 if (Symbol.cb > 0)
3595 rc = DBGCCmdHlpPrintf(pCmdHlp, " (LB %RGv)", Symbol.cb);
3596 }
3597 }
3598
3599 /* Next line prefix. */
3600 unsigned iNext = i + cbElement;
3601 if (iNext < cb)
3602 {
3603 DBGCVAR TmpPos = pDbgc->DumpPos;
3604 DBGCCmdHlpEval(pCmdHlp, &TmpPos, "(%Dv) + %x", &pDbgc->DumpPos, iNext);
3605 DBGCCmdHlpPrintf(pCmdHlp, "\n%DV:", &pDbgc->DumpPos);
3606 }
3607 }
3608 }
3609
3610 /* Chars column. */
3611 if (cbElement == 1)
3612 {
3613 while (i++ < sizeof(achBuffer))
3614 DBGCCmdHlpPrintf(pCmdHlp, " ");
3615 DBGCCmdHlpPrintf(pCmdHlp, " ");
3616 for (i = 0; i < cb; i += cbElement)
3617 {
3618 uint8_t u8 = *(uint8_t *)&achBuffer[i];
3619 if (RT_C_IS_PRINT(u8) && u8 < 127 && u8 >= 32)
3620 DBGCCmdHlpPrintf(pCmdHlp, "%c", u8);
3621 else
3622 DBGCCmdHlpPrintf(pCmdHlp, ".");
3623 }
3624 }
3625 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
3626 }
3627 else
3628 {
3629 /*
3630 * We print up to the first zero and stop there.
3631 * Only printables + '\t' and '\n' are printed.
3632 */
3633 if (!u16Prev)
3634 DBGCCmdHlpPrintf(pCmdHlp, "%DV:\n", &pDbgc->DumpPos);
3635 uint16_t u16 = '\0';
3636 unsigned i;
3637 for (i = 0; i < cb; i += cbElement)
3638 {
3639 u16Prev = u16;
3640 if (cbElement == 1)
3641 u16 = *(uint8_t *)&achBuffer[i];
3642 else
3643 u16 = *(uint16_t *)&achBuffer[i];
3644 if ( u16 < 127
3645 && ( (RT_C_IS_PRINT(u16) && u16 >= 32)
3646 || u16 == '\t'
3647 || u16 == '\n'))
3648 DBGCCmdHlpPrintf(pCmdHlp, "%c", (int)u16);
3649 else if (!u16)
3650 break;
3651 else
3652 DBGCCmdHlpPrintf(pCmdHlp, "\\x%0*x", cbElement * 2, u16);
3653 }
3654 if (u16 == '\0')
3655 cb = cbLeft = i + 1;
3656 if (cbLeft - cb <= 0 && u16Prev != '\n')
3657 DBGCCmdHlpPrintf(pCmdHlp, "\n");
3658 }
3659
3660 /*
3661 * Advance
3662 */
3663 cbLeft -= (int)cb;
3664 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DumpPos, "(%Dv) + %x", &pDbgc->DumpPos, cb);
3665 if (RT_FAILURE(rc))
3666 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->DumpPos, cb);
3667 if (cbLeft <= 0)
3668 break;
3669 }
3670
3671 NOREF(pCmd);
3672 return VINF_SUCCESS;
3673}
3674
3675
3676/**
3677 * Best guess at which paging mode currently applies to the guest
3678 * paging structures.
3679 *
3680 * This have to come up with a decent answer even when the guest
3681 * is in non-paged protected mode or real mode.
3682 *
3683 * @returns cr3.
3684 * @param pDbgc The DBGC instance.
3685 * @param pfPAE Where to store the page address extension indicator.
3686 * @param pfLME Where to store the long mode enabled indicator.
3687 * @param pfPSE Where to store the page size extension indicator.
3688 * @param pfPGE Where to store the page global enabled indicator.
3689 * @param pfNXE Where to store the no-execution enabled indicator.
