VirtualBox

source: vbox/trunk/src/VBox/Debugger/DBGCEmulateCodeView.cpp@ 46101

Last change on this file since 46101 was 46101, checked in by vboxsync, 12 years ago

More NT4 debugging. Getting closer to working state...

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 176.0 KB
Line 
1/* $Id: DBGCEmulateCodeView.cpp 46101 2013-05-15 15:36:43Z vboxsync $ */
2/** @file
3 * DBGC - Debugger Console, CodeView / WinDbg Emulation.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_DBGC
22#include <VBox/dbg.h>
23#include <VBox/vmm/dbgf.h>
24#include <VBox/vmm/pgm.h>
25#include <VBox/vmm/cpum.h>
26#include <VBox/dis.h>
27#include <VBox/param.h>
28#include <VBox/err.h>
29#include <VBox/log.h>
30
31#include <iprt/asm.h>
32#include <iprt/mem.h>
33#include <iprt/string.h>
34#include <iprt/assert.h>
35#include <iprt/ctype.h>
36
37#include <stdlib.h>
38#include <stdio.h>
39
40#include "DBGCInternal.h"
41
42
43/*******************************************************************************
44* Internal Functions *
45*******************************************************************************/
46static FNDBGCCMD dbgcCmdBrkAccess;
47static FNDBGCCMD dbgcCmdBrkClear;
48static FNDBGCCMD dbgcCmdBrkDisable;
49static FNDBGCCMD dbgcCmdBrkEnable;
50static FNDBGCCMD dbgcCmdBrkList;
51static FNDBGCCMD dbgcCmdBrkSet;
52static FNDBGCCMD dbgcCmdBrkREM;
53static FNDBGCCMD dbgcCmdDumpMem;
54static FNDBGCCMD dbgcCmdDumpDT;
55static FNDBGCCMD dbgcCmdDumpIDT;
56static FNDBGCCMD dbgcCmdDumpPageDir;
57static FNDBGCCMD dbgcCmdDumpPageDirBoth;
58static FNDBGCCMD dbgcCmdDumpPageHierarchy;
59static FNDBGCCMD dbgcCmdDumpPageTable;
60static FNDBGCCMD dbgcCmdDumpPageTableBoth;
61static FNDBGCCMD dbgcCmdDumpTSS;
62static FNDBGCCMD dbgcCmdEditMem;
63static FNDBGCCMD dbgcCmdGo;
64static FNDBGCCMD dbgcCmdListModules;
65static FNDBGCCMD dbgcCmdListNear;
66static FNDBGCCMD dbgcCmdListSource;
67static FNDBGCCMD dbgcCmdMemoryInfo;
68static FNDBGCCMD dbgcCmdReg;
69static FNDBGCCMD dbgcCmdRegGuest;
70static FNDBGCCMD dbgcCmdRegHyper;
71static FNDBGCCMD dbgcCmdRegTerse;
72static FNDBGCCMD dbgcCmdSearchMem;
73static FNDBGCCMD dbgcCmdSearchMemType;
74static FNDBGCCMD dbgcCmdStack;
75static FNDBGCCMD dbgcCmdTrace;
76static FNDBGCCMD dbgcCmdUnassemble;
77
78
79/*******************************************************************************
80* Global Variables *
81*******************************************************************************/
82/** 'ba' arguments. */
83static const DBGCVARDESC g_aArgBrkAcc[] =
84{
85 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
86 { 1, 1, DBGCVAR_CAT_STRING, 0, "access", "The access type: x=execute, rw=read/write (alias r), w=write, i=not implemented." },
87 { 1, 1, DBGCVAR_CAT_NUMBER, 0, "size", "The access size: 1, 2, 4, or 8. 'x' access requires 1, and 8 requires amd64 long mode." },
88 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
89 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
90 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
91 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
92};
93
94
95/** 'bc', 'bd', 'be' arguments. */
96static const DBGCVARDESC g_aArgBrks[] =
97{
98 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
99 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "#bp", "Breakpoint number." },
100 { 0, 1, DBGCVAR_CAT_STRING, 0, "all", "All breakpoints." },
101};
102
103
104/** 'bp' arguments. */
105static const DBGCVARDESC g_aArgBrkSet[] =
106{
107 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
108 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
109 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
110 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
111 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
112};
113
114
115/** 'br' arguments. */
116static const DBGCVARDESC g_aArgBrkREM[] =
117{
118 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
119 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "The address." },
120 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "passes", "The number of passes before we trigger the breakpoint. (0 is default)" },
121 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "max passes", "The number of passes after which we stop triggering the breakpoint. (~0 is default)" },
122 { 0, 1, DBGCVAR_CAT_STRING, 0, "cmds", "String of commands to be executed when the breakpoint is hit. Quote it!" },
123};
124
125
126/** 'd?' arguments. */
127static const DBGCVARDESC g_aArgDumpMem[] =
128{
129 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
130 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start dumping memory." },
131};
132
133
134/** 'dg', 'dga', 'dl', 'dla' arguments. */
135static const DBGCVARDESC g_aArgDumpDT[] =
136{
137 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
138 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "sel", "Selector or selector range." },
139 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Far address which selector should be dumped." },
140};
141
142
143/** 'di', 'dia' arguments. */
144static const DBGCVARDESC g_aArgDumpIDT[] =
145{
146 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
147 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "int", "The interrupt vector or interrupt vector range." },
148};
149
150
151/** 'dpd*' arguments. */
152static const DBGCVARDESC g_aArgDumpPD[] =
153{
154 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
155 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "index", "Index into the page directory." },
156 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from. Range is applied to the page directory." },
157};
158
159
160/** 'dpda' arguments. */
161static const DBGCVARDESC g_aArgDumpPDAddr[] =
162{
163 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
164 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page directory entry to start dumping from." },
165};
166
167
168/** 'dph*' arguments. */
169static const DBGCVARDESC g_aArgDumpPH[] =
170{
171 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
172 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "address", "Where in the address space to start dumping and for how long (range). The default address/range will be used if omitted." },
173 { 0, 1, DBGCVAR_CAT_NUMBER, DBGCVD_FLAGS_DEP_PREV, "cr3", "The CR3 value to use. The current CR3 of the context will be used if omitted." },
174 { 0, 1, DBGCVAR_CAT_STRING, DBGCVD_FLAGS_DEP_PREV, "mode", "The paging mode: legacy, pse, pae, long, ept. Append '-np' for nested paging and '-nx' for no-execute. The current mode will be used if omitted." },
175};
176
177
178/** 'dpt?' arguments. */
179static const DBGCVARDESC g_aArgDumpPT[] =
180{
181 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
182 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address which page directory entry to start dumping from." },
183};
184
185
186/** 'dpta' arguments. */
187static const DBGCVARDESC g_aArgDumpPTAddr[] =
188{
189 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
190 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address of the page table entry to start dumping from." },
191};
192
193
194/** 'dt' arguments. */
195static const DBGCVARDESC g_aArgDumpTSS[] =
196{
197 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
198 { 0, 1, DBGCVAR_CAT_NUMBER, 0, "tss", "TSS selector number." },
199 { 0, 1, DBGCVAR_CAT_POINTER, 0, "tss:ign|addr", "TSS address. If the selector is a TSS selector, the offset will be ignored." }
200};
201
202
203/** 'e?' arguments. */
204static const DBGCVARDESC g_aArgEditMem[] =
205{
206 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
207 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to write." },
208 { 1, ~0U, DBGCVAR_CAT_NUMBER, 0, "value", "Value to write." },
209};
210
211
212/** 'lm' arguments. */
213static const DBGCVARDESC g_aArgListMods[] =
214{
215 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
216 { 0, ~0U, DBGCVAR_CAT_STRING, 0, "module", "Module name." },
217};
218
219
220/** 'ln' arguments. */
221static const DBGCVARDESC g_aArgListNear[] =
222{
223 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
224 { 0, ~0U, DBGCVAR_CAT_POINTER, 0, "address", "Address of the symbol to look up." },
225 { 0, ~0U, DBGCVAR_CAT_SYMBOL, 0, "symbol", "Symbol to lookup." },
226};
227
228
229/** 'ls' arguments. */
230static const DBGCVARDESC g_aArgListSource[] =
231{
232 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
233 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start looking for source lines." },
234};
235
236
237/** 'm' argument. */
238static const DBGCVARDESC g_aArgMemoryInfo[] =
239{
240 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
241 { 1, 1, DBGCVAR_CAT_POINTER, 0, "address", "Pointer to obtain info about." },
242};
243
244
245/** 'r' arguments. */
246static const DBGCVARDESC g_aArgReg[] =
247{
248 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
249 { 0, 1, DBGCVAR_CAT_SYMBOL, 0, "register", "Register to show or set." },
250 { 0, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, DBGCVD_FLAGS_DEP_PREV, "value", "New register value." },
251};
252
253
254/** 's' arguments. */
255static const DBGCVARDESC g_aArgSearchMem[] =
256{
257 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
258 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-b", "Byte string." },
259 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-w", "Word string." },
260 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-d", "DWord string." },
261 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-q", "QWord string." },
262 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-a", "ASCII string." },
263 { 0, 1, DBGCVAR_CAT_OPTION, 0, "-u", "Unicode string." },
264 { 0, 1, DBGCVAR_CAT_OPTION_NUMBER, 0, "-n <Hits>", "Maximum number of hits." },
265 { 0, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
266 { 0, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
267};
268
269
270/** 's?' arguments. */
271static const DBGCVARDESC g_aArgSearchMemType[] =
272{
273 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
274 { 1, 1, DBGCVAR_CAT_GC_POINTER, 0, "range", "Register to show or set." },
275 { 1, ~0U, DBGCVAR_CAT_ANY, 0, "pattern", "Pattern to search for." },
276};
277
278
279/** 'u' arguments. */
280static const DBGCVARDESC g_aArgUnassemble[] =
281{
282 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
283 { 0, 1, DBGCVAR_CAT_POINTER, 0, "address", "Address where to start disassembling." },
284};
285
286
287/** Command descriptors for the CodeView / WinDbg emulation.
288 * The emulation isn't attempting to be identical, only somewhat similar.
289 */
290const DBGCCMD g_aCmdsCodeView[] =
291{
292 /* pszCmd, cArgsMin, cArgsMax, paArgDescs, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
293 { "ba", 3, 6, &g_aArgBrkAcc[0], RT_ELEMENTS(g_aArgBrkAcc), 0, dbgcCmdBrkAccess, "<access> <size> <address> [passes [max passes]] [cmds]",
294 "Sets a data access breakpoint." },
295 { "bc", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkClear, "all | <bp#> [bp# []]", "Deletes a set of breakpoints." },
296 { "bd", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkDisable, "all | <bp#> [bp# []]", "Disables a set of breakpoints." },
297 { "be", 1, ~0U, &g_aArgBrks[0], RT_ELEMENTS(g_aArgBrks), 0, dbgcCmdBrkEnable, "all | <bp#> [bp# []]", "Enables a set of breakpoints." },
298 { "bl", 0, 0, NULL, 0, 0, dbgcCmdBrkList, "", "Lists all the breakpoints." },
299 { "bp", 1, 4, &g_aArgBrkSet[0], RT_ELEMENTS(g_aArgBrkSet), 0, dbgcCmdBrkSet, "<address> [passes [max passes]] [cmds]",
300 "Sets a breakpoint (int 3)." },
301 { "br", 1, 4, &g_aArgBrkREM[0], RT_ELEMENTS(g_aArgBrkREM), 0, dbgcCmdBrkREM, "<address> [passes [max passes]] [cmds]",
302 "Sets a recompiler specific breakpoint." },
303 { "d", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory using last element size." },
304 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
305 { "db", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in bytes." },
306 { "dd", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in double words." },
307 { "da", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory as ascii string." },
308 { "dg", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT)." },
309 { "dga", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the global descriptor table (GDT) including not-present entries." },
310 { "di", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT)." },
311 { "dia", 0, ~0U, &g_aArgDumpIDT[0], RT_ELEMENTS(g_aArgDumpIDT), 0, dbgcCmdDumpIDT, "[int [..]]", "Dump the interrupt descriptor table (IDT) including not-present entries." },
312 { "dl", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT)." },
313 { "dla", 0, ~0U, &g_aArgDumpDT[0], RT_ELEMENTS(g_aArgDumpDT), 0, dbgcCmdDumpDT, "[sel [..]]", "Dump the local descriptor table (LDT) including not-present entries." },
314 { "dpd", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the default context." },
315 { "dpda", 0, 1, &g_aArgDumpPDAddr[0],RT_ELEMENTS(g_aArgDumpPDAddr), 0, dbgcCmdDumpPageDir, "[addr]", "Dumps memory at given address as a page directory." },
316 { "dpdb", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDirBoth, "[addr|index]", "Dumps page directory entries of the guest and the hypervisor. " },
317 { "dpdg", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the guest." },
318 { "dpdh", 0, 1, &g_aArgDumpPD[0], RT_ELEMENTS(g_aArgDumpPD), 0, dbgcCmdDumpPageDir, "[addr|index]", "Dumps page directory entries of the hypervisor. " },
319 { "dph", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Default context." },
320 { "dphg", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Guest context." },
321 { "dphh", 0, 3, &g_aArgDumpPH[0], RT_ELEMENTS(g_aArgDumpPH), 0, dbgcCmdDumpPageHierarchy, "[addr [cr3 [mode]]", "Dumps the paging hierarchy at for specfied address range. Hypervisor context." },
322 { "dpt", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the default context." },
323 { "dpta", 1, 1, &g_aArgDumpPTAddr[0],RT_ELEMENTS(g_aArgDumpPTAddr), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps memory at given address as a page table." },
324 { "dptb", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTableBoth,"<addr>", "Dumps page table entries of the guest and the hypervisor." },
325 { "dptg", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the guest." },
326 { "dpth", 1, 1, &g_aArgDumpPT[0], RT_ELEMENTS(g_aArgDumpPT), 0, dbgcCmdDumpPageTable,"<addr>", "Dumps page table entries of the hypervisor." },
327 { "dq", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in quad words." },
328 { "dt", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the task state segment (TSS)." },
329 { "dt16", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 16-bit task state segment (TSS)." },
330 { "dt32", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 32-bit task state segment (TSS)." },
331 { "dt64", 0, 1, &g_aArgDumpTSS[0], RT_ELEMENTS(g_aArgDumpTSS), 0, dbgcCmdDumpTSS, "[tss|tss:ign|addr]", "Dump the 64-bit task state segment (TSS)." },
332 { "dw", 0, 1, &g_aArgDumpMem[0], RT_ELEMENTS(g_aArgDumpMem), 0, dbgcCmdDumpMem, "[addr]", "Dump memory in words." },
333 /** @todo add 'e', 'ea str', 'eza str', 'eu str' and 'ezu str'. See also
334 * dbgcCmdSearchMem and its dbgcVarsToBytes usage. */
335 { "eb", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 1-byte value to memory." },
336 { "ew", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 2-byte value to memory." },
337 { "ed", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 4-byte value to memory." },
338 { "eq", 2, 2, &g_aArgEditMem[0], RT_ELEMENTS(g_aArgEditMem), 0, dbgcCmdEditMem, "<addr> <value>", "Write a 8-byte value to memory." },
339 { "g", 0, 0, NULL, 0, 0, dbgcCmdGo, "", "Continue execution." },
340 { "k", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack." },
341 { "kg", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - guest." },
342 { "kh", 0, 0, NULL, 0, 0, dbgcCmdStack, "", "Callstack - hypervisor." },
343 { "lm", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules." },
344 { "lmv", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules, verbose." },
345 { "lmo", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments." },
346 { "lmov", 0, ~0U, &g_aArgListMods[0], RT_ELEMENTS(g_aArgListMods), 0, dbgcCmdListModules, "[module [..]]", "List modules and their segments, verbose." },
347 { "ln", 0, ~0U, &g_aArgListNear[0], RT_ELEMENTS(g_aArgListNear), 0, dbgcCmdListNear, "[addr/sym [..]]", "List symbols near to the address. Default address is CS:EIP." },
348 { "ls", 0, 1, &g_aArgListSource[0],RT_ELEMENTS(g_aArgListSource), 0, dbgcCmdListSource, "[addr]", "Source." },
349 { "m", 1, 1, &g_aArgMemoryInfo[0],RT_ELEMENTS(g_aArgMemoryInfo), 0, dbgcCmdMemoryInfo, "<addr>", "Display information about that piece of memory." },
350 { "r", 0, 2, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdReg, "[reg [newval]]", "Show or set register(s) - active reg set." },
351 { "rg", 0, 2, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdRegGuest, "[reg [newval]]", "Show or set register(s) - guest reg set." },
352 { "rg32", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 32-bit guest registers." },
353 { "rg64", 0, 0, NULL, 0, 0, dbgcCmdRegGuest, "", "Show 64-bit guest registers." },
354 { "rh", 0, 2, &g_aArgReg[0], RT_ELEMENTS(g_aArgReg), 0, dbgcCmdRegHyper, "[reg [newval]]", "Show or set register(s) - hypervisor reg set." },
355 { "rt", 0, 0, NULL, 0, 0, dbgcCmdRegTerse, "", "Toggles terse / verbose register info." },
356 { "s", 0, ~0U, &g_aArgSearchMem[0], RT_ELEMENTS(g_aArgSearchMem), 0, dbgcCmdSearchMem, "[options] <range> <pattern>", "Continue last search." },
357 { "sa", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an ascii string." },
358 { "sb", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more bytes." },
359 { "sd", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more double words." },
360 { "sq", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more quad words." },
361 { "su", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for an unicode string." },
362 { "sw", 2, ~0U, &g_aArgSearchMemType[0], RT_ELEMENTS(g_aArgSearchMemType),0, dbgcCmdSearchMemType, "<range> <pattern>", "Search memory for one or more words." },
363 { "t", 0, 0, NULL, 0, 0, dbgcCmdTrace, "", "Instruction trace (step into)." },
364 { "u", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble." },
365 { "u64", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 64-bit code." },
366 { "u32", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 32-bit code." },
367 { "u16", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code." },
368 { "uv86", 0, 1, &g_aArgUnassemble[0],RT_ELEMENTS(g_aArgUnassemble), 0, dbgcCmdUnassemble, "[addr]", "Unassemble 16-bit code with v8086/real mode addressing." },
369};
370
371/** The number of commands in the CodeView/WinDbg emulation. */
372const uint32_t g_cCmdsCodeView = RT_ELEMENTS(g_aCmdsCodeView);
373
374
375
376
377/**
378 * @interface_method_impl{FNDBCCMD, The 'go' command.}
379 */
380static DECLCALLBACK(int) dbgcCmdGo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
381{
382 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
383
384 /*
385 * Check if the VM is halted or not before trying to resume it.
386 */
387 if (!DBGFR3IsHalted(pUVM))
388 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The VM is already running");
389
390 int rc = DBGFR3Resume(pUVM);
391 if (RT_FAILURE(rc))
392 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3Resume");
393
394 NOREF(paArgs); NOREF(cArgs);
395 return VINF_SUCCESS;
396}
397
398
399/**
400 * @interface_method_impl{FNDBCCMD, The 'ba' command.}
401 */
402static DECLCALLBACK(int) dbgcCmdBrkAccess(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
403{
404 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
405
406 /*
407 * Interpret access type.
408 */
409 if ( !strchr("xrwi", paArgs[0].u.pszString[0])
410 || paArgs[0].u.pszString[1])
411 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access type '%s' for '%s'. Valid types are 'e', 'r', 'w' and 'i'",
412 paArgs[0].u.pszString, pCmd->pszCmd);
413 uint8_t fType = 0;
414 switch (paArgs[0].u.pszString[0])
415 {
416 case 'x': fType = X86_DR7_RW_EO; break;
417 case 'r': fType = X86_DR7_RW_RW; break;
418 case 'w': fType = X86_DR7_RW_WO; break;
419 case 'i': fType = X86_DR7_RW_IO; break;
420 }
421
422 /*
423 * Validate size.
424 */
425 if (fType == X86_DR7_RW_EO && paArgs[1].u.u64Number != 1)
426 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 'x' access type requires size 1!",
427 paArgs[1].u.u64Number, pCmd->pszCmd);
428 switch (paArgs[1].u.u64Number)
429 {
430 case 1:
431 case 2:
432 case 4:
433 break;
434 /*case 8: - later*/
435 default:
436 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid access size %RX64 for '%s'. 1, 2 or 4!",
437 paArgs[1].u.u64Number, pCmd->pszCmd);
438 }
439 uint8_t cb = (uint8_t)paArgs[1].u.u64Number;
440
441 /*
442 * Convert the pointer to a DBGF address.
443 */
444 DBGFADDRESS Address;
445 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[2], &Address);
446 if (RT_FAILURE(rc))
447 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,%DV,)", &paArgs[2]);
448
449 /*
450 * Pick out the optional arguments.
451 */
452 uint64_t iHitTrigger = 0;
453 uint64_t iHitDisable = ~0;
454 const char *pszCmds = NULL;
455 unsigned iArg = 3;
456 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
457 {
458 iHitTrigger = paArgs[iArg].u.u64Number;
459 iArg++;
460 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
461 {
462 iHitDisable = paArgs[iArg].u.u64Number;
463 iArg++;
464 }
465 }
466 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
467 {
468 pszCmds = paArgs[iArg].u.pszString;
469 iArg++;
470 }
471
472 /*
473 * Try set the breakpoint.
