| 1 | /* $Revision: 69499 $ */
|
|---|
| 2 | /** @file
|
|---|
| 3 | * IPRT - Ring-0 Memory Objects, Linux.
|
|---|
| 4 | */
|
|---|
| 5 |
|
|---|
| 6 | /*
|
|---|
| 7 | * Copyright (C) 2006-2007 Oracle Corporation
|
|---|
| 8 | *
|
|---|
| 9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
|---|
| 10 | * available from http://www.virtualbox.org. This file is free software;
|
|---|
| 11 | * you can redistribute it and/or modify it under the terms of the GNU
|
|---|
| 12 | * General Public License (GPL) as published by the Free Software
|
|---|
| 13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
|---|
| 14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
|---|
| 15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
|---|
| 16 | *
|
|---|
| 17 | * The contents of this file may alternatively be used under the terms
|
|---|
| 18 | * of the Common Development and Distribution License Version 1.0
|
|---|
| 19 | * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
|
|---|
| 20 | * VirtualBox OSE distribution, in which case the provisions of the
|
|---|
| 21 | * CDDL are applicable instead of those of the GPL.
|
|---|
| 22 | *
|
|---|
| 23 | * You may elect to license modified versions of this file under the
|
|---|
| 24 | * terms and conditions of either the GPL or the CDDL or both.
|
|---|
| 25 | */
|
|---|
| 26 |
|
|---|
| 27 |
|
|---|
| 28 | /*******************************************************************************
|
|---|
| 29 | * Header Files *
|
|---|
| 30 | *******************************************************************************/
|
|---|
| 31 | #include "the-linux-kernel.h"
|
|---|
| 32 |
|
|---|
| 33 | #include <iprt/memobj.h>
|
|---|
| 34 | #include <iprt/alloc.h>
|
|---|
| 35 | #include <iprt/assert.h>
|
|---|
| 36 | #include <iprt/log.h>
|
|---|
| 37 | #include <iprt/process.h>
|
|---|
| 38 | #include <iprt/string.h>
|
|---|
| 39 | #include "internal/memobj.h"
|
|---|
| 40 |
|
|---|
| 41 |
|
|---|
| 42 | /*******************************************************************************
|
|---|
| 43 | * Defined Constants And Macros *
|
|---|
| 44 | *******************************************************************************/
|
|---|
| 45 | /* early 2.6 kernels */
|
|---|
| 46 | #ifndef PAGE_SHARED_EXEC
|
|---|
| 47 | # define PAGE_SHARED_EXEC PAGE_SHARED
|
|---|
| 48 | #endif
|
|---|
| 49 | #ifndef PAGE_READONLY_EXEC
|
|---|
| 50 | # define PAGE_READONLY_EXEC PAGE_READONLY
|
|---|
| 51 | #endif
|
|---|
| 52 |
|
|---|
| 53 | /*
|
|---|
| 54 | * 2.6.29+ kernels don't work with remap_pfn_range() anymore because
|
|---|
| 55 | * track_pfn_vma_new() is apparently not defined for non-RAM pages.
|
|---|
| 56 | * It should be safe to use vm_insert_page() older kernels as well.
|
|---|
| 57 | */
|
|---|
| 58 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 23)
|
|---|
| 59 | # define VBOX_USE_INSERT_PAGE
|
|---|
| 60 | #endif
|
|---|
| 61 | #if defined(CONFIG_X86_PAE) \
|
|---|
| 62 | && ( defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) \
|
|---|
| 63 | || ( LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) \
|
|---|
| 64 | && LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 11)))
|
|---|
| 65 | # define VBOX_USE_PAE_HACK
|
|---|
| 66 | #endif
|
|---|
| 67 |
|
|---|
| 68 |
|
|---|
| 69 | /*******************************************************************************
|
|---|
| 70 | * Structures and Typedefs *
|
|---|
| 71 | *******************************************************************************/
|
|---|
| 72 | /**
|
|---|
| 73 | * The Darwin version of the memory object structure.
|
|---|
| 74 | */
|
|---|
| 75 | typedef struct RTR0MEMOBJLNX
|
|---|
| 76 | {
|
|---|
| 77 | /** The core structure. */
|
|---|
| 78 | RTR0MEMOBJINTERNAL Core;
|
|---|
| 79 | /** Set if the allocation is contiguous.
|
|---|
| 80 | * This means it has to be given back as one chunk. */
|
|---|
| 81 | bool fContiguous;
|
|---|
| 82 | /** Set if we've vmap'ed the memory into ring-0. */
|
|---|
| 83 | bool fMappedToRing0;
|
|---|
| 84 | /** The pages in the apPages array. */
|
|---|
| 85 | size_t cPages;
|
|---|
| 86 | /** Array of struct page pointers. (variable size) */
|
|---|
| 87 | struct page *apPages[1];
|
|---|
| 88 | } RTR0MEMOBJLNX, *PRTR0MEMOBJLNX;
|
|---|
| 89 |
|
|---|
| 90 |
|
|---|
| 91 | static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx);
|
|---|
| 92 |
|
|---|
| 93 |
|
|---|
| 94 | /**
|
|---|
| 95 | * Helper that converts from a RTR0PROCESS handle to a linux task.
|
|---|
| 96 | *
|
|---|
| 97 | * @returns The corresponding Linux task.
|
|---|
| 98 | * @param R0Process IPRT ring-0 process handle.
|
|---|
| 99 | */
|
|---|
| 100 | struct task_struct *rtR0ProcessToLinuxTask(RTR0PROCESS R0Process)
|
|---|
| 101 | {
|
|---|
| 102 | /** @todo fix rtR0ProcessToLinuxTask!! */
|
|---|
| 103 | return R0Process == RTR0ProcHandleSelf() ? current : NULL;
|
|---|
| 104 | }
|
|---|
| 105 |
|
|---|
| 106 |
|
|---|
| 107 | /**
|
|---|
| 108 | * Compute order. Some functions allocate 2^order pages.
|
|---|
| 109 | *
|
|---|
| 110 | * @returns order.
|
|---|
| 111 | * @param cPages Number of pages.
|
|---|
| 112 | */
|
|---|
| 113 | static int rtR0MemObjLinuxOrder(size_t cPages)
|
|---|
| 114 | {
|
|---|
| 115 | int iOrder;
|
|---|
| 116 | size_t cTmp;
|
|---|
| 117 |
|
|---|
| 118 | for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder)
|
|---|
| 119 | ;
|
|---|
| 120 | if (cPages & ~((size_t)1 << iOrder))
|
|---|
| 121 | ++iOrder;
|
|---|
| 122 |
|
|---|
| 123 | return iOrder;
|
|---|
| 124 | }
|
|---|
| 125 |
|
|---|
| 126 |
|
|---|
| 127 | /**
|
|---|
| 128 | * Converts from RTMEM_PROT_* to Linux PAGE_*.
|
|---|
| 129 | *
|
|---|
| 130 | * @returns Linux page protection constant.
|
|---|
| 131 | * @param fProt The IPRT protection mask.
|
|---|
| 132 | * @param fKernel Whether it applies to kernel or user space.
|
|---|
| 133 | */
|
|---|
| 134 | static pgprot_t rtR0MemObjLinuxConvertProt(unsigned fProt, bool fKernel)
|
|---|
| 135 | {
|
|---|
| 136 | switch (fProt)
|
|---|
| 137 | {
|
|---|
| 138 | default:
|
|---|
| 139 | AssertMsgFailed(("%#x %d\n", fProt, fKernel));
|
|---|
| 140 | case RTMEM_PROT_NONE:
|
|---|
| 141 | return PAGE_NONE;
|
|---|
| 142 |
|
|---|
| 143 | case RTMEM_PROT_READ:
|
|---|
| 144 | return fKernel ? PAGE_KERNEL_RO : PAGE_READONLY;
|
|---|
| 145 |
|
|---|
| 146 | case RTMEM_PROT_WRITE:
|
|---|
| 147 | case RTMEM_PROT_WRITE | RTMEM_PROT_READ:
|
|---|
| 148 | return fKernel ? PAGE_KERNEL : PAGE_SHARED;
|
|---|
| 149 |
|
|---|
| 150 | case RTMEM_PROT_EXEC:
|
|---|
| 151 | case RTMEM_PROT_EXEC | RTMEM_PROT_READ:
|
|---|
| 152 | #if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
|
|---|
| 153 | if (fKernel)
|
|---|
| 154 | {
|
|---|
| 155 | pgprot_t fPg = MY_PAGE_KERNEL_EXEC;
|
|---|
| 156 | pgprot_val(fPg) &= ~_PAGE_RW;
|
|---|
| 157 | return fPg;
|
|---|
| 158 | }
|
|---|
| 159 | return PAGE_READONLY_EXEC;
|
|---|
| 160 | #else
|
|---|
| 161 | return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_READONLY_EXEC;
|
|---|
| 162 | #endif
|
|---|
| 163 |
|
|---|
| 164 | case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
|
|---|
| 165 | case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_READ:
|
|---|
| 166 | return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_SHARED_EXEC;
|
|---|
| 167 | }
|
|---|
| 168 | }
|
|---|
| 169 |
|
|---|
| 170 |
|
|---|
| 171 | /**
|
|---|
| 172 | * Internal worker that allocates physical pages and creates the memory object for them.
|
|---|
| 173 | *
|
|---|
| 174 | * @returns IPRT status code.
|
|---|
| 175 | * @param ppMemLnx Where to store the memory object pointer.
|
|---|
| 176 | * @param enmType The object type.
|
|---|
| 177 | * @param cb The number of bytes to allocate.
|
|---|
| 178 | * @param uAlignment The alignment of the physical memory.
|
|---|
| 179 | * Only valid if fContiguous == true, ignored otherwise.
|
|---|
| 180 | * @param fFlagsLnx The page allocation flags (GPFs).
|
|---|
| 181 | * @param fContiguous Whether the allocation must be contiguous.
|
|---|
| 182 | */
|
|---|
| 183 | static int rtR0MemObjLinuxAllocPages(PRTR0MEMOBJLNX *ppMemLnx, RTR0MEMOBJTYPE enmType, size_t cb,
|
|---|
| 184 | size_t uAlignment, unsigned fFlagsLnx, bool fContiguous)
|
|---|
| 185 | {
|
|---|
| 186 | size_t iPage;
|
|---|
| 187 | size_t const cPages = cb >> PAGE_SHIFT;
|
|---|
| 188 | struct page *paPages;
|
|---|
| 189 |
|
|---|
| 190 | /*
|
|---|
| 191 | * Allocate a memory object structure that's large enough to contain
|
|---|
| 192 | * the page pointer array.