3690 */
3691static RTGCPHYS dbgcGetGuestPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
3692{
3693 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
3694 RTGCUINTREG cr4 = CPUMGetGuestCR4(pVCpu);
3695 *pfPSE = !!(cr4 & X86_CR4_PSE);
3696 *pfPGE = !!(cr4 & X86_CR4_PGE);
3697 if (cr4 & X86_CR4_PAE)
3698 {
3699 *pfPSE = true;
3700 *pfPAE = true;
3701 }
3702 else
3703 *pfPAE = false;
3704
3705 *pfLME = CPUMGetGuestMode(pVCpu) == CPUMMODE_LONG;
3706 *pfNXE = false; /* GUEST64 GUESTNX */
3707 return CPUMGetGuestCR3(pVCpu);
3708}
3709
3710
3711/**
3712 * Determine the shadow paging mode.
3713 *
3714 * @returns cr3.
3715 * @param pDbgc The DBGC instance.
3716 * @param pfPAE Where to store the page address extension indicator.
3717 * @param pfLME Where to store the long mode enabled indicator.
3718 * @param pfPSE Where to store the page size extension indicator.
3719 * @param pfPGE Where to store the page global enabled indicator.
3720 * @param pfNXE Where to store the no-execution enabled indicator.
3721 */
3722static RTHCPHYS dbgcGetShadowPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
3723{
3724 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
3725
3726 *pfPSE = true;
3727 *pfPGE = false;
3728 switch (PGMGetShadowMode(pVCpu))
3729 {
3730 default:
3731 case PGMMODE_32_BIT:
3732 *pfPAE = *pfLME = *pfNXE = false;
3733 break;
3734 case PGMMODE_PAE:
3735 *pfLME = *pfNXE = false;
3736 *pfPAE = true;
3737 break;
3738 case PGMMODE_PAE_NX:
3739 *pfLME = false;
3740 *pfPAE = *pfNXE = true;
3741 break;
3742 case PGMMODE_AMD64:
3743 *pfNXE = false;
3744 *pfPAE = *pfLME = true;
3745 break;
3746 case PGMMODE_AMD64_NX:
3747 *pfPAE = *pfLME = *pfNXE = true;
3748 break;
3749 }
3750 return PGMGetHyperCR3(pVCpu);
3751}
3752
3753
3754/**
3755 * @callback_method_impl{FNDBGCCMD,
3756 * The 'dpd'\, 'dpda'\, 'dpdb'\, 'dpdg' and 'dpdh' commands.}
3757 */
3758static DECLCALLBACK(int) dbgcCmdDumpPageDir(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3759{
3760 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3761
3762 /*
3763 * Validate input.
3764 */
3765 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
3766 if (cArgs == 1 && pCmd->pszCmd[3] == 'a')
3767 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3768 if (cArgs == 1 && pCmd->pszCmd[3] != 'a')
3769 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
3770 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
3771 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3772
3773 /*
3774 * Guest or shadow page directories? Get the paging parameters.
3775 */
3776 bool fGuest = pCmd->pszCmd[3] != 'h';
3777 if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
3778 fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER ? true : DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
3779
3780 bool fPAE, fLME, fPSE, fPGE, fNXE;
3781 uint64_t cr3 = fGuest
3782 ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
3783 : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
3784 const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
3785
3786 /*
3787 * Setup default argument if none was specified.
3788 * Fix address / index confusion.