474 */
475 uint32_t iBp;
476 rc = DBGFR3BpSetReg(pUVM, &Address, iHitTrigger, iHitDisable, fType, cb, &iBp);
477 if (RT_SUCCESS(rc))
478 {
479 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
480 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
481 if (RT_SUCCESS(rc))
482 return DBGCCmdHlpPrintf(pCmdHlp, "Set access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
483 if (rc == VERR_DBGC_BP_EXISTS)
484 {
485 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
486 if (RT_SUCCESS(rc))
487 return DBGCCmdHlpPrintf(pCmdHlp, "Updated access breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
488 }
489 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
490 AssertRC(rc2);
491 }
492 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set access breakpoint at %RGv", Address.FlatPtr);
493}
494
495
496/**
497 * @interface_method_impl{FNDBCCMD, The 'bc' command.}
498 */
499static DECLCALLBACK(int) dbgcCmdBrkClear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
500{
501 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
502
503 /*
504 * Enumerate the arguments.
505 */
506 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
507 int rc = VINF_SUCCESS;
508 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
509 {
510 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
511 {
512 /* one */
513 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
514 if (iBp == paArgs[iArg].u.u64Number)
515 {
516 int rc2 = DBGFR3BpClear(pUVM, iBp);
517 if (RT_FAILURE(rc2))
518 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
519 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
520 dbgcBpDelete(pDbgc, iBp);
521 }
522 else
523 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
524 }
525 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
526 {
527 /* all */
528 PDBGCBP pBp = pDbgc->pFirstBp;
529 while (pBp)
530 {
531 uint32_t iBp = pBp->iBp;
532 pBp = pBp->pNext;
533
534 int rc2 = DBGFR3BpClear(pUVM, iBp);
535 if (RT_FAILURE(rc2))
536 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpClear(,%#x)", iBp);
537 if (RT_SUCCESS(rc2) || rc2 == VERR_DBGF_BP_NOT_FOUND)
538 dbgcBpDelete(pDbgc, iBp);
539 }
540 }
541 else
542 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
543 }
544 return rc;
545}
546
547
548/**
549 * @interface_method_impl{FNDBCCMD, The 'bd' command.}
550 */
551static DECLCALLBACK(int) dbgcCmdBrkDisable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
552{
553 /*
554 * Enumerate the arguments.
555 */
556 int rc = VINF_SUCCESS;
557 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
558 {
559 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
560 {
561 /* one */
562 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
563 if (iBp == paArgs[iArg].u.u64Number)
564 {
565 rc = DBGFR3BpDisable(pUVM, iBp);
566 if (RT_FAILURE(rc))
567 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpDisable failed for breakpoint %#x", iBp);
568 }
569 else
570 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
571 }
572 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
573 {
574 /* all */
575 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
576 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
577 {
578 int rc2 = DBGFR3BpDisable(pUVM, pBp->iBp);
579 if (RT_FAILURE(rc2))
580 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpDisable failed for breakpoint %#x", pBp->iBp);
581 }
582 }
583 else
584 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
585 }
586 return rc;
587}
588
589
590/**
591 * @interface_method_impl{FNDBCCMD, The 'be' command.}
592 */
593static DECLCALLBACK(int) dbgcCmdBrkEnable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
594{
595 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
596
597 /*
598 * Enumerate the arguments.
599 */
600 int rc = VINF_SUCCESS;
601 for (unsigned iArg = 0; iArg < cArgs && RT_SUCCESS(rc); iArg++)
602 {
603 if (paArgs[iArg].enmType != DBGCVAR_TYPE_STRING)
604 {
605 /* one */
606 uint32_t iBp = (uint32_t)paArgs[iArg].u.u64Number;
607 if (iBp == paArgs[iArg].u.u64Number)
608 {
609 rc = DBGFR3BpEnable(pUVM, iBp);
610 if (RT_FAILURE(rc))
611 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnable failed for breakpoint %#x", iBp);
612 }
613 else
614 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Breakpoint id %RX64 is too large", paArgs[iArg].u.u64Number);
615 }
616 else if (!strcmp(paArgs[iArg].u.pszString, "all"))
617 {
618 /* all */
619 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
620 for (PDBGCBP pBp = pDbgc->pFirstBp; pBp; pBp = pBp->pNext)
621 {
622 int rc2 = DBGFR3BpEnable(pUVM, pBp->iBp);
623 if (RT_FAILURE(rc2))
624 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc2, "DBGFR3BpEnable failed for breakpoint %#x", pBp->iBp);
625 }
626 }
627 else
628 rc = DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid argument '%s'", paArgs[iArg].u.pszString);
629 }
630 return rc;
631}
632
633
634/**
635 * Breakpoint enumeration callback function.
636 *
637 * @returns VBox status code. Any failure will stop the enumeration.
638 * @param pUVM The user mode VM handle.
639 * @param pvUser The user argument.
640 * @param pBp Pointer to the breakpoint information. (readonly)
641 */
642static DECLCALLBACK(int) dbgcEnumBreakpointsCallback(PUVM pUVM, void *pvUser, PCDBGFBP pBp)
643{
644 PDBGC pDbgc = (PDBGC)pvUser;
645 PDBGCBP pDbgcBp = dbgcBpGet(pDbgc, pBp->iBp);
646
647 /*
648 * BP type and size.
649 */
650 char chType;
651 char cb = 1;
652 switch (pBp->enmType)
653 {
654 case DBGFBPTYPE_INT3:
655 chType = 'p';
656 break;
657 case DBGFBPTYPE_REG:
658 switch (pBp->u.Reg.fType)
659 {
660 case X86_DR7_RW_EO: chType = 'x'; break;
661 case X86_DR7_RW_WO: chType = 'w'; break;
662 case X86_DR7_RW_IO: chType = 'i'; break;
663 case X86_DR7_RW_RW: chType = 'r'; break;
664 default: chType = '?'; break;
665
666 }
667 cb = pBp->u.Reg.cb;
668 break;
669 case DBGFBPTYPE_REM:
670 chType = 'r';
671 break;
672 default:
673 chType = '?';
674 break;
675 }
676
677 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%#4x %c %d %c %RGv %04RX64 (%04RX64 to ",
678 pBp->iBp, pBp->fEnabled ? 'e' : 'd', (int)cb, chType,
679 pBp->GCPtr, pBp->cHits, pBp->iHitTrigger);
680 if (pBp->iHitDisable == ~(uint64_t)0)
681 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "~0) ");
682 else
683 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%04RX64)", pBp->iHitDisable);
684
685 /*
686 * Try resolve the address.
687 */
688 RTDBGSYMBOL Sym;
689 RTINTPTR off;
690 DBGFADDRESS Addr;
691 int rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, pBp->GCPtr), &off, &Sym, NULL);
692 if (RT_SUCCESS(rc))
693 {
694 if (!off)
695 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s", Sym.szName);
696 else if (off > 0)
697 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s+%RGv", Sym.szName, off);
698 else
699 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "%s+%RGv", Sym.szName, -off);
700 }
701
702 /*
703 * The commands.
704 */
705 if (pDbgcBp)
706 {
707 if (pDbgcBp->cchCmd)
708 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n cmds: '%s'\n", pDbgcBp->szCmd);
709 else
710 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, "\n");
711 }
712 else
713 DBGCCmdHlpPrintf(&pDbgc->CmdHlp, " [unknown bp]\n");
714
715 return VINF_SUCCESS;
716}
717
718
719/**
720 * @interface_method_impl{FNDBCCMD, The 'bl' command.}
721 */
722static DECLCALLBACK(int) dbgcCmdBrkList(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
723{
724 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
725 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0);
726 NOREF(paArgs);
727
728 /*
729 * Enumerate the breakpoints.
730 */
731 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
732 int rc = DBGFR3BpEnum(pUVM, dbgcEnumBreakpointsCallback, pDbgc);
733 if (RT_FAILURE(rc))
734 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGFR3BpEnum");
735 return rc;
736}
737
738
739/**
740 * @interface_method_impl{FNDBCCMD, The 'bp' command.}
741 */
742static DECLCALLBACK(int) dbgcCmdBrkSet(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
743{
744 /*
745 * Convert the pointer to a DBGF address.
746 */
747 DBGFADDRESS Address;
748 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
749 if (RT_FAILURE(rc))
750 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
751
752 /*
753 * Pick out the optional arguments.
754 */
755 uint64_t iHitTrigger = 0;
756 uint64_t iHitDisable = ~0;
757 const char *pszCmds = NULL;
758 unsigned iArg = 1;
759 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
760 {
761 iHitTrigger = paArgs[iArg].u.u64Number;
762 iArg++;
763 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
764 {
765 iHitDisable = paArgs[iArg].u.u64Number;
766 iArg++;
767 }
768 }
769 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
770 {
771 pszCmds = paArgs[iArg].u.pszString;
772 iArg++;
773 }
774
775 /*
776 * Try set the breakpoint.
777 */
778 uint32_t iBp;
779 rc = DBGFR3BpSet(pUVM, &Address, iHitTrigger, iHitDisable, &iBp);
780 if (RT_SUCCESS(rc))
781 {
782 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
783 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
784 if (RT_SUCCESS(rc))
785 return DBGCCmdHlpPrintf(pCmdHlp, "Set breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
786 if (rc == VERR_DBGC_BP_EXISTS)
787 {
788 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
789 if (RT_SUCCESS(rc))
790 return DBGCCmdHlpPrintf(pCmdHlp, "Updated breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
791 }
792 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
793 AssertRC(rc2);
794 }
795 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set breakpoint at %RGv", Address.FlatPtr);
796}
797
798
799/**
800 * @interface_method_impl{FNDBCCMD, The 'br' command.}
801 */
802static DECLCALLBACK(int) dbgcCmdBrkREM(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
803{
804 /*
805 * Convert the pointer to a DBGF address.
806 */
807 DBGFADDRESS Address;
808 int rc = DBGCCmdHlpVarToDbgfAddr(pCmdHlp, &paArgs[0], &Address);
809 if (RT_FAILURE(rc))
810 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToDbgfAddr(,'%DV',)", &paArgs[0]);
811
812 /*
813 * Pick out the optional arguments.
814 */
815 uint64_t iHitTrigger = 0;
816 uint64_t iHitDisable = ~0;
817 const char *pszCmds = NULL;
818 unsigned iArg = 1;
819 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
820 {
821 iHitTrigger = paArgs[iArg].u.u64Number;
822 iArg++;
823 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER)
824 {
825 iHitDisable = paArgs[iArg].u.u64Number;
826 iArg++;
827 }
828 }
829 if (iArg < cArgs && paArgs[iArg].enmType == DBGCVAR_TYPE_STRING)
830 {
831 pszCmds = paArgs[iArg].u.pszString;
832 iArg++;
833 }
834
835 /*
836 * Try set the breakpoint.
837 */
838 uint32_t iBp;
839 rc = DBGFR3BpSetREM(pUVM, &Address, iHitTrigger, iHitDisable, &iBp);
840 if (RT_SUCCESS(rc))
841 {
842 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
843 rc = dbgcBpAdd(pDbgc, iBp, pszCmds);
844 if (RT_SUCCESS(rc))
845 return DBGCCmdHlpPrintf(pCmdHlp, "Set REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
846 if (rc == VERR_DBGC_BP_EXISTS)
847 {
848 rc = dbgcBpUpdate(pDbgc, iBp, pszCmds);
849 if (RT_SUCCESS(rc))
850 return DBGCCmdHlpPrintf(pCmdHlp, "Updated REM breakpoint %u at %RGv\n", iBp, Address.FlatPtr);
851 }
852 int rc2 = DBGFR3BpClear(pDbgc->pUVM, iBp);
853 AssertRC(rc2);
854 }
855 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Failed to set REM breakpoint at %RGv", Address.FlatPtr);
856}
857
858
859/**
860 * @interface_method_impl{FNDBCCMD, The 'u' command.}
861 */
862static DECLCALLBACK(int) dbgcCmdUnassemble(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
863{
864 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
865
866 /*
867 * Validate input.
868 */
869 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
870 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs <= 1);
871 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
872
873 if (!cArgs && !DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
874 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start disassembling");
875
876 /*
877 * Check the desired mode.
878 */
879 unsigned fFlags = DBGF_DISAS_FLAGS_NO_ADDRESS;
880 switch (pCmd->pszCmd[1])
881 {
882 default: AssertFailed();
883 case '\0': fFlags |= DBGF_DISAS_FLAGS_DEFAULT_MODE; break;
884 case '6': fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
885 case '3': fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
886 case '1': fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE; break;
887 case 'v': fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE; break;
888 }
889
890 /*
891 * Find address.
892 */
893 if (!cArgs)
894 {
895 if (!DBGCVAR_ISPOINTER(pDbgc->DisasmPos.enmType))
896 {
897 /** @todo Batch query CS, RIP & CPU mode. */
898 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
899 if ( pDbgc->fRegCtxGuest
900 && CPUMIsGuestIn64BitCode(pVCpu))
901 {
902 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FLAT;
903 pDbgc->SourcePos.u.GCFlat = CPUMGetGuestRIP(pVCpu);
904 }
905 else
906 {
907 pDbgc->DisasmPos.enmType = DBGCVAR_TYPE_GC_FAR;
908 pDbgc->SourcePos.u.GCFar.off = pDbgc->fRegCtxGuest ? CPUMGetGuestEIP(pVCpu) : CPUMGetHyperEIP(pVCpu);
909 pDbgc->SourcePos.u.GCFar.sel = pDbgc->fRegCtxGuest ? CPUMGetGuestCS(pVCpu) : CPUMGetHyperCS(pVCpu);
910 }
911
912 if (pDbgc->fRegCtxGuest)
913 fFlags |= DBGF_DISAS_FLAGS_CURRENT_GUEST;
914 else
915 fFlags |= DBGF_DISAS_FLAGS_CURRENT_HYPER;
916 }
917 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_NONE;
918 }
919 else
920 pDbgc->DisasmPos = paArgs[0];
921 pDbgc->pLastPos = &pDbgc->DisasmPos;
922
923 /*
924 * Range.
925 */
926 switch (pDbgc->DisasmPos.enmRangeType)
927 {
928 case DBGCVAR_RANGE_NONE:
929 pDbgc->DisasmPos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
930 pDbgc->DisasmPos.u64Range = 10;
931 break;
932
933 case DBGCVAR_RANGE_ELEMENTS:
934 if (pDbgc->DisasmPos.u64Range > 2048)
935 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Too many lines requested. Max is 2048 lines");
936 break;
937
938 case DBGCVAR_RANGE_BYTES:
939 if (pDbgc->DisasmPos.u64Range > 65536)
940 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The requested range is too big. Max is 64KB");
941 break;
942
943 default:
944 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown range type %d", pDbgc->DisasmPos.enmRangeType);
945 }
946
947 /*
948 * Convert physical and host addresses to guest addresses.
949 */
950 int rc;
951 switch (pDbgc->DisasmPos.enmType)
952 {
953 case DBGCVAR_TYPE_GC_FLAT:
954 case DBGCVAR_TYPE_GC_FAR:
955 break;
956 case DBGCVAR_TYPE_GC_PHYS:
957 case DBGCVAR_TYPE_HC_FLAT:
958 case DBGCVAR_TYPE_HC_PHYS:
959 {
960 DBGCVAR VarTmp;
961 rc = DBGCCmdHlpEval(pCmdHlp, &VarTmp, "%%(%Dv)", &pDbgc->DisasmPos);
962 if (RT_FAILURE(rc))
963 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "failed to evaluate '%%(%Dv)'", &pDbgc->DisasmPos);
964 pDbgc->DisasmPos = VarTmp;
965 break;
966 }
967 default: AssertFailed(); break;
968 }
969
970 /*
971 * Print address.
972 * todo: Change to list near.
973 */
974#if 0
975 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%DV:\n", &pDbgc->DisasmPos);
976 if (RT_FAILURE(rc))
977 return rc;
978#endif
979
980 /*
981 * Do the disassembling.
982 */
983 unsigned cTries = 32;
984 int iRangeLeft = (int)pDbgc->DisasmPos.u64Range;
985 if (iRangeLeft == 0) /* kludge for 'r'. */
986 iRangeLeft = -1;
987 for (;;)
988 {
989 /*
990 * Disassemble the instruction.
991 */
992 char szDis[256];
993 uint32_t cbInstr = 1;
994 if (pDbgc->DisasmPos.enmType == DBGCVAR_TYPE_GC_FLAT)
995 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, DBGF_SEL_FLAT, pDbgc->DisasmPos.u.GCFlat, fFlags,
996 &szDis[0], sizeof(szDis), &cbInstr);
997 else
998 rc = DBGFR3DisasInstrEx(pUVM, pDbgc->idCpu, pDbgc->DisasmPos.u.GCFar.sel, pDbgc->DisasmPos.u.GCFar.off, fFlags,
999 &szDis[0], sizeof(szDis), &cbInstr);
1000 if (RT_SUCCESS(rc))
1001 {
1002 /* print it */
1003 rc = DBGCCmdHlpPrintf(pCmdHlp, "%-16DV %s\n", &pDbgc->DisasmPos, &szDis[0]);
1004 if (RT_FAILURE(rc))
1005 return rc;
1006 }
1007 else
1008 {
1009 /* bitch. */
1010 rc = DBGCCmdHlpPrintf(pCmdHlp, "Failed to disassemble instruction, skipping one byte.\n");
1011 if (RT_FAILURE(rc))
1012 return rc;
1013 if (cTries-- > 0)
1014 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "Too many disassembly failures. Giving up");
1015 cbInstr = 1;
1016 }
1017
1018 /* advance */
1019 if (iRangeLeft < 0) /* 'r' */
1020 break;
1021 if (pDbgc->DisasmPos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
1022 iRangeLeft--;
1023 else
1024 iRangeLeft -= cbInstr;
1025 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DisasmPos, "(%Dv) + %x", &pDbgc->DisasmPos, cbInstr);
1026 if (RT_FAILURE(rc))
1027 return DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpEval(,,'(%Dv) + %x')", &pDbgc->DisasmPos, cbInstr);
1028 if (iRangeLeft <= 0)
1029 break;
1030 fFlags &= ~(DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_CURRENT_HYPER);
1031 }
1032
1033 NOREF(pCmd);
1034 return VINF_SUCCESS;
1035}
1036
1037
1038/**
1039 * @interface_method_impl{FNDBCCMD, The 'ls' command.}
1040 */
1041static DECLCALLBACK(int) dbgcCmdListSource(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1042{
1043 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1044
1045 /*
1046 * Validate input.
1047 */
1048 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
1049 if (cArgs == 1)
1050 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
1051 if (!pUVM && !cArgs && !DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
1052 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Don't know where to start listing...");
1053 if (!pUVM && cArgs && DBGCVAR_ISGCPOINTER(paArgs[0].enmType))
1054 return DBGCCmdHlpFail(pCmdHlp, pCmd, "GC address but no VM");
1055
1056 /*
1057 * Find address.
1058 */
1059 if (!cArgs)
1060 {
1061 if (!DBGCVAR_ISPOINTER(pDbgc->SourcePos.enmType))
1062 {
1063 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
1064 pDbgc->SourcePos.enmType = DBGCVAR_TYPE_GC_FAR;
1065 pDbgc->SourcePos.u.GCFar.off = pDbgc->fRegCtxGuest ? CPUMGetGuestEIP(pVCpu) : CPUMGetHyperEIP(pVCpu);
1066 pDbgc->SourcePos.u.GCFar.sel = pDbgc->fRegCtxGuest ? CPUMGetGuestCS(pVCpu) : CPUMGetHyperCS(pVCpu);
1067 }
1068 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_NONE;
1069 }
1070 else
1071 pDbgc->SourcePos = paArgs[0];
1072 pDbgc->pLastPos = &pDbgc->SourcePos;
1073
1074 /*
1075 * Ensure the source address is flat GC.
1076 */
1077 switch (pDbgc->SourcePos.enmType)
1078 {
1079 case DBGCVAR_TYPE_GC_FLAT:
1080 break;
1081 case DBGCVAR_TYPE_GC_PHYS:
1082 case DBGCVAR_TYPE_GC_FAR:
1083 case DBGCVAR_TYPE_HC_FLAT:
1084 case DBGCVAR_TYPE_HC_PHYS:
1085 {
1086 int rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "%%(%Dv)", &pDbgc->SourcePos);
1087 if (RT_FAILURE(rc))
1088 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid address or address type. (rc=%d)\n", rc);
1089 break;
1090 }
1091 default: AssertFailed(); break;
1092 }
1093
1094 /*
1095 * Range.
1096 */
1097 switch (pDbgc->SourcePos.enmRangeType)
1098 {
1099 case DBGCVAR_RANGE_NONE:
1100 pDbgc->SourcePos.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
1101 pDbgc->SourcePos.u64Range = 10;
1102 break;
1103
1104 case DBGCVAR_RANGE_ELEMENTS:
1105 if (pDbgc->SourcePos.u64Range > 2048)
1106 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Too many lines requested. Max is 2048 lines.\n");
1107 break;
1108
1109 case DBGCVAR_RANGE_BYTES:
1110 if (pDbgc->SourcePos.u64Range > 65536)
1111 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The requested range is too big. Max is 64KB.\n");
1112 break;
1113
1114 default:
1115 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "internal error: Unknown range type %d.\n", pDbgc->SourcePos.enmRangeType);
1116 }
1117
1118 /*
1119 * Do the disassembling.
1120 */
1121 bool fFirst = 1;
1122 DBGFLINE LinePrev = { 0, 0, "" };
1123 int iRangeLeft = (int)pDbgc->SourcePos.u64Range;
1124 if (iRangeLeft == 0) /* kludge for 'r'. */
1125 iRangeLeft = -1;
1126 for (;;)
1127 {
1128 /*
1129 * Get line info.