|
|---|
| 193 | */
|
|---|
| 194 | PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), enmType, NULL, cb);
|
|---|
| 195 | if (!pMemLnx)
|
|---|
| 196 | return VERR_NO_MEMORY;
|
|---|
| 197 | pMemLnx->cPages = cPages;
|
|---|
| 198 |
|
|---|
| 199 | if (cPages > 255)
|
|---|
| 200 | {
|
|---|
| 201 | # ifdef __GFP_REPEAT
|
|---|
| 202 | /* Try hard to allocate the memory, but the allocation attempt might fail. */
|
|---|
| 203 | fFlagsLnx |= __GFP_REPEAT;
|
|---|
| 204 | # endif
|
|---|
| 205 | # ifdef __GFP_NOMEMALLOC
|
|---|
| 206 | /* Introduced with Linux 2.6.12: Don't use emergency reserves */
|
|---|
| 207 | fFlagsLnx |= __GFP_NOMEMALLOC;
|
|---|
| 208 | # endif
|
|---|
| 209 | }
|
|---|
| 210 |
|
|---|
| 211 | /*
|
|---|
| 212 | * Allocate the pages.
|
|---|
| 213 | * For small allocations we'll try contiguous first and then fall back on page by page.
|
|---|
| 214 | */
|
|---|
| 215 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
|
|---|
| 216 | if ( fContiguous
|
|---|
| 217 | || cb <= PAGE_SIZE * 2)
|
|---|
| 218 | {
|
|---|
| 219 | # ifdef VBOX_USE_INSERT_PAGE
|
|---|
| 220 | paPages = alloc_pages(fFlagsLnx | __GFP_COMP, rtR0MemObjLinuxOrder(cPages));
|
|---|
| 221 | # else
|
|---|
| 222 | paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cPages));
|
|---|
| 223 | # endif
|
|---|
| 224 | if (paPages)
|
|---|
| 225 | {
|
|---|
| 226 | fContiguous = true;
|
|---|
| 227 | for (iPage = 0; iPage < cPages; iPage++)
|
|---|
| 228 | pMemLnx->apPages[iPage] = &paPages[iPage];
|
|---|
| 229 | }
|
|---|
| 230 | else if (fContiguous)
|
|---|
| 231 | {
|
|---|
| 232 | rtR0MemObjDelete(&pMemLnx->Core);
|
|---|
| 233 | return VERR_NO_MEMORY;
|
|---|
| 234 | }
|
|---|
| 235 | }
|
|---|
| 236 |
|
|---|
| 237 | if (!fContiguous)
|
|---|
| 238 | {
|
|---|
| 239 | for (iPage = 0; iPage < cPages; iPage++)
|
|---|
| 240 | {
|
|---|
| 241 | pMemLnx->apPages[iPage] = alloc_page(fFlagsLnx);
|
|---|
| 242 | if (RT_UNLIKELY(!pMemLnx->apPages[iPage]))
|
|---|
| 243 | {
|
|---|
| 244 | while (iPage-- > 0)
|
|---|
| 245 | __free_page(pMemLnx->apPages[iPage]);
|
|---|
| 246 | rtR0MemObjDelete(&pMemLnx->Core);
|
|---|
| 247 | return VERR_NO_MEMORY;
|
|---|
| 248 | }
|
|---|
| 249 | }
|
|---|
| 250 | }
|
|---|
| 251 |
|
|---|
| 252 | #else /* < 2.4.22 */
|
|---|
| 253 | /** @todo figure out why we didn't allocate page-by-page on 2.4.21 and older... */
|
|---|
| 254 | paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cPages));
|
|---|
| 255 | if (!paPages)
|
|---|
| 256 | {
|
|---|
| 257 | rtR0MemObjDelete(&pMemLnx->Core);
|
|---|
| 258 | return VERR_NO_MEMORY;
|
|---|
| 259 | }
|
|---|
| 260 | for (iPage = 0; iPage < cPages; iPage++)
|
|---|
| 261 | {
|
|---|
| 262 | pMemLnx->apPages[iPage] = &paPages[iPage];
|
|---|
| 263 | MY_SET_PAGES_EXEC(pMemLnx->apPages[iPage], 1);
|
|---|
| 264 | if (PageHighMem(pMemLnx->apPages[iPage]))
|
|---|
| 265 | BUG();
|
|---|
| 266 | }
|
|---|
| 267 |
|
|---|
| 268 | fContiguous = true;
|
|---|
| 269 | #endif /* < 2.4.22 */
|
|---|
| 270 | pMemLnx->fContiguous = fContiguous;
|
|---|
| 271 |
|
|---|
| 272 | /*
|
|---|
| 273 | * Reserve the pages.
|
|---|
| 274 | */
|
|---|
| 275 | for (iPage = 0; iPage < cPages; iPage++)
|
|---|
| 276 | SetPageReserved(pMemLnx->apPages[iPage]);
|
|---|
| 277 |
|
|---|
| 278 | /*
|
|---|
| 279 | * Note that the physical address of memory allocated with alloc_pages(flags, order)
|
|---|
| 280 | * is always 2^(PAGE_SHIFT+order)-aligned.
|
|---|
| 281 | */
|
|---|
| 282 | if ( fContiguous
|
|---|
| 283 | && uAlignment > PAGE_SIZE)
|
|---|
| 284 | {
|
|---|
| 285 | /*
|
|---|
| 286 | * Check for alignment constraints. The physical address of memory allocated with
|
|---|
| 287 | * alloc_pages(flags, order) is always 2^(PAGE_SHIFT+order)-aligned.
|
|---|
| 288 | */
|
|---|
| 289 | if (RT_UNLIKELY(page_to_phys(pMemLnx->apPages[0]) & (uAlignment - 1)))
|
|---|
| 290 | {
|
|---|
| 291 | /*
|
|---|
| 292 | * This should never happen!
|
|---|
| 293 | */
|
|---|
| 294 | printk("rtR0MemObjLinuxAllocPages(cb=0x%lx, uAlignment=0x%lx): alloc_pages(..., %d) returned physical memory at 0x%lx!\n",
|
|---|
| 295 | (unsigned long)cb, (unsigned long)uAlignment, rtR0MemObjLinuxOrder(cPages), (unsigned long)page_to_phys(pMemLnx->apPages[0]));
|
|---|
| 296 | rtR0MemObjLinuxFreePages(pMemLnx);
|
|---|
| 297 | return VERR_NO_MEMORY;
|
|---|
| 298 | }
|
|---|
| 299 | }
|
|---|
| 300 |
|
|---|
| 301 | *ppMemLnx = pMemLnx;
|
|---|
| 302 | return VINF_SUCCESS;
|
|---|
| 303 | }
|
|---|
| 304 |
|
|---|
| 305 |
|
|---|
| 306 | /**
|
|---|
| 307 | * Frees the physical pages allocated by the rtR0MemObjLinuxAllocPages() call.
|
|---|
| 308 | *
|
|---|
| 309 | * This method does NOT free the object.
|
|---|
| 310 | *
|
|---|
| 311 | * @param pMemLnx The object which physical pages should be freed.
|
|---|
| 312 | */
|
|---|
| 313 | static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx)
|
|---|
| 314 | {
|
|---|
| 315 | size_t iPage = pMemLnx->cPages;
|
|---|
| 316 | if (iPage > 0)
|
|---|
| 317 | {
|
|---|
| 318 | /*
|
|---|
| 319 | * Restore the page flags.
|
|---|
| 320 | */
|
|---|
| 321 | while (iPage-- > 0)
|
|---|
| 322 | {
|
|---|
| 323 | ClearPageReserved(pMemLnx->apPages[iPage]);
|
|---|
| 324 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
|
|---|
| 325 | #else
|
|---|
| 326 | MY_SET_PAGES_NOEXEC(pMemLnx->apPages[iPage], 1);
|
|---|
| 327 | #endif
|
|---|
| 328 | }
|
|---|
| 329 |
|
|---|
| 330 | /*
|
|---|
| 331 | * Free the pages.
|
|---|
| 332 | */
|
|---|
| 333 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
|
|---|
| 334 | if (!pMemLnx->fContiguous)
|
|---|
| 335 | {
|
|---|
| 336 | iPage = pMemLnx->cPages;
|
|---|
| 337 | while (iPage-- > 0)
|
|---|
| 338 | __free_page(pMemLnx->apPages[iPage]);
|
|---|
| 339 | }
|
|---|
| 340 | else
|
|---|
| 341 | #endif
|
|---|
| 342 | __free_pages(pMemLnx->apPages[0], rtR0MemObjLinuxOrder(pMemLnx->cPages));
|
|---|
| 343 |
|
|---|
| 344 | pMemLnx->cPages = 0;
|
|---|
| 345 | }
|
|---|
| 346 | }
|
|---|
| 347 |
|
|---|
| 348 |
|
|---|
| 349 | /**
|
|---|
| 350 | * Maps the allocation into ring-0.
|
|---|
| 351 | *
|
|---|
| 352 | * This will update the RTR0MEMOBJLNX::Core.pv and RTR0MEMOBJ::fMappedToRing0 members.
|
|---|
| 353 | *
|
|---|
| 354 | * Contiguous mappings that isn't in 'high' memory will already be mapped into kernel
|
|---|
| 355 | * space, so we'll use that mapping if possible. If execute access is required, we'll
|
|---|
| 356 | * play safe and do our own mapping.
|
|---|
| 357 | *
|
|---|
| 358 | * @returns IPRT status code.
|
|---|
| 359 | * @param pMemLnx The linux memory object to map.
|
|---|
| 360 | * @param fExecutable Whether execute access is required.
|
|---|
| 361 | */
|
|---|
| 362 | static int rtR0MemObjLinuxVMap(PRTR0MEMOBJLNX pMemLnx, bool fExecutable)
|
|---|
| 363 | {
|
|---|
| 364 | int rc = VINF_SUCCESS;
|
|---|
| 365 |
|
|---|
| 366 | /*
|
|---|
| 367 | * Choose mapping strategy.