3789 */
3790 DBGCVAR VarDefault;
3791 if (!cArgs)
3792 {
3793 if (pCmd->pszCmd[3] == 'a')
3794 {
3795 if (fLME || fPAE)
3796 return DBGCCmdHlpPrintf(pCmdHlp, "Default argument for 'dpda' hasn't been fully implemented yet. Try with an address or use one of the other commands.\n");
3797 if (fGuest)
3798 DBGCVAR_INIT_GC_PHYS(&VarDefault, cr3);
3799 else
3800 DBGCVAR_INIT_HC_PHYS(&VarDefault, cr3);
3801 }
3802 else
3803 DBGCVAR_INIT_GC_FLAT(&VarDefault, 0);
3804 paArgs = &VarDefault;
3805 cArgs = 1;
3806 }
3807 else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
3808 {
3809 /* If it's a number (not an address), it's an index, so convert it to an address. */
3810 Assert(pCmd->pszCmd[3] != 'a');
3811 VarDefault = paArgs[0];
3812 if (fPAE)
3813 return DBGCCmdHlpPrintf(pCmdHlp, "PDE indexing is only implemented for 32-bit paging.\n");
3814 if (VarDefault.u.u64Number >= PAGE_SIZE / cbEntry)
3815 return DBGCCmdHlpPrintf(pCmdHlp, "PDE index is out of range [0..%d].\n", PAGE_SIZE / cbEntry - 1);
3816 VarDefault.u.u64Number <<= X86_PD_SHIFT;
3817 VarDefault.enmType = DBGCVAR_TYPE_GC_FLAT;
3818 paArgs = &VarDefault;
3819 }
3820
3821 /*
3822 * Locate the PDE to start displaying at.
3823 *
3824 * The 'dpda' command takes the address of a PDE, while the others are guest
3825 * virtual address which PDEs should be displayed. So, 'dpda' is rather simple
3826 * while the others require us to do all the tedious walking thru the paging
3827 * hierarchy to find the intended PDE.
3828 */
3829 unsigned iEntry = ~0U; /* The page directory index. ~0U for 'dpta'. */
3830 DBGCVAR VarGCPtr = { NULL, }; /* The GC address corresponding to the current PDE (iEntry != ~0U). */
3831 DBGCVAR VarPDEAddr; /* The address of the current PDE. */
3832 unsigned cEntries; /* The number of entries to display. */
3833 unsigned cEntriesMax; /* The max number of entries to display. */
3834 int rc;
3835 if (pCmd->pszCmd[3] == 'a')
3836 {
3837 VarPDEAddr = paArgs[0];
3838 switch (VarPDEAddr.enmRangeType)
3839 {
3840 case DBGCVAR_RANGE_BYTES: cEntries = VarPDEAddr.u64Range / cbEntry; break;
3841 case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPDEAddr.u64Range; break;
3842 default: cEntries = 10; break;
3843 }
3844 cEntriesMax = PAGE_SIZE / cbEntry;
3845 }
3846 else
3847 {
3848 /*
3849 * Determine the range.
3850 */
3851 switch (paArgs[0].enmRangeType)
3852 {
3853 case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / PAGE_SIZE; break;
3854 case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
3855 default: cEntries = 10; break;
3856 }
3857
3858 /*
3859 * Normalize the input address, it must be a flat GC address.
3860 */
3861 rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
3862 if (RT_FAILURE(rc))
3863 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
3864 if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
3865 {
3866 VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
3867 VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
3868 }
3869 if (fPAE)
3870 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_PAE_SHIFT) - 1);
3871 else
3872 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_SHIFT) - 1);
3873
3874 /*
3875 * Do the paging walk until we get to the page directory.
3876 */
3877 DBGCVAR VarCur;
3878 if (fGuest)
3879 DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
3880 else
3881 DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
3882 if (fLME)
3883 {
3884 /* Page Map Level 4 Lookup. */
3885 /* Check if it's a valid address first? */
3886 VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
3887 VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
3888 X86PML4E Pml4e;
3889 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
3890 if (RT_FAILURE(rc))
3891 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
3892 if (!Pml4e.n.u1Present)
3893 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
3894
3895 VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
3896 Assert(fPAE);
3897 }
3898 if (fPAE)
3899 {
3900 /* Page directory pointer table. */
3901 X86PDPE Pdpe;
3902 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
3903 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
3904 if (RT_FAILURE(rc))
3905 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
3906 if (!Pdpe.n.u1Present)
3907 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
3908
3909 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3910 VarPDEAddr = VarCur;
3911 VarPDEAddr.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
3912 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDEPAE);
3913 }
3914 else
3915 {
3916 /* 32-bit legacy - CR3 == page directory. */
3917 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK;
3918 VarPDEAddr = VarCur;
3919 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDE);
3920 }
3921 cEntriesMax = (PAGE_SIZE - iEntry) / cbEntry;
3922 }
3923
3924 /* adjust cEntries */
3925 cEntries = RT_MAX(1, cEntries);
3926 cEntries = RT_MIN(cEntries, cEntriesMax);
3927
3928 /*
3929 * The display loop.