1130 */
1131 DBGFLINE Line;
1132 RTGCINTPTR off;
1133 int rc = DBGFR3LineByAddr(pUVM, pDbgc->SourcePos.u.GCFlat, &off, &Line);
1134 if (RT_FAILURE(rc))
1135 return VINF_SUCCESS;
1136
1137 unsigned cLines = 0;
1138 if (memcmp(&Line, &LinePrev, sizeof(Line)))
1139 {
1140 /*
1141 * Print filenamename
1142 */
1143 if (!fFirst && strcmp(Line.szFilename, LinePrev.szFilename))
1144 fFirst = true;
1145 if (fFirst)
1146 {
1147 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "[%s @ %d]\n", Line.szFilename, Line.uLineNo);
1148 if (RT_FAILURE(rc))
1149 return rc;
1150 }
1151
1152 /*
1153 * Try open the file and read the line.
1154 */
1155 FILE *phFile = fopen(Line.szFilename, "r");
1156 if (phFile)
1157 {
1158 /* Skip ahead to the desired line. */
1159 char szLine[4096];
1160 unsigned cBefore = fFirst ? RT_MIN(2, Line.uLineNo - 1) : Line.uLineNo - LinePrev.uLineNo - 1;
1161 if (cBefore > 7)
1162 cBefore = 0;
1163 unsigned cLeft = Line.uLineNo - cBefore;
1164 while (cLeft > 0)
1165 {
1166 szLine[0] = '\0';
1167 if (!fgets(szLine, sizeof(szLine), phFile))
1168 break;
1169 cLeft--;
1170 }
1171 if (!cLeft)
1172 {
1173 /* print the before lines */
1174 for (;;)
1175 {
1176 size_t cch = strlen(szLine);
1177 while (cch > 0 && (szLine[cch - 1] == '\r' || szLine[cch - 1] == '\n' || RT_C_IS_SPACE(szLine[cch - 1])) )
1178 szLine[--cch] = '\0';
1179 if (cBefore-- <= 0)
1180 break;
1181
1182 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, " %4d: %s\n", Line.uLineNo - cBefore - 1, szLine);
1183 szLine[0] = '\0';
1184 fgets(szLine, sizeof(szLine), phFile);
1185 cLines++;
1186 }
1187 /* print the actual line */
1188 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%08llx %4d: %s\n", Line.Address, Line.uLineNo, szLine);
1189 }
1190 fclose(phFile);
1191 if (RT_FAILURE(rc))
1192 return rc;
1193 fFirst = false;
1194 }
1195 else
1196 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Warning: couldn't open source file '%s'\n", Line.szFilename);
1197
1198 LinePrev = Line;
1199 }
1200
1201
1202 /*
1203 * Advance
1204 */
1205 if (iRangeLeft < 0) /* 'r' */
1206 break;
1207 if (pDbgc->SourcePos.enmRangeType == DBGCVAR_RANGE_ELEMENTS)
1208 iRangeLeft -= cLines;
1209 else
1210 iRangeLeft -= 1;
1211 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->SourcePos, "(%Dv) + %x", &pDbgc->SourcePos, 1);
1212 if (RT_FAILURE(rc))
1213 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->SourcePos, 1);
1214 if (iRangeLeft <= 0)
1215 break;
1216 }
1217
1218 NOREF(pCmd);
1219 return 0;
1220}
1221
1222
1223/**
1224 * @interface_method_impl{FNDBCCMD, The 'r' command.}
1225 */
1226static DECLCALLBACK(int) dbgcCmdReg(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1227{
1228 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1229 if (!pDbgc->fRegCtxGuest)
1230 return dbgcCmdRegHyper(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
1231 return dbgcCmdRegGuest(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
1232}
1233
1234
1235/**
1236 * @interface_method_impl{FNDBCCMD, Common worker for the dbgcCmdReg*()
1237 * commands.}
1238 */
1239static DECLCALLBACK(int) dbgcCmdRegCommon(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs,
1240 const char *pszPrefix)
1241{
1242 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1243 Assert(cArgs == 1 || cArgs == 2); /* cArgs == 0 is handled by the caller */
1244 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
1245 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING
1246 || paArgs[0].enmType == DBGCVAR_TYPE_SYMBOL);
1247
1248 /*
1249 * Parse the register name and kind.
1250 */
1251 const char *pszReg = paArgs[0].u.pszString;
1252 if (*pszReg == '@')
1253 pszReg++;
1254 VMCPUID idCpu = pDbgc->idCpu;
1255 if (*pszPrefix)
1256 idCpu |= DBGFREG_HYPER_VMCPUID;
1257 if (*pszReg == '.')
1258 {
1259 pszReg++;
1260 idCpu |= DBGFREG_HYPER_VMCPUID;
1261 }
1262 const char * const pszActualPrefix = idCpu & DBGFREG_HYPER_VMCPUID ? "." : "";
1263
1264 /*
1265 * Query the register type & value (the setter needs the type).
1266 */
1267 DBGFREGVALTYPE enmType;
1268 DBGFREGVAL Value;
1269 int rc = DBGFR3RegNmQuery(pUVM, idCpu, pszReg, &Value, &enmType);
1270 if (RT_FAILURE(rc))
1271 {
1272 if (rc == VERR_DBGF_REGISTER_NOT_FOUND)
1273 return DBGCCmdHlpVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "Unknown register: '%s%s'.\n",
1274 pszActualPrefix, pszReg);
1275 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmQuery failed querying '%s%s': %Rrc.\n",
1276 pszActualPrefix, pszReg, rc);
1277 }
1278 if (cArgs == 1)
1279 {
1280 /*
1281 * Show the register.
1282 */
1283 char szValue[160];
1284 rc = DBGFR3RegFormatValue(szValue, sizeof(szValue), &Value, enmType, true /*fSpecial*/);
1285 if (RT_SUCCESS(rc))
1286 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s%s=%s\n", pszActualPrefix, pszReg, szValue);
1287 else
1288 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
1289 }
1290 else if (cArgs == 2)
1291 {
1292 /*
1293 * Modify the register.
1294 */
1295 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING
1296 || paArgs[1].enmType == DBGCVAR_TYPE_SYMBOL);
1297 if (enmType != DBGFREGVALTYPE_DTR)
1298 {
1299 enmType = DBGFREGVALTYPE_U64;
1300 rc = DBGCCmdHlpVarToNumber(pCmdHlp, &paArgs[1], &Value.u64);
1301 }
1302 else
1303 {
1304 enmType = DBGFREGVALTYPE_DTR;
1305 rc = DBGCCmdHlpVarToNumber(pCmdHlp, &paArgs[1], &Value.dtr.u64Base);
1306 if (RT_SUCCESS(rc) && paArgs[1].enmRangeType != DBGCVAR_RANGE_NONE)
1307 Value.dtr.u32Limit = (uint32_t)paArgs[1].u64Range;
1308 }
1309 if (RT_SUCCESS(rc))
1310 {
1311 rc = DBGFR3RegNmSet(pUVM, idCpu, pszReg, &Value, enmType);
1312 if (RT_FAILURE(rc))
1313 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegNmSet failed settings '%s%s': %Rrc\n",
1314 pszActualPrefix, pszReg, rc);
1315 }
1316 else
1317 rc = DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegFormatValue failed: %Rrc.\n", rc);
1318 }
1319 else
1320 {
1321 NOREF(pCmd); NOREF(paArgs);
1322 rc = DBGCCmdHlpPrintf(pCmdHlp, "Huh? cArgs=%d Expected 0, 1 or 2!\n", cArgs);
1323 }
1324 return rc;
1325}
1326
1327
1328/**
1329 * @interface_method_impl{FNDBCCMD, The 'rg', 'rg64' and 'rg32' commands.}
1330 */
1331static DECLCALLBACK(int) dbgcCmdRegGuest(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1332{
1333 /*
1334 * Show all registers our selves.
1335 */
1336 if (cArgs == 0)
1337 {
1338 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1339 bool const f64BitMode = !strcmp(pCmd->pszCmd, "rg64")
1340 || ( !strcmp(pCmd->pszCmd, "rg32")
1341 && CPUMIsGuestIn64BitCode(VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu)));
1342 char szDisAndRegs[8192];
1343 int rc;
1344
1345 if (pDbgc->fRegTerse)
1346 {
1347 if (f64BitMode)
1348 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, &szDisAndRegs[0], sizeof(szDisAndRegs),
1349 "u %016VR{rip} L 0\n"
1350 "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
1351 "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
1352 "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
1353 "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
1354 "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
1355 "cs=%04VR{cs} ds=%04VR{ds} es=%04VR{es} fs=%04VR{fs} gs=%04VR{gs} ss=%04VR{ss} rflags=%08VR{rflags}\n");
1356 else
1357 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, szDisAndRegs, sizeof(szDisAndRegs),
1358 "u %04VR{cs}:%08VR{eip} L 0\n"
1359 "eax=%08VR{eax} ebx=%08VR{ebx} ecx=%08VR{ecx} edx=%08VR{edx} esi=%08VR{esi} edi=%08VR{edi}\n"
1360 "eip=%08VR{eip} esp=%08VR{esp} ebp=%08VR{ebp} %VRF{eflags}\n"
1361 "cs=%04VR{cs} ds=%04VR{ds} es=%04VR{es} fs=%04VR{fs} gs=%04VR{gs} ss=%04VR{ss} eflags=%08VR{eflags}\n");
1362 }
1363 else
1364 {
1365 if (f64BitMode)
1366 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, &szDisAndRegs[0], sizeof(szDisAndRegs),
1367 "u %016VR{rip} L 0\n"
1368 "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
1369 "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
1370 "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
1371 "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
1372 "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
1373 "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
1374 "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
1375 "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
1376 "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
1377 "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
1378 "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
1379 "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
1380 "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
1381 "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
1382 "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
1383 "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
1384 " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
1385 " efer=%016VR{efer}\n"
1386 " pat=%016VR{pat}\n"
1387 " sf_mask=%016VR{sf_mask}\n"
1388 "krnl_gs_base=%016VR{krnl_gs_base}\n"
1389 " lstar=%016VR{lstar}\n"
1390 " star=%016VR{star} cstar=%016VR{cstar}\n"
1391 "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
1392 );
1393 else
1394 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu, szDisAndRegs, sizeof(szDisAndRegs),
1395 "u %04VR{cs}:%08VR{eip} L 0\n"
1396 "eax=%08VR{eax} ebx=%08VR{ebx} ecx=%08VR{ecx} edx=%08VR{edx} esi=%08VR{esi} edi=%08VR{edi}\n"
1397 "eip=%08VR{eip} esp=%08VR{esp} ebp=%08VR{ebp} %VRF{eflags}\n"
1398 "cs={%04VR{cs} base=%08VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} dr0=%08VR{dr0} dr1=%08VR{dr1}\n"
1399 "ds={%04VR{ds} base=%08VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} dr2=%08VR{dr2} dr3=%08VR{dr3}\n"
1400 "es={%04VR{es} base=%08VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} dr6=%08VR{dr6} dr7=%08VR{dr7}\n"
1401 "fs={%04VR{fs} base=%08VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr0=%08VR{cr0} cr2=%08VR{cr2}\n"
1402 "gs={%04VR{gs} base=%08VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr3=%08VR{cr3} cr4=%08VR{cr4}\n"
1403 "ss={%04VR{ss} base=%08VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}} cr8=%08VR{cr8}\n"
1404 "gdtr=%08VR{gdtr_base}:%04VR{gdtr_lim} idtr=%08VR{idtr_base}:%04VR{idtr_lim} eflags=%08VR{eflags}\n"
1405 "ldtr={%04VR{ldtr} base=%08VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%04VR{ldtr_attr}}\n"
1406 "tr ={%04VR{tr} base=%08VR{tr_base} limit=%08VR{tr_lim} flags=%04VR{tr_attr}}\n"
1407 "sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
1408 "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
1409 );
1410 }
1411 if (RT_FAILURE(rc))
1412 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegPrintf failed");
1413 char *pszRegs = strchr(szDisAndRegs, '\n');
1414 *pszRegs++ = '\0';
1415 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s", pszRegs);
1416
1417 /*
1418 * Disassemble one instruction at cs:[r|e]ip.
1419 */
1420 return pCmdHlp->pfnExec(pCmdHlp, "%s", szDisAndRegs);
1421 }
1422 return dbgcCmdRegCommon(pCmd, pCmdHlp, pUVM, paArgs, cArgs, "");
1423}
1424
1425
1426/**
1427 * @interface_method_impl{FNDBCCMD, The 'rh' command.}
1428 */
1429static DECLCALLBACK(int) dbgcCmdRegHyper(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1430{
1431 /*
1432 * Show all registers our selves.
1433 */
1434 if (cArgs == 0)
1435 {
1436 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1437 char szDisAndRegs[8192];
1438 int rc;
1439
1440 if (pDbgc->fRegTerse)
1441 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu | DBGFREG_HYPER_VMCPUID, szDisAndRegs, sizeof(szDisAndRegs),
1442 "u %VR{cs}:%VR{eip} L 0\n"
1443 ".eax=%08VR{eax} .ebx=%08VR{ebx} .ecx=%08VR{ecx} .edx=%08VR{edx} .esi=%08VR{esi} .edi=%08VR{edi}\n"
1444 ".eip=%08VR{eip} .esp=%08VR{esp} .ebp=%08VR{ebp} .%VRF{eflags}\n"
1445 ".cs=%04VR{cs} .ds=%04VR{ds} .es=%04VR{es} .fs=%04VR{fs} .gs=%04VR{gs} .ss=%04VR{ss} .eflags=%08VR{eflags}\n");
1446 else
1447 rc = DBGFR3RegPrintf(pUVM, pDbgc->idCpu | DBGFREG_HYPER_VMCPUID, szDisAndRegs, sizeof(szDisAndRegs),
1448 "u %04VR{cs}:%08VR{eip} L 0\n"
1449 ".eax=%08VR{eax} .ebx=%08VR{ebx} .ecx=%08VR{ecx} .edx=%08VR{edx} .esi=%08VR{esi} .edi=%08VR{edi}\n"
1450 ".eip=%08VR{eip} .esp=%08VR{esp} .ebp=%08VR{ebp} .%VRF{eflags}\n"
1451 ".cs={%04VR{cs} base=%08VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} .dr0=%08VR{dr0} .dr1=%08VR{dr1}\n"
1452 ".ds={%04VR{ds} base=%08VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} .dr2=%08VR{dr2} .dr3=%08VR{dr3}\n"
1453 ".es={%04VR{es} base=%08VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} .dr6=%08VR{dr6} .dr6=%08VR{dr6}\n"
1454 ".fs={%04VR{fs} base=%08VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} .cr3=%016VR{cr3}\n"
1455 ".gs={%04VR{gs} base=%08VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}}\n"
1456 ".ss={%04VR{ss} base=%08VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
1457 ".gdtr=%08VR{gdtr_base}:%04VR{gdtr_lim} .idtr=%08VR{idtr_base}:%04VR{idtr_lim} .eflags=%08VR{eflags}\n"
1458 ".ldtr={%04VR{ldtr} base=%08VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%04VR{ldtr_attr}}\n"
1459 ".tr ={%04VR{tr} base=%08VR{tr_base} limit=%08VR{tr_lim} flags=%04VR{tr_attr}}\n"
1460 );
1461 if (RT_FAILURE(rc))
1462 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGFR3RegPrintf failed");
1463 char *pszRegs = strchr(szDisAndRegs, '\n');
1464 *pszRegs++ = '\0';
1465 rc = DBGCCmdHlpPrintf(pCmdHlp, "%s", pszRegs);
1466
1467 /*
1468 * Disassemble one instruction at cs:[r|e]ip.
1469 */
1470 return pCmdHlp->pfnExec(pCmdHlp, "%s", szDisAndRegs);
1471 }
1472 return dbgcCmdRegCommon(pCmd, pCmdHlp, pUVM, paArgs, cArgs, ".");
1473}
1474
1475
1476/**
1477 * @interface_method_impl{FNDBCCMD, The 'rt' command.}
1478 */
1479static DECLCALLBACK(int) dbgcCmdRegTerse(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1480{
1481 NOREF(pCmd); NOREF(pUVM); NOREF(paArgs); NOREF(cArgs);
1482
1483 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1484 pDbgc->fRegTerse = !pDbgc->fRegTerse;
1485 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, pDbgc->fRegTerse ? "info: Terse register info.\n" : "info: Verbose register info.\n");
1486}
1487
1488
1489/**
1490 * @interface_method_impl{FNDBCCMD, The 't' command.}
1491 */
1492static DECLCALLBACK(int) dbgcCmdTrace(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1493{
1494 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1495
1496 int rc = DBGFR3Step(pUVM, pDbgc->idCpu);
1497 if (RT_SUCCESS(rc))
1498 pDbgc->fReady = false;
1499 else
1500 rc = pDbgc->CmdHlp.pfnVBoxError(&pDbgc->CmdHlp, rc, "When trying to single step VM %p\n", pDbgc->pVM);
1501
1502 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
1503 return rc;
1504}
1505
1506
1507/**
1508 * @interface_method_impl{FNDBCCMD, The 'k', 'kg' and 'kh' commands.}
1509 */
1510static DECLCALLBACK(int) dbgcCmdStack(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1511{
1512 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1513
1514 /*
1515 * Figure which context we're called for and start walking that stack.
1516 */
1517 int rc;
1518 PCDBGFSTACKFRAME pFirstFrame;
1519 bool const fGuest = pCmd->pszCmd[1] == 'g'
1520 || (!pCmd->pszCmd[1] && pDbgc->fRegCtxGuest);
1521 rc = DBGFR3StackWalkBegin(pUVM, pDbgc->idCpu, fGuest ? DBGFCODETYPE_GUEST : DBGFCODETYPE_HYPER, &pFirstFrame);
1522 if (RT_FAILURE(rc))
1523 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Failed to begin stack walk, rc=%Rrc\n", rc);
1524
1525 /*
1526 * Print header.