|
|---|
| 368 | */
|
|---|
| 369 | bool fMustMap = fExecutable
|
|---|
| 370 | || !pMemLnx->fContiguous;
|
|---|
| 371 | if (!fMustMap)
|
|---|
| 372 | {
|
|---|
| 373 | size_t iPage = pMemLnx->cPages;
|
|---|
| 374 | while (iPage-- > 0)
|
|---|
| 375 | if (PageHighMem(pMemLnx->apPages[iPage]))
|
|---|
| 376 | {
|
|---|
| 377 | fMustMap = true;
|
|---|
| 378 | break;
|
|---|
| 379 | }
|
|---|
| 380 | }
|
|---|
| 381 |
|
|---|
| 382 | Assert(!pMemLnx->Core.pv);
|
|---|
| 383 | Assert(!pMemLnx->fMappedToRing0);
|
|---|
| 384 |
|
|---|
| 385 | if (fMustMap)
|
|---|
| 386 | {
|
|---|
| 387 | /*
|
|---|
| 388 | * Use vmap - 2.4.22 and later.
|
|---|
| 389 | */
|
|---|
| 390 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
|
|---|
| 391 | pgprot_t fPg;
|
|---|
| 392 | pgprot_val(fPg) = _PAGE_PRESENT | _PAGE_RW;
|
|---|
| 393 | # ifdef _PAGE_NX
|
|---|
| 394 | if (!fExecutable)
|
|---|
| 395 | pgprot_val(fPg) |= _PAGE_NX;
|
|---|
| 396 | # endif
|
|---|
| 397 |
|
|---|
| 398 | # ifdef VM_MAP
|
|---|
| 399 | pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_MAP, fPg);
|
|---|
| 400 | # else
|
|---|
| 401 | pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_ALLOC, fPg);
|
|---|
| 402 | # endif
|
|---|
| 403 | if (pMemLnx->Core.pv)
|
|---|
| 404 | pMemLnx->fMappedToRing0 = true;
|
|---|
| 405 | else
|
|---|
| 406 | rc = VERR_MAP_FAILED;
|
|---|
| 407 | #else /* < 2.4.22 */
|
|---|
| 408 | rc = VERR_NOT_SUPPORTED;
|
|---|
| 409 | #endif
|
|---|
| 410 | }
|
|---|
| 411 | else
|
|---|
| 412 | {
|
|---|
| 413 | /*
|
|---|
| 414 | * Use the kernel RAM mapping.
|
|---|
| 415 | */
|
|---|
| 416 | pMemLnx->Core.pv = phys_to_virt(page_to_phys(pMemLnx->apPages[0]));
|
|---|
| 417 | Assert(pMemLnx->Core.pv);
|
|---|
| 418 | }
|
|---|
| 419 |
|
|---|
| 420 | return rc;
|
|---|
| 421 | }
|
|---|
| 422 |
|
|---|
| 423 |
|
|---|
| 424 | /**
|
|---|
| 425 | * Undos what rtR0MemObjLinuxVMap() did.
|
|---|
| 426 | *
|
|---|
| 427 | * @param pMemLnx The linux memory object.
|
|---|
| 428 | */
|
|---|
| 429 | static void rtR0MemObjLinuxVUnmap(PRTR0MEMOBJLNX pMemLnx)
|
|---|
| 430 | {
|
|---|
| 431 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
|
|---|
| 432 | if (pMemLnx->fMappedToRing0)
|
|---|
| 433 | {
|
|---|
| 434 | Assert(pMemLnx->Core.pv);
|
|---|
| 435 | vunmap(pMemLnx->Core.pv);
|
|---|
| 436 | pMemLnx->fMappedToRing0 = false;
|
|---|
| 437 | }
|
|---|
| 438 | #else /* < 2.4.22 */
|
|---|
| 439 | Assert(!pMemLnx->fMappedToRing0);
|
|---|
| 440 | #endif
|
|---|
| 441 | pMemLnx->Core.pv = NULL;
|
|---|
| 442 | }
|
|---|
| 443 |
|
|---|
| 444 |
|
|---|
| 445 | int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
|
|---|
| 446 | {
|
|---|
| 447 | PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
|
|---|
| 448 |
|
|---|
| 449 | /*
|
|---|
| 450 | * Release any memory that we've allocated or locked.
|
|---|
| 451 | */
|
|---|
| 452 | switch (pMemLnx->Core.enmType)
|
|---|
| 453 | {
|
|---|
| 454 | case RTR0MEMOBJTYPE_LOW:
|
|---|
| 455 | case RTR0MEMOBJTYPE_PAGE:
|
|---|
| 456 | case RTR0MEMOBJTYPE_CONT:
|
|---|
| 457 | case RTR0MEMOBJTYPE_PHYS:
|
|---|
| 458 | case RTR0MEMOBJTYPE_PHYS_NC:
|
|---|
| 459 | rtR0MemObjLinuxVUnmap(pMemLnx);
|
|---|
| 460 | rtR0MemObjLinuxFreePages(pMemLnx);
|
|---|
| 461 | break;
|
|---|
| 462 |
|
|---|
| 463 | case RTR0MEMOBJTYPE_LOCK:
|
|---|
| 464 | if (pMemLnx->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
|
|---|
| 465 | {
|
|---|
| 466 | struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
|
|---|
| 467 | size_t iPage;
|
|---|
| 468 | Assert(pTask);
|
|---|
| 469 | if (pTask && pTask->mm)
|
|---|
| 470 | down_read(&pTask->mm->mmap_sem);
|
|---|
| 471 |
|
|---|
| 472 | iPage = pMemLnx->cPages;
|
|---|
| 473 | while (iPage-- > 0)
|
|---|
| 474 | {
|
|---|
| 475 | if (!PageReserved(pMemLnx->apPages[iPage]))
|
|---|
| 476 | SetPageDirty(pMemLnx->apPages[iPage]);
|
|---|
| 477 | page_cache_release(pMemLnx->apPages[iPage]);
|
|---|
| 478 | }
|
|---|
| 479 |
|
|---|
| 480 | if (pTask && pTask->mm)
|
|---|
| 481 | up_read(&pTask->mm->mmap_sem);
|
|---|
| 482 | }
|
|---|
| 483 | /* else: kernel memory - nothing to do here. */
|
|---|
| 484 | break;
|
|---|
| 485 |
|
|---|
| 486 | case RTR0MEMOBJTYPE_RES_VIRT:
|
|---|
| 487 | Assert(pMemLnx->Core.pv);
|
|---|
| 488 | printk(KERN_DEBUG "MJC - NativeFree called for RES_VIRT\n");
|
|---|
| 489 | if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
|
|---|
| 490 | {
|
|---|
| 491 | printk(KERN_DEBUG "MJC - vunmap not called for RES_VIRT\n");
|
|---|
| 492 | struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
|
|---|
| 493 | Assert(pTask);
|
|---|
| 494 | if (pTask && pTask->mm)
|
|---|
| 495 | {
|
|---|
| 496 | down_write(&pTask->mm->mmap_sem);
|
|---|
| 497 | MY_DO_MUNMAP(pTask->mm, (unsigned long)pMemLnx->Core.pv, pMemLnx->Core.cb);
|
|---|
| 498 | up_write(&pTask->mm->mmap_sem);
|
|---|
| 499 | }
|
|---|
| 500 | }
|
|---|
| 501 | else
|
|---|
| 502 | {
|
|---|
| 503 | printk(KERN_DEBUG "MJC - vunmap called for RES_VIRT\n");
|
|---|
| 504 | // vunmap(pMemLnx->Core.pv);
|
|---|
| 505 |
|
|---|
| 506 | Assert(pMemLnx->cPages == 1 && pMemLnx->apPages[0] != NULL);
|
|---|
| 507 | __free_page(pMemLnx->apPages[0]);
|
|---|
| 508 | pMemLnx->apPages[0] = NULL;
|
|---|
| 509 | pMemLnx->cPages = 0;
|
|---|
| 510 | }
|
|---|
| 511 | pMemLnx->Core.pv = NULL;
|
|---|
| 512 | break;
|
|---|
| 513 |
|
|---|
| 514 | case RTR0MEMOBJTYPE_MAPPING:
|
|---|
| 515 | Assert(pMemLnx->cPages == 0); Assert(pMemLnx->Core.pv);
|
|---|
| 516 | printk(KERN_DEBUG "MJC - NativeFree called for MAPPING\n");
|
|---|
| 517 | if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
|
|---|
| 518 | {
|
|---|
| 519 | printk(KERN_DEBUG "MJC - vunmap not called for MAPPING\n");
|
|---|
| 520 | struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
|
|---|
| 521 | Assert(pTask);
|
|---|
| 522 | if (pTask && pTask->mm)
|
|---|
| 523 | {
|
|---|
| 524 | down_write(&pTask->mm->mmap_sem);
|
|---|
| 525 | MY_DO_MUNMAP(pTask->mm, (unsigned long)pMemLnx->Core.pv, pMemLnx->Core.cb);
|
|---|
| 526 | up_write(&pTask->mm->mmap_sem);
|
|---|
| 527 | }
|
|---|
| 528 | }
|
|---|
| 529 | else
|
|---|
| 530 | printk(KERN_DEBUG "MJC - vunmap called for MAPPING\n");
|
|---|
| 531 | // vunmap(pMemLnx->Core.pv);
|
|---|
| 532 | pMemLnx->Core.pv = NULL;
|
|---|
| 533 | break;
|
|---|
| 534 |
|
|---|
| 535 | default:
|
|---|
| 536 | AssertMsgFailed(("enmType=%d\n", pMemLnx->Core.enmType));
|
|---|
| 537 | return VERR_INTERNAL_ERROR;
|
|---|
| 538 | }
|
|---|
| 539 | return VINF_SUCCESS;
|
|---|
| 540 | }
|
|---|
| 541 |
|
|---|
| 542 |
|
|---|
| 543 | int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
|
|---|
| 544 | {
|
|---|
| 545 | PRTR0MEMOBJLNX pMemLnx;
|
|---|
| 546 | int rc;
|
|---|
| 547 |
|
|---|
| 548 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
|
|---|
| 549 | rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_HIGHUSER, false /* non-contiguous */);
|
|---|
| 550 | #else
|
|---|
| 551 | rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_USER, false /* non-contiguous */);
|
|---|
| 552 | #endif
|
|---|
| 553 | if (RT_SUCCESS(rc))
|
|---|
| 554 | {
|
|---|