3930 */
3931 DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (index %#x):\n" : "%DV:\n",
3932 &VarPDEAddr, iEntry);
3933 do
3934 {
3935 /*
3936 * Read.
3937 */
3938 X86PDEPAE Pde;
3939 Pde.u = 0;
3940 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, cbEntry, &VarPDEAddr, NULL);
3941 if (RT_FAILURE(rc))
3942 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarPDEAddr);
3943
3944 /*
3945 * Display.
3946 */
3947 if (iEntry != ~0U)
3948 {
3949 DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
3950 iEntry++;
3951 }
3952 if (fPSE && Pde.b.u1Size)
3953 DBGCCmdHlpPrintf(pCmdHlp,
3954 fPAE
3955 ? "%016llx big phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
3956 : "%08llx big phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
3957 Pde.u,
3958 Pde.u & X86_PDE_PAE_PG_MASK,
3959 Pde.b.u1Present ? "p " : "np",
3960 Pde.b.u1Write ? "w" : "r",
3961 Pde.b.u1User ? "u" : "s",
3962 Pde.b.u1Accessed ? "a " : "na",
3963 Pde.b.u1Dirty ? "d " : "nd",
3964 Pde.b.u3Available,
3965 Pde.b.u1Global ? (fPGE ? "g" : "G") : " ",
3966 Pde.b.u1WriteThru ? "pwt" : " ",
3967 Pde.b.u1CacheDisable ? "pcd" : " ",
3968 Pde.b.u1PAT ? "pat" : "",
3969 Pde.b.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
3970 else
3971 DBGCCmdHlpPrintf(pCmdHlp,
3972 fPAE
3973 ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s"
3974 : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s",
3975 Pde.u,
3976 Pde.u & X86_PDE_PAE_PG_MASK,
3977 Pde.n.u1Present ? "p " : "np",
3978 Pde.n.u1Write ? "w" : "r",
3979 Pde.n.u1User ? "u" : "s",
3980 Pde.n.u1Accessed ? "a " : "na",
3981 Pde.u & RT_BIT(6) ? "6 " : " ",
3982 Pde.n.u3Available,
3983 Pde.u & RT_BIT(8) ? "8" : " ",
3984 Pde.n.u1WriteThru ? "pwt" : " ",
3985 Pde.n.u1CacheDisable ? "pcd" : " ",
3986 Pde.u & RT_BIT(7) ? "7" : "",
3987 Pde.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
3988 if (Pde.u & UINT64_C(0x7fff000000000000))
3989 DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pde.u & UINT64_C(0x7fff000000000000)));
3990 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
3991 if (RT_FAILURE(rc))
3992 return rc;
3993
3994 /*
3995 * Advance.
3996 */
3997 VarPDEAddr.u.u64Number += cbEntry;
3998 if (iEntry != ~0U)
3999 VarGCPtr.u.GCFlat += fPAE ? RT_BIT_32(X86_PD_PAE_SHIFT) : RT_BIT_32(X86_PD_SHIFT);
4000 } while (cEntries-- > 0);
4001
4002 return VINF_SUCCESS;
4003}
4004
4005
4006/**
4007 * @callback_method_impl{FNDBGCCMD, The 'dpdb' command.}
4008 */
4009static DECLCALLBACK(int) dbgcCmdDumpPageDirBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4010{
4011 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4012 int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dpdg %DV", &paArgs[0]);
4013 int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpdh %DV", &paArgs[0]);
4014 if (RT_FAILURE(rc1))
4015 return rc1;
4016 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
4017 return rc2;
4018}
4019
4020
4021/**
4022 * @callback_method_impl{FNDBGCCMD, The 'dph*' commands and main part of 'm'.}
4023 */
4024static DECLCALLBACK(int) dbgcCmdDumpPageHierarchy(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4025{
4026 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
4027 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4028
4029 /*
4030 * Figure the context and base flags.