1527 * 12345678 12345678 0023:87654321 12345678 87654321 12345678 87654321 symbol
1528 */
1529 uint32_t fBitFlags = 0;
1530 for (PCDBGFSTACKFRAME pFrame = pFirstFrame;
1531 pFrame;
1532 pFrame = DBGFR3StackWalkNext(pFrame))
1533 {
1534 uint32_t const fCurBitFlags = pFrame->fFlags & (DBGFSTACKFRAME_FLAGS_16BIT | DBGFSTACKFRAME_FLAGS_32BIT | DBGFSTACKFRAME_FLAGS_64BIT);
1535 if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_16BIT)
1536 {
1537 if (fCurBitFlags != fBitFlags)
1538 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "SS:BP Ret SS:BP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
1539 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%04RX16:%04RX16 %04RX16:%04RX16 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
1540 pFrame->AddrFrame.Sel,
1541 (uint16_t)pFrame->AddrFrame.off,
1542 pFrame->AddrReturnFrame.Sel,
1543 (uint16_t)pFrame->AddrReturnFrame.off,
1544 (uint32_t)pFrame->AddrReturnPC.Sel,
1545 (uint32_t)pFrame->AddrReturnPC.off,
1546 pFrame->Args.au32[0],
1547 pFrame->Args.au32[1],
1548 pFrame->Args.au32[2],
1549 pFrame->Args.au32[3]);
1550 }
1551 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT)
1552 {
1553 if (fCurBitFlags != fBitFlags)
1554 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP / Symbol [line]\n");
1555 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
1556 (uint32_t)pFrame->AddrFrame.off,
1557 (uint32_t)pFrame->AddrReturnFrame.off,
1558 (uint32_t)pFrame->AddrReturnPC.Sel,
1559 (uint32_t)pFrame->AddrReturnPC.off,
1560 pFrame->Args.au32[0],
1561 pFrame->Args.au32[1],
1562 pFrame->Args.au32[2],
1563 pFrame->Args.au32[3]);
1564 }
1565 else if (fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT)
1566 {
1567 if (fCurBitFlags != fBitFlags)
1568 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "RBP Ret SS:RBP Ret RIP CS:RIP / Symbol [line]\n");
1569 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%016RX64 %04RX16:%016RX64 %016RX64",
1570 (uint64_t)pFrame->AddrFrame.off,
1571 pFrame->AddrReturnFrame.Sel,
1572 (uint64_t)pFrame->AddrReturnFrame.off,
1573 (uint64_t)pFrame->AddrReturnPC.off);
1574 }
1575 if (RT_FAILURE(rc))
1576 break;
1577 if (!pFrame->pSymPC)
1578 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
1579 fCurBitFlags & DBGFSTACKFRAME_FLAGS_64BIT
1580 ? " %RTsel:%016RGv"
1581 : fCurBitFlags & DBGFSTACKFRAME_FLAGS_32BIT
1582 ? " %RTsel:%08RGv"
1583 : " %RTsel:%04RGv"
1584 , pFrame->AddrPC.Sel, pFrame->AddrPC.off);
1585 else
1586 {
1587 RTGCINTPTR offDisp = pFrame->AddrPC.FlatPtr - pFrame->pSymPC->Value; /** @todo this isn't 100% correct for segmented stuff. */
1588 if (offDisp > 0)
1589 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, " %s+%llx", pFrame->pSymPC->szName, (int64_t)offDisp);
1590 else if (offDisp < 0)
1591 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, " %s-%llx", pFrame->pSymPC->szName, -(int64_t)offDisp);
1592 else
1593 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, " %s", pFrame->pSymPC->szName);
1594 }
1595 if (RT_SUCCESS(rc) && pFrame->pLinePC)
1596 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, " [%s @ 0i%d]", pFrame->pLinePC->szFilename, pFrame->pLinePC->uLineNo);
1597 if (RT_SUCCESS(rc))
1598 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "\n");
1599 if (RT_FAILURE(rc))
1600 break;
1601
1602 fBitFlags = fCurBitFlags;
1603 }
1604
1605 DBGFR3StackWalkEnd(pFirstFrame);
1606
1607 NOREF(paArgs); NOREF(cArgs);
1608 return rc;
1609}
1610
1611
1612static int dbgcCmdDumpDTWorker64(PDBGCCMDHLP pCmdHlp, PCX86DESC64 pDesc, unsigned iEntry, bool fHyper, bool *pfDblEntry)
1613{
1614 /* GUEST64 */
1615 int rc;
1616
1617 const char *pszHyper = fHyper ? " HYPER" : "";
1618 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
1619 if (pDesc->Gen.u1DescType)
1620 {
1621 static const char * const s_apszTypes[] =
1622 {
1623 "DataRO", /* 0 Read-Only */
1624 "DataRO", /* 1 Read-Only - Accessed */
1625 "DataRW", /* 2 Read/Write */
1626 "DataRW", /* 3 Read/Write - Accessed */
1627 "DownRO", /* 4 Expand-down, Read-Only */
1628 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
1629 "DownRW", /* 6 Expand-down, Read/Write */
1630 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
1631 "CodeEO", /* 8 Execute-Only */
1632 "CodeEO", /* 9 Execute-Only - Accessed */
1633 "CodeER", /* A Execute/Readable */
1634 "CodeER", /* B Execute/Readable - Accessed */
1635 "ConfE0", /* C Conforming, Execute-Only */
1636 "ConfE0", /* D Conforming, Execute-Only - Accessed */
1637 "ConfER", /* E Conforming, Execute/Readable */
1638 "ConfER" /* F Conforming, Execute/Readable - Accessed */
1639 };
1640 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
1641 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
1642 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
1643 uint32_t u32Base = X86DESC_BASE(pDesc);
1644 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
1645
1646 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
1647 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
1648 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
1649 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
1650 }
1651 else
1652 {
1653 static const char * const s_apszTypes[] =
1654 {
1655 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
1656 "Ill-1 ", /* 1 0001 Available 16-bit TSS */
1657 "LDT ", /* 2 0010 LDT */
1658 "Ill-3 ", /* 3 0011 Busy 16-bit TSS */
1659 "Ill-4 ", /* 4 0100 16-bit Call Gate */
1660 "Ill-5 ", /* 5 0101 Task Gate */
1661 "Ill-6 ", /* 6 0110 16-bit Interrupt Gate */
1662 "Ill-7 ", /* 7 0111 16-bit Trap Gate */
1663 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
1664 "Tss64A", /* 9 1001 Available 32-bit TSS */
1665 "Ill-A ", /* A 1010 Reserved (Illegal) */
1666 "Tss64B", /* B 1011 Busy 32-bit TSS */
1667 "Call64", /* C 1100 32-bit Call Gate */
1668 "Ill-D ", /* D 1101 Reserved (Illegal) */
1669 "Int64 ", /* E 1110 32-bit Interrupt Gate */
1670 "Trap64" /* F 1111 32-bit Trap Gate */
1671 };
1672 switch (pDesc->Gen.u4Type)
1673 {
1674 /* raw */
1675 case X86_SEL_TYPE_SYS_UNDEFINED:
1676 case X86_SEL_TYPE_SYS_UNDEFINED2:
1677 case X86_SEL_TYPE_SYS_UNDEFINED4:
1678 case X86_SEL_TYPE_SYS_UNDEFINED3:
1679 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
1680 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
1681 case X86_SEL_TYPE_SYS_286_CALL_GATE:
1682 case X86_SEL_TYPE_SYS_286_INT_GATE:
1683 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
1684 case X86_SEL_TYPE_SYS_TASK_GATE:
1685 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%04x %s %.8Rhxs DPL=%d %s%s\n",
1686 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
1687 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
1688 break;
1689
1690 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
1691 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
1692 case X86_SEL_TYPE_SYS_LDT:
1693 {
1694 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
1695 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
1696 const char *pszLong = pDesc->Gen.u1Long ? "LONG" : " ";
1697
1698 uint64_t u32Base = X86DESC64_BASE(pDesc);
1699 uint32_t cbLimit = X86DESC_LIMIT_G(pDesc);
1700
1701 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%04x %s Bas=%016RX64 Lim=%08x DPL=%d %s %s %s %sAVL=%d R=%d%s\n",
1702 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
1703 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszLong, pszBig,
1704 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
1705 pszHyper);
1706 if (pfDblEntry)
1707 *pfDblEntry = true;
1708 break;
1709 }
1710
1711 case X86_SEL_TYPE_SYS_386_CALL_GATE:
1712 {
1713 unsigned cParams = pDesc->au8[4] & 0x1f;
1714 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
1715 RTSEL sel = pDesc->au16[1];
1716 uint64_t off = pDesc->au16[0]
1717 | ((uint64_t)pDesc->au16[3] << 16)
1718 | ((uint64_t)pDesc->Gen.u32BaseHigh3 << 32);
1719 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%04x %s Sel:Off=%04x:%016RX64 DPL=%d %s %s=%d%s\n",
1720 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
1721 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper);
1722 if (pfDblEntry)
1723 *pfDblEntry = true;
1724 break;
1725 }
1726
1727 case X86_SEL_TYPE_SYS_386_INT_GATE:
1728 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
1729 {
1730 RTSEL sel = pDesc->au16[1];
1731 uint64_t off = pDesc->au16[0]
1732 | ((uint64_t)pDesc->au16[3] << 16)
1733 | ((uint64_t)pDesc->Gen.u32BaseHigh3 << 32);
1734 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%04x %s Sel:Off=%04x:%016RX64 DPL=%d %s%s\n",
1735 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
1736 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
1737 if (pfDblEntry)
1738 *pfDblEntry = true;
1739 break;
1740 }
1741
1742 /* impossible, just it's necessary to keep gcc happy. */
1743 default:
1744 return VINF_SUCCESS;
1745 }
1746 }
1747 return VINF_SUCCESS;
1748}
1749
1750
1751/**
1752 * Worker function that displays one descriptor entry (GDT, LDT, IDT).
1753 *
1754 * @returns pfnPrintf status code.
1755 * @param pCmdHlp The DBGC command helpers.
1756 * @param pDesc The descriptor to display.
1757 * @param iEntry The descriptor entry number.
1758 * @param fHyper Whether the selector belongs to the hypervisor or not.
1759 */
1760static int dbgcCmdDumpDTWorker32(PDBGCCMDHLP pCmdHlp, PCX86DESC pDesc, unsigned iEntry, bool fHyper)
1761{
1762 int rc;
1763
1764 const char *pszHyper = fHyper ? " HYPER" : "";
1765 const char *pszPresent = pDesc->Gen.u1Present ? "P " : "NP";
1766 if (pDesc->Gen.u1DescType)
1767 {
1768 static const char * const s_apszTypes[] =
1769 {
1770 "DataRO", /* 0 Read-Only */
1771 "DataRO", /* 1 Read-Only - Accessed */
1772 "DataRW", /* 2 Read/Write */
1773 "DataRW", /* 3 Read/Write - Accessed */
1774 "DownRO", /* 4 Expand-down, Read-Only */
1775 "DownRO", /* 5 Expand-down, Read-Only - Accessed */
1776 "DownRW", /* 6 Expand-down, Read/Write */
1777 "DownRW", /* 7 Expand-down, Read/Write - Accessed */
1778 "CodeEO", /* 8 Execute-Only */
1779 "CodeEO", /* 9 Execute-Only - Accessed */
1780 "CodeER", /* A Execute/Readable */
1781 "CodeER", /* B Execute/Readable - Accessed */
1782 "ConfE0", /* C Conforming, Execute-Only */
1783 "ConfE0", /* D Conforming, Execute-Only - Accessed */
1784 "ConfER", /* E Conforming, Execute/Readable */
1785 "ConfER" /* F Conforming, Execute/Readable - Accessed */
1786 };
1787 const char *pszAccessed = pDesc->Gen.u4Type & RT_BIT(0) ? "A " : "NA";
1788 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
1789 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
1790 uint32_t u32Base = pDesc->Gen.u16BaseLow
1791 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
1792 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
1793 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
1794 if (pDesc->Gen.u1Granularity)
1795 cbLimit <<= PAGE_SHIFT;
1796
1797 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d L=%d%s\n",
1798 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
1799 pDesc->Gen.u2Dpl, pszPresent, pszAccessed, pszGranularity, pszBig,
1800 pDesc->Gen.u1Available, pDesc->Gen.u1Long, pszHyper);
1801 }
1802 else
1803 {
1804 static const char * const s_apszTypes[] =
1805 {
1806 "Ill-0 ", /* 0 0000 Reserved (Illegal) */
1807 "Tss16A", /* 1 0001 Available 16-bit TSS */
1808 "LDT ", /* 2 0010 LDT */
1809 "Tss16B", /* 3 0011 Busy 16-bit TSS */
1810 "Call16", /* 4 0100 16-bit Call Gate */
1811 "TaskG ", /* 5 0101 Task Gate */
1812 "Int16 ", /* 6 0110 16-bit Interrupt Gate */
1813 "Trap16", /* 7 0111 16-bit Trap Gate */
1814 "Ill-8 ", /* 8 1000 Reserved (Illegal) */
1815 "Tss32A", /* 9 1001 Available 32-bit TSS */
1816 "Ill-A ", /* A 1010 Reserved (Illegal) */
1817 "Tss32B", /* B 1011 Busy 32-bit TSS */
1818 "Call32", /* C 1100 32-bit Call Gate */
1819 "Ill-D ", /* D 1101 Reserved (Illegal) */
1820 "Int32 ", /* E 1110 32-bit Interrupt Gate */
1821 "Trap32" /* F 1111 32-bit Trap Gate */
1822 };
1823 switch (pDesc->Gen.u4Type)
1824 {
1825 /* raw */
1826 case X86_SEL_TYPE_SYS_UNDEFINED:
1827 case X86_SEL_TYPE_SYS_UNDEFINED2:
1828 case X86_SEL_TYPE_SYS_UNDEFINED4:
1829 case X86_SEL_TYPE_SYS_UNDEFINED3:
1830 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%04x %s %.8Rhxs DPL=%d %s%s\n",
1831 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc,
1832 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
1833 break;
1834
1835 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
1836 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
1837 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
1838 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
1839 case X86_SEL_TYPE_SYS_LDT:
1840 {
1841 const char *pszGranularity = pDesc->Gen.u1Granularity ? "G" : " ";
1842 const char *pszBusy = pDesc->Gen.u4Type & RT_BIT(1) ? "B " : "NB";
1843 const char *pszBig = pDesc->Gen.u1DefBig ? "BIG" : " ";
1844 uint32_t u32Base = pDesc->Gen.u16BaseLow
1845 | ((uint32_t)pDesc->Gen.u8BaseHigh1 << 16)
1846 | ((uint32_t)pDesc->Gen.u8BaseHigh2 << 24);
1847 uint32_t cbLimit = pDesc->Gen.u16LimitLow | (pDesc->Gen.u4LimitHigh << 16);
1848 if (pDesc->Gen.u1Granularity)
1849 cbLimit <<= PAGE_SHIFT;
1850
1851 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%04x %s Bas=%08x Lim=%08x DPL=%d %s %s %s %s AVL=%d R=%d%s\n",
1852 iEntry, s_apszTypes[pDesc->Gen.u4Type], u32Base, cbLimit,
1853 pDesc->Gen.u2Dpl, pszPresent, pszBusy, pszGranularity, pszBig,
1854 pDesc->Gen.u1Available, pDesc->Gen.u1Long | (pDesc->Gen.u1DefBig << 1),
1855 pszHyper);
1856 break;
1857 }
1858
1859 case X86_SEL_TYPE_SYS_TASK_GATE:
1860 {
1861 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%04x %s TSS=%04x DPL=%d %s%s\n",
1862 iEntry, s_apszTypes[pDesc->Gen.u4Type], pDesc->au16[1],
1863 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
1864 break;
1865 }
1866
1867 case X86_SEL_TYPE_SYS_286_CALL_GATE:
1868 case X86_SEL_TYPE_SYS_386_CALL_GATE:
1869 {
1870 unsigned cParams = pDesc->au8[4] & 0x1f;
1871 const char *pszCountOf = pDesc->Gen.u4Type & RT_BIT(3) ? "DC" : "WC";
1872 RTSEL sel = pDesc->au16[1];
1873 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
1874 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%04x %s Sel:Off=%04x:%08x DPL=%d %s %s=%d%s\n",
1875 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
1876 pDesc->Gen.u2Dpl, pszPresent, pszCountOf, cParams, pszHyper);
1877 break;
1878 }
1879
1880 case X86_SEL_TYPE_SYS_286_INT_GATE:
1881 case X86_SEL_TYPE_SYS_386_INT_GATE:
1882 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
1883 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
1884 {
1885 RTSEL sel = pDesc->au16[1];
1886 uint32_t off = pDesc->au16[0] | ((uint32_t)pDesc->au16[3] << 16);
1887 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%04x %s Sel:Off=%04x:%08x DPL=%d %s%s\n",
1888 iEntry, s_apszTypes[pDesc->Gen.u4Type], sel, off,
1889 pDesc->Gen.u2Dpl, pszPresent, pszHyper);
1890 break;
1891 }
1892
1893 /* impossible, just it's necessary to keep gcc happy. */
1894 default:
1895 return VINF_SUCCESS;
1896 }
1897 }
1898 return rc;
1899}
1900
1901
1902/**
1903 * @interface_method_impl{FNDBCCMD, The 'dg', 'dga', 'dl' and 'dla' commands.}
1904 */
1905static DECLCALLBACK(int) dbgcCmdDumpDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1906{
1907 /*
1908 * Validate input.
1909 */
1910 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
1911
1912 /*
1913 * Get the CPU mode, check which command variation this is
1914 * and fix a default parameter if needed.
1915 */
1916 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
1917 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
1918 CPUMMODE enmMode = CPUMGetGuestMode(pVCpu);
1919 bool fGdt = pCmd->pszCmd[1] == 'g';
1920 bool fAll = pCmd->pszCmd[2] == 'a';
1921 RTSEL SelTable = fGdt ? 0 : X86_SEL_LDT;
1922
1923 DBGCVAR Var;
1924 if (!cArgs)
1925 {
1926 cArgs = 1;
1927 paArgs = &Var;
1928 Var.enmType = DBGCVAR_TYPE_NUMBER;
1929 Var.u.u64Number = 0;
1930 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
1931 Var.u64Range = 1024;
1932 }
1933
1934 /*
1935 * Process the arguments.
1936 */
1937 for (unsigned i = 0; i < cArgs; i++)
1938 {
1939 /*
1940 * Retrieve the selector value from the argument.
1941 * The parser may confuse pointers and numbers if more than one
1942 * argument is given, that that into account.
1943 */
1944 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER || DBGCVAR_ISPOINTER(paArgs[i].enmType));
1945 uint64_t u64;
1946 unsigned cSels = 1;
1947 switch (paArgs[i].enmType)
1948 {
1949 case DBGCVAR_TYPE_NUMBER:
1950 u64 = paArgs[i].u.u64Number;
1951 if (paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE)
1952 cSels = RT_MIN(paArgs[i].u64Range, 1024);
1953 break;
1954 case DBGCVAR_TYPE_GC_FAR: u64 = paArgs[i].u.GCFar.sel; break;
1955 case DBGCVAR_TYPE_GC_FLAT: u64 = paArgs[i].u.GCFlat; break;
1956 case DBGCVAR_TYPE_GC_PHYS: u64 = paArgs[i].u.GCPhys; break;
1957 case DBGCVAR_TYPE_HC_FLAT: u64 = (uintptr_t)paArgs[i].u.pvHCFlat; break;
1958 case DBGCVAR_TYPE_HC_PHYS: u64 = paArgs[i].u.HCPhys; break;
1959 default: u64 = _64K; break;
1960 }
1961 if (u64 < _64K)
1962 {
1963 unsigned Sel = (RTSEL)u64;
1964
1965 /*
1966 * Dump the specified range.
1967 */
1968 bool fSingle = cSels == 1;
1969 while ( cSels-- > 0
1970 && Sel < _64K)
1971 {
1972 DBGFSELINFO SelInfo;
1973 int rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, Sel | SelTable, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
1974 if (RT_SUCCESS(rc))
1975 {
1976 if (SelInfo.fFlags & DBGFSELINFO_FLAGS_REAL_MODE)
1977 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%04x RealM Bas=%04x Lim=%04x\n",
1978 Sel, (unsigned)SelInfo.GCPtrBase, (unsigned)SelInfo.cbLimit);
1979 else if ( fAll
1980 || fSingle
1981 || SelInfo.u.Raw.Gen.u1Present)
1982 {
1983 if (enmMode == CPUMMODE_PROTECTED)
1984 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &SelInfo.u.Raw, Sel, !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER));
1985 else
1986 {
1987 bool fDblSkip = false;
1988 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &SelInfo.u.Raw64, Sel, !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_HYPER), &fDblSkip);
1989 if (fDblSkip)
1990 Sel += 4;
1991 }
1992 }
1993 }
1994 else
1995 {
1996 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%04x %Rrc\n", Sel, rc);
1997 if (!fAll)
1998 return rc;
1999 }
2000 if (RT_FAILURE(rc))
2001 return rc;
2002
2003 /* next */
2004 Sel += 8;
2005 }
2006 }
2007 else
2008 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: %llx is out of bounds\n", u64);
2009 }
2010
2011 return VINF_SUCCESS;
2012}
2013
2014
2015/**
2016 * @interface_method_impl{FNDBCCMD, The 'di' and 'dia' commands.}
2017 */
2018static DECLCALLBACK(int) dbgcCmdDumpIDT(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2019{
2020 /*
2021 * Validate input.
2022 */
2023 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2024
2025 /*
2026 * Establish some stuff like the current IDTR and CPU mode,
2027 * and fix a default parameter.
2028 */
2029 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2030 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, pDbgc->idCpu);
2031 uint16_t cbLimit;
2032 RTGCUINTPTR GCPtrBase = CPUMGetGuestIDTR(pVCpu, &cbLimit);
2033 CPUMMODE enmMode = CPUMGetGuestMode(pVCpu);
2034 unsigned cbEntry;
2035 switch (enmMode)
2036 {
2037 case CPUMMODE_REAL: cbEntry = sizeof(RTFAR16); break;
2038 case CPUMMODE_PROTECTED: cbEntry = sizeof(X86DESC); break;
2039 case CPUMMODE_LONG: cbEntry = sizeof(X86DESC64); break;
2040 default:
2041 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid CPU mode %d.\n", enmMode);
2042 }
2043
2044 bool fAll = pCmd->pszCmd[2] == 'a';
2045 DBGCVAR Var;
2046 if (!cArgs)
2047 {
2048 cArgs = 1;
2049 paArgs = &Var;
2050 Var.enmType = DBGCVAR_TYPE_NUMBER;
2051 Var.u.u64Number = 0;
2052 Var.enmRangeType = DBGCVAR_RANGE_ELEMENTS;
2053 Var.u64Range = 256;
2054 }
2055
2056 /*
2057 * Process the arguments.
2058 */
2059 for (unsigned i = 0; i < cArgs; i++)
2060 {
2061 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, i, paArgs[i].enmType == DBGCVAR_TYPE_NUMBER);
2062 if (paArgs[i].u.u64Number < 256)
2063 {
2064 RTGCUINTPTR iInt = (RTGCUINTPTR)paArgs[i].u.u64Number;
2065 unsigned cInts = paArgs[i].enmRangeType != DBGCVAR_RANGE_NONE
2066 ? paArgs[i].u64Range
2067 : 1;
2068 bool fSingle = cInts == 1;
2069 while ( cInts-- > 0
2070 && iInt < 256)
2071 {
2072 /*
2073 * Try read it.
2074 */
2075 union
2076 {
2077 RTFAR16 Real;
2078 X86DESC Prot;
2079 X86DESC64 Long;
2080 } u;
2081 if (iInt * cbEntry + (cbEntry - 1) > cbLimit)
2082 {
2083 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%04x not within the IDT\n", (unsigned)iInt);
2084 if (!fAll && !fSingle)
2085 return VINF_SUCCESS;
2086 }
2087 DBGCVAR AddrVar;
2088 AddrVar.enmType = DBGCVAR_TYPE_GC_FLAT;
2089 AddrVar.u.GCFlat = GCPtrBase + iInt * cbEntry;
2090 AddrVar.enmRangeType = DBGCVAR_RANGE_NONE;
2091 int rc = pCmdHlp->pfnMemRead(pCmdHlp, &u, cbEntry, &AddrVar, NULL);
2092 if (RT_FAILURE(rc))
2093 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading IDT entry %#04x.\n", (unsigned)iInt);
2094
2095 /*
2096 * Display it.
2097 */
2098 switch (enmMode)
2099 {
2100 case CPUMMODE_REAL:
2101 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%04x %RTfp16\n", (unsigned)iInt, u.Real);
2102 /** @todo resolve 16:16 IDTE to a symbol */
2103 break;
2104 case CPUMMODE_PROTECTED:
2105 if (fAll || fSingle || u.Prot.Gen.u1Present)
2106 rc = dbgcCmdDumpDTWorker32(pCmdHlp, &u.Prot, iInt, false);
2107 break;
2108 case CPUMMODE_LONG:
2109 if (fAll || fSingle || u.Long.Gen.u1Present)
2110 rc = dbgcCmdDumpDTWorker64(pCmdHlp, &u.Long, iInt, false, NULL);
2111 break;
2112 default: break; /* to shut up gcc */
2113 }
2114 if (RT_FAILURE(rc))
2115 return rc;
2116
2117 /* next */
2118 iInt++;
2119 }
2120 }
2121 else
2122 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: %llx is out of bounds (max 256)\n", paArgs[i].u.u64Number);
2123 }
2124
2125 return VINF_SUCCESS;
2126}
2127
2128
2129/**
2130 * @interface_method_impl{FNDBCCMD, The 'da', 'dq', 'dd', 'dw' and 'db'
2131 * commands.}
2132 */
2133static DECLCALLBACK(int) dbgcCmdDumpMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2134{
2135 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2136
2137 /*
2138 * Validate input.