| 555 | rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
|
|---|
| 556 | if (RT_SUCCESS(rc))
|
|---|
| 557 | {
|
|---|
| 558 | *ppMem = &pMemLnx->Core;
|
|---|
| 559 | return rc;
|
|---|
| 560 | }
|
|---|
| 561 |
|
|---|
| 562 | rtR0MemObjLinuxFreePages(pMemLnx);
|
|---|
| 563 | rtR0MemObjDelete(&pMemLnx->Core);
|
|---|
| 564 | }
|
|---|
| 565 |
|
|---|
| 566 | return rc;
|
|---|
| 567 | }
|
|---|
| 568 |
|
|---|
| 569 |
|
|---|
| 570 | int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
|
|---|
| 571 | {
|
|---|
| 572 | PRTR0MEMOBJLNX pMemLnx;
|
|---|
| 573 | int rc;
|
|---|
| 574 |
|
|---|
| 575 | /* Try to avoid GFP_DMA. GFM_DMA32 was introduced with Linux 2.6.15. */
|
|---|
| 576 | #if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
|
|---|
| 577 | /* ZONE_DMA32: 0-4GB */
|
|---|
| 578 | rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA32, false /* non-contiguous */);
|
|---|
| 579 | if (RT_FAILURE(rc))
|
|---|
| 580 | #endif
|
|---|
| 581 | #ifdef RT_ARCH_AMD64
|
|---|
| 582 | /* ZONE_DMA: 0-16MB */
|
|---|
| 583 | rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA, false /* non-contiguous */);
|
|---|
| 584 | #else
|
|---|
| 585 | # ifdef CONFIG_X86_PAE
|
|---|
| 586 | # endif
|
|---|
| 587 | /* ZONE_NORMAL: 0-896MB */
|
|---|
| 588 | rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_USER, false /* non-contiguous */);
|
|---|
| 589 | #endif
|
|---|
| 590 | if (RT_SUCCESS(rc))
|
|---|
| 591 | {
|
|---|
| 592 | rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
|
|---|
| 593 | if (RT_SUCCESS(rc))
|
|---|
| 594 | {
|
|---|
| 595 | *ppMem = &pMemLnx->Core;
|
|---|
| 596 | return rc;
|
|---|
| 597 | }
|
|---|
| 598 |
|
|---|
| 599 | rtR0MemObjLinuxFreePages(pMemLnx);
|
|---|
| 600 | rtR0MemObjDelete(&pMemLnx->Core);
|
|---|
| 601 | }
|
|---|
| 602 |
|
|---|
| 603 | return rc;
|
|---|
| 604 | }
|
|---|
| 605 |
|
|---|
| 606 |
|
|---|
| 607 | int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
|
|---|
| 608 | {
|
|---|
| 609 | PRTR0MEMOBJLNX pMemLnx;
|
|---|
| 610 | int rc;
|
|---|
| 611 |
|
|---|
| 612 | #if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
|
|---|
| 613 | /* ZONE_DMA32: 0-4GB */
|
|---|
| 614 | rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA32, true /* contiguous */);
|
|---|
| 615 | if (RT_FAILURE(rc))
|
|---|
| 616 | #endif
|
|---|
| 617 | #ifdef RT_ARCH_AMD64
|
|---|
| 618 | /* ZONE_DMA: 0-16MB */
|
|---|
| 619 | rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA, true /* contiguous */);
|
|---|
| 620 | #else
|
|---|
| 621 | /* ZONE_NORMAL (32-bit hosts): 0-896MB */
|
|---|
| 622 | rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_USER, true /* contiguous */);
|
|---|
| 623 | #endif
|
|---|
| 624 | if (RT_SUCCESS(rc))
|
|---|
| 625 | {
|
|---|
| 626 | rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
|
|---|
| 627 | if (RT_SUCCESS(rc))
|
|---|
| 628 | {
|
|---|
| 629 | #if defined(RT_STRICT) && (defined(RT_ARCH_AMD64) || defined(CONFIG_HIGHMEM64G))
|
|---|
| 630 | size_t iPage = pMemLnx->cPages;
|
|---|
| 631 | while (iPage-- > 0)
|
|---|
| 632 | Assert(page_to_phys(pMemLnx->apPages[iPage]) < _4G);
|
|---|
| 633 | #endif
|
|---|
| 634 | pMemLnx->Core.u.Cont.Phys = page_to_phys(pMemLnx->apPages[0]);
|
|---|
| 635 | *ppMem = &pMemLnx->Core;
|
|---|
| 636 | return rc;
|
|---|
| 637 | }
|
|---|
| 638 |
|
|---|
| 639 | rtR0MemObjLinuxFreePages(pMemLnx);
|
|---|
| 640 | rtR0MemObjDelete(&pMemLnx->Core);
|
|---|
| 641 | }
|
|---|
| 642 |
|
|---|
| 643 | return rc;
|
|---|
| 644 | }
|
|---|
| 645 |
|
|---|
| 646 |
|
|---|
| 647 | /**
|
|---|
| 648 | * Worker for rtR0MemObjLinuxAllocPhysSub that tries one allocation strategy.
|
|---|
| 649 | *
|
|---|
| 650 | * @returns IPRT status.
|
|---|
| 651 | * @param ppMemLnx Where to
|
|---|
| 652 | * @param enmType The object type.
|
|---|
| 653 | * @param cb The size of the allocation.
|
|---|
| 654 | * @param uAlignment The alignment of the physical memory.
|
|---|
| 655 | * Only valid for fContiguous == true, ignored otherwise.
|
|---|
| 656 | * @param PhysHighest See rtR0MemObjNativeAllocPhys.
|
|---|
| 657 | * @param fGfp The Linux GFP flags to use for the allocation.
|
|---|
| 658 | */
|
|---|
| 659 | static int rtR0MemObjLinuxAllocPhysSub2(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
|
|---|
| 660 | size_t cb, size_t uAlignment, RTHCPHYS PhysHighest, unsigned fGfp)
|
|---|
| 661 | {
|
|---|
| 662 | PRTR0MEMOBJLNX pMemLnx;
|
|---|
| 663 | int rc;
|
|---|
| 664 |
|
|---|
| 665 | rc = rtR0MemObjLinuxAllocPages(&pMemLnx, enmType, cb, uAlignment, fGfp,
|
|---|
| 666 | enmType == RTR0MEMOBJTYPE_PHYS /* contiguous / non-contiguous */);
|
|---|
| 667 | if (RT_FAILURE(rc))
|
|---|
| 668 | return rc;
|
|---|
| 669 |
|
|---|
| 670 | /*
|
|---|
| 671 | * Check the addresses if necessary. (Can be optimized a bit for PHYS.)
|
|---|
| 672 | */
|
|---|
| 673 | if (PhysHighest != NIL_RTHCPHYS)
|
|---|
| 674 | {
|
|---|
| 675 | size_t iPage = pMemLnx->cPages;
|
|---|
| 676 | while (iPage-- > 0)
|
|---|
| 677 | if (page_to_phys(pMemLnx->apPages[iPage]) >= PhysHighest)
|
|---|
| 678 | {
|
|---|
| 679 | rtR0MemObjLinuxFreePages(pMemLnx);
|
|---|
| 680 | rtR0MemObjDelete(&pMemLnx->Core);
|
|---|
| 681 | return VERR_NO_MEMORY;
|
|---|
| 682 | }
|
|---|
| 683 | }
|
|---|
| 684 |
|
|---|
| 685 | /*
|
|---|
| 686 | * Complete the object.
|
|---|
| 687 | */
|
|---|
| 688 | if (enmType == RTR0MEMOBJTYPE_PHYS)
|
|---|
| 689 | {
|
|---|
| 690 | pMemLnx->Core.u.Phys.PhysBase = page_to_phys(pMemLnx->apPages[0]);
|
|---|
| 691 | pMemLnx->Core.u.Phys.fAllocated = true;
|
|---|
| 692 | }
|
|---|
| 693 | *ppMem = &pMemLnx->Core;
|
|---|
| 694 | return rc;
|
|---|
| 695 | }
|
|---|
| 696 |
|
|---|
| 697 |
|
|---|
| 698 | /**
|
|---|
| 699 | * Worker for rtR0MemObjNativeAllocPhys and rtR0MemObjNativeAllocPhysNC.
|
|---|
| 700 | *
|
|---|
| 701 | * @returns IPRT status.
|
|---|
| 702 | * @param ppMem Where to store the memory object pointer on success.
|
|---|
| 703 | * @param enmType The object type.
|
|---|
| 704 | * @param cb The size of the allocation.
|
|---|
| 705 | * @param uAlignment The alignment of the physical memory.
|
|---|
| 706 | * Only valid for enmType == RTR0MEMOBJTYPE_PHYS, ignored otherwise.
|
|---|
| 707 | * @param PhysHighest See rtR0MemObjNativeAllocPhys.
|
|---|
| 708 | */
|
|---|
| 709 | static int rtR0MemObjLinuxAllocPhysSub(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
|
|---|
| 710 | size_t cb, size_t uAlignment, RTHCPHYS PhysHighest)
|
|---|
| 711 | {
|
|---|
| 712 | int rc;
|
|---|
| 713 |
|
|---|
| 714 | /*
|
|---|
| 715 | * There are two clear cases and that's the <=16MB and anything-goes ones.
|
|---|
| 716 | * When the physical address limit is somewhere in-between those two we'll
|
|---|
| 717 | * just have to try, starting with HIGHUSER and working our way thru the
|
|---|
| 718 | * different types, hoping we'll get lucky.
|
|---|
| 719 | *
|
|---|
| 720 | * We should probably move this physical address restriction logic up to
|
|---|
| 721 | * the page alloc function as it would be more efficient there. But since
|
|---|
| 722 | * we don't expect this to be a performance issue just yet it can wait.