4031 */
4032 uint32_t fFlags = DBGFPGDMP_FLAGS_PAGE_INFO | DBGFPGDMP_FLAGS_PRINT_CR3;
4033 if (pCmd->pszCmd[0] == 'm')
4034 fFlags |= DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW;
4035 else if (pCmd->pszCmd[3] == '\0')
4036 fFlags |= DBGFPGDMP_FLAGS_GUEST;
4037 else if (pCmd->pszCmd[3] == 'g')
4038 fFlags |= DBGFPGDMP_FLAGS_GUEST;
4039 else if (pCmd->pszCmd[3] == 'h')
4040 fFlags |= DBGFPGDMP_FLAGS_SHADOW;
4041 else
4042 AssertFailed();
4043
4044 if (pDbgc->cPagingHierarchyDumps == 0)
4045 fFlags |= DBGFPGDMP_FLAGS_HEADER;
4046 pDbgc->cPagingHierarchyDumps = (pDbgc->cPagingHierarchyDumps + 1) % 42;
4047
4048 /*
4049 * Get the range.
4050 */
4051 PCDBGCVAR pRange = cArgs > 0 ? &paArgs[0] : pDbgc->pLastPos;
4052 RTGCPTR GCPtrFirst = NIL_RTGCPTR;
4053 int rc = DBGCCmdHlpVarToFlatAddr(pCmdHlp, pRange, &GCPtrFirst);
4054 if (RT_FAILURE(rc))
4055 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to convert %DV to a flat address: %Rrc", pRange, rc);
4056
4057 uint64_t cbRange;
4058 rc = DBGCCmdHlpVarGetRange(pCmdHlp, pRange, PAGE_SIZE, PAGE_SIZE * 8, &cbRange);
4059 if (RT_FAILURE(rc))
4060 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to obtain the range of %DV: %Rrc", pRange, rc);
4061
4062 RTGCPTR GCPtrLast = RTGCPTR_MAX - GCPtrFirst;
4063 if (cbRange >= GCPtrLast)
4064 GCPtrLast = RTGCPTR_MAX;
4065 else if (!cbRange)
4066 GCPtrLast = GCPtrFirst;
4067 else
4068 GCPtrLast = GCPtrFirst + cbRange - 1;
4069
4070 /*
4071 * Do we have a CR3?
4072 */
4073 uint64_t cr3 = 0;
4074 if (cArgs > 1)
4075 {
4076 if ((fFlags & (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW)) == (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW))
4077 return DBGCCmdHlpFail(pCmdHlp, pCmd, "No CR3 or mode arguments when dumping both context, please.");
4078 if (paArgs[1].enmType != DBGCVAR_TYPE_NUMBER)
4079 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The CR3 argument is not a number: %DV", &paArgs[1]);
4080 cr3 = paArgs[1].u.u64Number;
4081 }
4082 else
4083 fFlags |= DBGFPGDMP_FLAGS_CURRENT_CR3;
4084
4085 /*
4086 * Do we have a mode?
4087 */
4088 if (cArgs > 2)
4089 {
4090 if (paArgs[2].enmType != DBGCVAR_TYPE_STRING)
4091 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The mode argument is not a string: %DV", &paArgs[2]);
4092 static const struct MODETOFLAGS
4093 {
4094 const char *pszName;
4095 uint32_t fFlags;
4096 } s_aModeToFlags[] =
4097 {
4098 { "ept", DBGFPGDMP_FLAGS_EPT },
4099 { "legacy", 0 },
4100 { "legacy-np", DBGFPGDMP_FLAGS_NP },
4101 { "pse", DBGFPGDMP_FLAGS_PSE },
4102 { "pse-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_NP },
4103 { "pae", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE },
4104 { "pae-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NP },
4105 { "pae-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE },
4106 { "pae-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP },
4107 { "long", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME },
4108 { "long-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NP },
4109 { "long-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE },
4110