2139 */
2140 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
2141 if (cArgs == 1)
2142 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
2143 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2144
2145 /*
2146 * Figure out the element size.
2147 */
2148 unsigned cbElement;
2149 bool fAscii = false;
2150 switch (pCmd->pszCmd[1])
2151 {
2152 default:
2153 case 'b': cbElement = 1; break;
2154 case 'w': cbElement = 2; break;
2155 case 'd': cbElement = 4; break;
2156 case 'q': cbElement = 8; break;
2157 case 'a':
2158 cbElement = 1;
2159 fAscii = true;
2160 break;
2161 case '\0':
2162 fAscii = !!(pDbgc->cbDumpElement & 0x80000000);
2163 cbElement = pDbgc->cbDumpElement & 0x7fffffff;
2164 if (!cbElement)
2165 cbElement = 1;
2166 break;
2167 }
2168
2169 /*
2170 * Find address.
2171 */
2172 if (!cArgs)
2173 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_NONE;
2174 else
2175 pDbgc->DumpPos = paArgs[0];
2176
2177 /*
2178 * Range.
2179 */
2180 switch (pDbgc->DumpPos.enmRangeType)
2181 {
2182 case DBGCVAR_RANGE_NONE:
2183 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
2184 pDbgc->DumpPos.u64Range = 0x60;
2185 break;
2186
2187 case DBGCVAR_RANGE_ELEMENTS:
2188 if (pDbgc->DumpPos.u64Range > 2048)
2189 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Too many elements requested. Max is 2048 elements.\n");
2190 pDbgc->DumpPos.enmRangeType = DBGCVAR_RANGE_BYTES;
2191 pDbgc->DumpPos.u64Range = (cbElement ? cbElement : 1) * pDbgc->DumpPos.u64Range;
2192 break;
2193
2194 case DBGCVAR_RANGE_BYTES:
2195 if (pDbgc->DumpPos.u64Range > 65536)
2196 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The requested range is too big. Max is 64KB.\n");
2197 break;
2198
2199 default:
2200 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "internal error: Unknown range type %d.\n", pDbgc->DumpPos.enmRangeType);
2201 }
2202
2203 pDbgc->pLastPos = &pDbgc->DumpPos;
2204
2205 /*
2206 * Do the dumping.
2207 */
2208 pDbgc->cbDumpElement = cbElement | (fAscii << 31);
2209 int cbLeft = (int)pDbgc->DumpPos.u64Range;
2210 uint8_t u8Prev = '\0';
2211 for (;;)
2212 {
2213 /*
2214 * Read memory.
2215 */
2216 char achBuffer[16];
2217 size_t cbReq = RT_MIN((int)sizeof(achBuffer), cbLeft);
2218 size_t cb = RT_MIN((int)sizeof(achBuffer), cbLeft);
2219 int rc = pCmdHlp->pfnMemRead(pCmdHlp, &achBuffer, cbReq, &pDbgc->DumpPos, &cb);
2220 if (RT_FAILURE(rc))
2221 {
2222 if (u8Prev && u8Prev != '\n')
2223 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "\n");
2224 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading memory at %DV.\n", &pDbgc->DumpPos);
2225 }
2226
2227 /*
2228 * Display it.
2229 */
2230 memset(&achBuffer[cb], 0, sizeof(achBuffer) - cb);
2231 if (!fAscii)
2232 {
2233 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%DV:", &pDbgc->DumpPos);
2234 unsigned i;
2235 for (i = 0; i < cb; i += cbElement)
2236 {
2237 const char *pszSpace = " ";
2238 if (cbElement <= 2 && i == 8 && !fAscii)
2239 pszSpace = "-";
2240 switch (cbElement)
2241 {
2242 case 1: pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%s%02x", pszSpace, *(uint8_t *)&achBuffer[i]); break;
2243 case 2: pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%s%04x", pszSpace, *(uint16_t *)&achBuffer[i]); break;
2244 case 4: pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%s%08x", pszSpace, *(uint32_t *)&achBuffer[i]); break;
2245 case 8: pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%s%016llx", pszSpace, *(uint64_t *)&achBuffer[i]); break;
2246 }
2247 }
2248
2249 /* chars column */
2250 if (pDbgc->cbDumpElement == 1)
2251 {
2252 while (i++ < sizeof(achBuffer))
2253 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " ");
2254 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " ");
2255 for (i = 0; i < cb; i += cbElement)
2256 {
2257 uint8_t u8 = *(uint8_t *)&achBuffer[i];
2258 if (RT_C_IS_PRINT(u8) && u8 < 127 && u8 >= 32)
2259 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%c", u8);
2260 else
2261 pCmdHlp->pfnPrintf(pCmdHlp, NULL, ".");
2262 }
2263 }
2264 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "\n");
2265 }
2266 else
2267 {
2268 /*
2269 * We print up to the first zero and stop there.
2270 * Only printables + '\t' and '\n' are printed.
2271 */
2272 if (!u8Prev)
2273 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%DV:\n", &pDbgc->DumpPos);
2274 uint8_t u8 = '\0';
2275 unsigned i;
2276 for (i = 0; i < cb; i++)
2277 {
2278 u8Prev = u8;
2279 u8 = *(uint8_t *)&achBuffer[i];
2280 if ( u8 < 127
2281 && ( (RT_C_IS_PRINT(u8) && u8 >= 32)
2282 || u8 == '\t'
2283 || u8 == '\n'))
2284 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%c", u8);
2285 else if (!u8)
2286 break;
2287 else
2288 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "\\x%x", u8);
2289 }
2290 if (u8 == '\0')
2291 cb = cbLeft = i + 1;
2292 if (cbLeft - cb <= 0 && u8Prev != '\n')
2293 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "\n");
2294 }
2295
2296 /*
2297 * Advance
2298 */
2299 cbLeft -= (int)cb;
2300 rc = DBGCCmdHlpEval(pCmdHlp, &pDbgc->DumpPos, "(%Dv) + %x", &pDbgc->DumpPos, cb);
2301 if (RT_FAILURE(rc))
2302 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Expression: (%Dv) + %x\n", &pDbgc->DumpPos, cb);
2303 if (cbLeft <= 0)
2304 break;
2305 }
2306
2307 NOREF(pCmd);
2308 return VINF_SUCCESS;
2309}
2310
2311
2312/**
2313 * Best guess at which paging mode currently applies to the guest
2314 * paging structures.
2315 *
2316 * This have to come up with a decent answer even when the guest
2317 * is in non-paged protected mode or real mode.
2318 *
2319 * @returns cr3.
2320 * @param pDbgc The DBGC instance.
2321 * @param pfPAE Where to store the page address extension indicator.
2322 * @param pfLME Where to store the long mode enabled indicator.
2323 * @param pfPSE Where to store the page size extension indicator.
2324 * @param pfPGE Where to store the page global enabled indicator.
2325 * @param pfNXE Where to store the no-execution enabled indicator.
2326 */
2327static RTGCPHYS dbgcGetGuestPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
2328{
2329 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
2330 RTGCUINTREG cr4 = CPUMGetGuestCR4(pVCpu);
2331 *pfPSE = !!(cr4 & X86_CR4_PSE);
2332 *pfPGE = !!(cr4 & X86_CR4_PGE);
2333 if (cr4 & X86_CR4_PAE)
2334 {
2335 *pfPSE = true;
2336 *pfPAE = true;
2337 }
2338 else
2339 *pfPAE = false;
2340
2341 *pfLME = CPUMGetGuestMode(pVCpu) == CPUMMODE_LONG;
2342 *pfNXE = false; /* GUEST64 GUESTNX */
2343 return CPUMGetGuestCR3(pVCpu);
2344}
2345
2346
2347/**
2348 * Determine the shadow paging mode.
2349 *
2350 * @returns cr3.
2351 * @param pDbgc The DBGC instance.
2352 * @param pfPAE Where to store the page address extension indicator.
2353 * @param pfLME Where to store the long mode enabled indicator.
2354 * @param pfPSE Where to store the page size extension indicator.
2355 * @param pfPGE Where to store the page global enabled indicator.
2356 * @param pfNXE Where to store the no-execution enabled indicator.
2357 */
2358static RTHCPHYS dbgcGetShadowPageMode(PDBGC pDbgc, bool *pfPAE, bool *pfLME, bool *pfPSE, bool *pfPGE, bool *pfNXE)
2359{
2360 PVMCPU pVCpu = VMMR3GetCpuByIdU(pDbgc->pUVM, pDbgc->idCpu);
2361
2362 *pfPSE = true;
2363 *pfPGE = false;
2364 switch (PGMGetShadowMode(pVCpu))
2365 {
2366 default:
2367 case PGMMODE_32_BIT:
2368 *pfPAE = *pfLME = *pfNXE = false;
2369 break;
2370 case PGMMODE_PAE:
2371 *pfLME = *pfNXE = false;
2372 *pfPAE = true;
2373 break;
2374 case PGMMODE_PAE_NX:
2375 *pfLME = false;
2376 *pfPAE = *pfNXE = true;
2377 break;
2378 case PGMMODE_AMD64:
2379 *pfNXE = false;
2380 *pfPAE = *pfLME = true;
2381 break;
2382 case PGMMODE_AMD64_NX:
2383 *pfPAE = *pfLME = *pfNXE = true;
2384 break;
2385 }
2386 return PGMGetHyperCR3(pVCpu);
2387}
2388
2389
2390/**
2391 * @interface_method_impl{FNDBCCMD, The 'dpd', 'dpda', 'dpdb', 'dpdg' and 'dpdh'
2392 * commands.}
2393 */
2394static DECLCALLBACK(int) dbgcCmdDumpPageDir(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2395{
2396 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2397
2398 /*
2399 * Validate input.
2400 */
2401 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
2402 if (cArgs == 1 && pCmd->pszCmd[3] == 'a')
2403 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
2404 if (cArgs == 1 && pCmd->pszCmd[3] != 'a')
2405 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
2406 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
2407 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2408
2409 /*
2410 * Guest or shadow page directories? Get the paging parameters.
2411 */
2412 bool fGuest = pCmd->pszCmd[3] != 'h';
2413 if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
2414 fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
2415 ? pDbgc->fRegCtxGuest
2416 : DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
2417
2418 bool fPAE, fLME, fPSE, fPGE, fNXE;
2419 uint64_t cr3 = fGuest
2420 ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
2421 : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
2422 const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
2423
2424 /*
2425 * Setup default argument if none was specified.
2426 * Fix address / index confusion.
2427 */
2428 DBGCVAR VarDefault;
2429 if (!cArgs)
2430 {
2431 if (pCmd->pszCmd[3] == 'a')
2432 {
2433 if (fLME || fPAE)
2434 return DBGCCmdHlpPrintf(pCmdHlp, "Default argument for 'dpda' hasn't been fully implemented yet. Try with an address or use one of the other commands.\n");
2435 if (fGuest)
2436 DBGCVAR_INIT_GC_PHYS(&VarDefault, cr3);
2437 else
2438 DBGCVAR_INIT_HC_PHYS(&VarDefault, cr3);
2439 }
2440 else
2441 DBGCVAR_INIT_GC_FLAT(&VarDefault, 0);
2442 paArgs = &VarDefault;
2443 cArgs = 1;
2444 }
2445 else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
2446 {
2447 /* If it's a number (not an address), it's an index, so convert it to an address. */
2448 Assert(pCmd->pszCmd[3] != 'a');
2449 VarDefault = paArgs[0];
2450 if (fPAE)
2451 return DBGCCmdHlpPrintf(pCmdHlp, "PDE indexing is only implemented for 32-bit paging.\n");
2452 if (VarDefault.u.u64Number >= PAGE_SIZE / cbEntry)
2453 return DBGCCmdHlpPrintf(pCmdHlp, "PDE index is out of range [0..%d].\n", PAGE_SIZE / cbEntry - 1);
2454 VarDefault.u.u64Number <<= X86_PD_SHIFT;
2455 VarDefault.enmType = DBGCVAR_TYPE_GC_FLAT;
2456 paArgs = &VarDefault;
2457 }
2458
2459 /*
2460 * Locate the PDE to start displaying at.
2461 *
2462 * The 'dpda' command takes the address of a PDE, while the others are guest
2463 * virtual address which PDEs should be displayed. So, 'dpda' is rather simple
2464 * while the others require us to do all the tedious walking thru the paging
2465 * hierarchy to find the intended PDE.
2466 */
2467 unsigned iEntry = ~0U; /* The page directory index. ~0U for 'dpta'. */
2468 DBGCVAR VarGCPtr; /* The GC address corresponding to the current PDE (iEntry != ~0U). */
2469 DBGCVAR VarPDEAddr; /* The address of the current PDE. */
2470 unsigned cEntries; /* The number of entries to display. */
2471 unsigned cEntriesMax; /* The max number of entries to display. */
2472 int rc;
2473 if (pCmd->pszCmd[3] == 'a')
2474 {
2475 VarPDEAddr = paArgs[0];
2476 switch (VarPDEAddr.enmRangeType)
2477 {
2478 case DBGCVAR_RANGE_BYTES: cEntries = VarPDEAddr.u64Range / cbEntry; break;
2479 case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPDEAddr.u64Range; break;
2480 default: cEntries = 10; break;
2481 }
2482 cEntriesMax = PAGE_SIZE / cbEntry;
2483 }
2484 else
2485 {
2486 /*
2487 * Determine the range.
2488 */
2489 switch (paArgs[0].enmRangeType)
2490 {
2491 case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / PAGE_SIZE; break;
2492 case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
2493 default: cEntries = 10; break;
2494 }
2495
2496 /*
2497 * Normalize the input address, it must be a flat GC address.
2498 */
2499 rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
2500 if (RT_FAILURE(rc))
2501 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
2502 if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
2503 {
2504 VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
2505 VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
2506 }
2507 if (fPAE)
2508 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_PAE_SHIFT) - 1);
2509 else
2510 VarGCPtr.u.GCFlat &= ~(((RTGCPTR)1 << X86_PD_SHIFT) - 1);
2511
2512 /*
2513 * Do the paging walk until we get to the page directory.
2514 */
2515 DBGCVAR VarCur;
2516 if (fGuest)
2517 DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
2518 else
2519 DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
2520 if (fLME)
2521 {
2522 /* Page Map Level 4 Lookup. */
2523 /* Check if it's a valid address first? */
2524 VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
2525 VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
2526 X86PML4E Pml4e;
2527 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
2528 if (RT_FAILURE(rc))
2529 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
2530 if (!Pml4e.n.u1Present)
2531 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
2532
2533 VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
2534 Assert(fPAE);
2535 }
2536 if (fPAE)
2537 {
2538 /* Page directory pointer table. */
2539 X86PDPE Pdpe;
2540 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
2541 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
2542 if (RT_FAILURE(rc))
2543 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
2544 if (!Pdpe.n.u1Present)
2545 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
2546
2547 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
2548 VarPDEAddr = VarCur;
2549 VarPDEAddr.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
2550 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDEPAE);
2551 }
2552 else
2553 {
2554 /* 32-bit legacy - CR3 == page directory. */
2555 iEntry = (VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK;
2556 VarPDEAddr = VarCur;
2557 VarPDEAddr.u.u64Number += iEntry * sizeof(X86PDE);
2558 }
2559 cEntriesMax = (PAGE_SIZE - iEntry) / cbEntry;
2560 }
2561
2562 /* adjust cEntries */
2563 cEntries = RT_MAX(1, cEntries);
2564 cEntries = RT_MIN(cEntries, cEntriesMax);
2565
2566 /*
2567 * The display loop.
2568 */
2569 DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (index %#x):\n" : "%DV:\n",
2570 &VarPDEAddr, iEntry);
2571 do
2572 {
2573 /*
2574 * Read.
2575 */
2576 X86PDEPAE Pde;
2577 Pde.u = 0;
2578 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, cbEntry, &VarPDEAddr, NULL);
2579 if (RT_FAILURE(rc))
2580 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarPDEAddr);
2581
2582 /*
2583 * Display.
2584 */
2585 if (iEntry != ~0U)
2586 {
2587 DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
2588 iEntry++;
2589 }
2590 if (fPSE && Pde.b.u1Size)
2591 DBGCCmdHlpPrintf(pCmdHlp,
2592 fPAE
2593 ? "%016llx big phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
2594 : "%08llx big phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
2595 Pde.u,
2596 Pde.u & X86_PDE_PAE_PG_MASK,
2597 Pde.b.u1Present ? "p " : "np",
2598 Pde.b.u1Write ? "w" : "r",
2599 Pde.b.u1User ? "u" : "s",
2600 Pde.b.u1Accessed ? "a " : "na",
2601 Pde.b.u1Dirty ? "d " : "nd",
2602 Pde.b.u3Available,
2603 Pde.b.u1Global ? (fPGE ? "g" : "G") : " ",
2604 Pde.b.u1WriteThru ? "pwt" : " ",
2605 Pde.b.u1CacheDisable ? "pcd" : " ",
2606 Pde.b.u1PAT ? "pat" : "",
2607 Pde.b.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
2608 else
2609 DBGCCmdHlpPrintf(pCmdHlp,
2610 fPAE
2611 ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s"
2612 : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s",
2613 Pde.u,
2614 Pde.u & X86_PDE_PAE_PG_MASK,
2615 Pde.n.u1Present ? "p " : "np",
2616 Pde.n.u1Write ? "w" : "r",
2617 Pde.n.u1User ? "u" : "s",
2618 Pde.n.u1Accessed ? "a " : "na",
2619 Pde.u & RT_BIT(6) ? "6 " : " ",
2620 Pde.n.u3Available,
2621 Pde.u & RT_BIT(8) ? "8" : " ",
2622 Pde.n.u1WriteThru ? "pwt" : " ",
2623 Pde.n.u1CacheDisable ? "pcd" : " ",
2624 Pde.u & RT_BIT(7) ? "7" : "",
2625 Pde.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " ");
2626 if (Pde.u & UINT64_C(0x7fff000000000000))
2627 DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pde.u & UINT64_C(0x7fff000000000000)));
2628 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2629 if (RT_FAILURE(rc))
2630 return rc;
2631
2632 /*
2633 * Advance.
2634 */
2635 VarPDEAddr.u.u64Number += cbEntry;
2636 if (iEntry != ~0U)
2637 VarGCPtr.u.GCFlat += fPAE ? RT_BIT_32(X86_PD_PAE_SHIFT) : RT_BIT_32(X86_PD_SHIFT);
2638 } while (cEntries-- > 0);
2639
2640 return VINF_SUCCESS;
2641}
2642
2643
2644/**
2645 * @interface_method_impl{FNDBCCMD, The 'dpdb' command.}
2646 */
2647static DECLCALLBACK(int) dbgcCmdDumpPageDirBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2648{
2649 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2650 int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dpdg %DV", &paArgs[0]);
2651 int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpdh %DV", &paArgs[0]);
2652 if (RT_FAILURE(rc1))
2653 return rc1;
2654 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2655 return rc2;
2656}
2657
2658
2659/**
2660 * @interface_method_impl{FNDBCCMD, The 'dph*' commands and main part of 'm'.}
2661 */
2662static DECLCALLBACK(int) dbgcCmdDumpPageHierarchy(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2663{
2664 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2665 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2666
2667 /*
2668 * Figure the context and base flags.
2669 */
2670 uint32_t fFlags = DBGFPGDMP_FLAGS_PAGE_INFO | DBGFPGDMP_FLAGS_PRINT_CR3;
2671 if (pCmd->pszCmd[0] == 'm')
2672 fFlags |= DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW;
2673 else if (pCmd->pszCmd[3] == '\0')
2674 fFlags |= pDbgc->fRegCtxGuest ? DBGFPGDMP_FLAGS_GUEST : DBGFPGDMP_FLAGS_SHADOW;
2675 else if (pCmd->pszCmd[3] == 'g')
2676 fFlags |= DBGFPGDMP_FLAGS_GUEST;
2677 else if (pCmd->pszCmd[3] == 'h')
2678 fFlags |= DBGFPGDMP_FLAGS_SHADOW;
2679 else
2680 AssertFailed();
2681
2682 if (pDbgc->cPagingHierarchyDumps == 0)
2683 fFlags |= DBGFPGDMP_FLAGS_HEADER;
2684 pDbgc->cPagingHierarchyDumps = (pDbgc->cPagingHierarchyDumps + 1) % 42;
2685
2686 /*
2687 * Get the range.
2688 */
2689 PCDBGCVAR pRange = cArgs > 0 ? &paArgs[0] : pDbgc->pLastPos;
2690 RTGCPTR GCPtrFirst = NIL_RTGCPTR;
2691 int rc = DBGCCmdHlpVarToFlatAddr(pCmdHlp, pRange, &GCPtrFirst);
2692 if (RT_FAILURE(rc))
2693 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to convert %DV to a flat address: %Rrc", pRange, rc);
2694
2695 uint64_t cbRange;
2696 rc = DBGCCmdHlpVarGetRange(pCmdHlp, pRange, PAGE_SIZE, PAGE_SIZE * 8, &cbRange);
2697 if (RT_FAILURE(rc))
2698 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to obtain the range of %DV: %Rrc", pRange, rc);
2699
2700 RTGCPTR GCPtrLast = RTGCPTR_MAX - GCPtrFirst;
2701 if (cbRange >= GCPtrLast)
2702 GCPtrLast = RTGCPTR_MAX;
2703 else if (!cbRange)
2704 GCPtrLast = GCPtrFirst;
2705 else
2706 GCPtrLast = GCPtrFirst + cbRange - 1;
2707
2708 /*
2709 * Do we have a CR3?