|
|---|
| 723 | */
|
|---|
| 724 | if (PhysHighest == NIL_RTHCPHYS)
|
|---|
| 725 | /* ZONE_HIGHMEM: the whole physical memory */
|
|---|
| 726 | rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
|
|---|
| 727 | else if (PhysHighest <= _1M * 16)
|
|---|
| 728 | /* ZONE_DMA: 0-16MB */
|
|---|
| 729 | rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
|
|---|
| 730 | else
|
|---|
| 731 | {
|
|---|
| 732 | rc = VERR_NO_MEMORY;
|
|---|
| 733 | if (RT_FAILURE(rc))
|
|---|
| 734 | /* ZONE_HIGHMEM: the whole physical memory */
|
|---|
| 735 | rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
|
|---|
| 736 | if (RT_FAILURE(rc))
|
|---|
| 737 | /* ZONE_NORMAL: 0-896MB */
|
|---|
| 738 | rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_USER);
|
|---|
| 739 | #ifdef GFP_DMA32
|
|---|
| 740 | if (RT_FAILURE(rc))
|
|---|
| 741 | /* ZONE_DMA32: 0-4GB */
|
|---|
| 742 | rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA32);
|
|---|
| 743 | #endif
|
|---|
| 744 | if (RT_FAILURE(rc))
|
|---|
| 745 | /* ZONE_DMA: 0-16MB */
|
|---|
| 746 | rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
|
|---|
| 747 | }
|
|---|
| 748 | return rc;
|
|---|
| 749 | }
|
|---|
| 750 |
|
|---|
| 751 |
|
|---|
| 752 | int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
|
|---|
| 753 | {
|
|---|
| 754 | return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS, cb, uAlignment, PhysHighest);
|
|---|
| 755 | }
|
|---|
| 756 |
|
|---|
| 757 |
|
|---|
| 758 | int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
|
|---|
| 759 | {
|
|---|
| 760 | return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PAGE_SIZE, PhysHighest);
|
|---|
| 761 | }
|
|---|
| 762 |
|
|---|
| 763 |
|
|---|
| 764 | int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
|
|---|
| 765 | {
|
|---|
| 766 | /*
|
|---|
| 767 | * All we need to do here is to validate that we can use
|
|---|
| 768 | * ioremap on the specified address (32/64-bit dma_addr_t).
|
|---|
| 769 | */
|
|---|
| 770 | PRTR0MEMOBJLNX pMemLnx;
|
|---|
| 771 | dma_addr_t PhysAddr = Phys;
|
|---|
| 772 | AssertMsgReturn(PhysAddr == Phys, ("%#llx\n", (unsigned long long)Phys), VERR_ADDRESS_TOO_BIG);
|
|---|
| 773 |
|
|---|
| 774 | pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_PHYS, NULL, cb);
|
|---|
| 775 | if (!pMemLnx)
|
|---|
| 776 | return VERR_NO_MEMORY;
|
|---|
| 777 |
|
|---|
| 778 | pMemLnx->Core.u.Phys.PhysBase = PhysAddr;
|
|---|
| 779 | pMemLnx->Core.u.Phys.fAllocated = false;
|
|---|
| 780 | pMemLnx->Core.u.Phys.uCachePolicy = uCachePolicy;
|
|---|
| 781 | Assert(!pMemLnx->cPages);
|
|---|
| 782 | *ppMem = &pMemLnx->Core;
|
|---|
| 783 | return VINF_SUCCESS;
|
|---|
| 784 | }
|
|---|
| 785 |
|
|---|
| 786 |
|
|---|
| 787 | int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
|
|---|
| 788 | {
|
|---|
| 789 | const int cPages = cb >> PAGE_SHIFT;
|
|---|
| 790 | struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
|
|---|
| 791 | struct vm_area_struct **papVMAs;
|
|---|
| 792 | PRTR0MEMOBJLNX pMemLnx;
|
|---|
| 793 | int rc = VERR_NO_MEMORY;
|
|---|
| 794 | NOREF(fAccess);
|
|---|
| 795 |
|
|---|
| 796 | /*
|
|---|
| 797 | * Check for valid task and size overflows.
|
|---|
| 798 | */
|
|---|
| 799 | if (!pTask)
|
|---|
| 800 | return VERR_NOT_SUPPORTED;
|
|---|
| 801 | if (((size_t)cPages << PAGE_SHIFT) != cb)
|
|---|
| 802 | return VERR_OUT_OF_RANGE;
|
|---|
| 803 |
|
|---|
| 804 | /*
|
|---|
| 805 | * Allocate the memory object and a temporary buffer for the VMAs.
|
|---|
| 806 | */
|
|---|
| 807 | pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
|
|---|
| 808 | if (!pMemLnx)
|
|---|
| 809 | return VERR_NO_MEMORY;
|
|---|
| 810 |
|
|---|
| 811 | papVMAs = (struct vm_area_struct **)RTMemAlloc(sizeof(*papVMAs) * cPages);
|
|---|
| 812 | if (papVMAs)
|
|---|
| 813 | {
|
|---|
| 814 | down_read(&pTask->mm->mmap_sem);
|
|---|
| 815 |
|
|---|
| 816 | /*
|
|---|
| 817 | * Get user pages.
|
|---|
| 818 | */
|
|---|
| 819 | rc = get_user_pages(pTask, /* Task for fault accounting. */
|
|---|
| 820 | pTask->mm, /* Whose pages. */
|
|---|
| 821 | R3Ptr, /* Where from. */
|
|---|
| 822 | cPages, /* How many pages. */
|
|---|
| 823 | 1, /* Write to memory. */
|
|---|
| 824 | 0, /* force. */
|
|---|
| 825 | &pMemLnx->apPages[0], /* Page array. */
|
|---|
| 826 | papVMAs); /* vmas */
|
|---|
| 827 | if (rc == cPages)
|
|---|
| 828 | {
|
|---|
| 829 | /*
|
|---|
| 830 | * Flush dcache (required?), protect against fork and _really_ pin the page
|
|---|
| 831 | * table entries. get_user_pages() will protect against swapping out the
|
|---|
| 832 | * pages but it will NOT protect against removing page table entries. This
|
|---|
| 833 | * can be achieved with
|
|---|
| 834 | * - using mlock / mmap(..., MAP_LOCKED, ...) from userland. This requires
|
|---|
| 835 | * an appropriate limit set up with setrlimit(..., RLIMIT_MEMLOCK, ...).
|
|---|
| 836 | * Usual Linux distributions support only a limited size of locked pages
|
|---|
| 837 | * (e.g. 32KB).
|
|---|
| 838 | * - setting the PageReserved bit (as we do in rtR0MemObjLinuxAllocPages()
|
|---|
| 839 | * or by
|
|---|
| 840 | * - setting the VM_LOCKED flag. This is the same as doing mlock() without
|
|---|
| 841 | * a range check.
|
|---|
| 842 | */
|
|---|
| 843 | /** @todo The Linux fork() protection will require more work if this API
|
|---|
| 844 | * is to be used for anything but locking VM pages. */
|
|---|
| 845 | while (rc-- > 0)
|
|---|
| 846 | {
|
|---|
| 847 | flush_dcache_page(pMemLnx->apPages[rc]);
|
|---|
| 848 | papVMAs[rc]->vm_flags |= (VM_DONTCOPY | VM_LOCKED);
|
|---|
| 849 | }
|
|---|
| 850 |
|
|---|
| 851 | up_read(&pTask->mm->mmap_sem);
|
|---|
| 852 |
|
|---|
| 853 | RTMemFree(papVMAs);
|
|---|
| 854 |
|
|---|
| 855 | pMemLnx->Core.u.Lock.R0Process = R0Process;
|
|---|
| 856 | pMemLnx->cPages = cPages;
|
|---|
| 857 | Assert(!pMemLnx->fMappedToRing0);
|
|---|
| 858 | *ppMem = &pMemLnx->Core;
|
|---|
| 859 |
|
|---|
| 860 | return VINF_SUCCESS;
|
|---|
| 861 | }
|
|---|
| 862 |
|
|---|
| 863 | /*
|
|---|
| 864 | * Failed - we need to unlock any pages that we succeeded to lock.
|
|---|
| 865 | */
|
|---|
| 866 | while (rc-- > 0)
|
|---|
| 867 | {
|
|---|
| 868 | if (!PageReserved(pMemLnx->apPages[rc]))
|
|---|
| 869 | SetPageDirty(pMemLnx->apPages[rc]);
|
|---|
| 870 | page_cache_release(pMemLnx->apPages[rc]);
|
|---|
| 871 | }
|
|---|
| 872 |
|
|---|
| 873 | up_read(&pTask->mm->mmap_sem);
|
|---|
| 874 |
|
|---|
| 875 | RTMemFree(papVMAs);
|
|---|
| 876 | rc = VERR_LOCK_FAILED;
|
|---|
| 877 | }
|
|---|
| 878 |
|
|---|
| 879 | rtR0MemObjDelete(&pMemLnx->Core);
|
|---|
| 880 | return rc;
|
|---|
| 881 | }
|
|---|
| 882 |
|
|---|
| 883 |
|
|---|
| 884 | int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
|
|---|
| 885 | {
|
|---|
| 886 | void *pvLast = (uint8_t *)pv + cb - 1;
|
|---|
| 887 | size_t const cPages = cb >> PAGE_SHIFT;
|
|---|
| 888 | PRTR0MEMOBJLNX pMemLnx;
|
|---|
| 889 | bool fLinearMapping;
|
|---|
| 890 | int rc;
|
|---|
| 891 | uint8_t *pbPage;
|
|---|
| 892 | size_t iPage;
|
|---|
| 893 | NOREF(fAccess);
|
|---|
| 894 |
|
|---|
| 895 | /*
|
|---|
| 896 | * Classify the memory and check that we can deal with it.
|
|---|
| 897 | */
|
|---|
| 898 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)
|
|---|
| 899 | fLinearMapping = virt_addr_valid(pvLast) && virt_addr_valid(pv);
|
|---|
| 900 | #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 0)
|
|---|
| 901 | fLinearMapping = VALID_PAGE(virt_to_page(pvLast)) && VALID_PAGE(virt_to_page(pv));
|
|---|
| 902 | #else
|
|---|
| 903 | # error "not supported"
|
|---|
| 904 | #endif
|
|---|
| 905 | if (!fLinearMapping)
|
|---|
| 906 | {
|
|---|
| 907 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 19)
|
|---|
| 908 | if ( !RTR0MemKernelIsValidAddr(pv)
|
|---|
| 909 | || !RTR0MemKernelIsValidAddr(pv + cb))
|
|---|
| 910 | #endif
|
|---|
| 911 | return VERR_INVALID_PARAMETER;
|
|---|
| 912 | }
|
|---|
| 913 |
|
|---|
| 914 | /*
|
|---|
| 915 | * Allocate the memory object.
|
|---|
| 916 | */
|
|---|
| 917 | pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb);
|
|---|
| 918 | if (!pMemLnx)
|
|---|
| 919 | return VERR_NO_MEMORY;
|
|---|
| 920 |
|
|---|
| 921 | /*
|
|---|
| 922 | * Gather the pages.
