/* $Id: semwait.h 98103 2023-01-17 14:15:46Z vboxsync $ */ /** @file * IPRT - Common semaphore wait code. */ /* * Copyright (C) 2021-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included * in the VirtualBox distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0 */ #ifndef IPRT_INCLUDED_SRC_r3_posix_semwait_h #define IPRT_INCLUDED_SRC_r3_posix_semwait_h #ifndef RT_WITHOUT_PRAGMA_ONCE # pragma once #endif /** @def IPRT_HAVE_PTHREAD_CONDATTR_SETCLOCK * Set if the platform implements pthread_condattr_setclock(). * Enables the use of the monotonic clock for waiting on condition variables. */ #ifndef IPRT_HAVE_PTHREAD_CONDATTR_SETCLOCK /* Linux detection */ # if defined(RT_OS_LINUX) && defined(__USE_XOPEN2K) # include # if __GLIBC_PREREQ(2,6) /** @todo figure the exact version where this was added */ # define IPRT_HAVE_PTHREAD_CONDATTR_SETCLOCK # endif # endif /** @todo check other platforms */ #endif /** * Converts a extended wait timeout specification to an absolute timespec and a * relative nanosecond count. * * @note This does not check for RTSEMWAIT_FLAGS_INDEFINITE, caller should've * done that already. * * @returns The relative wait in nanoseconds. 0 for a poll call, UINT64_MAX for * an effectively indefinite wait. * @param fFlags RTSEMWAIT_FLAGS_XXX. * @param fMonotonicClock Whether the timeout is in monotonic (true) or real * (false) time. * @param uTimeout The timeout. * @param pAbsDeadline Where to return the absolute deadline. */ DECLINLINE(uint64_t) rtSemPosixCalcDeadline(uint32_t fFlags, uint64_t uTimeout, bool fMonotonicClock, struct timespec *pAbsDeadline) { Assert(!(fFlags & RTSEMWAIT_FLAGS_INDEFINITE)); /* * Convert uTimeout to a relative value in nanoseconds. */ if (fFlags & RTSEMWAIT_FLAGS_MILLISECS) { if (uTimeout < UINT64_MAX / RT_NS_1MS) uTimeout = uTimeout * RT_NS_1MS; else return UINT64_MAX; } else if (uTimeout == UINT64_MAX) /* unofficial way of indicating an indefinite wait */ return UINT64_MAX; /* * Make uTimeout relative and check for polling (zero timeout) calls. */ uint64_t uAbsTimeout = uTimeout; if (fFlags & RTSEMWAIT_FLAGS_ABSOLUTE) { uint64_t const u64Now = RTTimeSystemNanoTS(); if (uTimeout > u64Now) uTimeout -= u64Now; else return 0; } else if (uTimeout == 0) return 0; /* * Calculate the deadline according to the clock we're using. */ if (!fMonotonicClock) { #if defined(RT_OS_DARWIN) || defined(RT_OS_HAIKU) struct timeval tv = {0,0}; gettimeofday(&tv, NULL); pAbsDeadline->tv_sec = tv.tv_sec; pAbsDeadline->tv_nsec = tv.tv_usec * 1000; #else clock_gettime(CLOCK_REALTIME, pAbsDeadline); #endif struct timespec TsAdd; TsAdd.tv_nsec = uTimeout % RT_NS_1SEC; TsAdd.tv_sec = uTimeout / RT_NS_1SEC; /* Check for 32-bit tv_sec overflows: */ if ( sizeof(pAbsDeadline->tv_sec) < sizeof(uint64_t) && ( uTimeout >= (uint64_t)RT_NS_1SEC * UINT32_MAX || (uint64_t)pAbsDeadline->tv_sec + pAbsDeadline->tv_sec >= UINT32_MAX) ) return UINT64_MAX; pAbsDeadline->tv_sec += TsAdd.tv_sec; pAbsDeadline->tv_nsec += TsAdd.tv_nsec; if ((uint32_t)pAbsDeadline->tv_nsec >= RT_NS_1SEC) { pAbsDeadline->tv_nsec -= RT_NS_1SEC; pAbsDeadline->tv_sec++; } } else { /* ASSUMES RTTimeSystemNanoTS() == RTTimeNanoTS() == clock_gettime(CLOCK_MONOTONIC). */ if (fFlags & RTSEMWAIT_FLAGS_RELATIVE) { uint64_t const nsNow = RTTimeSystemNanoTS(); uAbsTimeout += nsNow; if (uAbsTimeout < nsNow) return UINT64_MAX; } /* Check for 32-bit tv_sec overflows: */ if ( sizeof(pAbsDeadline->tv_sec) < sizeof(uint64_t) && uAbsTimeout >= (uint64_t)RT_NS_1SEC * UINT32_MAX) return UINT64_MAX; pAbsDeadline->tv_nsec = uAbsTimeout % RT_NS_1SEC; pAbsDeadline->tv_sec = uAbsTimeout / RT_NS_1SEC; } return uTimeout; } #endif /* !IPRT_INCLUDED_SRC_r3_posix_semwait_h */