2710 */
2711 uint64_t cr3 = 0;
2712 if (cArgs > 1)
2713 {
2714 if ((fFlags & (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW)) == (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW))
2715 return DBGCCmdHlpFail(pCmdHlp, pCmd, "No CR3 or mode arguments when dumping both context, please.");
2716 if (paArgs[1].enmType != DBGCVAR_TYPE_NUMBER)
2717 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The CR3 argument is not a number: %DV", &paArgs[1]);
2718 cr3 = paArgs[1].u.u64Number;
2719 }
2720 else
2721 fFlags |= DBGFPGDMP_FLAGS_CURRENT_CR3;
2722
2723 /*
2724 * Do we have a mode?
2725 */
2726 if (cArgs > 2)
2727 {
2728 if (paArgs[2].enmType != DBGCVAR_TYPE_STRING)
2729 return DBGCCmdHlpFail(pCmdHlp, pCmd, "The mode argument is not a string: %DV", &paArgs[2]);
2730 static const struct MODETOFLAGS
2731 {
2732 const char *pszName;
2733 uint32_t fFlags;
2734 } s_aModeToFlags[] =
2735 {
2736 { "ept", DBGFPGDMP_FLAGS_EPT },
2737 { "legacy", 0 },
2738 { "legacy-np", DBGFPGDMP_FLAGS_NP },
2739 { "pse", DBGFPGDMP_FLAGS_PSE },
2740 { "pse-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_NP },
2741 { "pae", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE },
2742 { "pae-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NP },
2743 { "pae-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE },
2744 { "pae-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP },
2745 { "long", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME },
2746 { "long-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NP },
2747 { "long-nx", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE },
2748 { "long-nx-np", DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE | DBGFPGDMP_FLAGS_NP }
2749 };
2750 int i = RT_ELEMENTS(s_aModeToFlags);
2751 while (i-- > 0)
2752 if (!strcmp(s_aModeToFlags[i].pszName, paArgs[2].u.pszString))
2753 {
2754 fFlags |= s_aModeToFlags[i].fFlags;
2755 break;
2756 }
2757 if (i < 0)
2758 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Unknown mode: \"%s\"", paArgs[2].u.pszString);
2759 }
2760 else
2761 fFlags |= DBGFPGDMP_FLAGS_CURRENT_MODE;
2762
2763 /*
2764 * Call the worker.
2765 */
2766 rc = DBGFR3PagingDumpEx(pUVM, pDbgc->idCpu, fFlags, cr3, GCPtrFirst, GCPtrLast, 99 /*cMaxDepth*/,
2767 DBGCCmdHlpGetDbgfOutputHlp(pCmdHlp));
2768 if (RT_FAILURE(rc))
2769 return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3PagingDumpEx: %Rrc\n", rc);
2770 return VINF_SUCCESS;
2771}
2772
2773
2774
2775/**
2776 * @interface_method_impl{FNDBCCMD, The 'dpg*' commands.}
2777 */
2778static DECLCALLBACK(int) dbgcCmdDumpPageTable(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2779{
2780 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
2781
2782 /*
2783 * Validate input.
2784 */
2785 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1);
2786 if (pCmd->pszCmd[3] == 'a')
2787 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
2788 else
2789 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
2790 || DBGCVAR_ISPOINTER(paArgs[0].enmType));
2791 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2792
2793 /*
2794 * Guest or shadow page tables? Get the paging parameters.
2795 */
2796 bool fGuest = pCmd->pszCmd[3] != 'h';
2797 if (!pCmd->pszCmd[3] || pCmd->pszCmd[3] == 'a')
2798 fGuest = paArgs[0].enmType == DBGCVAR_TYPE_NUMBER
2799 ? pDbgc->fRegCtxGuest
2800 : DBGCVAR_ISGCPOINTER(paArgs[0].enmType);
2801
2802 bool fPAE, fLME, fPSE, fPGE, fNXE;
2803 uint64_t cr3 = fGuest
2804 ? dbgcGetGuestPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE)
2805 : dbgcGetShadowPageMode(pDbgc, &fPAE, &fLME, &fPSE, &fPGE, &fNXE);
2806 const unsigned cbEntry = fPAE ? sizeof(X86PTEPAE) : sizeof(X86PTE);
2807
2808 /*
2809 * Locate the PTE to start displaying at.
2810 *
2811 * The 'dpta' command takes the address of a PTE, while the others are guest
2812 * virtual address which PTEs should be displayed. So, 'pdta' is rather simple
2813 * while the others require us to do all the tedious walking thru the paging
2814 * hierarchy to find the intended PTE.
2815 */
2816 unsigned iEntry = ~0U; /* The page table index. ~0U for 'dpta'. */
2817 DBGCVAR VarGCPtr; /* The GC address corresponding to the current PTE (iEntry != ~0U). */
2818 DBGCVAR VarPTEAddr; /* The address of the current PTE. */
2819 unsigned cEntries; /* The number of entries to display. */
2820 unsigned cEntriesMax; /* The max number of entries to display. */
2821 int rc;
2822 if (pCmd->pszCmd[3] == 'a')
2823 {
2824 VarPTEAddr = paArgs[0];
2825 switch (VarPTEAddr.enmRangeType)
2826 {
2827 case DBGCVAR_RANGE_BYTES: cEntries = VarPTEAddr.u64Range / cbEntry; break;
2828 case DBGCVAR_RANGE_ELEMENTS: cEntries = VarPTEAddr.u64Range; break;
2829 default: cEntries = 10; break;
2830 }
2831 cEntriesMax = PAGE_SIZE / cbEntry;
2832 }
2833 else
2834 {
2835 /*
2836 * Determine the range.
2837 */
2838 switch (paArgs[0].enmRangeType)
2839 {
2840 case DBGCVAR_RANGE_BYTES: cEntries = paArgs[0].u64Range / PAGE_SIZE; break;
2841 case DBGCVAR_RANGE_ELEMENTS: cEntries = paArgs[0].u64Range; break;
2842 default: cEntries = 10; break;
2843 }
2844
2845 /*
2846 * Normalize the input address, it must be a flat GC address.
2847 */
2848 rc = DBGCCmdHlpEval(pCmdHlp, &VarGCPtr, "%%(%Dv)", &paArgs[0]);
2849 if (RT_FAILURE(rc))
2850 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
2851 if (VarGCPtr.enmType == DBGCVAR_TYPE_HC_FLAT)
2852 {
2853 VarGCPtr.u.GCFlat = (uintptr_t)VarGCPtr.u.pvHCFlat;
2854 VarGCPtr.enmType = DBGCVAR_TYPE_GC_FLAT;
2855 }
2856 VarGCPtr.u.GCFlat &= ~(RTGCPTR)PAGE_OFFSET_MASK;
2857
2858 /*
2859 * Do the paging walk until we get to the page table.
2860 */
2861 DBGCVAR VarCur;
2862 if (fGuest)
2863 DBGCVAR_INIT_GC_PHYS(&VarCur, cr3);
2864 else
2865 DBGCVAR_INIT_HC_PHYS(&VarCur, cr3);
2866 if (fLME)
2867 {
2868 /* Page Map Level 4 Lookup. */
2869 /* Check if it's a valid address first? */
2870 VarCur.u.u64Number &= X86_PTE_PAE_PG_MASK;
2871 VarCur.u.u64Number += (((uint64_t)VarGCPtr.u.GCFlat >> X86_PML4_SHIFT) & X86_PML4_MASK) * sizeof(X86PML4E);
2872 X86PML4E Pml4e;
2873 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pml4e, sizeof(Pml4e), &VarCur, NULL);
2874 if (RT_FAILURE(rc))
2875 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PML4E memory at %DV.\n", &VarCur);
2876 if (!Pml4e.n.u1Present)
2877 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory pointer table is not present for %Dv.\n", &VarGCPtr);
2878
2879 VarCur.u.u64Number = Pml4e.u & X86_PML4E_PG_MASK;
2880 Assert(fPAE);
2881 }
2882 if (fPAE)
2883 {
2884 /* Page directory pointer table. */
2885 X86PDPE Pdpe;
2886 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * sizeof(Pdpe);
2887 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pdpe, sizeof(Pdpe), &VarCur, NULL);
2888 if (RT_FAILURE(rc))
2889 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDPE memory at %DV.\n", &VarCur);
2890 if (!Pdpe.n.u1Present)
2891 return DBGCCmdHlpPrintf(pCmdHlp, "Page directory is not present for %Dv.\n", &VarGCPtr);
2892
2893 VarCur.u.u64Number = Pdpe.u & X86_PDPE_PG_MASK;
2894
2895 /* Page directory (PAE). */
2896 X86PDEPAE Pde;
2897 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK) * sizeof(Pde);
2898 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
2899 if (RT_FAILURE(rc))
2900 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
2901 if (!Pde.n.u1Present)
2902 return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
2903 if (fPSE && Pde.n.u1Size)
2904 return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
2905
2906 iEntry = (VarGCPtr.u.GCFlat >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK;
2907 VarPTEAddr = VarCur;
2908 VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PAE_PG_MASK;
2909 VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTEPAE);
2910 }
2911 else
2912 {
2913 /* Page directory (legacy). */
2914 X86PDE Pde;
2915 VarCur.u.u64Number += ((VarGCPtr.u.GCFlat >> X86_PD_SHIFT) & X86_PD_MASK) * sizeof(Pde);
2916 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pde, sizeof(Pde), &VarCur, NULL);
2917 if (RT_FAILURE(rc))
2918 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PDE memory at %DV.\n", &VarCur);
2919 if (!Pde.n.u1Present)
2920 return DBGCCmdHlpPrintf(pCmdHlp, "Page table is not present for %Dv.\n", &VarGCPtr);
2921 if (fPSE && Pde.n.u1Size)
2922 return pCmdHlp->pfnExec(pCmdHlp, "dpd%s %Dv L3", &pCmd->pszCmd[3], &VarGCPtr);
2923
2924 iEntry = (VarGCPtr.u.GCFlat >> X86_PT_SHIFT) & X86_PT_MASK;
2925 VarPTEAddr = VarCur;
2926 VarPTEAddr.u.u64Number = Pde.u & X86_PDE_PG_MASK;
2927 VarPTEAddr.u.u64Number += iEntry * sizeof(X86PTE);
2928 }
2929 cEntriesMax = (PAGE_SIZE - iEntry) / cbEntry;
2930 }
2931
2932 /* adjust cEntries */
2933 cEntries = RT_MAX(1, cEntries);
2934 cEntries = RT_MIN(cEntries, cEntriesMax);
2935
2936 /*
2937 * The display loop.
2938 */
2939 DBGCCmdHlpPrintf(pCmdHlp, iEntry != ~0U ? "%DV (base %DV / index %#x):\n" : "%DV:\n",
2940 &VarPTEAddr, &VarGCPtr, iEntry);
2941 do
2942 {
2943 /*
2944 * Read.
2945 */
2946 X86PTEPAE Pte;
2947 Pte.u = 0;
2948 rc = pCmdHlp->pfnMemRead(pCmdHlp, &Pte, cbEntry, &VarPTEAddr, NULL);
2949 if (RT_FAILURE(rc))
2950 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "Reading PTE memory at %DV.\n", &VarPTEAddr);
2951
2952 /*
2953 * Display.
2954 */
2955 if (iEntry != ~0U)
2956 {
2957 DBGCCmdHlpPrintf(pCmdHlp, "%03x %DV: ", iEntry, &VarGCPtr);
2958 iEntry++;
2959 }
2960 DBGCCmdHlpPrintf(pCmdHlp,
2961 fPAE
2962 ? "%016llx 4kb phys=%016llx %s %s %s %s %s avl=%02x %s %s %s %s %s"
2963 : "%08llx 4kb phys=%08llx %s %s %s %s %s avl=%02x %s %s %s %s %s",
2964 Pte.u,
2965 Pte.u & X86_PTE_PAE_PG_MASK,
2966 Pte.n.u1Present ? "p " : "np",
2967 Pte.n.u1Write ? "w" : "r",
2968 Pte.n.u1User ? "u" : "s",
2969 Pte.n.u1Accessed ? "a " : "na",
2970 Pte.n.u1Dirty ? "d " : "nd",
2971 Pte.n.u3Available,
2972 Pte.n.u1Global ? (fPGE ? "g" : "G") : " ",
2973 Pte.n.u1WriteThru ? "pwt" : " ",
2974 Pte.n.u1CacheDisable ? "pcd" : " ",
2975 Pte.n.u1PAT ? "pat" : " ",
2976 Pte.n.u1NoExecute ? (fNXE ? "nx" : "NX") : " "
2977 );
2978 if (Pte.u & UINT64_C(0x7fff000000000000))
2979 DBGCCmdHlpPrintf(pCmdHlp, " weird=%RX64", (Pte.u & UINT64_C(0x7fff000000000000)));
2980 rc = DBGCCmdHlpPrintf(pCmdHlp, "\n");
2981 if (RT_FAILURE(rc))
2982 return rc;
2983
2984 /*
2985 * Advance.
2986 */
2987 VarPTEAddr.u.u64Number += cbEntry;
2988 if (iEntry != ~0U)
2989 VarGCPtr.u.GCFlat += PAGE_SIZE;
2990 } while (cEntries-- > 0);
2991
2992 return VINF_SUCCESS;
2993}
2994
2995
2996/**
2997 * @interface_method_impl{FNDBCCMD, The 'dptb' command.}
2998 */
2999static DECLCALLBACK(int) dbgcCmdDumpPageTableBoth(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3000{
3001 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3002 int rc1 = pCmdHlp->pfnExec(pCmdHlp, "dptg %DV", &paArgs[0]);
3003 int rc2 = pCmdHlp->pfnExec(pCmdHlp, "dpth %DV", &paArgs[0]);
3004 if (RT_FAILURE(rc1))
3005 return rc1;
3006 NOREF(pCmd); NOREF(cArgs);
3007 return rc2;
3008}
3009
3010
3011/**
3012 * @interface_method_impl{FNDBCCMD, The 'dt' command.}
3013 */
3014static DECLCALLBACK(int) dbgcCmdDumpTSS(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3015{
3016 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3017 int rc;
3018
3019 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3020 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs <= 1);
3021 if (cArgs == 1)
3022 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType != DBGCVAR_TYPE_STRING
3023 && paArgs[0].enmType != DBGCVAR_TYPE_SYMBOL);
3024
3025 /*
3026 * Check if the command indicates the type.
3027 */
3028 enum { kTss16, kTss32, kTss64, kTssToBeDetermined } enmTssType = kTssToBeDetermined;
3029 if (!strcmp(pCmd->pszCmd, "dt16"))
3030 enmTssType = kTss16;
3031 else if (!strcmp(pCmd->pszCmd, "dt32"))
3032 enmTssType = kTss32;
3033 else if (!strcmp(pCmd->pszCmd, "dt64"))
3034 enmTssType = kTss64;
3035
3036 /*
3037 * We can get a TSS selector (number), a far pointer using a TSS selector, or some kind of TSS pointer.
3038 */
3039 uint32_t SelTss = UINT32_MAX;
3040 DBGCVAR VarTssAddr;
3041 if (cArgs == 0)
3042 {
3043 /** @todo consider querying the hidden bits instead (missing API). */
3044 uint16_t SelTR;
3045 rc = DBGFR3RegCpuQueryU16(pUVM, pDbgc->idCpu, DBGFREG_TR, &SelTR);
3046 if (RT_FAILURE(rc))
3047 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to query TR, rc=%Rrc\n", rc);
3048 DBGCVAR_INIT_GC_FAR(&VarTssAddr, SelTR, 0);
3049 SelTss = SelTR;
3050 }
3051 else if (paArgs[0].enmType == DBGCVAR_TYPE_NUMBER)
3052 {
3053 if (paArgs[0].u.u64Number < 0xffff)
3054 DBGCVAR_INIT_GC_FAR(&VarTssAddr, (RTSEL)paArgs[0].u.u64Number, 0);
3055 else
3056 {
3057 if (paArgs[0].enmRangeType == DBGCVAR_RANGE_ELEMENTS)
3058 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Element count doesn't combine with a TSS address.\n");
3059 DBGCVAR_INIT_GC_FLAT(&VarTssAddr, paArgs[0].u.u64Number);
3060 if (paArgs[0].enmRangeType == DBGCVAR_RANGE_BYTES)
3061 {
3062 VarTssAddr.enmRangeType = paArgs[0].enmRangeType;
3063 VarTssAddr.u64Range = paArgs[0].u64Range;
3064 }
3065 }
3066 }
3067 else
3068 VarTssAddr = paArgs[0];
3069
3070 /*
3071 * Deal with TSS:ign by means of the GDT.
3072 */
3073 if (VarTssAddr.enmType == DBGCVAR_TYPE_GC_FAR)
3074 {
3075 SelTss = VarTssAddr.u.GCFar.sel;
3076 DBGFSELINFO SelInfo;
3077 rc = DBGFR3SelQueryInfo(pUVM, pDbgc->idCpu, VarTssAddr.u.GCFar.sel, DBGFSELQI_FLAGS_DT_GUEST, &SelInfo);
3078 if (RT_FAILURE(rc))
3079 return DBGCCmdHlpFail(pCmdHlp, pCmd, "DBGFR3SelQueryInfo(,%u,%d,,) -> %Rrc.\n",
3080 pDbgc->idCpu, VarTssAddr.u.GCFar.sel, rc);
3081
3082 if (SelInfo.u.Raw.Gen.u1DescType)
3083 return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (!sys)\n", VarTssAddr.u.GCFar.sel);
3084
3085 switch (SelInfo.u.Raw.Gen.u4Type)
3086 {
3087 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
3088 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
3089 if (enmTssType == kTssToBeDetermined)
3090 enmTssType = kTss16;
3091 break;
3092
3093 case X86_SEL_TYPE_SYS_386_TSS_BUSY: /* AMD64 too */
3094 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
3095 if (enmTssType == kTssToBeDetermined)
3096 enmTssType = SelInfo.fFlags & DBGFSELINFO_FLAGS_LONG_MODE ? kTss64 : kTss32;
3097 break;
3098
3099 default:
3100 return DBGCCmdHlpFail(pCmdHlp, pCmd, "%04x is not a TSS selector. (type=%x)\n",
3101 VarTssAddr.u.GCFar.sel, SelInfo.u.Raw.Gen.u4Type);
3102 }
3103
3104 DBGCVAR_INIT_GC_FLAT(&VarTssAddr, SelInfo.GCPtrBase);
3105 DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, RT_MAX(SelInfo.cbLimit + 1, SelInfo.cbLimit));
3106 }
3107
3108 /*
3109 * Determine the TSS type if none is currently given.
3110 */
3111 if (enmTssType == kTssToBeDetermined)
3112 {
3113 if ( VarTssAddr.u64Range > 0
3114 && VarTssAddr.u64Range < sizeof(X86TSS32) - 4)
3115 enmTssType = kTss16;
3116 else
3117 {
3118 uint64_t uEfer;
3119 rc = DBGFR3RegCpuQueryU64(pUVM, pDbgc->idCpu, DBGFREG_MSR_K6_EFER, &uEfer);
3120 if ( RT_FAILURE(rc)
3121 || !(uEfer & MSR_K6_EFER_LMA) )
3122 enmTssType = kTss32;
3123 else
3124 enmTssType = kTss64;
3125 }
3126 }
3127
3128 /*
3129 * Figure the min/max sizes.
3130 * ASSUMES max TSS size is 64 KB.
3131 */
3132 uint32_t cbTssMin;
3133 uint32_t cbTssMax;
3134 switch (enmTssType)
3135 {
3136 case kTss16:
3137 cbTssMin = cbTssMax = sizeof(X86TSS16);
3138 break;
3139 case kTss32:
3140 cbTssMin = RT_OFFSETOF(X86TSS32, IntRedirBitmap);
3141 cbTssMax = _64K;
3142 break;
3143 case kTss64:
3144 cbTssMin = RT_OFFSETOF(X86TSS64, IntRedirBitmap);
3145 cbTssMax = _64K;
3146 break;
3147 default:
3148 AssertFailedReturn(VERR_INTERNAL_ERROR);
3149 }
3150 uint32_t cbTss = VarTssAddr.enmRangeType == DBGCVAR_RANGE_BYTES ? (uint32_t)VarTssAddr.u64Range : 0;
3151 if (cbTss == 0)
3152 cbTss = cbTssMin;
3153 else if (cbTss < cbTssMin)
3154 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Minimum TSS size is %u bytes, you specified %llu (%llx) bytes.\n",
3155 cbTssMin, VarTssAddr.u64Range, VarTssAddr.u64Range);
3156 else if (cbTss > cbTssMax)
3157 cbTss = cbTssMax;
3158 DBGCVAR_SET_RANGE(&VarTssAddr, DBGCVAR_RANGE_BYTES, cbTss);
3159
3160 /*
3161 * Read the TSS into a temporary buffer.
3162 */
3163 uint8_t abBuf[_64K];
3164 size_t cbTssRead;
3165 rc = DBGCCmdHlpMemRead(pCmdHlp, abBuf, cbTss, &VarTssAddr, &cbTssRead);
3166 if (RT_FAILURE(rc))
3167 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read TSS at %Dv: %Rrc\n", &VarTssAddr, rc);
3168 if (cbTssRead < cbTssMin)
3169 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Failed to read essential parts of the TSS (read %zu, min %zu).\n",
3170 cbTssRead, cbTssMin);
3171 if (cbTssRead < cbTss)
3172 memset(&abBuf[cbTssRead], 0xff, cbTss - cbTssRead);
3173
3174
3175 /*
3176 * Format the TSS.