|
|---|
| 923 | * We ASSUME all kernel pages are non-swappable.
|
|---|
| 924 | */
|
|---|
| 925 | rc = VINF_SUCCESS;
|
|---|
| 926 | pbPage = (uint8_t *)pvLast;
|
|---|
| 927 | iPage = cPages;
|
|---|
| 928 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 19)
|
|---|
| 929 | if (!fLinearMapping)
|
|---|
| 930 | {
|
|---|
| 931 | while (iPage-- > 0)
|
|---|
| 932 | {
|
|---|
| 933 | struct page *pPage = vmalloc_to_page(pbPage);
|
|---|
| 934 | if (RT_UNLIKELY(!pPage))
|
|---|
| 935 | {
|
|---|
| 936 | rc = VERR_LOCK_FAILED;
|
|---|
| 937 | break;
|
|---|
| 938 | }
|
|---|
| 939 | pMemLnx->apPages[iPage] = pPage;
|
|---|
| 940 | pbPage -= PAGE_SIZE;
|
|---|
| 941 | }
|
|---|
| 942 | }
|
|---|
| 943 | else
|
|---|
| 944 | #endif
|
|---|
| 945 | {
|
|---|
| 946 | while (iPage-- > 0)
|
|---|
| 947 | {
|
|---|
| 948 | pMemLnx->apPages[iPage] = virt_to_page(pbPage);
|
|---|
| 949 | pbPage -= PAGE_SIZE;
|
|---|
| 950 | }
|
|---|
| 951 | }
|
|---|
| 952 | if (RT_SUCCESS(rc))
|
|---|
| 953 | {
|
|---|
| 954 | /*
|
|---|
| 955 | * Complete the memory object and return.
|
|---|
| 956 | */
|
|---|
| 957 | pMemLnx->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
|
|---|
| 958 | pMemLnx->cPages = cPages;
|
|---|
| 959 | Assert(!pMemLnx->fMappedToRing0);
|
|---|
| 960 | *ppMem = &pMemLnx->Core;
|
|---|
| 961 |
|
|---|
| 962 | return VINF_SUCCESS;
|
|---|
| 963 | }
|
|---|
| 964 |
|
|---|
| 965 | rtR0MemObjDelete(&pMemLnx->Core);
|
|---|
| 966 | return rc;
|
|---|
| 967 | }
|
|---|
| 968 |
|
|---|
| 969 |
|
|---|
| 970 | int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
|
|---|
| 971 | {
|
|---|
| 972 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
|
|---|
| 973 | const size_t cPages = cb >> PAGE_SHIFT;
|
|---|
| 974 | struct page *pDummyPage;
|
|---|
| 975 | struct page **papPages;
|
|---|
| 976 |
|
|---|
| 977 | /* check for unsupported stuff. */
|
|---|
| 978 | AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
|
|---|
| 979 | if (uAlignment > PAGE_SIZE)
|
|---|
| 980 | return VERR_NOT_SUPPORTED;
|
|---|
| 981 |
|
|---|
| 982 | /*
|
|---|
| 983 | * Allocate a dummy page and create a page pointer array for vmap such that
|
|---|
| 984 | * the dummy page is mapped all over the reserved area.
|
|---|
| 985 | */
|
|---|
| 986 | pDummyPage = alloc_page(GFP_HIGHUSER);
|
|---|
| 987 | if (!pDummyPage)
|
|---|
| 988 | return VERR_NO_MEMORY;
|
|---|
| 989 | papPages = RTMemAlloc(sizeof(*papPages) * cPages);
|
|---|
| 990 | if (papPages)
|
|---|
| 991 | {
|
|---|
| 992 | void *pv;
|
|---|
| 993 | size_t iPage = cPages;
|
|---|
| 994 | while (iPage-- > 0)
|
|---|
| 995 | papPages[iPage] = pDummyPage;
|
|---|
| 996 | # ifdef VM_MAP
|
|---|
| 997 | pv = vmap(papPages, cPages, VM_MAP, PAGE_KERNEL_RO);
|
|---|
| 998 | # else
|
|---|
| 999 | pv = vmap(papPages, cPages, VM_ALLOC, PAGE_KERNEL_RO);
|
|---|
| 1000 | # endif
|
|---|
| 1001 | RTMemFree(papPages);
|
|---|
| 1002 | if (pv)
|
|---|
| 1003 | {
|
|---|
| 1004 | PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
|
|---|
| 1005 | if (pMemLnx)
|
|---|
| 1006 | {
|
|---|
| 1007 | pMemLnx->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS;
|
|---|
| 1008 | pMemLnx->cPages = 1;
|
|---|
| 1009 | pMemLnx->apPages[0] = pDummyPage;
|
|---|
| 1010 | *ppMem = &pMemLnx->Core;
|
|---|
| 1011 | return VINF_SUCCESS;
|
|---|
| 1012 | }
|
|---|
| 1013 | vunmap(pv);
|
|---|
| 1014 | }
|
|---|
| 1015 | }
|
|---|
| 1016 | __free_page(pDummyPage);
|
|---|
| 1017 | return VERR_NO_MEMORY;
|
|---|
| 1018 |
|
|---|
| 1019 | #else /* < 2.4.22 */
|
|---|
| 1020 | /*
|
|---|
| 1021 | * Could probably use ioremap here, but the caller is in a better position than us
|
|---|
| 1022 | * to select some safe physical memory.
|
|---|
| 1023 | */
|
|---|
| 1024 | return VERR_NOT_SUPPORTED;
|
|---|
| 1025 | #endif
|
|---|
| 1026 | }
|
|---|
| 1027 |
|
|---|
| 1028 |
|
|---|
| 1029 | /**
|
|---|
| 1030 | * Worker for rtR0MemObjNativeReserveUser and rtR0MemObjNativerMapUser that creates
|
|---|
| 1031 | * an empty user space mapping.
|
|---|
| 1032 | *
|
|---|
| 1033 | * The caller takes care of acquiring the mmap_sem of the task.
|
|---|
| 1034 | *
|
|---|
| 1035 | * @returns Pointer to the mapping.
|
|---|
| 1036 | * (void *)-1 on failure.
|
|---|
| 1037 | * @param R3PtrFixed (RTR3PTR)-1 if anywhere, otherwise a specific location.
|
|---|
| 1038 | * @param cb The size of the mapping.
|
|---|
| 1039 | * @param uAlignment The alignment of the mapping.
|
|---|
| 1040 | * @param pTask The Linux task to create this mapping in.
|
|---|
| 1041 | * @param fProt The RTMEM_PROT_* mask.
|
|---|
| 1042 | */
|
|---|
| 1043 | static void *rtR0MemObjLinuxDoMmap(RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, struct task_struct *pTask, unsigned fProt)
|
|---|
| 1044 | {
|
|---|
| 1045 | unsigned fLnxProt;
|
|---|
| 1046 | unsigned long ulAddr;
|
|---|
| 1047 |
|
|---|
| 1048 | /*
|
|---|
| 1049 | * Convert from IPRT protection to mman.h PROT_ and call do_mmap.
|
|---|
| 1050 | */
|
|---|
| 1051 | fProt &= (RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC);
|
|---|
| 1052 | if (fProt == RTMEM_PROT_NONE)
|
|---|
| 1053 | fLnxProt = PROT_NONE;
|
|---|
| 1054 | else
|
|---|
| 1055 | {
|
|---|
| 1056 | fLnxProt = 0;
|
|---|
| 1057 | if (fProt & RTMEM_PROT_READ)
|
|---|
| 1058 | fLnxProt |= PROT_READ;
|
|---|
| 1059 | if (fProt & RTMEM_PROT_WRITE)
|
|---|
| 1060 | fLnxProt |= PROT_WRITE;
|
|---|
| 1061 | if (fProt & RTMEM_PROT_EXEC)
|
|---|
| 1062 | fLnxProt |= PROT_EXEC;
|
|---|
| 1063 | }
|
|---|
| 1064 |
|
|---|
| 1065 | if (R3PtrFixed != (RTR3PTR)-1)
|
|---|
| 1066 | ulAddr = do_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
|
|---|
| 1067 | else
|
|---|
| 1068 | {
|
|---|
| 1069 | ulAddr = do_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
|
|---|
| 1070 | if ( !(ulAddr & ~PAGE_MASK)
|
|---|
| 1071 | && (ulAddr & (uAlignment - 1)))
|
|---|
| 1072 | {
|
|---|
| 1073 | /** @todo implement uAlignment properly... We'll probably need to make some dummy mappings to fill
|
|---|
| 1074 | * up alignment gaps. This is of course complicated by fragmentation (which we might have cause
|
|---|
| 1075 | * ourselves) and further by there begin two mmap strategies (top / bottom). */
|
|---|
| 1076 | /* For now, just ignore uAlignment requirements... */
|
|---|
| 1077 | }
|
|---|
| 1078 | }
|
|---|
| 1079 | if (ulAddr & ~PAGE_MASK) /* ~PAGE_MASK == PAGE_OFFSET_MASK */
|
|---|
| 1080 | return (void *)-1;
|
|---|
| 1081 | return (void *)ulAddr;
|
|---|
| 1082 | }
|
|---|
| 1083 |
|
|---|
| 1084 |
|
|---|
| 1085 | int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
|
|---|
| 1086 | {
|
|---|
| 1087 | PRTR0MEMOBJLNX pMemLnx;
|
|---|
| 1088 | void *pv;
|
|---|
| 1089 | struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
|
|---|
| 1090 | if (!pTask)
|
|---|
| 1091 | return VERR_NOT_SUPPORTED;
|
|---|
| 1092 |
|
|---|
| 1093 | /*
|
|---|
| 1094 | * Check that the specified alignment is supported.
|
|---|
| 1095 | */
|
|---|
| 1096 | if (uAlignment > PAGE_SIZE)
|
|---|
| 1097 | return VERR_NOT_SUPPORTED;
|
|---|
| 1098 |
|
|---|
| 1099 | /*
|
|---|
| 1100 | * Let rtR0MemObjLinuxDoMmap do the difficult bits.
|
|---|
| 1101 | */
|
|---|
| 1102 | down_write(&pTask->mm->mmap_sem);
|
|---|
| 1103 | pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cb, uAlignment, pTask, RTMEM_PROT_NONE);
|
|---|
| 1104 | up_write(&pTask->mm->mmap_sem);
|
|---|
| 1105 | if (pv == (void *)-1)
|
|---|
| 1106 | return VERR_NO_MEMORY;
|
|---|
| 1107 |
|
|---|
| 1108 | pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
|
|---|
| 1109 | printk(KERN_DEBUG "MJC - NativeReserveUser called MemObjNew for RES_VIRT\n");
|
|---|
| 1110 | if (!pMemLnx)
|
|---|
| 1111 | {
|
|---|
| 1112 | down_write(&pTask->mm->mmap_sem);
|
|---|
| 1113 | MY_DO_MUNMAP(pTask->mm, (unsigned long)pv, cb);
|
|---|
| 1114 | up_write(&pTask->mm->mmap_sem);
|
|---|
| 1115 | return VERR_NO_MEMORY;
|
|---|
| 1116 | }
|
|---|
| 1117 |
|
|---|
| 1118 | pMemLnx->Core.u.ResVirt.R0Process = R0Process;
|
|---|
| 1119 | *ppMem = &pMemLnx->Core;
|
|---|
| 1120 | return VINF_SUCCESS;
|
|---|
| 1121 | }
|
|---|
| 1122 |
|
|---|
| 1123 |
|
|---|
| 1124 | int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
|
|---|
| 1125 | unsigned fProt, size_t offSub, size_t cbSub)
|
|---|
| 1126 | {
|
|---|
| 1127 | int rc = VERR_NO_MEMORY;
|
|---|
| 1128 | PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
|
|---|
| 1129 | PRTR0MEMOBJLNX pMemLnx;
|
|---|
| 1130 |
|
|---|
| 1131 | /* Fail if requested to do something we can't. */
|
|---|
| 1132 | AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
|
|---|
| 1133 | AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
|
|---|
| 1134 | if (uAlignment > PAGE_SIZE)
|
|---|
| 1135 | return VERR_NOT_SUPPORTED;
|
|---|
| 1136 |
|
|---|
| 1137 | /*
|
|---|
| 1138 | * Create the IPRT memory object.
|
|---|
| 1139 | */
|
|---|
| 1140 | pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
|
|---|
| 1141 | printk(KERN_DEBUG "MJC - NativeMapKernel called MemObjNew for MAPPING\n");
|
|---|
| 1142 | if (pMemLnx)
|
|---|
| 1143 | {
|
|---|
| 1144 | if (pMemLnxToMap->cPages)
|
|---|
| 1145 | {
|
|---|
| 1146 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
|
|---|
| 1147 | /*
|
|---|
| 1148 | * Use vmap - 2.4.22 and later.
|
|---|
| 1149 | */
|
|---|
| 1150 | pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, true /* kernel */);
|
|---|
| 1151 | # ifdef VM_MAP
|
|---|
| 1152 | pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_MAP, fPg);
|
|---|
| 1153 | # else
|
|---|
| 1154 | pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_ALLOC, fPg);
|
|---|
| 1155 | # endif
|
|---|
| 1156 | if (pMemLnx->Core.pv)
|
|---|
| 1157 | {
|
|---|
| 1158 | pMemLnx->fMappedToRing0 = true;
|
|---|
| 1159 | rc = VINF_SUCCESS;
|
|---|
| 1160 | }
|
|---|
| 1161 | else
|
|---|
| 1162 | rc = VERR_MAP_FAILED;
|
|---|
| 1163 |
|
|---|
| 1164 | #else /* < 2.4.22 */
|
|---|
| 1165 | /*
|
|---|
| 1166 | * Only option here is to share mappings if possible and forget about fProt.
|
|---|
| 1167 | */
|
|---|
| 1168 | if (rtR0MemObjIsRing3(pMemToMap))
|
|---|
| 1169 | rc = VERR_NOT_SUPPORTED;
|
|---|
| 1170 | else
|
|---|
| 1171 | {
|
|---|
| 1172 | rc = VINF_SUCCESS;
|
|---|
| 1173 | if (!pMemLnxToMap->Core.pv)
|
|---|
| 1174 | rc = rtR0MemObjLinuxVMap(pMemLnxToMap, !!(fProt & RTMEM_PROT_EXEC));
|
|---|
| 1175 | if (RT_SUCCESS(rc))
|
|---|
| 1176 | {
|
|---|
| 1177 | Assert(pMemLnxToMap->Core.pv);
|
|---|
| 1178 | pMemLnx->Core.pv = pMemLnxToMap->Core.pv;
|
|---|
| 1179 | }
|
|---|
| 1180 | }
|
|---|
| 1181 | #endif
|
|---|
| 1182 | }
|
|---|
| 1183 | else
|
|---|
| 1184 | {
|
|---|
| 1185 | /*
|
|---|
| 1186 | * MMIO / physical memory.
|
|---|
| 1187 | */
|
|---|
| 1188 | Assert(pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS && !pMemLnxToMap->Core.u.Phys.fAllocated);
|
|---|
| 1189 | pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO
|
|---|
| 1190 | ? ioremap_nocache(pMemLnxToMap->Core.u.Phys.PhysBase, pMemLnxToMap->Core.cb)
|
|---|
| 1191 | : ioremap(pMemLnxToMap->Core.u.Phys.PhysBase, pMemLnxToMap->Core.cb);
|
|---|
| 1192 | if (pMemLnx->Core.pv)
|
|---|
| 1193 | {
|
|---|
| 1194 | /** @todo fix protection. */
|
|---|
| 1195 | rc = VINF_SUCCESS;
|
|---|
| 1196 | }
|
|---|
| 1197 | }
|
|---|
| 1198 | if (RT_SUCCESS(rc))
|
|---|
| 1199 | {
|
|---|
| 1200 | pMemLnx->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
|
|---|
| 1201 | *ppMem = &pMemLnx->Core;
|
|---|
| 1202 | return VINF_SUCCESS;
|
|---|
| 1203 | }
|
|---|
| 1204 | rtR0MemObjDelete(&pMemLnx->Core);
|
|---|
| 1205 | }
|
|---|
| 1206 |
|
|---|
| 1207 | return rc;
|
|---|
| 1208 | }
|
|---|
| 1209 |
|
|---|
| 1210 |
|
|---|
| 1211 | #ifdef VBOX_USE_PAE_HACK
|
|---|
| 1212 | /**
|
|---|
| 1213 | * Replace the PFN of a PTE with the address of the actual page.
|
|---|
| 1214 | *
|
|---|
| 1215 | * The caller maps a reserved dummy page at the address with the desired access
|
|---|
| 1216 | * and flags.
|
|---|
| 1217 | *
|
|---|
| 1218 | * This hack is required for older Linux kernels which don't provide
|
|---|
| 1219 | * remap_pfn_range().
|
|---|
| 1220 | *
|
|---|
| 1221 | * @returns 0 on success, -ENOMEM on failure.
|
|---|
| 1222 | * @param mm The memory context.
|
|---|
| 1223 | * @param ulAddr The mapping address.
|
|---|
| 1224 | * @param Phys The physical address of the page to map.
|
|---|
| 1225 | */
|
|---|
| 1226 | static int rtR0MemObjLinuxFixPte(struct mm_struct *mm, unsigned long ulAddr, RTHCPHYS Phys)
|
|---|
| 1227 | {
|
|---|
| 1228 | int rc = -ENOMEM;
|
|---|
| 1229 | pgd_t *pgd;
|
|---|
| 1230 |
|
|---|
| 1231 | spin_lock(&mm->page_table_lock);
|
|---|
| 1232 |
|
|---|
| 1233 | pgd = pgd_offset(mm, ulAddr);
|
|---|
| 1234 | if (!pgd_none(*pgd) && !pgd_bad(*pgd))
|
|---|
| 1235 | {
|
|---|
| 1236 | pmd_t *pmd = pmd_offset(pgd, ulAddr);
|
|---|
| 1237 | if (!pmd_none(*pmd))
|
|---|
| 1238 | {
|
|---|
| 1239 | pte_t *ptep = pte_offset_map(pmd, ulAddr);
|
|---|
| 1240 | if (ptep)
|
|---|
| 1241 | {
|
|---|
| 1242 | pte_t pte = *ptep;
|
|---|
| 1243 | pte.pte_high &= 0xfff00000;
|
|---|
| 1244 | pte.pte_high |= ((Phys >> 32) & 0x000fffff);
|
|---|
| 1245 | pte.pte_low &= 0x00000fff;
|
|---|
| 1246 | pte.pte_low |= (Phys & 0xfffff000);
|
|---|
| 1247 | set_pte(ptep, pte);
|
|---|
| 1248 | pte_unmap(ptep);
|
|---|
| 1249 | rc = 0;
|
|---|
| 1250 | }
|
|---|
| 1251 | }
|
|---|
| 1252 | }
|
|---|
| 1253 |
|
|---|
| 1254 | spin_unlock(&mm->page_table_lock);
|
|---|
| 1255 | return rc;
|
|---|
| 1256 | }
|
|---|
| 1257 | #endif /* VBOX_USE_PAE_HACK */
|
|---|
| 1258 |
|
|---|
| 1259 |
|
|---|
| 1260 | int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
|
|---|
| 1261 | {
|
|---|
| 1262 | struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
|
|---|
| 1263 | PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
|
|---|
| 1264 | int rc = VERR_NO_MEMORY;
|
|---|
| 1265 | PRTR0MEMOBJLNX pMemLnx;
|
|---|
| 1266 | #ifdef VBOX_USE_PAE_HACK
|
|---|
| 1267 | struct page *pDummyPage;
|
|---|
| 1268 | RTHCPHYS DummyPhys;
|
|---|
| 1269 | #endif
|
|---|
| 1270 |
|
|---|
| 1271 | /*
|
|---|
| 1272 | * Check for restrictions.
|
|---|
| 1273 | */
|
|---|
| 1274 | if (!pTask)
|
|---|
| 1275 | return VERR_NOT_SUPPORTED;
|
|---|
| 1276 | if (uAlignment > PAGE_SIZE)
|
|---|
| 1277 | return VERR_NOT_SUPPORTED;
|
|---|
| 1278 |
|
|---|
| 1279 | #ifdef VBOX_USE_PAE_HACK
|
|---|
| 1280 | /*
|
|---|
| 1281 | * Allocate a dummy page for use when mapping the memory.
|
|---|
| 1282 | */
|
|---|
| 1283 | pDummyPage = alloc_page(GFP_USER);
|
|---|
| 1284 | if (!pDummyPage)
|
|---|
| 1285 | return VERR_NO_MEMORY;
|
|---|
| 1286 | SetPageReserved(pDummyPage);
|
|---|
| 1287 | DummyPhys = page_to_phys(pDummyPage);
|
|---|
| 1288 | #endif
|
|---|
| 1289 |
|
|---|
| 1290 | /*
|
|---|
| 1291 | * Create the IPRT memory object.
|
|---|
| 1292 | */
|
|---|
| 1293 | pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
|
|---|
| 1294 | if (pMemLnx)
|
|---|
| 1295 | {
|
|---|
| 1296 | printk(KERN_DEBUG "MJC - NativeMapUser called MemObjNew for MAPPING\n");
|
|---|
| 1297 | /*
|
|---|
| 1298 | * Allocate user space mapping.
|
|---|
| 1299 | */
|
|---|
| 1300 | void *pv;
|
|---|
| 1301 | down_write(&pTask->mm->mmap_sem);
|
|---|
| 1302 | pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, pMemLnxToMap->Core.cb, uAlignment, pTask, fProt);
|
|---|
| 1303 | if (pv != (void *)-1)
|
|---|
| 1304 | {
|
|---|
| 1305 | /*
|
|---|
| 1306 | * Map page by page into the mmap area.
|
|---|
| 1307 | * This is generic, paranoid and not very efficient.
|
|---|
| 1308 | */
|
|---|
| 1309 | pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, false /* user */);
|
|---|
| 1310 | unsigned long ulAddrCur = (unsigned long)pv;
|
|---|
| 1311 | const size_t cPages = pMemLnxToMap->Core.cb >> PAGE_SHIFT;
|
|---|
| 1312 | size_t iPage;
|
|---|
| 1313 |
|
|---|
| 1314 | rc = 0;
|
|---|
| 1315 | if (pMemLnxToMap->cPages)
|
|---|
| 1316 | {
|
|---|
| 1317 | for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE)
|
|---|
| 1318 | {
|
|---|
| 1319 | #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 11)
|
|---|
| 1320 | RTHCPHYS Phys = page_to_phys(pMemLnxToMap->apPages[iPage]);
|
|---|
| 1321 | #endif
|
|---|
| 1322 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
|
|---|
| 1323 | struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
|
|---|
| 1324 | AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
|
|---|
| 1325 | #endif
|
|---|
| 1326 | #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) && defined(RT_ARCH_X86)
|
|---|
| 1327 | /* remap_page_range() limitation on x86 */
|
|---|
| 1328 | AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
|
|---|
| 1329 | #endif
|
|---|
| 1330 |
|
|---|
| 1331 | #if defined(VBOX_USE_INSERT_PAGE) && LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22)
|
|---|
| 1332 | rc = vm_insert_page(vma, ulAddrCur, pMemLnxToMap->apPages[iPage]);
|
|---|
| 1333 | vma->vm_flags |= VM_RESERVED; /* This flag helps making 100% sure some bad stuff wont happen (swap, core, ++). */
|
|---|
| 1334 | #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
|
|---|
| 1335 | rc = remap_pfn_range(vma, ulAddrCur, page_to_pfn(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg);
|
|---|
| 1336 | #elif defined(VBOX_USE_PAE_HACK)
|
|---|
| 1337 | rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
|
|---|
| 1338 | if (!rc)
|
|---|
| 1339 | rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
|
|---|
| 1340 | #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
|
|---|
| 1341 | rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
|
|---|
| 1342 | #else /* 2.4 */
|
|---|
| 1343 | rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
|
|---|
| 1344 | #endif
|
|---|
| 1345 | if (rc)
|
|---|
| 1346 | {
|
|---|
| 1347 | rc = VERR_NO_MEMORY;
|
|---|
| 1348 | break;
|
|---|
| 1349 | }
|
|---|
| 1350 | }
|
|---|
| 1351 | }
|
|---|
| 1352 | else
|
|---|
| 1353 | {
|
|---|
| 1354 | RTHCPHYS Phys;
|
|---|
| 1355 | if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS)
|
|---|
| 1356 | Phys = pMemLnxToMap->Core.u.Phys.PhysBase;
|
|---|
| 1357 | else if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_CONT)
|
|---|
| 1358 | Phys = pMemLnxToMap->Core.u.Cont.Phys;
|
|---|
| 1359 | else
|
|---|
| 1360 | {
|
|---|
| 1361 | AssertMsgFailed(("%d\n", pMemLnxToMap->Core.enmType));
|
|---|
| 1362 | Phys = NIL_RTHCPHYS;
|
|---|
| 1363 | }
|
|---|
| 1364 | if (Phys != NIL_RTHCPHYS)
|
|---|
| 1365 | {
|
|---|
| 1366 | for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE, Phys += PAGE_SIZE)
|
|---|
| 1367 | {
|
|---|
| 1368 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
|
|---|
| 1369 | struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
|
|---|
| 1370 | AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
|
|---|
| 1371 | #endif
|
|---|
| 1372 | #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) && defined(RT_ARCH_X86)
|
|---|
| 1373 | /* remap_page_range() limitation on x86 */
|
|---|
| 1374 | AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
|
|---|
| 1375 | #endif
|
|---|
| 1376 |
|
|---|
| 1377 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
|
|---|
| 1378 | rc = remap_pfn_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
|
|---|
| 1379 | #elif defined(VBOX_USE_PAE_HACK)
|
|---|
| 1380 | rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
|
|---|
| 1381 | if (!rc)
|
|---|
| 1382 | rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
|
|---|
| 1383 | #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
|
|---|
| 1384 | rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
|
|---|
| 1385 | #else /* 2.4 */
|
|---|
| 1386 | rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
|
|---|
| 1387 | #endif
|
|---|
| 1388 | if (rc)
|
|---|
| 1389 | {
|
|---|
| 1390 | rc = VERR_NO_MEMORY;
|
|---|
| 1391 | break;
|
|---|
| 1392 | }
|
|---|
| 1393 | }
|
|---|
| 1394 | }
|
|---|
| 1395 | }
|
|---|
| 1396 | if (!rc)
|
|---|
| 1397 | {
|
|---|
| 1398 | up_write(&pTask->mm->mmap_sem);
|
|---|
| 1399 | #ifdef VBOX_USE_PAE_HACK
|
|---|
| 1400 | __free_page(pDummyPage);
|
|---|
| 1401 | #endif
|
|---|
| 1402 |
|
|---|
| 1403 | pMemLnx->Core.pv = pv;
|
|---|
| 1404 | pMemLnx->Core.u.Mapping.R0Process = R0Process;
|
|---|
| 1405 | *ppMem = &pMemLnx->Core;
|
|---|
| 1406 | return VINF_SUCCESS;
|
|---|
| 1407 | }
|
|---|
| 1408 |
|
|---|
| 1409 | /*
|
|---|
| 1410 | * Bail out.
|
|---|
| 1411 | */
|
|---|
| 1412 | MY_DO_MUNMAP(pTask->mm, (unsigned long)pv, pMemLnxToMap->Core.cb);
|
|---|
| 1413 | }
|
|---|
| 1414 | up_write(&pTask->mm->mmap_sem);
|
|---|
| 1415 | rtR0MemObjDelete(&pMemLnx->Core);
|
|---|
| 1416 | }
|
|---|
| 1417 | #ifdef VBOX_USE_PAE_HACK
|
|---|
| 1418 | __free_page(pDummyPage);
|
|---|
| 1419 | #endif
|
|---|
| 1420 |
|
|---|
| 1421 | return rc;
|
|---|
| 1422 | }
|
|---|
| 1423 |
|
|---|
| 1424 |
|
|---|
| 1425 | int rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
|
|---|
| 1426 | {
|
|---|
| 1427 | NOREF(pMem);
|
|---|
| 1428 | NOREF(offSub);
|
|---|
| 1429 | NOREF(cbSub);
|
|---|
| 1430 | NOREF(fProt);
|
|---|
| 1431 | return VERR_NOT_SUPPORTED;
|
|---|
| 1432 | }
|
|---|
| 1433 |
|
|---|
| 1434 |
|
|---|
| 1435 | RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
|
|---|
| 1436 | {
|
|---|
| 1437 | PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
|
|---|
| 1438 |
|
|---|
| 1439 | if (pMemLnx->cPages)
|
|---|
| 1440 | return page_to_phys(pMemLnx->apPages[iPage]);
|
|---|
| 1441 |
|
|---|
| 1442 | switch (pMemLnx->Core.enmType)
|
|---|
| 1443 | {
|
|---|
| 1444 | case RTR0MEMOBJTYPE_CONT:
|
|---|
| 1445 | return pMemLnx->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
|
|---|
| 1446 |
|
|---|
| 1447 | case RTR0MEMOBJTYPE_PHYS:
|
|---|
| 1448 | return pMemLnx->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
|
|---|
| 1449 |
|
|---|
| 1450 | /* the parent knows */
|
|---|
| 1451 | case RTR0MEMOBJTYPE_MAPPING:
|
|---|
| 1452 | printk(KERN_DEBUG "MJC - NativeGetPagePhysAddr called for MAPPING\n");
|
|---|
| 1453 | return rtR0MemObjNativeGetPagePhysAddr(pMemLnx->Core.uRel.Child.pParent, iPage);
|
|---|
| 1454 |
|
|---|
| 1455 | /* cPages > 0 */
|
|---|
| 1456 | case RTR0MEMOBJTYPE_LOW:
|
|---|
| 1457 | case RTR0MEMOBJTYPE_LOCK:
|
|---|
| 1458 | case RTR0MEMOBJTYPE_PHYS_NC:
|
|---|
| 1459 | case RTR0MEMOBJTYPE_PAGE:
|
|---|
| 1460 | default:
|
|---|
| 1461 | AssertMsgFailed(("%d\n", pMemLnx->Core.enmType));
|
|---|
| 1462 | /* fall thru */
|
|---|
| 1463 |
|
|---|
| 1464 | case RTR0MEMOBJTYPE_RES_VIRT:
|
|---|
| 1465 | printk(KERN_DEBUG "MJC - NativeGetPagePhysAddr called for RES_VIRT\n");
|
|---|
| 1466 | return NIL_RTHCPHYS;
|
|---|
| 1467 | }
|
|---|
| 1468 | }
|
|---|
| 1469 |
|
|---|