3177 */
3178 uint16_t offIoBitmap;
3179 switch (enmTssType)
3180 {
3181 case kTss16:
3182 {
3183 PCX86TSS16 pTss = (PCX86TSS16)&abBuf[0];
3184 if (SelTss != UINT32_MAX)
3185 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS16 at %Dv\n", SelTss, &VarTssAddr);
3186 else
3187 DBGCCmdHlpPrintf(pCmdHlp, "TSS16 at %Dv\n", &VarTssAddr);
3188 DBGCCmdHlpPrintf(pCmdHlp,
3189 "ax=%04x bx=%04x cx=%04x dx=%04x si=%04x di=%04x\n"
3190 "ip=%04x sp=%04x bp=%04x\n"
3191 "cs=%04x ss=%04x ds=%04x es=%04x flags=%04x\n"
3192 "ss:sp0=%04x:%04x ss:sp1=%04x:%04x ss:sp2=%04x:%04x\n"
3193 "prev=%04x ldtr=%04x\n"
3194 ,
3195 pTss->ax, pTss->bx, pTss->cx, pTss->dx, pTss->si, pTss->di,
3196 pTss->ip, pTss->sp, pTss->bp,
3197 pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->flags,
3198 pTss->ss0, pTss->sp0, pTss->ss1, pTss->sp1, pTss->ss2, pTss->sp2,
3199 pTss->selPrev, pTss->selLdt);
3200 if (pTss->cs != 0)
3201 pCmdHlp->pfnExec(pCmdHlp, "u %04x:%04x L 0", pTss->cs, pTss->ip);
3202 offIoBitmap = 0;
3203 break;
3204 }
3205
3206 case kTss32:
3207 {
3208 PCX86TSS32 pTss = (PCX86TSS32)&abBuf[0];
3209 if (SelTss != UINT32_MAX)
3210 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS32 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
3211 else
3212 DBGCCmdHlpPrintf(pCmdHlp, "TSS32 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
3213 DBGCCmdHlpPrintf(pCmdHlp,
3214 "eax=%08x bx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
3215 "eip=%08x esp=%08x ebp=%08x\n"
3216 "cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
3217 "ss:esp0=%04x:%08x ss:esp1=%04x:%08x ss:esp2=%04x:%08x\n"
3218 "prev=%04x ldtr=%04x cr3=%08x debug=%u iomap=%04x\n"
3219 ,
3220 pTss->eax, pTss->ebx, pTss->ecx, pTss->edx, pTss->esi, pTss->edi,
3221 pTss->eip, pTss->esp, pTss->ebp,
3222 pTss->cs, pTss->ss, pTss->ds, pTss->es, pTss->fs, pTss->gs, pTss->eflags,
3223 pTss->ss0, pTss->esp0, pTss->ss1, pTss->esp1, pTss->ss2, pTss->esp2,
3224 pTss->selPrev, pTss->selLdt, pTss->cr3, pTss->fDebugTrap, pTss->offIoBitmap);
3225 if (pTss->cs != 0)
3226 pCmdHlp->pfnExec(pCmdHlp, "u %04x:%08x L 0", pTss->cs, pTss->eip);
3227 offIoBitmap = pTss->offIoBitmap;
3228 break;
3229 }
3230
3231 case kTss64:
3232 {
3233 PCX86TSS64 pTss = (PCX86TSS64)&abBuf[0];
3234 if (SelTss != UINT32_MAX)
3235 DBGCCmdHlpPrintf(pCmdHlp, "%04x TSS64 at %Dv (min=%04x)\n", SelTss, &VarTssAddr, cbTssMin);
3236 else
3237 DBGCCmdHlpPrintf(pCmdHlp, "TSS64 at %Dv (min=%04x)\n", &VarTssAddr, cbTssMin);
3238 DBGCCmdHlpPrintf(pCmdHlp,
3239 "rsp0=%016RX16 rsp1=%016RX16 rsp2=%016RX16\n"
3240 "ist1=%016RX16 ist2=%016RX16\n"
3241 "ist3=%016RX16 ist4=%016RX16\n"
3242 "ist5=%016RX16 ist6=%016RX16\n"
3243 "ist7=%016RX16 iomap=%04x\n"
3244 ,
3245 pTss->rsp0, pTss->rsp1, pTss->rsp2,
3246 pTss->ist1, pTss->ist2,
3247 pTss->ist3, pTss->ist4,
3248 pTss->ist5, pTss->ist6,
3249 pTss->ist7, pTss->offIoBitmap);
3250 offIoBitmap = pTss->offIoBitmap;
3251 break;
3252 }
3253
3254 default:
3255 AssertFailedReturn(VERR_INTERNAL_ERROR);
3256 }
3257
3258 /*
3259 * Dump the interrupt redirection bitmap.
3260 */
3261 if (enmTssType != kTss16)
3262 {
3263 if ( offIoBitmap > cbTssMin
3264 && offIoBitmap < cbTss) /** @todo check exactly what the edge cases are here. */
3265 {
3266 if (offIoBitmap - cbTssMin >= 32)
3267 {
3268 DBGCCmdHlpPrintf(pCmdHlp, "Interrupt redirection:\n");
3269 uint8_t const *pbIntRedirBitmap = &abBuf[offIoBitmap - 32];
3270 uint32_t iStart = 0;
3271 bool fPrev = ASMBitTest(pbIntRedirBitmap, 0); /* LE/BE issue */
3272 for (uint32_t i = 0; i < 256; i++)
3273 {
3274 bool fThis = ASMBitTest(pbIntRedirBitmap, i);
3275 if (fThis != fPrev)
3276 {
3277 DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, i - 1, fPrev ? "Protected mode" : "Redirected");
3278 fPrev = fThis;
3279 iStart = i;
3280 }
3281 }
3282 if (iStart != 255)
3283 DBGCCmdHlpPrintf(pCmdHlp, "%02x-%02x %s\n", iStart, 255, fPrev ? "Protected mode" : "Redirected");
3284 }
3285 else
3286 DBGCCmdHlpPrintf(pCmdHlp, "Invalid interrupt redirection bitmap size: %u (%#x), expected 32 bytes.\n",
3287 offIoBitmap - cbTssMin, offIoBitmap - cbTssMin);
3288 }
3289 else if (offIoBitmap > 0)
3290 DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap (-%#x)\n", cbTssMin - offIoBitmap);
3291 else
3292 DBGCCmdHlpPrintf(pCmdHlp, "No interrupt redirection bitmap\n");
3293 }
3294
3295 /*
3296 * Dump the I/O permission bitmap if present. The IOPM cannot start below offset 0x64
3297 * (that applies to both 32-bit and 64-bit TSSs since their size is the same).
3298 */
3299 if (enmTssType != kTss16)
3300 {
3301 if (offIoBitmap < cbTss && offIoBitmap >= 0x64)
3302 {
3303 uint32_t cPorts = RT_MIN((cbTss - offIoBitmap) * 8, _64K);
3304 DBGCVAR VarAddr;
3305 DBGCCmdHlpEval(pCmdHlp, &VarAddr, "%DV + %#x", &VarTssAddr, offIoBitmap);
3306 DBGCCmdHlpPrintf(pCmdHlp, "I/O bitmap at %DV - %#x ports:\n", &VarAddr, cPorts);
3307
3308 uint8_t const *pbIoBitmap = &abBuf[offIoBitmap];
3309 uint32_t iStart = 0;
3310 bool fPrev = ASMBitTest(pbIoBitmap, 0);
3311 uint32_t cLine = 0;
3312 for (uint32_t i = 1; i < cPorts; i++)
3313 {
3314 bool fThis = ASMBitTest(pbIoBitmap, i);
3315 if (fThis != fPrev)
3316 {
3317 cLine++;
3318 DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s%s", iStart, i-1,
3319 fPrev ? "GP" : "OK", (cLine % 6) == 0 ? "\n" : " ");
3320 fPrev = fThis;
3321 iStart = i;
3322 }
3323 }
3324 if (iStart != _64K-1)
3325 DBGCCmdHlpPrintf(pCmdHlp, "%04x-%04x %s\n", iStart, _64K-1, fPrev ? "GP" : "OK");
3326 }
3327 else if (offIoBitmap > 0)
3328 DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap (-%#x)\n", cbTssMin - offIoBitmap);
3329 else
3330 DBGCCmdHlpPrintf(pCmdHlp, "No I/O bitmap\n");
3331 }
3332
3333 return VINF_SUCCESS;
3334}
3335
3336
3337/**
3338 * @interface_method_impl{FNDBCCMD, The 'm' command.}
3339 */
3340static DECLCALLBACK(int) dbgcCmdMemoryInfo(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3341{
3342 DBGCCmdHlpPrintf(pCmdHlp, "Address: %DV\n", &paArgs[0]);
3343 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3344 return dbgcCmdDumpPageHierarchy(pCmd, pCmdHlp, pUVM, paArgs, cArgs);
3345}
3346
3347
3348/**
3349 * Converts one or more variables into a byte buffer for a
3350 * given unit size.
3351 *
3352 * @returns VBox status codes:
3353 * @retval VERR_TOO_MUCH_DATA if the buffer is too small, bitched.
3354 * @retval VERR_INTERNAL_ERROR on bad variable type, bitched.
3355 * @retval VINF_SUCCESS on success.
3356 *
3357 * @param pvBuf The buffer to convert into.
3358 * @param pcbBuf The buffer size on input. The size of the result on output.
3359 * @param cbUnit The unit size to apply when converting.
3360 * The high bit is used to indicate unicode string.
3361 * @param paVars The array of variables to convert.
3362 * @param cVars The number of variables.
3363 */
3364int dbgcVarsToBytes(PDBGCCMDHLP pCmdHlp, void *pvBuf, uint32_t *pcbBuf, size_t cbUnit, PCDBGCVAR paVars, unsigned cVars)
3365{
3366 union
3367 {
3368 uint8_t *pu8;
3369 uint16_t *pu16;
3370 uint32_t *pu32;
3371 uint64_t *pu64;
3372 } u, uEnd;
3373 u.pu8 = (uint8_t *)pvBuf;
3374 uEnd.pu8 = u.pu8 + *pcbBuf;
3375
3376 unsigned i;
3377 for (i = 0; i < cVars && u.pu8 < uEnd.pu8; i++)
3378 {
3379 switch (paVars[i].enmType)
3380 {
3381 case DBGCVAR_TYPE_GC_FAR:
3382 case DBGCVAR_TYPE_GC_FLAT:
3383 case DBGCVAR_TYPE_GC_PHYS:
3384 case DBGCVAR_TYPE_HC_FLAT:
3385 case DBGCVAR_TYPE_HC_PHYS:
3386 case DBGCVAR_TYPE_NUMBER:
3387 {
3388 uint64_t u64 = paVars[i].u.u64Number;
3389 switch (cbUnit & 0x1f)
3390 {
3391 case 1:
3392 do
3393 {
3394 *u.pu8++ = u64;
3395 u64 >>= 8;
3396 } while (u64);
3397 break;
3398 case 2:
3399 do
3400 {
3401 *u.pu16++ = u64;
3402 u64 >>= 16;
3403 } while (u64);
3404 break;
3405 case 4:
3406 *u.pu32++ = u64;
3407 u64 >>= 32;
3408 if (u64)
3409 *u.pu32++ = u64;
3410 break;
3411 case 8:
3412 *u.pu64++ = u64;
3413 break;
3414 }
3415 break;
3416 }
3417
3418 case DBGCVAR_TYPE_STRING:
3419 case DBGCVAR_TYPE_SYMBOL:
3420 {
3421 const char *psz = paVars[i].u.pszString;
3422 size_t cbString = strlen(psz);
3423 if (cbUnit & RT_BIT_32(31))
3424 {
3425 /* Explode char to unit. */
3426 if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8) * (cbUnit & 0x1f))
3427 {
3428 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
3429 return VERR_TOO_MUCH_DATA;
3430 }
3431 while (*psz)
3432 {
3433 switch (cbUnit & 0x1f)
3434 {
3435 case 1: *u.pu8++ = *psz; break;
3436 case 2: *u.pu16++ = *psz; break;
3437 case 4: *u.pu32++ = *psz; break;
3438 case 8: *u.pu64++ = *psz; break;
3439 }
3440 psz++;
3441 }
3442 }
3443 else
3444 {
3445 /* Raw copy with zero padding if the size isn't aligned. */
3446 if (cbString > (uintptr_t)(uEnd.pu8 - u.pu8))
3447 {
3448 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
3449 return VERR_TOO_MUCH_DATA;
3450 }
3451
3452 size_t cbCopy = cbString & ~(cbUnit - 1);
3453 memcpy(u.pu8, psz, cbCopy);
3454 u.pu8 += cbCopy;
3455 psz += cbCopy;
3456
3457 size_t cbReminder = cbString & (cbUnit - 1);
3458 if (cbReminder)
3459 {
3460 memcpy(u.pu8, psz, cbString & (cbUnit - 1));
3461 memset(u.pu8 + cbReminder, 0, cbUnit - cbReminder);
3462 u.pu8 += cbUnit;
3463 }
3464 }
3465 break;
3466 }
3467
3468 default:
3469 *pcbBuf = u.pu8 - (uint8_t *)pvBuf;
3470 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INTERNAL_ERROR,
3471 "i=%d enmType=%d\n", i, paVars[i].enmType);
3472 return VERR_INTERNAL_ERROR;
3473 }
3474 }
3475 *pcbBuf = u.pu8 - (uint8_t *)pvBuf;
3476 if (i != cVars)
3477 {
3478 pCmdHlp->pfnVBoxError(pCmdHlp, VERR_TOO_MUCH_DATA, "Max %d bytes.\n", uEnd.pu8 - (uint8_t *)pvBuf);
3479 return VERR_TOO_MUCH_DATA;
3480 }
3481 return VINF_SUCCESS;
3482}
3483
3484
3485/**
3486 * @interface_method_impl{FNDBCCMD, The 'eb', 'ew', 'ed' and 'eq' commands.}
3487 */
3488static DECLCALLBACK(int) dbgcCmdEditMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3489{
3490 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3491 unsigned iArg;
3492
3493 /*
3494 * Validate input.
3495 */
3496 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2);
3497 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, DBGCVAR_ISPOINTER(paArgs[0].enmType));
3498 for (iArg = 1; iArg < cArgs; iArg++)
3499 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[iArg].enmType == DBGCVAR_TYPE_NUMBER);
3500 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3501
3502 /*
3503 * Figure out the element size.
3504 */
3505 unsigned cbElement;
3506 switch (pCmd->pszCmd[1])
3507 {
3508 default:
3509 case 'b': cbElement = 1; break;
3510 case 'w': cbElement = 2; break;
3511 case 'd': cbElement = 4; break;
3512 case 'q': cbElement = 8; break;
3513 }
3514
3515 /*
3516 * Do setting.
3517 */
3518 DBGCVAR Addr = paArgs[0];
3519 for (iArg = 1;;)
3520 {
3521 size_t cbWritten;
3522 int rc = pCmdHlp->pfnMemWrite(pCmdHlp, &paArgs[iArg].u, cbElement, &Addr, &cbWritten);
3523 if (RT_FAILURE(rc))
3524 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "Writing memory at %DV.\n", &Addr);
3525 if (cbWritten != cbElement)
3526 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Only wrote %u out of %u bytes!\n", cbWritten, cbElement);
3527
3528 /* advance. */
3529 iArg++;
3530 if (iArg >= cArgs)
3531 break;
3532 rc = DBGCCmdHlpEval(pCmdHlp, &Addr, "%Dv + %#x", &Addr, cbElement);
3533 if (RT_FAILURE(rc))
3534 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "%%(%Dv)", &paArgs[0]);
3535 }
3536
3537 return VINF_SUCCESS;
3538}
3539
3540
3541/**
3542 * Executes the search.
3543 *
3544 * @returns VBox status code.
3545 * @param pCmdHlp The command helpers.
3546 * @param pUVM The user mode VM handle.
3547 * @param pAddress The address to start searching from. (undefined on output)
3548 * @param cbRange The address range to search. Must not wrap.
3549 * @param pabBytes The byte pattern to search for.
3550 * @param cbBytes The size of the pattern.
3551 * @param cbUnit The search unit.
3552 * @param cMaxHits The max number of hits.
3553 * @param pResult Where to store the result if it's a function invocation.
3554 */
3555static int dbgcCmdWorkerSearchMemDoIt(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGFADDRESS pAddress, RTGCUINTPTR cbRange,
3556 const uint8_t *pabBytes, uint32_t cbBytes,
3557 uint32_t cbUnit, uint64_t cMaxHits, PDBGCVAR pResult)
3558{
3559 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3560
3561 /*
3562 * Do the search.
3563 */
3564 uint64_t cHits = 0;
3565 for (;;)
3566 {
3567 /* search */
3568 DBGFADDRESS HitAddress;
3569 int rc = DBGFR3MemScan(pUVM, pDbgc->idCpu, pAddress, cbRange, 1, pabBytes, cbBytes, &HitAddress);
3570 if (RT_FAILURE(rc))
3571 {
3572 if (rc != VERR_DBGF_MEM_NOT_FOUND)
3573 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3MemScan\n");
3574
3575 /* update the current address so we can save it (later). */
3576 pAddress->off += cbRange;
3577 pAddress->FlatPtr += cbRange;
3578 cbRange = 0;
3579 break;
3580 }
3581
3582 /* report result */
3583 DBGCVAR VarCur;
3584 rc = DBGCCmdHlpVarFromDbgfAddr(pCmdHlp, &HitAddress, &VarCur);
3585 if (RT_FAILURE(rc))
3586 return DBGCCmdHlpVBoxError(pCmdHlp, rc, "DBGCCmdHlpVarFromDbgfAddr\n");
3587 if (!pResult)
3588 pCmdHlp->pfnExec(pCmdHlp, "db %DV LB 10", &VarCur);
3589 else
3590 DBGCVAR_ASSIGN(pResult, &VarCur);
3591
3592 /* advance */
3593 cbRange -= HitAddress.FlatPtr - pAddress->FlatPtr;
3594 *pAddress = HitAddress;
3595 pAddress->FlatPtr += cbBytes;
3596 pAddress->off += cbBytes;
3597 if (cbRange <= cbBytes)
3598 {
3599 cbRange = 0;
3600 break;
3601 }
3602 cbRange -= cbBytes;
3603
3604 if (++cHits >= cMaxHits)
3605 {
3606 /// @todo save the search.
3607 break;
3608 }
3609 }
3610
3611 /*
3612 * Save the search so we can resume it...
3613 */
3614 if (pDbgc->abSearch != pabBytes)
3615 {
3616 memcpy(pDbgc->abSearch, pabBytes, cbBytes);
3617 pDbgc->cbSearch = cbBytes;
3618 pDbgc->cbSearchUnit = cbUnit;
3619 }
3620 pDbgc->cMaxSearchHits = cMaxHits;
3621 pDbgc->SearchAddr = *pAddress;
3622 pDbgc->cbSearchRange = cbRange;
3623
3624 return cHits ? VINF_SUCCESS : VERR_DBGC_COMMAND_FAILED;
3625}
3626
3627
3628/**
3629 * Resumes the previous search.
3630 *
3631 * @returns VBox status code.
3632 * @param pCmdHlp Pointer to the command helper functions.
3633 * @param pUVM The user mode VM handle.
3634 * @param pResult Where to store the result of a function invocation.
3635 */
3636static int dbgcCmdWorkerSearchMemResume(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PDBGCVAR pResult)
3637{
3638 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3639
3640 /*
3641 * Make sure there is a previous command.
3642 */
3643 if (!pDbgc->cbSearch)
3644 {
3645 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Error: No previous search\n");
3646 return VERR_DBGC_COMMAND_FAILED;
3647 }
3648
3649 /*
3650 * Make range and address adjustments.
3651 */
3652 DBGFADDRESS Address = pDbgc->SearchAddr;
3653 if (Address.FlatPtr == ~(RTGCUINTPTR)0)
3654 {
3655 Address.FlatPtr -= Address.off;
3656 Address.off = 0;
3657 }
3658
3659 RTGCUINTPTR cbRange = pDbgc->cbSearchRange;
3660 if (!cbRange)
3661 cbRange = ~(RTGCUINTPTR)0;
3662 if (Address.FlatPtr + cbRange < pDbgc->SearchAddr.FlatPtr)
3663 cbRange = ~(RTGCUINTPTR)0 - pDbgc->SearchAddr.FlatPtr + !!pDbgc->SearchAddr.FlatPtr;
3664
3665 return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, pDbgc->abSearch, pDbgc->cbSearch,
3666 pDbgc->cbSearchUnit, pDbgc->cMaxSearchHits, pResult);
3667}
3668
3669
3670/**
3671 * Search memory, worker for the 's' and 's?' functions.
3672 *
3673 * @returns VBox status.
3674 * @param pCmdHlp Pointer to the command helper functions.
3675 * @param pUVM The user mode VM handle.
3676 * @param pAddress Where to start searching. If no range, search till end of address space.
3677 * @param cMaxHits The maximum number of hits.
3678 * @param chType The search type.
3679 * @param paPatArgs The pattern variable array.
3680 * @param cPatArgs Number of pattern variables.
3681 * @param pResult Where to store the result of a function invocation.
3682 */
3683static int dbgcCmdWorkerSearchMem(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pAddress, uint64_t cMaxHits, char chType,
3684 PCDBGCVAR paPatArgs, unsigned cPatArgs, PDBGCVAR pResult)
3685{
3686 if (pResult)
3687 DBGCVAR_INIT_GC_FLAT(pResult, 0);
3688
3689 /*
3690 * Convert the search pattern into bytes and DBGFR3MemScan can deal with.
3691 */
3692 uint32_t cbUnit;
3693 switch (chType)
3694 {
3695 case 'a':
3696 case 'b': cbUnit = 1; break;
3697 case 'u': cbUnit = 2 | RT_BIT_32(31); break;
3698 case 'w': cbUnit = 2; break;
3699 case 'd': cbUnit = 4; break;
3700 case 'q': cbUnit = 8; break;
3701 default:
3702 return pCmdHlp->pfnVBoxError(pCmdHlp, VERR_INVALID_PARAMETER, "chType=%c\n", chType);
3703 }
3704 uint8_t abBytes[RT_SIZEOFMEMB(DBGC, abSearch)];
3705 uint32_t cbBytes = sizeof(abBytes);
3706 int rc = dbgcVarsToBytes(pCmdHlp, abBytes, &cbBytes, cbUnit, paPatArgs, cPatArgs);
3707 if (RT_FAILURE(rc))
3708 return VERR_DBGC_COMMAND_FAILED;
3709
3710 /*
3711 * Make DBGF address and fix the range.
3712 */
3713 DBGFADDRESS Address;
3714 rc = pCmdHlp->pfnVarToDbgfAddr(pCmdHlp, pAddress, &Address);
3715 if (RT_FAILURE(rc))
3716 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "VarToDbgfAddr(,%Dv,)\n", pAddress);
3717
3718 RTGCUINTPTR cbRange;
3719 switch (pAddress->enmRangeType)
3720 {
3721 case DBGCVAR_RANGE_BYTES:
3722 cbRange = pAddress->u64Range;
3723 if (cbRange != pAddress->u64Range)
3724 cbRange = ~(RTGCUINTPTR)0;
3725 break;
3726
3727 case DBGCVAR_RANGE_ELEMENTS:
3728 cbRange = (RTGCUINTPTR)(pAddress->u64Range * cbUnit);
3729 if ( cbRange != pAddress->u64Range * cbUnit
3730 || cbRange < pAddress->u64Range)
3731 cbRange = ~(RTGCUINTPTR)0;
3732 break;
3733
3734 default:
3735 cbRange = ~(RTGCUINTPTR)0;
3736 break;
3737 }
3738 if (Address.FlatPtr + cbRange < Address.FlatPtr)
3739 cbRange = ~(RTGCUINTPTR)0 - Address.FlatPtr + !!Address.FlatPtr;
3740
3741 /*
3742 * Ok, do it.
3743 */
3744 return dbgcCmdWorkerSearchMemDoIt(pCmdHlp, pUVM, &Address, cbRange, abBytes, cbBytes, cbUnit, cMaxHits, pResult);
3745}
3746
3747
3748/**
3749 * @interface_method_impl{FNDBCCMD, The 's' command.}
3750 */
3751static DECLCALLBACK(int) dbgcCmdSearchMem(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3752{
3753 /* check that the parser did what it's supposed to do. */
3754 //if ( cArgs <= 2
3755 // && paArgs[0].enmType != DBGCVAR_TYPE_STRING)
3756 // return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "parser error\n");
3757
3758 /*
3759 * Repeat previous search?
3760 */
3761 if (cArgs == 0)
3762 return dbgcCmdWorkerSearchMemResume(pCmdHlp, pUVM, NULL);
3763
3764 /*
3765 * Parse arguments.
3766 */
3767
3768 return -1;
3769}
3770
3771
3772/**
3773 * @interface_method_impl{FNDBCCMD, The 's?' command.}
3774 */
3775static DECLCALLBACK(int) dbgcCmdSearchMemType(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3776{
3777 /* check that the parser did what it's supposed to do. */
3778 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs >= 2 && DBGCVAR_ISGCPOINTER(paArgs[0].enmType));
3779 return dbgcCmdWorkerSearchMem(pCmdHlp, pUVM, &paArgs[0], 25, pCmd->pszCmd[1], paArgs + 1, cArgs - 1, NULL);
3780}
3781
3782
3783/**
3784 * List near symbol.
3785 *
3786 * @returns VBox status code.
3787 * @param pCmdHlp Pointer to command helper functions.
3788 * @param pUVM The user mode VM handle.
3789 * @param pArg Pointer to the address or symbol to lookup.
3790 */
3791static int dbgcDoListNear(PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR pArg)
3792{
3793 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3794
3795 RTDBGSYMBOL Symbol;
3796 int rc;
3797 if (pArg->enmType == DBGCVAR_TYPE_SYMBOL)
3798 {
3799 /*
3800 * Lookup the symbol address.
3801 */
3802 rc = DBGFR3AsSymbolByName(pUVM, pDbgc->hDbgAs, pArg->u.pszString, &Symbol, NULL);
3803 if (RT_FAILURE(rc))
3804 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3AsSymbolByName(,,%s,)\n", pArg->u.pszString);
3805
3806 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%RTptr %s\n", Symbol.Value, Symbol.szName);
3807 }
3808 else
3809 {
3810 /*
3811 * Convert it to a flat GC address and lookup that address.
3812 */
3813 DBGCVAR AddrVar;
3814 rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, "%%(%DV)", pArg);
3815 if (RT_FAILURE(rc))
3816 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%%(%DV)\n", pArg);
3817
3818 RTINTPTR offDisp;
3819 DBGFADDRESS Addr;
3820 rc = DBGFR3AsSymbolByAddr(pUVM, pDbgc->hDbgAs, DBGFR3AddrFromFlat(pDbgc->pUVM, &Addr, AddrVar.u.GCFlat), &offDisp, &Symbol, NULL);
3821 if (RT_FAILURE(rc))
3822 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "DBGFR3ASymbolByAddr(,,%RGv,,)\n", AddrVar.u.GCFlat);
3823
3824 if (!offDisp)
3825 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%DV %s", &AddrVar, Symbol.szName);
3826 else if (offDisp > 0)
3827 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%DV %s + %RGv", &AddrVar, Symbol.szName, offDisp);
3828 else
3829 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%DV %s - %RGv", &AddrVar, Symbol.szName, -offDisp);
3830 if ((RTGCINTPTR)Symbol.cb > -offDisp)
3831 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, " LB %RGv\n", Symbol.cb + offDisp);
3832 else
3833 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "\n");
3834 }
3835
3836 return rc;
3837}
3838
3839
3840/**
3841 * @interface_method_impl{FNDBCCMD, The 'ln' (listnear) command.}
3842 */
3843static DECLCALLBACK(int) dbgcCmdListNear(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3844{
3845 if (!cArgs)
3846 {
3847 /*
3848 * Current cs:eip symbol.
3849 */
3850 DBGCVAR AddrVar;
3851 int rc = DBGCCmdHlpEval(pCmdHlp, &AddrVar, "%%(cs:eip)");
3852 if (RT_FAILURE(rc))
3853 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "%%(cs:eip)\n");
3854 return dbgcDoListNear(pCmdHlp, pUVM, &AddrVar);
3855 }
3856
3857/** @todo Fix the darn parser, it's resolving symbols specified as arguments before we get in here. */
3858 /*
3859 * Iterate arguments.
3860 */
3861 for (unsigned iArg = 0; iArg < cArgs; iArg++)
3862 {
3863 int rc = dbgcDoListNear(pCmdHlp, pUVM, &paArgs[iArg]);
3864 if (RT_FAILURE(rc))
3865 return rc;
3866 }
3867
3868 NOREF(pCmd);
3869 return VINF_SUCCESS;
3870}
3871
3872
3873/**
3874 * Matches the module patters against a module name.
3875 *
3876 * @returns true if matching, otherwise false.
3877 * @param pszName The module name.
3878 * @param paArgs The module pattern argument list.
3879 * @param cArgs Number of arguments.
3880 */
3881static bool dbgcCmdListModuleMatch(const char *pszName, PCDBGCVAR paArgs, unsigned cArgs)
3882{
3883 for (uint32_t i = 0; i < cArgs; i++)
3884 if (RTStrSimplePatternMatch(paArgs[i].u.pszString, pszName))
3885 return true;
3886 return false;
3887}
3888
3889
3890/**
3891 * @interface_method_impl{FNDBCCMD, The 'ln' (list near) command.}
3892 */
3893static DECLCALLBACK(int) dbgcCmdListModules(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3894{
3895 bool const fMappings = pCmd->pszCmd[2] == 'o';
3896 bool const fVerbose = pCmd->pszCmd[strlen(pCmd->pszCmd) - 1] == 'v';
3897 PDBGC pDbgc = DBGC_CMDHLP2DBGC(pCmdHlp);
3898
3899 /*
3900 * Iterate the modules in the current address space and print info about
3901 * those matching the input.
3902 */
3903 RTDBGAS hAs = DBGFR3AsResolveAndRetain(pUVM, pDbgc->hDbgAs);
3904 uint32_t cMods = RTDbgAsModuleCount(hAs);
3905 for (uint32_t iMod = 0; iMod < cMods; iMod++)
3906 {
3907 RTDBGMOD hMod = RTDbgAsModuleByIndex(hAs, iMod);
3908 if (hMod != NIL_RTDBGMOD)
3909 {
3910 uint32_t const cSegs = RTDbgModSegmentCount(hMod);
3911 const char * const pszName = RTDbgModName(hMod);
3912 const char * const pszImgFile = RTDbgModImageFile(hMod);
3913 const char * const pszImgFileUsed = RTDbgModImageFileUsed(hMod);
3914 const char * const pszDbgFile = RTDbgModDebugFile(hMod);
3915 if ( cArgs == 0
3916 || dbgcCmdListModuleMatch(pszName, paArgs, cArgs))
3917 {
3918 /*
3919 * Find the mapping with the lower address, preferring a full
3920 * image mapping, for the main line.
3921 */
3922 RTDBGASMAPINFO aMappings[128];
3923 uint32_t cMappings = RT_ELEMENTS(aMappings);
3924 int rc = RTDbgAsModuleQueryMapByIndex(hAs, iMod, &aMappings[0], &cMappings, 0 /*fFlags*/);
3925 if (RT_SUCCESS(rc))
3926 {
3927 bool fFull = false;
3928 RTUINTPTR uMin = RTUINTPTR_MAX;
3929 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
3930 if ( aMappings[iMap].Address < uMin
3931 && ( !fFull
3932 || aMappings[iMap].iSeg == NIL_RTDBGSEGIDX))
3933 uMin = aMappings[iMap].Address;
3934 if (!fVerbose || !pszImgFile)
3935 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %s\n", (RTGCUINTPTR)uMin, cSegs, pszName);
3936 else
3937 DBGCCmdHlpPrintf(pCmdHlp, "%RGv %04x %-12s %s\n", (RTGCUINTPTR)uMin, cSegs, pszName, pszImgFile);
3938 if (fVerbose && pszImgFileUsed)
3939 DBGCCmdHlpPrintf(pCmdHlp, " Local image: %s\n", pszImgFileUsed);
3940 if (fVerbose && pszDbgFile)
3941 DBGCCmdHlpPrintf(pCmdHlp, " Debug file: %s\n", pszDbgFile);
3942
3943 if (fMappings)
3944 {
3945 /* sort by address first - not very efficient. */
3946 for (uint32_t i = 0; i + 1 < cMappings; i++)
3947 for (uint32_t j = i + 1; j < cMappings; j++)
3948 if (aMappings[j].Address < aMappings[i].Address)
3949 {
3950 RTDBGASMAPINFO Tmp = aMappings[j];
3951 aMappings[j] = aMappings[i];
3952 aMappings[i] = Tmp;
3953 }
3954
3955 /* print */
3956 for (uint32_t iMap = 0; iMap < cMappings; iMap++)
3957 if (aMappings[iMap].iSeg != NIL_RTDBGSEGIDX)
3958 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv #%02x %s\n",
3959 (RTGCUINTPTR)aMappings[iMap].Address,
3960 (RTGCUINTPTR)RTDbgModSegmentSize(hMod, aMappings[iMap].iSeg),
3961 aMappings[iMap].iSeg,
3962 /** @todo RTDbgModSegmentName(hMod, aMappings[iMap].iSeg)*/ "noname");
3963 else
3964 DBGCCmdHlpPrintf(pCmdHlp, " %RGv %RGv <everything>\n",
3965 (RTGCUINTPTR)aMappings[iMap].Address,
3966 (RTGCUINTPTR)RTDbgModImageSize(hMod));
3967 }
3968 }
3969 else
3970 DBGCCmdHlpPrintf(pCmdHlp, "%.*s %04x %s (rc=%Rrc)\n",
3971 sizeof(RTGCPTR) * 2, "???????????", cSegs, pszName, rc);
3972 /** @todo missing address space API for enumerating the mappings. */
3973 }
3974 RTDbgModRelease(hMod);
3975 }
3976 }
3977 RTDbgAsRelease(hAs);
3978
3979 NOREF(pCmd);
3980 return VINF_SUCCESS;
3981}
3982
3983
3984
3985/**
3986 * @callback_method_impl{Reads a unsigned 8-bit value.}
3987 */
3988static DECLCALLBACK(int) dbgcFuncReadU8(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
3989 PDBGCVAR pResult)
3990{
3991 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
3992 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
3993 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
3994
3995 uint8_t b;
3996 int rc = DBGCCmdHlpMemRead(pCmdHlp, &b, sizeof(b), &paArgs[0], NULL);
3997 if (RT_FAILURE(rc))
3998 return rc;
3999 DBGCVAR_INIT_NUMBER(pResult, b);
4000
4001 NOREF(pFunc);
4002 return VINF_SUCCESS;
4003}
4004
4005
4006/**
4007 * @callback_method_impl{Reads a unsigned 16-bit value.}
4008 */
4009static DECLCALLBACK(int) dbgcFuncReadU16(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
4010 PDBGCVAR pResult)
4011{
4012 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
4013 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
4014 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
4015
4016 uint16_t u16;
4017 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u16, sizeof(u16), &paArgs[0], NULL);
4018 if (RT_FAILURE(rc))
4019 return rc;
4020 DBGCVAR_INIT_NUMBER(pResult, u16);
4021
4022 NOREF(pFunc);
4023 return VINF_SUCCESS;
4024}
4025
4026
4027/**
4028 * @callback_method_impl{Reads a unsigned 32-bit value.}
4029 */
4030static DECLCALLBACK(int) dbgcFuncReadU32(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
4031 PDBGCVAR pResult)
4032{
4033 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
4034 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
4035 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
4036
4037 uint32_t u32;
4038 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u32, sizeof(u32), &paArgs[0], NULL);
4039 if (RT_FAILURE(rc))
4040 return rc;
4041 DBGCVAR_INIT_NUMBER(pResult, u32);
4042
4043 NOREF(pFunc);
4044 return VINF_SUCCESS;
4045}
4046
4047
4048/**
4049 * @callback_method_impl{Reads a unsigned 64-bit value.}
4050 */
4051static DECLCALLBACK(int) dbgcFuncReadU64(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
4052 PDBGCVAR pResult)
4053{
4054 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
4055 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
4056 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
4057
4058 uint64_t u64;
4059 int rc = DBGCCmdHlpMemRead(pCmdHlp, &u64, sizeof(u64), &paArgs[0], NULL);
4060 if (RT_FAILURE(rc))
4061 return rc;
4062 DBGCVAR_INIT_NUMBER(pResult, u64);
4063
4064 NOREF(pFunc);
4065 return VINF_SUCCESS;
4066}
4067
4068
4069/**
4070 * @callback_method_impl{Reads a unsigned pointer-sized value.}
4071 */
4072static DECLCALLBACK(int) dbgcFuncReadPtr(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
4073 PDBGCVAR pResult)
4074{
4075 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
4076 AssertReturn(DBGCVAR_ISPOINTER(paArgs[0].enmType), VERR_DBGC_PARSE_BUG);
4077 AssertReturn(paArgs[0].enmRangeType == DBGCVAR_RANGE_NONE, VERR_DBGC_PARSE_BUG);
4078
4079 CPUMMODE enmMode = DBGCCmdHlpGetCpuMode(pCmdHlp);
4080 if (enmMode == CPUMMODE_LONG)
4081 return dbgcFuncReadU64(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
4082 return dbgcFuncReadU32(pFunc, pCmdHlp, pUVM, paArgs, cArgs, pResult);
4083}
4084
4085
4086/**
4087 * @callback_method_impl{The hi(value) function implementation.}
4088 */
4089static DECLCALLBACK(int) dbgcFuncHi(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
4090 PDBGCVAR pResult)
4091{
4092 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
4093
4094 uint16_t uHi;
4095 switch (paArgs[0].enmType)
4096 {
4097 case DBGCVAR_TYPE_GC_FLAT: uHi = (uint16_t)(paArgs[0].u.GCFlat >> 16); break;
4098 case DBGCVAR_TYPE_GC_FAR: uHi = (uint16_t)paArgs[0].u.GCFar.sel; break;
4099 case DBGCVAR_TYPE_GC_PHYS: uHi = (uint16_t)(paArgs[0].u.GCPhys >> 16); break;
4100 case DBGCVAR_TYPE_HC_FLAT: uHi = (uint16_t)((uintptr_t)paArgs[0].u.pvHCFlat >> 16); break;
4101 case DBGCVAR_TYPE_HC_PHYS: uHi = (uint16_t)(paArgs[0].u.HCPhys >> 16); break;
4102 case DBGCVAR_TYPE_NUMBER: uHi = (uint16_t)(paArgs[0].u.u64Number >> 16); break;
4103 default:
4104 AssertFailedReturn(VERR_DBGC_PARSE_BUG);
4105 }
4106 DBGCVAR_INIT_NUMBER(pResult, uHi);
4107 DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
4108
4109 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
4110 return VINF_SUCCESS;
4111}
4112
4113
4114/**
4115 * @callback_method_impl{The low(value) function implementation.}
4116 */
4117static DECLCALLBACK(int) dbgcFuncLow(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
4118 PDBGCVAR pResult)
4119{
4120 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
4121
4122 uint16_t uLow;
4123 switch (paArgs[0].enmType)
4124 {
4125 case DBGCVAR_TYPE_GC_FLAT: uLow = (uint16_t)paArgs[0].u.GCFlat; break;
4126 case DBGCVAR_TYPE_GC_FAR: uLow = (uint16_t)paArgs[0].u.GCFar.off; break;
4127 case DBGCVAR_TYPE_GC_PHYS: uLow = (uint16_t)paArgs[0].u.GCPhys; break;
4128 case DBGCVAR_TYPE_HC_FLAT: uLow = (uint16_t)(uintptr_t)paArgs[0].u.pvHCFlat; break;
4129 case DBGCVAR_TYPE_HC_PHYS: uLow = (uint16_t)paArgs[0].u.HCPhys; break;
4130 case DBGCVAR_TYPE_NUMBER: uLow = (uint16_t)paArgs[0].u.u64Number; break;
4131 default:
4132 AssertFailedReturn(VERR_DBGC_PARSE_BUG);
4133 }
4134 DBGCVAR_INIT_NUMBER(pResult, uLow);
4135 DBGCVAR_SET_RANGE(pResult, paArgs[0].enmRangeType, paArgs[0].u64Range);
4136
4137 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
4138 return VINF_SUCCESS;
4139}
4140
4141
4142/**
4143 * @callback_method_impl{The low(value) function implementation.}
4144 */
4145static DECLCALLBACK(int) dbgcFuncNot(PCDBGCFUNC pFunc, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, uint32_t cArgs,
4146 PDBGCVAR pResult)
4147{
4148 AssertReturn(cArgs == 1, VERR_DBGC_PARSE_BUG);
4149 NOREF(pFunc); NOREF(pCmdHlp); NOREF(pUVM);
4150 return DBGCCmdHlpEval(pCmdHlp, pResult, "!(%Dv)", &paArgs[0]);
4151}
4152
4153
4154/** Generic pointer argument wo/ range. */
4155static const DBGCVARDESC g_aArgPointerWoRange[] =
4156{
4157 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
4158 { 1, 1, DBGCVAR_CAT_POINTER_NO_RANGE, 0, "value", "Address or number." },
4159};
4160
4161/** Generic pointer or number argument. */
4162static const DBGCVARDESC g_aArgPointerNumber[] =
4163{
4164 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
4165 { 1, 1, DBGCVAR_CAT_POINTER_NUMBER, 0, "value", "Address or number." },
4166};
4167
4168
4169
4170/** Function descriptors for the CodeView / WinDbg emulation.
4171 * The emulation isn't attempting to be identical, only somewhat similar.
4172 */
4173const DBGCFUNC g_aFuncsCodeView[] =
4174{
4175 { "by", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU8, "address", "Reads a byte at the given address." },
4176 { "dwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU32, "address", "Reads a 32-bit value at the given address." },
4177 { "hi", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncHi, "value", "Returns the high 16-bit bits of a value." },
4178 { "low", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncLow, "value", "Returns the low 16-bit bits of a value." },
4179 { "not", 1, 1, &g_aArgPointerNumber[0], RT_ELEMENTS(g_aArgPointerNumber), 0, dbgcFuncNot, "address", "Boolean NOT." },
4180 { "poi", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadPtr, "address", "Reads a pointer sized (CS) value at the given address." },
4181 { "qwo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU64, "address", "Reads a 32-bit value at the given address." },
4182 { "wo", 1, 1, &g_aArgPointerWoRange[0], RT_ELEMENTS(g_aArgPointerWoRange), 0, dbgcFuncReadU16, "address", "Reads a 16-bit value at the given address." },
4183};
4184
4185/** The number of functions in the CodeView/WinDbg emulation. */
4186const uint32_t g_cFuncsCodeView = RT_ELEMENTS(g_aFuncsCodeView);
4187
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette